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Abstract

In the evolving landscape of nuclear energy, ensuring the safety and efficiency of nuclear reactors
remains paramount, particularly with the increasing demands for energy and a concurrent rise in global
temperatures. A significant aspect of nuclear safety involves maintaining the integrity of the fuel rods,
which are susceptible to Turbulence Induced Vibrations (TIV) resulting from axial flows of the coolant
liquid. TIV can instigate severe repercussions including structural damage such as fatigue, wear, and
stress corrosion cracking, posing substantial threats to reactor safety. Despite the historical attention
this phenomenon has garnered since the 1950s, conventional semi-empirical methods offer limited
predictive accuracy and do not facilitate extrapolations for multi-rod scenarios effectively.

Recent developments have turned to Fluid-Structure Interaction (FSI) simulations as a powerful
tool to study fuel rods’ behavior under TIV effects, capitalizing on the increase of computational power
available today. While Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) offer more
accurate predictions, their computational demands make them unsuitable for complex FSI simulations.
This has led to a preference for Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations,
despite them underpredicting the displacement amplitudes of the vibrations.

Evolving from this shortfall, the current study directs its focus on a recently developed Anisotropic
Pressure Fluctuation Model (AniPFM). This model generates a synthetic velocity fluctuations field,
which is used to solve for the pressure fluctuations. The use of this model together with URANS poses
as a possible way to inexpensively simulate the excitation mechanisms of TIV of fuel rods. While previ-
ous research has highlighted the potential of this model, it is important to note the considerable level of
uncertainty still associated with it. Additionally, there are parameters, definitions and constants whose
impacts on the model are not yet fully understood or even explored. This calls for a comprehensive
research to fine-tune the model, optimize its performance and further validate it. This is precisely the
goal of this study, carried out through the analysis of two pure flow and two FSI cases. Hypotheses
were formulated and tested in pure flow scenarios before being further validated in FSI cases. Key
advancements were made by optimizing the time correlation method used on the generated velocity
fluctuations, which significantly reduced the model’s uncertainty. This method was then calibrated us-
ing DNS data of turbulent channel flow. Further calibration was undertaken, this time in the parameters
part of the modelling of the turbulent kinetic energy spectrum, to address the overprediction of pressure
fluctuations near the wall observed in the baseline model. Moreover, the turbulent annular flow was
used as the second flow only case, providing more complexity compared to channel flow, by adding
curvature, as well as another opportunity to test the hypothesis made.

Furthermore, the hypotheses underwent additional validation via FSI simulations, through a brass
beam in turbulent axial flow, showing a substantial decrease in the average difference from the experi-
mental data to 19% from a previous 68%, over the range of inflow velocities considered. Notably, the
calibrated AniPFM surpassed LES in accuracy while requiring fewer computational resources. The
results obtained are promising, but further validation is needed. This thesis also outlines and lays the
foundation for further validation work, through the setup and initial simulations of a flexible cantilever
rod in turbulent axial water flow.
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”The journey of a thousand miles begins with one step.”
Lao Tzu

Part I

Introduction

1



1
Introduction

Nuclear energy is a highly efficient source of power due to its high energy density per unit mass and vol-
ume [20]. This means that a small amount of nuclear fuel can produce a large amount of usable energy.
In addition to being a clean form of electricity generation (in terms of CO2 emissions), nuclear energy
has also made significant progress in terms of technology and applications. However, it is important to
properly handle the potentially hazardous chemicals involved in nuclear energy and to prioritize safety,
as demonstrated by the Chernobyl [21], Fukushima Daiichi [22], and Three Mile Island [23] incidents.
As the demand for energy increases and the earth’s average temperatures continue to rise [24], it is
necessary to reduce reliance on fossil fuels. While the development of fully sustainable energy solu-
tions is ongoing [25], nuclear energy will likely play a significant role in meeting our immediate power
needs [26]. To ensure the safety of nuclear reactors, all aspects must be carefully controlled and the
behavior of each system must be thoroughly studied under all potential conditions.

The coolant liquid, such as water or liquid metal, is an important aspect of nuclear safety, as it is
responsible for cooling the fuel rods. Fuel rods are submerged in the coolant liquid, which typically
flows axially over them to promote efficient cooling. However, this axial flow can also lead to Turbulence
Induced Vibrations (TIV) in the fuel rods, which can cause structural damage such as fatigue, wear [27],
and stress corrosion cracking. It is therefore crucial to consider the effects of TIV on fuel rod integrity
in order to ensure nuclear safety.

The study of Turbulence Induced Vibrations in fuel rods has been a topic of interest since the de-
velopment of nuclear reactors in the 1950s. It has been a cause of numerous incidents [28] and has
thus been the focus of numerous experiments and semi-empirical analyses. These analyses have at-
tempted to establish a relationship between the amplitude of vibration and various parameters such
as flow velocity and fluid density, as well as structural parameters such as the diameter of the fuel
rod, natural frequency, and damping ratio [29–31]. However, the results of these studies have shown
significant discrepancies between theory and experiment, with semi-empirical relations demonstrating
an accuracy of only one order of magnitude at best. Additionally, these studies have often only exam-
ined a single fuel rod, leading to uncertainty in the extrapolation of these semi-empirical methods to
situations involving multiple fuel rods in a bundle.

In recent years, the use of Fluid-Structure Interaction (FSI) simulations for studying fuel rods has
gained attention with the increasing availability of computational resources. While more accurate meth-
ods like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are still too computation-
ally expensive for full integration into an FSI simulation, Unsteady Reynolds-Averaged Navier-Stokes
(URANS) simulations have been explored for complex FSI simulations of TIV on fuel rods. URANS
based FSI simulations show good correlation with validation data in terms of frequency and damping
ratio, but they show an underprediction of the amplitudes of the displacement [32,33].

To address the challenges of accurately predicting TIV, Kottapalli et al. [17] proposed a Pressure
Fluctuation Model (PFM), which was integrated in the fluid side of NRG’s existing framework for FSI
simulations. The PFM simulates pressure fluctuations based on URANS data, which are then applied
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to the fuel rod as an external excitation for the Computational Structural Mechanics (CSM) solver. The
FSI simulations using PFM showed promising results with amplitudes of displacement of the same
order of magnitude as experimental data, but still lacked the desired level of accuracy.

To improve the prediction of pressure fluctuations, van den Bos et al. [34] improved PFM and call-
ing their new version called AniPFM (Anisotropic Pressure Fluctuation Model). AniPFM allows for
the reconstruction of anisotropic Reynolds stresses, represents only the resolved scales of velocity
fluctuations, and incorporates time correlation methods based on turbulence transport, among other
improvements. It was validated with two fluid cases and one FSI case. On the fluid side, AniPFM
showed a better representation of the energy near the wall, compared to its previous version. In terms
of the FSI validation, AniPFM shows much better results than before. While the results are promising,
AniPFM needs to be researched more to reduce its uncertainty, understand its dependency on certain
parameters and further improve it.

The current study aims at better understanding and further validating AniPFM as well as compare it
with other current methods for predicting TIV in fuel rods in terms of accuracy and computational cost.
This research hopes to enhance the understanding and modeling of TIV in nuclear reactor fuel rods to
ensure their safe operation.

1.1. Report structure
This report outlines the background and results of the work completed for this graduation project. The
report is organized into four parts, each corresponding to a different stage of the project:

Part I serves as the introduction to the work detailed in this report and includes an explanation of
the report’s structure. Chapter 2 outlines the research questions and objective, which were formulated
based on the literature study.

Part II covers the essential background information on subjects that are subsequently explored in
this project. Chapter 3 gives the reader a basic understanding of how a nuclear power plant works
and introduces the problems associated with flow induced vibrations in the reactors. This chapter
aims at showcasing the origin of the problem that the numerical approach taken in this thesis is trying
to simulate. Chapter 4 analyses the different approaches taken to study flow induced vibrations in
nuclear reactor settings: analytical, experimental and numerical. Since, the numerical approach is
the one of most relevance to this thesis, the following chapters cover the basis needed to understand
how to tackle the problem numerically. In Chapter 5, the basic principles of fluid-structure interaction
are laid out. These entail discussions on reference frames, governing equations, possible boundary
conditions at the interface of both domains and coupling algorithms. The framework used by NRG
in this context is also presented. Chapter 6 features an overview of turbulence modelling, which is
crucial for setting a strong foundation for the understanding of Chapter 7 where the topic of synthetic
turbulence is introduced and AniPFM is described to detail.

Part III discusses both the methodology carried out during the thesis as well as the results obtained.
It is compromised of four chapters, each one concerning a different validation case. The first two cases
are pure flow cases, whereas the latter two are FSI. In Chapter 8, the turbulent channel flow is analysed.
Chapter 9 steps up the complexity of the previous case by adding curvature in the form of the annular
channel flow. In Chapter 10, the first FSI case is presented, the brass beam in turbulent axial flow.
This is essentially annular flow, but now the beam is considered elastic. The results from AniPFM are
compared with other numerical approaches. Lastly, Chapter 11 covers the FSI case of a cantilever rod
in turbulent axial flow. In this case the beam is clamped on one end and free on the other unlike the
brass beam where it is clamped on both sides.

Part IV outlines the conclusions and suggestions derived from the project’s outcomes. Chapter 12
offers a comprehensive summary of the findings and insights garnered through the analysis of the
research taken. In Chapter 13, guided by the results and learnings from the current work, advice and
potential directions for forthcoming studies are proposed.



2
Research outlook

Building on the overview provided in the last chapter, this chapter outlines the research outlook for the
problem at hand. Based on a detailed review of the current literature, specific research questions have
been formulated to help steer this study in a focused direction. This is followed by the establishment of
a clear and concise research objective, which aims to maintain a structured and goal-oriented approach
throughout the research process.

2.1. Research questions
Following the literature study performed in the aim of this thesis, it was possible to formulate research
questions which are expected to be answered throughout the project.

• What are the optimal parameters of the AniPFM that maximize accuracy and reduce computa-
tional cost and uncertainty?

• What is the influence/sensitivity of the AniPFM input Reynolds stresses in the RMS of the gener-
ated velocity and pressure fluctuations fields?

• What is the accuracy and computational cost of NRG-FSIFOAM with AniPFM in simulating TIV
in fuel rods when compared to other state of the art methods?

2.2. Research objective
Research questions aid in defining the scope of the study, serving as tools to formulate hypotheses
or pinpoint gaps in the current body of knowledge. Conversely, research objectives are established to
outline clear and attainable goals, guiding the direction of the research process. The main research
objective of this thesis can be written as such:

“To delve into a comprehensive exploration of AniPFM to fully grasp its sensitivity to various
user-defined parameters. This endeavor aims not only to enhance understanding but
also to pinpoint the optimal set of parameters that can potentially reduce uncertainty and
increase accuracy in simulating near wall pressure fluctuations. ”In order to tackle a research objective, an approach should be defined, giving a clear reasoning for

pursuing given approach. In the case of this thesis, in order to achieve the goals mentioned, four cases
are used to study AniPFM: two fluid only cases, and two FSI cases. The first fluid case is the turbulent
channel flow. This case is chosen for the availability of high fidelity data and for being a standard in
studying wall bounded turbulence. The second case chosen is the turbulent annular flow. This case
increases the complexity of the flow by introducing the effect of curvature, while also being closer to
the flow over a fuel rod. Regarding the FSI cases, the two cases are: turbulent axial water flow in
an annular domain, where the flexible beam is clamped on both ends; and turbulent axial flow over a
cantilever rod, which is clamped on one side and free on the other. The former is chosen due to the
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availability of other numerical replications of the original experiment, as well as the simplicity of the
setup. The latter is chosen for the extensive data from the experiments performed as well as some
numerical replication of this setup.



”The only thing that you absolutely have to know, is the
location of the library.”

Albert Einstein

Part II

Theoretical Background

6



3
Nuclear reactors

This report is focused on fluid-structure interaction problems in nuclear reactors. A nuclear reactor is the
part of a nuclear power plant where nuclear fission reactions take place to generate heat. This heat is
subsequently captured and utilized to produce electricity: in the case of a Pressurized Water Reactor
(PWR), it heats a coolant which circulates around the reactor core, and this coolant is then used to
generate steam to drive turbines. The primary focus of our examination of fluid-structure interactions is
the reactor vessel, which houses both the core and the coolant. This chapter delineates the individual
components and architecture of a nuclear reactor, as well as the various classifications of flow-induced
vibrations present in such environments.

3.1. Components and Architecture
Nuclear reactors can be classified according to their generation and the type of coolant used. The
first generation of reactors, developed in the 1950s and 60s, included prototypes and early industrial
reactors intended to demonstrate their profitability. The second generation, started in the early 1970s,
aimed to be more competitive during the oil crisis. Third generation reactors, which currently constitute
the majority of those in use or under construction, prioritize safety and security in response to major
accidents like Chernobyl and Three Mile Island. Fourth generation reactors, which are currently in the
research phase, aim to increase power density, improve efficiency, and enhance sustainability. Another
possible way to classify reactors is in terms of the coolant used: common types of reactors include
PWRs, Boiling Water Reactors (BWRs), Gas Cooled Reactors (GCRs), Fast Breeder Reactors (FBRs),
and Pressurized Heavy Water Reactors (PHWRs). The most commonly used is the PWR. Figure 3.1
shows a sketch of this type of reactor.

7



3.1. Components and Architecture 8

Figure 3.1: Sketch of a Pressurized Water Reactor (PWR) [1].

The fuel rods can be seen in the reactor pressure vessel in Figure 3.1. Figure 3.2 shows a cross
section of the reactor vessel of a PWR. In a PWR, the primary coolant loop transports heat away from
the fuel rods via high-pressure, high-temperature water. This heat is subsequently transferred to a
secondary loop via a steam generator, where the water within the secondary loop is converted into
saturated and superheated steam through the absorption of heat from the primary loop. This steam is
then utilized to generate electricity through a turbine.

Figure 3.2: Sketch of the fuel rods in the reactor pressure vessel [2].

The focus of this thesis and literature review is the reactor pressure vessel, which houses the fuel
rods and is subject to fluid-structure interaction phenomena that can lead to vibrations. Other sources of
excitation within the steam generator should also exist. Nuclear power plants can exhibit different types
of flow. In steam generators, two-phase flow is often present, while the flow within the reactor pressure
vessel can be either single-phase, as in PWRs, or two-phase, as in boiling water reactors BWRs. For
the purposes of this thesis, only single-phase flow in the reactor pressure vessel or simplified versions
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thereof, such as the fuel rods, will be considered. Specifically, only axial flow will be taken into account
in order to narrow the scope of the study.

3.2. Flow induced vibrations
As previously mentioned, the coolant in the reactor pressure vessel can cause vibrations in the fuel
rods. These vibrations can have multiple contributing factors, and have been classified in order to
facilitate individual study and a better understanding of the underlying physical phenomena. Pettigrew
et al. [35] described and classified the different excitation mechanisms:

• Fluid elastic instability: fluidelastic instabilities occur when the dynamic forces induced by fluid
flow couple with the motion of structures, leading to instability when the flow velocity is high
enough for the absorbed energy from fluid forces to surpass the dissipated energy through damp-
ing. This type of instability often results in excessive vibration amplitudes and is characterized by
a critical velocity below which instability does not occur. While fluidelastic instability is generally
not a concern for nuclear components in axial flow due to the high flexural rigidity of these com-
ponents, it is a significant excitation mechanism for tube bundles in cross flow and can occur in
liquid, gas, and two-phase flows.

• Vortex induced vibrations: periodic wake shedding, which generates periodic fluid forces, can
occur downstream of structures subjected to cross flow. In case the frequency of the shedding
and the structure are similar, this can potentially lead to large vibration amplitudes if the vibration
response is sufficient to influence the mechanism of wake shedding. This phenomenon, called
Karman vortex shedding in the case of an isolated cylinder in cross flow, can also occur in closely
packed bundles of cylinders, although the specifics of this phenomenon are not fully understood.
Excessive vibration amplitudes due to vortex shedding resonance are more likely to occur in
liquid cross flows, where the periodic forces are relatively strong due to the high density of liquids,
compared to gas cross flows, where such amplitudes are rare except in the case of high density
gases.

• Turbulence induced vibrations: vibration excitationmay be induced by turbulence, these can be
caused by flow fluctuations around the structure of interest (near-field excitation), or by upstream
components such as inlet nozzles and elbows (far-field excitation). Turbulence-induced excitation
generates seemingly random pressure fluctuations on the surface of the component, leading to
vibrations. This is the primary excitation mechanism in axial flow and is also important in cross
flow, where it may cause long-term fretting wear damage through sustained vibration response, in
addition to the potentially catastrophic failure caused by fluidelastic instability and periodic wake
shedding. Turbulence-induced excitation should be considered in both liquid and two-phase cross
flow.

• Acoustic resonance: acoustic resonancemay occur in tube bundles when the frequency of wake
shedding coincides with the natural frequency of the acoustic cavity formed by the surrounding
structures. This correlation between shedding and resonance can result in intense acoustic noise,
which can cause structural damage. Acoustic resonance can also occur in axial flow, such as in
the main steam lines of nuclear power plants. Fluctuations in sound pressure, often stemming
from sources like pumps or noise from pipe components like valves, can lead to an acoustic
resonance in specific segments of the piping network. If the resonance frequency aligns closely
with the structure’s inherent frequency, it can result in pronounced vibrations.

All of the aforementioned excitation mechanisms are active areas of research within nuclear engi-
neering. However, the focus of this literature study and thesis is to improve the pressure fluctuation
model used to model turbulence-induced vibrations. Therefore, only this particular excitation mech-
anism (TIV) will be considered in this study and subsequent thesis. Specifically, the analysis will be
limited to nuclear fuel rods, similar elements, or simplified versions thereof, subjected to single-phase
axial flow.

Furthermore, Weaver et al. [28] provided an alternative classification of fluid-structure interaction
excitation mechanisms based on their method of production. The categories are as follows below.
This classification is being mentioned in this report due to appearing in some relevant papers for TIV.
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• Extraneously Induced Excitation (EIE): this kind of FIV arises from fluctuations in the fluid that
are not influenced by the movement of the structure.

• Instability Induced Excitation (IIE): sometimes, FIV originates due to flow instabilities that are in-
herently tied to the flow field shaped by the structure itself. Vortex-induced vibrations are a great
example. There are mechanisms that might even further amplify the excitation, like fluid reso-
nance or fluid-elastic feedback. A common example is the ”lock-in” effect, where the frequency
of vortex shedding aligns with the structure’s natural frequency, which leads to resonance of the
structure. Such an effect can manifest even at different frequencies, especially in the context of
rotating structures.

• Movement Induced Excitation (MIE): FIV might also be triggered by variable forces originated
from the motions of the oscillating structure. Such vibrations are typically termed ”self-excited”.

In terms of this classification, EIE (turbulent buffeting) is of the most interest. However, for some
experiments such as Cioncolini et al. [18] it will be seen that MIE are also relevant.



4
FIV in fuel rods

This chapter offers a review on the existing literature concerning the study of fuel rod vibrations induced
by axial flow. The content is organized by the different approaches use to study this complex field:
analytical, experimental and numerical.

4.1. Analytical approaches
Païdoussis [36] pioneered the investigation of the linear equation of motion governing slender flexible
cylinders in confined axial flow, considering various boundary conditions such as clamped-clamped and
clamped-free configurations. Subsequently, numerous researchers, including Rinaldi [37], Ricciardi et
al. [38], Chen [39], Basile [29], and Pettigrew [35], expanded upon Païdoussis’ theory, refining the
expression for fluid forces acting on the slender body.

The equations that are used in the analytical models will be derived and explained. From Equation 4.1
and Equation 4.2, Euler-Bernoulli static beam theory is derived, which relates the deflection of the beam,
y(x), and the applied load, q, as it can be seen in Equation 4.3. M represents the bending moment, E
stands for the elastic modulus, and I is the second moment of area of the cross section of the beam,
which remains constant along its length. When the load, q, is removed, the inertia of the beam will
cause it to vibrate around the initial position.

M = EI
d2y

dx2
(4.1) q =

d2M

dx2
(4.2)

q =
d2

dx2

(
EI

d2y

dx2

)
(4.3)

The load is then given by the inertial force on the beam, which is shown in Equation 4.4.

q = −mrod
d2y

dt2
(4.4)

From Equation 4.3 and Equation 4.4, a differential equation that governs the motion of the free
vibration of a slender beam with a uniform cross-section is derived, as shown in Equation 4.5. Here,
y = y(x, t) represents the deflection at a certain time, t, and location, x. The equation combines the
effects of bending stiffness (represented by the first term) and the inertial properties (represented by
the second term) of the beam.

EI
d4y

dx4
+mrod

d2y

dt2
= 0 (4.5)

The solution to this ODE will provide the natural frequencies, fN = ωN /2π, and corresponding mode
shapes, ỹN (x), of the vibrating beam. These natural frequencies and mode shapes represent the
unique oscillation patterns that the beam can undergo without external excitation. The general solution
is shown in Equation 4.6, where the coefficients a are given by Equation 4.7.
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y(x) = C1e
ax + C2e

−ax + C3 sin ax+ C4 cos ax (4.6)

a =
4

√
mrodω2

N

EI
(4.7)

For example, in the case of a beam that is free on one end and clamped on the other, it is clear
that both the bending moment and shear stress are zero in the free end, which allows us to simplify the
equations. This is depicted in Equation 4.8 and Equation 4.9, respectively.

M = 0 ⇒ d2y

dx2
= 0 (4.8)

S = EI
d3y

dx3
= 0 ⇒ d3y

dx3
= 0 (4.9)

From the boundary conditions above, the approximate solutions that satisfy such conditions are
presented in Equation 4.10 and Equation 4.11, where cN is the natural frequency parameter. The
modes shapes and frequencies for the cantilevered beam can be seen in Figure 4.1.

ỹN

( x
L

)
= y0

(
1− cos

(πx
2L

))
(4.10)

fN =
c2N

2πL2

√
EI

mrod
(4.11)

Figure 4.1: Modes shapes and natural frequencies of the first threemodes of a straight slender clamped-
free beam [3].

In the case of the vibrating beam, the fluid forces are divided into a mean and a fluctuating com-
ponent, F = F + F ′. The mean component represents the mean hydrodynamic force, whereas the
fluctuating component results from the fluid fluctuations, which in the case a fuel rod submerged in
fluid flow arise from near wall turbulence. The equation of motion that describes the forced vibration
of a uniform slender beam is shown in Equation 4.12, where F d represents the damping forces, and
F e represents the exciting forces per unit length acting normal to the beam axis. The challenge lies in
obtaining an accurate expression for the excitation force of the fluid on the beam.

EI
d4y

dx4
+mrod

d2y

dt2
= F = F d + F e (4.12)

Païdoussis [40] further developed his analytical models, but for conciseness of this report the dis-
cussion of his research will not be expanded upon as the introduction has been given. While his model
is able to obtain a good expression for F , it fails to obtain an expression for F ′ (as other analytical mod-
els that are based on equations of motion). Consequently, the model does not account for fluctuations
in the pressure field, and thus is not able to predict turbulent buffeting.

To enhance the model’s capabilities, Chen [39] extended it to accommodate viscoelastic materials,
considering material viscosity and its viscous damping effect. The extension incorporates coefficients
for the vibration of the cylinder in a case of a single concentric annulus as well as multiple cylinders.
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Basile [29] devised a different approach, whereby based on experimental data, an expression for
the dimensionless amplitude of vibration was obtained as a function of non-dimensional flow param-
eters. Furthermore, Wambsganns [31] used a similar approach to Basile but instead of obtaining the
exponents for the non-dimensional flow parameters that are part of the equation by curve fitting the ex-
perimental data, they obtained them based on random vibration theory. Païdoussis [30], who also did
some work using this approach (with curve-fitting to experimental data), concluded that the maximum
order accuracy of these methods is roughly one order of magnitude. These methods are based on
the measurement of turbulence statistics upstream of the model being studied, which means that the
accuracy is highly dependent on whether the model it is being applied to was part of the curve fitting
data or not.

4.2. Experiments
FIV prediction often relies on experimental approaches. There are several studies investigating the
influence of tapered shapes on cantilever beams subjected to axial flow [4, 18, 41–44]. The effect of
far-field disturbances has also been considered [29,45]. Non-invasive velocity measurement methods,
particularly Particle Image Velocimetry (PIV), accompanied by simultaneous displacement or pressure
measurements, have been widely used in current literature to predict FIV frequencies [18,46,47].

An early study by Païdoussis examined the influence of cantilever end shape on cylinder dynam-
ics [4,42]. Further detailed experiments were conducted with flexible cylinders placed horizontally (de-
picted in Figure 4.2) and vertically, demonstrating that streamlined-end shapes stabilize the structures
at significantly lower velocities than blunt-end shapes. The lift force dominated an ideally streamlined
end, whereas for a blunt-end, the lift force was compensated by the viscous force in the longitudinal di-
rection. Rinaldi and Païdoussis [44] also investigated the influence of end shape and found that variant
end shapes did not significantly affect the cantilever’s dynamic response. Similarly, Divaret et al. [41]
studied fluid forces on a yawed cylinder and observed that normal forces varied linearly with the angle
of inclination, primarily dominated by the lift component.

Figure 4.2: Schematic view of the experimental apparatus of the experiment conducted by Païdoussis
in 1966 [4].

Experiments in 2018 by Cioncolini et al. [18] tested two opposite beam end shapes, blunt-end,
and curved end, revealing that below a certain critical velocity, beam end shape had no influence
on cantilever dynamics. However, above the critical velocity, the movement of the rod perturbed the
flow field, leading to increased vibration amplitudes. Far-field flow noise, especially from pumps, was
found to contribute to increased vibration amplitudes as well, and system parameters such as flow
asymmetry and clearance played a significant role in vibration amplitudes. The test rig setup for these
experiments was tailored to study FIV in nuclear fuel rods under water-cooled reactor flow conditions,
providing valuable data for benchmarking CFD and FSI models. This setup will be analyzed with more
detail later on the report, as it is considered to be one of the most promising cases for validation of
AniPFM and the whole NRG in-house FSI framework.

Higuchi et al. [47] studied the flow separation at the leading edge of a blunt cylinder and found large-
scale vortices impinging on the rod, resulting in low-frequency oscillations. Furthermore, Camussi et
al. [48] highlighted that pressure fluctuations near the wall were higher in forward-facing step geometry
than in backward-facing steps.

Overall, these experimental studies have significantly contributed to understanding FIV of fuel rods
and the influence of various factors on the dynamic behavior of structures under axial flow conditions.
The results have practical implications for design and safety considerations in nuclear reactors.
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4.3. Numerical approaches
In Chapter 1, a small introduction was given in the use of FSI simulations to address the challenge of
studying FIV in fuel rods. This introduction was mainly given to mention AniPFM, which motivates this
literature study. In this subsection, a broader overview will be given on the various numerical models
developed to study flow-induced vibrations in nuclear fuel rods. Focus will be given to other approaches
other than PFM or AniPFM.

