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Abstract

Many areas in the Netherlands can be characterized as low-lying polder systems. In order to
keep our feet dry, a lot of effort is put into ensuring the safety of the physical structures that
protect us from flooding, such as dams and dikes. To control the water quantity and quality
within the polders, hydraulic structures such as pumps and gates are in place. These can
be operated to meet different requirements. Some of these structures are operated manually,
but often the control has been automated. The operation of such structures is in many cases
done by rule-based (if-then) operators, which base their control actions on a comparison of
the current state (e.g. water levels) with the desired state. The field of operational water
management aims at optimizing the control of these automated structures.

Model Predictive Control (MPC) is an anticipatory control technique that originated in the
process industries, and found its way into water management over the last one or two decades.
This methodology uses a mathematical model of the controlled process and forecasts of future
process states and external disturbances to determine the optimal sequence of control actions
over a finite prediction horizon. The trade-off between different, often conflicting objectives
of a controller is described mathematically in an objective function. At every time step,
an optimization problem has to be solved by minimizing the objective function subject to
constraints. Only the first control step is implemented, and the optimization starts again with
updated measurements and predictions at the new time step.

This thesis focusses on Dutch regional water systems. These systems are often low-lying
polder-belt canal systems, where many pumps are needed to meet different requirements re-
garding water quantity and quality. The control of a complex water system, consisting of
continuous dynamics (evolution of water flow and levels) and discrete elements (e.g. barriers
and pumps that are operated on or off) can be optimized using a so-called hybrid Model Pre-
dictive Controller. However, particularly the optimization of the combination of discrete and
continuous elements requires extensive computational effort. Even with the ongoing increase
in computational power, computational time remains an issue for the optimization of large
hybrid systems in real-time control applications.

Time Instant Optimization MPC has been proposed in literature as an alternative to the
computationally more demanding Mixed Logical Dynamical models. TIO-MPC involves the
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optimization of a (a priori determined) number of time instants, which are the moments that
a discrete variable changes its state. The rationale behind this approach is that in many
cases, it is undesirable to have too many switching of controllers. This significantly reduces
the amount of optimization variables, as the controller does not have to decide at every time
step whether or not to switch the state of discrete variables. The latter would normally lead
to a large combinatorial optimization problem.

The contribution of this thesis is the extension of the current TIO-MPC in such a way that
the time instants become continuous. This way, the gradient of the objective function can
be derived. The gradient allows the use of efficient gradient-based solvers, which require a
gradient vector of the objective function for finding an optimum. Furthermore, hybrid schemes
including the optimization of time instants and standard MPC can easily be integrated.

The analytical gradient of the objective function is derived by applying algorithmic differen-
tiation in reverse mode. This way, the gradient of the objective function can be derived to
machine precision at the computational costs of a single function evaluation. Another benefit
of the use of algorithmic differentiation over finite differencing is the absence of a truncation
error.

Multiple TIO-MPC algorithms have been designed, and their performance has been tested
using two test cases. Different performance indicators are defined and used to compare the
results. The first test case involves the closed-loop simulation of a fictitious linear reservoir
with one discrete control variable (pump) using two time instants. The second test case
involves the pump scheduling of two continuous pumps, two discrete pumps and one a gate
on a model of the Fivelingo boezem, an existing water system in the province of Groningen in
the north of the Netherlands. For the latter, only open-loop simulations have been carried out
using algorithms with a different number of time instants. For comparison, one continuous
optimization was done.

The gradient-based TIO-MPC algorithms are perfectly capable of optimizing both continuous
and discrete elements, well within the allowed control time step. The computational time is
correlated with the amount of iterations that is needed to converge to a solution. Therefore
it can not be said in advance which scheme is the quickest.

A comparison of the different TIO-MPC algorithms used for the Fivelingo test case demon-
strated that the use of more time instants generally leads to lower objective function values,
indicating better control performance. The experiments also showed that the solution is likely
to get stuck in (suboptimal) local minima if a user-supplied initial guess of the time instants
is not given. Supplying a good initial guess, or using a multi-start optimization procedure will
potentially overcome this problem. The latter option is more realistic if one cannot come up
with a good initial guess.
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Chapter 1

Introduction

1.1 Background

Water is an essential resource for life. People use water for consumption, sanitation, naviga-
tion, agriculture, hydropower and leisure. Throughout history, people have always tended to
live close to water resources. However, water can also be experienced as a burden. Especially
in low-lying polder systems, floods can occur. In order to manage the water around them,
societies have installed infrastructure, such as gates and pumps that can be adjusted accord-
ing to their objectives, e.g. deliver water for agriculture or protect the land against flooding.
This can be done by operating the structures that influence the water levels and flows. These
structures are commonly operated manually by operators, or automatically with rule based
controllers. These controllers determine whether a control action should be taken based on
the current state of the system.

The field of operational water management focuses on optimizing control actions of these
structures. It not only deals with the mitigation of extreme events, but also with complex,
interdependent and often conflicting water quality and quantity objectives. Another important
goal in e.g. polder systems, where surplus water has to be discharged by pumps, is increasing
the energy efficiency 1. With rising energy prices, water authorities are interested in saving
energy by operating the existing infrastructure in a more intelligent way.

A common rule based control algorithm is feedback control, which compares the current state
(e.g. water level) with the desired output or setpoint of the system, and decides what control
action should be taken to get the state back to the desired output. Feedback control algorithms
react on external disturbances when they are measured, and thus the algorithm is not able to
anticipate on predicted or measured disturbances.

With feedforward control, the control action is based on a predicted or measured disturbance.
The control algorithm is able to anticipate on disturbances, for instance by controlling a

1In the Netherlands alone, the combined energy consumption of all water authorities is equal to that of a
city with 200 thousands inhabitants (Rivierenland, 2013)
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water level by pre-releasing water if a certain incoming discharge is measured. Because the
controller only reacts to known disturbances, uncertainty of predictions and actual system
behaviour influences the performance. To compensate for this, feedforward is often combined
with feedback control. If the disturbance e.g. due to rainfall is higher than the control capacity
of the actuator (e.g. a pump), the output will deviate from setpoint.

A control method that applies the concepts of feedback and feedforward control while also
taking constraints into account, is called Model Predictive Control (MPC), an anticipatory
control methodology that originated in the process industries. This methodology uses a model
of the controlled process and forecasts of future process states and external disturbances
to determine the optimal sequence of control actions by using an optimization algorithm,
taking into account physical and operational constraints. The constraints can either be hard
constraints (e.g. maximum pump capacities) or soft constraints (e.g. water levels). The trade-
off between different, often conflicting objectives of a controller, is described mathematically
in an objective function. At every time step, an optimization problem has to be solved by
minimizing the objective function subject to constraints. The control of a complex water
system, consisting of continuous dynamics (evolution of water flow and levels) and discrete
elements (e.g. barriers and pumps that are operated on or off) can be optimized using a MPC
controller.

Model Predictive Control has gained increasing attention in the field of hydrology and water
management over the last years. Some controllers have successfully been implemented in water
systems (Van Overloop, 2006; Blanco et al., 2010). However there are some drawbacks to the
methodology when discrete actuators such as barriers are present, especially concerning the
computational effort. Continuous and discrete elements are not easily combined in MPC.

To reduce the computational effort, TIO-MPC has been proposed (Van Ekeren, 2010), where
TIO stands for Time Instant Optimization. This methodology consists of an algorithm that
optimizes discrete time instants, e.g. when a pump should be switched on and off. The ad-
vantage of this method is that the computational effort is reduced because instead of deciding
at each time step whether to switch the pump on or off, the decision making process involves
optimizing the discrete moments at which control actions should take place. Therefore, the
number of optimization variables can be significantly reduced.

1.2 Motivation

The method described in (Van Ekeren, 2010) is able to find a (sub)optimal solution, but it
needs many evaluations of solutions and a, a priori unknown, large set of initial solutions to
do this. The method uses a multi-start pattern search optimization algorithm to converge to
a solution of this combinatorial optimization problem, without the use of a gradient search.
This makes the optimization slow.

For this thesis, the idea is to extend TIO-MPC in the way that the time instances become
continuous. This way, the gradient of the objective function can be calculated and efficient
gradient-based optimizers can be used. This will decrease the computational effort of the TIO-
MPC controller. Furthermore, hybrid schemes including the optimization of time instants and
standard MPC can be integrated.
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1.3 Research objectives 3

Gradient-based solvers using sequential quadratic programming (SQP) or integer program-
ming (IP) algorithms require a gradient vector of the objective function for efficient perfor-
mance. These gradients can be calculated by means of finite differences, but this requires
many function evaluations. The method becomes computationally inefficient for problems
with hundreds of dimensions, and hence disqualifies itself for being used within an operational
setting. An efficient method to derive the derivative of the objective function at computa-
tional costs in the order of a single model execution is the setup of an adjoint model for each
component by applying algorithmic differentiation.

1.3 Research objectives

The aim of this research is to develop gradient based TIO-MPC schemes for the control of
gates and pumps in Dutch regional water systems. The hybrid TIO-MPC schemes should
be able to optimize both continuous and discrete control input, using efficient gradient-based
solvers. The research contains the following aspects:

• Theoretical assessment of novel TIO-MPC approach.

• The extension of the existing TIO-MPC controller in the way that the time instants
become continuous.

• The design and application of this controller on a simple academic test case, in order to
test the theory and gain knowledge on the functioning of TIO-MPC.

• The setup of an adjoint model for the academic test case by applying algorithmic dif-
ferentiation in reverse mode, which yields the gradient of the objective function.

• Application and performance testing of various hybrid TIO-MPC algorithms on a rel-
evant test case. The test case focusses on pump scheduling in the Fivelingo Boezem,
a typical Dutch polder-belt canal water system that is managed by the regional water
authority Noorderzijlvest.
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Chapter 2

Real-time control of hydraulic
structures

This chapter will deal with the modelling of open channel flow, and flow through hydraulic
structures. Further, the discretization of these model is discussed and different types of MPC
are introduced.

2.1 Modelling of open channel flow

Many places in the Netherlands are polders, which are low-lying grounds surrounded by dikes.
Brooks and ditches collect water, which is then transported through a network of canals. From
these canals, surplus water needs to be pumped out into what is called a boezem canal, which
conveys water to e.g. the sea. Figure 2-1 shows the typical layout of a polder. Many of the
channels are man-made, with a prismatic shape.

The flow-governing equations describing one-dimensional gradually varying non-steady flow
in prismatic channels are the dynamic wave equations, also referred to as the De Saint-
Venant (SV) equations or shallow-water equations. The SV equations are coupled nonlinear
hyperbolic partial differential equations which are derived from equations of conservation of
mass (continuity) and momentum, respectively. The equations of De Saint-Venant are (Chow
et al., 1988):

Continuity equation:
∂Q

∂x
+
∂A

∂t
= qlat. (2.1a)

Momentum equation1:

∂v

∂t︸︷︷︸
Local

acceleration

+ v
∂v

∂x︸ ︷︷ ︸
Convective
acceleration

+ g
∂y

∂x︸ ︷︷ ︸
Pressure

force

+ gSf︸︷︷︸
Friction
force

− gS0︸︷︷︸
Gravity
force

= 0, (2.1b)

1written in the non-conservation form, see (Chow et al., 1988)
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6 Real-time control of hydraulic structures

Figure 2-1: Schematization of a typical polder system (Van Overloop et al., 2010a)
.

where Q is the flow [m3 s−1], A is the average cross-sectional area of flow [m2], qlat is the
lateral inflow per unit length [m2 s−1], y is the water depth [m], v is the mean water velocity
[ms−1], g is the acceleration due to gravity [ms−2], Sf is the friction slope (energy gradient)
[mm−1], S0 is the bed slope [mm−1], t is the time [s] and x is the longitudinal distance [m].

The longitudinal profile and cross-section of a canal reach are schematized in Figure 2-2, in
which zb is the elevation of the channel bed above reference level [m] and S0 = −∂zb/∂x is
the bed slope [mm−1].

