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Expanding the Applicability of the
Competitive Modes Conjecture

Sudipto Choudhury, Huibert Reijm, and Cornelis Vuik

Abstract The Competitive Modes Conjecture is a relatively new approach in
the field of Dynamical Systems, aiming to understand chaos in strange attractors
using Resonance Theory. Up till now, the Conjecture has only been used to study
multipolynomial systems because of their simplicity. As such, the study of non-
multipolynomial systems is sparse, filled with ambiguity, and lacks mathematical
structure. This paper strives to rectify this dilemma, providing the mathematical
background needed to rigorously apply the Competitive Modes Conjecture to a cer-
tain set of non-multipolynomial systems. Afterwards, we provide an example of
this new theory in the non-multipolynomial Wimol-Banlue Attractor, something that
up to this point has not been possible as far as the authors know.

3.1 The Competitive Modes Conjecture

This section is to serve as background knowledge, all obtained from sources [1–6].

We take a general n-dimensional autonomous system of differential equations
ẋi = Fi (x) with x ∈ R

n and i ∈ {1, 2, . . . , n}. We can easily transform this system
into a system of interconnected oscillators as follows
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ẍi = Ḟi (x)

=
n∑

j=1

∂Fi
∂x j

(x)ẋ j

=
n∑

j=1

∂Fi
∂x j

(x)Fj (x)

≡ fi (x)

(3.1)

This of course only works if Fi is x j -differentiable for all i, j ∈ {1, 2, . . . , n}.
Definition 3.1 (Splitting of a Function) In previous literature, function fi : Rn → R

can be split with respect to xi if it can be rewritten as

fi (x) = hi (x1, . . . , xi−1, xi+1, . . . , xn) − xi gi (x) ∀i ∈ {1, 2, . . . , n} (3.2)

We name function hi : Rn−1 → R the i th forcing function. We name function gi :
R

n → R the i th squared frequency function.

For simplicity, let us define x∗
i = [x1, . . . , xi−1, xi+1, . . . , xn]T ∈ R

n−1. If Eq. (3.1)
holds and the resulting functions fi can be split, then we can rewrite our original
system of differential equations into the form given below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 + g1(x)x1 = h1(x∗
1)

ẍ2 + g2(x)x2 = h2(x∗
2)

· · ·
ẍi + gi (x)xi = hi (x∗

i )

· · ·
ẍn + gn(x)xn = hn(x∗

n)

(3.3)

In a sense, we have turned our system into a system of interconnected, nonlinear
oscillators.

Definition 3.2 (Competitive Modes) Say we have the n-dimensional autonomous
system of differential equations x = F(x). If Eq. (3.1) holds for this system and the
resulting functions fi can be split, then the system can be transformed as shown in
Eq. (3.3). The solutions xi for Eq. (3.3) are then known as the competitive modes of
the system, with gi and hi being the corresponding squared frequency functions and
forcing functions, respectively.

Currently, there is an open conjecture connecting chaos and competitive modes
together, and it is presented as follows.

Conjecture 3.1 (Competitive Modes Conjecture) The conditions for a dynamical
system to be chaotic are given below (assuming Eq. (3.1) holds and the resulting
function fi ’s can be split:)
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• the dimension n of the dynamical system is greater than 2;
• at least twodistinct squared frequency functions gi and g j are competitive or nearly
competitive; that is, there exists t ∈ R so that gi (t) ≈ g j (t) and gi (t), g j (t) > 0;

• at least squared frequency function gi is not constant with respect to time;
• at least one forcing function hi is not constant with respect to some system
variable x j .

3.2 Proper Splittings

Notice that the process of splitting as defined in Definition 3.1 is rather ambiguous.
Therefore,we nowprovide a newdefinition for the splitting of a function. Throughout
this paper, we refer to domain D, which is a uncountably infinite, open set in Rn .

Definition 3.3 (Splitting of a Function) We now say that function f : D → R can
be split with respect to xi ∈ R and c ∈ D if over D, it can be rewritten as

f (x) = h(x∗
i ) − (xi − ci )g(x) (3.4)

where x∗
i = [x1, . . . , xi−1, xi+1, . . . , xn]T and

• f is continuous in xi for all x ∈ D;
• the subset D∗

i (c) = {x ∈ D : xi = ci } is not empty;
• h is constant and finite in xi , given x1, . . . , xi−1, xi+1, . . . , xn;
• g is continuous with respect to xi , given x1, . . . , xi−1, xi+1, . . . , xn

Here, h is again called the forcing function and g is the squared frequency function.

We then have the following results, lemmas, and theorems.