Liu et al. [49,50] utilized a simplified approach in which the fluid forces on a fuel rod were calculated
using LES and the fuel rod was approximated using a one-dimensional beammodel. Another approach
involves simulating the fluid using LES while treating the rod as fixed, and then applying the resulting
fluid forces to the rod in a subsequent CSM code [51–53].

DeRidder et al. [32] determined the modal characteristics of a flexible cylinder in turbulent axial flow
from URANS simulations, which was later confirmed and extended from one rod to a bundle of fuel
rods [33]. Although URANS simulations allowed to determine the eigenmodes of the rods for TIV, the
amplitude of the vibrations were underpredicted. However, recently, URANS simulations with Reynolds
Stress Models (RSM) showed good results when compared to experimental data of a steel cantilever
rod in turbulent water axial flow, both for the amplitudes and frequency [19]. This will be analyzed later
in the report.

A comprehensive study by Christon [51] evaluated three turbulence models: LES, Detached Eddy
Simulation (DES), and URANS, with mesh refinement. The LES model provided adequate force fluctu-
ations and was applied on the fluid side with rigid structures. The computed flow-induced forces were
transferred to vibration analysis software for nuclear fuel rods. The study provided valuable insights
into LES flow simulation for fuel assembly design and was validated against PIV experimental results.

The paragraphs above contain a brief summary of the most impactful state of the art numerical
approaches to simulating FIV in fuel rods. While numerical simulations open doors for faster, more
reliable and safer ways of studying physical phenomena, they also need to be properly validated. In
this paragraph, focus will be given to the recent application of Uncertainty Quantification (UQ) to the
study of FIV in fuel rods. Numerical research mostly focuses on idealized geometries, while real fuel
assemblies deform due to various factors [35,54]. Recent work acknowledges that in order to achieve
more realistic FIV predictions, further developments are needed, for example, considering uncertain-
ties associated with fuel assembly deformations [55]. Besides this, UQ methods play a crucial role
in improving simulation confidence. Experimental setups involve inherent uncertainties, complicating
numerical validation. By accounting for these uncertainties and propagating them through the model,
it becomes possible to predict the expected deviation when comparing with experimental results. This
approach enhances simulation accuracy, considering both experimental and numerical uncertainties.
Liu et al. [56] established tolerance limits for experimental results of a natural convection lead-bismuth
eutectic test-loop using UQ methods. They quantified uncertainties in the simulation results, providing
reliable tolerance limits for experimental data. Dolfen et al. [55] investigated the impact of random bow
deformation on tube vibration using the Polynomial Chaos method, predicting the stochastic modal be-
havior of the deformed tube. These studies demonstrate the valuable applications of UQ methods in
FIV research, improving the reliability and accuracy of numerical simulations.



5
Fluid-structure interaction

As previously noted in Chapter 1, the literature review for this study focuses on identifying literature that
can aid in improving the prediction of vibration amplitudes in nuclear fuel rods experiencing axial flow
through FSI simulations. To effectively simulate fluid-structure interaction, a thorough understanding of
the basic principles of FSI is necessary to inform the selection and justification of appropriate method-
ologies. This chapter will discuss the fundamental physics of FSI, reference frameworks, the boundary
conditions between fluid and structure, and coupling algorithms. Furthermore, a review of the current
NRG framework will be presented, along with the validation of the framework.

5.1. Reference frames
The form of the governing equations for FSI can be affected by the reference frame in which they are
expressed. Although the equations remain valid regardless of the reference frame, the chosen frame
can significantly impact the complexity of the equations. Therefore, it is crucial to select a reference
frame that results in the simplest form of the governing equations, and that makes them easily un-
derstandable. This section will present a review of the three most commonly used reference frames
in structural dynamics, fluid dynamics, and the interaction between the two, that are deemed most
suitable to describe the FSI phenomena.

5.1.1. Lagrangian approach
The Lagrangian reference frame entails a fixed observer’s frame of reference that is anchored to the
material domain and tracks a designated set of material points within it. This observer’s frame moves in
correspondence to the displacement and deformation of the selected material particles. In numerical
simulations, grid points are established at designated material points, which are generally selected
from the initial spatial domain. However, as the spatial domain alters in response to movement and
deformation, a mapping function is necessary to correlate the material domain to the spatial domain.

One of the key benefits of the Lagrangian reference frame is its capability of implicit treatment of
moving boundaries, as the material points are fixed in the observer’s reference frame. Additionally, it
does not require accounting for convective terms, as it follows the material particles. However, a limi-
tation of this reference frame is that the mapping function must be well-defined, thus it has a constraint
on the maximum deformation that can be mapped.

Given these properties, the Lagrangian reference frame is frequently employed in the field of struc-
tural mechanics where deformations are relatively minimal and the mapping function remains well-
defined.

5.1.2. Eulerian approach
In the Eulerian reference frame, the observer is fixed at a designated spatial location and uses the
spatial domain as its frame of reference. Material properties are calculated at specified points within
the domain, regardless of the movement of the material. To measure the variation of a material property
over time at a fixed spatial location, it is necessary to take into account both the change in the property
at that location and the change due to the convection of the material.

15
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One of the main advantages of the Eulerian frame of reference is that it can handle any deforma-
tion as there is no mapping function between the material and the spatial domain. However, special
techniques are required to obtain information about boundaries, as there is no boundary description
of the material. This framework is commonly utilized in fluid dynamics, where large deformations are
often encountered.

5.1.3. Arbitrary Lagrangian-Eulerian approach
The Arbitrary Lagrangian-Eulerian (ALE) reference frame combines aspects of both the Lagrangian and
Eulerian reference frames. The observer utilizes a referential domain that moves its frame of reference,
but not necessarily at the velocity of the material. Instead, it moves at an arbitrary velocity, resulting
in a mesh motion and a material motion in the spatial domain. The velocity of the fluid grid is only
determined by the velocity of the structure at the interface of the fluid and the structure.

The geometry is fixed for the observer, but the material can move relative to the referential domain.
The material velocity is defined with respect to the referential domain, and the movement of the referen-
tial domain with respect to the spatial domain is referred to as the mesh velocity. The main advantage
of this method is that the fluid and structural grid do not overlap, as the mesh motion is coupled at the
fluid-structure interface. This yields a Lagrangian frame of reference for the structural domain.

The comparison between the different reference frames can be seen in Figure 5.1.

Figure 5.1: The comparison between the Eulerian, arbitrary Lagrangian-Eulerian (ALE) and Lagrangian
formulation. The lines represent the grid and the shaded grey areas represent a certain amount of
material [5].

5.2. Governing equations
To solve fluid-structure problems numerically, two different approaches can be taken: monolithic and
partitioned [57]. The monolithic approach employs a single solver to simultaneously solve both the fluid
and structure equations, making it well-suited for fully coupled problems. However, this approach is
problem-specific and lacks modularity, making it less viable for situations involving weak or moderately
strong coupling.

Alternatively, the partitioned approach employs coupling algorithms to link separate, ”black-box”
solvers for the fluid and structure equations. This method involves active data exchange through one-
way or two-way mapping, allowing for adaptability to changing boundary conditions. However, the
numerical scheme employed in the coupling algorithm can introduce errors into the simulation. De-
spite this, the partitioned approach is generally considered to be more flexible, making it a viable option
in current applications. Thus, it will be the one considered in this chapter. In this section, the govern-
ing equations for the fluid and structural dynamics will be analysed as well as the conditions for their
interface.

5.2.1. Fluid dynamics
The governing equations of fluid dynamics are the conservation of mass, momentum and energy. In
order to close this set of equations, an equation of state is needed. This equation relates the density,
pressure and temperature of the fluid. The full equations for the conservation of mass and momentum
are presented in Equation 5.1 and Equation 5.2, respectively. These equations are called the Navier-
Stokes (NS) equations, and are currently presented in the Eulerian reference frame. In the equations,
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ρ is the density, ui is the velocity in direction i, p is the pressure, τij is the viscous stress tensor given
by Equation 5.3 and fi is the sum of the forces in direction i.

∂ρ

∂t
+
∂ρui
∂xi

= 0 (5.1)

∂ρuj
∂t

+ ui
∂ρuj
∂xi

= − ∂p

∂xj
+
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+ ρfj (5.2)
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3

∂uk
∂xk

)
(5.3)

The Navier-Stokes equations can be further simplified depending on the circumstances. For our
application, of cooling liquid in nuclear reactors, the fluid can be considered to be incompressible and
of constant density. Thus, the equations can be rewritten as Equation 5.4 and Equation 5.5.

∂ui
∂xi

= 0 (5.4)

∂uj
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+
∂uiuj
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= −1

ρ

∂p

∂xj
+

1

ρ

∂τij
∂xi

+ fj (5.5)

As demonstrated, the conservation of mass for incompressible and constant density flow is simpli-
fied to the divergence of the velocity field. This equation, being no longer time-dependent, is commonly
referred to as the ’divergence constraint’ as it imposes a constraint on the momentum equation for the
velocity field. Furthermore, following from this constraint, the last term in the equation Equation 5.3
drops out. The assumption of incompressible flow also results in the decoupling of the energy equation
from the momentum equation, rendering the energy equation unnecessary in the solution process.

The equations stated above are presented in the Eulerian reference frame. However, as it was
concluded above, the ALE is a better approach for the current application and thus the Navier-Stokes
equations for this reference frame are now shown in Equation 5.6 and Equation 5.7. Here, ci is the
convective velocity, which is equal to ui - ûi, where ui is the material velocity with respect to the spatial
domain and ûi is the mesh velocity with respect to the spatial domain.

∂ci
∂xi

= 0 (5.6)

∂uj
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∂ciuj
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= −1

ρ
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+

1

ρ

∂τij
∂xi

+ fj (5.7)

As it can be seen above in Equation 5.7, the momentum equation of the Navier-Stokes equations
contains a nonlinear differential term, ∂ciuj

∂xi
. This nonlinearity present in the NS equations makes them

particularly challenging to solve. It is necessary to recur to assumptions in order to solve them for most
applications of interest. These assumptions and their consequences will be explained thoroughly in
Chapter 6.

5.2.2. Structural dynamics
The Cauchy equation of motion [58] is a fundamental equation in structural dynamics that describes
the motion of a mechanical system under the influence of external forces and internal constraints. This
equation is derived from the principle of conservation of linear momentum and is commonly used to
analyze the dynamics of structures. The equation is given in Equation 5.8, where u is the displacement,
σS is the stress tensor and gs is the specific body force on the structure. The equation is written in the
Lagrangian formulation, which in the structural domain coincides with the ALE formulation.

ρ
∂2u

∂t2
−∇ · σs = ρgs (5.8)

Some assumptions can be made for certain cases to simplify this equation. The linear elastic be-
haviour assumption states that the stress tensor is related to the strain tensor through Hooke’s law [59].
The linear elasticity assumption is valid when the stress-strain behavior of the structure is linear and
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the elasticity of the structure is not influenced by the magnitude of the stress. Hooke’s law is presented
in Equation 5.9 [59], where Cijkl is the stiffness tensor and ϵkl is the strain tensor.

σij = Cijklϵkl (5.9)

Furthermore, the strain tensor can be approximated by the small displacements assumption, which
is related to Equation 5.10. The small displacement assumption is valid when the displacement of each
point of the structure is much less than the dimension of the structure.

ϵ ≈ 1

2

[
∇u+ (∇u)T

]
(5.10)

5.2.3. Interface conditions
The interface between the fluid domain ΩF and the structural domain ΩS is a critical aspect of the
fluid-structure interaction problem, and must be well-defined to obtain a well-posed problem. The fluid
exerts a force on the structure, and the movement of the structure in turn affects the flow field in the
fluid domain. This information is transmitted through the interface of the two domains, ΓFS , by means
of two interface conditions, which are explained below. The interface can be visualized in Figure 5.2.

• Kinematic Boundary Condition: this condition arises from the no-slip boundary condition at the
interface, and means that the fluid molecules at the interface are ”attached” to it and thus have
the same velocity as the structure. The kinematic boundary conditions are given by Equation 5.11
and Equation 5.12.

xF = uS (5.11)

uF =
∂uS

∂t
(5.12)

• Dynamic boundary condition: this condition stipulates that the traction at the interface between
the structure and the fluid must be in equilibrium. This requirement for equilibrium is achieved
through a force balancing operation. In other words, the forces exerted on the fluid side of the
interface must be equal and opposite to those exerted on the structural side. This ensures that
the overall system remains in a state of mechanical equilibrium, which is crucial for the accurate
prediction of the behavior of the structure and the fluid. The dynamic boundary condition is shown
in Equation 5.13.

σF · nF = −σS · nS (5.13)

Figure 5.2: Sketch of the interface between a fluid and structure domain [6].
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5.3. Coupling algorithms
The governing equations from structural and fluid domains need to be coupled to each other. This allows
them to exchange information through their interface, and thus allowing for the solution of a coupled
FSI problem. As it was mentioned before, the partitioned approach is preferred over the monolithic. In
this approach, both the structural and fluid solvers are seen as black boxes.

There are several ways to couple the two solvers. One way to choose the coupling algorithms
is based on the strength of the coupling. Couplings can be distinguished as weak or strong. For
weakly coupled problems, explicit algorithms are usually used, whereas for strongly coupled problems,
implicit algorithms are used. The difference between both is that explicit algorithms only solve these
equations once per time step, whereas implicit algorithms make use of sub-iterations. This difference in
approach has important implications for the accuracy and stability of the solution. Specifically, because
explicit algorithms only solve the equations once per time step, the equilibrium conditions are not exactly
imposed. As a result, the time step size must often be kept small to ensure stability. For the application
of this thesis of nuclear fuel rods submerged in liquid coolant, the problem can be considered strongly
coupled due to the low densities ratio (ρS /ρF ). Thus, the methods that will be considered are the implicit.
Some of the most popular implicit coupling methods are Gauss-Seidel, Jacobi and Newton-Raphson
methods.

(a) Conventional Parallel Staggered (CPS) (b) Conventional Serial Staggered (CSS)

Figure 5.3: Explicit CPS and CSS algorithms which are the basis of Jacobi and Gauss-Seidel implicit
coupling algorithms [7].

5.4. NRG application
In the previous sections, the theory and possible algorithms behind FSI simulations were discussed.
Now, the framework for FSI simulations at Nuclear Research & consultancy Group will be discussed.
This framework has been used for simulating axial flow in fuel rods, but was validated with multiple
cases, not only from this domain. This framework was first introduced and validated by Kottapalli et
al. [17] with the novel application of a pressure fluctuations model to nuclear applications. Then, De
Santis et al. made some adjustments and further validated the framework [33]. They called it the
NRG-FSIFOAM framework. Furthermore, van den Bos [34] performed some crucial changes in the
PFM model validated the new model. However, the changes that van den Bos et al. performed were
not regarding the FSI coupling or algorithms, instead they were purely related to the PFM. Thus, the
validation performed by De Santis et al. is still relevant and is the one that will be presented in the
following sections (note that the FSI case performed by van den Bos is still useful and will be analyzed
later on the report).

5.4.1. NRG-FSIFOAM specifications
This framework uses a partitioned approach. The finite volume Open-FOAM solver [60] is utilized to
solve the governing fluid equations using a PIMPLE algorithm, which is a combination of the classical
PISO [61] and SIMPLE [62] algorithms. The consistent second order backward difference scheme
(BDF2) developed for moving grids is employed for time integration. The fluid mesh is deformed using
radial basis function interpolation. For the turbulence cases, URANS is used with k−ω SST turbulence
model. Then, there is also the PFM model, which allows to simulate the pressure fluctuations that
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URANS with an eddy viscosity model (EVM), like the k − ω SST cannot simulate. These fluctuations
will act as an excitation mechanism on the structure. The reasoning behind the implementation of this
model is to simulate the effect of the pressure fluctuations on the structure without having to use higher
fidelity methods such as LES or DNS. The working principles of the PFM model will be explained in
Chapter 7.

On the other hand, the governing equations for the solid problem are solved using the finite el-
ement approach implemented in the Deal.II library. Linear finite element approximation is used to
semi-discretize the governing equations in space, and the θ-method is employed for time integration.

The fluid and solid solvers are coupled through the preCICE library [63] for solving FSI problems,
with radial basis functions used to map displacements and forces between the two meshes. A parti-
tioned, parallel implicit coupling solver is used to solve the FSI problem, with quasi-Newton acceleration
methods, specifically the IQN-ILS method.

Figure 5.4: Sketch of NRG-FSIFOAM framework with PFM included.

5.4.2. Validation of NRG-FSIFOAM
The NRG-FSIFOAM framework has been extensively tested and validated through a variety of test
cases. One of the most well-known benchmarks in the field of fluid-structure interaction, the Turek &
Hron case [64], was simulated using the NRG-FSIFOAM framework and the results were compared to
those obtained by Turek & Hron in their original study. Another laminar case studied was the experi-
mental freely vibrating rod case [65], which consists of a beam in laminar axial flow.

Additionally, the NRG-FSIFOAM framework was compared to the previously validated FSI frame-
work of STAR-CCM+ in simulating vibrating bare and wire-wrapped rods. The results from both frame-
works were found to be similar, further demonstrating the capabilities of the NRG-FSIFOAM framework.

In yet another validation test, the framework was used to replicate an experimental study by Liu et
al. [66], in which a cantilever beam was subjected to turbulent axial flow. The simulation results were
in good agreement with the experimental data for modal quantities.

5.5. Summary
In this chapter, a review of FSI theory was given as well as the application of these concepts in NRG’s
framework for simulating turbulence induced vibrations in nuclear applications. First, a big picture look
at FSI was given, in the form of reference frames, governing equations for fluid and structural dynamics
and interface conditions. Then, coupling algorithms were discussed. Implicit algorithms were deemed
as the most fitting for the use case of this thesis, as they perform better than explicit algorithms for
strongly coupled problems. NRG’s framework, NRG-FSIFOAM, was then presented. This framework
makes use of open source tools such as OpenFOAM, deal.II and preCICE, to build a working FSI
setup. The use of OpenFOAM allows user development and integration of their own modules, en-
abling the integration of AniPFM. Moreover, deal.II, through its class based approach to finite element
codes, was used to develop a linear finite element method code for the structural dynamics. Since,
for turbulence induced vibrations the non-linear effects are not significant, a linear based model was
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constructed. Furthermore, preCICE, which includes implicit coupling algorithms with quasi-Newton ac-
celeration, and adapters for OpenFOAM as well as deal.II, serves the function of the ’middle man’ in the
current framework, providing coupling between the fluid and structural dynamics codes. Moreover, this
framework has been extensively validated, mainly with use cases in the domain of turbulence induced
vibrations. The technical aspects of the framework alongside its validation repertoire make it suitable
for its use during this thesis.



6
Turbulence modelling

In the previous chapter it was seen that in order to simulate turbulence induced vibrations, there was a
need to implement a PFM model. In order to fully understand this model and improve it, it is necessary
to have an in-depth knowledge of fluid mechanics, in this particular case, of turbulence. Thus, in
this chapter, the turbulence characteristics are reviewed, the different methods of solving/modelling
turbulence are presented and the governing equation of the pressure fluctuations is derived.

6.1. Turbulence - background
Turbulence is a fascinating and complex phenomenon that has captivated researchers for centuries. As
stated by Richard Feynman, ”Turbulence is the most important unsolved problem of classical physics”.
The study of turbulence involves understanding the seemingly random and chaotic behavior of fluid
flows, and the vast range of scales over which this behavior occurs.

One of the main challenges in understanding and modeling turbulence is the wide range of spatial
and temporal scales involved. Turbulent flows are characterized by eddies of varying sizes, from large-
scale vortices down to small-scale fluctuations. Understanding the interactions between these eddies
and how energy is transferred between them is crucial to developing accurate models of turbulent flows.

Another challenge is the non-linearity of the equations that govern turbulent flows, the Navier-Stokes
equations. These equations are highly non-linear and non-local, making it difficult to obtain exact
solutions.

6.1.1. Characteristics
Although turbulence is very complex, some of its qualitative features are common among turbulent
flows. Tsinober [67], based on Tennekes & Lumley [68], analyzed some of these features:

• Chaos: turbulence is a chaotic phenomenon characterized by intrinsic spatio-temporal random-
ness and irregularity. One of themost important aspects of turbulence is its inherent self-stochastization.
Provided that the Reynolds number is high enough there is no need to external random forcing
on the flow or its boundaries, or even random initial conditions. Turbulence is extremely sensi-
tive to disturbances (in initial conditions, boundary conditions or external noise). This is because,
turbulence acts as a self-amplifier with almost infinite gain, which explains the intrinsic chaos.

• Wide range of strongly interacting wave numbers: turbulent flow applications in nuclear have
relevant scales that range frommeters to millimeters. This interaction between the different length
scales happens mostly due to the nonlinearity of the NS equations. Due to the large range of
length scales, their interactions, and the above chaotic intrinsic behaviour of turbulent flows, a
statistical approach is usually taken to analyze them.

• Statistical stability: on a qualitative or even quantitative non-statistical aspect, two turbulent flows
nearly identical will show different quantities in everything. However, if a statistical approach is
taken, these two flows will show the same statistical properties. This means, that the statistical
properties of turbulent flows are insensitive to disturbances, which means statistical stability.
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• Highly dissipative: turbulent flows are extremely dissipative, which means they carry a lot of strain.
Thus, there is a need for a source of energy for turbulence, which happens at low wave numbers.
On the other hand, at high wave numbers (small scales) is where dissipation occurs. This concept
will be discussed in the following section.

• 3D and rotational: turbulence shows vortex stretching, which is associates with productions of
enstrophy, ω2, by nonlinear inertial processes. This is characteristic of the large scales and it is not
predominant in smaller scales due to viscosity. As a result of vortex stretching, there is production
of strain. Both the production of enstrophy and strain are a result of self-amplification of velocity
derivatives. For engineering applications, turbulence is always a 3D phenomenon, since for 2D
there is no mechanism for vortex stretching. This results in 2D in small scales merging with large
scales and forming even larger scales, whereas in reality (3D), the large scales break up into
smaller scales.

• Strongly diffusive: Turbulent flows show significantly increased transport of momentum, energy
and passive objects.

6.1.2. Energy cascade concept
The idea of the energy cascade was introduced by Richardson [69] in 1922. It states that kinetic energy
enters turbulence at the large scales through productions. Then, this energy is transferred, through
inviscid processes, from the big scales to smaller and smaller scales, until it is dissipated by viscous
processes by the smallest scales. Although, Richardson was the first one to introduce the concept of
energy cascade, he only analyzed it in macro perspective and was not able to answer some questions
such as: what is the length scale of the eddies responsible for dissipation of the energy? What is the
relation between the length scale and the characteristic velocity and time scales? Kolmogorov [70] , in
the form of three hypothesis, answered those questions and more:

• Kolmogorov’s hypothesis of local isotropy
Kolmogorov argued that while the large scales are anisotropic, the direction bias information is
lost in the scale-reduction process, where the energy from the large scales is transferred to the
smaller scales. Thus, for sufficiently high Reynolds number turbulent flows, the small scales mo-
tions are locally isotropic.

• Kolmogorov’s first similarity hypothesis
Kolmogorov argued that not only is the direction bias not transferred along the cascade, but
actually all information regarding the geometry of the larger eddies is not transferred down the
cascade. Thus, the small scale motions can be considered statistically similar in flows with the
same Reynolds number. For the small scales, the two important mechanisms are the transfer of
energy to successive smaller scales and the viscous dissipation. Thus, two important parame-
ters are the energy transfer rate, which can be approximated by the dissipation rate ϵ and ν.To
summarize, for sufficiently high Reynolds number flows, the small scale motions have a universal
form that is characterized by ϵ and ν.

• Kolmogorov’s second similarity hypothesis:
From the first similarity hypothesis, Komolgorov, using ϵ and ν defined expressions for the length,
velocity and time scales, of the smallest scales which are also known as Komolgorov scales.
These are shown in Equation 6.1, Equation 6.2 and Equation 6.3.

η ≡
(
ν3/ε

)1/4 (6.1)

uη ≡ (εν)1/4 (6.2)

τη ≡ (ν/ε)1/2 (6.3)

Furthermore, from the definitions of the Kolmogorov scales and the scaling ϵ ∼ u30/ℓ0, the ratios
of the smallest to the largest scales were obtained, as it can be seen in Equation 6.4, Equation 6.5
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and Equation 6.6. From this relations, it can be seen that for very high Reynolds numbers, the
ratio between the small scales and the large gets very low, which means η << l0. Kolmogorov
concluded that there must be a third range of scales in between the large and small scales.

η/ℓ0 ∼ Re−3/4 (6.4)

uη/u0 ∼ Re−1/4 (6.5)

τη/τ0 ∼ Re−1/2 (6.6)

The third range mentioned above is the inertial range. It was given this name since inertial forces
are predominant in this range and viscous forces are negligible. A sketch of the energy cascade at
very high Reynolds numbers is presented in Figure 6.1.

Figure 6.1: Sketch of the energy cascade at very high Reynolds numbers [8].

Energy spectrum
One way of interpreting the energy cascade is through the turbulent kinetic energy spectrum. Tur-

bulent kinetic energy can be defined as Equation 6.7. Or, in wave number terms as Equation 6.8. The
wave number κ can be written in function of the length scale of an eddy as κ = 2π/l.

k =
1

2
u′iu

′
i (6.7)

k =

∫ ∞

0

E(κ)dκ (6.8)

From Kolmogorov’s first hypothesis it follows that, in the universal equilibrium range (dissipation
and inertial range), the spectrum is a function of ϵ and ν. From the second hypothesis, it follows that,
in the inertial range, the energy spectrum is given by Equation 6.9, where C is a universal constant.

E(κ) = Cε2/3κ−5/3 (6.9)

Homogeneous isotropic turbulence (HIT) is a special case of turbulence. Homogeneity implies
that that the turbulence properties are independent of the reference location [8]. Isotropy implies that
turbulence properties are invariant to rotations and reflections of the coordinate axes [8]. For HIT, the
energy spectrum is represented in Figure 6.2.
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Figure 6.2: Sketch of the energy spectrum for homogeneous isotropic turbulence [9].

6.2. High fidelity methods
High fidelity CFDmethods aim to more directly address the physics of turbulence and the Navier-Stokes
equations, by not introducing Reynolds-averaged closure approximations. First, direct numerical sim-
ulation (DNS) will be discussed, followed by large eddy simulation (LES).

Direct Numerical Simulation
A DNS involves the complete 3D and time dependent solution of the Navier-Stokes equations. Such

simulations are a very useful tool for research, as the statistics computed by DNS can be used for
example for the testing and calibration of closure approximation models. As it will be seen later, DNS
will also provide valuable insights for the improvement of the PFMmodel. Furthermore, DNS is also very
useful to further understand the turbulence structures [71], boundary layer transition and developing
turbulence control methods [72], such as drag reduction methods [73]. Additionally, DNS can be used
as an unobtrusive ’source of experimental data’.