We can also write the momentum equation in terms of the water level h = y + zb, where h is
the water level above reference level [m]. This is done by substituting y = h− zb into (2.1b)
and using S0 = −∂zb/∂x. This way we can obtain:

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
+ gSf = 0. (2.2)

The velocity of the flow in a prismatic canal with an arbitrary cross-section, subject to resis-
tance due to channel bed friction, is often represented by the Chézy equation. In the Chézy
equation, the friction resistance is proportional to the square of the mean velocity. Under
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Figure 2-2: Schematization of a canal reach

uniform flow conditions, the Chézy equation reads:

v = C
√
RSf, (2.3)

where C is the Chézy roughness coefficient [m1/2 s−1], which depends on the roughness of the
channel and the water depth and is assumed to be valid for non-steady flow (Shaw, 1994) and
R [m] is the hydraulic radius, which is given by the wetted area A [m2] divided by the wetted
perimeter P [m]. Substitution of (2.3) into (2.2) yields:

∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
+ g

v|v|
C2R

= 0. (2.4)

Unfortunately there is no known analytical solution of the De Saint-Venant equations in
real geometry (Malaterre and Baume, 1998) so the system of equations has to be solved
numerically. Depending on the characteristics of the flow and the required accuracy, different
one-dimensional distributed flood routing equations can be derived by using the full continuity
equations (sometimes neglecting lateral inflow) while neglecting some terms of the momentum
equation:

• The dynamic wave model considers all terms of the momentum equation. It is the most
detailed SV-based flood routing model.

• The kinematic wave model neglects local acceleration, convective acceleration and the
pressure term of the momentum equation.

• The diffusive wave model neglects the local and convective acceleration terms of the
momentum equation.

The dynamic wave model is computationally heavy due to its high complexity and therefore
not well suited for real-time control purposes. The kinematic wave model is the simplest
distributed model, which can be used for gradually varied unsteady flows when the inertial
and pressure forces are not important to the movement of the wave (MacArthur and DeVries,
1993). The terms for local acceleration, convective acceleration and the pressure term in the
momentum equation (2.1b) can be neglected and the weight component (acceleration due to
gravity) is then balanced by the resistance due to bed friction. Hence, the flow does not
accelerate appreciably and the bed slope is approximately equal to the friction slope (Chow
et al., 1988) and the momentum equation (2.1b) simplifies to:

S0 = Sf. (2.5)
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8 Real-time control of hydraulic structures

The kinematic wave model is a stage-discharge relationship that is applicable when there
are no appreciable backwater effects, which makes the model useful for channels with steep
gradients.

The diffusive wave model neglects the local and convective acceleration terms of the momentum
equation. Unlike the kinematic wave model, it does include the pressure term of the momentum
equation in (2.4). By substitution of v = Q/A it follows that:

g
∂h

∂x
= − gQ|Q|

C2A2R
, (2.6)

and this can be rewritten to obtain:

Q = −sign
(
∂h

∂x

)
CA

√∣∣∣∣∂h∂x
∣∣∣∣R. (2.7)

Compared to the kinematic wave model, the diffusive wave model is able to capture more of
the dynamics that occur in the water system. The dynamic wave model is preferred over the
kinematic wave model for very flat canal reaches, where backwater effects might play a role.

2.2 Modelling of hydraulic structures

The general equation describing the flow through a vertical gate or orifice can be derived from
the Bernoulli equation (Shaw, 1994), which is based on the principle of the conservation of
energy. Depending on the dimensions and settings of the gate and the flow conditions we can
distinguish between free orifice flow, submerged orifice flow, free weir flow and submerged weir
flow, which are all described by different equations. In case of free flow, the flow is (unlike
during submerged flow) not dependent of the downstream water level (Lewin, 2001, p. 157).
Weir flow occurs when the water level does not touch the vertical gate. See Figure 2-3 for a
schematization of the flow through a vertical gate with free flow and submerged flow.

When assuming positive flow (upstream water level is higher than downstream water level), the
flow equations are, for free flow and submerged flow respectively (Ankum, 2002; Schwanenberg
and Becker, 2012):

Orifice flow: Q =



cwwsµdg
√

2g(hup − zs − µdg), if hup − zs ≥
3

2
dg

and hdown ≤ zs + dg;

cwwsµdg
√

2g(hup − hdown), if hup − zs ≥
3

2
dg

and hdown > zs + dg.

(2.8)

Weir flow: Q =



cwws
2

3

√
2

3
g(hup − zs)

3
2 , if hup − zs <

3

2
dg

and hup − zs >
3

2
(hdown − zs);

cecwws(hdown − zs −
u2

s
2g

) if hup − zs <
3

2
dg

×
√

2g(hup − hdown), and hup − zs ≤
3

2
(hdown − zs),

(2.9)
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Figure 2-3: Schematization of a vertical gate with orifice flow

where cw is the lateral contraction coefficient [−], ce is the discharge coefficient [−], ws is the
crest width [m], µ is the contraction coefficient [−], g is the gravitational acceleration [ms−2],
us is the mean flow velocity on top of the crest [ms−1], zs is the crest level [m above datum],
dg is the opening height of the gate [m] and hup and hdown are the upstream and downstream
water level [m above datum], respectively.

The orifice equations can be simplified by assuming a low flow velocity upstream of the struc-
ture. This assumption holds when the wetted area A of the upstream canal is large and/or
the flow is low. When the flow velocity is low, the term for the velocity head (u

2
s

2g ) in (2.9)
can be neglected. In that case, the water level is equal to the hydraulic head (the sum of the
elevation head and the pressure head) and the discharge is a function of the gate settings and
the upstream and downstream water levels:

Qk+1 = f(hkup, h
k
down, d

k+1
g ). (2.10)

The gate setting dg cannot be written as an explicit function of the discharge and has to be
solved iteratively.

2.3 Discretization of the hydraulic model

Since there is no analytical solution of the De Saint-Venant (SV) equations in real geometry
(Malaterre and Baume, 1998), the system of equations has to be solved numerically. This is
done by discretizing the partial differential equations of the SV equations in time (∆t) and
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10 Real-time control of hydraulic structures

Table 2-1: Some general properties of the θ-method

Scheme Truncation error Stability

θ = 0 Forward (Explicit) Euler O(∆t,∆x2) conditionally stable
θ = 1

2 Crank-Nicolson O(∆t2,∆x2) unconditionally stable
θ = 1 Backward (Implicit) Euler O(∆t,∆x2) unconditionally stable

space (∆x). There are numerous numerical ’recipes’ which all have different properties in
terms of accuracy, numerical stability and computational efficiency. Staggered grids are often
being used for the spatial discretization of the SV equations (Stelling and Duinmeijer, 2003;
Van Overloop, 2006).

The diffusive wave model can also be spatially discretized on a staggered grid, where the flow
is schematized in branches between upstream and downstream storage nodes (Schwanenberg
et al., 2011). The water levels in the storage nodes are calculated from the continuity equation,
while the flow in the branches that connect the storage nodes is described by the diffusive wave
model (2.7). If we define the distance between the storage nodes as ∆x, we can rewrite (2.7)
into a function of the upstream and downstream water levels hup and hdown by applying central
differences:

Qk+1 = f(hkup, h
k
down)

= −sign(
hkup − hkdown

∆x
)C(h k)A(h k)

√√√√∣∣∣∣∣hkup − hkdown
∆x

∣∣∣∣∣R(h k),
(2.11)

where the variables C, A and R are functions of the mean water level h k =
hk
up+hk

down
2 [m] in

a representative cross-section between storage nodes.

A numerical approximation of the continuity equation (2.1a) can be obtained by applying the
well known θ-method (Zijlema, 2011; Stelling and Duinmeijer, 2003) on a staggered grid. The
θ-method is a finite difference discretization of the time-derivative, where ∆t is defined as the
time step and θ ∈ [0, 1] is a weighting parameter indicating the "implicitness" of the scheme.

yk+1 − yk
∆t

= θf(yk+1) + (1− θ)f(yk). (2.12)

The resulting scheme is fully explicit when θ = 0, semi-implicit when 0 < θ < 1 and fully
implicit when θ = 1. Table 2-1 summarizes the truncation errors of the different schemes of
the θ-method (Zijlema, 2011). When applied to the continuity equation, it reads:

A(hk+1)−A(hk)

∆t
+ θ

Qk+1
down −Qk+1

up

∆x
+ (1− θ)

Qk
down −Qk

up

∆x
= θqk+1

lat + (1− θ)qklat, (2.13)

where Qup and Qdown are the discharges [m3s−1] of the upstream and downstream nodes
connected to the branch, ∆t is the time between two discrete time steps [s] and θ ∈ [0, 1] is a
weighting parameter indicating the implicitness of the solution.

A necessary condition for the convergence of an explicit finite-difference scheme to a set of
(hyperbolic) partial differential equations, is the Courant-Friedrichs-Lewy (CFL) stability cri-
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Figure 2-4: Schematization of the internal MPC model on a staggered grid. The vertical and
horizontal axes represent the discretization in time and space, respectively. The arrows indicate
the flow of information, where the blue arrows reprents the continuity equation and the red arrows
the diffusive wave model.

terion, which for a one-dimensional case reads (Press et al., 2007):

σ ≡ |v|∆t
∆x

≤ C, (2.14)

where σ is the Courant number [−], v is the flow velocity [m3 s−1], equal to Q/A, ∆t is
the temporal step size [s], ∆x is the spatial step size [m] and C is a dimensionless constant
which depends on the numerical scheme that is being considered. A disadvantage of the Euler
Forward Scheme is that the CFL-condition restricts the size of the time step ∆t, and as a
consequence, more time steps are needed. This causes an increase in computation time.

The combination of Explicit Euler with central differencing (in space) is inappropriate as this
combination is known to form a unconditionally unstable scheme, unless there is some damping
involved (Zijlema, 2011). By using the (implicit) Euler Backward scheme (θ = 1), equations
(2.10) and (2.11), multiplying by ∆x and substitution of s(h) = A(h)∆x, the continuity
equation (2.13) can be written as a water balance in the domain of a node (Schwanenberg and
Becker, 2012):

sk+1 = sk + ∆t(Qk+1
up −Qk+1

down +Qk+1
lat ), (2.15)

where sk is the storage [m3] at the node and Qk+1
lat is the aggregated lateral inflow [m3 s−1]

flowing into the domain of the node, and Qk+1
up and Qk+1

down are the upstream and downstream
discharge at the intermediate reaches connected to the node and k is a time step counter. All
nodes require a level-storage relationship to adequately link the storage to the water level.
Figure 2-4 shows the schematization of the model on a staggered grid for two subsequent
time steps, where the storage and discharge are evaluated at alternating storage points and
discharge points. The storage points have whole indices and the discharge points have half
indices.

2.4 Model Predictive Control (MPC)

Model Predictive Control (MPC) (Maciejowski, 2002; Wang, 2009) is an advanced determin-
istic control technique that was developed in the process industry in the seventies. This
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12 Real-time control of hydraulic structures
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Figure 2-5: Moving horizon concept of Model Predictive Control

methodology uses a mathematical model of the controlled process and forecasts of future pro-
cess states and external disturbances to determine the optimal trajectory of control variables
and states by using an optimization algorithm, while taking physical and operational con-
straints into account. In general, the goals of Model Predictive Controllers used in the process
industry are:

• Reducing the controller effort and/or variability in the (production) process by optimiz-
ing the dynamic control.

• Moving the output towards a setpoint, while operating close to the constraints.

MPC was originally developed and used for the petrochemical industry and power plants.
Nowadays it is successfully being used in different fields of application including chemicals, food
processing, automotive, aerospace and metallurgy (Qin and Badgwell, 1997), power networks
and even in the field of biomedical sciences, see e.g. (Plank et al., 2006). Over the last decade,
MPC has been attracting increasing attention in the field of operational water management,
with applications focussing on efficient delivery of water in irrigation systems (Van Overloop,
2006; Malaterre and Baume, 1998; Wahlin, 2004; Negenborn et al., 2009), drainage and flood
prevention (Blanco et al., 2010; Van Overloop, 2006; Van Overloop et al., 2010b), reservoir
network management for multiple operational objectives (Goedbloed et al., 2011; Anand et al.,
2013), hydroelectricity generation (Glanzmann et al., 2005; Şahin and Morari, 2010) and on
the combined control of water quantity and quality in open channels (Xu, 2013; Xu et al.,
2010).