Lemma 3.1 Say function f : D → R can be split with respect to xi ∈ R and c ∈ D
into forcing function h and squared frequency function g. Then h(x∗

i ) = f (x)|xi=ci .

Proof Say function f : D → R can be split with respect to xi ∈ R into forcing
function h and squared frequency function g. Then for allx ∈ D, since g is continuous
in xi ,

g(x)|xi=α = lim
xi→α

(
h(x∗

i ) − f (x)

xi − ci

)

Thus, we can conclude that

g(x)|xi=ci = lim
xi→ci

(
h(x∗

i ) − f (x)

xi − ci

)
∈ R

Because of this, limxi→ci

(
h(x∗

i ) − f (x)
) = 0.Otherwise, limxi→ci g(x)would surely

be infinite or undefined. Thus, we can conclude that, since f is continuous in xi ,
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0 = lim
xi→ci

(
h(x∗

i ) − f (x)
) = h(x∗

i ) − lim
xi→ci

f (x) = h(x∗
i ) − f (x)|xi=ci

This lemma is important, as it symbolizes the ideology behind Definition 3.3. Our
research started by trying to rigorously define the forcing functionh, and thendefining
the squared frequency function g as a direct result.Wenoticed that inmultipolynomial
systems, Lemma 3.1 was always true. In fact, it seemed that previous literature had
specifically defined h so that the lemma would always hold when c = 0 [1–6]. We
decided to expand this idea to Taylor Series, Laurent Series, and finally to general
continuous functions. It is on this idea that we can build the rest of our theory.

Lemma 3.2 (UniquenessLemma) Say function f : D → R can be split with respect
to xi ∈ R and c ∈ D into forcing function h and squared frequency function g. Then
h and g are uniquely defined.

Proof Say function f : D → R can be split with respect to xi ∈ R and c ∈ D into
forcing function h1 and squared frequency function g1, and also into forcing function
h2 and squared frequency function g2. Then for all x ∈ D,

f (x) = h1(x∗
i ) − (xi − ci )g1(x) = h2(x∗

i ) − (xi − ci )g2(x)

Recall that D∗
i (c) = {x ∈ D : xi = ci }.

Since we know from Lemma 3.1 that h1(x∗
i ) = h2(x∗

i ) = f (x)|xi=ci , we can imme-
diately conclude that h1 = h2.
As a result, for all x ∈ D,

(xi − ci )(g1(x) − g2(x)) = h1(x∗
i ) − h2(x∗

i ) = 0

For all x ∈ D\D∗
i (c), g1(x) − g2(x) = 0.

Furthermore, since g1 and g2 are both continuous in D∗
i (c), we can conclude that

g1(x)|xi=ci = lim
xi→ci

g1(x) = lim
xi→ci

g2(x) = g2(x)|xi=ci

Thus, we have proven that g1(x) = g2(x) for all x ∈ D.

Lemma 3.3 (Combination Lemma) Say function f1 : D → R can be split with
respect to xi ∈ R and c ∈ D into forcing function h1 and squared frequency func-
tion g1. Say function f2 : D → R can be split with respect to xi and c into forcing
function h2 and squared frequency function g2.

• For arbitrary α, β ∈ R, the sum (α f1 + β f2) : D → R can be split with respect
to xi and c into forcing function (αh1 + βh2) and squared frequency function
(αg1 + βg2).

• The product ( f1 f2) : D → R can be split with respect to xi into forcing function
(h1h2) and squared frequency function (h1g2 + h2g1 − (xi − ci )g1g2).

• The quotient ( f1/ f2) : D → R can be split with respect to xi and c into forcing
function (h1/h2) and squared frequency function ((h2g1 − h1g2)/(h2 f2)), pro-
vided both f2(x) and h2(x∗

i ) are nonzero for all x ∈ D.
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Proof Say function f1 : D → R can be split with respect to xi ∈ R and c ∈ D into
forcing function h1 and squared frequency function g1. Then for all x ∈ D,

f1(x) = h1(x∗
i ) − (xi − ci )g1(x)

Say function f1 : D → R can be split with respect to xi and c into forcing function
h2 and squared frequency function g2. Then for all x ∈ D,

f2(x) = h2(x∗
i ) − (xi − ci )g2(x)

First of all, notice that D∗
i (c) = {x ∈ D : xi = ci } is automatically not empty since

both f1 and f2 can be split on D.

Take α, β ∈ R arbitrarily.

