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A B S T R A C T   

In the view of climate change, understanding and managing effects on coastal areas and adjacent cities is 
essential. Permanent Laser Scanning (PLS) is a successful technique to not only observe notably sandy coasts 
incidentally or once every year, but (nearly) continuously over extended periods of time. The collected point 
cloud observations form a 4D point cloud data set representing the evolution of the coast provide the opportunity 
to assess change processes at high level of detail. For an exemplary location in Noordwijk, The Netherlands, three 
years of hourly point clouds were acquired on a 1 km long section of a typical Dutch urban sandy beach. Often, 
the so-called level of detection is used to assess point cloud differences from two epochs. To explicitly incorporate 
the temporal dimension of the height estimates from the point cloud data set, we revisit statistical testing theory. 
We apply multiple hypothesis testing on elevation time series in order to identify different coastal processes, like 
aeolian sand transport or bulldozer works. We then estimate the minimal detectable bias for different alternative 
hypotheses, to quantify the minimal elevation change that can be estimated from the PLS observations over a 
certain period of time. Additionally, we analyse potential error sources and influences on the elevation esti-
mations and provide orders of magnitudes and possible ways to deal with them. Finally we conclude that 
elevation time series from a long term PLS data set are a suitable input to identify aeolian sand transport with the 
help of multiple hypothesis testing. In our example case, slopes of 0.032 m/day and sudden changes of 0.031 m 
can be identified with statistical power of 80% and with 95% significance in 24-h time series on the upper beach. 
In the intertidal area the presented method allows to classify daily elevation time series over one month ac-
cording to the dominating model (sudden change or linear trend) in either eroding or accreting behaviour.   

1. Introduction 

In the view of climate change and the intensification of extreme 
weather events it is essential that coastal areas are monitored regularly 
with high accuracy. Permanent laser scanning (PLS) is an emerging 
measurement technique used to monitor natural areas including glaciers 
(Kellerer-Pirklbauer et al., 2005), rockfall (Abellán et al., 2010) and 
coasts (Vos et al., 2017), as well as structures such as buildings, pipelines 
or mines (Mukupa et al., 2017; Vezočnik et al., 2009). PLS consists of a 
terrestrial laser scanner scanning frequently from a fixed position. With 
large amounts of point cloud data becoming increasingly manageable 
and improved instrumental set-ups, frequent terrestrial laser scanning 
(TLS), airborne laser scanning (ALS) as well as PLS are becoming 
well-established. PLS has the potential of detecting small scale changes 
in height or small deformations. The detectable changes reach 

centimetre levels (Vos et al., 2022; Anders et al., 2019; Schröder and 
Nowacki, 2021) and time scales of several days up to years are covered 
in different research projects (Voordendag et al., 2021; Schröder et al., 
2022). However, at increased spatial and temporal resolution, envi-
ronmental influences on the measurement system have a more pro-
nounced effect on their performance (Kuschnerus et al., 2021b) and 
conventional methods for the determination of estimation quality, as 
developed for example for height estimations from ALS or TLS obser-
vations, do not always suffice. 

A short analysis of error sources for height estimates from coastal PLS 
is presented by Vos et al. (2020) and Kuschnerus et al. (2021b), who find 
that the strongest influence on the uncertainty in height estimates in a 
permanent coastal set-up during extreme weather conditions comes 
from precipitation and strong winds, which can both lead to data loss. 
Several methods are being developed to analyse geo-morphologically 
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relevant processes in PLS data sets (see Anders et al. (2021); Kuschnerus 
et al. (2021a); Campos et al. (2021)) without specifically considering 
quality of height or displacement estimates or minimal detectable 
changes in elevation or displacement. The level of detection as an indi-
cation of statistically significant surface change was developed for 
comparison between point clouds of two epochs by Brasington et al. 
(2000) and Lane et al. (2003). It is used to determine if differences be-
tween two point clouds in any direction are statistically significant for a 
fixed significance level (generally chosen as 95 %). The level of detec-
tion is used in combination with Kalman-filtering to detect significant 
height changes in 4D data sets by Winiwarter et al. (2023) and for the 
comparison of differences between two epochs of rough surfaces with 
the M3C2 algorithm (Lague et al., 2013). Methods that specifically 
consider multi-temporal point cloud comparison are still being devel-
oped and improved. Therefore the following research questions are 
posed to lead the research for this study:  

● What is the minimal change in height on a sandy beach that can be 
estimated with a given confidence with our permanent laser scan-
ning set-up?  

● How do environmental conditions contribute to the uncertainty of 
height estimates from permanent laser scanning for the identification 
of change processes?  

● Which change processes on a sandy beach can be observed with 
permanent laser scanning and at which temporal and spatial scales? 

To answer these questions, we first introduce the properties of our 
specific PLS data set, followed by the processing steps leading to time 
series of digital elevation models (DEMs). Then we present the estima-
tion of errors per grid cell of a DEM generated from each point cloud and 
the level of detection of height differences between scans. Further we 
adopt the multiple hypotheses testing methodology by Chang and 
Hanssen (2016) for PLS data and use the model definitions for the 
estimation of the minimal detectable bias in height estimation. The results 
cover geometric properties of the example data set, influences of envi-
ronmental effects on the uncertainty of height estimation and a com-
parison of the concept of the level of detection with the minimal 
detectable bias. Finally, we consider the detection of two 
geo-morphologic processes, aeolian sand transport and sudden changes 
caused by anthropogenic activities, and demonstrate the challenges of 
the presented method in the intertidal area. 

2. Related work 

Error sources in terrestrial laser scanning are summarised by Sou-
darissanane et al. (2011). They emphasise the relevance of scanning 
geometry as influencing factor on height estimation quality and divide 
error sources into the following categories: scanner mechanism, atmo-
spheric conditions and environment, object properties and scanning 
geometry. A review of commonly used performance estimation and 
error sources was presented by Muralikrishnan (2021) with a focus on 
standardising the comparison of the quality of different instruments 
under test conditions. 

Typically, accuracy of height estimations in digital elevation models 
(DEM) from laser scanning is assessed with the help of real-time kine-
matic positioning (RTK) GNSS measurements, as for example presented 
by Hladik and Alber (2012) and Hodgson and Bresnahan (2004). Bitenc 
et al. (2011) use a theoretical error model in combination with over-
lapping LiDAR point clouds from mobile mapping to generate DEMs 
with corresponding error estimation. Rigorous theory on error models 
has been developed among others by Glennie (2007) and by Lichti 
(2007). These models require the acquisition of extensive 
self-calibration data sets under controlled laboratory conditions, which 
are not available in the case of many practical applications. 

More recently Kerekes and Schwieger (2020) developed an improved 
elementary error model (EEM) for height estimates from laser scanning 

with consideration of atmospheric effects on the measurements and 
therefore estimation accuracy. Winiwarter et al. (2021) use error model 
theory to improve point cloud distance calculation based on a modified 
M3C2 algorithm as presented by Lague et al. (2013), which was devel-
oped mainly for irregular rocky surfaces, as applied for example by 
Zoumpekas et al. (2021) and for the comparison of two epochs. For more 
regular and flat surfaces Wheaton et al. (2010) and Milan et al. (2007) 
extend the theory of the level of detection to quantify uncertainty in 
DEMs of elevation differences (DoD) on river beds incorporating various 
error sources and error propagation. These techniques can be applied to 
a multi-epoch PLS data set as well, but the specific opportunities and 
challenges that arise from dealing with (nearly) continuous elevation 
time series have not been considered. A recent study by Voordendag 
et al. (2023) discusses the five main influences on uncertainty of height 
estimates from PLS measurements of a glacier in the Alps. Their method 
is based on Soudarissanane (2016) and derives the uncertainty in height 
estimation per DEM grid cell from single point measurements combined 
with registration errors. Williams et al. (2018) consider a modified 
version of the M3C2 algorithm to detect volume change of rock falls. 
Williams et al. (2018) conclude that higher temporal resolution can 
improve detection of instantaneous events, but simultaneously increases 
the accumulated estimation error for small-magnitude long-term 
processes. 