There is a wide variety of MPC algorithms, however they all consist of the following main
components:

1. An internal model that describes the dynamics of the system under consideration. This
model is used to predict, at time step k, the future process output of the system yk+i|k

for i = 1, . . . , Np over a finite prediction horizon Np. The optimal future output depends
on the current (measured) value of yk and the predicted disturbances and future control
input.

2. An MPC algorithm is able to take physical and operational constraints of the process
into account. The constraints are formulated as equality or inequality constraints, and
can be applied to states and control variables.
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Figure 2-6: Overview of different optimization problem types, using: linear programming, (LP),
quadratic programming (QP), nonlinear programming (NLP), integer programming (IP), mixed-
integer linear programming (MILP), mixed-integer nonlinear programming (MINLP). Convex
relaxation methods aim at finding a global minimum by approximating the original nonconvex
problem with a convex problem, see (Lin et al., 2012) and references therein.

3. An objective function (or cost function) is used to quantify the trade-off between (often
conflicting) objectives that the controller needs to achieve, for instance keeping the
output close to a desired reference trajectory while minimizing (changes in) controller
effort. The differences between desired and actual responses for the different (sub)goals
are penalized and added up. In order to make the ’best’ decision, the objective function
needs to be minimized using an optimization algorithm. The result is a sequence of
optimal control inputs over the prediction horizon, that satisfies the constraints. The
relative values of the different penalties can be used to prioritize certain sub-objectives.
The values of the penalties are typically used to tune the controller.

4. Receding horizon control : The optimal sequence of control steps uk+i|k for i = 0, . . . , Np−
1 is calculated at every time step k, but only the first value is applied, while neglecting
the rest of the trajectory. At the new time step k + 1, new information about current
states and/or measurements are available and a new optimization problem is solved for
the next Np steps.

Figure 2-5 illustrates the basic idea of MPC.

The properties of the internal process model, objective function and constraints determine the
resulting type of optimization problem, and hence the MPC technique that can to be used.
(Lin et al., 2012) made a division of different optimization problems, based on characteristics
such as (non)linearity and (non)convexity, see Figure 2-6.

2.4.1 Internal model

As the name already reveals, a Model Predictive Controller requires a mathematical model of
the system that is being optimized. This model should be able to adequately represent the
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14 Real-time control of hydraulic structures
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Figure 2-7: Schematization of a linear reservoir

Table 2-2: Parameters of fictitious reservoir model

Parameter Value Unit

T 300 s
As 10000 m2

N p 15 -
hsp 3 m
umin 0 m3 s−1

umax 3 m3 s−1

dynamics of the system under consideration. Often a simplified model is being used, because
a very detailed model could make the optimization routine computationally heavy.

Throughout this research, some principles are illustrated using a simplified model of a water
system. This fictitious reservoir model is also being used to test different MPC algorithms.
By using a storage area approach, the in- and outflows are linked to the water level inside
the reservoir. The model consists of a single linear reservoir with an uncontrolled inflow (e.g.
due to precipitation) and a controlled outflow that is being used to keep the water level close
to a desired setpoint hsp by pumping. It is assumed that the water level in the reservoir is
horizontal, which means that any changes in inflow and outflow cause an instantaneous change
in water level over the storage area. The basic equation for reservoir routing is based on the
conservation of mass. It reads:

d− u =
∂S(h)

∂t
, (2.16)

where S(h) is the storage [m3] in the reservoir as a function of the water level h [m], As is the
storage area of the reservoir [m2], d is the uncontrolled inflow or disturbance [m3 s−1] and u
is a controlled outflow [m3 s−1]. A schematization of the reservoir is given in Figure 2-7. The
reservoir has a linear level-storage relation, which means that As is constant over the vertical
and ∂S/∂t = As∂h/∂t (hence the name linear reservoir). By applying a forward-difference
approximation for the time derivative, we obtain the following state-space model:

hk+1 = hk +
T

As
(dk − uk), (2.17)

where k is the index of the time step [−] and T is the control length step [s]. The parameters
of the reservoir model are summarized in Table 2-2.
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2.4 Model Predictive Control (MPC) 15

2.4.2 Linear MPC

The fictitious model described in Section 2.4.1 is a linear system. The (non)linearity of a
process model is an important characteristic, that influences the type of numerical solvers
that can be used for MPC. Linear systems allow the application of standard linear algebra
theory and software tools. The linear model of the controlled process is often described as a
linear discrete-time system, represented by a state-space model (Van Overloop, 2006; Blanco
et al., 2008; Kothare et al., 1996):

xk+1 = Akxk +Bk
uu

k +Bk
dd

k (2.18)

yk = Cxk, (2.19)

where x ∈ Rnx is the state, u ∈ Rnu the control input, d ∈ Rnd the (a priori known or
predicted) disturbance, y ∈ Rny the output of the system, at time step k, A the system
matrix, Bu the control input matrix, Bd the disturbance matrix and C the output matrix.
The state-space model (2.18) can be extended over a finite prediction horizon Np, from k + 1
to k + Np. When the initial state xk and all (predicted) disturbances and control inputs are
known, all future output variables xk+i|k for i = 1, . . . , Np can be computed. The superscript
k+ i|k denotes the sequence of k+ i future values that are evaluated at the current time step
k.

The process model and predictions can be used to evaluate an objective function, which
quantifies the trade-off between different (sometimes conflicting) objectives. Often, a quadratic
objective function is used, which penalizes the squares of deviations from setpoint xsp of
the simulated states x̃k(uk, dk) and (changes in) control input. The sequential approach as
described in (Xu and Schwanenberg, 2012) and (Diehl et al., 2009) is being used here. With
the sequential (or Single Shooting) approach, the internal model is integrated in the objective
function and the states are eliminated as controlled variables. Within each optimization step,
the simulation and optimization are being performed sequentially, one after the other. The
objective function to be minimized is at each time step k is:

min
∆u

J =

Np∑
i=0

We(e
k+i|k)2 +

Np−1∑
i=0

W∆u(∆uk+i|k)2, (2.20)

where:

ek = x̃k − xsp (2.21)

∆uk = uk − uk−1 (2.22)

and We and W∆u are penalties on water level deviation from setpoint and change in control
input, respectively. The goal of the Model Predictive Controller is to find at each time step k
the optimal sequence of control actions uk+i|k for i = 0, . . . , Np−1 by minimizing the objective
function (Camacho and Bordons, 1999). With a linear process model and a quadratic objective
function, the optimization problem can be written as a convex QP problem (Qin and Badgwell,
2000), that has to be solved at every discrete time step k.

There are dedicated solvers for QP problems, e.g. the function quadprog in MATLAB’s Opti-
mization Toolbox. In Appendix A, the reservoir model of Section 2.4.1 is used to demonstrate
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Figure 2-8: Results of closed-loop test of linear MPC applied to the fictitious reservoir model

how the linear process model and quadratic objective function result in a quadratic program-
ming problem. Some results of a closed-loop example are shown in Figure 2-8. It can be seen
that the controller anticipates on the disturbances by pre-releasing water from the reservoir,
hence creating extra storage.

2.4.3 Nonlinear MPC

The reservoir model from Section 2.4.1 is a linear system, for which linear Model Predictive
Control (LMPC) could be applied. The optimization problem could be cast into a quadratic
programming problem, for which dedicated solvers exist. Because the quadratic programming
problem is convex, the optimization algorithm is always able to find the global minimum of
the objective function subject to constraints, provided that a solution exists (Van Overloop,
2006).

In general, the dynamics of a water system can be considered as nonlinear. Examples of
nonlinearities in a water system are nonlinear level-storage relationships in reservoirs and
flows through hydraulic structures such as weirs and orifices. In case the internal model is
nonlinear, it might no longer be sufficient to use linear MPC (Qin and Badgwell, 2000; Blanco
et al., 2010). In such cases, nonlinear Model Predictive Control (NMPC) can be applied. A
nonlinear solver can be used to find the minimum of the objective function. An solver such
as fmincon from the MATLAB Optimization Toolbox is able deal with constrained nonlinear
multivariable optimization.

Assume that the process to be controlled can be described by the following discrete-time,
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2.4 Model Predictive Control (MPC) 17

nonlinear, state-space model:

xk+1 = f(xk, uk, dk), (2.23)

where x ∈ Rnx , u ∈ Rnu and d ∈ Rnd are the state, control and the (a priori known)
disturbance. f( ) is the (nonlinear) function that represents the water resources model. The
state-space model (2.23) is used to predict the optimal future trajectory of the state vector
xk+i|k for i = 1, . . . , Np in order to determine the optimal set of control variables uk+i|k for
i = 0, . . . , Np−1 by minimizing the objective function subject to constraints, using a nonlinear
optimization algorithm. When the state-space model (2.17) of the reservoir model in Section
2.4.1 is extended with nonlinear elements, such as a weir or gate, the nonlinear optimizer can
be applied to find the optimal sequence of control inputs uk+i|k for i = 0, . . . , Np − 1 such
that the objective function (2.20) is minimized. In this research, we use MATLAB’s solver
fmincon (MATLAB, 2012), which is a dedicated solver for constrained nonlinear multivariable
optimization problems.

The receding horizon control principle is being used i.e. only the first step of the trajectory
uk|k will be carried out, and the optimization starts again at the next discrete time step k+ 1,
resulting in the trajectory uk+1+i|k+1 for i = 0, . . . , Np − 1.

2.4.4 Hybrid MPC methods

The ’classic’ MPC methods described in Sections 2.4.2 and 2.4.3 perform an optimization at
each discrete time step k, where the optimization algorithm determines the optimal sequence
of control actions uk+i|k for i = 0, . . . , Np − 1, see Figure 2-5. The control inputs uk+i|k are
continuous variables, that can have any value between umin and umax in accordance with the
physical or operational constraints of the actuator. In the fictitious reservoir test case, this
corresponds with a variable-frequency drive (VFD) pump. In reality, many polder systems
also contain pumping stations that are not operated with VFD pumps, but with pumps that
are operated either on or off. Other elements in water systems that can be seen as discrete
elements are storm surge barriers, which are either open or closed. For these variables, an
MPC algorithm would have to decide whether or not to change the state of the binary variable
for every time step of the prediction horizon. For one binary input variable and a prediction
horizon of Np steps, this leads to a combinatorial optimization problem with dimensions 2Np .
When there are more binary input variables and the prediction horizon is long, the complexity
of the optimization problem increases rapidly and this may disqualify the method from being
used in an operational setting.

Systems that consist of discrete and continuous components that interact with each other
are called hybrid systems, and they require a hybrid MPC controller. An example of such a
system is MPC with a mixed logical dynamical (MLD) prediction model, that consists of lin-
ear dynamic equations that are subject to mixed-integer (continuous and integer) inequalities
(Morari and Barić, 2006; Zabiri and Samyudia, 2006). Mixed integer programming meth-
ods are less efficient in terms of computational effort compared to continuous optimization
problems.
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Figure 2-9: Example of different MPC approaches with binary control input

2.4.5 Time Instant Optimization MPC (TIO-MPC)

Another hybrid MPC approach is Time Instant Optimization Model Predictive Control (TIO-
MPC), a method that has been first been used for traffic control (De Schutter, 1999). TIO-
MPC has been applied for the control of hydraulic structures by (Van Ekeren, 2010), with a
focus on storm surge barriers in the Rhine-Meuse delta. The TIO-MPC algorithm optimizes n
time instants t1, . . . , tn over the prediction horizon Np, where the time instants are the discrete
time steps that the discrete elements change their state, see Figure 2-9b. The rationale behind
this approach is that from a practical point of view, it is often undesired to have too many
on/off switches of actuators and therefore it makes sense to define a priori how many switches
are allowed within the prediction horizon. The result of this approach is that the amount of
control variables is reduced. A TIO-MPC prediction model can be described as (Van Ekeren
et al., 2011):

x̃k = f(t̃k, ũk, xk), (2.24)

with:

x̃k = [(xk+1|k)> (xk+2|k)> . . . (xk+Np|k)>, (2.25)

ũk = [(uk|k)> (uk+1|k)> . . . (uk+Np−1|k)>]>, (2.26)

t̃k = [tk1 tk2 tk3 tk4]>, (2.27)

where xk is the actual state at time step k, ũk and x̃k are the input variables and state
variables, respectively, and t̃k is a vector that contains the time instants that need to be
optimized within the prediction horizon Np. In this case, four time instants are defined. The
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2.4 Model Predictive Control (MPC) 19

difference with the continuous MPC algorithms from Sections 2.4.2 and 2.4.3 is that ũk is being
optimized, where ũk is defined as the control input vector which results from the optimized
discrete-time equivalents of the time instants, taking into account that:

uk+i|k =

{
umax if a pump is on at time k + i

0 otherwise,
(2.28)

for i = 0, . . . , Np − 1. To be able to have time instants as input of the optimization problem,
a transformation from continuous time instants into their discrete-time equivalents is needed.
This is done be defining for (2.26):

uk+i|k =


umax if i ≤ k1

or k2 ≤ i ≤ k3

or i ≥ k4

0 otherwise

(2.29)

for i = 0, . . . , Np− 1 and where k1, k2, k3 and k4 are discrete-time rounded equivalents of the
continuous time instants.

