
Comparing multichannel mixed CNN-RNN to
individual models for earthquake prediction

Maikel Houbaer∗

Responsible professor: Elvin Isufi†

Supervisors: Mohammad Sabbaqi, Maosheng Yang‡

EEMCS, Delft University of Technology, The Netherlands

January 23, 2022

Abstract

Earthquakes can do great harm to the environment and people’s daily lives. Being able
to predict an earthquake moments before it happens could therefore reduce harm and
save human lives. Traditional methods have not been successful yet, but with the rise
of techniques focused on deep learning, there is a growing interest to apply them to
the field of earthquakes. The placement of stations measuring seismic waves at various
locations across regions has also greatly contributed to the possibility of applying data-
driven techniques to the problem. A neural network that has been previously successful
in the prediction of epileptic seizures - is a CNN mixed with RNN methods. In this
paper, we validate the use of this model in predicting earthquakes and compare its
performance to individual models. We do this based on seismic measurements before
the earthquakes of different stations across New Zealand. The results suggest that our
method is not capable of predicting earthquakes with higher accuracy than random
guessing.

1 Introduction
An earthquake is a sudden shake of the earth’s surface realizing energy and thereby creating
seismic waves [1]. Such earthquakes could have devastating effects on its environment and
human-built structures - thus also affecting people’s normal life [2]. In 20 years, nearly a
million deaths were caused by earthquakes. Therefore there is a growing interest in predict-
ing an earthquake before it happens in the short term, to decrease damage to human life [3].
These methods are used for so-called earthquake warning systems: systems that can warn
regions of damages caused by a potential future earthquake [4].

In the past, two types of techniques have been utilized to try to predict and detect
earthquakes. One is more focused on the short term and the other one more on the long term.
[5] The first one is trend-based prediction. This type relies on non-seismic measurements.
They often involve general data from earlier earthquakes to predict earthquakes happening

∗mhoubaer@student.tudelft.nl
†e.isufi-1@tudelft.nl
‡m.sabbaqi@tudelft.nl, m.yang-2@tudelft.nl

1



in the long term. Therefore they are not able to predict earthquakes in the short term - which
is essential for the warning systems we target. The other type is precursor-based prediction
[6]. This one does involve types of measurements such as seismic waves, temperature, and
more. Therefore this is more suited for earthquake prediction in the short term.

Seismic waves are measured by stations that are placed at various locations throughout
an area. Traditionally, certain more standard and simple methods have been used to detect
patterns in the measurements of these stations to predict an earthquake, such as principal
component analysis and regression. [7] However, these techniques have not been quite
successful yet to predict earthquakes in the short term. Therefore, there has been a growing
interest in using machine learning and deep learning techniques for this task since recently
[8]. Many of the recent researches that involve these more advanced techniques are using
single-station measurements [7], which leads to sub-optimal results. Furthermore, these
researches involve predicting the location of the earthquake moments before it strikes. While
this means that preparations can be done with regards to the protection for the earthquake,
it still does not predict whether an earthquake actually will happen, or how likely it is.

Research that did study early earthquake prediction independent from location, has not
yet led to significant results [9]. But with the rise of new techniques that also have been able
to tackle problems in different fields, it is important to use these techniques to also test if they
apply to earthquake prediction. An example that we will further work on in this research
is a method that is also successfully used for predicting epileptic seizures in patients [10].
The problems seem related to each other; both involve units at different locations measuring
waves, which try to predict whether a certain event occurred. The research yielded positive
results, reaching an accuracy of higher than 99%.

The goal of our project is to validate different neural networks to do the task of earth-
quake prediction. In this particular research, a convolutional neural network mixed with
recurrent neural network methods will be tested and compared to individual models, such
as the recurrent neural network only.

The research question is: "How do multichannel CNNs mixed with RNN methods com-
pare with an individual model?". To answer this question requires a few steps to be taken.
First, we need to determine in what ways we preprocess the earthquake data to feed to our
neural networks. Second, we need to find the optimal structures for our neural networks, so
that we can validate the different neural networks. Finally, we need to evaluate our neural
network, so that we can compare it to others and measure the effectiveness of using it.