Hypothesis testing is a well-established statistical technique. It was 
introduced by Baarda (1968) for geodetic applications, and presented 
among others by Teunissen (2006). Lindenbergh (2010) use hypothesis 
testing to group and classify elevation times series from six consecutive 
point clouds. A rigorous approach on how to apply multiple hypotheses 
tests (MHT) on estimated kinematic InSAR time series was presented by 
Chang and Hanssen (2016). They define a model data base to provide 
multiple alternative hypothesis and then use statistical testing, to 
identify the most likely kinematic model for each time series. The ad-
vantages and challenges of this method for the use on a large 4D data set 
from laser scanning of a very dynamic area, such as the coast, have not 
been discussed. We propose a simple way to use MHT for two basic 
models to identify geo-morphologic processes on different time scales. 
The term Minimal detectable bias for multiple hypothesis testing was first 
introduced by Baarda (1968) and is discussed in detail by Imparato et al. 
(2019). The minimal detectable bias (MDB) gives a measure of a mini-
mum change in the estimated quantity of a time series that is needed in 
order to be identified with statistical significance. 

For the comparison of two DEMs and calculating the statistical sig-
nificance of the elevation difference per grid cell it is commonly assumed 
that both height estimates in the respective grid cell are normally 
distributed. Adding the systematic registration error σreg and applying 
statistical testing using Gaussian statistics (based on Borradaile and 
Borradaile (2003)) results in the level of detection (LOD) at the 95% 
confidence interval as presented for example by Lague et al. (2013). For 
the M3C2 algorithm a normal vector is determined from a neighbour-
hood around the considered point. This step can be skipped in the case of 
comparing two DEMs, since all height estimates of the DEMs are 
measured in z-direction. Thus, the necessity of the use of M3C2 or its 
advanced versions (Winiwarter et al., 2021) is absent and the only 
remaining step is the estimation of the level of detection. The level of 
detection, LoD, between two grid cells in two DEMs with estimated 
variances σ2

i and number of points per grid cell ni, i ∈ {1, 2} and regis-
tration error σreg, as defined by Lague et al. (2013) is given by 

LoD = ±1.96⋅

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
1

n1
+

σ2
2

n2

√

+ σreg

⎞

⎠. (1)  

The estimated variances contain the terrain roughness as well as mea-
surement precision. The level of detection is therefore a statistical con-
fidence interval at a chosen significance level, here 95% for the 
difference between two independent surface elevations, with normally 
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distributed measurement errors. This approach has also been applied to 
time series, where each height estimate per epoch was compared with 
the respective level of detection to a height estimate at the reference 
epoch, usually the first measurement (Winiwarter et al., 2023). 

3. Data acquisition and properties 

3.1. Instrument specifications and settings 

The point clouds are collected with a Riegl VZ-2000 laser scanner, 
which is permanently mounted on the balcony of Grand Hotel Huis ter 
Duin in Noordwijk, The Netherlands. The laser scanner is mounted on a 
metal frame at 55.757 m height above NAP (elevation above the 
Amsterdam Ordnance Datum) that is fixed to the balcony to maximise 
stability. The scanner is covered with a protective housing (see Fig. 1) to 
shield it from rain, wind and dust. 

The specifications and settings of the laser scanner are summarised in 
Table 1. Each point cloud is generated by running a scan of nearly 180◦

covering a part of the beach of just under 1 km every hour with angular 
spacing of 0.03◦. 

The system is set up with the same instrument and instrumental 
settings as a previous experiment at a different location, see Vos et al. 
(2022). 

3.2. Data availability 

The laser scanner generates one 3D point cloud per scan, made up of 
x, y, z-coordinates which are derived by the Riegl proprietary software 
out of observed range, horizontal and vertical angle data. The laser 
scanner also observes the intensity of the backscattered signal, per point. 
The internal inclination sensor records inclination values during each 
scan, with a frequency of 1 Hz (not matching the scanning frequency). 

These inclination angles are used for correction of tilts in the scanner 
(see section 4.1) and have a measurement accuracy of 0.008◦. 

The scanner operates 24 h a day for the duration of three years. The 
numbers of available point clouds are visualised in Fig. 2. A few gaps 
appear in the data collection. Some of them result from bad weather 
conditions, but most are due to technical failure and organisational 
problems. In May 2020 a decline in the data quality (i.e. increased 
presence of randomly located noise points) was observed and the 
scanner was finally switched off and sent for maintenance for a 34-day 
period at the end of June 2020 until end of July 2020. In December 
2021 the scanner stopped working due to an unknown issue. Because of 
the holiday season it was not noticed until 18 days later in January 2022, 
when the scanner was restarted. The entire point cloud data set is 
published via 4TU Research Data (Vos et al., 2023). 

Additionally we collect data from a nearby weather station to sepa-
rate environmental influences from other factors affecting the height 
estimation quality. We consider temperature, average wind speed per 
hour and precipitation as main influences on our height estimations. At 
the same time temperature, atmospheric pressure and humidity are 
provided to the instrument for internal range correction. These values 
are provided by meteoserver.nl and read from nearby local weather 
stations of the Royal Netherlands Meteorological Institute (KNMI) 
(Koninklijk Nederlands Meteorologisch Instituut, 2022) and updated 
hourly, to match the scanning frequency. For comparison and evaluation 
of results we use wind and temperature data from the KNMI weather 
station in Hoek van Holland, on the coast at about 38 km distance from 
the laser scanner and to compare with visibility data we use measure-
ments from a weather station in Schiphol, at about 25 km distance, but 
more inland. 

3.3. Study area and test areas 

The observed area includes a sandy beach and dunes, covered with 
vegetation and is about 1 km long and 250 m wide. The beach is strongly 
influenced by the tides and varies in width between 80 m and 140 m 
under normal weather conditions. The area includes a helicopter land-
ing platform (at 135 m range), which is used as a stable reference surface 
and a beach cafe at the dune foot on the sandy beach (at about 172 m 
range), which causes a large shadow area on the sandy beach, as shown 
in Fig. 3. 

For this study we focus on the sandy beach and disregard the dunes, 
parts of the hotel captured by the scanner and all points representing 

Fig. 1. Location of the study site on the Dutch coast in Noordwijk, The 
Netherlands and picture of the laser scanner mounted on a hotel balcony 
without (A) and with (B) protective cover. 