Just like the continuous MPC schemes discussed in Sections 2.4.2 and 2.4.3, the TIO-MPC
algorithm requires an objective function that quantifies the trade-off between the different
objectives of the controller. The objective that needs to be minimized at every time step k is,
in a generalized formulation:

J = f(t̃k, ũk, x̃k), (2.30)

subject to the following constraints:

0 ≤ tk1, (2.31)

tk1 − tmin ≤ tk2, (2.32)

tk2 − tmin ≤ tk3, (2.33)

tk3 − tmin ≤ tk4, (2.34)

tk4 ≤ tmax, (2.35)

0 ≤ uk+i|k ≤ umax, (2.36)

for i = 0, . . . , Np − 1. tmin is the minimum time between two state changes and tmax is the
maximum value of t4. By choosing tmax = Np, a certain amount of state witches is forced
into the prediction horizon. If tmax > Np, the optimization can results into the decision not
to switch states at all within the prediction horizon.
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Chapter 3

Gradient-based Time Instant
Optimization MPC

3.1 Introduction

Open water systems can be characterised by the presence of both continuous (evolution of
flows and water levels) and discrete dynamics (opening and closing of barriers). The evolution
of flows and water levels are continuous, while the opening and closing of barriers are discrete
events. In polder systems, the water levels are maintained by gates and pumps. Some of
these pumps are frequency driven, i.e. the pump rate can be chosen within a certain range.
Other pumps have a fixed pump rate, which means they are either on or off. (Van Ekeren,
2010) proposed a MPC scheme that can take into account this hybrid nature of the system.
This MPC technique is referred to as Time Instant Optimization Model Predictive Control
(TIO-MPC).

3.2 TIO-MPC with continuous time instants

A so-called brute force optimization method would calculate all possible solutions of the combi-
natorial optimization problem, and afterwards decide which one is the best. If the optimization
problem consists of many states and variables, a brute force optimization method may require
considerable computation power since it requires many function evaluations. For the setup
of the TIO-MPC controller from Section 2.4.5, the cost function can be minimized using a
derivative-free optimizer such as the multi-start pattern search algorithm (MATLAB, 2012).
This algorithm does not evaluate all possible solutions, but uses an iterative search algorithm
that explores potential good solutions by following a search pattern, starting from different
points. A gradient-based optimizer cannot be used efficiently because the time instants are
discrete values, causing a stepwise objective function.

If we could rewrite the optimization problem in such a way that the time instants are con-
tinuous, this would enable us to calculate the gradient of the objective function dJ/dt and
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tk tk+1 t

umax

u

tk

umax

tk+1

∆t

Figure 3-1: Towards continuous Time Instant Optimization

to use a gradient-based optimizer. In Figure 3-1, the translation from discrete to continuous
time instants is shown. On the left, the pump discharge can be freely chosen between 0 and
umax on the discrete interval [tk, tk+1]. On the right, the pump is either off or operating with
discharge umax on the continuous interval [tk, t]. The water balance on the interval [tk, tk+1]
is equal for both cases, so we can write:

u · (tk+1 − tk) = umax · (t− tk) (3.1)

or:
u =

umax

tk+1 − tk · (t− t1). (3.2)

By applying the chain rule we can obtain:

dJ

dt
=

dJ

du

du

dt
(3.3)

=
dJ

du

umax

tk+1 − tk (3.4)

and since ∆t = tk+1 − tk, this results in:
dJ

dt
=

dJ

du

umax

∆t
. (3.5)

If we recall the process model (2.17) we can observe that the model calculations are only
performed at the discrete time steps k. To be able to optimize continuous time instants, we
need to perform a transformation of the control vector u similar to the procedure in Figure
3-1. This is done by defining the following: if t1 and t2 are the continuous time instants that
the pumps are switched on and off respectively, where t1 < t2, t1 ∈ [a, b] and t2 ∈ [c, d] and a,
b, c and d are positive integers, then the value of the control within the corresponding interval
is:

ut1 = uab =
b− t1
b− a umax (3.6)

for t1, and
ut2 = ucd =

t2 − c
d− c umax (3.7)

for t2 and ubc = umax. When t1, t2 ∈ [a, b], the control corresponds to:

uab =
t2 − t1
b− a umax. (3.8)

The transformed control vector is equal to the situation where u(t) = umax for t1 ≤ t ≤ t2,
and 0 otherwise. By using this control vector, the solver is able to optimize continuous time
instants.

Bart Dekens Master of Science Thesis



3.3 Algorithmic Differentiation 23

umax

uab

ucd

a b c d

a b c d

t1 t2

Figure 3-2: Time instants and corresponding control input

3.3 Algorithmic Differentiation

Solutions of numerical optimization problems and sensitivity analysis often require derivative
information in the form of gradients, Jacobian and Hessian matrices. An accurate approxima-
tion of the derivative is therefore essential to many optimization problems. Efficient gradient-
based solvers such as MATLAB’s fmincon (MATLAB, 2012) are able to approximate the
gradient of the objective function itself by means of finite difference methods. The procedure
for doing this is quite straightforward, however for an optimization problem with many di-
mensions and parameters the method can be inefficient (Errico, 1997). Supplying the gradient
with respect to each control variable to the solver will speed up the optimization routine.
Using the analytical gradient is preferable, but it might be a tedious and error-prone process
to derive this for complex models with many variables (Fournier et al., 2012). Another way
to obtain the gradient is to use automatic differentiation (AD), sometimes also referred to as
algorithmic differentiation (Griewank and Walther, 2008). This technique makes use of the
fact that even the most complex computer models are in fact (potentially long) composites of
elementary arithmetic operations such as multiplication, division, addition, subtraction and
elementary functions such as sin, cos, tan, log and exp.

The idea behind AD is that basic derivative rules from calculus such as the multivariable
chain rule can be systematically implemented in a numerical environment (Neidinger, 2010).
An advantage of the AD method is that it, unlike finite difference methods, does not in-
cur truncation errors, and that the derivatives obtained are accurate to machine precision
(Griewank and Walther, 2008).

There are different commercially available AD software packages (for some examples see
http://www.autodiff.org (Autodiff, 2013); Bischof et al. (1996); Verma (1999)) which are
able to automatically transform source code into adjoint code for obtaining derivatives. See
(Bischof et al., 2008) for a comparison of different AD tools.
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3.3.1 Forward and Reverse Mode Algorithmic Differentiation

The AD method takes advantage of the fact that a computer needs to take a certain sequence of
basic operations in order to calculate an output y out of the input variables x1, x2, . . . , xn. This
run of intermediate steps can be evaluated in an evaluation trace, which shows the sequence of
intermediate variables (defined as vi, with i > 0) that a computer calculates in the so-called
forward sweep. The derivative of the output with respect to a certain input variable can
be obtained by systematically applying to chain rule to all the intermediate variables of the
evaluation trace. The associativity of the chain rule allows multiple "modes" of accumulation
of partial derivatives (Bischof et al., 2008). This leads to different approaches to AD e.g. the
forward mode, reverse or adjoint mode and the hybrid or cross-country mode. The former
two methods are widely used and will be explained below. Both examples are based on a
function f : x ∈ Rn → y ∈ Rm where x is the independent variable and y is the dependent
variable.

Forward Mode

Suppose we have the differentiable function y = f(x1, x2, x3), where the output y depends on
a number of intermediate operations vi, and we want to differentiate the dependent output y
with respect to the independent input x1. In the forward mode, a variable v̇i = ∂vi/∂x1 (not to
be mistaken with the first order time derivative) is associated with each intermediate variable
vi of the evaluation trace. The derivative of interest needs to be initialized or seeded, which
means that ẋ1 = ∂x1/∂x1 = 1, ẋ2 = 0 and ẋ3 = 0. The derivative ∂y/∂x1 is obtained by
applying the chain rule to each line in the evaluation trace, in the same order as the evaluation
trace itself. This method is called "forward" because the derivative values are accumulated
in the same order as the intermediate values vi in the evaluation trace. The total amount
of floating point operations needed to evaluate ∂y/∂x1 is a small multiple of that for the
underlying code to evaluate y (Griewank and Walther, 2008). In the forward mode, the chain
rule is traversed from right to left.

Reverse mode

In the reverse mode, the (partial) derivatives are accumulated starting from the output vari-
ables y and propagating backwards towards the input variables. This equals traversing the
chain rule from left to right. The difference with the forward mode is that an output variable
is chosen, and that the sensitivity of this variable with respect to each of the intermediate
variables vi is calculated. A variable vi = ∂y/∂vi, called the adjoint variable is associated to
each of the intermediate variables vi. There is only one variable to be seeded, which is (by
definition) y = 1 (Griewank and Walther, 2008). The derivative is obtained by applying the
chain rule to each intermediate value vi, working backwards through the evaluation trace.

Even with many inputs xi, the amount of floating points operations needed to evaluate all ∇xy
is between one and four times that of the evaluation of y. For the computation of the gradient
of a function f : x ∈ Rn → y ∈ Rm where n � m, the reverse mode is advantageous over
the forward mode (Griewank and Walther, 2008; Giering and Kaminski, 1998). This property,
together with the absence of a truncation error makes the method extremely attractive for
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3.3 Algorithmic Differentiation 25

complex computational models where derivatives are needed. A drawback of the method is
the need to temporarily store the computation trace on a so-called tape (see Bennett, 1973),
because the propagation of the chain rule is done backwards through the evaluation trace
(Pearlmutter and Siskind, 2008).

3.3.2 AD in reverse mode applied to fictitious reservoir model

To demonstrate algorithmic differentiation in reverse mode, we will derive the gradient of an
objective function of a TIO-MPC model. The fictitious reservoir model from Section 2.4.1
is used as a process model. In this case, two time instants need to be optimized within the
prediction horizon Np: t1 and t2. Recall the linear reservoir model from Section 2.4.1:

hk+1 = hk +
T

As
(dk − uk). (3.9)

For the TIO-MPC controller considered here, the following objective function J = f(t̃k, ũk, h̃k)
can be defined, where ũ is a function of the time instants:

min
ũ

J = Wh

(
h̃k(ũk, dk)− hsp

)2
+Wt(t2 − t1) (3.10)

subject to 0 ≤ tk1 (3.11)

tk1 ≤ tk2 (3.12)

tk2 ≤ Np (3.13)

0 ≤ ũk ≤ umax (3.14)

where:

h̃k = [(hk+1|k)> (hk+2|k)> . . . (hk+Np|k)> (3.15)

ũk = [(uk|k)> (uk+1|k)> . . . (uk+Np−1|k)>]> (3.16)

t̃k = [tk1 tk2]>, (3.17)

and hsp is the setpoint [m], tmin is the minimum time between two state changes [s] and umax
is the maximum pump capacity [m3 s−1]. There is a quadratic penalty Wh on the water level
deviation from setpoint, and a linear penalty Wt on the pump volume (or: the time that the
pump is switched on). For this reservoir test case, only two time instants are being considered.