2 Methodology
We implemented and tested a certain deep learning model for early and accurate earthquake
prediction. This model is a convolutional neural network (CNN) with recurrent neural net-
work methods (RNN). For comparison, we used simpler individual models, such as an RNN
only or a CNN with a multi-layer perceptron as the output layer. Our earthquake prediction
problem is a binary classification task between seismic events leading to an earthquake and
normal seismic behavior, as visually shown in Figure 1.

Earlier research did not find any particular duration of apparent seismic activity or state
that leads to an earthquake. It is very often suggested that earthquakes appear sudden [11]
and thus not have long during preliminary signs. In our experiments, we chose to use 30
seconds of data. This means that in case of an earthquake, it is 30 seconds immediately
preceding the earthquake. Due to the suggested abrupt nature of earthquakes, we wanted

2



Figure 1: Binary classification task by the classifier, in our case the neural network

a time window that would concentrate on the last seconds. While also allowing signs that
might arise tens of seconds before to be included.

We primarily used seismic waves measurements from multiple stations placed at different
locations across a region as input data for the models. This data was kept as raw as
possible to be fed to our neural networks, to eliminate any bias we might put into the
learning process. We wanted the neural network to learn the features themselves. Some
preprocessing was done to make sure the data was complete and equal to each other, this
includes filtering, normalization, and balancing classes. Generally, the class with more
samples tends to be classified with higher accuracy, thus influencing performance measures
overall [12]. Therefore, we balanced the dataset with both positive and negative samples.
Positive samples are 30 seconds immediately before the earthquakes and negative samples
are 30 seconds not leading up to an earthquake. The negative samples were chosen to
be 30 seconds starting 50 minutes before each earthquake. Due to the abruptness, seismic
measurements should not indicate any signs 50 minutes before the earthquake. Furthermore,
there is a very low probability that earthquakes are predetermined foreshocks for the next
one [13].

We tested a convolutional neural network (CNN) mixed with a recurrent neural network.
The idea behind the structure is to extract spatial features from the data while classifying
time-sequential data more optimally. To verify the addition of the RNN component in the
CNN-RNN, we compared it to a CNN with an MLP as the output layer instead of the RNN
before the output layer. Furthermore, we compared our multichannel model, which takes in
data from all the stations, to the individual RNN model that only takes in data from one
station. This individual model is being researched by [14].

2.1 Dataset
The data we used to conduct our research is a New Zealand earthquake dataset retrieved
from the FDSN web service [15]. It includes earthquakes from 2016 up to 2020. For fore-
casting time-series data, the technique used for preprocessing the data heavily influences
the effectiveness of the performance of the neural network [16]. Therefore, we conducted
the following steps of preprocessing the data to obtain the event dataset, the dataset with
all earthquakes and time windows of normal behavior:

1. Earthquakes in this dataset were selected between longitudes 166.104 and 178.990 and
latitudes -47.749 and -33.779, because that represents the area of New Zealand.

2. Earthquakes were filtered that were incomplete, lacking labels such as longitude, mag-
nitude, and depth.

3



Figure 2: Distribution of magnitudes of
earthquakes in the retrieved dataset

Figure 3: Distribution of depths of earth-
quakes in the retrieved dataset

3. Earthquakes are selected from a magnitude of 1 up to and including 3, to make sure
the model can detect more similar patterns across earthquakes. This selection is based
on the distribution of magnitudes of earthquakes in our dataset so far, as shown in
Figure 2.

4. Earthquakes are filtered out with a depth of 200 or more to eliminate different patterns
that potentially could occur with earthquakes at various depths. This is based on the
distribution of depths of earthquakes in our dataset, as shown in Figure 3.

5. Normal behavior, or negative samples, are added as events to the dataset, done in the
way described earlier.

At this point, approximately 106.000 earthquakes were left in the dataset, with an equal
number of negative samples. For the final dataset, we needed seismic measurements of
all selected stations with every event. Therefore we conducted the following steps for this
seismic dataset:

1. For each event in the event dataset, seismic measurements of all stations were retrieved
from the New Zealand earthquake dataset and put in the seismic dataset.

