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ABSTRACT
This paper presents a review and classification of traffic assignment
models for strategic transport planning purposes by using concepts
analogous to genetics in biology. Traffic assignment models share
the same theoretical framework (DNA), but differ in capability
(genes). We argue that all traffic assignment models can be
described by three genes. The first gene determines the spatial
capability (unrestricted, capacity restrained, capacity constrained,
and capacity and storage constrained) described by four spatial
assumptions (shape of the fundamental diagram, capacity
constraints, storage constraints, and turn flow restrictions). The
second gene determines the temporal capability (static, semi-
dynamic, and dynamic) described by three temporal assumptions
(wave speeds, vehicle propagation speeds, and residual traffic
transfer). The third gene determines the behavioural capability
(all-or-nothing, one shot, and equilibrium) described by two
behavioural assumptions (decision-making and travel time
consideration). This classification provides a deeper understanding
of the often implicit assumptions made in traffic assignment
models described in the literature. It further allows for comparing
different models in terms of functionality, and paves the way for
developing novel traffic assignment models.
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1. Introduction

1.1. Background

Traffic assignment models are used all over the world in strategic (long-term) transport
planning and project appraisal to forecast future traffic flows and travel times. Road auth-
orities typically apply traditional models on large-scale road networks for this purpose.
These models describe the interaction between road travel demand (in particular, passen-
ger cars) and road infrastructure supply and were initially developed in the 1950s. The
overall structure as depicted in Figure 1 has not changed much since (although solution
algorithms have become more efficient). Traffic assignment models consist of a route

© 2016 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Michiel C. J. Bliemer michiel.bliemer@sydney.edu.au Institute for Transport and Logistics Studies,
University of Sydney Business School, Sydney, Australia

TRANSPORT REVIEWS, 2016
http://dx.doi.org/10.1080/01441647.2016.1207211

mailto:michiel.bliemer@sydney.edu.au
http://www.tandfonline.com


choice sub-model that determines path flows and a network loading sub-model that pro-
pagates these path flows through the network and yields travel times. The route choice
sub-model has a (possibly time-varying) origin–destination travel demand matrix as
input, while the network loading sub-model considers infrastructure characteristics includ-
ing road segment length, number of lanes, maximum speed, and possibly intersection
layout and average green times of traffic controls.

Over the past few decades, there have been many new developments (especially in
dynamic network loading models), leading to more advanced traffic assignment models
that describe flows and travel times more realistically and (in certain ways) enhance
their applicability. Such advancements can be categorised as being spatial, temporal, or
behavioural in nature. We will refer to models incorporating such advancements as
more capable models that have a larger ability to incorporate phenomena observed in
reality.

There exists a wide range of traffic assignment models proposed in the literature,
ranging from static to dynamic models, ranging from models that consider only free-
flow conditions to models that consider congestion with queuing and spillback, and
ranging from all-or-nothing assignment to equilibrium models. These models differ in
capabilities, each making their own underlying assumptions.

In this paper, we aim to disentangle some of the characteristics of traffic assignment
models and explicitly state the assumptions underlying these models. Deeper insights
in these assumptions allow a better understanding of the capabilities of each model
and the circumstances under which models may reasonably be applied, as well as
develop new more capable models.

1.2. Scope

In this paper we focus on the capabilities of traffic assignment models with a focus on
motorised private transport. This means we do not consider public transport or active
modes of transport (such as walking and cycling). We would like to point out that “capa-
bility” is only one aspect when selecting suitable models for strategic transport planning.

Figure 1. Interaction between travel demand and infrastructure supply.
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There are many other relevant aspects, such as ease of use (i.e. short run times, easy cali-
bration, and low input requirements), accountability (convergence of algorithms, exist-
ence and uniqueness of solutions, and model complexity), and robustness (i.e. does the
model generate stable outcomes). It is for example likely that a highly capable model
has a higher computational complexity and less favourable solution properties, so a trans-
port planning analyst should always balance these aspects when choosing a suitable
model. We refer to Bliemer, Raadsen, de Romph, and Smits (2013) for a more general dis-
cussion on these requirements for traffic assignment models.

We narrow the scope of this paper further by making the following eight limiting
assumptions: (i) macroscopic description of traffic flow, (ii) only first-order effects are con-
sidered, (iii) only pre-trip route choice is considered, (iv) no day-to-day dynamics are con-
sidered, (v) individual travellers are guided by selfish (non-cooperative) behaviour, (vi)
inelastic travel demand, (vii) only a single user class is considered, and (viii) only travel
time is considered in route choice.

The first five assumptions are made because the focus is on traffic assignment models
for strategic transport planning purposes, which in general do not consider mesoscopic or
microscopic representations of traffic flows (with possible random components), ignore
dynamical second-order effects (such as capacity drop, stop-and-go waves, and hyster-
esis), do not consider en-route travel decisions (which are more relevant for short-term
traffic operations), do not consider learning processes and disequilibria (partly due to dif-
ficulties when comparing base and future scenarios), and does not consider system
optimal conditions (which can be useful for network design).

The last three assumptions are made to restrict ourselves to core components of traffic
assignment models in which we assume a given travel demand (and do not include depar-
ture time choice, mode choice, destination choice, or other travel choices influencing
demand) for a single user class (passenger cars) considering only travel time (and do
not include tolls, travel time reliability, parking costs, etc.). These last three assumptions
can be relaxed and are not strictly necessary for our framework, but they allow a more
focussed presentation of the concepts in this paper. For example, one can replace
travel time with a generalised cost or (dis)utility function that includes travel times and
travel costs. Further, multiple user classes can be taken into account by considering differ-
ent sensitivities to time and cost in these generalised cost functions (e.g. people with a
high or low willingness to pay for travel time savings). Taking different vehicle types
into account in a macroscopic model is usually more challenging due to asymmetric inter-
actions between, for example, cars and trucks (see e.g. Bliemer & Bovy, 2003), which is
partly why modellers often choose to convert all vehicle types into passenger car units.