α f1(x) + β f2(x) = α
(
h1(x∗

i ) − (xi − ci )g1(x)
) + β

(
h2(x∗

i ) − (xi − ci )g2(x)
)

= (
αh1(x∗

i ) + βh2(x∗
i )

) − (xi − ci ) (αg1(x) − βg2(x))

Notice that

• the linear combination α f1 + β f2 is continuous over D in xi since f1 and f2 are
continuous over D in xi ;

• the linear combination αh1 + βh2 is constant and finite over D in xi since h1 and
h2 are constant and finite over D in xi ;

• the linear combination αg1 + βg2 is continuous over D in xi since g1 and g2 are
continuous over D in xi .

Thus we constructed the splitting of (α f1 + β f2) with respect to xi and c.

We can also split the product of f1 and f2.

f1(x) f2(x) = (
h1(x∗

i ) − (xi − ci )g1(x)
) (
h2(x∗

i ) − (xi − ci )g2(x)
)

= (
h1(x∗

i )h2(x
∗
i )

) − (xi − ci )
(
h1(x∗

i )g2(x) + h2(x∗
i )g2(x) − (xi − ci )g1(x)g2(x)

)

Notice that

• the product f1 f2 is continuous over D in xi since f1 and f2 are continuous over
D in xi ;

• the product h1h2 is constant and finite over D in xi since h1 and h2 are constant
and finite over D in xi ;

• the function h1(x∗
i )g2(x) + h2(x∗

i )g2(x) − (xi − ci )g1(x)g2(x) is continuous over
D in xi since g1 and g2 are continuous and h1 and h2 are constant and finite over
D in xi .

Thus we constructed the splitting of f1 f2 with respect to xi and c.
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We can also split the quotient of f1 and f2, provided h2(x∗
i ) �= 0 and f2(x) �= 0

for all x ∈ D.

f1(x)

f2(x)
= h1(x∗

i ) − (xi − ci )g1(x)

h2(x∗
i ) − (xi − ci )g2(x)

=
(
h1(x∗

i )

h2(x∗
i )

)
− (xi − ci )

(
h2(x∗

i )g1(x) − h1(x∗
i )g2(x)

h2(x∗
i ) f2(x)

)

Notice that

• the quotient f1/ f2 is continuous over D in xi since f1 and f2 are continuous over
D in xi and f2(x) �= 0 for all x ∈ D;

• the quotient h1/h2 is constant and finite over D in xi since h1 and h2 are constant
and finite over D in xi and h2(x∗

i ) �= 0 for all x ∈ D;
• the function (h2g1 − h1g2) / (h2 f2) is continuous over D in xi since g1 and g2
are continuous over D in xi , h1 and h2 are constant and finite over D in xi , and
h2(x∗

i ) �= 0 and f2(x) �= 0 for all x ∈ D.

Thus we have constructed the splitting of f1/ f2 with respect to xi and c.

The following theorem is perhaps the most useful theorem concerning splittable
functions.

Theorem 3.1 (Existence of Splittings for Differentiable Functions) Say function
f : D → R is differentiable over D with respect to xi ∈ R. Take c ∈ D. If the partial
derivative ∂ f/∂xi is continuous with respect to xi in ci , then f can be split into proper
forcing function h and proper squared frequency function g, defined as

h(x∗
i ) = f (x)|xi=ci

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x)|xi=ci − f (x)

xi − ci
xi �= ci

−∂ f (x)

∂xi

∣∣∣∣
xi=ci

xi = ci

Proof Say function f : D → R is differentiable over D with respect to xi . Lets
define functions h and g as above.

Since f is differentiable and thus continuous over D with respect to xi , we know
immediately from Lemma 3.1 that h is constant and finite in terms of xi , given
x1, ...xi−1, xi+1, ...xn .

Investigating the properties of g takes a bit more work. Lets take xi �= ci , then g
is continuous over D in xi because f is differentiable and thus also continuous over
D in xi .
Lets take xi = ci , then we can conclude the following, using L’Hopital’s Theorem
and the prerequisite that the derivative ∂ f/∂xi must be continuous in ci .
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lim
xi→ci

g(x) = lim
xi→ci

(
f (x)|xi=ci − f (x)

xi − ci

)

= − lim
xi→ci

∂ f (x)

∂xi

= −∂ f (x)

∂xi

∣∣∣∣
xi=ci

= g(x)|xi=ci

Thus, we have proven that g is continuous in D with respect to xi .