2. All data is "cleaned"; removing little artifacts in terms of size to make the size con-
sistent.

3. All seismic measurements were normalized, because it often leads to more efficient
training times [16]. In this particular case, it means that per window of 30 seconds,
the maximum value is set to 1 and the minimum value to -1, and other values are
scaled accordingly.

4. Stations are filtered so that every station in our dataset would have full data at every
time step of the preceding 30 seconds of every event, thus not being interrupted. This
leads to the selection of 58 stations.

5. All seismic measurements are downsampled from 100Hz to a user-defined frequency.
This will reduce training time. As the standard downsampled frequency we used 25Hz,
but also tested it against 2Hz to see whether it would affect its performance.

4



2.2 Mixed CNN-RNN model
The convolutional neural network mixed with a recurrent neural network is the main model
we test in our research. The input data for the model is the input matrix, with one dimension
being the time steps, and the other dimension being the stations. Each element in the matrix
represents a seismic measurement. A visualization of this is shown in the left-most part of
Figure 4.

Normally, the validation set is used to tune hyperparameters and to determine the ar-
chitecture of a neural network by performing a search, such as a grid search or random
search. In our case, however, the validation set never yielded results that correlated with
any changes we made to the hyperparameters or the architecture of our model. Therefore
we tuned them by considering the balance between the pace of training loss reduction and
overfitting. We describe this process more elaborately in Section 3.2. Below, we describe
the final model and its components.

Figure 4: Visual representation of our mixed CNN-RNN model

2.2.1 Convolutional neural network

Convolutional neural network (CNN) is a type of artificial neural network that is most
commonly applied to computer vision problems and analysis of visual imagery but also
commonly applied to recommender systems, financial time series, audio processing et cetera.
Because these fields seem to share concepts with the field of earthquake data research, we
will also test its performance for earthquakes. Because of the equivariant nature that these
types of networks possess, they are able to extract spatial features very well without much
overfitting. Since they are not fully connected, they require less memory to store the weights
as opposed to more simple networks, such as a multi-layer perceptron.

A typical CNN consists of multiple layers: convolutional layers, pooling layers, and the
output layer. The convolutional layer generates a feature map by applying a filter to the
input, where the weights are trainable. The pooling layer reduces the dimensions of its input
to reduce computational complexity and thus runtime. Finally, there is the output layer to
predict the label of the output of the convolutional and pooling layers. This could be a
simple multi-layer perceptron or another type of neural network.

In our implementation, the CNN component consists of 4 convolutional layers. A max
pooling layer is put between every convolutional layer. This setup also acted as a starting
point. The number of kernels in each convolution layer in our network is 32. The kernel size
in each convolution layer is 3 × 2, which means a size of 3 in the dimension of time steps
and a size of 2 in the dimension of stations. The first two max pooling layers have a pool
size of 3× 2, and a stride of 3× 2. Except for the third layer, which has a pool size of 2× 1
and a stride of 2 × 1. Rectified Linear Unit (ReLU) activation function is used after each

5



convolution layer to add non-linearity to the model, which allows the identification of more
complex patterns in the data.

2.2.2 Recurrent neural network

Recurrent neural networks (RNNs) are a type of neural network. Their unique characteristic
is their internal state or memory, which allows them to process sequences of data of variable
length [17]. There are different types of recurrent neural networks, but here we will use a
"vanilla" type, which is the most standard type. It consists of three layers: the input layer,
the hidden layer, and the output layer. The output of the hidden layer is also input to itself
for the next time step, allowing the structure to have a memory as data is put in sequentially.
Like any artificial neural network, all layers consist of neurons, which all connect to other
neurons to the successive layer, much like neurons in a brain. The output of a neuron is a
non-linear or linear function applied to the weighted sums of the inputs. In our case, the
output layer consists of a neuron indicating the predicted class with the associated input
data, after the last time step has been processed of the data.

The RNN component in our implementation for the mixed CNN-RNN model consists of
two hidden layers having 128 neurons each. The individual RNN model [14] has one hidden
layer of 128 neurons.