As it was seen before, turbulent flow has a wide range of scales, from the large scales to the
smallest scales, the Kolmogrov scales. In order to perform a true DNS simulation, the mesh would
have to be fine enough and the time steps small enough to capture the Komolgorov scales. Due to
the computational cost associated with DNS, this tool is usually used only for lower Reynolds number
cases [74] [75].

Large Eddy Simulation
For an LES, the large scales are resolved, while the smaller, subgrid-scale (SGS), scales are mod-

elled. The reasoning behind this is that the large scales are the one that aremostly affected by boundary
and initial conditions, whereas small scales have more local isotropic and universal characteristics and
are less affected by those conditions. Also, the large scales are the ones contributing the most to the
Reynolds stresses.

The primary difference between DNS and LES, comes from the use of a filter. The goal of the filter
is to filter out the small scales which are meant to be modelled. Many kinds of filters can be used, such
as a volume-average box filter or Gaussian filter. The incompressible filtered Navier-Stokes equations
are shown in Equation 6.10 and Equation 6.11.

∂ūi
∂xi

= 0 (6.10)

∂ūj
∂t

+
∂ūiūj
∂xi

+
1

ρ

∂p̄

∂xj
− ν

∂2ūj
∂x2k

= −∂(uiuj − ūiūj)

∂xi
(6.11)

The term (uiuj − ūiūj) is the subgrid scale (SGS) tensor. Further decomposition of this tensor
results in three stress tensors, one of them can be computed and the other two need modelling [76].
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Compared to DNS, with modern computing power LES are already possible to be performed in
high Reynolds numbers and somewhat complex geometries [77]. However, in fluid-structure interaction
problems, the need for multiple iterations of the fluid solver per coupling step is particularly pronounced,
and with implicit schemes, the number of sub-iterations increases as the timestep decreases [5], which
further increases computational cost. Thus, for the application of FSI simulations of TIV in fuel rods,
LES is still too expensive.

6.3. Reynolds averaged Navier-Stokes
Due to the random fluctuations of turbulence, as said before, a statistical approach is used. Reynolds
introduced the so-called Reynolds decomposition in 1895 [78], which separates all quantities into the
sum of the mean and the fluctuating component. This is depicted in Equation 6.12.

u = ū+ u′ (6.12)

In terms of averaging, the three most used averaging methods for turbulence research are: time
averaging for stationary turbulence, spatial averaging for homogeneous turbulence and ensemble aver-
aging, which is the most general type of Reynolds averaging [79]. The latter is shown in Equation 6.13.

ū = lim
N→∞

1

N

∑
N

u (6.13)

From the NS equations, one can construct the Reynolds averaged NS equations. These are pre-
sented in Equation 6.14 and Equation 6.15. The term −ρu′iu′j is called the Reynolds stress tensor,
ρτij , so τij is formally called the specific Reynolds stress tensor. Aside from the replacement of the
instantaneous velocities with the averaged ones, the difference between the original NS equations and
the Reynolds averaged ones is the appearance of the Reynolds stress tensor on the right hand side.
This tensor is symmetric and thus has six independent components. Hence, with Reynolds averaging,
6 additional unknowns were produced. While there are more unknowns, the number of equations is
the same. This means that some additional equations will be needed in order to close the system of
equations.

∂ūi
∂xi

= 0 (6.14)

∂ūj
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+
∂ūiūj
∂xi

= −1
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∂p̄j
∂xj

+
1

ρ

∂

∂xi

(
t̄ij − ρu′iu

′
j

)
(6.15)

Themost simple turbulence models are the algebraic ones. In order to compute the Reynolds stress
tensor, these models use the Boussinesq approximation, which relates the tensor as a product of the
eddy viscosity and the mean strain rate tensor, as it can be seen in Equation 6.16. The eddy viscosity,
νt is often computed in terms of a mixing length, which can be seen as the analogous to the mean
free path in a flow. The molecular viscosity is a property of the fluid itself, however the eddy viscosity
depends on the flow. This means that also the mixing length depends on the flow. Thus, both the
eddy viscosity and mixing length need to be specified in advance. In conclusion, algebraic models are
incomplete [79].

τij = 2νtS̄ij −
2

3
kδij (6.16)

As the computational power increased, turbulence models based on the turbulent kinetic energy
appeared and are now the basis to modern turbulence models. These models are still based on the
eddy viscosity and Boussinesq approximation. They can be one or two equation models. The focus of
the following section will be on two-equation models.

6.3.1. Eddy viscosity two-equation models
Two-equation turbulence models are based on the equation for k, the turbulent kinetic energy, but also
on another equation for the turbulence length scale or equivalent. Due to this, two-equation models
are considered to be complete, as they can be used without any previous knowledge of the turbulence
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structure of the flow. In this subsection, the two most used two-equation eddy viscosity turbulence
models will be introduced, as well as some other models that are derived from them.

The first two-equations turbulence model was proposed by Komolgorov [80]. Kolmogorov chose k
as one of the turbulence parameters. This choice is thought to be done because k already appears in
the Boussinesq approximation, alongside the eddy viscosity. Furthermore, it is speculated that ω was
chosen due to dimensional analysis. Komolgorov set up a transport equation for k and a similar one
for ω.

Turbulent kinetic energy transport equation
By taking the trace of the Reynolds stress tensor, it can be seen that there is a relation between it and
the turbulent kinetic energy:

τij = −u′iu′i = −2k . (6.17)

Thus, the equation for k is obtained by taking the trace of the Reynolds stress equation. This results
in an equation with very complicated terms such as triple correlations. These terms are modelled, which
results in a simplified version of the transport equation for the turbulence kinetic energy, Equation 6.18.
The turbulent transport term (triple velocity correlation) was approximated by a gradient-like term and
the pressure diffusion was considered to be negligible. The term σk is a closure coefficient. The
dissipation, ϵ is unknown, and is found by means of another partial differential equation in the case of
two-equation models.

∂k

∂t
+ ūi

∂k

∂xi
= τij

∂ūj
∂xi

− ε+
∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
(6.18)

k − ω model
The equation for the specific turbulence dissipation rate, ω, changed a lot after the first postulation
by Kolmogorov. All of the developers after Kolmogorov added a production term. Some turbulence
researchers used an equation for ω2 instead of ω. In this section, the focus will be given to Wilcox [79]
k − ω model. Equation 6.19, Equation 6.20 and Equation 6.21 show the equations for the specific
turbulence dissipation rate, transport equation for ω and eddy viscosity, respectively, for the k − ω
model. This model shows good results for boundary layer flows, strong adverse pressure gradients
and separated flows.

ω =
1

Cµ

ε

k
(6.19)
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− βρωk +
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(µ+ σµt)
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]
(6.20)

µt = ρ
k

ω
(6.21)

k − ϵ model
This model consists of adding a new transport equation for the dissipation rate, ϵ, in order for the
system of equations to be complete. The exact transport for ϵ is far more complicated than the one for
k, it involves double and triple correlations of fluctuating velocity, pressure and velocity gradients [79].
These quantities are considered to be unmeasurable and thus, the equation is simplified. Jones &
Launder [81] proposed Equation 7.11 for the dissipation rate as well as the closure coefficients. The
expression for the eddy viscosity is presented in Equation 6.23. This model shows good results for
external aerodynamics, except in the cases of strong curvature, pressure gradients or separation.
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)
∂ε

∂xi

]
(6.22)

µt = Cµρ
k2

ε
(6.23)
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k − ω SST
In 1992, Menter [82] proposed an improved k−ω model, called the k−ω shear stress transport (SST)
model. This newmodel was developed to give similar results to the ones obtained byWilcox model, but
without depending so much on freestream values. Actually, the model is identical to Wilcox model in
the first 50% of the boundary layer and then smoothly transitions to the Jones & Launder k−ϵmodel (in
a k−ω formulation) until the edge of the boundary layer. Furthermore, in the cases of boundary layers
with adverse pressure gradients, this model accounts for the transport of the principal shear stress.

Non-linear eddy viscosity models
The methods discussed in the sections above are linear eddy viscosity models as they are based on the
Boussinesq approximation, which states that the Reynolds stress tensor varies linearly with the mean
rate strain tensor. The Boussinesq approximation assumes the eddy viscosity to be a scalar, and this
means that it assumes isotropic turbulence. An alternative method for describing the Reynolds-stress
tensor without adding extra equations is to assume the Boussinesq approximation is the leading term
in a series expansion. With this assumption, various researchers have created constitutive relations
that range in complexity. In OpenFOAM there are two non-linear eddy viscosity models: Lien cubic
k − ϵ [83] and Shih quadratic k − ϵ [84]. The former method extends the Boussinesq approximation to
cubic terms, whereas the latter extends it to quadratic terms. Since the methods are extremely similar,
only the Shih method will be discussed, as it was the first one to be developed. The equations for k
and ϵ are the same ones as for the standard k− ϵ model. What changes is the constitutive relationship
which is presented in Equation 6.24, where Cµ is no longer a constant, as it was in the standard model,
but instead it is variable and given by Equation 6.25. Furthermore, C2 is given by Equation 6.26, S∗

ij

and Ω∗ are defined in Equation 6.27 and Equation 6.28, respectively. The constants needed for the
model are described in [84].
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(6.24)
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S∗
ij = Sij −

1

3
Skkδij (6.27) Ω∗

ij = Ωij (6.28)

One of the problems with linear eddy viscosity models such as the standard k − ϵ model or RNG
variant [85] is the fact they are not realizable. The term ”realizable” means that the turbulence model
does not produce unphysical turbulence, which is associated with the mathematical constraints on
the Reynolds stresses. These constraints are the non-negativity of the turbulent normal stresses and
Schwarz’ inequality for shear stresses,

(
uαuβ

2 ≤ u2αu
2
β

)
. For large mean strain rates, non-realizable

turbulence models often produce unphysical results. The turbulence energy in the strain direction will
decrease quickly which for non-realizable models often leads to negative normal Reynolds stresses.
Furthermore, for high mean shear, the turbulent shear increases quickly and is overpredicted, which
results in the violation of Schwarz’ inequality. In order to make the k − ϵ models realizable, the coef-
ficient Cµ cannot be a constant, instead it must change with the mean flow deformation rate. This is
exactly what happens with Shih quadratic model and is one of the advantages of this model. The other
advantage is the fact that since it is based on a nonlinear equation for the Reynolds stress model, this
means that the assumption of isotropic turbulence drops. Lastly, Shih et al. [86] also developed a linear
realizable k − ϵ model.

The quadratic k−ϵmodel improves the representation of the Reynolds stress tensor, however it still
assumes a scalar value for eddy viscosity and the closure coefficients. Though eddy viscosity models
work well for specific flow types, more precise models that can predict Reynolds stress more accurately
are desired. These models will be discussed in the following subsection.

6.3.2. Reynolds stress models
The limitation of the eddy viscosity models discussed above is the reliance on the Boussinesq approxi-
mation. There is another family of turbulence models called the Reynolds stress models (RSM) which
instead of the Boussinesq approximation, solve a PDE for the Reynolds stress tensor. This equation is
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called the stress transport equation and while it increases the accuracy of the turbulence model there is
a price to be paid in terms of computational efficiency. The RSM that are implemented in OpenFOAM
are the Launder, Reede and Rodi model [87] and the Speziale, Sarkar and Gatski (SSG) model [88],
and thus are the ones that will be discussed in this section.

All of the Reynolds stress models start from the same equation, the exact differential transport
equation that describes the behaviour of the Reynolds stress tensor, τij . This equation is shown in
Equation 6.29. On the left hand side is the material derivative of the Reynolds stress tensor, and on
the right hand side are the production, dissipation, pressure-strain and diffusion terms. The first term
of the diffusion terms is called the turbulent transport term. By analyzing Equation 6.29, it is clear why
stress transport models are expected to outperform EVM. The equation accounts for convection and
diffusion of τij , which means that effects of flow history are included. Furthermore, it accounts for the
phenomena involved in streamline curvature, such as convection and production. Lastly, the stresses
are not correlated with the mean strain rate, unlike the EVM, and thus their values will depend on the
initial conditions and the physics, rather than being affected by sudden changes in mean strain rate [79].

A visually simpler representation of the stress transport equation is given in Equation 6.30 (the
material derivative was expanded also).
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As it can be seen the production term, Pij , already involves the Reynolds stress and mean velocity
gradients, and thus does not need modelling. Same goes for the velocity diffusion term Dv

ij . However,
the terms ϵij , ϕij , Tij and Dp

ij need modelling as they cannot be computed directly from mean flow
quantities.

As it was discussed in section 6.1, dissipation occurs mainly in the smaller scales of turbulence.
Because of this, the assumption of local isotropy is usually used. This leads to the dissipation rate
tensor being modelled as Equation 6.31, where the scalar quantity ϵ is the dissipation rate appearing
in the k equation of two-equation models.

ϵij =
2

3
ϵδij (6.31)

The turbulent transport term, Tij , was usually modelled assuming a gradient-transport. Daly &
Harlow argued that the simplest approximation would be in the form of the derivative of the Reynolds
stress tensor,

Tijk ≈ ∂τij
∂xk

. (6.32)

Although simple, this form did not respect the rotationally invariance of Tij (symmetry in all of the
three indices) [79]. Later, Launder et al. [87] proposed Equation 6.33, which is used in the LLR RSM.
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]
(6.33)

The modelling of the pressure-strain correlation tensor, ϕij , is what mainly sets apart the differ-
ent RSM. The tensor is usually decomposed into a slow and a fast component, as can be seen in
Equation 6.34. The slow component models the return to isotropy, whereas the fast one models the
immediate effects. The slow component modelling was first proposed by Rotta [89] and is shown in
Equation 6.35. The modelling of the fast component is where the RSM mostly differ. First, researchers
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assumed this term to be negligible when compared to the slow term [90–92]. However, it was proven
that this assumption does not hold true for a variety of flows [93,94] and thus should be dismissed. The
LRR model expresses the fast tensor as a linear function of the Reynolds stress tensor [87], whereas
the SSG model also model the quadratic terms [88].

Φij = ΦS
ij +ΦR

ij (6.34)

Aij = C1
ϵ

k

(
τij +

2

3
kδij

)
(6.35)

While RSM greatly improve the accuracy of the turbulence modelling when compared to EVM, they
are also considerably more computational expensive. An alternative solution would be to use an Explicit
Algebraic Reynolds Stress Model (EARSM), which is similar to the nonlinear eddy viscosity models but
instead obtains the constitutive relation from the Reynolds stress transport equation. One of the most
popular EARSM is the one developed by Wallin & Johansson [95]. However, EARSM have not been
implemented in OpenFOAM yet, and therefore their use will be dismissed for this thesis, but might be
worth it to consider them in the future if/when implemented.

6.4. Reynolds stress tensor corrections
Linear eddy viscosity models assume that the root-mean-square velocity fluctuations are isotropic, but
this assumption is not valid for near-wall flows. To address this, some empirical methods have been
developed to reconstruct the Reynolds stress tensor more accurately from URANS data. These meth-
ods are only applicable to the diagonal elements of the Reynolds stress tensor, with the cross-terms
still estimated using the Boussinesq hypothesis. Laraufi et al. [96] studied the implementation of these
empirical methods for generating synthetic turbulence. The two most significant methods were based
on Wilcox’s hypothesis and Marusic & Kunkel’s empirical model [97]. The Wilcox’s hypothesis method
was built on Wilcox’s nonlinear eddy viscosity model [98]. The corrections presented by Wilcox to the
Reynolds stress tensor diagonal terms are presented in Equation 6.36. This method was found to be
valid for y+ values greater than 100 [96]. The second method, developed by Marusic & Kunkel, consid-
ered the effect of Reynolds number, but was only valid for Reθ greater than 3200 and for zero pressure
gradient flows. This method performed better for the inner part of the boundary layer. However, due to
its wider applicability and ease of implementation, Wilcox’s hypothesis is preferred for computing the
diagonal elements of the Reynolds stress tensor. This correction is implemented in AniPFM as will be
seen in section 7.3.
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6.5. Governing equation of pressure fluctuations
Now that the turbulence modelling has been discussed, which will be part of the URANS section, ev-
erything is set up to start talking about the PFM part of the model. In this section, the deduction of the
governing equation of the pressure fluctuations will be shown.

First, the decomposition of velocity and pressure in mean and fluctuating component is substituted
into the momentum equation of the NS, as it is shown in Equation 6.37.
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Then, the ensemble average momentum equation (the URANS momentum equation) is subtracted
from the instantaneous solution and the divergence operator is taken. The resulting equation is the
governing equation of pressure fluctuations, Equation 6.38. This equations shows that the pressure
fluctuations are governed by and elliptic PDE, more specifically, the Poisson equation. In this equations,
it can be seen that the pressure fluctuations only depend on the velocity mean and fluctuations. The
mean component is readily available from URANS data, which means that for the PFM, there is only a
need to model the velocity fluctuations in order to get the pressure fluctuations. Furthermore, the right
hand side (RHS) of this PDE can be decomposed into a slow and a fast component. The reasoning is
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the same as the one taken for the pressure-strain correlation tensor in the RSM. In the Reynolds stress
transport equation, Equation 6.29, ϕij depends on the pressure and velocity fluctuations. So in order
to derive an approximation for this tensor, also the Poisson equation for the pressure fluctuations was
derived and separated into two components. The rapid term is the left term on the RHS of Equation 6.38
and the slow term is the one on the right in the RHS of the equation.
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(6.38)

6.6. Summary
In this chapter, different aspects of turbulence modelling were discussed. First, a review was given
on turbulence, where its different characteristics were considered. Such characteristics are turbulence
being chaotic, having a wide range of interacting wave numbers, being statistical stable, highly dissi-
pative and diffusive, 3D and rotational. It is important to understand turbulence characteristics so that
they can be modelled correctly with turbulence models, and so that these models do not rely solely
on mathematical approximations, but instead consider the physics while not violating the mathematical
constraints. Then, the energy cascade concept was presented, alongside Kolmogorov’s hypothesis
and expressions for the small scales of turbulence, as well as how these relate to the bulk flow quan-
tities. Furthermore, in section 6.2, high fidelity methods such as DNS and LES are discussed. These
methods resolve all of the turbulence wave number range scale, in the case of DNS, and a part of
it, in the case of LES. Since these methods are too computationally expensive for FSI simulations in
nuclear applications, section 6.3 was regarding RANS, a computationally cheaper alternative to the
aforementioned methods, but that does not resolve any part of the turbulence spectrum and instead
solely models. The Reynolds decomposition was introduced as well as Reynolds averaging. With these
two concept in mind the Reynolds averaged NS equations were presented. These equations brought
a new term to the mix, the Reynolds stress tensor. This tensor is symmetric, which means that there
are 6 additional unknowns brought by the process of Reynolds averaging. In order to close the system,
new equations need to be proposed. This is where the eddy viscosity models and Reynolds stress
models come in. The EVM are based on a constitutive relation that relates the Reynolds stress tensor
with the eddy viscosity, mean strain rate tensor and turbulent kinetic energy. Further, these models use
one equation for the turbulent kinetic energy and one for another turbulence quantity. The most popular
linear two-equation EVM were discussed, the k − ω and the k − ϵ. A variation that includes character-
istics from both, called k − ω shear stress transport, was also discussed. Additionally, non-linear eddy
viscosity models were then presented. These models are still based on the Boussinesq approximation,
which states that the Reynolds stress tensor linearly varies with the mean strain rate tensor. Non-linear
eddy viscosity models assume the Boussinesq approximation is simply the leading term of a series
expansion and derive a non linear relation between the Reynolds stresses and the mean strain rate
tensor. Although these show improved results when compared to linear EVM, they still assume that the
eddy viscosity is a scalar and thus assume isotropic turbulence. In order to more accurately model tur-
bulence, Reynolds stress models are needed. These are not based one the Boussinesq approximation,
but instead on an approximation of the exact Reynolds stress transport equation. The modelling of this
exact equation is discussed as well as two RSM: the LRR and SSG. While these models show better
performance than EVMs, they are also more expensive. In AniPFM, only EVMs have been studied to
use as input. Van den Bos et al. [34] showed that the k−ω SST provided the best near wall behaviour
among the different linear EVMs available in OpenFOAM and thus was chosen as the most suitable to
be used as AniPFM input. This model is also used throughout this thesis. Finally, in section 6.5, the
governing equation of the pressure fluctuations is derived from the NS equations. This equation allows
better understanding of what fundamentally drives the generation of pressure fluctuations in turbulent
flows.
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Synthetic turbulence

In this chapter, multiple aspects of synthetic turbulence will be discussed. Firstly, taking into account
the characteristics of turbulence mentioned in Chapter 6, the requirements of synthetic turbulence (ST)
models will be laid out. Secondly, the current active research areas of ST will be described. Further-
more, NRG’s model, AniPFM, will be described to detail.

7.1. Requirements
As it was seen in the last chapter, the governing equation for the pressure fluctuation is a Poisson
equation. The pressure fluctuations only depend on the mean velocity and velocity fluctuations. Thus,
in order to model the pressure fluctuations, the PFM needs to model the velocity fluctuations. There
are several characteristics that the synthetic turbulence should have in order to be physical and repre-
sentative of reality. In this section those characteristics will be discussed.

7.1.1. Adhering to the governing equations
First, the instantaneous solution, i.e. the sum of the ensemble-averaged velocity and velocity fluctu-
ations should follow the Navier-Stokes equations. However, as it was seen before, if the turbulence
follows the NS equations, then DNS is required and the turbulence will be resolved and not modelled.
Although it is not possible to adhere to the exact NS equations, approximations of these equations can
be satisfied. Starting with the continuity equation, decomposing u into mean and fluctuating component,
Equation 7.1 is obtained. From Equation 5.1 and Equation 7.1, Equation 7.2 is derived. This means
that the velocity fluctuations should also adhere to the divergence constraint.

∂ (ūi + u′i)

∂xi
= 0 (7.1)

∂u′i
∂xi

= 0 (7.2)

Regarding the conservation of momentum, certain assumptions will need to be made. For the
lower wave numbers, the flow can be assumed inviscid as the forces are mainly inertial. Thus, the
Euler equations, Equation 7.3 can be used as governing equations.
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Assuming that the acceleration of flow by pressure gradient is negligible, and substituting u with its
Reynolds decomposition, Equation 7.4 is derived.
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Finally, assuming ūi >> u′i, then it can be assumed that the velocity fluctuations are convected at
the speed of the mean velocity. What was just described is Taylor’s frozen wake hypothesis [99]. It
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can be seen that the term u′k
∂u′

i

∂xk
≈ 0, based on the previous arguments. Thus, the final approximated

momentum equation is given by Equation 7.5.

∂u′i
∂t

+ ūk
∂u′i
∂xk

= 0 (7.5)

7.1.2. Modelling of the energy spectrum
As it was seen before, the properties of turbulence vary depending on the length scale. Furthermore, it
was also discussed that by representing the turbulent kinetic energy as a continuous energy spectrum
of wave numbers (where the wave numbers are inversely proportional to the eddy length scales), the
differences in properties can effectively be summarized. This representation allows for an accurate
depiction of turbulence, as it ensures that each eddy length scale receives a realistic amount of kinetic
energy, which directly influences the magnitude of velocity fluctuations.

Another important property of turbulence is the wide range of scale interactions that occur. While
the chaotic nature of turbulence may lead one to believe that it is a disordered and random process, the
presence of coherent structures and interactions between them suggests otherwise. These interactions
result in spatial correlation within turbulence, which cannot be represented by a white noise field. It
is important to note that this spatial correlation is also implicitly modelled through the turbulent kinetic
energy spectrum. The energy spectrum tensor of a velocity signal is defined as the Fourier transform of
the auto-correlation function of that series [8]. Therefore, by accurately modelling the energy spectrum,
the spatial correlation functions are also implicitly and accurately modelled.

In conclusion, to accurately replicate turbulence, it is necessary to consider both the energy distri-
bution and spatial correlation within the phenomenon. A thorough understanding of the properties of
turbulence at different length scales, as well as the interactions between those scales, is crucial for an
accurate representation.

7.1.3. Reynolds stress tensor
Looking at the PDE governing the pressure fluctuations, it can be seen that the Reynolds stress tensor
has an explicit impact on their behaviour, as it is part of the equation. Thus, accurate Reynolds stresses
should improve the accuracy of the modelling of the pressure fluctuations. Although it is known that
the Reynolds stresses have an effect on the pressure fluctuations [34], regarding the PFM, it is not
known yet the sensitivity of the model to the input Reynolds stresses from the URANS. Overall, it was
this requirement that led van den Bos [34] to improve Kottapali’s PFM [17] to an anisotropic PFM that
does not assume isotropy in the Reynolds stress tensor and thus allows for anisotropy. Although van
den Bos new model shows better results, multiple changes were made to the whole model, a few
validation cases were tested, which makes it impossible to know for sure the sensitivity of the model to
the accuracy of the input Reynolds stress tensor.

7.1.4. Temporal decay
As it was seen in section 6.1, turbulent flows are extremely dissipative. This means that they carry a lot
of strain, which results in production of energy for turbulence at low wave numbers and dissipation of
energy at high wave numbers. The dissipation causes turbulence to decay over time. A clear example
of this, is the homogeneous isotropic turbulence box, where there is no production of turbulence, and
thus it decays over time [100]. The constant production of turbulence and dissipation creates a decorre-
lation in time in turbulence. This means that the previous correlation in time caused by convection is not
enough to model the conservation of momentum. Hence, the turbulence correlation due to convection
and decorrelation due to production and dissipation should be modeled separately.

7.2. Research areas
Synthetic turbulence has been applied to many areas within CFD, such as simulating the wind loads on
tall buildings [101], modelling of fatigue loading on wind turbines [102–104], simulating pressure fluctua-
tions on fuel rods subjected to axial flow in FSI simulations [17,33,34,105] among others. However, the
most popular ones are generating inflow conditions for LES [106–111], noise modelling [11, 112–114]
and for the interface of hybrid RANS/LES models [10, 115–119]. These are the research areas which
contribute the most to ST and novel techniques within it.
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7.3. NRG model - AniPFM
The method currently employed at NRG for pressure fluctuations is called AniPFM (anisotropic PFM)
and was developed by van den Bos et al. [34], starting from the model of Kottapali et al [17]. The
purpose of this new model is to merge the synthetic turbulence model developed by Billson et al. [11]
with the one presented by Shur et al. [10], in order to create a model that incorporates the benefits of
both approaches.

7.3.1. Velocity fluctuations
Similarly to Shur et al. [10], there is an auxiliary dimensionless velocity field, vt(x, t), which is related to
isotropic fluctuations, and a final velocity fluctuations field, ut(x, t), which is anisotropic. The goal of this
method is to introduce the anisotropy of the Reynolds stress tensor into the fluctuations. The relation
between these two fields is presented in Equation 7.7, where aij is part of the Cholesky decomposition
of the Reynolds stress tensor, R̂ = ÂT Â, where Â is given by Equation 7.6, as in Shur et al. method.
Like in this method, this is done so that the final generated velocity fluctuations are defined so that the
corresponding covariance is equal to the Reynolds stress tensor. Furthermore, vt(x, t) must obey v′

t

= 0 and v′
tv

′
t = δij.. The non-dimensional isotropic fluctuations v′

t(x, t) are computed by applying time
correlation methods to non-dimensional spatial only fluctuations, calledw′

t(x). The latter are calculated
by Equation 7.8, similarly to how Shur et al. [10] calculated their non-dimensional fluctuations. Here,
qn is the non-dimensional energy, σn is the direction vector, kn is the wave number vector and ϕn is
the phase shift, which is a random number uniformly distributed in the interval [0,2π]. The subscript n
denotes that it is relating to the nth Fourier mode.