Finally, we must prove that the equation

f (x) = h(x∗
i ) − (xi − ci )g(x)

is valid in the first place. Take x ∈ D arbitrarily. We then have to consider two
mutually exclusive cases.
Say xi �= ci . Then

h(x∗
i ) − (xi − ci )g(x) = f (x)|xi=ci − (xi − ci )

(
f (x)|xi=ci − f (x)

xi − ci

)

= f (x)|xi=ci − (
f (x)|xi=ci − f (x)

)

= f (x)

Say instead xi = ci . Then we know that ((xi − ci )g(x)) |xi=ci = 0 since g(x)|xi=ci is
continuous and therefore finite. Thus

h(x∗
i ) − (xi − ci )g(x) = f (x)|xi=ci − 0

= f (x)

Thus, for any x ∈ D, h(x∗
i ) − (xi − ci )g(x) = f (x). Thus, h is the forcing function

and g is the squared frequency function of f .

Of course, a splitting of f can not be achieved without defining c ∈ D first. The
constant c can of course be arbitrary, but we will primarily focus on one particular
scenario. When a function f is split with respect to c = 0, then we define this to
be the proper splitting of f , with h defined to be the proper forcing function and g
defined to be the proper squared frequency function.The reason for this is made clear
with an example.

Lets say we have a multipolynomial second order ODE ẍi = f (x), where
f :D → R. Previous literature (as far as the authors are aware) has strictly focused
on gathering evidence for the Competitive Modes Conjecture from dynamical sys-
tems whose set of differential equations consist of these sorts of ODEs. It can be
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easily proven1 that the proper splitting of f always exists, and that the resulting
proper forcing function and proper squared frequency function are defined identi-
cally to the forcing functions and squared frequency functions defined in previous
literature [1–6]. As a result, the theory of proper splittings is a direct expansion of
Definition 3.1.

3.3 Example: The Wimol-Banlue Attractor

To show the applicability of this new theory of proper splittings, we will apply it to
a modification of the system mentioned in [7], which we will call the Wimol-Banlue
System. The original Wimol Banlue Dynamical System is given by

⎧
⎪⎨

⎪⎩

ẋ = y − x

ẏ = −z tanh(x)

ż = −α + xy + |y|
(3.5)

whereα ∈ R. The reasonwe chose toworkwith theWimol-Banlue System is because
it is the most accessible non-multipolynomial system which has been proven to
exhibit a chaotic attractor. An unfortunate property of this system is that ż is not
differentiable with respect to y at y = 0. To counterattack this, we introduce function
φ, dependent on parameter β > 0, defined as

φ(y;β) =
√
y2 + β2 (3.6)

First, notice that φ is a well-defined, positive, differentiable function over allR, with
its derivative being

φ′(y;β) = y
√
y2 + β2

We want to compare φ(y;β) to |y|; to that end, we construct the difference function
ϕ(y;β) = φ(y;β) − |y|. It is easy to prove that ϕ is a positive, continuous function
for y ∈ R. Furthermore ϕ is differentiable for y �= 0, with its derivative being

ϕ′(y;β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
y2 − √

y2 + β2

√
y2 + β2

y > 0

− √
y2 + √

y2 + β2

√
y2 + β2

y < 0

1The calculations needed to prove this are straightforward but cumbersome. For the sake of space,
we chose to omit them.
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Fig. 3.1 The trajectory of
our modified Wimol-Banlue
Attractor as defined in Eq.
(3.7) with initial condition
x0 = [1.32,−0.63, 1.91]T .
The trajectory was
approximating using 70,000
iterations of an adaptive RK4
method, using a time step of
0.01. Notice the presence of
an attractor

Because of this, ϕ′(y;β) < 0 for y > 0 and ϕ′(y;β) > 0 for y < 0; we can then
make the following inequality

|ϕ(y;β)| ≤ |ϕ(0;β)| = β

Thus φ converges uniformly to |y| as β goes to 0. Therefore, φ is a sufficiently
accurate, differentiable approximation of |y| and we can modify the Wimol-Banlue
System slightly into ⎧

⎪⎨

⎪⎩

ẋ = y − x

ẏ = −z tanh(x)

ż = −α + xy + √
y2 + β2

(3.7)

Let us first prove that this modified system still has a chaotic attractor. For the
continuation of this example, lets say α = 2 and β = 0.001. With arbitrary initial
vector x0 = [1.32,−0.63, 1.91]T , the resulting trajectory is presented in Fig. 3.1. As
one can see, an attractor is still present in this system.

Through this trajectory, theLyapunovExponent is approximately equal to 0.228483.
As further evidence of the attractor’s chaotic nature, we provide the plot of the con-
vergence of the Lyapunov Exponent in Fig. 3.2.