1.3. Genetics

In this paper, we describe the “genetics” of traffic assignment models, which allows us to
describe and characterise models in a qualitative fashion. Although the various traffic
assignment models proposed in the literature may seem very different and sometimes
incompatible, they share the same DNA and can be seen as descendants of the same
ancestors having different genes.

In biology, DNA is the blueprint of life that consists of instructions that control the func-
tions of cells. Each species (e.g. humans) shares more or less the same DNA. The building
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blocks of DNA are called nucleotides, which store genetic information. Genes describe
basic functions of living organisms and consist of a specific sequence of nucleotides.
The genetic code, therefore, describes all characteristics of the organism. DNA is inherited
from parents through recombination, and evolves through mutation (i.e. genetic
variation).

Traffic assignment models can be thought of as being characterised by a genetic code
containing model assumptions and genes that describe functionality. Each traffic assign-
ment model for strategic transport planning shares the same theoretical framework
(namely, DNA). We identify three different genes: (i) a gene that describes spatial inter-
actions, (ii) a gene that describes temporal interactions, and (iii) a gene that describes behav-
iour. These genes are composed of nucleotides that delineate each individual assumption
that impacts on the functional capability of the model. By combining different temporal,
spatial, and behavioural assumptions, different traffic assignment models are created.

A very capable organism with many positive characteristics is sometimes said to have
“good genes”. Advanced traffic assignment models may be thought of as having “better”
genes than their simpler traditional counterparts regarding realism. An organism is
defined by physical appearance and its behaviour, both defined by genes.1 In strategic
macroscopic models, the network loading sub-model can be seen as a physical process in
which traffic flow is modelled as a fluid following hydrodynamic theories. While traffic
flow is a result of underlying individual driving behaviour (e.g. speed choice and lane
choice), this level of behaviour is not described by macroscopic models; instead, it is aggre-
gated to a physical relationship through a cost function or the fundamental diagram of
traffic flow (see Sections 2.1 and 3.2). Thus, the network loading sub-model is physical in
nature and described by a spatial and temporal gene. In contrast, the route choice sub-
model describes a behavioural process and is described by a, third, behavioural gene.

Just like living organisms, traffic assignment models have evolved over time, often by small
mutations in one of the underlying assumptions, sometimes by recombination of existing
models into a new model. By discovering the basic underlying assumptions of each model
(genetic code), we can investigate model functionality and limitations, as well as propose
improvedmodels. It also allows geneticmodifications of existingmodels to develop novelmodels.

1.4. Paper outline

In Section 2 we describe the DNA of traffic assignment models, which allows us to classify
each traffic assignment model. Section 3 describes the first gene using four nucleotides
that represent the spatial assumptions. Section 4 describes the second gene, consisting
of two nucleotides that represent the temporal assumptions. Section 5 discusses the
third gene, consisting of two nucleotides representing behavioural assumptions. Section
6 establishes the genetic code for a selection of traffic assignment models proposed in
the literature based on the spatial, temporal, and behavioural assumptions. Finally, we
draw conclusions in Section 7 and state some potential for new model development.

2. DNA of traffic assignment models

In the literature, the main distinction that is often made between models is with respect to
temporal assumptions, that is, whether a model is static or dynamic. Dynamic models are
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typically seen as superior over static models. However, in terms of spatial interactions,
certain static models are capable of accounting for queues and even spillback, while
certain dynamic models may not. Also, regarding the underlying route choice behaviour,
some simple static models may be more advanced than certain dynamic models. We,
therefore, need a more elaborate classification of traffic assignment models that describes
their characteristics and capabilities in greater detail.

In this section we propose a unified theoretical framework (DNA) for traffic assignment
models. This classification leads to model types and capabilities that result from three
different genes that describe spatial, temporal, and behavioural assumptions (see Figure 2).
Details of these underlying assumptions will be discussed in Sections 3–5.

Gene 1 describes the assumptions regarding spatial interactions, resulting in four dis-
tinct model classes (see Section 2.1). Gene 2 describes the assumptions regarding tem-
poral interactions, resulting in three model classes (see Section 2.2). Finally, Gene 3
describes the behavioural assumptions, leading to three model classes (see Section 2.3).
Combining the different model classes, the framework in Figure 2 describes in total 36
different model types, each with their own capabilities. The most capable model type
according to this framework is a dynamic capacity and storage-constrained equilibrium
traffic assignment model, while the least capable model type is a static unrestrained all-
or-nothing traffic assignment model. Each less capable model type is a special case of a
more capable model type. In other words, less capable models can typically be derived
from more capable models by making simplifying assumptions.

2.1. Model classes and capabilities resulting from spatial assumptions

As a result of spatial assumptions (Gene 1), the following model types are distinguished (in
increasing order of capability):

. Unrestrained models;

. Capacity -restrained models;

Figure 2. DNA of traffic assignment models.
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. Capacity -constrained models;

. Capacity- and (queue) storage-constrained models.

The most capable traffic assignment models are models that constrain both the capacity
(of flow) and the storage (of queues) on road segments. These models ensure that flow
does not exceed capacity by diverting traffic to routes with spare capacity or by buffering
vehicles in a physical queue. If the length of the queue exceeds the length of the road
segment, the queue will spill back to upstream road segments. A capacity-constrained
model is a special case in which there are no constraints on the (queue) storage and as
such spillback does not occur. An even more simplified model class is the capacity-
restrained model. In this model class, flows can exceed the physical road capacity and,
therefore, queues are not described explicitly. To mimic the effect of queues (in these
models), travel times simply increase with increasing levels of flow. Finally, the simplest
and least capable model is an unrestrained model with fixed (usually free flow) travel con-
ditions and travel times.

Capacity-restrained models are the most common model class in strategic transport
planning, although the use of capacity- (and storage-) constrained models is gaining in
popularity. Unrestrained models are rarely used. Each model class has different capabilities
and a particular model should ideally only be used in cases where the underlying spatial
assumptions are valid; however, as remarked above, there are many other factors which
may influence model choice.