2.2.3 Final architecture and training

For our final mixed CNN-RNN, we combined the two components to try to exploit the
advantages of both networks. The general architecture and data flow of this model are
shown in Figure 4.

This mixed model means that data flows to the network in the following way: the input
data first passes the CNN, which reduces the complexity of the data and tries to generalize
spatial features. It then passes the RNN, which tries to detect time-sequential patterns.
Finally, the output of the hidden layer is going through a fully connected layer which reduces
the number of features to one. A sigmoid activation function is applied to the output to
predict the label because it is ideal for binary classification due to its range from 0 to 1.

Backpropagation is used to train the model, and the Adam algorithm is used to optimize
the model [24]. The learning rate is set at 0.001, which we tested as a sweet spot between
training speed and volatility of the training loss. β1 and β2 for the Adam algorithm are set
at 0.9 and 0.999 respectively. As the loss function, binary cross-entropy loss is used.

2.3 CNN with MLP
To validate the addition of the RNN in the CNN-RNN, we compared its performance to
the individual CNN component connected to an MLP. The CNN has the same architecture
used as in the mixed CNN-RNN. The MLP has hidden layers of sizes 400, 100, 50, and 20,
in sequential order. ReLU is used as the activation function for each neuron. The MLP
serves as the output layer; it predicts the label associated with the input data. A sigmoid
is applied to the final output here as well. Backpropagation and the Adam algorithm were
used to train and optimize the model. Binary cross-entropy is used as the loss function.

6



2.4 Individual RNN model
We are using the results of [14] to compare our mixed CNN-RNN with the individual RNN
model researched by the paper. An essential element of comparison is the structure of the
input data: the individual model only takes data from one station during the training phase
at a time, instead of them all.

The data for the individual model is constructed by taking the earthquakes from the
same New Zealand dataset we use and assigning each earthquake to its closest station. If a
model is trained on a station, it takes in data from earthquakes assigned to that station.

This model is relatively simple: the RNN has one hidden layer with 128 neurons, and a
fully connected layer with a sigmoid is the output.

2.5 Prevent overfitting
Overfitting happens when the model classifies too closely based on a particular set of data, in
this case, the training data. Therefore it may fail to reliably fit the underlying distribution,
and thus additional data or future data. Multiple techniques could be deployed to prevent
or at least reduce overfitting. Several of which we implemented in our models.

2.5.1 Regularization

A common way to prevent overfitting is to implement regularization. A penalty term is
added to the loss function to penalize a more complex or flexible model. This avoids the
risk of overfitting and is more likely to converge to a simpler model that represents the data.

There are multiple ways we can add a penalty term. For our model, we used ridge
regression, which means adding the L2 norm of the weights to the loss function used to op-
timize the model. The regularization parameter is used to determine how much we penalize
the model with the L2 norm of the weights. This parameter is highly dependent on the
underlying architecture and the input data. For each setup, we picked a value that severely
reduced the pace of overfitting while also allowing the model to train.

2.5.2 Dropout

Dropout is another technique to combat overfitting. It randomly omits neurons in a layer
with a user-defined probability. As an effect, certain classifications are becoming less depen-
dent on certain neurons, thereby improving the ability to generalize, which also results in a
reduction of overfitting [18]. Traditionally, this technique is used for fully connected layers,
but because recent research has also shown positive results of applying dropout to CNNs
[19], we are also implementing it in our CNN.

This technique has shown great improvements on many tasks [20]. In that paper, the
dropout probability was shown to display positive effects between 0.2 and 0.5, while showing
adverse effects above 0.5. For our setup, we used a dropout probability of 0.3 for our CNN
layers, and 0.5 for the RNN. These values were starting points chosen by standard practices.
Because a portion of the neurons is disabled during the training phase, the number of epochs
it takes to train the model also increases, but training time per epoch is also reduced. Overall
this results in no significant increase in training time.

7



2.5.3 Batch normalization

Batch normalization is used to increase the speed and stability of a neural network [21].
It standardizes the input to every layer for each mini-batch. It is argued that training
phases are slowed down by the fact distributions among mini-batches and network activations
change during training and that this solves this problem. However, other arguments for its
effectiveness have also been proposed, such as [22].