Â = {aij} =


√
R11 0 0

R21/a11
√
R22 − a221 0

R31/a11 (R32 − a21a31) /a22
√
R33 − a231 − a232

 (7.6)

ut(x, t) = aijvt(x, t) (7.7)

wt(x) =
√
6
∑
n

√
qn [σn cos (kn · x+ ϕn)] (7.8)

7.3.2. Turbulent kinetic energy spectrum
The non-dimensional energy, qn, is defined in the same way as Shur et al. [10], by Equation 7.9. The
energy spectrum is the modified von Karman spectrum, as presented in Equation 7.10, where ke is the
wave number corresponding to the TKE peak, kη is the highest wave number. The wave number ke
can be calculated by Equation 7.11, where le can is defined as Equation 7.12, where Cl is a constant
equal to 3.0 to match the spectrum of the experimental data of Comte-Bellot & Corrsin [120]. The
difference in the definition of le in this method when compared to Shur et al. [10] is that van den Bos et
al. does not include the term that takes into account the distance to the nearest wall. This term shows
to give an underestimation of the pressure fluctuations near the wall due to giving an underestimation
of the largest wave number and that is why it was dismissed for the current method. The goal of Shur
et al. research was LES inflow and zonal RANS/LES interface and thus it is normal that this effect
was not considered. This choice will be discussed further down in this subsection. The highest wave
number, also known as the Kolmogorov wave number, is computed by Equation 7.13. To improve
the accuracy of the reconstructed energy spectrum, a cut-off filter, fcut, is applied to the modified Von
Kármán spectrum. Without the filter, the spectrum extends until the Kolmogorov wavenumber, but this
high-wavenumber portion of the spectrum cannot typically be resolved by the mesh, requiring the use of
DNS. The cut-off filter helps to prevent an aliasing effect that would result from the unresolved portion
of the inputted spectrum, ensuring a more correct distribution in the reconstructed energy spectrum.
The cut off filter is calculated in the same way as Shur et al. [10], as presented in Equation 7.14, where
kcut = 2π/lcut and lcut is the cut off length.

qn =
E (kn)∆kn∑
nE (kn)∆kn

(7.9)
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E(k) =
(k/ke)

4[
1 + 2.4 (k/ke)

2
](17/6) exp

(
−
(
12

k

kη

)2
)
fcut (7.10)

ke = 2π/le (7.11) le = Cllt (7.12) kη = 2π
( ε
v3

) 1
4 (7.13)

fcut = exp

(
−
[
4max (k − 0.9kcut, 0)

kcut

]3)
(7.14)

So far, it has been seen that two different length scales need to be defined in order to model the
turbulent kinetic energy spectrum. These length scales are le and lcut as explained above.

Starting with the choice of le, above it was mentioned that van den Bos et al. optioned for a different
way of computing this length scale when compared to Shur et al. While the latter consider the wall
distance in the formulation of the length scale (le = min[2dW , Cllt]), the former does not. In Figure 7.1 is
presented the difference between the wall distance and the URANS length scale for a turbulent channel
flow at Reτ = 640. It can be seen that the wall distance is always smaller than 3lt and thus Shur et al.
approach of calculating the length scale will result in twice the wall distance. If le is underpredicted near
the wall, then ke is overpredicted, which results in an underestimation of the energy in the lowest wave
numbers and therefore an underprediction in the RMS of the pressure fluctuations. However, 3lt will
overpredict the energy near the wall and also in the middle of the channel. This will lead to unphysical
turbulence near the middle of the channel - le more than 2 times bigger than the channel height. This
overprediction in the most energetic length scale might be one of the reasons why AniPFM is currently
overpredicting the amplitude of displacements in FSI simulations.

Figure 7.1: Different length scales in turbulent channel flow [10].

Regarding the other length scale, the cut off length scale, lcut, there are two possible approaches.
The first one, is the one taken by Shur et al. [10], as seen in Equation 7.15, and the second one is
the cubic-root-volume method, as seen in Equation 7.16. The cut-off length will define how much of
the energy spectrum will be resolved. For pure fluid flow simulations, van den Bos et al. could not
take any conclusion as to which cut off length to choose as they gave different results but both with
a similar difference from DNS data. While the cubic root method gave larger estimates of the RMS
pressure fluctuations, the Shur et al.’s method gave lower estimations. Due to this reason, van den
Bos et al. performed FSI simulations of a flexible brass beam in turbulent water and studied the effect
of the cut off length method. The results showed that the cubic root method overpredicts the amount
of energy resolvable by the mesh and therefore overpredicts the RMS pressure fluctuations as well as
the amplitude. Thus, the Shur et al. method was the chosen one.

lcut = 2min {[max (hy, hz, 0.3hmax) + 0.1dw] , hmax} (7.15)

lcut = 2V
1
3

cell (7.16)
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7.3.3. Wave numbers and vector calculations
The wavenumber corresponding to the energy peak represents the most energetic length scale, and
thus should be captured accurately. In order to capture this wave number, ke, a starting wave number
is defined, kstart, which should be smaller than ke. Van den Bos et al. defined two different kstart
equations, Equation 7.17 and Equation 7.18, where the first one is a more conservative approach and
the second one is only applicable for stationary flows. Then, a user input length scale is defined, luser,
which denotes the maximum length that can be captured for a certain problem. From here, van den Bos
et al. define the kstart as Equation 7.19. This is done in order to bound this wavenumber by geometrical
constraints. Furthermore, the end of the wave number spectrum, kend, is defined based on the cut off
wave number, as seen in Equation 7.20.

kstart* =
ε

max (∥u∥3)
(7.17) kstart* =

2π

L
=

2πε

K3/2
(7.18)

kstart = max
[
min

(
kstart* ,

1

2
ke

)
,
2π

luser

]
(7.19)

kend =
3

2
kcut (7.20)

Regarding the wave number space, it goes from kstart to kend and the space is divided in N intervals.
There are N+1 edge wave numbers. These are used to define ∆kn. Similarly to Kottapalli et al. [17],
the wave numbers are distributed logarithmically, as shown in Equation 7.21, where γ is defined as
Equation 7.22. The wave numbers are defined as kn = k̃n+1/2 and ∆kn is defined as k̃n+1 − k̃n.

k̃n = kstart · eγi (7.21) γ =
log (kend/kstart)

N
(7.22)

AniPFM uses the same definition as Kottapali for the wave number vector, Equation 7.23, with θn,
φn as random variables with distribution as shown in Equation 7.24. It can be visualised in Figure 7.2.
The continuity constraint is applied the same way as Kottapali et al., kn ·σn = 0, however the direction
vector is obtained in a different way in AniPFM. Kottapali et al. way of determining the direction vector
resulted in anisotropic distribution, which in turn resulted in overprediction of the streamwise velocity
component and underprediction of the wall normal one. The current method of AniPFM to determine the
direction vector makes use of another randomly generated vector denoted ζn. This vector has a uniform
distribution over a unit sphere and is obtained in a similar way to kn, as seen in Equation 7.25. The
direction vector is the normalized cross product between this vector and kn, as shown in Equation 7.26.

kn = kn [sin θn cosψn, sin θn sinψn, cos θn]T (7.23)

P (ψn) =
1

π
, P (ϕn) =

1

2π
, P (θn) =

1

2
sin (θn) (7.24)

ζn = [sin θζ cosψζ , sin θζ sinψζ , cos θζ ]T (7.25)

σn =
ζn × kn

|ζn × kn|
(7.26)
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Figure 7.2: Wave vector representation of the n-th Fourier mode [11].

7.3.4. Time correlation
At the end of subsection 7.3.1, a non dimensional spatial only fluctuation field, called wt(x), was pre-
sented. In this subsection it will be presented how AniPFM, through the use of time correlation methods,
is able to create a velocity fluctuation signal that is dependent in space and time, from a starting point
of an only space dependent velocity fluctuations signal. As it was seen in section 7.1, two main phe-
nomena have to be taken into account: convection of the turbulence and decorrelation due to constant
production and dissipation. Van den Bos et al. [34] tested four different methods for temporal correla-
tion/decorrelation. These methods will now be discussed.

Convection and exponential correlation
This method aims to incorporate both effects. The velocity fluctuations are convected by solving Equa-
tion 7.27, where vm−1

t are the non-dimensional velocity fluctuations generated at the time step m − 1
and Uj is the mean velocity component from URANS. Then, a new solution is generated, vm

t , from the
previous convected solution, ṽm−1

t (the twiddle here denotes that the solution of the advection equation
is a numerically diffused one and not the exact solution), and a newly generated field wm

t . This is de-
picted in Equation 7.28, where the coefficients a and b are defined in Equation 7.29 and Equation 7.30,
respectively. Here, τ is the turbulent time scale determined from the URANS simulation and fτ is a
modification factor for having some control over the correlation. A factor of fτ = 17 is used, which was
the one that Billson et al. [11] used for the simulation of a 3D jet. The use case of interest for PFM (fuel
rod) is very different from the flow in a jet and thus this is a parameter that should be studied in case
this time correlation method is used. The coefficients a and b are defined in a way that respects the
square mean properties of vt, < v2

t >= δij .

∂vm−1
t

∂t
+ Uj

∂vm−1
t

∂xj
= 0 (7.27)

vm
t (x, t) = aṽm−1

t (x, t) + bwm
t (x) (7.28)

a = e−fτ∆t/τ (7.29) b =
√

1− a2 (7.30)

This method is different from the one from Billson et al. [11], as in theirs, the actual velocity fluctua-
tions, ut, are used for the correlation, which is only possible for steady state simulations. In the case of
unsteady simulations, the velocity fluctuations from the previous time step may not contain the same
amount of energy as the newly generated ones. The use of non-dimensional velocity fluctuations, vt

andwt, which have constant statistical properties allows them to be used in unsteady simulations. The
disadvantage of this method is that by solving the advection equation numerically, numerical diffusion
is introduced. Billson et al. [11] used a four-point stencil to avoid this, but still there was energy loss.
OpenFOAM only provided second order methods, and thus this problem will be aggravated. This can
cause a underestimation of the Reynolds stresses, which leads to an underestimation of the pressure
fluctuations.
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Rescaled convection and exponential correlation
In the previousmethod it was seen that numerically solving the advection equation introduced numerical
diffusion which causes the solution of vm−1

t to be smeared out. The magnitude of vm
t should ideally

be
√
3 while due to the diffusion error it is less. The rescaled convection and exponential correlation

method tries to avoid this by rescaling the newly generated velocity fluctuation field,wm
t , so that overall

no energy is lost. Thus, an adjusted value should be used for b. This in turn, will mean that the
decorrelation is not exactly met. But, then again, this already happened with the previous method as
the vm−1

t is changed when solving the advection equation, which in turn will have an effect on the
decorrelation between vm−1

t and vm
t .

In this method, b is defined so that< (vm
t )

2
> is equal to 1 in each normal direction, which means no

energy is lost. The definition of this coefficient is presented in Equation 7.31. It is worth noting that this
rescaling may have an impact on the distribution of energy, because in actual cases, the distribution of
< (ṽm−1

t )2 > is not uniform due to differences in diffusion error across the domain.

b =

√
1− 1√

3
< ṽm−1

t ṽm−1
t > a2 (7.31)

Solely exponential correlation
This approach only employs Equation 7.28 to generate time-correlated velocity fluctuations, neglecting
the convection of previous fluctuations vm−1

t . While this method does not result in an underestimation
of Reynolds stresses, it also does not accurately reflect the convection experienced by eddies. This
has implications for the frequency spectrum’s shape, which is crucial for FSI simulations.

Solely convection
This time-correlation method is widely used in synthetic turbulence generation and has been employed
by various authors such as Shur et al. [10], Poletto et al. [121], and Ewert et al. [113]. It generates the
velocity fluctuations directly as a function of time (i.e. vt(x, t)) using equation Equation 7.32, where
U represents the velocity from a URANS simulation. Unlike Kottapalli et al. [17], who utilized a dif-
ferent definition for the convection velocity, this method accurately captures the Reynolds stresses by
utilizing the exact solution of the advection equation, eliminating the need for numerical methods. The
random variables in this method are created in the first iteration and stored, as they are not a function of
time. This leads to a strong dependence on the random seed of the random number generator, which
increases the uncertainty of the results.

vt(x, t) =
√
6
∑
n

√
qn [σn cos (kn · (x−U t) + ϕn)] (7.32)

7.3.5. Pressure fluctuations
Now that the modelled velocity fluctuations are completely defined, the pressure fluctuations can be
computed. In this subsection it will be discussed the governing equation and the boundary conditions
needed.

Governing equation
The governing equation of the pressure fluctuations is a Poisson equation that depends solely on the
Reynolds averaged velocity and on the velocity fluctuations, as it can be seen in Equation 6.38. AniPFM
calculates the pressure fluctuations based on this equation. Kottapalli et al. [17] started out similarly but
then assumed that∆·u′ holds. While the exact divergence criterion is met, the discrete one is not. This
is also why somemethods even though classified as divergence-free, in reality their discrete divergence
may be non-zero. Therefore, in AniPFM, the pressure fluctuation equation, shown in Equation 6.38,
is used to avoid introducing errors from assuming the exact divergence criterion. While this equation
considers the full pressure fluctuations, it only accounts for the fluctuations caused by the resolved
velocity fluctuations, not the effect of unresolved turbulence. Thus, this method does not fully capture
the impact of unresolved turbulence on the pressure fluctuations.

In order to calculate the pressure fluctuations, the spatial mean is subtracted from the right hand
side of Equation 6.38, because if the spatial mean is different from zero it causes the solution to be
dominated by a three dimensional parabola. In Equation 7.33, this is shown for a 1D Poisson equation,
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where the right hand side is decomposed into a spatial average and a fluctuation component. The
solution of this equation is shown in Equation 7.34, where it can be seen that the solution has a parabolic
behaviour. In order to avoid this, before Equation 6.38 is solved, the spatial average is subtracted to
the right hand side. Equation 7.34 still has a linear and constant term, which are determined by the
boundary conditions.

∂2p′

∂x2
= rhs′ + rhs (7.33)

p′ =
1

2
rhsx2 + c1x+ c2 +

∫∫
rhs′dxdx (7.34)

Boundary conditions
As it wasmentioned, in order to solve the governing equation of the pressure fluctuations, Equation 6.38,
boundary conditions are needed. While for RANS, boundary conditions can be very simple, as a uni-
form value suffices, for the case of AniPFM, it is not so simple. Like DNS and LES, AniPFM has the
same problem with regards to boundary conditions: since the flowfield involves fluctuating components,
then the boundary conditions cannot be a simple uniform value. The application of AniPFM is in incom-
pressible internal flows, and thus three boundary conditions will be discussed: inlet, outlet and wall.
The inlet and outlet conditions are related and thus will be discussed together.

At the wall, the typical boundary condition used regarding the pressure is a zero pressure gradient.
This boundary condition applies for the instantaneous solution and for the Reynolds averaged solution,
then it must apply also for the fluctuations. Equation 7.35 shows the boundary condition for the pressure
fluctuations at the wall.

∂p′

∂n
= 0 (7.35)

Regarding the inlet and outlet boundary conditions, there are many options, which can be divided
into three types: Dirichlet (fixed value), Neumann (fixed derivative) and Robin (fixed value and deriva-
tive). In the case of Dirichlet BC there are three options: periodic, mapped and calculated boundaries.
The periodic BC are used for flows that can be considered periodic, i.e. the flow statistics are the same
at the inlet and the outlet. Since in reality this is equivalent to prescribing one boundary condition, this
means that the problem is underdetermined and thus an extra equation is needed. This is normally the
assumption that the mean of the quantity of interest is zero. In this case, that the pressure fluctuations
mean is zero across the whole domain. For non periodic flows, mapped or fixed value boundary condi-
tions can be used. For the case of the mapped BC, a slice at a chosen location in the previous method
is mapped onto the boundary at the new time step. Concerning the fixed value BC, which is the one
used in the inlet/outlet by van den Bos et al. [34] in AniPFM, from dimensional analysis, it is formulated
an estimation of the pressure fluctuations with respect to the density and the velocity fluctuations. This
relation is then modified calibrated so that the average is zero. This is shown in Equation 7.36.

p′ =
ρu′2√

2
− ρu′2√

2
(7.36)

Lastly, there was also the option of using a Neumann BC for the inlet and outlet. The behavior
of using such BC in the full domain will be shown by the comparison with a simpler one-dimensional
example , Equation 7.37. The solution to the equation (Equation 7.38) must oscillate around zero and
have an average of zero. This requires the coefficient c1 to be equal to zero. If c1 is not equal to
zero, a linear profile will be present in the solution. With a zero gradient boundary condition at x = 0,
Equation 7.39 holds. If the indefinite integral of f(x) at the boundary is not equal to zero, c1 will also
not be equal to zero and a linear profile will be present in the solution. To avoid a linear profile, it is
suggested not to use Neumann boundary conditions for the inlet and outlet.

∂2p′

∂x2
= f(x) (7.37)

p′ = c1x+ c2 +

∫∫
f(x)dxdx (7.38)
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∂p′

∂x
= 0 = c1 +

∫
f(0)dx (7.39)

7.3.6. Flowchart
The working structure of AniPFM is outlined in the flowchart shown in Figure 7.3. This chart lays
out the various steps and workflows in the AniPFM system, giving a clear overview of its operational
framework. It acts as a useful guide to understand the complex aspects of the model and to track the
sequential stages involved in its operation. Consulting this flowchart can provide readers with a solid
understanding of how AniPFM functions, laying the groundwork for the discussions in the following
chapters.

Figure 7.3: Flowchart of AniPFM.

7.3.7. Sensitivity analysis
As it was mentioned, the main problem of AniPFM is the lack of understanding of the model on its
different parameters definitions, as well as its uncertainty. With the goal of better understanding the
model, reducing the uncertainty and possibly improving the accuracy, a plan will be drafted for what
possible parameters need to be studied. For this it will be analysed what was already discussed by
van den Bos et al. [34] and whether or not their studies were conclusive to the future choice of said
parameter. This overview can be seen in Table 7.1. This table will serve as guidance throughout the
research performed during the thesis.
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Table 7.1: Sensitivity analysis plan

Parameter / Definition Brief description

Studied by
van den
Bos et
al. [34]?

Conclusive
?

Study in
this

thesis?

Number of modes

Used in the Fourier
series that generates the
non-dimensional space
only velocity fluctuations

Only for
pure

convection
No

Random seed

Used in the
pseudo-random number
generator to obtain the
angles that go into
wavenumber vector

expression

Limited
Further
research
is needed

Time Correlation

Applied to the
non-dimensional velocity
fluctuations to create a
velocity fluctuation signal

that is dependent in
space and time

Yes
Further
research
is needed

le

Length scale that
corresponds to the peak
of the TKE spectrum

Limited No

Cl
Calibration constant part
of the definition of le

No -

Cut-off length scale
Defines the cut-off

wavenumber for the TKE
spectrum

Yes
Further
research
is needed

fτ

Correlation factor part of
C&EC time correlation

method
No -

7.4. Summary
After discussing the turbulence modelling, synthetic turbulence is presented. The requirements of the
ST models are discussed based on the characteristics of turbulence reviewed in Chapter 6. Such
characteristics entail adhering to the governing equations, modelling of the energy spectrum, replicating
the Reynolds stresses and modelling the convection of turbulence and temporal decorrelation caused
by constant production and dissipation. Then, the active research areas of ST were presented. From
here, the foundation was built and the model this thesis revolves around, AniPFM, was presented. It
was analyzed with detail in terms of the generation of the velocity fluctuations, turbulent kinetic energy
spectrum, wave number and vector calculations, time correlation and pressure fluctuations. From
the discussion of the generation of the velocity fluctuations and its time correlation, it was seen that
there is no consensus yet on which time correlation method provides the best accuracy with the least
uncertainty. This was one of the gaps identified in the model, which this thesis aims to cover. In the
C&EC time correlation method, a fine tuning factor, fτ , was identified as a parameter which needs to
be studied, as the default value from the model of Billson et al. [11] is still being used. Moreover, still
in terms of the velocity fluctuations generation, two additional parameters were suggested for further
study: the number of modes and the random seed. The sensitivity of the model to these parameters
is not fully understood yet. Lastly, regarding the TKE spectrum, two length scales were assessed as
requiring further study: the length scale associated with the peak of the spectrum, le, and the cut-off
length scale, lcut. In the definition of le, an empirical constant, Cl, was also identified as a parameter to
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be studied in this thesis, as the value that is being currently used is calibrated for a plane mixing layer,
which is inherently different from the flow case of interest of this thesis.



”All models are wrong, but some are useful.”
George E.P. Box

Part III

Towards a Robust Model:
Improvements, Verification & Validation
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8
Turbulent channel flow

Now that all the theory and literature has been presented, it is time to analyze, further understand and
hopefully improve AniPFM.

There are three distinct components involved in the verification and validation process for the imple-
mentation of AniPFM. These are verifying and validating the AniPFM’s capability to accurately model
pressure fluctuations, validating the accuracy of the URANS turbulence model + AniPFM in represent-
ing the Reynolds stress tensor, and evaluating the ability of implementing the AniPFM within the NRG-
FSIFOAM framework to predict the vibration amplitude of a nuclear fuel rod under axial flow conditions.

AniPFM is quite complex by itself. It has a lot of parameters that need to be defined by the user,
which require understanding of the model but also of the flow in question. In order to further understand
the model and the best parameters configurations for a certain flow, validation is needed. Running
complete FSI simulations increases even more the complexity of the simulations and thus increases
the run time and the difficulty to draw conclusions regarding the accuracy of the AniPFM by itself as well
as the optimal parameters. That is why pure flow simulations play an important role in the validation of
AniPFM. They provide less complexity as well as more data regarding flow quantities, which are crucial
to validation. In this chapter and the next one, the fluid-only simulations are presented.

8.1. Introduction
In this chapter, the simulations of the turbulent channel flow (TCF) case are discussed. This case
was chosen due to its simplicity and because of the high availability of DNSs. The setup was made
to replicate the DNS results of Abe et al. [122]. These researchers performed a DNS study on the
Reynolds-number dependence on pressure fluctuations in TCF. Their highest Reynolds number is Reτ
= 640, and thus this is the one chosen to replicate in our setup. This DNS was selected because it
provided data on the mean flow characteristics, such as velocity profiles and Reynolds stresses, but
also other quantities, such as spectral information regarding pressure and velocity. Furthermore, it also
provides two-point correlations of velocity fluctuation signals which will prove to be useful for calibration
of time correlation methods.

A sketch of TCF is shown in Figure 8.1. In the TCF, the flow is between two parallel plates, as
shown in Figure 8.1, where L » δ and b » δ. L and b are large enough so that the flow in the edges
can be considered uncorrelated. This allows us to take a smaller section in the middle of this larger
channel and use periodic boundary conditions in the streamwise and spanwise directions. The flow is
statistically homogeneous in these directions which means that it can be averaged in space, resulting in
one final line of data depending only on the wall normal direction, y. This is the beauty of the turbulent
channel flow and why so many turbulence researchers use this case to study wall bounded turbulence.

44
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Figure 8.1: Sketch of turbulent channel flow [12] (Modified).

8.2. Simulation setup
Although this setup was already mentioned in van den Bos et al. thesis, it will be described here also
for completeness of this thesis. The simulation domain is set at dimensions of 6δ × 2δ × 3δ, with δ
representing the mid-channel height, which is equal to 1 in this case (in meters). The mesh dimensions
are Nx × Ny × Nz, where these values are varied resulting in different mesh resolutions. The grid
is evenly spaced in the x and z directions, but expands geometrically from the wall towards the mid-
channel in the y direction. All the different meshes are wall resolved and such that y+ ≤ 1. This
parameter y+ is a non-dimensional wall distance and it is given by Equation 8.1, where uτ is the friction
velocity (shown in Equation 8.2), y is the distance to the closest wall and ν is the kinematic viscosity,
which is set to ν = 2e-5 m2s−1.

y+ =
yuτ
v

(8.1) uτ =

√
τw
ρ

(8.2)

The findings from this test case will be benchmarked against the DNS of Abe et al. [122] with a
Reynolds number of Reτ = 640, as detailed in Equation 8.3. Abe et al. established that Reτ equates
to a bulk Reynolds number, Rebulk = 24,228, further described in Equation 8.4 and Equation 8.5. The
same Rebulk as Abe et al. is used. Given the periodic boundary conditions, to ensure flow, a pressure
gradient needs to be set, achieved by adding a momentum source to the Navier-Stokes equations.
In OpenFOAM, a bulk velocity force is applied, setting the resultant flow’s speed. The viscosity and
mid-channel height determine this bulk velocity. There’s no wall model as the y+ value of the first cell
is smaller than 1, ensuring the flow is resolved to the wall. A backward time scheme offers second-
order accuracy in time. The time step is constrained by the CFL number, capped at 0.5. The PISO
algorithm handles the equation system per time step. For the convergence of the governing equations,
an absolute threshold of 1e-6 is set for all equations, including the pressure fluctuation equation.

Reτ =
uτδ

v
(8.3) ReBulk =

UBulk2δ

v
(8.4) UBulk =

1

δ

∫ δ

0

u dy (8.5)

The coarsest mesh used can be visualized in Figure 8.2. This mesh has 40x80x60 elements.
First, a steady state simulation using the k − ω SST turbulence model is ran until the residuals are

converged. This simulation is used to initalize the flowfield of an unsteady simulation using AniPFM,
which is run for 300 seconds (equivalent to roughly 12 flow-throughs). This was found to be enough
for having converged root mean square pressure fluctuations for all the meshes considered.
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Figure 8.2: TCF mesh.

The AniPFM settings used in each section/subsection of this chapter are summarized in Table 8.1,
such that the reader has a more clear overview of what parameters are being used.

Table 8.1: Summary of AniPFM parameters used in each section/subsection

(Sub)section #modes Rand. seed Time corr. fτ le Cl Cut-off
section 8.3 256 Default (0) C&EC 25 Cllt 3.0 Shur
section 8.4 256 Default (0) C&EC 25 Cllt 3.0 Shur

subsection 8.5.2 Varying Default (0) C&EC, PC 25 Cllt 3.0 Shur
subsection 8.5.3 256 Varying C&EC, PC 25 Cllt 3.0 Shur
subsection 8.5.4 256 Default(0) (R)C&EC, PC Varying Cllt 3.0 Shur

section 8.6 256 Default(0) C&EC 25 Cllt 3.0 Shur
subsection 8.7.1 256 Default(0) C&EC 25 Both Varying Shur
subsection 8.7.2 256 Default(0) C&EC 25 Cllt Varying Both
subsection 8.7.3 256 Default(0) C&EC 25 Cllt 2.0 Shur

As mentioned before, the channel flow is only statistically inhomogeneous in the y direction and thus
unless mentioned otherwise, the results presented have been averaged in the statistical homogeneous
directions. Furthermore, when one-dimensional spectra are displayed, they are averaged over the other
homogeneous direction. For example, if a spectrum is shown in the streamwise direction, it’s averaged
over the spanwise direction.