Table 1 
Specifications of Riegl VZ-2000 laser scanner according to 
documentation.  

range accuracy (at 150 m range) [m] 0.008 
angular spacing [deg ] 0.003 
beam divergence [mrad] 0.3 
wavelength [nm] 1550 
inclination sensor  
measurement accuracy [deg ] 0.008  

Fig. 2. Available point clouds per month over the entire three-year period. The 
green dashes show the maximum number of files that would be possible per 
month. Two large gaps in the data collection are visible in June/July 2020 
(maintenance) and in December 2021/January 2022, where the scanner 
stopped operating unnoticed during the holiday season. 
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vegetation or other non ground objects (people, rubbish bins, etc.). A 
few reference surfaces (see Fig. 3) from within the dune area are 
considered as well for the estimation of the registration error. The height 
above NAP of the reference surfaces has been confirmed with RTK-GNSS 
measurements and double checked with height estimates from the AHN 
(Actueel Hoogtebestand Nederland) measurement campaigns (GeoTiles. 
nl, 2021) using ALS. The range of the sandy beach varies within the 
point cloud between 150 and 500 m. On the beach we selected two 
exemplary test areas, as marked in Fig. 3. Test area 1, at about 180 m 
range is representative of the dry part of the beach, where the tide does 
not reach under normal weather conditions. Because of the location 
right next to the beach cafe, it is subject to frequent bulldozer works and 
human activities. Test area 2, at about 290 m range, appears only a few 
times a day in the point clouds, as it is regularly submerged during high 
tide. Point spacing varies between 1 and 40 points per m2 with 
non-overlapping, ellipse shaped footprints (short diameter between 0.04 

and 0.08 m and long diameter between 0.11 and 0.8 m) with sizes 
ranging from 0.015 m2 to 0.27 m2. We assume that the height estimation 
per point represents the estimated height at the centre location of the 
footprint. The incidence angle is rather unfavourable due to a surface 
slope of about 1◦ (on average) towards the sea and the position of the 
laser scanner. It ranges between 72 and 80◦ on the sandy part of the 
beach. A schematic of the side view of the set up and distances to the 
beach is shown in Fig. 4 together with an illustration of the number of 
points and foot print size within a square meter at 145 m range. 

4. Method 

4.1. Pre-processing workflow 

The workflow is shown as a schematic in Fig. 5 and explained in the 
following paragraphs. 

Fig. 3. Top view of DEM of the area of interest at low tide on 14-04-2020 (left panel) with marked test areas on the dry beach and in the intertidal area. White areas 
in the DEM represent shadows of the dunes, buildings or flooded parts in the intertidal area, where the scanner is not recording any points. The x- and y-axis represent 
across-shore and along-shore distance in meters. Right panel: Overview of study site, located on the beach in Noordwijk (Google maps) with helicopter platform (A) 
and beach cafe (B) which serve as stable reference surfaces. The location of the laser scanner is marked with a star. 

Fig. 4. Left: Illustration of estimated footprint size and distribution within a square meter on the closest part of the beach (at about 155 m range). All height estimates 
within a square meter are averaged to estimate the height at the grid cell centre (marked in orange) to generate a DEM (see Section 4.1). Right: Schematic side view of 
the instrument set up and range to the beach at different horizontal distances. 
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4.1.1. Preparation of data 
Each 3D point cloud is in a local coordinate system with the location 

of the laser scanner as its origin. We determined the height of the laser 
scanner when it was mounted with the help of a GNSS receiver. This 
constant elevation of 55.757 m above NAP is added to the z-coordinate, 
to process actual height above sea level instead of negative elevation 
with respect to the scanner’s location. 

In a first step, all points representing the hotel are removed from 
each point cloud. This leads to a reduction in size of each point cloud 
from about 5 Mio points to about 3.5 Mio relevant points. 

4.1.2. Correction of scanner tilt 
In a next step the 1 Hz inclination measurements from the laser 

scanner are averaged for each scan and the mean pitch and roll incli-
nation are estimated. These values are then used to calculate a rotation 
matrix R: 

R =

⎛

⎝
cos(φ) 0 sin(φ)

sin(φ)sin(θ) cos(θ) − cos(φ)sin(θ)
− sin(φ)cos(θ) sin(θ) cos(φ)cos(θ)

⎞

⎠ (2)  

with φ the pitch angle and θ the roll angle. The rotation matrix R is 
calculated for each point cloud separately and applied only, if the 
standard deviations of the pitch and roll values during the entire 
acquisition of the respective point cloud are below a threshold. This is to 
ensure that point clouds acquired during a heavy storm are not corrected 
with a rotation based on erroneous inclination values. In these cases a 
mean pitch and roll value based on the other scans in that month is used 
for correction. A constant general tilt of the point cloud is removed in 
this way, as well as the main part of deviations of the laser scanner’s 
position due to temperature changes (heat expansion of building and 
supporting structure) or strong winds (see Section 5.1). 

4.1.3. DEM generation 
For the following analysis of the systematic error affecting each point 

cloud and for a quality check, the reference surfaces are cut out using 
their x- and y-coordinates. We assume that the reference surfaces are flat 
with constant elevation and no tilt in x- or y-direction. Plane fitting 
provides the mean elevation of the respective reference surface as well 
as the squared sum of residuals between all points and the fitted plane. 
Both are used for a quality check: If the mean elevation of the plane 
deviates more than 0.1 m from the (GNSS verified) expected elevation or 
the squared sum of residuals is above 0.1 m2, the respective point cloud 
is marked as ‘bad quality’ and not considered for further analysis. In 
Fig. 2 these files are indicated as available (blue) but not included as 
‘good quality DEM’ (orange). 

For further analysis of elevation changes on the beach and in the test 
areas, all other parts of the point cloud are removed and subsequently a 
DEM is generated from the remaining points, covering only the sandy 
part of the beach. The DEM has a 1m × 1m grid cell size and the mean 
elevation of all points is used as grid cell elevation estimate located at 
the centre of the grid cell (Fig. 4, left). For each grid cell the accumu-
lation of the estimated elevations over time provides the elevation time 
series at that location. 

4.2. Error influences 

For further analysis we investigate the random error affecting each 
grid cell of the DEM, σg, and the systematic error affecting the entire 
point cloud, εpc. To summarise and quantify the most relevant error 
influences we estimate the order of magnitude for each of them 
following Soudarissanane (2016) and Voordendag et al. (2023), and 
distinguish the main influences: geometry, registration, atmosphere, 
instrument and surface properties. 

4.2.1. Geometry and registration 
We assume that the measurement geometry does not change be-

tween scans, except for slight movement of the scanner, due to strong 
wind and movement of the entire hotel building due to concrete 
expansion. After correction of scanner tilt (see Section 4.1), the largest 
part of the geometric error is removed. A small error, due to the limited 
measurement accuracy of the inclination sensor will remain and we do 
not have the means to quantify any changes in yaw-angle. Since the start 
and stop angle of each scan are settings that are kept constant, we do not 
take into account any errors due to inaccuracies in yaw direction. The 
effect of concrete expansion can be estimated from temperature obser-
vations using the expansion coefficient (see for example Marshall 
(1972)) and is estimated to be below 1 cm. However, direct correlation 
with our measurements and correction of this error prove to be difficult. 
We do not take into account variations of incidence angle and footprint 
size, which both vary within the scene as well as over time with changes 
in the surface topography (see Table 2). 

No additional registration step is applied. Therefore, small registra-
tion errors are still present when comparing subsequent point clouds. 
We observe the registration error on elevation measurements by ana-
lysing the height of a fitted plane through the stable reference surfaces. 

Fig. 5. Flow chart of the pre-processing steps.  

Table 2 
Summary of data properties. The summary considers all hourly scans be-
tween 11 July 2019 and 21 June 2022.  

area covered 250 000m2 

days scanned 954 
interruptions (> 24h) 21 
number of points per point cloud 8.5 ⋅ 106 

number of points (beach) 800 000 
range (beach) 145 − 500 m 
point density (beach) 1 − 40 pt/m2 

footprint size (beach) 0.015 − 0.27 m2 

incidence angle (beach) 70 − 90 deg  
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The small variations observed here (in the order of 1.5 cm) are the result 
of slight displacements of the scanner, scanner tilt and expansion of the 
building where the scanner is mounted on and potentially disturbances 
of the atmosphere. We cannot separate these effects and therefore 
summarise them in one error term εpc including all error sources 
affecting the entire point cloud systematically. 