Batch normalization is a technique that can be used for CNNs, as well as fully connected
layers. For our model, batch normalization is used in the CNN layers between the convolution
itself and the activation function. We tested if its implementation would show any reduction
in overfitting and an increase in generalization.

2.6 Training and evaluation methods
As described earlier, in the training process we balanced the dataset with the two labels
we are trying to predict, to avoid any issues associated with an imbalanced dataset. The
dataset is split randomly into three sets: the train set, validation set, and test set. This
is done randomly to ensure generality and robustness while maintaining the property of
balanced labels. They are split into portions of 70%, 20%, and 10% respectively. The train
set is used to train the model itself. The validation set is used to validate the performance
of the model during and after training, to tweak its hyperparameters, such as the size of a
layer or the structure of the model. The test set is used to evaluate the final model.

During training, we are validating the performance of the models by measuring the binary
cross-entropy loss and accuracy of the train set as well as the validation set at each epoch.
The final performance of the models is evaluated with several measures. We use the test set
on the model to construct a confusion matrix, which in our case is 2 by 2. Based on this
confusion matrix, we can measure its accuracy, specificity, and sensitivity [23]. Specificity
means the percentage of normal seismic behavior predictions when there is no earthquake,
which is relevant for avoiding false alarms. Sensitivity means the percentage of predicting an
earthquake when there is indeed an earthquake, which is relevant for absences of an alarm in
case there are earthquakes. Usually, there is a trade-off between specificity and sensitivity,
which is not captured by accuracy. Furthermore, we consider the F1-score, which defines
the harmonic mean between specificity and sensitivity. Often it is seen as a better indicator
of performance than accuracy, . A higher score is better for all stated measures. Below our
measures are defined.

Accuracy =
TN + TP

TN + TP + FN + FP

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

F1-score = 2 ∗ Specificity ∗ Sensitivity
Specificity + Sensitivity

were TP means true positive, TN true negative, FP false positive and FN false negative.

8



3 Experimentation and Results

3.1 Experimental Setup
The environment we use to develop, train and test our networks makes use of the PyTorch
framework. This framework uses Python 3 and makes it quicker and easier to develop our
models. To preprocess the data, we made use of Python 3 in Jupyter Notebook. There
we fetched the data from the web client through a library and preprocessed it. The neural
networks were developed in another Jupyter Notebook with the PyTorch framework. We
also trained and tested them there.

The number of epochs we use to train the models is highly dependent on the convergence
of the training loss if there is any. Most experiments were run for at least 50 epochs, up to
around 250. The batch size used is 32.

3.2 Experimentation of mixed CNN-RNN
Normally, hyperparameters and the overall structure would be improved by testing the
validation set on the trained model and measuring the improvement the changes brought or
not. For example, this could be done by doing a grid search over a set of hyperparameters
or a random search by experimenting with different structures. If this is unsuccessful, more
drastic changes to the architecture should be made.

For the mixed CNN-RNN, we began experimentation with a setup that is similar to the
model defined in [10]. The first model appeared to be too simple; the training loss did not
decrease. Therefore, we increased the complexity in a balanced fashion of both the CNN
and RNN until the training loss declined. However, in this case, the loss of the validation
set would increase, while the validation accuracy would swing around 50%. For example, we
tried 3 and 4 convolution layers, multiple kernel sizes, different channel sizes for the layers
in the CNN, one or more recurrent layers for the RNN, and multiple values for the number
of hidden neurons in the RNN, such as 64, 128 and 256. Yet none of the changes would
affect validation.

Figure 5: Cross entropy loss of different decay rates during training, against the number of
epochs

9



3.2.1 Overfitting measures

At this point, we experimented with multiple measures to combat overfitting, as it appeared
that a simple model would not be able to reach higher accuracy. So we carefully implemented
the measures we defined in Section 2.5. We tried different setups to see whether several types
would conflict with each other. All measures ended up decreasing the rate the training rate
would decline, but would not conflict with each other. Therefore we stacked these methods
and balanced the parameters so that we would leave a small amount of space for the model
to overfit. This results in the parameters found in Section 2.5.

