
Collaborative Detection of Malicious Clients for
Financial Institutions using Multi-Party

Computation
Trustworthy Financial Crime Analytics

Lauren de Hoop1

Supervisor(s): Dr. Zeki Erkin1, Dr. Kubilay Atasu1, Lourens Touwen!

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2025

Name of the student: Lauren de Hoop
Final project course: CSE3000 Research Project
Thesis committee: Dr. Z. Erkin, Dr. K. Atasu, L. Touwen, M. Khosla

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Financial institutions have a large responsibility when it comes to detecting and preventing

financial crime. However, dedicated tools to aid in financial crime detection have more
demand than supply. The combination of regulatory restrictions with regards to sharing
client information between financial institutions and a lack of dedicated tools for financial
crime detection results in a flawed system that allows criminals to evade detection and
easily continue their activities by moving between institutions. This paper answers the
question: How can privacy-preserving data sharing methods enable collaborative detection of
malicious clients among financial institutions? Multi-Party Private Set Intersection (MPSI)
allows multiple parties to intersect their respective datasets, without revealing any data to
the other parties that are not in the intersection. A special case of MPSI is Threshold
Multi-Party Private Set Intersection (T-MPSI), where given a threshold T , an item is only
included if T or more parties hold that item. This paper implements a new version, Flagged
Threshold Private Set Intersection (FT-MPSI), that adds a label to each item, where the
label indicates if the client has been flagged as malicious - accused or convicted of financial
crime. To be included in the intersection, the item must now also be identified by at least
one party as malicious. The final result of the intersection is revealed to the computing party
and can be shared with the parties holding the original items while no other information
is leaked. The runtime performance of the FT-MPSI protocol is compared to that of the
T-MPSI protocol. FT-MPSI is slower by a constant factor of approximately 2, compared to
T-MPSI, it scales linearly to the number of parties and size of the sets of the input. FT-MPSI
is a practical solution for financial institutions to use in financial crime detection.

1 Introduction
Whether it is the underworld laundering drug money [1] or foreign entities using charities

to finance terrorism [2], it has become increasingly easier for criminals to abuse financial
systems to launder their funds and scam innocent people out of their hard-earned money.
The demand for better detection systems for these types of financially motivated criminals is
highly sought after. Simultaneously, regulations on data protection and privacy have gained
significant attention in recent years, resulting in moral, political, and regulatory conflicts
[3]. The combination of a lack of dedicated tools for financial crime detection and regulatory
restrictions with regards to sharing client information between financial institutions results
in a flawed system that allows criminals to evade detection and easily continue their activities
by moving between institutions. Even when criminal activities have been detected or clients
have been convicted of financial crimes, they still manage to open new accounts with different
financial institutions despite their history [4].

The lack of oversight that individual financial institutions have on the activities of their
clients throughout the financial system makes it very challenging to combat financial crime
in a cross-institutional landscape. Clients of a financial institution are protected under
the General Data Protection Regulation (GDPR)1, making it illegal for financial institu-
tions to directly communicate their clients’ data with other financial institutions without
a substantiated legal clause. This limitation prevents financial institutions from directly
communicating with each other about the activities of their clients, regardless of legality.

1GDPR
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There exists however a protocol, The Protocol Incident Warning System for Financial
Institutions (Pifi) [5], that allows financial institutions to share information with each other
about suspicious activities or clients, through a centrally accessible database, see Section
3.1. A Financial Institution can search a prospective or active client for a match in the
database, and retrieve more information if such a match is found. When no match is found
in the database, this does not prove a client’s innocence, as further client due diligence
should always be conducted. The main drawback of this solution is its high cost, as it relies
entirely on manual labour, making it highly inefficient. In addition, client due diligence is
typically updated only once a year, which does not allow for proactive risk evaluation.

In an effort to improve the detection capabilities of the financial sector, researchers have
looked at ways to detect financial crime without sharing sensitive information [6]–[11]. These
protocols are specifically interested in detecting money laundering patterns between financial
institutions using existing algorithms or machine learning and identifying clients who are
involved in these laundering schemes. One way of ensuring data privacy utilized by some
of these protocols is Secure Multi-Party Computation (MPC)[12], which enables multiple
parties to compute a function without revealing their private input.