8.3. Qualitative results
Statistics of the flow quantities, while extremely relevant, can sometimes paint a misleading picture.
Relying solely on quantitative information can risk omitting nuances or the broader context. Therefore,
it is crucial to complement statistical analyses with qualitative data. By examining such data, a more
comprehensive understanding can be ensured as well as validate whether the numbers truly align with
what is seen and expected.

In Figure 8.3, the instantaneous velocity and pressure fluctuations are shown for a cutoff plane in
the middle of the channel. In the case of the velocity fluctuations, the x-direction component is shown.
At first glance, these fluctuations seem chaotic and do not follow any clear pattern. In terms of the
pressure fluctuations, these seem to be stronger near the wall and weaker near the middle of the
channel.
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(a) Velocity fluctuations

(b) Pressure fluctuations

Figure 8.3: Instantaneous velocity and pressure fluctuations fields in a plane in the middle of the chan-
nel.

Figure 8.4a shows the mean squared velocity (x-component) fluctuations as well as the mean
squared pressure fluctuations. Here a tendency can be seen for both with increasing value near the
wall and decreased near themiddle of the channel. As it was seen before, to obtain the pressure fluctua-
tions, the model solves a Poisson equation where the RHS only depends on the mean squared velocity
fluctuations (normal components of the Reynolds stress tensor) and on the mean velocity. This is why
the behaviour of the mean squared pressure fluctuations resembles the one of the mean squared ve-
locity fluctuations. It can be noted, however, that the tendency, while similar, shows some differences,
with the mean squared pressure fluctuations showing a higher value only very close to the wall while
the mean squared velocity fluctuations show this also a bit further away from the wall. This will be
addressed later on the report.
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(a) Mean squared velocity fluctuations

(b) Mean squared pressure fluctuations

Figure 8.4: Mean squared velocity and pressure fluctuations in a plane in the middle of the channel.

8.4. Mesh study
Mesh studies are important in ensuring the accuracy and fidelity of computational fluid dynamics simula-
tions. The quality and resolution of the mesh can significantly influence the results, potentially leading
to numerical errors or convergence issues. Recognizing this significance, in Table 8.2, the different
mesh resolutions employed for this case are shown. Furthemore, as mentioned before, the CFL num-
ber was constrained at 0.5 for all meshes by using a dynamic time step. The average CFL number for
all meshes is roughly 0.45.

Table 8.2: TCF mesh Resolutions

Mesh Nx Ny Nz Ncell

M1 40 80 30 96,000
M2 50 96 40 192,000
M3 80 112 60 537,600
M4 120 128 90 1,382,400

Figure 8.5 shows the root mean squared pressure fluctuations along the wall normal coordinate for
the different meshes compared to DNS data. When comparing the meshes, a clear convergence is
observed: as the mesh resolution increases, the curves come closer together. An increase in resolution
also leads to higher pressure fluctuations due to the greater amount of resolved turbulence kinetic
energy (up to a certain converged value). Moreover, the finer meshes capture the increase in turbulent
production in the buffer layer more accurately. When set against DNS data, the overall shape of the
curves is quite similar, with a few key differences: an underestimation of the production term increase
in the buffer layer, a reduced prediction of pressure fluctuations away from the wall (which is not of
primary concern for AniPFM), and close to the wall at y+ < 10, an overestimation of RMS pressure
fluctuations.
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This overprediction might be why the FSI simulations by van den Bos et al. [34] reported increased
displacement amplitudes. If this is indeed the reason, it becomes essential to determine what aspect
of the AniPFM model is responsible for it, how it can be adjusted, and then validate the changes in both
fluid and FSI scenarios.

In the following sections the mesh used by default is the coarse one, unless mentioned otherwise.
This is done to speed up the simulation time. The conclusions taken from the results are considered
valid and generalizable for finer meshes in terms of trends but not absolute values. The generalization
to finer meshes is done in subsection 8.7.3.

Figure 8.5: Root mean square of the pressure fluctuations along the wall normal coordinate for different
meshes.

8.5. Time Correlation
In Chapter 7 AniPFM was presented. One of the sections discussed was the different time correlation
methods that are possible to use with AniPFM.

Van den Bos et al. [34] analyzed different aspects of the influence of the different time correlation
methods on both fluid and FSI simulations. In the end the pure convection method and the convection &
exponential correlation proved to have somewhat similar results from their analysis, and since the pure
convection is more computationally friendly, it was the one that was used in most of the simulations.
While it is indeed the most computationally friendly method, it has some clear drawbacks. This was
already hinted at in the end of van den Bos’ thesis as one of the likely reasons of AniPFM uncertainty.
In this section, the time correlation methods will be assessed, mainly the pure convection and the
convection & exponential correlation, looking to continue van den Bos’ studies and to decide which
method is more suitable.

8.5.1. Analytical analysis
First, an analysis can be made just by looking at the equations and making some predictions, which
can later be corroborated by numerical simulations.

The convection & exponential correlation shows great potential as it incorporates both convection
and turbulence decorrelation due to production and dissipation. Its main drawbacks being the fact that
additional equations (compared to pure convection) need to be solved which might increase simula-
tion time, and the fact that these equations involve numerical approximation of derivatives introducing
numerical diffusion, which might decrease the magnitude of the velocity fluctuations near the wall and
thus decrease the magnitude of the pressure fluctuations. There is a rescaled version of this method
as it was shown, which rescales the energy such that in principle no energy is lost. The only drawback
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seen when looking at the equations of this method is that by rescaling the energy, then it changes the
decorrelation term of the velocity fluctuations. If this method indeed rescales the energy correctly then
it is a promising method.

Lastly, the pure convection method, as shown in Equation 7.32, utilizes the exact solution of the
advection equation, which means that no numerical diffusion is introduced. From an analytical point of
view, the drawbacks are: not considering turbulence decorrelation; since the generated velocity field is
not a function of time (the field is always the same just convected), it should have a greater dependence
on the random seed as well as the number of modes of the Fourier series than the other methods. An
upside from this method, besides not introducing numerical diffusion, is its simplicity.

8.5.2. Number of modes
Now that the equations have been analysed and some hypothesis/predictions have been laid out, it is
time to check them. This is done by running simulations with the different correlation methods.

First, the dependency on the number of modes used in the Fourier series that generates the velocity
fluctuations is analyzed. This is done by running simulations with both time correlation methods (C&EC
and pure convection) with number of modes varying from 64 to 2048. The RMS pressure fluctuations
along the wall normal coordinates for these various number of modes are shown in Figure 8.6.

From Figure 8.6a, it can be seen that, as expected, the pure convection method is very dependent
on the number of modes. While the curves collapse for higher y+, for the lower y+ values (which are
the ones of interest) there is a great difference in the magnitude of the RMS of pressure fluctuations.
Furthermore, the method shows no signs of convergence (at least with the number of modes analysed
here): there is no clear trend in the curves. It can be speculated that a higher number of modes
would need to be used to achieve some level of independence. This would lead to an increase in
computational cost.

On the other hand, Figure 8.6b shows that the C&EC method is independent on the number of
modes used. This is a great plus for this method as higher number of modes increase computational
cost.

(a) Pure convection (b) Convection & Exponential Correlation

Figure 8.6: Root mean square of the pressure fluctuations along the wall normal coordinate for various
numbers of modes.

It is also important to understand what is the relation between the number of modes used and the
simulation time. A higher number of modes is expected to increase the time AniPFM spends generating
the velocity fluctuations. Furthermore, it is also crucial to see what is the difference in simulation time
between the C&EC and pure convection methods.

Before delving deeper into the analysis, it’s essential to address a procedural detail regarding the
execution of the simulations. To maintain consistency and mitigate any potential bias in the results
due to performance variability, all simulations were conducted on the same node of NRG’s cluster. It
is noteworthy that even nodes with identical hardware in NRG’s cluster show performance variations.
Hence, using the same node for all simulations ensured a standardized environment and more reliable
outcomes.
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Figure 8.7 shows the simulation duration for different number of modes for both time correlation
methods. Unlike what was expected, C&EC and pure convection show essentially the same simulation
time. It was expected that since C&EC has to solve more equations it would be more costly. Although
in this analysis the same time step was used in both methods, in reality the C&EC method requires
stricter time steps than pure convection to ensure convergence. This means that if the maximum
allowed time steps are used, then simulations using the C&EC method will take longer than those
using pure convection. This will be mentioned later in the context of FSI simulations.

Moreover, as expected, the simulation time increases with the number of modes. By fitting a linear
curve to the data, the slope obtained ism = 0.45 for the C&EC method andm = 0.44 for the PC method.
The difference between them is negligible. The data does not seem to exhibit a linear behaviour. In-
stead, it shows more of a exponential one. By fitting an exponential curve of the form y(x) = aebx, the
coefficients obtained are a = 1.39e3, b = 6.67e-4 for the C&EC method and a = 1.33e3, b = 6.78e-4
for the PC method. These values can be used as future reference for similar setups to estimate the
increase of simulation time by increasing the number of modes.

Figure 8.7: Simulation duration for different number of modes.

8.5.3. Random seed
As it was seen in Chapter 7 (Equation 7.23 and Equation 7.24), the wave number vector, kn, and the
auxiliary vector, ζn, which will be part of the expression for the direction vector, are obtained through
sines and cosines of random variables. These random variables are generated by a pseudo random
number generator (RNG). Although RNGs generate numbers that seem random, most of them are
actually deterministic in nature (hence ’pseudo’). Given the same seed, they will produce the same
sequence of numbers every time. This property can be useful in situations where reproducibility is
desired, which is the case of AniPFM. As such, the random seed is one of the user inputs of the model.

AniPFM is inherently a stochastic model, depending on random variables for the generation of
the velocity fluctuations field. While this dependency is intrinsic to the method, ideally, the generated
velocity fluctuations would not differ much when different random seeds are using. This would allow
a more ’deterministic’ like (but still stochastic) turbulence generation. This in turn, would lead to lower
standard deviation in the RMS pressure fluctuations and thus less uncertainty in the predicted amplitude
of displacements in the case of FSI simulations. In light of this, the effect of the random seed on the
different time correlation methods will now be analysed.

Figure 8.8 shows the RMS pressure fluctuations in wall coordinates at y+ = 10 averaged over time,
w.r.t the random seed for different time correlation methods. As expected from our analytical analysis,
the pure convection method shows a clear dependence on the random seed, whereas the C&EC does
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not (or at least to a much lower extent). Quantifying this dependency, in the case of PC, on average, the
difference between using different random seeds and the baseline seed (considered 0 here) is roughly
5%. On the other hand, for C&EC simulations, this value is 1.37%.

Figure 8.8: RMS pressure fluctuations at y+ = 10 for different random seeds.

8.5.4. C&EC calibration
The C&EC method has shown very promising results compared to the other time correlation methods.
Much like other areas of AniPFM, this method also needs to be calibrated. As mentioned in section 7.3,
there is a control parameter, fτ , which can be seen in this model’s equations (Equation 7.27 - Equa-
tion 7.30). This parameter is one of the user inputs of AniPFM. Until now, a value of fτ = 17 was used
which is the same as the one used by Billson et al. [11] (this time correlation method partially built from
his approach). Billson et al. used this value for a simulation of a 3D jet. And since our use case is
different, it is worth seeing what is the model sensitivity to this parameter and what is its optimal value.

Let us start by looking at the equations and analyse the influence this parameter is expected to
have:

↑ fτ ⇒↓ a⇒↑ b⇒ Less weight to vm−1
t and more to wm

t ,

↓ fτ ⇒↑ a⇒↓ b⇒ More weight to vm−1
t and less to wm

t .

Remember that vm−1
t is the convected previous velocity fluctuations field and wm

t is the newly
generated field. This means that a higher fτ will put more weight onto the newly generated field and a
lower fτ onto the convected field from the previous solution. As it was seen, to obtain the convected
field, vm−1

t , the advection equation, Equation 7.27, is solved, which introduces numerical diffusion. So
it is expected that a lower fτ velocity fluctuations field will have less energy than a higher fτ one.

During the rest of this subsection, the effect of this parameter will be assessed as well as the com-
parison with other methods such as the rescaled version or pure convection.

TKE, pressure fluctuations and Reynolds stresses
In this part, the models will be evaluated in terms of the quantity of most interest for this project, the
pressure fluctuations. Since the pressure fluctuations rely on velocity fluctuations and the latter on
turbulent kinetic energy, those will also be evaluated.

In Figure 8.9 is shown the resolved turbulent kinetic energy w.r.t the wall normal coordinates for
C&EC with different fτ values ranging from 1 to 100 as well as to RC&EC and pure convection. The
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resolved TKE is determine dividing the input TKE from the URANS simulation by the one obtained
though the velocity fluctuations generated by AniPFM. As expected, lower fτ values cause a greater
and greater loss of energy. This is very pronounced for fτ = 1, which shows the degree of energy
that is lost due to numerical diffusion when solving the advection equation. For values of fτ from 25-
100 the difference very near the wall is none, with only difference starting from around y+ = 50. The
pure convection shows almost no loss of energy as expected. Furthermore, the rescaled version of
C&EC shows an incorrect rescaling of the energy. It rescales the energy for greater values than the
ones taken as input from URANS. Furthermore, the rescaling does not work well: ideally the rescaling
should rescale the energy to the same value (1, which means no loss of energy) for different fτ values.
As it can be seen in the figure this is not the case. fτ values which originally have a lower resolved
TKE get a much greater increase, resulting in as much as 1.6x of the input TKE. It is not clear what
is causing this. If this method were to be used, the equation for the coefficient b would have to be
revised. As it is now, it is overpredicting the energy lost by numerical diffusion and thus in the rescaling
processing it is introducing more energy in the system than it originally had from the URANS input.

From this plot, it can be concluded that fτ values ranging from 25 to 100 have a similar behaviour
near wall, which is the part of most interest to the application of AniPFM. It also shows that the rescaled
version of C&EC can be discarded. The pure convection shows good results in this section.

Figure 8.9: Resolved TKE for different time correlation methods.

Now that the TKE has been analysed, the next step is to study the effect on the Reynolds stresses.
These are shown in Figure 8.10 (DNS data is not shown here as its uu component is considerably
higher in magnitude than the ones seen here, causing this data to become barely distinguishable).
Only the normal components are shown as those are the ones that are more important. In terms of the
C&EC method, the conclusions that can be taken from here are very similar from the ones taken from
the previous figure: higher fτ values show more energy, converging towards fτ = 100. On the other
hand, the pure convection method shows some interesting results. It shows some wiggles, which are
not characteristic of the Reynolds stresses and are probably due to the periodic nature of this method,
that fails to account for other physical phenomena happening in turbulence, other than convection.
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Figure 8.10: Normal Reynolds stresses along the wall-normal coordinate for various time correlation
methods.

Finally, the RMS of the pressure fluctuations in wall coordinates along the wall normal coordinate
are show in Figure 8.11. For the C&EC, the results show what had already seen before. Using values
of fτ ≥ 25 is the ideal. While at a first glance the pure convection method seems to yield results akin
to those of the C&EC method, it is essential to note that this resemblance is coincidental, stemming
from the specific combination of the random seed and number of modes used in this case. Indeed,
the pure convection method demonstrated a pronounced sensitivity to variations in these parameters,
as detailed in subsection 8.5.2 and subsection 8.5.3, a characteristic not shared by the C&EC method
which maintains its performance relatively unaffected by changes in the number of modes and the
random seed.

Figure 8.11: RMS pressure fluctuations along the wall-normal coordinate for various time correlation
methods.
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From this analysis, some conclusions can already be taken, but those are solely based on the
energy based quantities and not so much on the physicality of the generated turbulence. This last part
is what will be analysed in the following two parts.

Two-point correlation
Turbulence, with its complex and multi-scale nature, demands effective tools for analysis. One of
the widely-used methods to study turbulent flows is the two-point correlation technique. This method
measures the similarity or correlation between signals at two spatial points based on their separation
distance. When applied to velocity fluctuations in a turbulent flow, it provides valuable information about
spatial relationships and coherence within the flow.

Mathematically, the two-point correlation,R(r), for a velocity fluctuation field, u(x), can be expressed
as:

R(r) = ⟨u(x) · u(x+ r)⟩ , (8.6)

where ⟨·⟩ denotes the ensemble average, x is the set of points in space, and r is the separation
vector between the two points being considered. The use of this technique aids in the assessment of
the physicality of the generated turbulence by the different time correlation methods. Note that in the
following figures if a two-point correlation is showed in the spanwise direction it means it was averaged
in the streamwise direction and vice-versa. Moreover, all the two-point correlations were averaged in
time for the last 0.5 flow-throughs with sets of data every time step. As such the expression for the
two-point correlation used is slightly different from the one presented above:

Rij(r) =

〈
⟨ui(x, t) · uj(x+ r, t)⟩space

〉
time〈

⟨ui(x, t) · uj(x, t)⟩space
〉
time

. (8.7)

The correlation is normalized as to ensure that the maximum absolute value is 1.0, which corre-
sponds to a fully correlated signal if positive and fully uncorrelated if negative.

Limited by the available DNS data of two-point correlation of velocity fluctuations for the Reτ of the
current study, once again the valuable data of Abe et al. [122] DNS was used. They have available data
both for streamwise and spanwise two-point correlation, for the three velocity fluctuations components
at two different y+ values: y+ = 325.8 (around mid-channel) and y+ = 5.38.

Figure 8.12 shows the streamwise two-point correlation coefficients of velocity fluctuations for y+ =
325.8 for C&EC with different correlation factors and for pure convection. Rii corresponds to the two-
point correlation of the ith component of the velocity fluctuations vector. The different plots have a few
features in common: correlation factors of 25-100 provide similar results whereas a correlation factor
of 1 and pure convection show very different results; there is a relation between the initial gradient of
the curve and the correlation factors - lower correlation factors (more focus on convection) show a less
steep gradient (take slightly longer to decorrelate), whereas higher correlation factors show a steeper
gradient; pure convection and C&EC with fτ = 1 show some periodicity in the results, with it being more
chaotic and irregular in the former and smoother in the latter - it is noteworthy that even after extensive
averaging both spatially and temporally, sufficient to eliminate local variations and irregularities, this
periodicity persists, which reaffirms that the periodicity is intrinsic to the method. Furthermore, compar-
ing with DNS data, it is noticeable that while the u component is not very close to the data, the v and
w components are quite close in the overall shape. However, AniPFM decorrelates slower than DNS
and it also shows more amplitude of correlation/decorrelation after reaching 0 correlation. Lastly, in
the middle of the channel (x+ = 2000), AniPFM ends up at a slightly deviation from zero (Rii = -0.05),
whereas DNS is at zero for Rii. This deviation, at half the computational domain, indicates that there
are large scales structures present in the center of the channel, for which the computational domain
used is not large enough to capture [122]. This deviation from DNS data, may mean that the energy in
the middle of the channel is being overpredicted. While the area near the middle of the channel is not
the most important one, it still has an effect on the system’s dynamics and overall energy.
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Figure 8.12: Streamwise two-point correlation coefficients of velocity fluctuations for y+ = 325.8.

Figure 8.13 shows also the streamwise two-point correlation but for y+ = 5.38 instead. In this
case, AniPFM for all methods shows a very fast decorrelation which is in agreement for the v and w
components, but not so much for the u component. This difference between AniPFM and DNS for the
streamwise component was also seen in for y+ = 325.8. One possible explanation would the presence
of streaks in DNS which AniPFM is not able to simulate. This would also help explain why the difference
is more prominent for lower y+ values, which is where streaks are seen. While this might be one of
the causes, it is not clear what is causing the faster decorrelation of AniPFM compared to DNS for y+
= 325.8, as there are usually no streaks there. Furthermore, Pure convection shows strong periodicity,
unlike C&EC andDNS. This periodicity is dangerous especially near the wall as it might cause physically
incorrect excitation to the structure in the case of FSI simulations. Moreover, it is interesting to note
that fτ = 1, unexpectedly, performs similarly to other correlation factors for this case.
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Figure 8.13: Streamwise two-point correlation coefficients of velocity fluctuations for y+ = 5.38.

Now that the streamwise two point correlations have been assessed, it is time for the spanwise ones.
In Figure 8.14 this is shown for y+ = 325.8. It is noteworthy how close AniPFM is to DNS data. This is
most likely because the time correlation of the velocity fluctuations does not have a large impact on the
spanwise direction and mostly on the streamwise direction. In this case the deviation from zero at z+
= 640 is in agreement with DNS data [122]. In terms of the differences between the different methods,
there is not as much as the one seen before (which is likely also explained by the same argument
mentioned above regarding the impact of the time correlation in the spanwise direction). Although,
pure convection and a correlation factor of 1 still stand out compared to the others.
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Figure 8.14: Spanwise two-point correlation coefficients of velocity fluctuations for y+ = 325.8.

Lastly, in Figure 8.15 is shown the spanwise two-point correlation for y+ = 5.38. The plots here show
a similar behaviour to the ones in the same y+ but in the streamwise direction: a rapid decorrelation
for the C&EC methods and a very high periodicity for the pure convection method. The results are in
good agreement with DNS data, except for the v component, which fails to predict the decorrelation of
the signal close to the wall. Moreover, it can be seen how similar AniPFM plots look for the different
components. This similarity was also observed in the previous figures. While DNS data of the v and
w component was similar for most of the plots seen, the u component usually standout as different,
which AniPFM failed to predict. This is tied with the fact that AniPFM treats the different components
in the same way in a lot of its parts. One possible improvement is to further increase the anisotropy in
AniPFM, by for example having an energy spectrum for each direction, with a cut-off frequency that is
a vector instead of a scalar. These are just a few examples, but this can be applied in other parts of
the model.
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Figure 8.15: Spanwise two-point correlation coefficients of velocity fluctuations for y+ = 5.38.

Physicality of the synthetic turbulence
To continue the study of the physicality of the generated turbulence, a quadrant analysis was performed
and will be presented here. First, an introduction on quadrant analysis of turbulent flows will be given.

In 1972, Wallace et al. [123] introduced the concept of quadrant analysis for the Reynolds shear
stress. Wallace’s team discerned value in the signs of the velocity fluctuations and categorized their
products into four distinct groups: Q1 (+u, +v), Q2 (-u, +v), Q3 (-u, -v), and Q4 (+u, -v). These groups
later became known as the quadrants of the Reynolds shear stress plane. It is evident that the Q2
and Q4 motions correspond to the ejection and sweep events, where ejections correspond to a move-
ment away from the wall and backwards and sweep events correspond to a down and front movement.
Meanwhile, Wallace et al. termed the Q1 and Q3 motions as ”outward” and ”inward” interactions re-
spectively [124].

As an example as well as validation information, in Figure 8.16 is show a quadrant analysis of a
turbulent channel flow at Reτ = 180 at a location of y+ ≈ 20, performed by Kim et al. [13]. As it can be
confirmed by the figure, in the buffer layer (10 < y+ < 30), the events that are most common are Q2 and
Q4 events, ending up with a joint probability density function (pdf) that looks like a normal distribution
stretched in the diagonal between Q2 and Q4.
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Figure 8.16: Distribution of (u′, v′) at y+ = 20 [13].

In order to perform the quadrant analysis in this thesis, multiple probes were placed at a location
of y+ = 10 throughout the domain. From these probes, the velocity fluctuations were retrieved and
averaged ending up with one final vector with the size of the amount of measured time steps. In
Figure 8.17 are shown the joint probability density functions between the streamwise and wall-normal
velocity fluctuations for the pure convection method and C&EC with different correlation factors. When
looking at the plots, clear differences emerge in the pure convection and C&EC graphs when fτ = 1,
which matches what was seen earlier. For convection and exponential correlation with correlation
factors between 25 and 100, the results are very similar. This similarity fits our expectations. The
stretching we mentioned before is clearly visible, with a strong emphasis on Q2 and Q4 events. The
distribution for a correlation factor of 1 is a bit different but still highlights Q2 and Q4 events. The
joint pdf of pure convection, however, is different from typical patterns in literature for such y+ values.
Overall, the C&EC method performs well, especially with correlation factors of 25 or higher, while the
pure convection method doesn’t align as closely with DNS data.
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(a) Pure Convection (b) C&EC w/ fτ = 1

(c) C&EC w/ fτ = 25 (d) C&EC w/ fτ = 50

(e) C&EC w/ fτ = 75 (f) C&EC w/ fτ = 100

Figure 8.17: Joint pdf of u′ and v′ at y+ = 10.

8.6. Why are the pressure fluctuations being overpredicted?
At the end of section 8.4 it was seen that AniPFM was overpredicting the pressure fluctuations near the
wall (y+ < 10). It was hypothesized that this could be the reason why the FSI simulations performed by
van den Bos et al. [34] were overpredicting the root mean square of the amplitude of displacements. In
that section, the ending thought was that it if indeed this hypothesis was true, then it would be important
to understand what in AniPFM is causing the increased pressure fluctuations near the wall, or at least
what can be done to decrease them.
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To better understand the potential cause, it is important to first examine the pressure fluctuations
equation, which is shown in Equation 6.38. As it can be seen there is a clear effect from the veloc-
ity fluctuations on the pressure fluctuations. Thus, in order to better understand what is causing the
overprediction of the pressure fluctuations, the Reynolds stresses will be analysed.

Figure 8.18 shows the comparison of the normal Reynolds stresses between DNS, AniPFM and
the input RANS (with Wilcox correction) for the different meshes. Comparing AniPFM results with
DNS, it is evident that the streamwise and spanwise components of the Reynolds stresses are far from
being resolved. The wall-normal component on the other side is much better resolved. Comparing the
results between differerent meshes, it becomes clear that the increase in mesh resolution increases
the amount of turbulent kinetic energy resolved, with this increase most noticeable very near the wall.
Finally, comparing with the input RANS RST (which in reality is just RANS TKE to which the Wilcox
correction is applied), it becomes clear that as the mesh resolution increases the Reynolds stresses
of AniPFM become closer and closer to the input ones. In van den Bos thesis [34], the effect of the
turbulence model used in URANS in AniPFM results were studied, mainly k − ω SST and k − ϵ. The
former showed better results near the wall in terms of the Reynolds stresses (after Wilcox correction)
and thus was the chosen one. Indeed this model performs better (at least in the wall normal component,
not so well in the streamwise one), but it is still not perfect, obviously. For the medium and fine meshes
it shows an overprediction of the v′v′ component near the wall.