We consider this sufficient evidence to safely proven the presence of a chaotic
attractor in our system.
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Fig. 3.2 The convergence of
the maximal Lyapunov
Exponent of our modified
Wimol-Banlue Attractor,
using a trajectory with initial
condition
x0 = [1.32,−0.63, 1.91]T .
The trajectory was
approximating using 70,000
iterations of an adaptive RK4
method, using a time step of
0.01

To see if the modified system in Eq. (3.7) can be properly split, the system must
first be differentiated in terms of time, which is done as follows.

ẍ = −ẋ + ẏ

= −(y − x) + (−z tanh(x))

= x − y − z tanh(x)

ÿ = −z sech 2(x)ẋ − tanh(x)ż

= −z sech 2(x)(y − x) − tanh(x) (−α + xy + φ(y;β))

= (x − y)z sech 2(x) +
(
α − xy −

√
y2 + β2

)
tanh(x)

z̈ = yẋ +
(
x + y

√
y2 + β2

)
ẏ

= y(y − x) +
(
x + y

√
y2 + β2

)
(−z tanh(x))

= y2 − xy −
(
x + y

√
y2 + β2

)
z tanh(x)

We can differentiate ẍ with respect to x , ÿ with respect to y, and z̈ with respect to z
as follows.
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∂ ẍ

∂x
= 1 − z sech 2(x)

∂ ÿ

∂y
= −z sech 2(x) −

(
x + y

√
y2 + β2

)
tanh(x)

∂ z̈

∂z
= −

(
x + y

√
y2 + β2

)
tanh(x)

Since sech and tanh are continuous and bounded over all R, ∂ ẍ/∂x , ∂ ÿ/∂y, and
∂ z̈/∂z exist and are continuous over all R3. Thus, we can use Theorem 3.1 to define
the following proper forcing functions and proper squared frequency functions.

ẍ(x, y, z) = hx (y, z) − xgx (x, y, z) (3.8)

ÿ(x, y, z) = hy(x, z) − ygy(x, y, z) (3.9)

z̈(x, y, z) = hz(x, y) − zgy(x, y, z) (3.10)

hx (y, z) = −y (3.11)

gx (x, y, z) =
⎧
⎨

⎩

z tanh(x)

x
− 1 x �= 0

z − 1 x = 0
(3.12)

hy(x, z) = xz sech 2(x) + (α − β) tanh(x) (3.13)

gy(x, y, z) =

⎧
⎪⎨

⎪⎩
z sech 2(x) + x tanh(x) +

(√
y2 + β2 − β

)
tanh(x)

y
y �= 0

z sech 2(x) + x tanh(x) y = 0

(3.14)

hz(x, y) = y2 − xy (3.15)

gz(x, y, z) =
(
x + y

√
y2 + β2

)
tanh(x) (3.16)

The forcing functions and the squared frequency functions over our trajectory plotted
in Figs. 3.1 are shown in Figs. 3.3 and 3.4, respectively. Notice that the squared
frequency functions are most definitely competitive. All in all, our theory of properly
splittable functions concludes that the Competitive Modes Conjecture (Conjecture
3.1) is valid for our modified Wimol-Banlue Attractor, which is what we expected.
This is significant since, as far as the authors know, this sort of Competitive Modes
analysis has never been applied to these sorts of systems before.

3.4 Further Research: Improper Splittings

Notice the requisite in Definition 3.3 stating that D∗
i (0) = {x ∈ D : xi = 0} �= for a

proper splitting. In other words, for a function f to have a proper splitting in terms
of xi , it must be defined on xi = 0. Obviously this is not the case for all functions,
such as the logarithm and reciprocal functions.
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Fig. 3.3 The functions hx
(in red), hy (in green), and
hz (in blue) of our modified
Wimol-Banlue Attractor as
defined in Eq. (3.7), using a
trajectory with initial
condition
x0 = [1.32,−0.63, 1.91]T .
The trajectory was
approximating using 7500
iterations of an adaptive RK4
method, using a time step of
0.01

Fig. 3.4 The functions gx
(in red), gy (in green), and gz
(in blue) based on the
trajectory of our modified
Wimol-Banlue Attractor as
defined in Eq. (3.7), using a
trajectory with initial
condition
x0 = [1.32,−0.63, 1.91]T .
The trajectory was
approximating using 7500
iterations of an adaptive RK4
method, using a time step of
0.01
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A work-around to this problem is the introduction of of an improper splitting,
which is simply the splitting of a function with respect to c ∈ D\D∗

i (0). How this
will affect the resulting improper forcing function and improper squared frequency
function is yet unclear and requires muchmore in-depth research to fully understand.
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