One special case of MPC is Private Set Intersection (PSI)[13], a protocol that allows
multiple parties to intersect their data and only reveal the items they have in common, but
not their full private datasets. PSI can be used to solve many different problems [14]–[20].
Different versions of this protocol exist, each with a distinct purpose and output [21]. As
far as can be determined, there has been no attempt to utilize PSI to compare the clients of
different financial institutions for overlapping suspicious account holders or current account
holders who have been identified by other financial institutions as fraudulent or involved in
financial crimes.

The existing methods for communicating between financial institutions lack efficiency and
the ability to proactively assess potential risks. This paper aims to investigate the usability
of privacy-preserving techniques for secure communication between financial institutions to
assist in financial crime detection. This leads to the main research question:

How can privacy-preserving data sharing methods enable collaborative detection of
malicious clients among financial institutions?

In this paper, a new method is introduced in which an adaptation of an existing PSI
protocol [22]. The protocol calculates the intersection of clients from different financial
institutions, where at least one financial institution has identified the client as malicious.
The existing protocol is a Threshold Multi-Party Private Set Intersection (T-MPSI), where
given a threshold T , an item is only included if T parties hold that item. The new version,
Flagged Threshold Private Set Intersection (FT-MPSI), adds a label to each item, where
the label indicates if the client has been flagged as malicious, i.e. accused or convicted of
financial crime. To be included in the intersection, the item must now also be identified
by at least one party as malicious. The final result of the intersection is revealed to the
computing party, and can be shared with the parties holding the original items while no
other information is leaked.
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The contribution includes an implementation of the FT-MPSI protocol in C++ with an
average run-time of 6 minutes with 50 parties all having 512 clients. This protocol is secure
in the semi-honest model, meaning that no party learns anything beyond their own private
input and the final set intersection.

The rest of this paper is structured as follows: Chapter 2 introduces the preliminary
knowledge used throughout the paper. Chapter 3 discusses existing implementations of
similar research. Chapter 4 introduces the implementation for which the results are in
Chapter 5. Chapter 6 includes responsible research considerations, and finally Chapter 7
forms the discussion, limitations, and future work.

2 Preliminaries

2.1 Notation
Throughout the paper, the following notation will be used:

Table 2.1: Notations used throughout the paper
Symbol Description

T Threshold for intersection
t Number of parties
n Set size
H Hash function(s) used in Bloom filters
k Number of hash functions
BF Bloom filter
EBF Encrypted Bloom filter
IT Result of flagged threshold private set intersection
U Universe of client identifiers
Pi i-th party
Pt Designated server party
Xi Private input set of party Pi

Fi Flagged subset of Xi

λ Security parameter
ℓ Threshold for decryption in threshold PKE
Enc(M) Encryption of message M using Paillier threshold PKE
Dec(C) Decryption of ciphertext C
ReRand(C) Rerandomization of ciphertext C

2.2 Secret Sharing
Secret sharing was first introduced in 1979 by Adi Shamir [23] and George Blakley [24],

independently from each other, as a reliable key management system. The general idea is
the following: say that you have a secret S, and you want to share this with your friends
by giving each of them a part of the secret S1, S2, ..., Sn for a total of m friends. These
individual pieces will reveal nothing about the original secret S, however if enough of them
are combined, say k pieces, then the secret can be recovered.
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Shamir’s Secret Sharing [23] is based on polynomial interpolation: given a set of coor-
dinates,

S = {(xi, yi) | xi ∈ X, yi ∈ Y }, where X = {x1, . . . , xm} with xi ̸= xj for i ̸= j, and Y = {y1, . . . , ym}.

There exists a unique polynomial q(x) of degree k−1 such that q(xi) = yi for all xi ∈ X.

Given a secret S, generate a random k − 1 degree polynomial

q(x) = a0 + a1x+ a2x
2 + ...+ ak−1x

k−1 , where a0 = S

and derive our partial secrets using:

S1 = q(1), S2 = q(2), ..., Sk = q(k).

Using polynomial interpolation, it is possible to reconstruct the polynomial if you have at
least k points of the polynomial. Finally, evaluate q(0) to get S. If you have less than k
points, it is impossible to infer the correct polynomial from the given data points.

2.3 Bloom filter
Bloom filters were first introduced as a space-efficient probabilistic data structure by

Bloom [25]. A Bloom filter uses hashing functions to effectively reduce the size of the
input data as well as reduce the computation of set intersections. However, as it is still
a probabilistic estimation, there is a possibility of getting a false positive, where it might
say that an item is in the set, when it is not. The Bloom filter will never produce a false
negative, so if an item is in the set this can always be confirmed. The probability of a false
positive can be lowered by increasing the size of the Bloom filter or increasing the number
of hash functions.