Now that the Reynolds stresses have been analysed, the focus can go back to the main question
of this section: why are the pressure fluctuations being overpredicted? In the previous paragraph it
was seen that the streamwise and spanwise components of the Reynolds stresses are for from being
resolved. So, from a crude analysis, it could be said that it would only make sense that the pressure
fluctuations should be underpredicted. However, this is not what is happening. This can be explained
by simplifying the pressure fluctuations equation for the case of TCF. In this case, the derivatives of the
mean flow velocity and of the Reynolds stress tensor in the x and z-direction are equal to zero. From
this, Equation 8.8 is derived. One can notice that especially the derivative of the Reynolds stress in
the wall-normal direction is important. This dependency on the wall-normal component of the Reynolds
stresses helps explains why the pressure fluctuations were being overpredicted near the wall. However,
the relation between both is not trivial. For example, for M1, as it can be seen in Figure 8.18a, AniPFM
underpredicts the v component when compared to DNS, however from Figure 8.5 it was observed that
this mesh is already overpredicting the root mean square of the pressure fluctuations near the wall.
While the relation between these quantities is still not clear, there is a clear dependency of the pressure
fluctuations on the v′v′ component.
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Note the in the case of interest of this thesis (annular flow) this equation will be similar with depen-
dence only on the streamwise and radial component (considering cylindrical coordinates with r, θ and
z). This will be discussed in the next chapter.

Now, that the origin of the overprediction of pressure fluctuations near the wall is better understood,
it is time to shift the focus of the attention to possible solutions for this problem. This will be the theme
of the following section.
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(a) M1 (b) M2

(c) M3 (d) M4

Figure 8.18: Normal Reynolds stresses for different meshes.

8.7. Turbulent kinetic energy spectrum
To address the overprediction of pressure fluctuations near the wall using AniPFM, the turbulent kinetic
energy spectrum equation and its terms were examined, checking for consistency, physical meaning
and underlying assumptions.

This analysis starts by reviewing the equation used for the TKE spectrum, Equation 7.10. This
equations depends on: the wavenumbers, k (unchangeable); the wavenumber which corresponds to
the TKE peak, ke; the highest wavenumber, kη; and the cut off frequency, fcut. The expression kη,
Equation 7.13, is based on Kolmogorov’s second similarity hypothesis and it is usually the expression
used for computing this wavenumber. Where the model has more room for change is in the definition
of ke and fcut. These are the ones that will be given focus in this thesis. The wavenumber ke will be
analysed first, followed by fcut.
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8.7.1. TKE peak wavenumber
As it was mentioned in subsection 7.3.2, there are two possible ways of defining le:

le = Cllt = Cl
k3/2

ϵ
and le = min(2dw, Cllt) .

They are both taken from Shur’s model [10], although van den Bos et al. [34] opted for the first
definition and Shur opted for the second one. Van den Bos et al.’s choice was motivated by a brief
study that indicated that the second definition would lead to lower magnitude of pressure fluctuations.
The goal of this section is to further understand the effect the definition of this length scale has on the
generated velocity fluctuations and pressure fluctuations as well as possibly adapt it to possibly correct
the overprediction of pressure fluctuations near the wall.

Figure 8.19 shows the RMS pressure fluctuations w.r.t y+ for the two different definitions of le men-
tioned above as well as for 2dw. The last one is also included to understand what is actually happening
inside the minimization function. As the figure shows, the curve of 2dw and Shur’s definition collapse,
which means that 2dw is always smaller than 3lt. This is a confirmation of Figure 7.1, which already
showed this. The only reason Shur [10] still chose this approach is because they use their zonal RAN-
S/LES not only on TCF but also other cases (for example: turbulent BL), where 2dw is not always
smaller than 3lt. That being said, using the minimization function in AniPFM case which is always
meant for wall bounded flows makes no sense. Furthermore, it also confirms van den Bos [34] study,
showing that indeed it underpredicts the pressure fluctuations. Thus, from now on, the focus will be on
the first definition of le.

Figure 8.19: RMS pressure fluctuations along the wall-normal coordinate for different le definitions.

The Cl value of 3.0 used in AniPFM in the definition of le comes from Shur et al. [10] who adjusted
this empirical constant to match experimental simulations of a plane mixing layer. This case is clearly
very different from the use case of AniPFM, which is more geared towards wall bounded flow over
fuel rods. Thus, it is important to calibrate this constant for AniPFM. In Figure 8.20 it is showed that
by decreasing the value of Cl, the RMS pressure fluctuations at the wall better align with DNS data.
Let us try to understand what is happening by lowering the Cl value that leads to this. By lowering
it, the predicted length scale at which the TKE spectrum has its peak is lower, which means that the
corresponding wavenumber, ke, is higher. This then means that the peak of the TKE spectrum goes
to the right. Moreover, it is hypothesised the energy content associated with a higher wavenumber will
be lower than the one associated with a lower wavenumber. While this is true for the most part of the
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TKE spectrum, it is not necessarily true for the initial part of the spectrum, where the spectrum can
show an increasing behaviour instead of a decreasing one. However, this assumption seems valid for
the range of wavenumbers studied here. This means that the peak itself will happen at a lower TKE,
which means that the energy content of the lower wavenumbers before the peak will also have a lower
energy content. So, the lowering of Cl can be visualised as a down shift of the TKE spectrum as well
as a shift to the right of the spectrum. The implications of this on the pressure fluctuations are seen in
the figure: as Cl is lowered, the curve shifts downwards and the peak slightly shifts to the right.

From the figure, one can observe that while the shift downwards is true for y+ < 100, it is not true
for higher y+ values, as the curves collapse onto themselves for different Cl values. This is something
that is going to be explored in the next chapter.

Figure 8.20: RMS pressure fluctuations along the wall-normal coordinate for different le definitions and
Cl values, using the Shur cut-off.

8.7.2. Cut-off wavenumber
As mentioned in the beginning of this section, one of the definitions where AniPFM has room for change
as well as need for deeper understanding on its influence on the model is the cut-off frequency. Two
possible definitions are considered: the one by Shur et al. [10], Equation 7.15, and a simpler definition,
Equation 7.16, which will be named cubic cut-off from here on. The latter was discarded by van den Bos
et al. [34] as it was shown to overpredict the TKE and thus the pressure fluctuations near the wall. In
the previous subsection it was shown that by modifying the Cl value, it is possible to scale the turbulent
kinetic energy near the wall and match the RMS pressure fluctuations to DNS data. Consequently, if
this same approach is applied to the cubic cut-off it is possible to scale down the energy near the wall
and better compare both filters. Because in the end, what is of most interest is the shape of the lcut
along the channel height, as it was shown it is possible to shift the energy up or down easily.

Figure 8.21 shows the comparison of the RMS pressure fluctuations w.r.t the y+ for simulations using
the cubic cut-off with different Cl values for the le definition. Like it was shown for the Shur cut-off, it is
shown here that it is also possible to calibrate the constant Cl for this cut-off method. As expected a
smaller value is needed as the cubic cut-off cuts the energy spectrum at a higher wavenumber than the
Shur cut-off. Comparing both cut-offs with the optimised coefficients, the cubic cut-off shows a better
overall shape. It shows a more pronounce peak than the one with Shur cut-off.
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Figure 8.21: RMS pressure fluctuations along the wall-normal coordinate for different le definitions and
Cl values, using the cubic cut-off.

To better understand the influence of the cut-off definition and of the Cl value, the focus will now
be shifted towards the velocity fluctuations, more specifically the Reynolds stresses. In Figure 8.22 is
depicted the Reynolds stresses for both cut-off length definitions for the standard Cl value and for the
optimized one. The Reynolds stresses of the cases using the cubic cut-off show a steeper gradient
close to the wall compared to the ones using Shur cut-off. Moreover, this steeper gradient is also seen
in the DNS data, making the use of cubic cut-off promising. Comparing the different coefficients: for
the Shur cut-off case, the change is minimal, but there is a slight decrease in overall magnitude of the
Reynolds stresses; in the case of the cubic cut-off, for the optimised Cl, the v′v′ component matches
DNS data until around y+ = 25.
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(a) Shur cut off w/ Cl = 3 (b) Cubic cut-off w/ Cl = 3

(c) Shur cut-off w/ Cl = 2.85 (d) Cubic cut-off w/ Cl = 1.15

Figure 8.22: Reynolds stresses for different cut off length definitions.

Until now, the different cut off methods, and their calibrated versions w.r.t Cl, have been analysed in
terms of magnitude of pressure and velocity fluctuations. While this is very relevant, it is also important
to understand what is the distribution of the pressure fluctuations in the spectral domain at the wall , as
this is what matters the most to the application of AniPFM.

Figure 8.23 shows the angular frequency power spectra of the wall pressure fluctuations for the
two cut-off length definitions and their calibrated versions. Since Abe et al. [122] had no data on the
frequency spectrum, the DNS data used here for comparison is taken from Hu et al. work [125]. The
experimental data is from Brungart et al. [126]. The DNS data from Hu et al. is at Reτ = 720, while the
simulations performed in this thesis are at Reτ = 640. Moreover, the experimental data from Brungart
et al. [126] was performed at Reθ = 1120, and the simulation performed in this thesis at Reθ ≈ 800.
However, for this range of Reynolds numbers, it was shown that, if properly non-dimensionalised, the
frequency spectra for the different Reτ or Reθ overlap [125].

To obtain this frequency spectra, multiple probes were place in the domain at a height equal to the
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height of the center of the first cell in the y direction. These probes sample the pressure fluctuations
at a constant frequency, from which then the spectra are computed and averaged over the different
probes, resulting in one final spectrum. To understand the plots, one should first compare Figure 8.23a
with Figure 8.23b: here the difference in energy is clear and confirms what had already been seen
before, whereby for the same Cl, using the cubic cutoff results in a greater energy content compared
to using Shur’s cutoff. It can be noticed however that this distribution of energy is not equal for both
methods though. While the spectrum of the cubic cut-off follows almost a straight line across the entire
range of angular frequencies, the spectrum of the Shur cut-off shows a drop for higher frequencies.
While this drop is not alike the DNS one, it is still more similar. The lack of this drop in the case of the
spectrum of the cubic cut-off might have do to with aliasing: the filter is allowing for wavenumbers which
are not represented by the mesh, which leads to an incorrect distribution of energy. Now comparing
Figure 8.23c and Figure 8.23d with Figure 8.23a and Figure 8.23b, it is good to see that the calibration of
theCl value has an effect on all scales. Specially for the lower frequencies, the results from AniPFM are
very close to DNS and experimental data, and in the case of the cubic cut-off they are even overlapped.

(a) Shur cut off w/ Cl = 3 (b) Cubic cut-off w/ Cl = 3

(c) Shur cut-off w/ Cl = 2.85 (d) Cubic cut-off w/ Cl = 1.15

Figure 8.23: Angular frequency power spectra of the wall pressure fluctuations.

Having analyzed the time-frequency domain, the attention is now turned to the evaluation of the
wavenumber domain. Abe et al. [127] performed a DNS study of Reynolds number dependence on
pressure fluctuations in TCF, in which they have data for wavenumber power spectra of pressure fluc-
tuations at the wall for Reτ = 640. This data will be used as comparison for AniPFM.

Figure 8.24 shows the streamwise wavenumber power spectra of the wall pressure fluctuations. The
results look more spurious than expected, which might be due to the analysis being performed on the
coarse grid. Nevertheless, some conclusions can be taken. Comparing Figure 8.24a with Figure 8.24b,
the plots look very similar with both showing the drop in the power spectra for higher wavenumbers, that
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in the frequency domain was not present in the cubic cut-off. Moreover, the cubic cut-off for the lower
wavenumber shows an increase in energy of the pressure fluctuations as the wavenumber increases.
This increase is more pronounced than in DNS. Figure 8.24a does not show this increase and remains
roughly flat until the drop down. Comparing the calibrated versions, Figure 8.24c and Figure 8.24d,
with the previous plots, it is essentially just a shift down in the overall energy across all scales, which
is in line with what had been seen before.

(a) Shur cut off w/ Cl = 3 (b) Cubic cut-off w/ Cl = 3

(c) Shur cut-off w/ Cl = 2.85 (d) Cubic cut-off w/ Cl = 1.15

Figure 8.24: Streamwise wavenumber power spectra of the wall pressure fluctuations.

In Figure 8.25, the spanwise wavenumber power spectra of the wall pressure fluctuations are pre-
sented. Observing Figure 8.25a and Figure 8.25b, the plots show strong similarities, with the cubic cut-
off displaying higher values, consistent with previous observations. The shape of these plots closely
aligns with the DNS data, though there is a notable overprediction, especially at lower wavenumbers.
Turning to the calibrated versions in Figure 8.25c and Figure 8.25d, the cubic cut-off reveals a clear
reduction in power spectra magnitude. However, the Shur cut-off does not show such a change, ap-
pearing much like its non-calibrated counterpart. This similarity might be attributed to the log-log scale
of the plots, wherein a small change in Cl value may not result in a visually discernible difference.
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(a) Shur cut off w/ Cl = 3 (b) Cubic cut-off w/ Cl = 3

(c) Shur cut-off w/ Cl = 2.85 (d) Cubic cut-off w/ Cl = 1.15

Figure 8.25: Spanwise wavenumber power spectra of the wall pressure fluctuations.

8.7.3. Generalization
Until now in this section, it was studied the effect of the different cut-off length definitions, and it was
shown for both methods that by calibrating the empirical constant in the definition of le, the energy of the
velocity fluctuations can be calibrated allowing the pressure fluctuations magnitude to be calibrated as
well. It is important to notice that the studies performed until now regarding this were done in the coarse
mesh, as it allows faster computations and thus more iterations. However, from the mesh convergence
study it was seen that this mesh is not considered converged. Thus, it is now important to obtain a
calibrated Cl coefficient for the converged meshes. Figure 8.26 shows the RMS pressure fluctuations
along the wall-normal coordinate for the different meshes. Here the Shur cut-off definition was used
and Cl = 2.0. As expected a lower value for this empirical constant is needed. The same approach
was applied to simulations using the cubic cut-off and a Cl = 0.6 was found as the optimal value. While
these values are set for this specific flow case, it is important to check if they can be used in similar but
different cases with varying flow conditions.
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Figure 8.26: RMS pressure fluctuations along the wall-normal coordinate for various meshes, using
the Shur cut-off and Cl = 2.0.

8.8. Summary
In this chapter, simulations of the turbulent channel flow at Reτ = 640 were performed using AniPFM.
An introduction was provided, highlighting the significance of TCF in the study of wall bounded turbu-
lence. Following that, the simulation setup was detailed. Subsequently, the qualitative results were
presented as a sanity check to ensure everything was running as anticipated and to offer the reader
a visual demonstration of AniPFM’s capabilities. Next, a mesh study was performed, ensuring the
independence of future analysis from discretization errors.

In the subsequent sections, various time correlation methods for the velocity fluctuations produced
by AniPFM were examined. The C&EC method emerged as more effective than the pure convection
method. It displayed less reliance on user input parameters (indicating reduced uncertainty), such as
the number of modes and random seed. Additionally, it showed a stronger correlation with DNS data,
especially in terms of quadrant analysis and two-point correlation of near-wall turbulence. Furthermore,
a calibration of the control parameter, fτ , in the C&EC time correlation method was conducted, estab-
lishing that the range of acceptable values is 25-100. Values lower than 25 were shown to put too
much weight on the convected velocity fluctuations over the newly generated ones, which leads to a
more noticeable loss in energy due to numerical diffusion. Moreover, the rescaled version of the C&EC
method was shown to incorrectly rescale the energy, leading to higher energy than the input (U)RANS
TKE. The reason for this is not clear.

Moving forward, attempts were made to understand why AniPFM overpredicts the RMS pressure
fluctuations near the wall. The governing dynamics of the pressure fluctuations were simplified for the
TCF, taking advantage of its statistical homogeneity in the streamwise and spanwise directions. The
simplified equation revealed that the generated pressure fluctuations exhibit significant dependence
on the wall-normal component of the Reynolds stresses. While the relationship between them is not
linear, it helps to understand why AniPFM was overpredicting the pressure fluctuations near the wall,
despite the TKE being far from reaching DNS level, as well as the streamwise and spanwise normal
components of the Reynolds stress tensor.

Once it was better understood why AniPFM was overpredicting the pressure fluctuations near the
wall, solutions were sought. Through lowering the empirical constant, Cl, which is part of the expres-
sion for le, it was observed that it was possible to calibrate this constant to match the RMS pressure
fluctuations at the wall with DNS data. It was shown that this was feasible when using any of the cutoff
length definitions considered: Shur and cubic. Since the cubic cutoff leads to a higher cutoff wavenum-
ber than Shur’s, the calibrated Cl for this cutoff definition is significantly lower than the one for Shur’s.
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Using the cubic cutoff resulted in Reynolds stresses much closer to DNS data, proving to be a promis-
ing method. The power spectral density of the wall pressure fluctuations was then compared between
the simulations using the different cutoff definitions, as well as between using the baseline and cali-
brated values of the Cl constant. The calibrated versions were much closer to DNS data, which further
verifies the solution proposed. This solution needs to be validated later through FSI simulations. With
this section studying the TKE spectrum, the influence of Cl and le was better understood. The effect of
the cutoff was elucidated as well, but its influence is not fully grasped yet; therefore, further research
on this will be carried out in the following chapter.



9
Turbulent annular flow

The analysis performed in Chapter 8 compared different methods and definitions, tested hypothesis
and tried to verify them. This chapter is a continuation of the previous chapter’s work, but now focusing
on the turbulent annular flow. On one hand, the use of this test case can be justified by its similarity
with the flow over a fuel rod. On the other hand, this test case provides extra validation data to further
assess the hypothesis, assumptions and conclusions that were taken in the previous chapter. As it was
seen, the TCF is statistically homogeneous in the streamwise and spanwise directions. In the case of
the turbulent annular flow (for fully developed flow), it is statistically homogeneous in the orthoradial
and streamwise directions. The main difference compared with TCF, is the adding of curvature. This
further increases the complexity of the flow.

The chapter starts with the layout of the methodology used to tackle this case. Then, qualitative
results are presented as a sanity check of AniPFM’s performance. Furthermore, the quantitative results
are presented, with focus on the TKE and Reynolds stresses. These results are compared with valida-
tion data. Subsequently, the time correlation methods were analysed using the two-point correlation
again, but this time providing a more visual representation. Lastly, the TKE spectrum parameters cut-off
length and le are analysed in-depth, with the aim of better understanding their influence in AniPFM.

9.1. Methodology
This case is based off the turbulent annular flow run by Norddine et al. [14]. They ran a wall resolved
LES and have data such as velocity, TKE and Reynolds stresses profiles which are of great interest for
the validation of AniPFM. The geometry of the setup used is shown in Figure 9.1. The shaded region
represents where there is no flow. In terms of dimensions, ro = 10.5mm is the outer radius, ri = 5mm
is the inner radius, Dh = 11mm, represents the hydraulic diameter and the length of the rod is L = 6Dh.
This case was chosen as it is tailored specifically for the flow over fuel rods. Norddine et al. [14] ran
this case as a precursor simulation to their LES simulation of the flow over a cantilever rod, which aims
to replicate the experimental setup of Cioncolini et al. [18], who studied the flow induced vibrations of
the flow over a clamped-free rod. This precursor simulation has the same geometry has the annular
part of the flow in the experimental setup.

z

y

x

L = 6Dh

ri
ro

Figure 9.1: Annular cylinder domain.
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The annular bulk velocity isUb = 3.45m/s, which leads to a Reynolds number based on the hydraulic
diameter of ReH = 4.5e4. Periodic boundary conditions are used in the inlet and outlet, whereas no
slip are used in the inner and outer walls. Similarly to TCF, in order to impose a constant bulk velocity,
a pressure source term is added to the momentum equation. The turbulence model used is k−ω SST.
The simulations are first run as steady state until the residuals converge. The flow field from these initial
simulation is used to initialise the transient simulation using AniPFM. The numerical solvers setup is the
same as the one used in TCF. Furthermore, the max CFL number is constrained at 1.0. The AniPFM
simulation are run for 2 seconds, which is equivalent to roughly 100 flow passes through the domain.
For the quantitative results, the flowfield is then averaged in space in the streamwise and orthoradial
directions, as well as in time for the last 10 flow-throughs. The settings used in AniPFM in the different
sections are summarized in Table 9.1.

Table 9.1: Summary of AniPFM parameters used in each section/subsection

(Sub)section #modes Rand. seed Time corr. fτ le Cl Cut-off
section 9.2

256 Default (0)

C&EC 25

Cllt 3.0

Shur
section 9.3 C&EC 25 Shur
section 9.4 C&EC, PC Various Shur

subsection 9.5.1 C&EC 25 Both
subsection 9.5.2 C&EC 25 Shur

Three different meshes were considered. The resolution of these different meshes is shown in
Table 9.2 and a cross section of each can be visualised in Figure 9.2.

Table 9.2: Annular flow mesh resolutions

Mesh Nr Nθ Nz Ncells r+avg

Coarse 24 20 30 57,600 2
Medium 36 30 54 233,280 0.85
Fine 50 40 60 480,000 0.6

(a) Coarse (b) Medium (c) Fine

Figure 9.2: Turbulent annular flow meshes.

9.2. Qualitative results
To better understand the flow and also as a sanity check of AniPFM to see if everything is working
as expected, qualitative results are key. Figure 9.3 shows the instantaneous velocity and pressure
fluctuations at a slice in the middle of the channel. Once again the values from the velocity fluctuations
look spurious, but upon closer look it can be seen that most of the higher magnitude fluctuations are
located close to the wall. In the pressure fluctuations plot this can be even better seen.
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(a) Velocity fluctuations (b) Pressure fluctuations

Figure 9.3: Instantaneous velocity and pressure fluctuations at a slice in the middle of the channel.

While the instantaneous fluctuations seem to be what one would expect from AniPFM, it is really
hard to actually take any conclusions or to fully check if everything is working as it should. This is
why it is necessary to also look at the mean squared velocity and pressure fluctuations. These are
shown in Figure 9.4 for a slice in the middle of the channel. The figure is very similar to the one seen
for TCF, with higher values of the mean squared fluctuations close to the wall and lower closer to the
center of the channel. Taking the mean square of the fluctuations also helps in visualizing the statistical
homogeneity in the orthoradial direction that was mentioned earlier.

(a) Mean squared velocity fluctuations (b) Mean squared pressure fluctuations

Figure 9.4: Mean squared velocity and pressure fluctuations at a streamwise normal plane in the middle
of the channel.

Lastly, Figure 9.5 depicts the instantaneous velocity fluctuations in a slice along the streamwise
direction. This figure aims at giving the reader a further grasp of how AniPFM synthetic velocity fluctu-
ations look like at a given instant.
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Figure 9.5: Instantaneous velocity fluctuations in a slice along the streamwise direction.

9.3. Quantitative results
In this subsection, a detailed analysis will be conducted on quantitative results obtained from the sim-
ulations with the different meshes performed with AniPFM. These findings will be compared with data
sourced from the research of Norddine et al. [14]. This is what is showed in Figure 9.6, where the
streamwise velocity, TKE, and normal Reynolds stresses profiles are shown along the wall normal co-
ordinate. The results presented here were obtained using Shur’s cut-off length definition and with the
default Cl value. Looking at all the plots in general, it is clear that there is a convergence of the profiles
as the mesh resolution increases, with the medium mesh already providing almost the same results as
the fine mesh with about half its amount of cells.

Going into the specific plots now, the streamwise velocity profile, shown in Figure 9.6a, is in agree-
ment with the LES data. This is not really relevant for the validation of AniPFM, as this is purely based
on the input RANS information, but still it is a good sanity check. Moving onto the more interesting
results, in Figure 9.6b, is shown the TKE profile. Near the walls, the TKE is underpredicted compared
to the LES data. This is in agreement with the comparisons with DNS data seen in the previous chapter.
Moreover, near the middle of the channel the TKE is overpredicted. Analysing the streamwise normal
Reynolds stress component, shown in Figure 9.6c, the profile shape resembles the one seen in the
TKE. The very low values of this component near the wall when compared with high fidelity data are
also in agreement with the findings from the previous chapter.

Lastly, Figure 9.6d shows the wall normal component of the RST. This is a very important com-
ponent when it comes to the generation of pressure fluctuations as it was shown in section 8.6. The
equation for the pressure fluctuations in the case of the annular flow is the same as the one shown for
the TCF (assuming streamwise and orthoradial statistical homogeneity) with the difference that instead
of considering cartesian coordinates, one would consider cylindrical coordinates. From analysing Fig-
ure 9.6d, it an be said that AniPFM is in good agreement with the LES data. For the most important
part, which is close to the inner wall (left part of the plot), for the finer meshes, AniPFM is very close to
matching the validation data, just slightly underpredicting. Furthermore, for the middle of the channel,
AniPFM is predicting higher values than LES data. This was also seen in the streamwise component
of the RST as well as in the TKE. This will be analysed later on the chapter.
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(a) Streamwise velocity (b) Turbulent Kinetic Energy

(c) Streamwise RST component (d)Wall normal RST component

Figure 9.6: Comparison of quantitative results with the ones from Norddine et al. [14].

9.4. Time Correlation
In the previous chapter, an extensive analysis was made comparing pure convection and C&EC time
correlation methods. Additionally, the fine-tuning parameter, fτ , of the C&EC method was also studied.
In the previous chapter the two point correlation was always visualized as a line. The work presented
in this subsection is complementary to the study performed in the previous chapter, as it is regarding
a different case and also because it provides a more visual representation of the two-point correlation.
Figure 9.7 shows the two-point correlation of the streamwise velocity fluctuations for different time
correlations in a cross section along the z direction. The inlet section is taken as the baseline as it can
be seen in the figure by the value of 1.0. The correlations have been averaged in time and in space in
the orthoradial direction.

First, looking at the pure convection, one can see streaks of stronger correlation or decorrelation
that are present from the inner to the outer wall with a very similar behaviour at different streamwise
positions but smearing down as the middle of the channel is approached. This behaviour can to a
certain extent also be seen in C&EC with fτ = 1, as this case is the closer one to pure convection.
However, as fτ is increased the streaks stop dominating the two-point correlation and it starts looking
more spurious, which is a result of the decorrelation and formation of new turbulent structures. In the
case of the pure convection, the same turbulent structures are simply convected (frozen turbulence),
resulting in the more streaky appearance of the two-point correlation. Moreover, as expected, the high
correlation region near the inlet increases with a decrease of the correlation factor for the C&EC cases.
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Figure 9.7: Two-point correlation of the streamwise component of the velocity fluctuations for different
time correlation methods.

9.5. TKE spectrum
The turbulence kinetic energy spectrum parameters analysed in Chapter 8 - the length scale associated
with the energy peak of the spectrum, le, and the cut-off length scale, lcut - are once again analysed
here. Emphasis is placed on their impact on the turbulence statistics relevant to AniPFM. Additionally,
efforts are made to gain a deeper understanding of their influence, not just by examining AniPFM’s
results, but also by analyzing the distribution of these length scales throughout the domain.