4.2.2. Atmosphere 
Atmospheric effects were found to influence the height estimates as 

reported by Kuschnerus et al. (2021b). Deviations in range and therefore 
in elevation can be caused by temperature gradients in the air and 
therefore differences in refraction index between the scanner location 
and right above the beach. The order of magnitude can be estimated 
empirically from elevation time series of the reference surfaces. 
Assuming the atmosphere does not vary within the area of interest, the 
atmospheric effects are part of the systematic error εpc. Low visibility 
due to fog prevents measurements all together and leads to exclusion of 
the respective point cloud. For more explanation on the effect of at-
mospheric changes on height estimates from PLS see Voordendag et al. 
(2023). 

4.2.3. Instrument 
Instrument errors can result from environmental effects: temperature 

fluctuations could influence the instrument. It is not known what the 
exact temperature under the protective cover and inside the instrument 
is at the time of data acquisition. Therefore, the temperature from a 
nearby weather station is possibly not representative for the tempera-
ture inside the laser scanner. Additionally, the laser scanner showed 
some erroneous behaviour in spring and early summer 2020. Point 
clouds acquired at this time contained more and more additional 
random points above and below the actual measured surface. These 
points were for a large part filtered out. The erroneous measurements 
could be part of the grid cell uncertainty σg. However, when filtering for 
mean elevation and summed residuals on the reference surfaces as 
explained in Section 3.2, the point clouds heavily affected by the mal-
function, were excluded. Calibration of the instrument and long-term 
drifts in calibration parameters could potentially influence our mea-
surements as well. However, two calibration reports at the beginning of 
the scan and after maintenance in summer 2020 did not show any sig-
nificant changes. 

4.2.4. Surface properties 
Surface properties in our test areas are relatively consistent, since we 

are interested in observing the sandy beach. They vary, however in soil 
moisture and surface roughness. Soil moisture content has an effect on 
reflectivity (Di Biase et al., 2021; Jin et al., 2021) and potentially affects 
range measurements. Surface roughness was further analysed by Di 
Biase et al. (2022) where different grid cell size and variogramms of 
surface roughness were considered. All error terms affecting the grid cell 
are summarised as σg (equation (3)). 

4.3. Error estimation 

We estimate the elevation in z-direction per grid cell as the mean 
elevation over all points within the grid cell. This corresponds to the 
simplified plane equation, where the estimated elevation ẑ is just the 
mean of all observed values zi from the vector of observations z as in 
Bitenc et al. (2011): ẑ = mean(z). The surface roughness and mea-
surement uncertainty are then incorporated in the standard deviation of 
all points in the grid cell, which corresponds to the root mean square 
error (RSME) σg. We define σg by 

σg =

̅̅̅̅̅̅̅̅̅̅̅̅̅
eT

s es

np − 1

√

, (3)  

for the spatial residual vector es of all elevation values in the grid cell 

and number of points np − 1, to ensure an unbiased estimation. 
The systematic errors are dominated by the registration error plus 

temperature and atmospheric effects as explained above. It is estimated 
from the mean elevation of the reference surfaces and does not vary 
significantly with range, because the rotation part is largely corrected 
and the remaining translations affect the entire point cloud independent 
of location. We assume that the observed standard deviation of the 
elevation of the fitted plane provides the systematic error εpc = 1.5 cm 
for the entire point cloud. 

4.4. Hypothesis testing for time series 

To allow classification of time series according to likely deformation 
models, we apply multiple hypothesis testing based on the approach by 
Chang and Hanssen (2016). More details and background can be found 
in the work of Teunissen (2006) and some examples in Tiberius et al. 
(2021). MHT allows to test for the null-hypothesis (no change) and 
several alternative hypotheses. 

With the definitions as above, we consider the entire time series of 
one grid cell location, with elevation vector y = (ẑ1, ẑ2…, ẑm) over time 
t of length m and corresponding vectors of standard deviations σg and 
number of points per grid cell np. 

We assume that the elevation vector y can be estimated with the 
model y = A⋅x + et for an unknown parameter vector x of dimension n. 
The temporal residual vector êt = y − A⋅x̂, is the estimated temporal 
residual vector not related to the spatial residuals in Section 4.3. We 
assume that the single elevation measurements are normally distributed 
as described above, and therefore the residual vector êt is normally 
distributed with zero mean (see for example Tiberius et al. (2021) for 
more details). 

Now we define the null-hypothesis H0 and one alternative hypothesis 
H1 following Chang and Hanssen (2016): 

H0 : E(y) = A0⋅x (4)  

Dy = Qyy = diag(σ) (5)  

H1 : E(y) = A0⋅x + C1b1 (6)  

Dy = Qyy (7)  

where A0 ∈ Rm×n is the design matrix, i.e. representing the model of the 
null-hypothesis, E(⋅) the expectation operator and Dy is the dispersion 
which equals the covariance Qyy ∈ Rm×m of the elevation vector y. For 
the alternative hypothesis H1, the model is extended by a specification 
matrix C1 with b1 the additional vector of unknown parameters. To 
either sustain or reject the null-hypothesis, considering the normal dis-
tribution of the residual vector êt , we use the χ2-distribution, χ2(q, λ), 
with non-centrality parameter λ and number of additional parameters of 
the alternative hypotheses q. For the null-hypothesis, the model is 
simply the mean elevation over the entire time series. In this case the 
model matrix A0 reduces to an m-dimensional vector, n = 1, yielding 
null-hypothesis H0 and test value T0 

H0 : A0 =

⎛

⎜
⎜
⎝

1
1
⋮
1

⎞

⎟
⎟
⎠, x = x0 (8)  

T0 ∼ χ2(1, 0). (9)  

As first alternative hypothesis we use a step function defined to test for 
sudden changes at time ̂t, with elevation x0 = mean(y1…yt̂− 1) for t < t̂ 
and x1 = mean(yt̂…ym) for t ≥ t̂, and dimensions n = 2 and additional 
parameter dimensions q = 1, yielding alternative hypothesis H1,̂t and 
test value T1,̂t: 
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H1,̂t : A1,̂t =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
⋮ ⋮
1 0
0 1
⋮ ⋮
0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x =

(
x0
x1

)

(10)  

T1,̂t ∼ χ2(1, λ). (11)  

With C1,̂t = (0,…,0,1,…,1)T and b1,̂t = x1 − x0 this is equivalent to our 
previous definition of the alternative hypothesis: 

H1,̂t : E(y) = A0⋅x + C1,̂tb1,̂t. (12)  

The determination of ̂t in practice is explained in more detail in Section 
4.6. 

And as second alternative hypothesis H2 we use a linear trend and 
calculate test value T2: 

H2 : A2 =

⎛

⎝
1 t1
⋮ ⋮
1 tm

⎞

⎠, x =

(
a0
a1

)

(13)  

T2 ∼ χ2(1, λ) (14)  

where a0 is the intercept and a1 the slope of the linear model and 
therefore A2 ∈ Rm×2, n = 2 and q = 1. This is consistent with equation 
(6) when defining: 

C2 = (t1,⋯ , tm)
T
, b2 = a1. (15)  

The covariance matrix is defined by the RMSE per grid cell (σg as defined 
in Section 4.3). We assume that there is no correlation between subse-
quent measurements and therefore obtain the diagonal matrix 

Qyy = diag(σ2
g1,…, σ2

gm) = σ2⋅Im. (16)  

Following Tiberius et al. (2021) and Chang and Hanssen (2016) the test 
value Tj, j ∈ {0, …, m + 1} for time series of length m for all alternative 
hypotheses, is then calculated as 

Tj = êj,t Q− 1
yy êj,t =

∑m

i=1

(yi − ŷj)
2

σ2
i

, (17)  

with residual vector êj,t for modelled time series ŷj = Aj⋅x̂. The test 
value is then compared to the critical value kα, for significance level α 
following the respective χ2-distribution, with non-centrality parameter 
λ. 