Figure 3 indicates a fundamental diagram describing the theoretical relationship
between flow and density that can be empirically observed from traffic counts, and
depends, among other things, on the number of lanes, the maximum speed limit, and
the road type. Such a fundamental diagram may be assumed to hold for each cross
section on a homogeneous road segment (and is independent of the length of the
road segment). Each point on this diagram represents a specific steady-state traffic
state.2 While the diagram only shows flows (veh/h) and densities (veh/km), the speed of
a vehicle (km/h) can be determined using the fundamental relationship that (space-
mean) speed equals flow divided by density. For low densities (indicated by A and B in
Figure 3), there is no congestion and no queues appear. Such traffic states are called hypo-
critical states (below the critical density) in which flow increases with density (i.e.

Figure 3. Spatial assumptions and model capabilities.
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throughput increases with more vehicles on the road). High densities (indicated by C and
D) are a result of congestion and queues on the road. These traffic states are called hyper-
critical states in which flow decreases with density (i.e. throughput deteriorates with more
vehicles on the road). The jam density provides an upper bound on the number of vehicles
that can be stored on a certain road segment (assuming zero speed). For more information
on the fundamentals of traffic flow theory and the fundamental diagram, we refer to, for
example, Cascetta (2009).

Unrestrained models are only suitable for light traffic conditions (A) in which flow
increases linearly with density, indicating that vehicles drive at maximum speed.
Capacity-restrained models are only suitable for light to medium traffic conditions (A
and B) in which the flow does not exceed capacity, but some slight delays may occur
due to increasing density. These models do not describe the hypercritical part of the fun-
damental diagram. Capacity-constrained models are suitable for light to heavy traffic con-
ditions (A, B, and C) in which short queues can form.3 These models cannot describe
queues longer than the length of the road. Most capable is a capacity- and storage-con-
strained model, which can be applied to all traffic conditions (A, B, C, and D), including
very heavy traffic when queues can grow longer than the road length and spill back to
upstream road segments occurs.

Section 3 describes the underlying assumptions of these model classes in more detail.

2.2. Model classes and capabilities resulting from temporal assumptions

As a result of temporal assumptions (Gene 2), the following model types can be distin-
guished (in increasing order of capability):

. Static models;

. Semi-dynamic models;

. Dynamic models.

Dynamic models consider time-varying travel demand and multiple time periods for
route choice and within each time period, there exist (smaller) time steps for
network loading in which flows are propagated through the network. These models
explicitly account for variations over time in path flows, link flows, and travel times,
and are the most capable models considered. Semi-dynamic models are special
cases that only consider part of the dynamics. They often consider only a single time
step for network loading within each route choice period, but may propagate traffic
flows between route choice periods. Finally, static models are the simplest and least
capable models that consider a stationary travel demand and only a single time
period (with a specified or unspecified duration) for both route choice and network
loading.

Some models are referred to as quasi-dynamic, which can be confusing. Quasi-
dynamic models only consider a single time period and do not explicitly model
time-varying flows. As such, these models are essentially static; they may be thought
of as static models with certain dynamic elements (such as queues) (see Miller,
Payne, & Thompson, 1975; Payne & Thompson, 1975). Due to the lack of a formal defi-
nition, we define quasi-dynamic models as static models that impose capacity and/or
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storage constraints and thereby can explicitly account for queues (similar to more
advanced dynamic models).

Static models are the most common model class adopted for strategic transport plan-
ning purposes, although semi-dynamic models are used in some countries. Dynamic
models are increasing in popularity, but applications for strategic planning purposes
remain relatively rare due to the much higher model complexity and related needed com-
putation times. As before, model classes defined by temporal assumptions have different
capabilities and should ideally only be used in cases where these assumptions are valid;
however, as remarked above, there are many other factors that may influence model
choice.

Figure 4 illustrates how static, semi-dynamic, and dynamic models represent travel
demand. The solid red line indicates the actual travel demand for a single origin–destina-
tion pair, and the grey bars represent the average demand in the model during each
period. The areas of the grey bars (indicating the number of vehicles) are equal to the
areas underneath the demand curves.

A static model considers a single time period, typically consisting of an entire peak
period (e.g. a 3-hour period from 6.30am till 9.30am), and assumes that traffic outside
this time period does not influence flows or travel times in the considered period. In
other words, traffic in different periods can be assigned separately. Route choice pro-
portions are assumed stationary during this period and network loading also considers
a single time period in which all traffic reaches the destination and link flows are inter-
preted as average flows during this period.

In a semi-dynamicmodel, multiple time periods are considered (e.g. one hour time slices, such
as periods 6–7 am, 7–8 am, 8–9 am, and 9–10 am). It can be seen as a sequence of static models;
however, it takes the result from a previous period (such as vehicles in a queue) into account, for
example by passing on residual traffic to the next period. As such, semi-dynamicmodels aremore
capable of describing travel demand variations as well as interactions of vehicles across time
periods. Route choice proportions are assumed stationary during each time period, while
network loading within each time period is usually done in a simple fashion similar to a static
model. However, this typically includes the limitation that vehicles cannot be propagated for
more than the duration of each period. In other words, vehicles that do not reach their destination
within a single time period may be transferred to the next time period.

Dynamic models are capable of describing interactions between vehicles within and
across each time period. They usually consider many smaller time periods (e.g. time

Figure 4. Temporal interaction assumptions and model capabilities.
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slices of 15 min), which allows them to more accurately represent time-varying travel
demand. Route choice proportions are typically assumed stationary during each time
period. Network loading is much more sophisticated and similar to simulation models;
that is, they typically consider small time steps (e.g. 1 s) in which vehicles are propagated
through the network.

Section 4 describes the underlying assumptions of these model classes in more detail.

2.3. Model classes and capabilities resulting from behavioural assumptions

As a result of behavioural assumptions (Gene 3), the following model types can be distin-
guished (in increasing order of capability):

. All-or-nothing models;

. One -shot models;

. Equilibrium models.