Some rewriting results in the following objective function:

min
ũ

J = Wh

Np∑
k=1

J i +Wt(t2 − t1) (3.18)

where:
J i = (hk+i|k − hsp)2, i ∈ [1, . . . , Np]. (3.19)

We would like to obtain the gradient (or Jacobian):

∇J(t1, t2) =
(∂J
∂t1

,
∂J

∂t2

)
. (3.20)

Master of Science Thesis Bart Dekens



26 Gradient-based Time Instant Optimization MPC

Table 3-1: Reverse-derived evaluation trace for J i

v−5 = uk

v−4 = dk

v−3 = T
v−2 = A
v−1 = hk

v0 = hsp

v1 = v−4 − v−5

v2 = v−3 ∗ v1

v3 = v2/v−2

v4 = v−1 + v3 (= hk+1)
v5 = v4 − v0

v6 = v5
2

Jk = v6

v6 = J
k

= 1

v5 = v6
∂v6
∂v5

= v6 ∗ 2 ∗ v5

v4 = v5
∂v5
∂v4

= v5 ∗ 1

v3 = v4
∂v4
∂v3

= v4 ∗ 1

v2 = v3
∂v3
∂v2

= v3/v−2

v1 = v2
∂v2
∂v1

= v2 ∗ v−3

v−5 = v1
∂v1
∂v−5

= v1 ∗ −1

Because the predicted sequence of states hk+i|k for i = 1, . . . , Np of the reservoir model depends
on the current state hk, one can write an explicit formulation of the objective function. For
example, writing out the first two terms of J i results in:

J1 = (hk+1|k − hsp)2 =
(
hk +

T

A
(dk − uk|k)− hsp

)2
(3.21)

J2 = (hk+2|k − hsp)2 =
(
hk +

T

A
(dk − uk|k + dk+1 − uk+1|k)− hsp

)2
. (3.22)

Writing out the complete objective function will result in a very long expression, for which
it is a tedious task to derive the analytical derivatives with respect to t1 and t2. Therefore
we apply algorithmic differentiation for the first term on the right-hand side of (3.18). As an
example, the reverse-derived evaluation trace of J1 is shown in Table 3-1. The result is the
derivative ∂J1/∂uk|k. Writing out the reverse-derived evaluation trace yields:

∂J1

∂uk|k
=

∂J1

∂hk+1|k
∂hk+1|k

∂uk|k
= −2(hk+1|k − hsp)

T

A
. (3.23)

The derivative ∂J1

∂t1
can now be calculated, since:

∂J1

∂t1
=

∂J1

∂hk+1|k
∂hk+1|k

∂uk|k
∂uk|k

∂t1
(3.24)
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where:
∂uk|k

∂t1
= −umax

∆t
(3.25)

and hence, with ∆t = tk+1 − tk = 1:

∂J1

∂t1
= 2(hk+1|k − hsp)

T

A
umax. (3.26)

The term ∂uk|k/∂t1 is equal to zero for all intervals smaller than the one containing t1. This
is obvious because the gradient of uk|k with respect to t1 is not defined for t < t1. After all,
the time instant t1 determines when the pump starts pumping. The gradient of the objective
function J with respect to t1 is:

∂J

∂t1
= Wh

Np∑
i=1

∂J i

∂t1
−Wt. (3.27)

The gradient of the objective function J is:

∇J =
(
Wh

Np∑
i=1

∂J i

∂t1
−Wt,−Wh

Np∑
i=1

∂J i

∂t2
+Wt

)
(3.28)

3.4 (Non-)convexity of the objective function

If the objective function J is convex, every local minimum must be a global minimum. If
the objective function is non-convex, a gradient-based optimizer is not guaranteed to find
the global minimum. Depending on the starting point used by the optimization routine, the
solver might find a local minimum and hence obtain a suboptimal solution. To serve as a
global solver, the algorithm can tackle this issue by using multi-start optimization.

When multi-start optimization is being used, the model is run from n different (random or
user-defined) starting points for every time step k. In each time step k, the algorithm keeps
track of all the obtained local minima and then uses only the ’best’ value. By using a multi-
start optimization, the dimensions of the optimization problem get considerably larger since
many function evaluations are required. The length of the control time step gives an upper
bound for the time that is available for running a multi-start procedure. Figure 3-3 shows the
objective function J as a function of two time instants t1 and t2, for one simulation step. The
yellow star indicates the location of the minimum. From the figure it can be seen that the
objective function seems to be convex. The convexity of a twice continuously differentiable
function of multiple variables can be proven by determining whether the Hessian matrix of
that function is positive semidefinite. The function is convex if and only if the Hessian is
positive semidefinite. If the Hessian is always positive definite, the function is strictly convex
(Boyd and Vandenberghe, 2004). A strictly convex function f(t1, t2) is convex for any t1 6= t2
and has at most one optimal solution (Rockafellar and Wets, 1998). By definition, a matrix
A is positive semidefinite if all eigenvalues of A are nonnegative and positive definite if all
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Figure 3-3: Objective function J as a function of two time instants (Wh = 200 and Wt = 1).
Time instant t1 is the moment the pump is switched on and t2 is the moment when the pump is
stopped. The prediction horizon Np is 15 steps.

eigenvalues of A are positive. The Hessian of the objective function J is defined as:

H(J) = ∇2J(t1, t2) =


∂2J

∂t21

∂2J

∂t1∂t2
∂2J

∂t2∂t1

∂2J

∂t22

 . (3.29)

The objective function is a composition of quadratic terms, of which the Jacobian is dependent
on the location of the discrete sampling intervals of the continuous time instants t1 and t2
on the domain of J ∈ [0, Np], as was explained in Section 3.3.2. The same applies to the
Hessian, which consists of second order partial derivatives and thus is different for different
combinations of t1 and t2 (in short notation: t1,2). For this reason, derivation of the Hessian
is not straightforward. Convexity can be proven by checking the eigenvalues of all different
’modes’ of the Hessian belonging to the objective function. We distinguish between two
situations:

1. Time instants t1 and t2 are element of different sampling intervals [a, b] and [c, d].

2. Time instants t1 and t2 are element of the same sampling interval [a, b].

The different cases are illustrated in Figure 3-4.

For the situation where t1 < t2, t1 ∈ [a, b], t2 ∈ [c, d], t1,2 ∈ dom(J) = [0, Np] with a, b, c and
d positive integers, some elaboration yields:

H(J) = ζ

[
α −β
−β β

]
(3.30)

where:

ζ = Wh
T 2

A2

u2
max

∆t2
(3.31)
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umax

a b c dt1 t2

(a) Case 1: time instants are element of different sampling intervals

umax

a b c dt1 t2

(b) Case 2: time instants are element of the same sampling interval

Figure 3-4: Different configurations of time instants

α = 2(Np − b+ 1) (3.32)

β = 2(Np − c) (3.33)

where ζ is a constant, and α and β are integers that depend on the locations of t1 and t2 on
the domain of J . The eigenvalues λ1 and λ2 (in short notation: λ1,2) of the Hessian can be
determined by solving the characteristic equation, defined as:

det(H − λI) = det

[
ζα− λ −ζβ
−ζβ ζβ − λ

]
= 0. (3.34)

of which the eigenvalues λ1,2 are:

λ1,2 =
ζα

2
+
ζβ

2
± 1

2

√
ζ(α2 − 2αβ + 5β2). (3.35)

It follows that α, β ≥ 2, α > β (since t1 < t2) and hence λ1,2 > 0. This implies that the
eigenvalues are positive definite and hence, the objective function is strictly convex as long as
t1 and t2 are not located in the same discrete interval.

Similarly, it can be derived that in case t1,2 ∈ [a, b], t1 < t2, t1,2 ∈ dom(J) = [0, Np] with a
and b positive integers we have (see Figure 3-4b):

H(J) = ζ

[
α −α
−α α

]
. (3.36)

Since b ∈ [1, Np], α > 0 and it follows that λ1 = 0 and λ2 = 2ζα. This means that the Hessian
matrix is positive semidefinite and the objective function J is convex.
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Table 3-2: Parameters of reservoir test case using TIO

Parameter Value Unit

T 300 s
A 10000 m2

N p 15 -
hsp 3 m
umin 0 m3 s−1

umax 3 m3 s−1

3.5 Gradient-based TIO-MPC applied to fictitious reservoir model

The TIO Model Predictive Controller applied to the linear reservoir from Section 3.3.2 was
modelled in closed-loop using Matlab. Two time instants have been used. For obtaining
the gradient of the objective function, algorithmic differentiation in reverse mode has been
applied as described in Section 3.3.2. Since the objective function is convex, a multi-start
optimization procedure was not necessary. The used model parameters are given in Table 3-2.
It should be mentioned again that the pump has discrete settings, i.e. the pump discharge
is either 0 or umax. Figures 3-5 and 3-6 show the results for two model runs, where different
combinations of penalties have been used in the objective function. It can be observed from
Figure 3-5 and 3-6 that in both cases the controller tries to keep the water level at setpoint by
pre-releasing water from the reservoir. With a relatively higher penalty on the deviation from
setpoint, the controller applies a tighter control on the water level, as is the case in Figure
3-5. The latter two types of system behaviour are common to Model Predictive Controllers in
general, and fortunately it also applies to TIO-MPC. In Figure 3-5 there are two periods in
which the pumps are pumping i.e. the pumps change their states four times. In Figure 3-6,
we can observe that there are three periods in which the pumps are pumping i.e. the pumps
change their states six times. This difference is possible because the tests are performed in
closed-loop. It can be observed that the pumps are indeed changing their state at continuous
time instants.
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Figure 3-5: Results of TIO-MPC controller, using Wh = 200 and Wt = 1
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Figure 3-6: Results of TIO-MPC controller, using Wh = 5 and Wt = 1
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Chapter 4

Application of TIO-MPC to the
Fivelingo water system

This chapter describes the tasks of the Regional Water Authority Noorderzijlvest and the
Fivelingo water system. Furthermore, the Model Predictive Controller used for this system is
discussed. Finally, the experiments are introduced.

4.1 Water system of Regional Water Authority Noorderzijlvest

Regional Water Authority Noorderzijlvest is responsible for the water management in the
northern part of the provinces Groningen and Drenthe. Their task is to protect the area
against inundation from the regional water system, to ensure safe water quality, to maintain
the ecological status and to manage the water supply during dry periods. Also, they are
responsible for collecting and treating waste water. Regional Water Board Noorderzijlvest
manages an area of 144.000 hectares, see Figure 4-1

4.1.1 Fivelingo boezem

The Fivelingo water system is located in the eastern corner of the Noorderzijlvest service
area, see Figure 4-1. It can be considered as an isolated system, with many canals discharging
into a boezem canal, which is called the Damsterdiep. In the map, it looks like there is a
connection to the northern part of the system but in reality there is a ship lock that separates
the Fivelingo system from the rest of the service area.

The Damsterdiep canal connects the city of Groningen with the sea at Delfzijl. The man-made
canal is about 27 kilometres long and can be divided into two distinctive parts. The eastern
part has a meandering course due to the former open connection to the sea. The western part
was dug out later and it follows a straighter course. There is a pumping station in the harbour
of Delfzijl called ’De Drie Delfzijlen’. At low tide, water can flow out of the system through a
gate.
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Figure 4-1: Service area of Regional water authority Noorderzijlvest (Noorderzijlvest, 2013)
.

The Damsterdiep is not very important for commercial shipping, as it is quite shallow. There
is however some recreational shipping. The canal has mainly a drainage function for the
surrounding polders. The polders pump their surplus water into the boezem using pumps
that are operated either on or off.

4.1.2 Schematization of Fivelingo water system

A coarse MPC model of the Fivelingo water system has previously been derived in a research
project carried out by the research institute Deltares (Schwanenberg and van Heeringen, 2012).
This goal of this study was twofold: improvement of the management of the water resources
system of Regional Water Authority Noorderzijlvest (NZV) during floods by applying real-
time control (RTC), and the application of RTC-Tools (Schwanenberg and Becker, 2012), a
novel software package developed by Deltares for RTC purposes. In the research, the internal
MPC models were created for all primary canals of the subsystems of the NZV water system.
In (Schwanenberg and van Heeringen, 2012) it was shown that the performance of the internal
models is sufficiently good for RTC-applications.