We test for every grid cell, if for a time series over a fixed amount of 
time (for example 24 h) the null-hypothesis is not rejected. If it is 
rejected, we test in a next step, which of the alternative hypothesis is 
most likely i.e. has smallest value for Tj below the critical value. If Tj is 
above the critical value for all alternative hypotheses, no adequate 
model can be found. In this way sudden changes, as well as gradual, 
linear processes can be identified with a pre-defined level of confidence 
α. This method is suitable to be extended for periodic/seasonal changes 
or any other typical behaviour that one would expect on a sandy beach. 

4.5. Test quality 

The type I error describes the rejection of the null hypothesis, while it 
is true. The size of the type I error is the probability of this happening 
and is defined by significance level α. The size of the type II error is given 
by the probability of a missed detection of change (in height in our case), 
β. Its compliment is the detectability power γ = 1 − β, see Fig. 6 for an 
illustration. The determination of the detectability power γ therefore 
depends on the calculation of the probability of a missed detection β, 
which is defined as the integral of the probability density function of the 

alternative hypothesis over the acceptance region of the null-hypothesis 
(see Fig. 7). 

For the multiple hypothesis testing, following the core idea of 
Baarda’s B-method, also applied by Chang and Hanssen (2016), the 
detectability power is fixed, for example at 80% and the significance 
level α can be defined depending on the number of parameters of the 
respective hypothesis, as well as the dimension of the time series. Then, 
the critical value Tj will be evaluated in relation to the significance level 
and the ratios will be compared instead of the critical values, since the 
significance level depends on the number of parameters of the alterna-
tive hypothesis. Here, we choose two simple models for the alternative 
hypothesis, which both have two parameters that need to be estimated. 
Therefore the critical values can be compared directly and the 
discriminatory power, and consequently the type II error will be the 
same for all alternative hypothesis with the above definitions. 

4.6. Minimal detectable bias 

To answer our first research question, we use the concept of the 
minimal detectable bias, as introduced by Baarda (1968), assuming we 
know which model(s) would best represent possible changes in elevation 
(alternative hypotheses) in a specific area and time period. In our case, 
we are looking for the minimal height of a step in a sudden change (step 
function model) and the minimal slope (height per hour) that we can 
detect with the specified test set up. Following Baarda and the more 
recent works by Imparato et al. (2019) and Teunissen (2006), the 

Fig. 6. Comparison of level of detection with detectability power. The pa-
rameters α and β are indicated and they both equal 0.05 in this example. It can 
be seen that the level of detection with significance level 95% does not match 
the minimal detectable bias with 95% detectability power. 

Fig. 7. Schematic of the calculation of the non-centrality parameter λ(α, β, q). 
With χ2(x, λ, q) we denote the probability density function of the non-central χ2- 
distribution for (non-)centrality parameter λ and with degrees of freedom q. 
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minimal detectable bias can be determined by reversing the above 
procedure to calculate the detectability power γ and therefore fixing the 
type II error. Instead of calculating the integral of the probability density 
function of the alternative hypothesis, we fix γ = 0.8 (i.e. 80 % proba-
bility of correct detection), with now known model matrix C and 
covariance matrix Qyy. We check the value of the central normal dis-
tribution for the selected value of β = 1 − γ, and use it to invert the 
equations, which leads to the minimal detectable bias. 

In a first step towards determining the MDB, we calculate the non- 
centrality parameter of the χ2-distribution, λ(α, β, q) for significance 
level α and β = 1 − γ, where γ is the detectability power of the test, and 
number of additional parameters q. In a first step the central χ2-distri-
bution is used to get the critical value kα, that is the value where the 
integral over the central χ2-distribution with degrees of freedom q rea-
ches the value 1 − α. Then we loop over all possible non-centrality 
values λ, to find λ(α, β, q), where the integral of the non-central χ2-dis-
tribution for kα as previously found and with degrees of freedom q 
reaches probability β. 

The equation for the minimal detectable bias for our case of known 
diagonal covariance matrix Qyy reduces to: 

MDB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(α, β, q)
CT Q− 1

yy C

√

. (18)  

For the respective alternative hypotheses defined above that simplifies 
to: 

MDBstep =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(α, β, q)
∑m

i=t̂σ− 2
i

√

, (19)  

indicating the minimum value of the step at location ̂t for H1,̂t and 

MDBlin =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ(α, β, q)
∑m

i=1t2
/

σ2
i

√

, (20)  

indicating the minimum slope value for a linear function for H2. 
As illustration, Fig. 8 shows an example time series with MDB for two 

different models of alternative hypotheses: the height of a step function 
for a step after the 10th epoch and the slope of a linear trend starting at 
the first epoch. The step was assumed at a fixed location at t̂ = 10, 
without any further consideration of other alternative hypotheses (i.e. 
for different values of t̂). We consider three different cases: Varying 
detectability power γ (Fig. 8A), varying significance level α (Fig. 8B) and 
in Fig. 8C for both γ and α fixed and the same time series with larger 
uncertainty and lower uncertainty. It can be seen that larger detect-
ability power γ and lower significance level α both lead to larger values 
of MDB. Additionally, higher standard deviation on the time series lead 
to larger values of MDB than lower standard deviations. 

For comparison with the previously mentioned level of detection, 
this situation has been drawn for a simple 1-dimensional case in Fig. 6. 
For the presented definition of the level of detection (see Section 2), the 
first test parameter to define is the significance level α, which de-
termines the type I error and is mostly chosen at 5%. Here we show the 
level of detection with 95% confidence interval around the mean value 
y0. The mean value for the alternative hypothesis y1 is shown as the 
minimal detectable bias when assuming γ = 0.95 (i.e. 95% probability of 
correct detection) in order to make them comparable. It can clearly be 
seen that y1 is outside the level of detection region and the two terms do 
not coincide or provide the same insight. 

5. Results 

5.1. Effects of environmental conditions on estimation quality 

The effect of weather conditions on the height estimation quality was 

analysed in terms of mean elevation, before and after the tilt correction, 
as well as wind speed. Strong precipitation and fog, which both affect 
visibility, clearly have degrading effect on height estimations and most 
scans under these conditions will be excluded and not pass the quality 
criteria. In our entire data set, we find 156 cases, where point clouds 
were not available at the same time that fog or low visibility conditions 
were registered at the KNMI weather station at Schiphol airport. Schi-
phol is at about 25 km distance from the study site in Noordwijk, so the 
weather conditions could differ. But it gives an indication, that out of 
more than 5000 instances, where point clouds are not available, less 
than 3 % are possibly caused by low visibility. 

The order of magnitude of the main influences on the uncertainty of 
the height estimate (z-coordinate) within the point cloud (on each grid 
cell) and on the entire point cloud are summarised in Table 3. We 
summarise, which effects are corrected or filtered out (scanner tilt and 
instrument failure) and how the others contribute to the two error terms 
σg and εpc. How temperature, wind speed and direct sunshine affects 
these uncertainty estimates is explained in more detail in the following 
subsections. 