Equilibrium models are the most capable models in which travellers consider con-
gested travel times when choosing their route. In an equilibrium state, often referred to
as a user equilibrium in which travellers are assumed to be non-cooperative (i.e. exhibit
selfish behaviour), no traveller can unilaterally change routes to improve his or her
travel time (Wardrop, 1952). This is in contrast to system optimal models that assume tra-
vellers cooperate and minimise the total (or average) travel time in the system. In this
context, in this paper, only user equilibrium models are considered. One-shot models
are simplified models in which there is no feedback from previous travel time experience,
but rather a single network loading is performed based on initial path flow proportions.
Such path flow proportions are either predetermined or based on instantaneous travel
times considering current traffic conditions. Finally, the simplest and least capable is an
all-or-nothing model that is a special case of a one-shot model in which all travellers
follow the fastest route based on given (typically free flow) travel times.

Each of these model classes can be further differentiated into deterministic and sto-
chastic models. Deterministic models usually assume perfect information, such that travel-
lers base their decisions on actual travel times. In contrast, stochastic models assume
imperfect information, such that travellers make decisions based on perceived travel
times (Daganzo & Sheffi, 1977).

Equilibrium models are the most widely used model class in strategic transport plan-
ning, while system optimal assignments are mainly used to provide a benchmark solution.
One-shot models are often applied to simulate traffic using a more advanced (dynamic)
network loading model based on route choice proportions from a simpler (static)
model. All-or-nothing assignments, static or time dependent, are not that common
(anymore), but are often sub-models in equilibrium models.

Section 5 describes the underlying assumptions of these model classes in more detail.

3. Gene 1: Spatial assumptions

The first gene represents the spatial assumptions, which describe how traffic flows in
network loading spatially interact and directly impact on the realism of the model (see
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also Figure 2). These spatial interactions are a combination of assumptions on the link
level (shape of the fundamental diagram, capacity, and storage constraints) and the
node level (turn flow restrictions yielding turn reduction factors). These spatial inter-
actions have been analysed separately or jointly in the literature and can be calibrated
empirically.

The four specific assumptions (nucleotides) within this gene are summarised in Table 1
and are discussed in more detail in the following subsections. The nucleotide level refers to
the spatial level at which interactions are described. The spatial assumptions of a traffic
assignment model can be indicated using a sequence of letters representing the
genetic code. For example, the most widely used assignment model for strategic transport
planning purposes is a static capacity-restrained model with the following code for Gene 1:
CN-UU-U-N. The most sophisticated and capable model according to this classification is
defined by genetic code CC-CC-C-F.

3.1. Nucleotide 1 – Shape of the fundamental diagram

All traffic assignment models explicitly or implicitly assume a fundamental diagram. The
shape of the fundamental diagram plays an important role in traffic flow theory and differ-
ent shapes lead to different traffic patterns on a link (some more realistic than others). We
indicate the maximum flow through any part of a homogeneous road segment by physical
road capacity C, also referred to as the saturation flow, which depends among other things
on the number of lanes and the speed limit. The inflow and outflow capacity, however, are
at best equal to C, and in many cases lower. For example, the outflow capacity may be
restricted due to traffic controls and competing traffic (e.g. a merge) and the inflow
capacity may be restricted due to spillback of a downstream bottleneck. This does not
influence the fundamental diagram itself, but rather means that only specific traffic
states on the diagram are observed in practice.

The fundamental diagram is generally defined by an increasing concave hypocritical
branch (for densities lower than the critical density, indicated in blue in Figure 5, consistent
with traffic conditions A and B in Figure 3) and a decreasing concave hypercritical branch
(for densities higher than the critical density, indicated in red in Figure 5, consistent with
traffic conditions C and D in Figure 3). The shape of such a general function can be indi-
cated by CC using the coding from Table 1.

The first fundamental diagram was described by Greenshields (1935). He proposed a
linear relationship between speed and density, which results in a quadratic fundamental

Table 1. Genetic code for Gene 1 (spatial assumptions).
Nucleotide Level Type Code Explanation

Shape of the fundamental
diagram

Link Hypocritical L, P, Q, C Linear/Piecewise linear/Quadratic/Concave

Hypercritical L, P, Q, C, H,
V, N

Linear/Piecewise linear/Quadratic/Concave/
Horizontal/Vertical/Not available

Capacity constraints Link Inflow U, C Unconstrained/Constrained

Outflow U, C Unconstrained/Constrained

Storage constraints Link U, C Unconstrained/Constrained

Turn flow restrictions Node F, O, N First order/Other/No restrictions
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diagram QQ (see Figure 5(b)). Such a symmetric fundamental diagram may describe hypo-
critical traffic conditions quite accurately, but performs poorly for hypercritical states. A
popular choice in traffic flow theory due to computational advantages has been an asym-
metric triangular fundamental diagram LL (Newell, 1993) as shown in Figure 5(c). While a
linear relationship in the hypercritical branch is often considered sufficiently realistic, a
linear relationship in the hypocritical branch is less realistic (since it assumes that the
speed at capacity is equal to the maximum speed). Therefore, piecewise linear fundamen-
tal diagrams PP as shown in Figure 5(d) have been proposed (e.g. Yperman, 2007), which
maintain many of the computational benefits. A special case of such a piecewise linear fun-
damental diagram is the trapezoidal fundamental diagram (Daganzo, 1994) shown in
Figure 5(e).

Diagrams shown in Figure 5(a)–(e) result in models with physical queues, since they
have a downward sloping hypercritical branch, while the diagrams in Figure 5(f)–(g) do
not result in any queues since the hypercritical branch is absent. Other shapes of the
hypercritical branch of the fundamental diagram have been proposed that result in
specific types of queues. A fundamental diagram with a horizontal hypercritical branch
as shown in Figure 5(h) is consistent with a model with vertical (non-spatial) queues,
while a vertical hypercritical branch as shown in Figure 5(i) yields a model with horizontal
(spatial) queues in which all queues are assumed to have a fixed queuing density, either
equal to the jam density (leading to very compact queues) or some other fixed queuing
density (Bliemer, 2007).