Using a Bloom filter to compute a set intersection works as follows: Given a set of k
random hash functions H ∈ {h1(x), ..hk(x)} and two parties, P1 and P2 with sets S1 and
S2, respectively. A Bloom filter starts as an array of n bits, all set to zero.

1. Both parties produce a bloom filter:

(a) For item si ∈ S{1,2} the party calculates the output of each hash function in H.

(b) hash function hj(si) produces an index in the array. The bit at the index is set
to one.

(c) This process is repeated for each item in the set. Producing a Bloom filter.

2. The parties now exchange their respective Bloom filters.

3. Each party can now produce the set intersection as follows:

(a) For each item si ∈ S{1,2} the party again calculates the output of each hash
function in H.

(b) Using this input it checks whether each bit in the Bloom filter produced by the
has functions is set to one.

(c) If all bits are one, then the item is in the intersection, otherwise it is not.
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Because the parties exchanged the Bloom filters, both parties learn the intersection at the
same time. This protocol assumes no alterations are made to the Bloom filters in commu-
nications and all parties followed the protocol correctly. This protocol can be extended for
an arbitrary amount of parties.

2.4 Homomorphic Encryption
Homomorphic encryption (HE) is a form of encryption that allows computations to be

made directly on encrypted data, without having to decrypt it first. When a result is
decrypted it will produce the same answer as the computation on the plaintext data would
have given. This property makes it possible to do calculations on private data while only
revealing the result, similar to secret sharing. Multiple Homomorphic encryption types exit,
namely: partially, somewhat, levelled fully and fully homomorphic encryption.

Partially homomorphic encryption only supports a single type of operations, e.g. ad-
dition or multiplication. Somewhat homomorphic encryption allows for different kinds of
computations but only one computation can be performed at a time, e.g. you can per-
form both addition and multiplication but only one operation per encryption. Levelled fully
homomorphic encryption can handle multiple types of computations, where they can also
be performed consecutively up to a certain threshold, e.g. you can perform up to 6 mul-
tiplications and 10 additions, but more would cause the result to be invalid. Lastly, fully
homomorphic encryption allows an infinite number of computations to be performed on the
encrypted data. With this increasing functionality comes the trade-off of increasing com-
plexity and computational power. Fully homomorphic implementations allows for a lot of
flexibility in the calculations, but it is more complex to maintain and will significantly slow
down the calculations.

An example of an additive homomorphic encryption schema is Paillier’s cryptosystem [26].
The cryptosystem allows two encrypted values, Enc(m1) and Enc(m2), to be added to each
other producing Enc(m1 +m2), as well as a multiplication of an encrypted value by some
constant producing Enc(cm1) for any c.

2.5 Threshold Private Set Intersection
Multi-Party Computation (MPC) schemes enable multiple parties to compute a function

without revealing their private inputs. The first instance of a multi-party computation
problem is known as Yao’s Millionaire’s problem, based on a paper by Andrew Yao published
in 1982 [27]. In this paper he proposes a problem where two millionaires wish to determine
who is richer without revealing how much money they have. The solution is a two party case
of multi-party computation, this solution was then extended to the multi-party setting by
Oded Goldreish in 1987 [12]. Multi-Party Computations can be based on several different
types of algorithms, one of them being Shamir’s Secret Sharing Algorithm introduced in
Section 2.2.

A Private Set Intersection (PSI) allows two parties to intersect their respective datasets,
without revealing any data to the other party that is not in the intersection. PSI is a special
case of MPC. Up until recently PSI has been mostly explored in the theoretical domain,
however, recently some practical applications have been published [14], [17]–[22], [28]. From
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the introduction of MPC it took another 20 years before PSI, first introduced as Private
Matching, was first formalised in 2004 by Freedman et al. [13]. Their paper introduced
a protocol for two parties with private datasets to compute the intersection of their data
without leaking any additional data, and a strawman protocol for the multi-party case.

There are several variants of PSI that can be found in literature, of which an extensive
review has been done by Morales et al. [21]. One of these variants is the Threshold Private
Set Intersection (TM-PSI), this variation has two different interpretations in literature.
One is the cardinality of the intersection set, if the cardinality is above a given threshold
it is revealed, otherwise it is not. The second is, given a threshold T , an item is only
included in the intersection if it is in T or more parties. This last interpretation is what
will be used in this paper. It should also be noted that this will usually refer to a multi-
party scenario, as this interpretation has no added value in a two-party scenario. The
underlying techniques used to implement TM-PSI can differ, [16] used oblivious transfer
and homomorphic encryption, while [22] used Bloom filters and homomorphic key encryption
schemes.