5.1.1. Temperature effects 
An example of the effect of temperature is shown for a period of six 

days in August 2019, with mostly clear skies, no precipitation and 
relatively low wind speed (average 4.5 m/s) in Fig. 9. An obvious pattern 
in the mean elevation of the reference surface before correction is 
visible. The 24-h pattern corresponds to duration of sunshine per hour as 
well as temperature. Considering the entire six-day period, temperature 
as well as sunshine show negative correlation with the uncorrected 

Fig. 8. minimal detectable bias (MDB) for a time series covering 24 h with two 
different alternative hypotheses: a step function, with a step at the 10th epoch 
and a linear function with positive slope. A: Both hypotheses are shown for 
different values of detectability power γ: 0.2 and 0.8. B: Both hypotheses are 
shown for different values of significance level α: 0.01 and 0.1. C: Both hy-
potheses are shown for fixed significance level and detectability power (α =
0.05 and γ = 0.8) with different standard deviations: half standard deviation 
from the previous cases and doubled standard deviation. 
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mean elevation (-0.32 and -0.26 respectively). After correction, sunshine 
and mean elevation are not correlated anymore, but temperature and 
mean elevation now show a positive correlation of 0.28. When looking 
at the fast Fourier transformation (FFT) of the elevation, a slight 24-h 
signal can be detected, which is probably the cause of the correlation 
with temperature. However, as can be seen in Fig. 9, the main part of the 
24-h pattern in the elevation can be corrected for (see Fig. 10). 

The remaining signal could be attributed to expansion of the con-
crete of the hotel building. An upward shift of the entire scanning set-up 
cannot be registered by the instrument’s inclination sensors. The rota-
tion correction is therefore not suitable to correct for this type of error. 
The concrete expansion, on days with highly varying temperatures, is 

estimated using the concrete expansion coefficient and the height of the 
building. It can amount to up to 0.7 cm elevation change, within several 
hours or days (not within the hour). However, we could not correlate the 
estimated concrete expansion directly with the remaining variation in 
elevation on the reference surfaces. 

5.1.2. Effects of wind speed 
To show the effect of wind on the height estimation from PLS, we first 

visualise the combined pitch and roll angle (squared sum) together with 
wind speed, and show a clear correlation between standard deviation of 
inclination values and wind speed (0.71) and a lower correlation be-
tween mean inclination and wind speed (0.47) for seven stormy days in 
February 2022, as an example. As was shown by Kuschnerus et al. 
(2021b), the effect of the higher standard deviation can be visible in the 
point clouds as a striped pattern on the reference surface. There, it was 
also shown that during strong winds, the sum of residuals on the refer-
ence surface is higher, and most likely related to the high standard de-
viation in the inclination values. For this example period in February 
2022, we did not find a correlation between the sum of residuals on the 
reference platform and the inclination values or the wind speed. 

Further, considering the entire data set, we did not find any corre-
lation between wind speed and the residuals on the reference surface. 
This shows, that the residuals in general are not that sensitive to wind 
and that the corrected point clouds are suitable for further analysis with 
the errors explained above. However, of the cases where there is a point 
cloud available, but the quality is not good enough, about 34 % occurred 
during strong winds (8 m/s and higher), which indicates a possible 
causal relation. 

5.2. Differentiating dynamic processes on the beach 

First, we show the minimal detectable bias for test area 1 on the dry 
beach and two alternative hypotheses. Then, we perform the multiple 
hypothesis testing (as introduced in Section 4.4) on both test areas, but 
for different length of time series and show the resulting partitioning of 
the areas according to the most likely estimated model. 

5.2.1. Minimal detectable bias 
We show the minimal detectable bias for test area 1 as indicated in 

Fig. 3: On the dry beach, next to the beach cafe and frequently used by 
people as well as effected by bulldozer works. We estimate the MDB as 
explained in Section 4.6 with detectability power γ = 80% and with 
significance level α = 95%. 

As an example to illustrate the MDB on the dry test area we use 24-h 
time series from 7 of January 2020. The MDB is calculated for a sudden 
change in form of a step function happening at 17:00h in the afternoon 
and shown in Fig. 11. We know that bulldozer works started that day and 
moved a considerable amount of sand between 11:00h and 17:00h 
depending on location, as reported previously Kuschnerus et al. (2022). 
The MDB shows, what the minimum change in elevation per grid cell 
would have to be at that time, in order to be detected as significant. We 
incorporate the systematic error εpc in order to derive a realistic esti-
mate. The resulting minimal detectable bias ranges from 1.8 cm (just 
above the εpc) up to 32 cm for some outliers, with a median at 3.1 cm. As 
comparison we show the LoD as defined above, which has a median 
value of 26.8 cm for the entire area, which is one order of magnitude 
higher than the MDB with our configuration. The MDB and the average 
value of the LoD indicated in Fig. 16, are representative of one dot in 
Fig. 11A and C respectively. The MDB for a linear trend was calculated 
as well: Only a few grid cells appear to deviate a lot from the median 
slope of 3.2 cm/day, see Fig. 11B. 

5.2.2. Hypothesis testing 
We applied the multiple hypothesis testing as explained in Section 

4.4 on the time series of each grid cell in the previously described test 
areas, using 24-h time series on 7 January 2020. 

Table 3 
Summary of estimated order of magnitudes for each of the influences on un-
certainty affecting the entire point cloud or the grid cell in z-direction.  

Influence Estimated order 
of magnitude 

Explanation 

Corrected and removed influences 
Scanner tilt 10 - 20 cm Estimated from inclination angles and 

corrected 
Instrument ≥10 cm Errors due to instrument failure, 

affected point clouds are removed from 
analysis 

Not corrected and considered in error terms εpc and σg 

Concrete expansion 0.7 cm Estimated from temperature variations, 
not corrected, included in systematic 
error εpc 

Registration }1.5cm Estimated from elevation of reference 
surfaces, not corrected, included in 
systematic error εpc 

Atmosphere/ 
temperature 

Surface roughness 0.9–7 cm Estimated per grid cell, considered as 
random error σg 

Surface moisture/ 
footprint size  

Not quantified or corrected, included in 
random error σg  

Fig. 9. Time series of mean elevation over the course of six days in August 2019 
on the helicopter landing platform before tilt correction (A) and after tilt 
correction (C) with duration of sunshine per hour (A) and temperature(B). 

Fig. 10. Combined inclination angles (squared sum of pitch and roll) with 
standard deviation and wind speed. 
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Using the above described testing method for the test area on the dry 
part of the beach we identify sudden changes, most likely caused by 
bulldozer works, as mentioned before. The changes happen between 
16:00 and 17:00 in the afternoon and are identified on a large part of the 
area (see Fig. 12). Fig. 12 shows some example time series with no 
significant change and sudden changes. 

Similar to results shown in previous works (Kuschnerus et al., 2021a, 
2022; Barbero-García et al., 2023), human activities on the beach like 

bulldozer works that lead to sudden elevation changes can be detected 
and quantified. Multiple hypothesis testing for 24-h elevation time series 
with a step function as alternative hypothesis allows to find and identify 
most bulldozer works taking place on the sandy beach. 

To identify longer term and slower processes, we apply the same 
testing procedure to time series in the same area, covering the entire 
month of July 2021, with two epochs per day, at noon and at midnight. 
Again we can classify the testing area into the three classes: no change, 

Fig. 11. minimal detectable bias at significance level α = 0.05 and with detectability power γ = 0.8 for a step function with step at 17:00h (A) and a linear trend (in 
m/day) (B). Results were calculated for each 24-h time series on 7 January 2020. For comparison the level of detection is shown for a significant change at 17:00h 
(C). To simplify the comparison of the spread of the values for the MDB and LOD the histograms of the respective estimates are shown as well. 