Figure 5. Shapes of the fundamental diagram.
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Fundamental diagrams have been used extensively in more advanced capacity- and
storage-constrained dynamic traffic assignment models; in contrast, static models have
mainly relied on link performance functions (also called volume-delay functions or
travel time functions or cost-flow functions), which describe the relationship between
link travel time and link flow (volume) or between speed and flow. Branston (1976)
reviews link performance functions. The most well-known link performance function is
the BPR link performance function (Bureau of Public Roads, 1964). The corresponding fun-
damental diagram that is implicitly assumed is plotted in Figure 5(f). Two things can be
observed from this CN shape. First, the BPR function gives rise to only the hypocritical
branch of the fundamental diagram and ignores the hypercritical branch. Second, the
hypocritical branch increases beyond the physical road capacity C, making it suitable
only for capacity-restrained models. Another popular choice in capacity-restrained
models is the conical link performance function proposed by Spiess (1990), which exhibits
less rapid increases in link travel times when flows exceed capacity.

Davidson (1966) proposed a specific function in which the travel time goes to infinity as
the flow approaches capacity (as suggested by Beckmann, McGuire, & Winsten, 1956).
Such a function is called a barrier function and guarantees that flows do not exceed the
road capacities; hence, this function can be used in a capacity-constrained model. The cor-
responding fundamental diagram is shown in Figure 5(g) in which the hypocritical branch
has a horizontal asymptote at capacity. However, this model may give rise to compu-
tational problems and perhaps unrealistic travel times when flow approaches capacity.
Several others have discussed modifications to eliminate these problems (e.g. Akçelik,
1991; Daganzo, 1977; Taylor, 1984).

Link performance functions have also been used in several dynamic models (e.g.
Bliemer & Bovy, 2003; Friesz, Han, Neto, Meimand, & Yao, 2013; Janson, 1991; Ran &
Boyce, 1996) in which travel times are calculated for vehicles at the time of link entrance
(based on the flow at link entrance or all flows that previously entered or exited the link).
These computed travel times, also referred to as predictive travel times, are then used to
calculate the link exit times for flow propagation. Such link performance functions cannot
realistically describe flows and travel times under (very) heavy traffic conditions (at den-
sities C and D in Figure 3), since these functions do not represent the hypercritical
branch of the fundamental diagram and do not explicitly describe queues.

3.2. Nucleotide 2 – capacity constraints

Some models consider capacity constraints, while others assume no upper bounds
on traffic flows. In case no constraints on the link entrance and exit flows are
assumed, that is, UU in Table 1, no queues build up. This is consistent with fundamen-
tal diagrams of the shape shown in Figure 5(f). When considering both link entrance
and exit capacity constraints, that is, CC, these are typically set to the single physical
link capacity C. In this case, residual queues will form upstream of the bottleneck link.
Some models consider UC, in which only link exit capacities are considered. In other
words, flow is not restricted to flow in, but is restricted when flowing out. Such an
assumption leads in some situations to queues inside the bottleneck link. Finally,
models can also consider CU with link entrance capacity constraints and no explicit
outflow constraints.
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3.3. Nucleotide 3 – storage constraints

When the number of vehicles in a queue exceeds the available link storage, the queue
will spill back to upstream links. The theoretical maximum number of vehicles that can
be physically stored on a link should be equal to the jam density times the link length,
although in moving queues (with a density lower than the jam density) the number of
vehicles that can be present on the link is much lower. Some models do not consider
spillback, thereby implicitly assuming no storage constraints (U). This essentially means
an infinite jam density, which is consistent with the fundamental diagram presented in
Figure 5(h). Models that take storage constraints into account (C) have a finite jam
density, consistent with the fundamental diagrams in Figure 5(a)–(e) and 5(i).

3.4. Nucleotide 4 – turn flow restrictions

Given that queues and travel time delays mainly arise due to interactions at the node
level (i.e. merges and intersections), it is perhaps surprising to see that many static
traffic assignment models and some dynamic models completely lack a node model
description. In case there are no capacity constraints on the link entrance or exit
flows, queues will never occur and hence a node model can often be omitted (N). In
addition to node models (or sometimes instead of node models), junction models can
be used to calculate additional delays per turn and may also impose turn capacities as
well (based on junction configurations and controls).

In the presence of capacity constraints, node models determine the turn flows at
intersections, merges, and diverges. Tampère, Corthout, Cattrysse, and Immers (2011)
describe requirements for a first-order node model for a node with any number of
incoming and outgoing links. These requirements include flow maximisation, non-nega-
tivity, satisfying demand and supply constraints, and satisfying the conservation of turn
fractions (CTF) and the invariance principle (see Lebacque & Khoshyaran, 2005). Merge
constraints that follow the capacity-based weighted queuing rule (Ni & Leonard, 2005)
satisfy the invariance principle, in which the outflow rates are capacity proportional in
case both in-links are congested. An often used merge constraint that does not satisfy
the invariance principle is the fair merging rule in which inflow rates are demand pro-
portional (Jin & Zhang, 2003).

Bliemer (2007) combines a first-in-first-out diverging rule and the fair merging rule into
a closed-form demand proportional model for general cross nodes. Several node models
for general nodes have been proposed in the last decade (e.g. Jin, 2012a, 2012b; Jin &
Zhang, 2004); none of them satisfy both CTF and the invariance principle and are, there-
fore, classified under other turn flow restrictions (O). More recently, models have been pro-
posed that satisfy all requirements for first-order node models (F), including CTF and the
invariance principle (see, for example, Flötteröd & Rohde, 2011; Gibb, 2011; Smits, Bliemer,
Pel, & Van Arem, 2015; Tampère et al., 2011).