The proposed T-MPSI algorithms by [22] works as follows:
Given t parties Pi sets Si for i ∈ {1, ..., t} and k random hash functions (h1, .., hk). There
is one party that will work as the server, denoted by Pt, which will be responsible for the
calculations. The rest of the parties, {P1, ..., Pt−1}, are the clients.

1. Each party Pi computes the Bloom filter BFi of their private set Si and then encrypts
the BFi to get EBFi, which is sent to the server.

2. For each item yj ∈ St of the server:

(a) Create the hash for yj , then for each client, get the bits in the same hash positions
as yj and sum all of them together.

(b) This sum will reveal how many clients hold the item. The server can then use
a secure comparison method to check if the sum is above the threshold. yj is
included in the intersection if the sum is above the threshold.

3. The server will then have the threshold intersection and can share this information if
requested.

For the formal definition, the reader is referred to [22].

3 Related Work

3.1 Communication between Financial Institutions
In 2008 the Anti-Money Laundering and Anti-Terrorist Financing Act (Wet ter voorkom-

ing van witwassen en financieren van terrorisme - Wwft)[29] was enacted in The Netherlands.
In 2018 and 2020 this protocol was altered to adapt to the EU’s Fourth Anti-Money Laun-
dering Directive. The Wwft operates a risk-based approach, meaning financial and other
institutions can largely choose what risks they are willing to accept relative to a risk rating
they assign to each of their clients. As a result of their chosen risks, they should have proper
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mitigating procedures in place to then prevent Money Laundering and/or Terrorism Financ-
ing as well as notifying officials of suspicious activities. To facilitate this, Dutch financial
institutions, government institutions, and some independent institutions have created the
following two protocols for the purpose of communicating in accordance with the Wwft and
GDPR.

Bank Data Retrieval Portal (VB) [30], [31]: Authorised institutions, including Dutch
Investigative Services such as the FIOD and the Tax Authorities, can request client data
through the protocol. All Dutch banks are subscribed to this system and will receive such
requests. If a bank provides services to the specified client, it returns the requested data to
the central portal. This protocol automates the obligatory legal proceedings for obtaining
client information.

Protocol Incident Warning System for Financial Institutions (Pifi) [5], [30]: The
Protocol Incident Warning System for Financial Institutions (Pifi) is a collaborative warning
system accessible to participating financial institutions and insurance companies. These
participants are responsible for adding clients who have violated laws related to fraud or
the Wwft, and they may also report employees who have abused their position. Before
onboarding a new client or employee, institutions can check the individual’s details in the
Pifi system. If a match is found, it includes an incident report, based on which the institution
can decide whether to proceed with the onboarding process. However, the absence of a match
does not guarantee the individual’s integrity, as additional due diligence is always required.

For these protocols to work, one must rely on the integrity of the participating institutions
and the assumption that they will share the relevant data in full and in a timely manner.
Financial institutions have a legal obligation to respond to a data retrieval request from
the VB according to the Wwft. The Pifi operates on the promise that participating parties
provide relevant data, there is no imposed sanction if the institution does not share their
information. Furthermore, as the participating institutions of Pifi are responsible for their
own client due diligence, it is up to these institutions how often they check their clients
against the protocol’s database. Each check has to be done manually through a request
to the database, making it a very labour-intensive tool for frequent use. Assuming most
financial institutions adhere to a yearly update of the client due diligence, assuming the Pifi
database is only checked during the client due diligence, it could take up to a year before
an institution discovers their client is operating maliciously.

In general, the VB and Pifi protocols are essential in helping financial institutions to
prevent and identify financial crimes and criminals, however there is room for improvement
in both efficiency and reliability.

3.2 Financial Crime Detection using Secure Multi-Party Compu-
tation

Secure Multi-Party Computation has been improved over and over again since its first
appearance in 1982, it has been proven to be useful to solve a host of different problems,
[32] shows that there are several open-source libraries, such as FRESCO [33] and Sharemind
[34], which implement different MPC protocols that can be used in practical implementa-
tions. MPC has been proven to be useful in machine learning, federated learning, securing
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databases, and many more. For a comprehensive overview of all its implementations, the
reader is referred to [32].