Fig. 12. A: Dry area classified according to hypothesis testing based on time series covering 24 h on 07-01-2020. The x- and y-axis represent across-shore and along- 
shore distance in meters. B: Example time series with sudden change hypothesis sustained. The changes happened at 16:00h in the afternoon. C: Example time series 
over 24 h with null-hypothesis not rejected, i.e. no statistically significant change detected. The small step occurring in some time series around 16:00h is not 
significant enough to be detected. 
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sudden change and linear trend. Here we find more areas with a linear 
change. However, for some cases a two-(or more)step model would seem 
more appropriate, as can be seen in Fig. 13B. The sudden change model 
does not fit the time series very well, since in a longer term time series, it 
is more likely that more than one sudden change occurs (see Fig. 13 C). 

In Fig. 13B slow erosion processes are identified. The area close to 
the dune foot shown in panel A of the same figure is eroding with about 
0.5 cm per day. A slow, gradual erosion process like this can be caused 
by aeolian sand transport or possibly by frequent use of beach visitors 
crossing that area. It is however unique to observe the gradual changes 
over a long period of time and quantify the erosion at sub-centimetre 
level. 

When considering test area 2 (as indicated in Fig. 3) in the intertidal 
area of the beach, fully populated daily time series are not available. The 
area appears in the point clouds only once (or sometimes twice) per day, 
during low tide. A set of daily time series in September 2020, with one 
epoch per day, chosen at low tide, where the area of non-empty grid cells 
in the DEM is largest, was analysed using MHT. Fig. 14 shows some 
examples of the classified time series (B) and an overview of the entire 
area coloured with the most likely assumed hypothesis (A). Here we 
distinguish between erosion (negative) and deposition (positive) ver-
sions of the found model time series, to give more insight in the present 
dynamics. 

It becomes apparent that the two models used for the alternative 
hypotheses are not sufficient to classify all processes affecting the beach. 
The model library can be extended with other models and additionally 
the start and stop time of the time series that is classified should be 
chosen individually per time series in order to fit the available models 
better. Still a general trend of either eroding or accreting becomes 
apparent in the overview plot (Fig. 14A) and the more dynamic nature of 
the intertidal area is clearly visible. The observed effects are most likely 
the result of tides and waves depositing and eroding sand while the area 
is flooded every day. 

6. Discussion 

6.1. Additional effects on estimation quality 

Since the laser scanner is pointed to the west, the sun could directly 
shine into the lens of the scanner in the hours just before sunset. Since 
we do not have weather data from directly next to the laser scanner for 
most of the time, there is no way to verify when this situation occurred. 
We collect all point clouds, acquired a few hours before and up to the 

time of sunset on that day and check if they pass our quality checks. All 
point clouds with low quality collected just before or at sunset could 
potentially be affected by direct sun shine. We filtered out all instances 
with high wind speeds (above 8 m/s) and precipitation (more than 1 
mm/h). There are 10 instances, where around the time of sunset, the 
quality of the DEM was not good enough (i.e. the residuals on the 
reference surface were too high, compare threshold defined in section 
4.1) during or in the hours before sunset. All of them occurred in the 
summer months of 2019, outside of the period of malfunction of the 
laser scanner. The respective point clouds show some noise (i.e., random 
points in the air), but the cause of this noise could not be determined 
with certainty. We observed a similar effect in the weeks leading up to 
the maintenance of the scanner in spring 2020, when the general quality 
of height estimations declined due to the previously mentioned instru-
ment malfunction. With a ray-tracing method as for example presented 
by Zhou et al. (2019) the times with direct sunshine into the laser 
scanner could be determined with more certainty, which would allow 
more investigation into possible effects on the respective point clouds. 

Beach visitors show up as peaks or outliers in the grid cell time series. 
As shown in Fig. 15, the hourly time series during a scan by students of 
the TU Delft show peaks whenever a person was present in the respective 
grid cell. These outliers are not causing the null-hypothesis to be 
rejected, but a busy period with lots of beach visitors will lead to higher 
grid cell error σg, which has an impact on the hypothesis testing. 

A possible solution to this, would be a filter for dynamic objects on 
the beach applied to each point cloud before generating the DEMs. This 
would increase processing times significantly and potentially lead to 
some data loss, but in return it could make the results of MHT more 
reliable. 

6.2. Potential improvements of set-up and processing 

For this research we have made several assumptions and simplifi-
cations considering the atmospheric conditions and calibration of the 
instrument. Additionally we did not consider in detail the slope of the 
beach, footprint size variation, surface roughness, fine registration and 
correlation of the height estimates. 

For a future improved set-up we recommend installing temperature 
sensors or even entire weather stations next to the scanner and in the 
observed scene at various locations. The collected temperature mea-
surements would allow for an estimation of the refraction index and 
other atmospheric influences. To improve atmospheric correction with 
the additional atmospheric measurements we suggest to consider the 

Fig. 13. A: Dry area classified according to hypothesis testing based on time series covering the month of July 2021. The x- and y-axis represent across-shore and 
along-shore distance in meters. B: Example time series with linear trend (orange). One of the time series (in blue) shows a shape that appears more like two sudden 
changes. C: Two examples, where the sudden change was found as most likely model (orange), but does not fit the shape of the time series, which shows more than 
one sudden change. 
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approaches of Voordendag et al. (2023) and Czerwonka-Schröder 
(2023). 

Any instrumental error could potentially be further reduced by 
performing a dedicated calibration in regular time intervals on site, 
preferably without removing the instrument from its permanent loca-
tion. This could reduce any drifts in range estimates and yaw alignment 
and prevent instrument failure and need for maintenance, or at least 
allow earlier detection leading to reduced data loss. For calibration of 
terrestrial laser scanners one could consider for example the works of 
Medic et al. (2019) and Schmitz et al. (2019). 

The slope of the beach and with that the incidence angle and their 
variations through time could be estimated based on point clouds or 
several neighbouring DEM grid cells. Then, a slope correction could be 
applied to the individual height estimates. The same holds for the esti-
mation of footprint sizes per grid cell. A mean value for footprint size 
depending on location and estimated incidence angle could be taken 
into account for the individual height estimates. 

The contribution of the surface roughness to the error per grid cell of 
up to 7 cm is quite high. There are grid cells on the beach, where a 
constant elevation is not an appropriate surface model. Examples 
include the edge of a cliff, deep tire tracks, or channels in the intertidal 
zone. To take such topography into account one could apply different 
methods of surface approximation, as for example presented by Ker-
marrec et al. (2022). 

The entire data set could be subject to a fine registration method, 
aligning all point clouds to a suitable epoch, using for example the 
iterative closest point (ICP) method. This is a computationally intensive 
operation, but has been done on a similar data set for example by Vos 
et al. (2022). 

Finally, we did not consider correlation between consecutive height 
estimates. When dealing with short-term measurements, as in our case 
the hourly data set, temporal correlation between the individual height 
estimates is likely. To incorporate a correlation coefficient into the hy-
pothesis testing model, the theory of Baarda can be applied, as for 

example discussed in Rofatto et al. (2020). 