The MPC models in RTC-Tools consist of storage nodes and branches on a staggered grid, as
described in Section 2.3. The Fivelingo water system consists of three storage nodes, in order
to take into account water level gradients between the central node (representing the average
water level in the Damsterdiep canal) and the storage node upstream of the outlet to the sea
at the harbour of Delfzijl. The level-storage relations of the storage nodes was derived from a
detailed SOBEK hydrodynamic model (Deltares, 2013) by aggregating the available storage
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Figure 4-2: Schematic overview of the Fivelingo water system. The two blue arrows together
represent the Damsterdiep canal

from the primary canals.

For the current research, the MPC model is extended with two polder canals, which discharge
water into the Damsterdiep canal using pumps that are operated either on or off. In the
MPC model, this was modelled by adding two storage nodes and two pumps. Time Instant
Optimization is applied for these two pumps. A schematization of the extended model is given
in Figure 4-2. The extended model consists of six storage nodes, two flow branches and five
hydraulic structures, which are described in Table 4-1.

4.2 Optimization problem

4.2.1 Objective function

The goals of the controller are expressed in the objective function. Since the water system is a
typical polder-belt canal system, the main goal of the controller is to minimize the water level
deviations from setpoint in the belt- and polder canals, while avoiding potential flooding events
by anticipating on expected disturbances. A second goal, that applies mainly to day-to-day
operations, is to achieve energy and cost savings on pumping by:

1. Making efficient use of the available storage in the system

2. Creating storage in the system by pre-releasing water prior to an expected disturbance

3. Releasing as much of the water surplus as possible through the gate at low tide

A third goal is to minimize wear and tear of hydraulic structures by limiting the changes in
pump flow and gate height. These goals can be described mathematically in the following
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Table 4-1: Description of model components

Component Type Description

H0 Storage node Downstream boundary condition, representing
the water level at sea near the outlet in the har-
bour of Delfzijl

H01 Storage node Represents the water level just upstream of the
outlet structures

H02 Storage node Intermediate node that represents the mean wa-
ter level in the Damsterdiep canal

H03 Storage node Upstream boundary of the Damsterdiep canal
H024 Storage node Represents the water level in polder #024
H137 Storage node Represents the water level in polder #137
Q2 Flow branch Flow based on diffusive wave model on a stag-

gered grid
Q3 Flow branch Flow based on diffusive wave model on a stag-

gered grid
Q024 Pump flow Flow from polder #024 (discrete)
Q137 Pump flow Flow from polder #137 (discrete)
Q1,electric Pump flow Flow from electric pump at Delfzijl (continuous)
Q1,diesel Pump flow Flow from diesel pump at Delfzijl (continuous)
dg Gate height Flow (as a function of the gate height) through

the gate at Delfzijl
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objective function, that needs to be minimized:

min Jk =

Np∑
i=1

m∑
j=1

We,j (e
k+i|k
j )2

+
m∑
j=1

We,Np,j (e
k+Np|k
j )2

+

Np∑
i=1

l∑
j=1

W∆Q,j (∆Q
k+i|k
j )2

+

Np∑
i=1

l∑
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WQ,j Q
k+i|k
j

+

Np∑
i=1

p∑
j=1

W∆dg,j (∆d
k+i|k
g,j )2,

(4.1)

where Qk
j is the pump flow [m3 s−1] that follows from the time instants, ekj is the water level

deviation from setpoint m, ∆Qk
j is the change in pump flow [m3 s−1] and ∆dkg,j is the change

in gate setting [m], at time step k:
ekj = hkj − hsp,j (4.2)

∆Qk
j = Qk

j −Qk−1
j (4.3)

∆dkg,j = dkg,j − dk−1
g,j . (4.4)

Jk is the objective function that needs to be minimized, in which k is the step counter of the
prediction horizon Np [−], m the number of flow branches between storage nodes [−], l is the
number of pumps [−], p is the number of gates [−], We,j is the penalty on the water level
deviation from setpoint for a storage node, ek+Np

j is the water level error [m] at the end of the
prediction horizon, We,Np,j is the penalty on this error [−], WQ,j is the penalty on the change
in pump flow [−], WQ,j is a penalty on pump flow and W∆dg,j is a penalty on the change of
the gate height setting [−].

The setpoints and penalties used in (4.1) are summarized in Tables 4-2 and 4-3. All penalties
except the ones for the polder pumps that were added, were adopted from the existing model,
assuming that this model has been tuned thoroughly 1.

The academic test case from Section 2.4.1 consisted of a linear process model and a quadratic
objective function, which results in a highly structured convex quadratic programming (QP)
problem. For the Fivelingo water system, a nonlinear process model and a quadratic objective
function are being used. The use of a nonlinear model leads to a loss of convexity (Qin and
Badgwell, 2000). For this reason it may be harder to find a (sufficiently good) solution, and
if a solution is found it is not guaranteed to be the global optimum: there may be multiple
local minima.

1It is important to note that the tuning of the penalties is an important part of the configuration of a Model
Predictive Controller, because the penalties determine the behaviour of the controller.
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Table 4-2: Setpoints used in the objective function

Term Setpoint value [m]

H01 -1.55
H02 -1.33
H024 -1.40
H137 -2.55

Table 4-3: Penalties used in the objective function

Penalty

We We,Np W∆Q WQ W∆dg

H01 200 - - - -
H02 50 500 - - -
H024 200 - - - -
H137 200 - - - -
Q024 - - - 0.30 -
Q137 - - - 0.30 -
Q1,electric - - 1 0.10 -
Q1,diesel - - 1 0.30 -
dg - - - - 0.01

4.2.2 Constraints

The objective function is subject to physical and operational constraints, which limit the
(change in) pump flow and gate settings according to:

Qmin,j ≤Qk
j ≤ Qmax,j (4.5)

dg,min,j ≤dkg,j ≤ dg,max,j (4.6)

(4.7)

The constraints that apply to the Fivelingo water system are summarized in Table 4-4. The
values represent minimum and maximum pump flows and gate height settings.

Table 4-4: Constraints

Term Min Max Unit

Q1,electric 0 3.33 m3 s−1

Q1,diesel 0 20 m3 s−1

Q024 0 3.25 m3 s−1

Q137 0 3 m3 s−1

dg 0 5 m
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Table 4-5: Specifications of computer and software used for simulations

Processor Intel Core i3 350M @ 2.27 GHz
Memory 4.00 GB DDR3
Operating system Windows 7 Home Premium SP1 64-bit
Matlab version R2013a 32-bit
Solver fmincon, using Interior-Point algorithm

4.2.3 Performance indicators

Because the objective function J describes mathematically the different goals of the controller,
the value of the objective function at each optimization step is an indicator for the overall
performance of the model. The value of the objective function does not give information
about how well specific goals are achieved. Since the used objective function is the same in
all experiments, the only difference in the experiments is the amount of time instants used for
optimizing the control input Q024 and Q137 of the discrete pumps. We can check how these
discrete controllers are performing by looking at the simulated water levels in the nodes that
are being controlled by these pumps. A performance indicator that can be used to compare the
controllers of the discrete elements in the experiments is the root mean square error (RMSE).
The RMSE can be used to measure the average deviation from setpoint for the simulated
water levels, for the different experiments. A low value of the RMSE corresponds with tighter
control. The RMSE of simulated water levels reads:

RMSE =

√∑Np
i=1(hk+i|k − hsp)2

Np
(4.8)

where hk+i|k for i = 1, . . . , Np are the simulated water levels over the prediction horizon Np,
evaluated at time step k.

A different, but also relative performance indicator is the computational time, since this de-
termines whether or not a scheme can be used in real-time control applications. The upper
bound for the computational time is equal to the used control time step of the model, which
is 5 minutes for the Fivelingo model. The computational time depends on the specific com-
puter that is being used for the optimization, see Table 4-5. Since the computational time is
depending on the amount of iterations that the solver needs to converge to a solution, these
are also listed in the results.

4.3 Test bed

The model has been implemented in Real-Time Control Tools (RTC-Tools) (Schwanenberg and
Becker, 2012), an open source software package developed by the research institute Deltares
for modelling routing processes for real-time control applications. The used model is based on
a diffusive wave model, and consists of storage nodes and branches on a staggered grid. RTC-
Tools is also used to configure and evaluate the objective function. RTC-Tools has an internal
solver, and is also equipped with an adjoint model to evaluate the gradient with respect to
continuous input variables. However, this adjoint model is not configured such that it can
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Table 4-6: Summary of experiments

Experiment # of time instants Initial guess for time instants

1 2 no initial guess (default: zeros)
2 4 no initial guess (default: zeros)
3 8 no initial guess (default: zeros)
4 16 no initial guess (default: zeros)
5 2 equidistant over prediction horizon
6 4 equidistant over prediction horizon
7 8 equidistant over prediction horizon
8 16 equidistant over prediction horizon

deal with time instants input and the reduced amount of variables (compared to continuous
optimization) that results from Time Instant Optimization. Therefore the optimization is
done using an external solver in MATLAB. The correct gradient vector, that represents the
gradient with respect to both continuous variables and time instants is used in MATLAB’s
solver fmincon.

A converter calculates the control input of the discrete variables, based on the optimized pump
schedule derived from continuous time instant optimization, see Figure 3-2. This control input
can then be used RTC-Tools to evaluate the objective function.

4.4 Experiments

Nine open-loop experiments will be used to test various TIO-MPC controllers on the simplified
MPC model of a real-world system. The first eight experiments use a TIO-MPC controller;
experiments 1-4 do not use an initial guess for the time instants. Instead they use the default
value, which is a vector of zeros. Since the large nonlinear optimization problem can have
many local minima, these experiments are used to test whether the solver fmincon gets stuck
in local minima near t = 0.

In experiments 5-8, an initial guess of the time instants is supplied to the solver. Pairs of time
instants are divided equidistant over the prediction horizon Np. These experiments will be
used to test whether supplying a (rough estimate of an) initial guess leads to a better solution
i.e. lower objective function value and tighter control on water levels.

A ninth experiment is an open-loop test using a continuous optimization, in which all pumps
can have continuous setting between their lower and upper bound. This does not represent
the actual control, since the polder pumps can only be operated on or off and hence have
much less degrees of freedom. However it is interesting to compare the performance in terms
of control accuracy and computational time with the TIO-MPC controllers.

An overview of the experiments is listed in Table 4-6. The input data for the RTC-Tools
model related to disturbances and boundary conditions is available in the form of time series,
which have been extracted from a Delft-Flood Early Warning System (FEWS) flow forecasting
system (FEWS Noorderzijlvest) prior to this study. Delft-FEWS is an operational forecasting
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platform, that can be used to link data and models in real time, producing forecasts (Werner
et al., 2013). The following time series are available:

• Observed sea water levels at Delfzijl (period 2012-02-17 - 2012-02-27)

• Lateral (aggregated) inflows for the nodes, based on a SOBEK-RR (rainfall-runoff)
model. This model used precipitation data from rainfall gauges and radar data as input
in the pre-processing. (period 2012-02-17 - 2012-02-27)

The prediction model uses hindcast data as predictions, with 48-hour time series of rainfall
and inflows. The control time step is 5 minutes, resulting in a prediction horizon Np = 576. If
we would decide for every time step whether or not to switch the pumps on or off, this would
lead to a very large combinatorial optimization problem. For a single discrete variable, there
are 2576 different combinations.

There are five control variables (four pumping stations and one gate) resulting in an optimiza-
tion problem of 2880 dimensions if we apply a continuous optimization. However, a continuous
optimization would not give a proper solution as this is not the correct physical representa-
tion of the discrete dynamics. We will use Time Instant Optimization for the two discrete
input variables, which will reduce the number of dimensions of the optimization problem.
Because the time instants are continuous, we can use an efficient gradient-based solver which
makes the use of a derivative-free pattern search algorithm unnecessary. Also, the discrete
and continuous control input variables can easily be combined in the optimization.

In order to test the performance of the hybrid TIO-MPC controllers, experiments 1-8 were
carried out using various amounts of time instants per discrete variable: 2, 4, 8 and 16. It is
expected that a larger number of time instants will yield better results regarding the objective
function. All tests are performed for one time step, with equal stopping criteria for the solver.