Figure 5 shows an example of using multiple values for the decay rate. It shows the
cross-entropy loss of the training set during training. A higher decay rate would decrease
the training pace at which the training loss reduces, with eventually the training loss stalling
at one value. Interestingly, the model would with a decay rate of 0.005 figure out to always
return 0 or 1 to maintain the accuracy at 0.50. For our final model, we used the number in
the middle: a decay rate of 0.003.

Figure 6: Cross entropy loss of the train
set (blue) and the validation set (orange),
against the number of epochs

Figure 7: Accuracies of the train set
(blue) and the validation set (orange) in
percentage point against the number of
epochs

3.2.2 Final CNN-RNN

In the end, the described process of making the model more complex while reducing overfit-
ting did not succeed to show any positive results where the validation loss would decrease or
validation accuracy would increase. The other evaluation measures, sensitivity, specificity,
and the F1-score of the validation set also stayed at 0.50. This suggests that there is no
correlation between the trained model and the validation set, making it very hard to find a
model that would work.

Therefore, we settled on the model as described in Section 2.2. We chose this model
to compare to the other models in a rhetorical manner: we already expected it would not
yield any positive results. The model itself is a balance between severely trying to reduce
overfitting while leaving a little space for the parameters to change.

Figure 6 shows the training and validation losses for this model during a training phase.
As we can see, the training loss decreases, without perfectly overfitting all labels. However,
the validation loss increases from the start, suggesting the model does not generalize. For a
further inspection, we look at Figure 7. Here we see the training and validation accuracies.
The training accuracy goes up to around 70%, while the validation accuracy remains stable

10



swinging around 50%. This also suggests that even though the network tries to perform any
type of learning, it fails to generalize the underlying distributions.

Figure 8: Training accuracy and loss of the CNN-MLP against the number of epochs

3.3 Experimentation of CNN-MLP
Besides our main mixed CNN-RNN model, we also tested the CNN-MLP model to validate
the use of the RNN in the mixed model. The architecture was established by looking at the
MLP used in [10] as a starting point. Figure 8 shows the training loss and accuracy for the
structure described in Section 2.3. As it shows, the model simply would not train at all.
More complex architectures were also tried for this model. Yet only models with a very high
number of hidden neurons would succeed to decrease the training loss, nearing the number
of events in the dataset. In those cases, it would overfit and the validation accuracy would
not change.

Figure 9: Training and validation loss against the number of epochs

3.3.1 Validating downsampled frequency

For our training phase, we chose a downsampled frequency of 25Hz, to make sure the data
capture the most details. To test whether this frequency was sufficient, we also applied our
model to a dataset with a downsampled frequency of 50Hz. For this particular dataset, we
adjusted the decay rate to 0.02 so that it would not overfit too quickly. In Figure 9 we can

11



still see that this frequency does not bring any advantages for this particular model, as the
same problems persist as before.

Model Accuracy Specificity Sensitivity F1-score

CNN-RNN 0.512 0.487 0.537 0.511
CNN-MLP 0.498 0.504 0.492 0.498

RNN 0.463 0.732 0.287 0.412

Table 1: Performance measures of the evaluated models

3.4 Test results of the models
Table 1 shows the evaluation measures of the models we tested. For our CNN-RNN and
CNN-MLP, we applied the test set to the trained model. For the individual RNN model,
we used test results from 7 stations having more than 4000 earthquakes assigned to them.
We then calculated our performance measures from the confusion matrix.

As stated before, the results for our multichannel models are disappointing. Because the
variance is relatively high compared to the distance of these numbers to 0.50, we interpret
them as they are 0.50. This means it has the same score as a random classifier. And so it
failed to capture any correlation between the input data and the associated labels.

The individual RNN model does initially seem to show correlation to the input data
compared to our models. However, due to the individual dataset being imbalanced, this
is not necessarily true. The accuracy is lower than 50%, just as the specificity and the
F1-score. Specificity is higher than 0.5, meaning it gives fewer false alarms than our model
on its test data. But due to its low F1-score, we cannot say this model performed better.