6.3. Comparison to existing methods 

Other approaches developed by Anders et al. (2019) and Kuschnerus 
et al. (2021a) make use of region growing and clustering to extract re-
gions in space and time with similarly behaving time series of elevation 
(or elevation differences). These methods have the advantage that it 
does not have to be known previously, what kind of processes are ex-
pected, so they can in principle be applied without preknowledge on the 
occurring changes. Winiwarter et al. (2023) combine Kalman filtering 
for time series interpolation, level of detection and clustering on 
extracted features to find dynamic processes that were not previously 
defined. Also here the authors avoid using prior process knowledge. The 
level of detection is used here for the comparison of height estimates at 
each epoch with a reference height. For illustration of the typical use, we 
consider a 24-h time series on January 7th, 2020 and show all differ-
ences to the first epoch, together with the level of detection (blue), see 
Fig. 16. We use equation (1) with εpc = 0.015 m as registration error for 
the calculation of the level of detection. We can therefore derive, at what 
point the time series deviates from the first epoch with 95% confidence 
(first type error). We further indicate the MDB for both curves and sig-
nificance level α = 95% and detectability power γ = 80%. 

Non of these methods are specifically taking into account the multi- 
epoch nature of our data, nor do they efficiently detect processes, 
affected areas and the nature and/or cause of the process. The here 
presented method uses previous knowledge on expected processes, in 
order to determine the temporal sampling, as well as the models for the 
alternative hypothesis. In this way specific processes can be detected, 
together with a provided level of confidence. To make this useable for 
the entire observed area, and more for example periodic processes, the 
model catalogue can be extended and possibly a combination of the 
above mentioned clustering methods with MHT could be used to identify 
relevant areas and/or time intervals in the three-year observation 

Fig. 14. A: Classification according to most likely assumed hypothesis in the intertidal area, based on daily time series in September 2020. The x- and y-axis represent 
across-shore and along-shore distance in meters. B-E: Example time series for each of the four assumed models: positive linear trend (deposition, B), negative linear 
trend (erosion, C), sudden change deposition (D) and sudden change erosion (E). This example illustrates, that the two models used for the alternative hypothesis are 
not sufficient for many cases and an adaptive length of the time series would improve the results. 
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period. 
We can see in Figs. 12 and 14 that the MHT procedure as applied in 

this research allows a classification of time series into different processes 
and therefore also a grouping according to process. The latter has the 
potential to be used in a similar way or complementary to other methods 
of clustering time series like (Kuschnerus et al., 2021a) or Winiwarter 
et al. (2023). The main difference with these methods is the 
pre-definition of the expected alternative hypotheses. By defining the 
alternative hypotheses we determine apriori, which processes we are 
expecting to find. Our search is limited to those processes, but on the 
other hand provides a level of confidence when detecting them. 

For the hypothesis tests the model library can potentially be 
extended in order to fit more processes present on the beach. More 
simple functions can easily be added, as for example a periodic elevation 
change, step functions with several steps or a combination of linear 
trends and step functions. However, the difficulty in the application will 
lie in matching the models and the relevant time scales. Considering 
hourly time series over one day, our simple three model hypothesis 
testing showed good results in identifying anthropogenic changes, 
however it did not categorise the intertidal area on monthly time scales 
well. On larger time scales, other additional models would be required. 
Therefore, again a priori knowledge on the length and time scale of the 
time series and the relevant, expected processes is needed in order to 
identify geomorphological coastal processes in a 4D point cloud data set. 

6.4. Assumptions on uncertainty 

Implicitly we make the assumption that larger residuals per grid cell 
lead to more uncertainty in the knowledge of the mean elevation at that 
epoch. This assumption holds in many cases, but is difficult to verify in 
general. There could be cases, for example in the intertidal area, where 
surfaces are relatively smooth, but with sharp edges, where this 
assumption is not true. Another case could be a frozen beach during 
temperature below zero, where the surface roughness stays frozen over 
several epochs, thus it does not effect the estimation of the model as we 
are assuming. However, these cases are not generally true, and we as-
sume the chosen approach provides a realistic estimation of the variance 
in most cases. 

We also tested to use a rolling-window standard deviation based 
purely on the elevation time series, discarding the spatial component/ 
surface roughness but incorporating the temporal domain into the 
standard deviation. This did not lead to more realistic assumptions on 
the standard deviation. The temporal component leads to a lower 
standard deviation (compared to surface roughness) and is highly sen-
sitive to jumps/sudden changes in the time series. The assumption that a 
sudden change in elevation made our measurements less likely does not 
hold in most cases and we therefore conclude that the spatial (rough-
ness-based) standard deviation is a better approximation of the true 
measurement uncertainty. 

7. Conclusion and recommendations 

We investigated the main effects on height estimates of a 4D point 
cloud data set from permanent laser scanning and applied multiple hy-
pothesis testing as well as the minimal detectable bias to time series of 
height estimates from these observations answering the following 
questions. 

What is the minimal change in height on a sandy beach that can be 
estimated with a given confidence with our permanent laser scanning set-up? 
The minimal detectable bias is suitable for the estimation of possible 
elevation changes found within time series from permanent laser scan-
ning. Making use of the long elevation time series available in the PLS 
data set, the parameters for the estimation of the minimal detectable 
bias can easily be tuned to detect small scale changes in sandy beach 
elevation with a defined detectability power and to identify different 
models of elevation change. This provides advantages over the 

Fig. 15. Effect of beach visitors on the DEM. On 22-02-2022, a group of stu-
dents visited the study site at the beach and appears in the point cloud at 12:00. 
The DEM has grid cells of about 80 cm higher than the surroundings at that time 
(A). The corresponding point clouds showing the people (B,C). The corre-
sponding time series of the entire day show a clear outlier at 12:00 (D). 

Fig. 16. Example of level of detection for two 24-h time series on 7 January 
2020. The time series are shown as difference in elevation from the first epoch. 
The level of detection is indicated in blue and the MDB for a step function for 
both time series is shown as a dashed line. The MDB and LoD shown here are 
different representations of one dot in Fig. 11 A and C, respectively. 
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commonly used level of detection, especially the known detectability 
power and the considering of entire elevation time series rather than just 
pairs of epochs. In our example case, slopes of 0.032 m/day and sudden 
changes of 0.031 m were identified with statistical power of 80% and 
with significance 95% in 24-h time series on the upper beach. 

How do environmental conditions contribute to the uncertainty of height 
estimates from permanent laser scanning for the identification of change 
processes? The main effects on height estimates from PLS are weather 
conditions such as strong wind causing the instrument to shake and 
precipitation and instrument malfunctions. When these are filtered out 
the remaining effects are dominated by the surface roughness and 
registration error, which we estimate as below 7 cm and 1.5 cm, 
respectively. Height deviations caused by temperature changes can 
reach up to 1 cm within a day and are largely corrected by the appli-
cation of a rotation matrix based on inclination estimates from the 
scanner’s internal inclination sensor. 

Which change processes on a sandy beach can be observed with perma-
nent laser scanning and at which temporal and spatial scales? Multiple 
hypothesis testing allows for the grouping of areas following similar 
processes. At the same time we are classifying each time series according 
to the available alternative hypotheses and therefore gain more insight 
into the predominant change regime. It is especially suitable to detect 
and quantify slow longer term erosion and accretion processes, which 
are most likely caused by aeolian sand transport and difficult to observe 
using other techniques. 

The presented methods appear to be promising in the large scale 
processing and data mining for change processes within a 4D data set 
from permanent laser scanning. To be applicable to entire elevation time 
series of length longer than one month, a method to segment each time 
series and detect break points would allow to treat each segment sepa-
rately. We could then apply MHT per segment with appropriate models 
for the alternative hypothesis. 

Further investigation of the error sources on the height estimates and 
quantification of each effect could potentially improve the quality and 
reliability of height estimates and therefore lead to the detection of even 
smaller elevation changes and trends in elevation. 

The presented method could potentially be adapted for different 
applications, such as height estimation on glaciers from permanent laser 
scanning or identification of height changes in vegetation estimated 
from laser scanning observations. 
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