4.5 Results and discussion

This chapter summarizes the various experiments from Section 4.4 that were performed to
test the hybrid TIO-MPC algorithms on a model of an existing water system, in order to
answer the research questions. The experiment with continuous input variables is used to
show the performance if all pumps could have been operated continuously. Then, the pumps
can change their settings at every time step, with a pump flow ranging betweenQmin andQmax.
For this reason, there are many more degrees of freedom for the solver and the controller is
able to exert a much tighter control compared to their hybrid counterparts. However, this
does not represent the actual physical behaviour of the controller, since in reality some pumps
are operated only on or off. Also, the TIO-MPC algorithm limits the amount of allowed
state changes. In general, it can be observed that the hybrid TIO-MPC algorithms is able
to adequately optimize both continuous and discrete elements, and that using more time
instants generally leads to better performance in terms of the objective function value. This
is because the controller can use more periods to pump, and these pumping intervals can be
timed strategically e.g. discharging as much as possible through the gate at low tide.

The simulated water levels and control inputs of the continuous optimization are given in
Figure 4-3. The results of the eight TIO-MPC experiments are given in Figures 4-3 through
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4-11. The results and performance indicators of all experiments are summarized in Table 4-7.
The percentages between brackets indicate the relative volume of water that is discharged at
the outlet by either the gate or one of the two pumps.

It can be observed in Figures 4-3 through 4-11 that for all experiments, node H137 has a
larger deviation in the water levels compared to node H024. This can be explained by the
difference in level-storage relationship, where node H137 has less relatively less storage and
therefore the water levels rises faster. It is interesting to note that for this system, the use of
more time instants in experiments 1-4 and 5-8 leads to a tighter control of the polder nodes
H024 and H137, but it also causes a rise in the percentage of pumped volume at the outlet,
see Table 4-7. Using even more time instants would in theory give the controller more degrees
of freedom, which would allow the controller to use a more tactical planning with respect to
the water level at sea. A different tuning of the controller could also be used to prioritize gate
flow even more. However, extensive tuning of this water system is out of the scope of this
research.

4.5.1 Optimization using a user-defined initial point

Supplying the solver with an educated guess of an initial point for the optimization may
prevent the solver from getting "stuck" in the first (suboptimal) local minimum it encounters.
Experiments 1-4 and 5-8 can be compared to test the importance of a user-supplied initial
point.

It can be observed that in both experiments with 2 and 4 time instants, a comparable value of
the objective function and RMSE is found, while the time instants are different, see Table 4-7.
In experiments 3 and 4 (using 8 and 16 time instants, respectively) the pump intervals of the
discrete pumps are scheduled at the beginning of the prediction horizon, which might indicate
that the solver got stuck in a local minimum, see Figures 4-6 and 4-7. Especially experiment
4 results in poor performance, with a high objective function value due to the large deviation
from setpoint of the water levels in storage nodes H024 and H137. If we compare experiments
3-4 with 7-8, we can observe that a better solution in terms of the objective function J , RMSE
and CPU time is found in the experiments where an initial solution has been supplied, which
indicates the added value of a user-supplied initial point.

The experiments show that the use of equidistantly divided time instants as an initial guess
seems to yield better results than an optimization without a user-supplied initial guess. In
practice it will be hard, if not impossible to come up with a reasonable initial guess. If the
computational time allows for it, one could use multi-start optimization to increase the chance
of finding a better feasible solution.

4.5.2 Computational time

One of the benefits of using TIO-MPC instead of MLD-MPC is that the amount of optimiza-
tion variables is reduced significantly. Recall that for MLD-MPC, the solver has to decide
at every time step within the prediction horizon whether or not to change its state, which
leads to a large combinatorial optimization problem. The reduced amount of variables, and
the fact that an efficient gradient-based solver can be used for the hybrid optimization, pays
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Figure 4-3: Results of continuous optimization
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Figure 4-4: Results of experiment 1
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Figure 4-5: Results of experiment 2
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Figure 4-6: Results of experiment 3
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Figure 4-7: Results of experiment 4
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Figure 4-8: Results of experiment 5
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Figure 4-9: Results of experiment 6
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Figure 4-10: Results of experiment 7
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Figure 4-11: Results of experiment 8
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off in the computational time. All TIO-MPC experiments have computational times under
300 seconds, which is the control time step of the used controller and thus the upper limit
for RTC applications. The only difference between the eight TIO-MPC experiments was the
initial guess of the time instants. From Table 4-7 we can conclude that for these experiments,
the runs with a user-supplied initial guess for the time instants are generally faster. This may
indicate that the initial guess was quite good, and less iterations were needed to converge to
a (local) minimum. These iterations take time, since MATLAB and RTC-Tools have to send
data back and forth via the MEX-file.

One would expect a higher computational time when more time instants are being used. In
the experiments, using more time instants does not automatically lead to more CPU time.
If we analyse the results of experiments 5-8, we can see that there is no obvious relationship
between the amount of used time instants and the computational time. The computational
time is correlated with the number of needed iterations, see Table 4-7. The amount of needed
iterations depends on how fast the solver converges to a solution, which again emphasizes the
dependency on a good initial guess.

Bart Dekens Master of Science Thesis



4.5 Results and discussion 53

T
ab

le
4-

7:
R
es
ul
ts

of
hy
br
id

T
IO

-M
P
C

co
nt
ro
lle
r
ve
rs
us

co
nt
in
uo

us
op

tim
iz
at
io
n
fo
r
th
e
Fi
ve
lin
go

w
at
er

sy
st
em

,
w
ith

ou
t
su
pp

ly
in
g
an

in
iti
al

gu
es
s
fo
r
tim

e
in
st
an
ts

to
th
e
so
lv
er

E
xp

er
im

en
t

#
va
ri
ab

le
s

J
[−

]
#

it
er

C
P
U

ti
m
e

[s
]

R
M
SE

of
w
at
er

le
ve
l[
m

]
D
is
ch
ar
ge
d
vo
lu
m
e

[m
3
]

H
02

H
02

4
H
13

7
Q

1
,g

at
e

Q
1
,e

le
ct

ri
c

Q
1
,d

ie
se

l
Q

0
2
4

Q
1
3
7

C
on

ti
nu

ou
s

28
80

38
.5

11
0

63
6.
6

0.
00
80

0.
00
15

0.
00
10

82
8.
2

22
.9

7.
7

23
.1

82
.3

(9
6.
4%

)
(2
.7
%
)

(0
.9
%
)

1
17

32
19

95
.4

69
97

.9
0.
00

56
0.
00

90
0.
12

97
68

0.
0

11
0.
5

38
.7

13
.2

57
.5

(8
2.
0%

)
(1
3.
3%

)
(4
.7
%
)

2
17

36
74

0.
7

14
0

20
4.
0

0.
00

66
0.
00

51
0.
07

72
73

8.
4

10
9.
5

38
.4

17
.9

67
.7

(8
3.
3%

)
(1
2.
4%

)
(4
.3
%
)

3
17

44
51

9.
5

67
10

1.
4

0.
00

54
0.
00

87
0.
05

82
40

2.
0

37
9.
2

18
0.
1

14
.6

68
.7

(4
1.
8%

)
(3
9.
4%

)
(1
8.
7%

)
4

17
60

24
32

.4
56

87
.6

0.
06

77
0.
00

66
0.
13

83
12

35
.0

18
8.
5

11
4.
6

18
.1

43
.8

(8
0.
3%

)
(1
2.
3%

)
(7
.4
%
)

5
17

32
19

94
.5

54
76

.7
0.
00

63
0.
00

74
0.
12

97
69

9.
3

11
0.
8

39
.2

18
.8

57
.5

(8
2.
3%

)
(1
3.
0%

)
(4
.6
%
)

6
17

36
74

2.
2

73
10

6.
1

0.
00

72
0.
00

47
0.
07

73
78

4.
9

11
1.
6

38
.8

20
.1

68
.2

(8
3.
9%

)
(1
1.
9%

)
(4
.1
%
)

7
17

44
36

7.
2

23
35
.1

0.
00

60
0.
00

28
0.
04

71
44
8.
7

34
7.
2

17
0.
0

21
.8

72
.0

(4
6.
5%

)
(3
5.
9%

)
(1
7.
6%

)
8

17
60

19
0.
0

37
57
.6

0.
00

50
0.
00

24
0.
02

41
40
2.
6

37
6.
3

17
9.
0

21
.3

79
.1

(4
2.
0%

)
(3
9.
3%

)
(1
8.
7%

)

Master of Science Thesis Bart Dekens



54 Application of TIO-MPC to the Fivelingo water system

Bart Dekens Master of Science Thesis



Chapter 5

Conclusions and recommendations

This chapter gives an overview of the conclusions drawn in this thesis, and recommendation
for possible future work.

5.1 Conclusions

In this thesis, a TIO-MPC controller with continuous time instants was introduced in Chapter
3. The continuous time instants allowed the use of efficient gradient-based solvers. These
solvers require a gradient vector of the objective function. To obtain this gradient, reverse-
mode algorithmic differentiation was applied to the reservoir test case of Section 2.4.1 in
Section 3.3.2. The controller was first tested in closed-loop on the simple test case, using a
linear reservoir model and a pump that is operated either on or off. The test cases showed
that the TIO-MPC controller is, similar to any other MPC algorithm, capable of controlling
a system with conflicting control objectives.

In Chapter 4, various TIO-MPC schemes were introduced and tested on a MPC model of
an existing water system. This hydraulic model was readily available in RTC-Tools, a novel
software package developed by Deltares for modelling routing processes for real-time control
applications. RTC-Tools has an internal solver, and is also equipped with an adjoint model to
evaluate the gradient with respect to continuous input variables. However this adjoint model
is not configured such that it can deal with time instants input and the reduced amount of
variables (compared to continuous optimization) that results from Time Instant Optimization.

To allow flexibility, the optimization is done using an external solver from MATLAB’s Op-
timization Toolbox. The correct gradient vector, that represents the gradient with respect
to both continuous variables and time instants was used in MATLAB’s solver fmincon. A
converter calculates the control input of the discrete variables, based on the optimized pump
schedule derived from continuous time instant optimization. This control input is can then be
used RTC-Tools to evaluate the objective function.
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Various TIO-MPC schemes, using different amounts of time instants, were introduced and
tested in eight open-loop experiments. From these experiments, the following conclusions can
be drawn:

5.1.1 Optimization of hybrid systems using gradient-based TIO-MPC

Both the academic test case and the Fivelingo test case demonstrated that the gradient-based
TIO-MPC controller is perfectly capable of optimizing a hybrid system that involves both
continuous and discontinuous structure operations. Since some pumps in the test case can
only be operated on or off, and TIO-MPC prescribes the number of allowed on/off switches,
it goes without saying that the degrees of freedom for applying a tight control are limited
compared to continuous pumps. When optimizing more time instant over the prediction
horizon:

• The controller is able to exert a tighter control on water levels, since it is allowed to pump
more often. It can anticipate on water level deviations by pumping in short intervals.
The average deviation from setpoint will be lower compared to a case where one is only
allowed to pump for one interval. This will result in lower objective function values.

• More time instants allow for a more strategical pump scheduling over the prediction hori-
zon, anticipating better on overall system dynamics e.g. water levels at sea (exploiting
’free’ gate flow).

5.1.2 Local optima

Whenever optimizing large nonlinear optimization problem, there is a risk that an obtained
optimum is a local minimum. In the ideal case the solver finds the global minimum, provided
that there exists a solution. The experiments of the Fivelingo water system were used to
test, amongst other goals, the influence of supplying different initial solutions to the solver.
The experiments showed that lower objective function values are obtained when an initial
guess is supplied to the solver. When no initial guess was supplied, the solver seemed to get
stuck in (suboptimal) local minima near the origin, resulting in high objective function values
which indicate poor control performance. This behaviour was especially encountered for the
experiments with a larger amount of time instants.

There is no golden rule for this initial guess, but an initial guess that gave promising results
was when pairs of time instants were divided equidistant over the prediction horizon. This
way the solver is forced to look for a solution, looking a bit further away than local minima
near the origin.

One could also try to synchronize the initial guess with predicted peaks of the disturbances
and with periods with low tide. This might point the solver in the right direction, because
these are generally the moments that a pump will be activated.