9.5.1. Cut-off wavenumber
In Figure 9.8 is displayed the cut-off wavenumber w.r.t the wall normal direction for its different def-
initions. Upon comparing the plots, it becomes evident why earlier findings indicated that the cubic
cut-off results in higher magnitude velocity fluctuations than the Shur cut-off. The cut-off wavenumber
predicted by the cubic method is consistently higher than that predicted by Shur’s across the entire
domain.

(a) Shur cut-off (b) Cubic cut-off

Figure 9.8: Cut-off wavenumber for different definitions.

As it was mentioned before, in Figure 9.6 were shown the quantitative results for the simulation
run with Shur’s cut-off. In Figure 9.9 these are shown for simulation with the cubic cut-off. Looking
at Figure 9.9a, it is very interesting to see that the TKE near the wall is much greater than the one in
Figure 9.6b, while near the middle of the channel it is pretty much the same. This is exactly the kind of
behaviour wanted. The TKE profile becomes much closer (although still far away obviously) from the
LES one. Furthermore, the gradient of the TKE profile near the wall is extremely close to the one of
LES for the finer meshes using AniPFM and cubic cut-off, while using Shur’s cut-off the gradient fails
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to match LES data. Furthermore, the same differences seen in the TKE can be seen in the streamwise
RST component, as it can be seen in Figure 9.9b. Lastly, looking at the wall normal RST component,
Figure 9.9c, it can be observed that AniPFM’s profile almost matches LES data, at least for the inner
wall region. The results show great promise in using the cubic cut-off with AniPFM, provided that the
model is well calibrated for using this cut-off in terms of TKE.

(a) Turbulent Kinetic Energy (b) Streamwise RST component

(c)Wall normal RST component

Figure 9.9: Comparison of quantitative results using the cubic cut-off filter with the ones from Norddine
et al. [14].

9.5.2. TKE peak wavenumber
In this subsection the focus will be shifted to the definition of le. In Figure 9.10 is shown the distribution
of le w.r.t the wall distance. Both quantities are non-dimensionalised by the hydraulic radius. The
definition used was le = 3lt. The figure, as expected, resembles the analogous line in Figure 7.1 by
Shur et al [10], as both are wall bounded channel flows.

From the figure, it can be observed that the lengths scale in question predicted by this definition
is up to 2.2 times the max possible length scale geometrically (rH ). This happens for most of the
channel, with length scales already at the maximum geometrically at a distance of 0.2rH the wall. At
first, this overprediction was thought to be the possible reason why AniPFM was showing TKE and
RST values higher than LES data for the middle of the channel. Upon deeper study, this thought was
proved to be incorrect. In Figure 9.10, it is also shown a line for lstart. This length scale is associated
with kstart, which is the starting wave number for the energy spectrum. This wavenumber is defined
as shown in Equation 7.19. Inside the minimization function in this expression is kstart∗, which is
defined by Equation 7.17, and 0.5ke. A thorough analysis of the distribution of the values of these
expression throughout the domain for the different simulations, showed that this definition of kstart∗
results in very low wavenumbers, which means that it always gives unphysical starting length scales.
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This results in the minimization function to result always in kstart∗. This is not a problem however,
because 2π/luser is always higher than kstart∗, thus kstart is equal to the max geometrical length scale
always. Consequently, this means that if le is more than the maximum geometrical length scale, it does
not have any effect as the wavenumber is ke is lower than the starting wavenumber and hence not
represented by it. So what happens in reality is that the distribution of le in the channel looks like the
one showed in Figure 9.11.

The overprediction of AniPFM of the TKE in the middle of the channel is not due to the definition of le
then. But why does it happen then? It is actually due to the RANS input. Van den Bos et al. [34] studied
the effect of the turbulence model used in the RANS input of AniPFM, mainly the turbulence models
k − ϵ and k − ω SST. Examining their studies, it can be observed that k − ω SST slightly overpredicts
the TKE near the middle of the channel compared to DNS data. While the k− ϵ model does not, it has
less accurate near wall performance than the k − ω SST, when compared with DNS data.

Lastly, it should be noted that the definition of kstart∗ is not suitable and should be revised. As it was
seen, this is the cause why kstart = 2π/luser. While at first this does not seem problematic, it turns out
to be depending on the flow case being analysed. In the case of flows where the maximum geometrical
physical length scale is always the same (constant cross section area flows - e.g.: annular flow, TCF),
this definition is representative. However, for cases where the cross section area where there is flow is
not always the same, as for example the cantilever rod with incoming axial flow that will be discussed
in Chapter 11, it is clear that this definition is not representative. In the area where there is no beam
this length scale would be higher that in the area where there is a beam (essentially annular flow in
this region). To conclude, further study is necessary to find a more suitable expression for the starting
wavenumber.

Figure 9.10: Distribution of le w.r.t the wall dis-
tance.

Figure 9.11: Real distribution of le w.r.t the wall
distance.

9.6. Summary
In this chapter, turbulent annular flow was analysed using AniPFM and compared with high-fidelity
data from LES. The methodology was presented, alongside qualitative and quantitative results. The
quantitative results focused around turbulence statistics. These showed good correlation with validation
data is terms of the wall normal component of the Reynolds stresses, but not so much in terms of the
streamwise component or the TKE. Using the cubic cut-off shows more TKE near the wall, which
leads to better matching Reynolds stresses with LES data. This method shows good promise, but
in conjunction with calibration of the length scale associated with the TKE peak, so that it does not
overpredict the energy near the wall. Additionally, the behaviour of the cut-off filter along the channel
was analysed, helping further understand its effect on AniPFM. Moreover, the two-point correlation
was discussed for different time correlation methods. A visual representation was shown, allowing for
a better understanding of the effect of the time correlation on the behaviour of the generated turbulence
along the channel. Lastly, the distribution of le along the channel was analysed, exposing flaws in the
definition of kstart.



10
Brass beam in turbulent axial water flow

Until now, the discussion of AniPFM has revolved around fluid only simulations. The ultimate goal of
AniPFM is to be integrated into an FSI framework to simulate TIV in nuclear fuel rods. Thus, it is of the
upmost importance to perform FSI simulations. In this chapter, the first FSI case is presented: a flexible
brass beam in turbulent axial water flow. This case was chosen due to the amount of comparison data
available from other numerical simulations, as well as the experimental data it is based on, and because
of its simplicity.

The chapter is structured into three main sections. The initial section focuses on the simulation
setup, breaking it down into the experiment and previous numerical setups, as well as the current
setup. The following section presents the results and is further divided into examining time correlation,
the calibrated model, and a comparison with other numerical approaches. The concluding section
addresses the question of trying to understand which wavenumbers contribute most to the vibrations,
with the end goal of more affordable simulations.

10.1. Simulation setup
In this section, the experiment of Chen & Wambsganss [15] of a flexible brass beam is presented
alongside numerical setups replicating it. Moreover, the numerical setup used in this thesis, based on
the one used by van den Bos et al. [34], is also presented.

10.1.1. Experiment and previous numerical setups
Chen &Wambsganss [15] conducted an experiment with a flexible brass beam in turbulent water, which
has become a benchmark for many FSI studies concerning nuclear fuel rods [17, 32, 34, 128]. This
experiment’s appeal lies in its straightforward design and the provision of data on modal frequencies
and root-mean-squared vibration amplitudes for different flow conditions. A sketch of the numerical
replication of this experiment can be seen in Figure 10.1. The beam is clamped on both sides. In
terms of dimensions, it has a diameter of Di = 0.0127m, while the enclosing cylinder has a diameter
of Do = 0.0254m, and the beam has a length of L = 1.19m, resulting in an L/D ratio of 93.7. The
turbulent intensity and length scale at the inlet were unspecified by Chen & Wambsganss [15], leading
subsequent researchers to make assumptions [17, 32, 34, 128]. They assumed a turbulence intensity
of 5% and a turbulent length scale of 0.1 cm and for this reason in this thesis the same parameters
will be used. The experiment was conducted with various mean inlet velocities, ranging from 8-33m/s,
resulting in Reynolds numbers between 101,600-419,100. The rod has a density of 8400 kg/m3 which
gives a density ratio of ρs/ρl = 8.4. The Poisson ratio was not specified in the experiment, but a nominal
value of 0.33 was used based on earlier simulations [17]. Lastly, a Young’s modulus of E = 107 GPa
was specified [15].

81
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Figure 10.1: Fluid and solid domains.

As it was mentioned before, this experiment has been replicated numerically by many researchers.
De Ridder et al. [32] used FSI simulations with an initial displacement of the beam to calculate the
natural frequency of the fundamental mode. They solved fluid dynamics using a URANS k − ω SST
turbulence model and structural mechanics using a commercial finite element solver, Abaqus. The IQN-
ILS method was used to couple the solvers. The simulations were conducted at speeds of 10-30 m/s.
Modal frequencies were calculated for all three flow cases, with and without pre-stress. Furthermore,
De Ridder et al. [16] also performed wall resolved LES simulations without FSI. In order to reduced the
computational cost, the rod was not simulated at its full length, instead a smaller rod was used with a
length/diameter ratio of 10. For this case, the mesh used had 76.8 million cells. Extrapolating this for
a full length rod, it would yield roughly 720 million cells just for the fluid side.

Kottapalli et al. [17] used a similar FSI approach to De Ridder et al. [32], but also simulated the rod
without initial displacement using a pressure fluctuation model (PFM, predecessor of AniPFM).

Nazari et al. [128] also used FSI simulation with URANS and LES models for fluid dynamics and
a finite element solver for structural mechanics, but the coupling method is unclear. The k − ω SST
turbulence model was used for URANS, and the Dynamic Smagorinsky-Lilly model was used for LES.

Van den Bos et al. [34] ran simulations replicating this experimental setup for pure AniPFM simula-
tion, URANS FSI simulation (using k − ω SST turbulence model) and AniPFM FSI simulations.

10.1.2. Current setup
The current setup is the same used by van den Bos et al. [34], which in turn made their setup in a
way to be similar to the other numerical approaches before, as to ensure a more fair comparison. The
same assumptions are taken. At the inlet, 5% turbulence intensity and 0.1 cm turbulent length scale
are used. The effect of these settings were studied by De Ridder et al. [32] and showed to have
minimal impact on the results of URANS based simulations. Additionally, a uniform inlet velocity is
used, which is in agreement with previous researchers [17, 32, 34, 128]. Van den Bos et al. showed
that this assumption has no effect on the prediction of the natural frequency, but has a 3% effect on
the damping ratio. Nevertheless, this assumption is taken in this thesis to ensure a fairer comparison
between the different approaches.

The fluid and solid domains are shown in Figure 10.1. The inner beam ismodeled as elastic whereas
the outer cylinder is fixed. The structural solver used is based on linear elasticity. This is possible to do if
the relative displacements are much smaller that one (Arms/L≪ 1), which is the case. The coordinate
system used is the one shown in the figure. In terms of the fluid side, URANS with the turbulence
model k − ω SST is used. The fluid meshes are all wall resolved. Van den Bos et al. [34] performed
mesh studies showing that 40 elements in the tangential direction are enough to get converged results.
The mesh discretization in the radial direction is chosen as to ensure a wall resolved mesh (r+ =
1.05) and in the axial direction it is changed to analyse the effect on the results. The same structural
mesh from van den Bos et al. is used here as well. They performed a mesh convergence study to
ensure independence of the results on the mesh. In Figure 10.2 are shown the fluid and solid meshes.
Regarding timemarching schemes, second order methods are used for both fluid and structural solvers.

Van den Bos et al. employed an implicit coupling scheme, IQN-ILS, due to the low density ratio.
For mesh mapping, they opted for local radial basis functions. This approach was chosen over global
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radial basis functions to reduce computational effort while achieving comparable FSI results. The same
settings are used in the current thesis.

In order to run the FSI simulations, first steady state fluid only simulations are run. These are
stopped when the residuals are converged, after which, the flowfield is used to initialize an unsteady
simulation (fluid only also) using AniPFM, which is run for 10 seconds (roughly 84 flow passes through
the domain). This simulation is in turn used to initialize the domain of the fluid part of the FSI simulation,
which are run for 10 seconds or until the RMS of the displacements are considered converged.

Figure 10.2: Fluid and solid meshes.

10.2. Results
In this section, the results of the FSI simulations are presented. The time correlation methods pure
convection and C&EC are compared now in terms of FSI related quantities, such as amplitude of
vibrations, for example. Moreover, the study on the different cut-off length definitions and their calibrated
versions is continued, with the aim of validating and deepening the analysis done with just flow cases.
Lastly, a comparison is made between the current calibrated version of AniPFM and other researchers
work of this same case.

No initial force is applied on the beam, all displacements are purely due to the pressure fluctuations
generated by AniPFM. In terms of AniPFM user input settings that are kept constant throughout the
simulations: 256 modes are used for the Fourier series decomposition and the maximum wave length
is equal to hydraulic radius. Concerning BCs, for the pressure fluctuations, zero gradient BCs are used
for the inner and outer walls, whereas for the inlet and outlet Equation 7.36 is used. For the velocity
fluctuations, no slip BC is imposed in the inner and outer walls and a mapped BC is used for the inlet
and outlet. When not mentioned, the used mesh is 50x40x300. A summary of AniPFM’s parameters
used in each section of this chapter is presented in Table 10.1.

Table 10.1: Summary of AniPFM parameters used in each section/subsection

(Sub)section #modes Rand. seed Time corr. fτ le Cl Cut-off
subsection 10.2.1

256

Default (0) C&EC, PC

25 Cllt

3.0 Shur
subsection 10.2.2 Default (0) C&EC 2.0 & 0.6 Both
subsection 10.2.3 Various C&EC 0.6 Shur

section 10.3 Default (0) C&EC 3.0 Shur

10.2.1. Time correlation
In this subsection, the pure convection and C&EC time correlation methods are compared. Previously,
van den Bos et al. [34] already did some analysis regarding the differences between these methods in
FSI simulations, but mostly analysed power spectral densities, such as the one of pressure fluctuations
or the amplitude of vibrations. They exhibited similar results in these quantities. The first goal with the
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research presented here is go more in-depth and understand what is the actual effect the methods
have on how the vibrations, avoiding looking at statistics such as the RMS, which may hinder some
interesting characteristics. The second goal is to assess the uncertainty inherit to each method and
quantify it.

The simulations were run with the same mesh (50x40x300). The C&EC used a correlation factor
fτ = 25. This was chosen as in the previous chapters it was seen that there was not much difference
between fτ = 25-100. The time step used for pure convection is ∆t = 2.(6)e-4, whereas for C&EC, a
more conservative time step has to be taken to ensure convergence, ∆t = 2e-4. This difference in time
step leads to a slightly longer simulation when using the latter time correlation method.

To start off the comparison between the methods, in Figure 10.3 are displayed the displacements
of the center of the beam in the x and y direction with respect to time. Looking at the results from
the simulation using PC, Figure 10.3a, it can be noticed the difference between the amplitude of dis-
placements in the x and y directions, where the latter shows much higher displacements (reaching
5x the displacement in the x direction sometimes) throughout the whole time series. This difference
is unphysical. There is no physical reason why there should be a difference in the displacements in
each direction. This difference is hypothesized to be due the inherit nature of the method, whereby if
a velocity field which leads to stronger pressure fluctuations in the top and bottom regions of the inner
wall is generated, then this velocity field is simply convected throughout the whole domain, resulting in
a similar behaviour throughout the whole time series. On the other hand, looking at the results from the
simulation using C&EC method, Figure 10.3b, this behaviour is not seen. Instead the displacements
in the different directions are balanced out, resulting in more physically reasonable vibrations.

(a) Pure convection (b) Convection & exponential correlation

Figure 10.3: Displacement in the x and y directions in the center of the beam for different time correlation
methods.

The variations in x and y displacements are clearly depicted in Figure 10.4, which showcases the
center-of-beam displacement for the two time correlation methods. This illustration provides a more
visual representation of the points discussed earlier. For a more comprehensive understanding, the 3D
representation of the displacements with respect to time can be found in Figure 10.5.
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(a) Pure convection (b) Convection & exponential correlation

Figure 10.4: Front displacement in the center of the beam for different time correlation methods.

(a) Pure convection (b) Convection & exponential correlation

Figure 10.5: Evolution with time of the displacement in the center of the beam for different time corre-
lation methods.

To supplement the earlier figures, Figure 10.6 showcases polar plots of the displacement in the
center of the beam using different time correlation methods. Here, kernel density estimation (KDE) is
applied to estimate the probability density function of the data, illustrating the concentration of points
and hence facilitating a clearer understanding of previously discussed trends and behaviors.
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(a) Pure convection (b) Convection & exponential correlation

Figure 10.6: Polar plots of the displacement in the center of the beam for different time correlation
methods.

Having analysed the observable trends in displacement behaviors across different time correlation
methods, the focus now shifts to the quantification of uncertainty inherent to each method. This will be
accomplished through an analysis of the root mean square of the amplitude of displacements, taking
into account variations in user-input parameters. In Chapter 8, it was showed that the PC method
was dependent on model parameters such as the number of modes and random seed, whereas the
C&EC was mostly independent. This dependency or not is now studied for the FSI cases. Figure 10.7
displays the root mean square (RMS) of displacement amplitudes, comparing various meshes, time
correlation methods, and random seeds. All the PC simulations presented here, except the one with
random seed = 2, were run by van den Bos et al. [34]. Firstly, looking at the C&EC results, it can be
seen that with the mesh resolution increase there is a convergence of the results, which is a good
sign. Moreover, for the mesh 50x40x300, the simulations run with different random seeds result in
very similar displacements, which confirms what had been seen before. The uncertainty introduced
by the random seed in the C&EC is estimated to be roughly 2.5% based on the data obtained here.
This is in agreement with what was seen in the TCF case, where it showed 1.37%. Moving to the PC
method, it is once again clear the dependency this method shows on the random seed. In the case of
this method the uncertainty introduced by the random seed is estimated to be 19%. The difference in
uncertainty between the two methods is significant, making the added computational cost of a slightly
more restrictive time step well worth it.
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Figure 10.7: Comparison of the RMS of the displacement amplitude at the center of the beam for
different meshes and time correlation methods.

As mentioned before, there are other parameters that introduce uncertainty in AniPFM. One of
them is the number of modes used in the generation of the synthetic velocity fluctuations. While this
parameter was not analysed for FSI simulations, it was for the TCF case (section 8.5) and an estimate
can be constructed on the uncertainty introduced. Based on the data available, PC shows an average
of 5% difference between using different number of modes, with no visible convergence towards higher
number of modes. On the other hand, C&EC simulations show barely no difference in the results, with
a sub 0.5% discrepancy in using different number of modes.

Another source of uncertainty is the size of the window on which the RMS of the displacements are
computed. When comparing values computed over the entire simulation to those from the last 10 flow-
throughs, it’s evident that the PC simulations exhibit greater uncertainty than the C&EC simulations.
Specifically, the former shows an average difference of approximately 3.4% uncertainty, while the latter
displays around 0.7%.

The various sources of uncertainty mentioned for the different time correlation methods are summa-
rized in Table 10.2. The quantification and summarizing of this information concludes the study of this
topic. It is advised that the C&EC time correlation should be used over the pure convection method for
lower uncertainty in the results.

Table 10.2: Uncertainty sources (%)

Number of modes1 Random seed2 ARMS calculation window size2

Time correlation
method

PC 5 19 3.4

C&EC 0.4 2.5 0.7
1 Based off fluid-only simulations
2 Based off FSI simulations

10.2.2. Calibrated model
The FSI results are now evaluated in terms of the baseline and calibrated versions, for both cut-off
definitions, through changing the Cl value. The baseline corresponds to Cl = 3 and the calibrated
versions correspond to the optimal values found in Chapter 8 - Cl = 2.0 for the Shur cut-off and Cl = 0.6
for the cubic cut-off. In that chapter, the hypothesis made was that by calibrating the magnitude of the
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power fluctuations, the amplitude of displacements would decrease and increase AniPFM’s accuracy
in simulating TIV. This hypothesis is now tested here through the brass beam case. All the simulations
were run with the C&EC time correlation method.

Table 10.3 shows the RMS amplitude of displacements for Shur’s and cubic cut-off definitions, for
both the baseline and calibrated versions. The findings confirm the validity of the initial hypothesis. By
using the calibrated Cl values obtained before, the ARMS are reduced in both cases, getting much
closer to the validation data from Chen et al. [15].

Table 10.3: RMS amplitude of displacements

Cut-off Cl ARMS [m] 1

Shur
Baseline 1.13e-5

Calibrated 7.16e-6

Cubic
Baseline 1.61e-5

Calibrated 7.28e-6
1 Validation data [15]: ARMS = 6e-6

This reduction in the RMS of the amplitude of displacements should be associated with a decrease
in the magnitude of the pressure fluctuations. In Figure 10.8 is displayed the pressure and amplitude
power spectra for the different cut-off definitions, for their baseline and calibrated versions. First, by
looking at the different pressure spectra, it is clear that indeed the reduction in the amplitude of dis-
placements is associated with a lower power of the pressure fluctuations. Additionally, the difference
in the magnitude of pressure fluctuations between Shur and cubic cut-off is clear, as it was seen before.
Moreover, the calibrated versions of the different cut-off definitions show very similar pressure spectra,
and also very similar ARMS . This shows that both cut-offs can be used, given that they are properly
calibrated. Shifting the attention from the pressure spectra to the amplitude, it can be observed that
the different plots look very similar. The only difference between them is mainly a slight shift in the y
axis, which corresponds to lower or higher amplitudes. In terms of shape they appear the same. This
is expected as each peak corresponds to the different frequencies of vibration of the structure, and
this is not expected to change. The first peak, which corresponds to the natural frequency (the most
important one), is predicted to be f1= 27 Hz by the current FSI framework, whereas Chen et al. [15]
validation data have f = 28 Hz. This difference is in line with other numerical researcher’s work. This
is not relevant for the current discussion, as the predicted natural frequency has more to do with the
structural parameters used in the model, as well as the structural solver and coupling algorithm. The
focus of the current chapter is on the amplitude of displacements.

The outcomes of the analyses in this subsection are highly encouraging as they not only validate
the initial hypothesis but also mark a significant milestone in the calibration, verification, and validation
of AniPFM. These findings provide solid evidence for the robustness and accuracy of the model. It is
worth noting that the empirical constant Cl was selected to match the RMS pressure fluctuations at the
wall for the TCF case, rather than to fit the brass beam validation data. Using this calibrated constant in
the brass beam simulations produced results that closely align with the validation data. This suggests
that the calibration was successful for channel flows.
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(a) Shur cut-off w/ Cl = 3 (b) Shur cut-off w/ Cl = 2

(c) Cubic cut-off w/ Cl = 3 (d) Cubic cut-off w/ Cl = 0.6

Figure 10.8: Pressure fluctuations and displacement amplitude spectra for different cut-off length defi-
nitions.

10.2.3. Comparison with other numerical approaches
It is important to compare AniPFM’s approach to the problem of simulating TIV in fuel rods with other
state of the art numerical approaches. This is the goal of this subsection, where the results of the LES
from De Ridder [16], the PFM model from Kottapalli et al. [17] and the AniPFM FSI simulations ran by
van den Bos et al. [34] are compared with the simulations run in the context of the current thesis, as
well as with validation data from Chen et al. [15] and their analytical model. The difference between the
simulations run by van den Bos et al. [34] and the ones presented as the ’Calibrated AniPFM’ is that
the former used pure convection, and the latter uses the calibrated C&EC and a calibrated Cl value.
Both use Shur cut-off and the mesh is 50x40x300 with a random seed of 0 as the baseline value.

The comparison is presented in Figure 10.9. The root mean square of the amplitude of the displace-
ments is plotted w.r.t the mean flow velocity for the different numerical approaches as well as validation
data. The error bars in AniPFM data points represent the uncertainty associated with each time cor-
relation method. These uncertainties were computed based off the values of Table 10.2, assuming
independence of each uncertainty source. Comparing both AniPFM approaches, it can be seen that
the calibrated version performs much better than the baseline one, when compared to validation data.
And also with much less uncertainty. For example, for 10 m/s, the calibrated AniPFM shows a 19%
± 2.6% deviation from Chen et al. [15] data, whereas previous AniPFM simulations show a 108% ±
19.9% deviation. The LES approach from De Ridder et al. [16] shows a 38% discrepancy compared
to experimental data. The calibrated AniPFM shows the possibility of outperforming LES while requir-
ing significantly lower computational resources. While further validation and testing are required, the
results are highly encouraging to continue working on this model.
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Figure 10.9: Comparison of the RMS vibration amplitudes of the calibrated AniPFM with other re-
searcher’s work [15–17].

10.3. Which wavenumbers most contribute to the vibrations?
Turbulence is inherently a multiscale phenomenon, and capturing more of these scales in simula-
tions increases the computational burden. If it would be possible to simulate only the most important
scales (wavenumbers), the computational cost of such numerical simulation would decrease. Although
wavenumbers and time frequencies are not directly linked, a structure’s natural frequency may provide
clues to identifying significant wavenumbers. An attempt can bemade to tailor the cut-off filter to include
wavenumbers that relate to the natural frequency of the structure and exclude the ones that are less
relevant. The aim would be to assess whether limiting the range of considered wavenumbers could still
accurately model the fluctuations that trigger structural vibrations. If successful, this approach could
enable the use of coarser meshes, significantly reducing the computational cost of AniPFM without
compromising the model’s accuracy. This preliminary approach is the focus of the current section.
While the work is still in its early stages, its potential success could justify more extensive research
efforts to refine and expand upon this method.

It is not trivial to link a frequency with a wavenumber. Frequencies are inherently linked to time,
whereas wavenumbers are to space. Through the use of dimensional analysis an attempt was made
at figuring out the most important wavenumbers to the excitation of the natural frequency vibration of
the structure. This is shown in Equation 10.1, where f is the frequency of the rod, in this case f = 28 Hz.
The dimension resulting from this expression is correct as per the dimension of a wavenumber. The
hardest part is to find the correct or most appropriate value for the magnitude of the velocity fluctuations,
U ′
mag.

k =
2πf

U ′
mag

=
T−1

L1T−1
= L−1 (10.1)

By taking into account the amplitude of displacement seen in FSI simulations, multiple probes were
placed very near the wall. The probe signal was averaged over time and the different probes were also
averaged among them, providing a magnitude of velocity fluctuations that is averaged both in time and
space. The value obtained was U ′

mag = 0.089m/s. Introducing this in Equation 10.1, a wavenumber k
= 1976 m−1 is obtained.

In order to only account for the wavenumber obtained and the ones lower, the cut-off length was
modified. The cut-off definition used was Shur’s. To this definition, it was subtracted a value such that at
the wall kcut = 2100m−1. This value is slightly higher than the one obtained above. This is meant to give
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some margin as these calculations are not fully reliable to predict the velocity fluctuations magnitude
that should be introduced in the equation. This modification of the cut-off wavenumber is displayed in
Figure 10.10. Note that while, the whole channel is affected, the only part of interest for this study is
the inner wall behaviour.