4. Gene 2: Temporal assumptions

In this section we consider temporal assumptions in network loading identified in the
second gene. Temporal assumptions determine whether a model is static, semi-
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dynamic, or dynamic. These assumptions consider interactions within time periods (wave
speeds and vehicle propagation speeds) as well as across time periods (residual traffic
transfer). They can be used to remove or simplify time dynamics within the model.

The three specific assumptions (nucleotides) within this gene are summarised in Table 2
and are discussed in more detail in the following subsections. Note that the level refers to
the temporal level (within-period or across periods) at which the interactions are
described. The temporal assumptions for traditional static models can be described by
the following code for Gene 2: IN-IN-N. The most capable dynamic model is defined by
genetic code KK-VV-T.

4.1. Nucleotide 5 – wave speeds

Temporal interactions on a network are described by wave speeds as well as vehicle
propagation speeds. Wave speeds are used to propagate traffic states through the
network, while vehicle propagation speeds describe how vehicles move through the
network. Vehicle propagation speeds are discussed in the next nucleotide.

We first consider wave speeds in the hypocritical branch (i.e. forward waves). In the first-
order kinematic wave model proposed by LWR (Lighthill & Whitham, 1955; Richards, 1956),
traffic conditions travel at the kinematic wave speed (K) equal to the slope of the hypocri-
tical branch of the fundamental diagram as shown in Figure 6(a) for traffic flow rate q. It is
important to realise that the speeds at which traffic states propagate and the speeds at
which vehicles are propagated through the network are in general not the same. In
case of a concave hypocritical branch, the kinematic wave speed is always smaller than
(or equal to) the vehicular speed (V), which is equal to the flow divided by the density
and hence equal to the slope of the line connecting the origin to the traffic state as
shown in Figure 6(b). Only if the hypocritical branch is linear, these speeds are equal.
More recent dynamic models consider kinematic wave speeds, but especially earlier
dynamic models and semi-dynamic models consider vehicular speeds.

All static models simplify the within-period interactions by implicitly assuming infinite
forward wave speeds (I), in which traffic states instantaneously propagate through the
network and reach their destination within the single period. This situation is illustrated
in Figure 6(c). This assumption effectively removes the necessity (and possibility) to
track traffic states over time.

Backward waves track how traffic states in the hypercritical branch propagate backwards
on a road segment, and are responsible for queue build-up and possible spillback to upstream
road segments. In the LWR model, traffic conditions travel at the (negative) kinematic wave

Table 2. Genetic code for Gene 2 (temporal interaction assumptions).
Nucleotide Level Type Code Explanation

Wave speeds Within Hypocritical K, V, I Kinematic/Vehicular/Infinite

Hypercritical K, I, Z, N Kinematic/Infinite/Zero/Not available

Vehicle propagation speeds Within Hypocritical V, I Vehicular/Infinite

Hypercritical V, I Vehicular/Infinite/Not available

Residual traffic transfer Across T, N Transfer/No transfer
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speed (K) equal to the slope of the hypercritical branch of the fundamental diagram as shown
in Figure 7(a) for traffic state q. Similar to forward waves, it requires a dynamic model to expli-
citly deal with the effects of such backward kinematic waves over time.

An unconstrained static model gives rise to a fundamental diagram, which does not
have a hypercritical branch, and so backward wave speeds are not available (N). A
capacity-constrained static model, however, does give rise to a hypercritical branch. In
these fundamental diagrams, two different temporal assumptions regarding backward
waves can be made (since the time dimension does not exist in a static model). The
most widely adopted assumption is that backward wave speeds are zero (Z) as shown
in Figure 7(b). In this case, traffic conditions never move backwards, which usually
means vertical non-spatial queues and no spillback. (Note that stationary physical
queues are also consistent with zero backward wave speeds.) The zero speed assumption
is consistent with fundamental diagrams of the shape shown in Figure 5(h). Another
assumption is that there is a (negative) infinite speed (I) as depicted in Figure 7(c); this
allows the model to describe spillback when the number of vehicles in the queue
exceeds the available link storage. Note that an infinite backward wave speed does not
mean that queues build up indefinitely, since the length of the queue is constrained by
the number of vehicles in the queue. The fundamental diagram in Figure 5(i) is consistent
with the infinite speed assumption.

4.2. Nucleotide 6 – vehicle propagation speeds

Instead of looking at the speeds at which traffic states propagate, we now look at the assump-
tion on the speed with which vehicles propagate on a road segment. As mentioned in the
previous section, traffic states and vehicles in general do not move at the same speed.

In the hypocritical branch, traffic states and vehicles both move forward, but vehicles
never move slower than traffic states (see Figure 6). In static models, the vehicle propa-
gation speed is assumed to be infinite (I) such that vehicles move instantaneously

Figure 6. Speeds in hypocritical branch.

Figure 7. Speeds in hypercritical branch.
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through the network within a single time period. Note that although vehicles are propa-
gated instantaneously in static models, this does not mean that the travel times are zero,
since travel times are calculated separately from vehicular speeds. In contrast, dynamic
models consider finite vehicular speeds (V), such that travel times are consistent with
vehicle propagation speeds.

Traffic states in the hypercritical branch (if considered in the model) move upstream (i.e.
have a negative speed), while vehicles move downstream (i.e. have a positive speed) (see
Figure 7). In dynamic models the vehicle propagation speed is assumed to be equal to the
finite vehicular speed (V). In static models that do not describe residual queues, the vehicle
propagation speed is implicitly assumed to be infinite (I); however, in static models that
consider residual queues, the vehicle propagation speed is assumed to be finite and set
to the vehicular speed (V). Note that this does not make the model dynamic, since it
only requires applying capacity and storage constraints to traffic flows instead of explicitly
tracking vehicles over time.