An additional strategy is the use multi-start optimization. By running several optimizations
from different initial starting points, the chance of finding a better feasible solution increases.
This will increase the computational time since many more function evaluations are needed.
The control time step gives an upper bound for the available computational time.
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5.1.3 Computational time

From the experiments, there seems to be no obvious relationship between the amount of
time instants and the computational time. This might be due to the fact that the total
amount of input variables is not that different for the eight experiments (see Table 4-7). The
computational time is quite dependent on the initial guess since this determines the amount
of, a priori unknown, iterations. The solver converges faster to a solution if (by chance) a
good initial solution has been supplied.

In some cases, having more time instants seems to be even decreasing the computational
time. This can be caused by a (potentially good) initial guess, or by the constraints and
pre-described order of time instants that decreases the feasible region of a possible solution.

In the current setup with RTC-Tools and an external solver in MATLAB, the two programs
needs to send data back and forth via a MEX-file. Each iteration takes time because of the
bookkeeping and data transfer. A potential option to further decrease the computational time
is to put the whole optimization in RTC-Tools or any other low-level programming language
using another, potentially more efficient internal solver than MATLAB’s fmincon.

5.1.4 Number of time instants

The amount of time instants that are used in the optimization determines the performance of
the model. The experiments showed that using more time instants generally leads to a tighter
control. The choice for a certain amount of time instants will have to be made based on both
physical and computational considerations. In the end, the choice for a certain amount of
time instants is a trade-off between computational effort and control accuracy. The maximum
number of time instants that can be used depends on the setup of the optimization problem.
Constraints that prescribe e.g. the domain of the time instants and/or a minimum time
between state switching limit the feasible amount of time instants that can be used within
the prediction horizon. If such constraints are not given, the solver could use many more time
instants to increase control accuracy. The open-loop tests from Section 4.4

An interesting case is when a TIO-MPC algorithm optimizes a sequence of control input
variables ũk+i|k for i = 0, . . . , Np − 1, where every i-th interval contains two continuous time
instants. With two time instants per interval as in Figure 3-4b, and the converter from Section
4.3, the solver finds a continuous control input value for every i-th step. Hence, this TIO-MPC
algorithm is in theory equivalent to a continuous MPC algorithm (but with twice as much
variables to optimize).

It is hard to say in advance how many time instants should be used. For the Fivelingo water
system, only open-loop tests were performed. Closed-loop tests using different amounts of
time instants may give more insights into the system behaviour. In addition, it might be
interesting to extend the model, using parallel computations with different amount of time
instants where the model switches between different TIO-MPC schemes.
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5.2 Recommendations

Time Intant Optimization MPC is a promising technique for the control of systems with both
continuous and discrete elements. It allows the algorithm to step away from computationally
heavy mixed-integer schemes. The work presented here made a step forward by implementing
the use of continuous time instants. This allows the use of efficient gradient-based solvers,
which are widely available in both commercial and open source software packages. The rec-
ommendations for future work are as follows:

• The test case of the Fivelingo model focussed only on computational issues and the
performance of an open loop model. Since the receding horizon principle is used with
MPC, only the first step of the optimized sequence of steps is carried out, before another
optimization starts at the new time step. Closed-loop testing might give more feeling
for the number of time instants to be used over a given prediction horizon. It will
be interesting to see how these algorithms translate into the actual pump scheduling
of a system such as the Fivelingo water system. Further research into the closed-loop
performance of a TIO-MPC model is recommended.

• The use of gradient-based solvers for the optimization of the hybrid model speeds up
the optimization. Further research could focus on extending the current model by using
a parallel optimization, using different amounts of time instants. The scheme could
than switch between different TIO-MPC schemes, depending on which scheme gives the
lowest objective function value.

It is recommended to extend RTC-Tools with some features that would enable Time Instant
Optimization. Using the internal solver in RTC-Tools will be beneficial for the computational
time, as it does not require the RTC-Tools/MATLAB model coupling that slows down the
optimization. Some additions that were modelled in MATLAB in this work, will have to be
programmed into RTC-Tools:

• The converter that translates continuous time instants input into regular control input.
This input can then be used for the evaluation of the objective function.

• The adjoint has to be adjusted such that it gives the gradient with respect to time
instants input.

Using a low-level programming language instead of MATLAB will probably speed up the
optimization. However, this work focussed on MATLAB to allow flexibility in modelling.

The use of equidistantly divided pairs of time instants gave promising results in this work.
Future research of a similar test case could try to link the initial guess of the time instants to
predicted disturbance peaks and periods of low tides. From a practical point of view, it could
be reasoned that these are the moments that the polder pumps are operating. Using these
points in time might be a well educated guess that points the solver into the right direction,
however the solution will depend on the quality of the predictions.

A different strategy is to let the algorithm do more number crunching by running a multi-
start optimization procedure. If a solution exists, the solver is not guaranteed to find the
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global minimum. If one has no clue about a good initial guess of the time instants and the
computational time and the length of the control time step allow it, a multi-start procedure
will increase the chance of finding a better (or at least acceptable) solution.

Good candidates for other fields of application of gradient-based TIO-MPC would be pro-
cesses with continuous and discrete elements that include storage and accumulation of matter,
whether it is water, oil or traffic. If a system can somehow be described with mass balances,
it might be possible to use continuous time instants. The control of large sewer systems
would make an interesting test case: these systems contain many pumps, spatially distributed
storage, and many constraints regarding storage capacity and allowed overflow frequencies.
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Appendix A

Linear MPC

A.1 State-Space Model

The linear system under consideration can be written in a state-space representation, which
reads:

xk+1 = Akxk +Bk
uu

k +Bk
dd

k, (A.1)

yk = Cxk, (A.2)

where xk is the state vector, uk the input vector, dk the disturbance vector, yk the output of
the system, at time k, A the system matrix, Bu the control input matrix, Bd the disturbance
matrix and C the output matrix.

When the state-space model is extended over the prediction horizon Np and the initial state
xk and inputs are known, the future output can be calculated. Extending the model yields:

xk|k =xk,

xk+1|k =Ak|kxk +Bk|k
u uk|k +B

k|k
d dk|k,

xk+2|k =Ak+1|kxk+1|k +Bk+1|k
u uk+1|k +B

k+1|k
d dk+1|k,

=Ak+1|kAk|kxk +Ak+1|kBk|k
u uk|k +Ak+1|kB

k+1|k
d dk|k +Bk+1|k

u uk+1|k,

+B
k+1|k
d dk+1|k,

...

(A.3)

In compact notation:

X = Axk + BuU + BdD, (A.4)
Y = CX, (A.5)
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where:

X =


xk|k

xk+1|k

...
xk+Np|k

 , U =


uk|k

uk+1|k

...
uk+Np−1|k

 , D =


dk|k

dk+1|k

...
dk+Np−1|k

 ,

A =


I

Ak|k

Ak+1|kAk|k

...
Ak+Np−1|kAk+Np−1|k · · ·Ak|k

 ,

Bu =



0 0 · · · 0

B
k|k
u 0 0

Ak+1|kB
k|k
u B

k+1|k
u 0

...
. . .

...
Ak+Np−1|kAk+Np−2|k · · ·Ak+1|kB

k|k
u B

k+Np−1|k
u


,

Bd =



0 0 · · · 0

B
k|k
d 0 0

Ak+1|kB
k|k
d B

k+1|k
d 0

...
. . .

...
Ak+Np−1|kAk+Np−2|k · · ·Ak+1|kB

k|k
d B

k+Np−1|k
d


,

and C =


C 0 · · · 0

0 C
...

... C 0
0 · · · 0 C

 .

A.2 MPC formulated as a quadratic programming problem

A general quadratic objective function, where a penalty is imposed on states X and input U
is:

J = X>QX + U>RU, (A.6)

in which Q and R are cost weight matrices:

Q =


q 0 . . . 0

0 q
...

... q 0
0 . . . 0 q

 ; R =


r 0 . . . 0

0 r
...

... r 0
0 . . . 0 r

 .
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With the output Y equal to the state X and taking into account a desired set point xsp, the
objective function becomes:

J = (X− xsp)>Q(X− xsp) + U>RU. (A.7)

For linear systems, the state xk is linearly dependent of uk, so the quadratic cost function can
be written as:

J = U>HU + f>U, (A.8)

where:

H = B>u QBu + R, (A.9)

f = 2(x>A> + D>B>d − x>sp)QBu. (A.10)

H is a symmetric matrix (the Hessian) and f is a vector. Linear input and state constraints
imply (inequality) constraints on the control input uk, which can be expressed in the following
formulation:

AcU ≤ bc. (A.11)

The optimization problem now becomes:

min
U

U>HU + f>U

subject to AcU ≤ bc.
(A.12)

(A.12) is a quadratic programming problem, for which dedicated solvers exist. In MATLAB,
this optimization can be solved numerically using the quadprog function from the Optimization
Toolbox, which solves the quadratic programming problem:

min
U

1

2
U>HU + f>U (A.13)

subject to AU ≤ b (A.14)
AeqU = beq (A.15)
lb ≤ U ≤ ub (A.16)

By using H = 2H, optimization problem (A.12) can be solved.

A.3 Application to linear reservoir model

A simple explicit linear reservoir model can be described by a mass balance consisting of an
inflow or disturbance and a controlled outflow (see also Section 2.4.1). The state-space model
for this reservoir model is given by:

hk+1 = hk +
T

As
(dk − uk), (A.17)

where h is the water level [m], T is the control length step [s], As is the storage area of the
reservoir [m2], d is the uncontrolled inflow or disturbance [m3 s−1], u is a controlled outflow
[m3 s−1] and k is the step counter [−].

Master of Science Thesis Bart Dekens



64 Linear MPC

Table A-1: Parameters of linear MPC model

Parameter Value Unit

Ak 1 -
T 300 s
As 10000 m2

Bu -T/Area sm−2

Bd T/Area sm−2

N p 15 -
hsp 3 m
hmin 2.6 m
hmax 3.4 m
Umin 0 m3 s−1

Umax 3 m3 s−1

Rewriting the above in the shape of equations A.1 and A.2, with xk = hk, Ak = 1, Bu = T/As
and Bd = −T/As yields:

xk+1 = Akxk +Bk
uu

k +Bk
dd

k, (A.18)

yk = xk. (A.19)

When the water level is bounded between hmin and hmax, this can be expressed in the inequality
constraint of the quadratic programming problem.

hmin ≤ Ax(k) +BuU +BdD ≤ hmax (A.20)[
Bu
−Bu

]
U ≤

[
hmax −Ax(k)−BdD
−hmin +Ax(k) +BdD

]
(A.21)

The following parameters have been chosen for the reservoir model, see Table A-1:

A.4 Simulation results

The reservoir model was modelled using MATLAB. The model behaviour for different cost
weight matrices can be observed by looking at the output. It can be seen from Figures A-1 and
A-2 that the pump starts pumping before the disturbance takes place, as expected with any
Model Predictive Controller. Since the penalty on water level deviation is very low in Figure
A-2 the controller does not keep a very tight control on the water level. When the penalty
on water level deviation from setpoint is set to a higher value, it can be seen from Figure A-1
that the controller exerts a much tighter control on the water level deviation from setpoint.
The controller operates at the constraints: the pump is pumping at maximum capacity before
the disturbance takes place. The water level deviation from set point is smaller compared to
the second case. In both cases, the constraints on the water level are respected. If we define
the deviation from set point as the error e = h − hsetpoint, the maximum error is 0.22 m for
the first case, and 0.40 m for the latter.
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Figure A-1: Simulation results for q = 10 and r = 0.01
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Figure A-2: Simulation results for q = 0.1 and r = 0.01
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Glossary

List of Acronyms

LMPC linear Model Predictive Control

NMPC nonlinear Model Predictive Control

MPC Model Predictive Control

TIO-MPC Time Instant Optimization Model Predictive Control

CFL Courant-Friedrichs-Lewy

SV De Saint-Venant

AD automatic differentiation

QP quadratic programming

LP linear programming,

NLP nonlinear programming

IP integer programming

MILP mixed-integer linear programming

MINLP mixed-integer nonlinear programming

NZV Noorderzijlvest

RTC real-time control

MLD mixed logical dynamical

FEWS Flood Early Warning System

RMSE root mean square error

VFD variable-frequency drive
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74 Glossary

RTC-Tools Real-Time Control Tools

SQP sequential quadratic programming
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