For financial crime detection using MPC, the literature is less extensive. For a long time,
the runtime performance and computational complexity of MPC algorithms was too large
to be used in practical implementations. As mentioned above, more work has been done to
improve the performance of MPC protocols, making it a feasible solution for use in practical
applications [8]–[10], [35]. All of these implementations work on the basis of a transactional
graph, where the nodes represent accounts and their users, and directed edges are used to
represent transactions between accounts.

[35] implements a secure multi-party computation of the PageRank algorithm. This algo-
rithm enables financial institutions to detect accounts with a lot of traffic, which, together
with other detection methods, can enable banks to discriminate between fraudulent and
non-fraudulent accounts. [8] takes a very different approach by implementing a graph neu-
ral network (GNN), where different parties can independently train the GNN on their data
without revealing private information to the other parties. This GNN can then be used to
detect fraudulent users. [9] Implements a similar approach by also introducing a GNN based
on MPC for AML detection, as well as a Graph Feature Processor with a strong predictive
power of 99% accuracy on an AML dataset. Lastly, [10] also uses a graph-based algorithm,
where each account is given a risk score. These risk scores are then propagated several
times through the graph, making it possible for the algorithm to detect unusual activity in
a transactional graph.

As for PSI, existing papers have implied that the techniques could be used for financial
crime detection. As far as can be determined, no research has been published on the use of
PSI to aid in the detection of financial crime.

4 Malicious Client Detection across Financial Institu-
tions

4.1 Flagged Threshold Private Set Intersection (FT-MPSI)
The implementation presented here is an adaptation of the Threshold Multi-Party Private

Set Intersection (T-MPSI) protocol introduced by [22], as described in Section 2.5. This
adaptation, called Flagged Threshold Multi-Party Private Set Intersection (FT-MPSI), is
designed to enable financial institutions to collaboratively detect potentially malicious clients
while preserving data privacy. Specifically, given several private input sets, the protocol
computes the intersection of items that appear in at least T private sets, with the additional
requirement that at least one of those sets has identified the item as malicious. Formally,
the protocol computes:

IT = {x ∈ U | |{i | x ∈ Xi}| ≥ T ∧ ∃j ∈ [1, n] : x ∈ Fj} ,

where U is the universe of client identifiers, Xi denotes the input set of party i, Fj is the
flagged subset of Xj , T is the threshold, and n is the number of parties. The key differences
in FT-MPSI compared to T-MPSI are twofold: first, each item in the input sets is associated
with a flag that is set individually by each party rather than uniformly across all instances
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of that item; second, the server plays an active role in the protocol and is included in the
threshold count.

Before presenting the steps of the protocol, there are two concepts that need to be in-
troduced. The first is Additively Homomorphic Threshold Public Key Encryption (PKE),
which allows the parties to collaboratively work on the encrypted data without revealing
their inputs. All parties have the same public key, which can be used to encrypt any
message. As the protocol uses Additive Homomorphic Encryption, specifically the Paillier
Homomorphic Encryption [26], computations as mentioned in Section 2.4 can be performed.
The private key is distributed among all parties and ℓ parties are needed to decrypt any
message, this is the threshold. Secondly, Multi-Party Secure Comparison Protocol (SCP),
compares two items a and b, ensuring a and b are not exposed during the computation. The
SCP protocol used in the implementation is Kerschbaum et al. [36].

Following the steps of [22], this is the implementation of FT-MPSI:

Given: A set of t parties P = {P1, P2, . . . , Pt}. Each party Pi holds a private input set
Xi ⊆ U of size n, where U is the universe of identifiers. Each element x ∈ Xi is associated
with a flag fi(x) ∈ {true, false} indicating whether Pi has flagged x as suspicious or
malicious. Define Fi = {x ∈ Xi | fi(x) = true} as the flagged subset. A threshold
parameter T ∈ [1, t] specifies the minimum number of parties that must hold an item for it
to be considered in the output.

Initialization: The last party, Pt, designated as the server, selects a set of k public hash
functions {h1, . . . , hk} from a hash function family H and sends them to all other parties
P1, . . . , Pt−1.