4 Responsible Research
The responsibility of this research mostly regards the reproducibility of the research and
the ethical implications. The experiments that we conducted can easily be reproduced. The
dataset we used is publicly available through the reference we provided and the preprocessing
steps are clearly stated. The models we used can also be easily recreated as most of them are
made using standard libraries provided by PyTorch. Furthermore, relevant hyperparameters
and other relevant values used are stated in this paper as well.

There also could be ethical concerns. If the outcomes of research regarding predicting
earthquakes were actually to be taken into account and used for earthquake prediction
systems, that would bring a huge responsibility with it. This responsibility would stretch to
many corners of our society, including the economy. A society might become too dependent
on the algorithm for short-term warnings, which in case of mispredictions might do more
harm than good. For example, the algorithm might give too many false negatives, in which
case the society was less prepared for the sudden earthquake than it was without the warning
system. In case it gives too many false alarms, society might either be reluctant to them or
be too safe, which could also lead to economic damages.

Many of these ethical concerns could be (partially) solved by informing the population
as well as governments well about the techniques used to predict the earthquakes. This

12



allows all instances to make more balanced decisions about preparations and their response
to warnings by a system using deep learning techniques.

5 Discussion
In this section we briefly reflect on the results, discuss what the limitations were and relate
it to other research. The results are initially disappointing, indicating no improvement in
performance over guessing. Some improvements that were tried to improve generalization,
such as regularization, have shown no positive effects for our model. There are some limita-
tions in our research, and potentially some mistakes could have been made that led to this
conclusion.

First, the preprocessing of our data could have some flaws. As stated earlier, the prepro-
cessing steps taken for generating the final dataset have a high influence on the performance
of neural networks. In our case, some decisions were made that could have detrimental
effects on the results. First off, we locked a time window of 30 seconds, while maybe only
the last 5 seconds could have shown signs of an earthquake. This means that the other 25
seconds could greatly overrule the contributions of the 5 seconds. Furthermore, we normal-
ized every time window, instead of a more global approach. This could lead to differences
in mean and variance, which might harm the performance of our model. There also could
be some limitations in the selection of our data. For our research, we exclusively used the
measurements of seismic waves. We did this to purely focus on the relations between seismic
waves, as other types of measurements might draw other conclusions. However, other types
of measurements, such as temperature, might show correlations with each other or with
seismic waves which could mean the model could give positive results.

We compared our model to the individual RNN model in [14] that was researching
roughly the same problem as we did in parallel. But the numbers suggested that we could
not compare the multichannel model and the individual model on the same level. Namely,
the data they used to test was imbalanced; the number of true labels was greater than of
false labels. Therefore we could not compare a measurement such as accuracy well. The
paper was in progress as well, so the results may be not the final results and potentially
could contain flaws.

Finally, it could also mean that the problem was too complex for the available data, or
that training the model just would take too long for research of this scope. If we look at other
papers, no real positive results have been found yet where the location of the earthquake is
irrelevant. In [5], a similar problem was researched, but also there either the occurrence of
the earthquake was implicated, or the location of it.

6 Conclusions and Future Work
In this paper, we described and implemented our convolutional neural network (CNN) mixed
with methods from recurrent neural networks (RNN) to predict occurrences of earthquakes
in the short term. We evaluated this neural network model and compared it to other
individual models, including a CNN with an MLP as output and an RNN.

The results in Section 3 show that our mixed CNN-RNN does not predict the occurrences
of earthquakes in the short term better than random guessing. It means that the mixed CNN-
RNN is not suitable to use for any implementation regarding earthquake warning systems.
Therefore, there is practically no need to compare our model to the other models in terms

13



of improvement, since its performance is the practical bottom line. We tried to improve our
model by making it more complex and by combating overfitting with several techniques.
We also tried adjusting the frequency of the input seismic measurements. However, none
of these approaches was able to improve our model in terms of generalization. This should
not come as a great surprise - previous literature also did not show any positive results for
our problem. This illustrates that this fundamental problem is very hard to solve, even for
newer deep learning techniques.