4.3. Nucleotide 7 – residual traffic transfer

Residual traffic at the end of a time period results when vehicles are not able to reach
their final destination within the considered time period (or the smaller network
loading time step). These residual vehicles are either (i) in a residual queue due to a
bottleneck downstream, or (ii) simply are not able to reach their final destination
because the travel time to reach the destination is longer than the considered time
period. Residual traffic influences traffic flows and travel times in the next time
period. This dependency of traffic across time periods can be eliminated by assuming
that any residual traffic has no impact on the next time period; in other words, assum-
ing that the network is empty at the beginning of each time period.

Dynamic models transfer all traffic (T), thereby describing the full temporal interactions
within and across time periods. Static models have just one (fairly long) time interval and
so do not consider residual traffic transfer (N). Thus, static models are unsuitable for mod-
elling short time periods in a congested network. The main difference between static and
semi-dynamic models is that the latter does assume residual traffic transfer across time
periods as discussed in Section 2.2.

5. Gene 3: behavioural assumptions

The third and final gene represents the behavioural assumptions, which describe travel-
lers’ route choice. From biology we know that describing which genes affect behaviour
is difficult, since behavioural characteristics are complex and polygenic (i.e. influenced
by multiple genes). The same holds for describing route choice behaviour in traffic assign-
ment models, and many types of behaviours have been described in the literature.

In this section, we put route choice behaviour into a single gene with two nucleotides, as
summarised in Table 3 and discussed inmore detail in the following subsections. We note that
while we try to be as inclusive as possible, this list is not exhaustive and is limited by the scope
set out in Section 1.2 (for example, we do not consider day-to-day learning effects). The most
capable model considered is a (equilibrium) model with the following code for Gene 3: BI-E,
while the simplest model is a (all-or-nothing) model defined by genetic code FP-I.
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5.1. Nucleotide 8 – decision-making

Decision-making behaviour has many dimensions. We limit ourselves to the ones that
have most often been used in the context of route choice, namely rationality, uncertainty,
and motivation.

In terms of rationality, most traffic assignment models consider full rationality (F), which
assumes that travellers consider all alternatives and eventually all travellers select their
own best routes. In reality, travellers are unlikely to behave in such an optimal way due
to resistance in change (inertia effects) and the fact that people often minimise effort
and time in decision-making. Bounded rationality (B) is a term that is often used to
describe such decision-making behaviour, which includes habitual route choice, or
route choice in which travellers expose satisficing behaviour and consider routes with
travel times sufficiently close to the fastest route travel time (see e.g. Di, Liu, Pang, &
Ban, 2013; Han, Szeto, & Friesz, 2015).

If travellers have perfect information (P), then decision-making can be described by
a deterministic process. In contrast, if travellers are considered to have imperfect infor-
mation (I) with a given level of uncertainty, then decision-making is referred to as prob-
abilistic or stochastic. For example, Fisk (1980) proposed a stochastic assignment
model that adopts a logit model, Zhou, Chen, and Bekhor (2012) adopt a C-logit
model, and Kitthamkesorn and Chen (2013) adopt a path-size weibit model, where
the latter two aim to correct the path choice probabilities for path overlap. Determinis-
tic models can be seen as special cases of stochastic models where the level of uncer-
tainty is equal to zero.

Although outside of the scope, we point out that travellers may be driven by differ-
ent motivations for choosing a certain route. As stated in Section 1.2, here we only con-
sider selfish drivers who minimise their individual travel time, leading to a user
equilibrium-based model. Other models exist in which drivers are guided by different
motivations; yet, these models are hardly ever used in the context of strategic trans-
port planning.

5.2. Nucleotide 9 – travel time consideration

In (semi-)dynamic models, different types of path travel times can be considered in route
choice (see e.g. , Buisson, Lebacque, & Lesort, 1999; Ran & Boyce, 1996). Instantaneous path
travel times (I) for a certain departure time consider only the traffic states at this time
instant and the corresponding link travel times, and hence ignores any changes in
traffic conditions while driving. Models that consider instantaneous travel times are
often referred to as reactive. Predictive path travel times (P) consider the addition of
link travel times based on the traffic conditions at the time of link entrance; hence,
time-varying traffic conditions along the path are taken into account. Such travel times

Table 3. Genetic code for Gene 3 (behavioural assumptions).
Nucleotide Type Code Explanation

Decision-making Rationality F, B Full/Bounded

Information P, I Perfect/Imperfect

Travel time consideration I, P, E Instantaneous/Predictive/Experienced
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can be considered as an estimate, since changing traffic conditions while traversing the
link are ignored. More recent models calculate experienced travel times (E), which consider
the actually experienced link travel times at the time of link exit (instead of link entrance).
In static models (in which no such differences in path travel times exist), we assume that
travel times are instantaneous.

6. Classification of existing traffic assignment models

Many traffic assignment models have been proposed in the literature that we can classify
using the nine nucleotides in the three genes. Table 4 provides a list of some prototypical
models described in the literature, which is by no means intended to be complete.

Looking at temporal assumptions, all static models assume infinite wave and vehicle
propagation speeds in the hypocritical branch and no residual traffic transfer. In case a
hypercritical branch of the fundamental diagram is considered, either zero or infinite back-
ward wave speeds are assumed, and vehicle propagation speeds equal to vehicular speeds
or infinity. On the other hand, all dynamic models assume forward wave speeds that are
not infinite, that is, equal to either the vehicular speed or kinematic wave speed. Backward
wave speeds are equal to the kinematic wave speeds and follow the shape of the funda-
mental diagram (and can, therefore, be equal to zero or infinity if the hypercritical branch
of the fundamental diagram is horizontal or vertical, respectively). Vehicle propagation
speeds are equal to the vehicular speed in both the hypocritical and the hypercritical
branch (if considered). Further, dynamic models assume residual traffic transfer.

Regarding behavioural assumptions, all models in Table 4 are (user) equilibriummodels.
Exceptions are Bovy (1990) who describes a one-shot model for uncongested situations,
while Daganzo (1994, 1995a), Yperman et al. (2005), Bliemer (2007), and Gentile (2010)
mainly describe the network loading sub-model and omit behavioural route choice
information.