Encrypted Bloom Filter (EBF) Generation: Each party Pi for i ∈ [1, t− 1] performs
the following:

1. Constructs a Bloom Filter BFi for Xi using hash functions {h1, . . . , hk}.

2. Constructs a Flagged Bloom Filter FBFi for Fi using the same hash functions.

3. Encrypts each bit of both filters using the Threshold Paillier PKE scheme with shared
public key pk:

EBFi[j] = Epk(BFi[j]), FEBFi[j] = Epk(FBFi[j]) (1)

4. Send EBFi and FEBFi to the server Pt.

Set Intersection Generation (by Pt): Let Xt be the server’s own input set. For each
element yj ∈ Xt, the server does the following:

1. Compute all k hash functions {h1(yj), . . . , hk(yj)}.

2. For each party Pi, extract ciphertexts {Ci,j
1 , ..., Ci,j

k } where

Ci,j
d = EBFi[hd(yi)] (2)

and j ∈ {1, ..., n}.
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3. Do the same for the FEBF producing {FCi,j
1 , ..., FCi,j

k } where

FCi,j
d = FEBFi[hd(yi)] (3)

and j ∈ {1, ..., n}

4. For each Ci
j and FCi

j compute a fresh encryption of k, Epk(k).

5. Now run t · n SCPs in parallel, with any ℓ parties Pi to compare Ci
j to Epk(k). Each

SCP then outputs:

Epk(αi,j) =

{
Epk(1) if yi ∈ Xi

Epk(0) otherwise.
(4)

6. Run SCP another t · n times in parallel, with any ℓ parties Pi to compare FCi
j to

Epk(pk, k). Each SCP again outputs:

Epk(ϕi,j) =

{
Epk(1) if yi ∈ Fi

Epk(0) otherwise.
(5)

7. Compute,

Epk(αj) = ReRand

(
t−1∑
i=1

Epk(αi,j)

)
, (6)

and

Epk(ϕj) = ReRand

(
t−1∑
i=1

Epk(ϕi,j)

)
. (7)

αj and ϕj represent the number of parties that hold yj and the number of parties that
have flagged yj , respectively.

8. Compare Epk(αj) to Epk(T − 1), using the SCP protocol with ℓ parties. This will
produce:

Epk(βj) =

{
Epk(1) if αj ≥ T − 1

Epk(0) otherwise.
(8)

9. Compare Epk(ϕj) to Epk(1), again using the SCP protocol with ℓ parties and check
whether yj ∈ Ft, i.e. the server has flagged the item. Giving:

Epk(δj) =

{
Epk(1) if ϕj ≥ 1 ∨ yi ∈ Ft

Epk(0) otherwise.
(9)

10. For each j ∈ {1, ..., n} ask ℓ parties to perform a joint decryption of all Epk(αj) and
Epk(ϕj).

11. For each yj ∈ Xt add to IT if Dpk(αj) = 1 ∧Dpk(ϕj) = 1, otherwise discard.

Output: The server outputs IT .
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4.2 Protocol Correctness
The FT-MSPI implements the same protocol as the T-MSPI, of which the correctness is
proven in [22]. FT-MSPI implements an additional Bloom filter with lesser elements than
the original set, this Bloom filter is created using the same protocol and also encrypted using
the same Homomorphic Encryption PKE protocols. The server executes the SCP for both
Bloom filters using the exact same protocol. This alteration does not break the correctness
of the T-MPSI protocol, as this is an addition, and the original protocol is still executed in
parallel. As the added steps adhere to the original implementation of the protocol and follow
the exact encryption and re-randomization steps, the FT-MPSI protocol is also as correct as
T-MPSI and secure in the semi-honest model. As Bloom Filters can produce false positives,
the protocol does not guarantee complete correctness. However, an increase in the number
of hash functions used to create the Bloom Filter can make the false positive negligible, see
Section 2.3, which creates a negligible impact on the correctness of the protocol.

4.3 Implementation
The original T-MPSI was taken from [22]2. This implementation is in C++, depends on

GMP[37] and NTL[38] libraries, and MurmurHash3[39]. The new protocol FT-MSPI is an
adaptation of the T-MPSI protocol with a second set for flagged items which is run through
the protocol parallel to the original set, as described in Section 4.1. Both protocols were
updated to run in parallel. The practical implementation can be found on GitHub3.

Both the original T-MPSI and the new FT-MPSI were evaluated by their run-time per-
formance by taking the average of 10 runs of the protocol using all combinations of different
number of parties (t), different set sizes (n). Each protocol was run with a threshold of two,
a threshold for homomorphic public key encryption of t/2, and a security parameter of 1024,
common in public key encryption. This benchmark implementation was also adapted from
the original benchmark implementation of [22]. All benchmarks were executed on a 64-bit
Linux system with an AMD Ryzen Threadripper 7970X CPU at 32 × 1.5 - 4.0 GHz and
270 GB RAM.