Future work could concentrate on the data that is used. This should be extended beyond
the analysis of seismic waves, and use multiple types of measurements such as temperature.
Furthermore, the effects of normalization and other types of data manipulation should be
investigated for this particular dataset. Of course, the newest invented techniques should
be deployed on this problem to test whether they are in any way successful for earthquake
prediction.

References
[1] Earthquake. (2021). Retrieved December 6, 2021, from

https://en.wikipedia.org/wiki/Earthquake.

[2] Earthquake environmental effects. (2021). Retrieved December 6, 2021, from
https://en.wikipedia.org/wiki/Earthquake_environmental_effects

[3] Wald, L. (2019). Earthquake Early Warning - Fine-Tuning for Best Alerts.
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-early-
warning-fine-tuning-best-alerts.

[4] Ibrahim, M. A., Park, J., & Athens, N. (2018). Earthquake warning system: Detecting
earthquake precursor signals using deep neural networks. Technical Report CS 230.

[5] Isufi, E., & Mazzola, G. (2021). Graph-Time Convolutional Neural Networks. arXiv
preprint arXiv:2103.01730.

[6] Bhandarkar, T., Satish, N., Sridhar, S., Sivakumar, R., & Ghosh, S. (2019). Earthquake
trend prediction using long short-term memory RNN. International Journal of Electrical
& Computer Engineering (2088-8708), 9 (2).

[7] Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earth-
quake detection and location. Science Advances, 4 (2), e1700578.

[8] Huang, J. P., Wang, X. A., Zhao, Y., Xin, C., & Xiang, H. (2018). Large earthquake
magnitude prediction in Taiwan based on deep learning neural network. Neural Network
World, 28 (2), 149-160.

[9] Uyeda, S., Nagao, T., & Kamogawa, M. (2009). Short-term earthquake prediction: Cur-
rent status of seismo-electromagnetics. Tectonophysics, 470 (3-4), 205-213.

[10] Daoud, H., & Bayoumi, M. A. (2019). Efficient epileptic seizure prediction based on
deep learning. IEEE transactions on biomedical circuits and systems, 13 (5), 804-813.

[11] Bhandarkar, T., Satish, N., Sridhar, S., Sivakumar, R., & Ghosh, S. (2019). Earthquake
trend prediction using long short-term memory RNN. International Journal of Electrical
& Computer Engineering (2088-8708), 9 (2).

14



[12] Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from
imbalanced data sets. ACM SIGKDD explorations newsletter, 6 (1), 1-6.

[13] United States Geological Survey. (n.d.). What is the probability that an earth-
quake is a foreshock to a larger earthquake?. Retrieved December 8, 2021, from
https://www.usgs.gov/faqs/what-probability-earthquake-foreshock-larger-earthquake

[14] Du, X. (2022). Short-term Earthquake Prediction via Recurrent Neural Networks. Delft
University of Technology.

[15] FDSN web services for New Zealand. (n.d.). Retrieved November 14, 2021, from
https://www.geonet.org.nz/data/tools/FDSN.

[16] Bhanja, S., & Das, A. (2018). Impact of data normalization on deep neural network for
time series forecasting. arXiv preprint arXiv:1812.05519.

[17] Tealab, A. (2018). Time series forecasting using artificial neural networks methodolo-
gies: A systematic review. Future Computing and Informatics Journal, 3 (2), 334-340.

[18] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929-1958.

[19] Park, S., & Kwak, N. (2016). Analysis on the dropout effect in convolutional neural
networks. In Asian conference on computer vision (pp. 189-204). Springer, Cham.

[20] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

[21] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning (pp.
448-456). PMLR.

[22] Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normaliza-
tion help optimization?. In Proceedings of the 32nd international conference on neural
information processing systems (pp. 2488-2498).

[23] Zhu, W., Zeng, N., & Wang, N. (2010). Sensitivity, specificity, accuracy, associated
confidence interval and ROC analysis with practical SAS implementations. NESUG pro-
ceedings: health care and life sciences, Baltimore, Maryland, 19, 67.

[24] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

15