Finally, looking at spatial assumptions, many models are capacity restrained using a
strictly increasing link performance function, although more recently several capacity-con-
strained models have been proposed that can explicitly account for queues. Relatively few
models are storage constrained in which spillback is described. A wide variety of shapes of
fundamental diagrams has been used. More advanced models include turn flow restric-
tions through the incorporation of a node model, which allow more realistic queueing
and spillback of traffic.

Semi-dynamic models are neither completely static nor completely dynamic. This
means with respect to the temporal assumptions that they typically assume a sequence
of connected static models as described in Nakayama and Connors (2014). In such a
case, wave speeds and vehicle propagation speeds in the hypocritical branch are infinite.
However, vehicle propagation speeds in the hypercritical branch are considered finite and
vehicles that reside in a queue at the end of a time period are transferred to the next time
period. We have omitted semi-dynamic models from the list in Table 4 because the papers
are either in Japanese (Akamatsu, Makino, & Takahashi, 1998; Fujita, Matsui, & Mizokami,
1988; Fujita, Yamamoto, & Matsui, 1989; Miyagi & Makimura, 1991; Nakayama, 2009) or
have been described as operational procedures and algorithms rather than mathematical
problems (e.g. Davidson, Thomas, & Teye-Ali, 2011; Van Vliet, 1982), which makes them dif-
ficult to classify accurately.
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Table 4. Overview of assumptions made in different traffic assignment models proposed in the literature.
Gene 1: Spatial assumptions Gene 2: Temporal assumptions Gene 3: Behavioural assumptions

Fundamental
diagram

Capacity
constraints

Storage
constraints

Turn flow
restrictions

Wave
speeds

Vehicle prop.
speeds

Residual traffic
transfer

Decision-
making

Travel time
consideration

Static models
Bovy (1990) LN UU U N IN IN N FI I
Beckmann et al. (1956) CN UC U N IN IN N FP I
Irwin, Dodd, and Von Cube
(1961)

CN UU U N IN IN N FP I

Fisk (1980) CN UU U N IN IN N FI I
Smith (1987) LH UC U N IN IN N FP I
Bell (1995) LH UC U N IZ II N FI I
Bifulco and Crisalli (1998) CH UC U N IZ IV N FI I
Lam and Zhang (2000) CH UC U N IZ IV N FP I
Zhou et al. (2012) CN UU U N IN IN N FI I
Smith (2013) LH UC U N IZ II N FP I
Smith, Huang, and Viti (2013) CV UC C N II IV N FP I
Bliemer, Raadsen, Smits,
Zhou, and Bell (2014)

LC CC U F IZ IV N FI I

Dynamic models
Janson (1991) CN UU U N VN VN T FP I
Daganzo (1994, 1995a) PL CC C O KK VV T – –
Chen and Hsueh (1998) CN UU U N VN VN T FP P
Li, Fujiwara, and Kawakami
(2000)

LH UC U N KZ VV T FP I

Chabini (2001) CN UU U N KN VN T FP P
Bliemer and Bovy (2003) CN UU U N KN VN T FP P
Yperman, Logghe, and
Immers (2005)

LL CC C O KK VV T – –

Bliemer (2007) CV UC C O KI VV T – –
Gentile (2010) CC CC C O KK VV T – –
Friesz et al. (2013) CH UC U N KZ VV T FP E
Han et al. (2015) LL CC C O KK VV T BP E
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7. Discussion and conclusions

In this paper, we have presented a theoretical framework which classifies traffic assign-
ment models for strategic transport planning purposes. This framework is described in
terms of a genetic code with three genes and nine nucleotides consisting of four spatial
assumptions, three temporal assumptions, and two behavioural assumptions. This frame-
work leads to in total 36 different model types, each with their own underlying assump-
tions and their own capabilities.

As a special case, the widely applied capacity-restrained equilibrium static traffic assign-
ment model can be derived by assuming (i) a concave hypocritical part and no hypercritical
part of the fundamental diagram, (ii) no flow capacity constraints, (iii) no storage constraints,
(iv) no turn flow restrictions, (v) infinite forward wave speeds and no backward waves, (vi)
infinite vehicle propagation speeds, (vii) no residual traffic transfer, (viii) perfectly rational tra-
vellers with full information, and (ix) instantaneous travel time consideration. Such strict
assumptions limit the capability and hence realism of this particular model in certain
instances. At the same time, we acknowledge that more capable models often have
other less favourable characteristics, such as higher computational complexity and possible
non-uniqueness of solutions. As a result, transport planners may decide to choose less
capable models, but should be aware of model limitations when interpreting outputs.

Capacity-constrained (and possibly also storage-constrained) models are more capable and
can explicitly describe queues (and possibly spillback). Several sophisticated dynamic models
exist that are capable of describing flows and travel times under all traffic conditions. Such
static models also exist, which extend the capability (realism) of static models in congested
situations by sharing the same spatial assumptions made in advanced dynamic models.
This opens up possibilities for static models that are derived from advanced dynamic
models by simply using static temporal assumptions. Therefore, the framework described in
this paper may not only be useful for classifying models, but also for developing new
models with new genetic codes by combining different spatial, temporal, and behavioural
assumptions (and hence inherit genetic properties from other models).

Notes

1. Although there is debate in the literature whether behaviour is determined by genes or by the
environment (or both), in biology the field of study called behavioural genetics examines the
origins of individual differences in behaviour.

2. In other words, this relationship only describes first-order effects and does not explicitly
describe transitions between traffic states (which requires explicit modelling of braking and
acceleration as second-order effects). As mentioned in Section 1.2, second-order effects are
usually not considered in large-scale strategic transport planning not only for tractability
reasons, but also to avoid illogical behaviour such as negative flows and traffic going back-
wards as outlined by Daganzo (1995b).

3. Note that the line that separates traffic conditions C and D in Figure 2 is plotted somewhat
arbitrarily between the critical density and jam density since it is case specific, that is,
depends on the inflow rate and the link length.
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