5 Analysis

5.1 Security Analysis
The solution [22] has been proven to be secure in the semi-honest model. In the semi-

honest model, a subset of parties is considered corrupt and may communicate with each
other to gain more information than what is revealed, but they still adhere the the protocol
correctly. FT-MPSI adds a flag to each item in the private sets of the parties. This flag is
never communicated, only the encrypted representation of all flagged items from a party is
shared with the server. As it has already been proven that such a representation of items is
secure in the semi-honest model, FT-MPSI is also secure in the semi-honest model.
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Table 5.1: Communication and Computation Complexities of T-MPSI and FT-MPSI
Communication Computation

Protocol Client Server Client Server

T-MPSI O(max(λ, t)n) O(ntℓ) O(max(λ, t)n) O(nt)
FT-MPSI O(max(λ, t)n) O(ntℓ) O(max(λ, t)n) O(nt)

5.2 Complexity Analysis
The communication and computational complexities of both protocols differ between the

client and the server, as they have different roles within the protocol. For T-MPSI the
complexities stated have been proven by [22]. The communication complexity of T-MPSI
for the client is O(max(λ, t)n), where λ is the statistical security parameter used in the
homomorphic public key encryption, t is the threshold, and n is the input set size per
party. The main source of this cost is the Secure Comparison Protocol (SCP), which is
executed once in the protocol and requires the parties to communicate to the server for t
rounds. The server has a communication complexity of O(ntℓ), where ℓ is the threshold
for the homomorphic PKE. The communication complexity of the server is also due to the
computation of the SCP.

FT-MPSI extends T-MPSI by executing the SCP twice, once for threshold PSI and once
for flagged PSI. While this technically doubles the communication overhead, the asymptotic
complexity remains the same, as constant factors are omitted. Thus, the communication
complexity of FT-MPSI is also O(max(λ, t)n) for the clients and O(ntℓ) for the server.

The computational complexity of T-MPSI for the server is O(nt) is due to the homo-
morphic encryption needed to perform all the rounds of the SCP from the client side. The
computational complexity of the clients is dominated by either the creation of their Bloom
Filters, which has a complexity of O(λn), of the SCP protocol as well, which has a complexity
of O(nt). This leads to the clients having a computational complexity of O(max(λ, t)n).

In FT-MPSI, each party constructs two encrypted Bloom filters, one for the threshold
PSI and another for the flagged PSI-resulting in a computational complexity of O(λn).
The server, performs the SCP twice for each party, yielding a computational complexity of
O(max(λ, t)n). As a result, the overall computational complexity remains O(λn) for the
parties, and O(max(λ, t)n) for the server.

5.3 Performance Analysis
Table 5.3 reports the mean run-time and standard deviation, in seconds, of the FT-MPSI

protocol for varying numbers of parties and set sizes. Results are shown for party counts
ranging from 5 to 50 and set sizes from 4 to 512. Each entry represents the average over
ten runs, with standard deviations included. Table 5.2 presents the corresponding run-time
measurements for the T-MPSI protocol under the same conditions. Both protocols were run
with a security parameter λ = 1024 and ℓ = t/2. Furthermore, Figure 5.3 creates a linear

2Source code available at: https://github.com/jellevos/threshold-multiparty-psi
3Source code can be found on: https://github.com/Lorn1020/threshold-multiparty-psi
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representation of all runtimes of both the T-MSPI and FT-MPSI protocols. Each colour
corresponds to a set size, where the dotted lines represent the FT-MPSI run-times and the
solid line the T-MPSI run-times.

Table 5.2: T-MPSI: Run-time performance mean and standard deviation in seconds by
number of parties and set size averaged over 10 runs

n = 22 n = 24 n = 26 n = 28 n = 29

t = 5 0.26± 0.02 0.63± 0.03 2.35± 0.02 9.39± 0.05 18.86± 0.09
t = 15 0.51± 0.04 1.55± 0.03 5.68± 0.04 22.82± 0.26 45.40± 0.42
t = 25 0.72± 0.03 2.37± 0.03 8.93± 0.05 36.01± 0.36 71.89b± 0.61
t = 35 1.14± 0.01 4.11± 0.04 15.63± 0.07 62.30± 0.30 124.18± 0.80
t = 40 1.31± 0.01 4.70± 0.03 18.05± 0.15 72.82± 0.38 144.71± 0.59
t = 50 1.77± 0.03 6.34± 0.03 24.54± 0.08 97.84± 0.38 195.63± 1.98