Figure 10.10: Modified cut-off wavenumber.

An FSI simulation was run with this cut-off wavenumber modified definition. The inflow velocity
is 10 m/s and Cl is set to the baseline value of 3.0. As a result of this simulations, the RMS of the
displacement obtained was ARMS = 8.89e-6. Compared to the equivalent value in Table 10.3, this sim-
ulation shows a decrease of 21%. While the difference is not substantial, it can be attributed to multiple
wavenumbers contributing to the same frequency. The most significant wavenumbers are retained,
but some that contribute less are cut off. Therefore, a difference in the amplitude of displacements
between the two approaches is expected.

To better understand the effect this modification of the cut-off wavenumber has on the results, the
pressure fluctuations and amplitude spectra are analysed. These can be visualised in Figure 10.11.
Compared to Figure 10.8a, the pressure spectrum here shows an overall decrease in energy. Note
also that the local peak in energy in the higher frequency scales is no longer present. Despite this, the
spectrum looks different from what was expected. It was expected that the energy would remain closer
to the baseline simulation near the natural frequency, and decrease mostly for frequencies higher that
this. This is different from the general decrease across all frequencies that can be observed when
comparing both plots. There is no clear understanding of the reason behind this as of now. Due to
lack of time, this study had to be cut short, but it results show that this could prove interesting and thus
further research would be advised.
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Figure 10.11: Pressure fluctuations and displacement amplitude spectra for the simulation using the
modified cut-off wavenumber.

10.4. Summary
In this chapter, the brass beam in turbulent axial water flow was simulated as elastic through FSI simu-
lations, utilizing AniPFM as the source of excitation generation. The simulation setup was described in
detail and benchmarked against other state-of-the-art approaches. Different time correlation methods
were analyzed in terms of their displacements, both visually and quantitatively. Simulations utilizing
the pure convection method displayed unphysical vibrations, characterized by a significantly higher
amplitude of displacement in the y direction compared to the x direction. This phenomenon was not
observed with the C&EC method, which exhibited vibrations more in line with what was expected. The
uncertainty sources inherent to each method were also evaluated, encompassing factors such as the
number of modes, the random seed, and the window size used in calculating the RMS of displace-
ment amplitudes. The C&EC and PC methods demonstrated total uncertainties of 2.6% and 19.9%,
respectively.

Moreover, the calibrated version of AniPFM was analysed, substantiating the earlier hypothesis in
the thesis that calibrating the empirical constant in the definition of the length scale, associated with
the TKE peak, would consequently calibrate the pressure fluctuations. This adjustment reduced the
overprediction of displacement amplitudes in FSI simulations that were evident in the baseline AniPFM
model. The calibrated versions using the different cutoff lengths definitions performed very similarly and
close to validation data. Additionally, AniPFM was compared with other numerical approaches, proving
to be a promising cost-effective model to be integrated into FSI simulations of vibration of fuel rods.
Lastly, an analysis was undertaken to identify the primary wavenumbers contributing to the beam’s
vibrations, aiming to decrease computational costs by concentrating solely on these key wavenumbers.
While additional research is required for definitive conclusions, this strategy seems promising.
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Cantilever rod

In an effort to continue the validation of AniPFM’s integration into NRG’s FSI framework, another test
case is devised. This case concerns turbulent axial flow over a flexible rod with a clamped-free con-
figuration. It is chosen due to the vast amount of data available for comparison, both from numerical
replications of the experiment as well as the experiment itself. The chapter starts with the description
of the experimental setup of Cioncolini et al. [18] as well as the state of the art numerical replications
of Salacha et al. [19] and Norddine et al. [14]. The setup used in this thesis is then described. Subse-
quently, the results obtained from the simulations considering the rod fixed are showcased. Lastly, the
URANS FSI simulation results are shown and compared with experimental values.

11.1. Experiment and previous numerical setups
This section entails the detailed description of the experiment performed of a flexible cantilever rod
in turbulent axial flow. Additionally, it also describes the approaches taken by some researchers to
numerically replicate this setup.

11.1.1. Experiment
An experiment performed by Cioncolini et al. [18] examined axially induced vibrations of a cantilever
rod for nuclear applications. The rod, which is of cylindrical shape, is clamped at one end and free
at the other. It is confined within a tube, and experiments were done with flow from the free to the
clamped end as well as the opposite. This is a simplified representation of a nuclear fuel rod, as it
does not include the mixer grid, and only one rod is used, thus no multi-body effects are present. The
experiment is a great benchmarking case because of the strong two-way coupling between the flow
field and the structure, together with the simplified geometry. The test setup, as shown in Figure 11.1,
has a confining tube with diameter Do = 21 mm and a rod with diameter Di = 10 mm. The rod length
is Lrod = 1.06 m, and two configurations of rod ends were used: a blunt end and a hemispherical end.
The confining tube has a length of L = 2.5 m. A flow straightener was used to remove any swirls or
secondary flow effects. Instead of a one-pipe radial outlet, a symmetric two-pipe outlet was used to
avoid any localized cross flow near the fixed end of the rod. The flow velocity varied between 1.01-
3.45 m/s, with the maximum flow velocity approximately 30% less than a nominal reactor core. The
Reynolds number was equal to 10% of typical reactor applications, partly due to the use of water in
ambient conditions and partly due to the smaller hydraulic diameter of the rod compared to that of a
nuclear reactor core. The experimental data includes full time series of the total displacement, from
which the modal frequencies can be derived. The RMS displacement and the frequencies of the rod
are available for both configurations for the entire range of Reynolds number and flow velocity. For
certain flow velocities and Reynolds numbers, the displacement history of the first 5 seconds, the
power spectrum of the displacement, and the auto-correlation function are given. PIV measurements
were also performed at the free end of the rod, which were used to visualize the flow field in this area.
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Figure 11.1: Schematic representation of the test rig of the experiments conducted by Cioncolini et
al. [18].

11.1.2. Numerical replications
The experiment described has gained significant attention from researchers in recent years, primarily
due to its extensive dataset, its resemblance to flow conditions in nuclear fuel rods and its relative sim-
plicity. As a result, it has often been numerically replicated as ameans to validate various computational
approaches.

Salachna et al.
A few years after the experiment was performed, Salachna et al. [19] investigated the computational
modelling of flow induced vibrations of cantilever rods subjected to turbulent axial flow at operating
conditions relevant to those of fuel rods of pressurized water cooled nuclear reactors. For this, they
replicated numerically the experiment described above. The aim of their research is to ensemble and
validate a URANS modelling strategy of FIV. For this they used a RSM model approach of turbulence,
more specifically LRR model, integrated into an FSI framework.

Norddine et al.
As part of the Vibration ImpaKt In Nuclear power Generation (VIKING) consortium, Norddine et al. [14]
conducted preliminary wall-resolved Large Eddy Simulation (WR-LES) experiments on cantilevered
rods (same geometry as mentioned above for Salachna et al.). These simulations were performed at
a Reynolds number of 60,000, featuring both blunt and curved rod ends. The standard Smagorinsky



11.2. Simulation setup 95

model with the Van-Driest wall damping function was applied. The study investigated flow statistics
and mechanical stresses exerted on the rods. Only fluid simulations were run.

11.2. Simulation setup
The simulation setup used in this thesis is now described. It is based on the one by Salachna et al. [19].
A sketch of the fluid and solid domains is shown in Figure 11.2. The different regions are shown: inlet,
outlet, fixed wall (outer wall) and moving wall (beam). The inlet velocity is set as uniform U = 1 m/s.
The beam is clamped on the outlet region and free on the other end. As such, the flow is going from
the free to the clamped end. The main difference between this setup and the experimental one is the
use of an annular outlet versus the symmetric two-pipe outlet. This approach was chosen for various
reasons. First, being that it replicates the numerical setup of Salachna et al. [19] providing means for
a fairer comparison. Additionally, this region is not expected to have a significant effect on the results
as it is very close to the clamped end of the beam. The last reason for this choice is the simplicity of
this outlet setup versus the experimental one. The solid properties of the rod are the same ones used
by Salachna et al. [19], which were adapted to match the natural frequency of the vibrating beam of
Cioncolini et al. [18] experiments. While, this approach is not ideal, it is accepted here. The rod used
in the experimental apparatus is a stainless steel tube which is filled with lead shots (to approximate
the density of PWR fuel rods). This is not trivial to replicate numerically, and as such the simplified
approach of Salachna et al. [19] is taken here. This also allows for comparison with their numerical
approach. The solid properties of the rod are summarized in Table 11.1. Similarly, the fluid properties
are summarized in Table 11.2.

Fixed wall

Inlet

OutletMoving wall

x-y plane

DiDo

Fluid
Structure

z

y

x

Figure 11.2: Fluid and solid domains.

Table 11.1: Solid properties

Solid properties
Length, L[m] 1.06
Diameter, d [m] 0.01
Density, ρS

[
kg
m3 ∗ 103

]
7.49

Young modulus, E [GPa] 76.4

For the discretization of the fluid domain, three meshes were constructed. Their different resolutions
can be seen in Table 11.3. Compared to the previous cases analysed in this thesis, this case is a clear
step up in terms of computational cost, as the coarsest mesh is already in the order of millions. Besides
the number of cells, in the table it is also shown the r+ and z+ associated with each mesh for the wall
of the rod (named ’inner’ here) and for the tip of the rod, which is separated here, as it is influenced by
the mesh discretization in the z direction (streamwise) rather than in the r direction (radial). Looking at
the different meshes parameters, it can be observed that while the ’inner’ wall region is wall resolved,
the tip region is not so much. This is because of the inherit cost of having such a long domain. Even
though there is grading in the z direction, in order to have a z+ close to 1 in this direction, a mesh of at
least 10M is needed, given that the domain is kept the same. One could think of increasing the grading
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Table 11.2: Fluid properties

Fluid properties Value
Chanel diameter, D [m] 0.021
Chanel length, L[m] 2.5
Hydraulic diameter dh[m] 0.011
Density, ρF

[
kg m−3

]
997

Kinematic viscosity, vF
[
m2 s−1

(
∗10−6

)]
0.893

Inlet velocity, U
[
m s−1

]
1

Reynolds, Reann [-] 16.1 ∗ 103

intensity instead of the number of cells, but as it is now, the grading is already the maximum possible
that does not lead to very low quality cells. The grading is of course limited by the dicretization in the
other directions as well, as such to avoid flat cells (volume near zero). In Figure 11.3c, it is shown
a close-up of the grading in the z direction in the region of the tip of the rod for the coarse mesh. In
addition, Figure 11.3a shows a close-up of the mesh at the inlet and Figure 11.3 shows a cross-section
of the annular region, where both fluid and structural meshes are displayed. The grading of the fluid
mesh in the radial direction can be seen here. The structural mesh has a discretization of 6x6x50.
The effect of this discretization was not studied, but it is something that should be done in the future.
Although it is expected that this mesh is fine enough, as it is similar to the one used in the brass beam
case (which has a slightly longer length and radius), which was proven to be fine enough. Moreover,
the fluid and structural solvers, as well as FSI coupling algorithm and settings used are the same ones
that have been presented and used in the previous chapters.

As it is right now, this case is extremely costly computationally. One way of reducing this cost is to
reduce the domain size in the region where the flow is developing. By running simulations of just the
developing region it is possible to obtain the velocity profile of the fully developed flow. This is then
used as input for another simulation with a reduced ’developing’ region, thereby reducing the number
of mesh cells. For this it is necessary to perform an independence study to understand what is the
minimal size possible for the initial region. While this was not performed in this thesis, it is advised for
the future.

Table 11.3: Cantilever rod flow mesh resolutions

Mesh Ncells r+inneravg
r+innermax

z+tipavg
z+tipmax

Coarse 1.9M 0.46 1.02 13.10 22.99
Medium 4.2M 0.34 0.69 9.74 19.21
Fine 8.2M 0.31 0.62 4.22 12.34
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(a) Fluid mesh - inlet close-up (b) Fluid and structural mesh

(c) Fluid mesh - z grading close-up

Figure 11.3: Fluid and structural meshes close-ups.

11.3. Pure flow simulation results
Initially, a simulation with the rod considered fixed is run. This simulation is purely a fluid simulation,
without any structural solver integration. Due to a lack of time, it was only possible to run this simulation
with the coarse mesh. First, a URANS simulation is run (without AniPFM), similarly to the other cases,
so it can serve as initialization of the domain later on. An adaptive time step is taken with the max CFL
number constrained at 1.0. Figure 11.4 shows the comparison of the flowfield around the tip of the rod
between the current simulation and the one performed by Salachna et al. [19]. The results are very
similar: as expected, there is a stagnation point at the tip of the rod, very high velocities coming out
of the edges of the said rod and a small separation zone near the wall after the tip. The length of this
separated region is also very similar for both simulations (around 0.6D), even though in the current
simulation the linear k − ω SST turbulence model is used and in Salachna et al.’s [19] simulation, the
RSM LRR is used. Anyways, the results between both simulations are very similar for the whole area
of interest seen here, with the maximum value of the velocity being very similar for both cases.
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(a) Current simulation (b) Salachna et al. [19]

Figure 11.4: Comparison of the flowfield around the rod tip with other numerical approaches results [19].

Once the initialization simulation was performed, AniPFM could be turned on. For this the C&EC
time correlation method was used as well as the Shur cut-off with Cl = 3.0. The simulation was run for
10 seconds, which is equivalent to 4 flow-throughs. The mesh used was the coarse one. The profiles of
velocity, turbulent kinetic energy and normal Reynolds stresses can be observed in Figure 11.5. These
results are taken at a plane at z = 1.8m (0.74m from the tip), which is already in the annular region. The
results by themselves are not conclusive, as this was the only simulation performed. The coarseness
of the mesh is clearly visible in the results. Additionally, the profiles look as expected from an annular
region, with a similar shape to the annular turbulent flow seen in Chapter 9.

Unfortunately, Salachna et al. [19] does not have turbulence statistics as the ones shown here.
Norddine et al. [14] do have these statistics at multiple planes along the streamwise direction, which
is extremely useful for comparison. However, they only performed simulations at an inlet velocity of
U = 3.45 m/s. Since the initial goal of the current simulation was to then compare with the numerical
approach of Salachna et al. [19], who only ran simulations at an inflow of U = 1 m/s, only this case was
considered. However, for future work, running cases at U = 3.45 m/s, is extremely valuable due to the
amount of important comparison data available from Nordinne et al. [14].

The results highlighted in this section, although in the initial stages, lay a solid foundation for future
research in fluid and FSI simulations of the cantilever rod using AniPFM.
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(a) Streamwise velocity (b) Turbulent kinetic energy

(c) Rzz (d) Rrr

Figure 11.5: Profiles of velocity, TKE and Reynolds stresses at z = 1.8.

11.4. URANS FSI results
In order to check the correctness of the fluid and structural parameters used in this simulation, an
initial FSI simulation was run without AniPFM. Since this simulation has no excitation source for the
vibrations, an initial force has to be set. For this, a force of 0.1N was applied in the y direction for 0.1s.
The beam was then left vibrating freely. The displacement in the y direction of the free end w.r.t time
is displayed in Figure 11.6. From this displacement, the modal characteristics of the vibrations of the
beam can be computed. These are shown in Table 11.4 in comparison with the experimental data of
Cioncolini et al. [18]. The close agreement of the results with the experimental data offers a validation
of the FSI framework, setting a solid foundation for the continuation of this project. Due to a lack of
time, no FSI simulations were run using AniPFM. This is considered future work and will be discussed
in Chapter 13.
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Figure 11.6: Time series of displacement in the y direction.

Table 11.4: Comparison of results with experimental data

Value Simulation Experiment (Cioncolini et al. [18])

Natural frequency, f1 [Hz] 3.59 3.60
Damping ratio, ζ [-] 0.013 0.012

11.5. Summary
In this chapter, the details of the numerical replication of the experimental cantilever rod experiment
conducted by Cioncolini et al. [18] were discussed. Initially, the experiment was introduced: it involves a
cylinder clamped at one end and left free at the other, with an enclosing tube concentric to the cylinder.
Water flows from the free end to the clamped end. Subsequently, the numerical replications of this
experiment available in literature were summarized: this entails the work of Salachna et al. [19] and
Norddine et al. [14].

Next, the setup used in the current thesis was described to detail. This setup follows closely the one
presented by Salachna et al.. Following this, the results of the simulations were showcased. Initially,
simulations were conducted with the rod considered rigid, involving fluid-only simulations. The mean
flow results align with those reported by Salachna et al. [19]. Moreover, turbulence statistics, includ-
ing TKE and normal Reynolds stresses, derived from the AniPFM simulations, were also presented.
Lastly, the outcomes of a URANS FSI simulation were exhibited, where the modal characteristics were
compared with experimental data, and good correlation was obtained.

The research delineated in this chapter, though in its initial phase, offers a robust starting point for
future researchers working on this project. Additionally, recommendations are made throughout the
chapter for possible future improvements in the numerical setup.



”We do not learn from experience... we learn from reflecting
on experience.”

John Dewey

Part IV

Closure
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12
Conclusion

The research questions outlined in Chapter 2 are reiterated here, accompanied by a discussion on the
conclusions drawn regarding each question. Subsequently, the main research objective is repeated,
followed by its conclusions.

12.1. Research questions
What are the optimal parameters of the AniPFM that maximize accuracy and reduce computa-
tional cost and uncertainty?

Across three chapters: two fluid-only cases (TCF - Chapter 8, and turbulent annular flow - Chap-
ter 9) and one FSI case (brass beam - Chapter 10), an in-depth analysis was conducted on AniPFM’s
parameters that were mentioned at the end of Chapter 7. Previously, the model’s sensitivity to these
parameters was not fully understood, and optimal parameters had not been identified.

First, regarding the time correlation method of the velocity fluctuations. The pure convection method
showed great dependency on parameters such as the random seed used in the pseudo-random number
generator for the angles that constitute the equation for the wavenumber vector, as well as the number
of modes used in the Fourier series decomposition that generates the non-dimensional space-only
velocity fluctuations. This dependency leads to a higher uncertainty in the results obtained using the
model. This dependency was confirmed through FSI cases for the random seed. On the other hand,
the convection and exponential correlation method does not exhibit this strong dependency that the
pure convection does on these parameters. This allows AniPFM to produce realizations which have
a very low variance and thus, generate results which are ’more deterministic’ even though they come
from an inherently stochastic model. This time correlation method is the one that is advised to be used.
Although at a slightly higher computational cost than PC, it offers much more reliable results. Within
the C&EC method, the correlation factor, fτ , was studied. It was shown that a value within 25-100 is
ideal, and there is not much difference between them. Values lower than this show a greater decrease
in the velocity fluctuations magnitude due to an increased weight onto the numerically diffused field.

Secondly, concerning the TKE spectrum, two length scales were studied: the length scale asso-
ciated with the peak of the spectrum, le, and the cut-off length scale, lcut. Two formulations were
considered for the definition of le: Cllt and min(2dw, le). The latter greatly underestimates le near the
wall and was discarded. The former was calibrated through the empirical constant Cl. This constant
was set to its default value, which stems from the calibration performed by Shur et al. [10] on a plane
mixing layer. The idea of calibrating this constant arose not only as a further effort in calibrating the
model to its respective use case but also as a way to possibly avoid the overprediction of the amplitude
of displacements seen before by FSI simulations using AniPFM. The results of fluid-only simulations
showed that indeed calibrating this constant reduced the pressure fluctuations magnitude near the wall,
both the mean square root as well as the spectral power density over all frequencies and wavenumbers.
This hypothesis was then tested in the FSI case of the brass beam and proved successful. Further vali-
dation is needed, but this greatly reduced the overprediction of the ARMS , bringing AniPFM FSI results
much closer to validation data over all the velocities simulated. Regarding the cut-off length, both the
Shur and cubic cut-off definitions were able to obtain good results if calibrated accordingly through the
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Cl constant. The cubic cut-off requires a lower value of this empirical constant, as it cuts off the TKE
spectrum at a higher wavenumber than the Shur definition. The cubic cut-off results in a better near-
wall behavior of the Reynolds stresses than Shur’s. But Shur’s leads to a more correct distribution of
the energy across the different frequencies/wavenumbers. It is not clear yet if one method is better
than the other. Each one has its advantages and disadvantages.

What is the influence/sensitivity of the AniPFM input Reynolds stresses in the RMS of the
generated velocity and pressure fluctuations fields?

In an effort to understand why AniPFM was overpredicting the pressure fluctuations near the wall,
the governing equation for the pressure fluctuations was analyzed. Through its simplification for the
TCF case by assuming statistical homogeneity in the spanwise and streamwise directions, it became
possible to better understand the influence of the RST on the generated pressure fluctuations. It was
observed that there was a clear influence of the wall normal component of the Reynolds stresses (the
only statistically inhomogeneous direction). This dependence aided in understanding why, even though
the other components of the Reynolds stresses were far from DNS data, the pressure fluctuations were
still being overpredicted. While the influence of the RST on the generated pressure fluctuations is not
trivial, there is now a better understanding of it.

This reinforces the importance of the anisotropy in the model, as it allows for a better prediction
of the different components of the RST, which clearly have different near wall behaviours as well as
different weights on the importance they have on the generated pressure fluctuations. As such they
should not be treated equally (isotropy).

What is the accuracy and computational cost of NRG-FSIFOAMwith AniPFM in simulating TIV
in fuel rods when compared to other state of the art methods?

Reflection upon the performance of the calibrated AniPFM in the brass beam case, it has show-
cased promising potential, demonstrating a deviation of 19% ± 2.6% when compared against the data
presented by Chen et al. [15] at a speed of 10 m/s. This positions it favorably against the LES approach
of De Ridder et al. [16], which recorded a 38% discrepancy with the experimental data. The mesh used
by De Ridder et al., extrapolated to a full rod would be of around 720 million cells, whereas the meshes
used in this thesis for this case are always less than 1M cells. Although further validation is needed, the
results obtained through the integration of AniPFM in NRG-FSIFOAM framework to simulate turbulence
induced vibrations of fuel rods seem promising.

12.2. Research objective

“To delve into a comprehensive exploration of AniPFM to fully grasp its sensitivity to various
user-defined parameters. This endeavor aims not only to enhance understanding but
also to pinpoint the optimal set of parameters that can potentially reduce uncertainty and
increase accuracy in simulating near wall pressure fluctuations. ”Reviewing the research performed and its findings, it becomes clear that the research objective

was successfully pursued, resulting in a deeper understanding of AniPFM, its sensitivities, and ideal
parameters. While there is much to be done to enhance the model’s accuracy and reliability through
validation, this research helps foster confidence in the model’s potential for successful integration into
a low-cost framework for simulating TIV of fuel rods.
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Recommendations

Based on the research presented in this thesis, recommendations are made for future work:

• Continue the development of the validation case of the cantilever rod. Run unsteady fluid only
simulations with AniPFM for the medium and fine meshes. Use these results to run FSI simu-
lations and compare the results with the experimental data from Cioncolini et al. [18] and the
numerical data from Salachna et al. [19].

• Do the same procedure as above for fluid only simulations, but for an inlet velocity of U = 3.45
m/s. Norddine et al. [14] ran LES of the same configuration at this inlet velocity and provides
turbulence statistics at various planes in the domain. This is useful for comparison with AniPFM,
without the burden of running FSI simulations.

• Consider reducing the fluid domain of the cantilever rod. Use an inlet velocity equivalent to a
fully developed velocity profile and reduce the ’developing region’ as much as possible without
influencing the flow at the rod.

• The calibrated values obtained for Cl for the different cut-offs have only been tested on the TCF
at a specific Reτ and on the brass beam. While the values calibrated for TCF showed a very
good behaviour in the brass beam case, it would be important to validate this with other cases.
Ideally, fluid only cases, to speed up computations and to reduce the overall complexity. Some
recommended cases include: TCF at other Reτ values (relevant for nuclear fuel rods applica-
tions), turbulent annular flow at other conditions. These are simple but useful cases. For the
TCF there is a lot of high fidelity data available, for the turbulent annular flow not so much. If
needed, considering running in-house LES or DNS. This was considered early on this thesis, but
dismissed for lack of time.

• The understanding of what changing the Cl does to the TKE spectrum comes purely from an
analytical perspective as well as causal inference based on the p′RMS profiles. To confirm this, it
would be useful and interesting to use the HIT box to study the effect of changing the Cl constant
on the energy spectrum. This flow case is extremely simple and there is plenty of validation data.

• Further validate the integration of AniPFM in FSI simulations of fuel rods. A step up in complexity
can be considering fuel rod bundles instead of a single rod. While a single fuel rod is ideal for
the development and validation of a recent model like AniPFM, the ideal end goal would be rod
bundles in axial flow. The flow physics are more challenging as there are multi body effects.

• The simulations performed during this thesis showed the importance of having a fine and high
quality mesh in order to obtain relevant results using AniPFM. Only structured meshes were used.
These meshes are only possible for simple cases, such as the ones considered here. For more
complex cases, unstructured meshes would be needed eventually. This thesis did not extend
to the exploration of unstructured meshes; nonetheless, it would be worthwhile to explore the
performance of AniPFM in scenarios that necessitate unstructured mesh configurations.
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• Continue the work performed during this thesis in understanding what are the most fundamental
wavenumbers/frequencies that affect the structural vibration. The current approach showed that
the Arms is still within validation data range even though the cut-off wavenumber was greatly
reduced. However, unlike expected, the drop in the pressure fluctuations power spectral density
occurred across all frequencies, instead of mostly on the higher frequencies. It is then important
to understand what is causing this and also if the current approach is the most correct one.

• Until now, only EVMs with Wilcox correction have been used in the URANS input of AniPFM. It
would be interesting to study the effect of using RSMs, such as the ones already implemented in
OpenFOAM (LRR and SSG). It is expected that this will lead to a more accurate representation
of the input Reynolds stresses.

• Despite being more computationally economical than RSM while potentially offering better accu-
racy compared to EVMs, explicit algebraic RSM (EARSM), remain unimplemented in OpenFOAM.
Future research could explore the implementation of an EARSM in OpenFOAM to improve the
accuracy of the input URANS in AniPFM.

• In AniPFM, the energy spectrum is presumed to be isotropic initially, before being adjusted to
represent the anisotropy in the input Reynolds stress tensor. This approach inherently dictates
that the cut-off length is represented by a scalar value, a simplification that may not hold near
walls where cells in the mesh are generally anisotropic and exhibit greater refinement in the wall-
normal direction. Castro et al. [129] introduced an alternative by devising a synthetic turbulence
model based on a distinct energy spectrum defined for each principal axis, thereby enabling the
specification of a cut-off length aligned with these axes. It is recommended to study this approach
and evaluate whether this can be implemented into AniPFM.

• As it was seen during this thesis, the expression for kstart has some flaws. The distribution of
kstart should be studied for flow cases where the cross section area is not constant along the
domain (as the cantilever rod case). If the value of this wavenumber remains 2π/luser across the
whole domain (as it was seen for the channel flows studied in this thesis), it is recommended that
a new expression is devised for kstart∗.
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