Table 5.3: FT-MPSI: Run-time performance mean and standard deviation in seconds by
number of parties and set size averaged over 10 runs

n = 22 n = 24 n = 26 n = 28 n = 29

t = 5 0.37± 0.02 0.87± 0.03 3.22± 0.03 12.76± 0.05 25.51± 0.12
t = 15 0.68± 0.05 2.13± 0.12 7.94± 0.08 32.03± 0.32 63.05± 0.54
t = 25 1.22± 0.03 4.03± 0.07 15.44± 0.18 62.38± 0.78 122.90± 0.67
t = 35 1.99± 0.02 6.92± 0.09 25.79± 0.16 101.10± 0.64 201.81± 1.18
t = 40 2.49± 0.04 8.68± 0.10 32.80± 0.38 128.15± 0.54 255.76± 1.18
t = 50 3.34± 0.04 12.03± 0.11 46.24± 0.29 184.37± 1.49 365.67± 2.05
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Figure 5.1: Run-time comparison of the T-MPSI and FT-MPSI protocols averaged over 10
runs

6 Responsible Research
The datasets used for the experiments are all synthetic datasets specifically created for

this research. Even though the synthetic datasets do not contain any sensitive information,
the ultimate use case of the algorithm would be based on the collection of personally iden-
tifiable information. However, the whole purpose of the algorithm used is to obscure this
personal data in such a way that it is not revealed to any party not already in possession
of it. If potential future users follow the protocol in the correct manner, this will safeguard
their private information, this does also include the assumptions made prior to running the
algorithm. The code for the final implementation of the PSI protocol has also been made
available on GitHub4.

7 Conclusion
The results indicate that the run-time of FT-MPSI increases with both the number of

participating parties and the set size. This matches the expected O(max(λ, t)n) complexity,
where n represents the set size. For a fixed number of parties, the run-time grows ap-
proximately linearly with the set size, while increasing the number of parties leads to higher
run-time due to additional protocol interactions. In all configurations, the observed standard
deviations are small compared to the mean values, suggesting consistent performance across
repeated runs. Comparing FT-MPSI with T-MPSI, the latter consistently achieves lower
run-times, taking roughly half the time. This is consistent with the complexity prediction,
as FT-MPSI produces two Bloom Filters instead of one, and performs the set intersection
for both filters accumulating their results in the final intersection. Despite this additional

4Source code can be found on: https://github.com/Lorn1020/threshold-multiparty-psi
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overhead, FT-MPSI shows similar scaling and proves to be practical in its implementation.

Several assumptions have been made during the course of this thesis which influenced the
result of the experiments. The implemented code is all run on the same machine and, while
it emulates the parties to be independent from each other, they are not run separately, so no
communication delay is present in the runtime results. Furthermore, this implementation
assumes that all parties are honest about their input and do not flag innocent clients to
gather information from other parties that it is not authorised to access.

The implementation of T-MPSI uses Kerschbaum et al. Secure Comparison Protocol [36],
more efficient SCP protocols have been implemented since Kerschbaum, such as Lu et al.
[40] who created a constant round SCP, which could significantly speed up the computation
of the T-MPSI and FT-MPSI protocol. Furthermore, in the FT-MPSI protocol, the flagged
comparisons protocol could be replaced with a Private Set Union, such as in [41], to pos-
sibly speed up computation. Future work should also focus on implementing the protocol
for a distributed setting, where parties can operate on separate servers. This also allows
communication between parties to be included in the run-time evaluation of the protocol.
The protocol should also be tested against Wwft [42] and GDPR legislation to evaluate its
usability by financial institutions as a detection tool.

FT-MSPI was created to address the limitations of existing privacy-preserving PSI pro-
tocols. While T-MPSI [22] allows Financial Institutions to identify common clients based
on a threshold of parties, it lacks the ability to distinguish between innocent and malicious
clients. Existing protocols such as Pifi [5] rely heavily on manual work and does not allow
for proactive risk evaluation. FT-MSPI addresses these concerns by introducing a flagging
mechanism that allows financial institutions to flag their clients as suspicious or malicious
and ensures only clients that are held my multiple institutions and have been identified as
malicious by at least one of them are in the final output. This allows the financial institu-
tions to collaboratively identify malicious clients while adhering to the strict data protection
regulations. FT-MPSI offers a practical, automated, and privacy-preserving method as an
alternative to the current state of the art in collaborative financial crime detection.
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