
]

D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Interaction-aware
autonomous drone
racing
Master Thesis

Andrei-Carlo Papuc

Interaction-aware
autonomous drone

racing
Master Thesis

by

Andrei-Carlo Papuc

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday 31 March, 2025 at 10:00 AM.

Student number: 4772385
Project duration: April 1, 2024 – March 31, 2025
Thesis committee: Prof. J. Alonso-Mora, TU Delft, Main supervisor

Ir. L. Peters, TU Delft, Daily supervisor
Prof. L. Ferranti, TU Delft

This thesis is confidential and cannot be made public until June 31, 2025.

Cover: Drone Racing League under CC BY-NC 2.0

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This thesis marks the culmination of my studies at Delft University of Technology, a journey made
possible by many wonderful individuals who supported me academically, professionally, and personally.

On a professional note, first and foremost, I want to express my deepest gratitude to my daily supervisor,
Lasse Peters, for his exceptional guidance, patience, and dedication. I greatly appreciate all the time
he spent explaining concepts, discussing progress, and collaboratively exploring ways to improve my
work. Our conversations have always been insightful, enjoyable, and motivating. Beyond academia,
I am deeply grateful for the invaluable personal and professional advice he provided, I couldn’t have
asked for a more involved mentor.

I also sincerely thank my co-supervisor, Dr. Sihao Sun, for his guidance, consistent support, and hands-
on assistance throughout my lab experiments. His willingness to helpme tackle numerous experimental
challenges was essential to the success of this thesis.

I am grateful to my main supervisor, Prof. Javier Alonso-Mora, for his expert guidance and willingness
to supervise this project. Though our interactions were less frequent, he always offered insightful
questions, constructive feedback, and perspectives I had not considered. As he jokingly remarked, he
often ”pulled me out of local minima.” Additionally, I would like to thank Prof. Laura Ferranti for kindly
agreeing to participate in my thesis committee and providing valuable feedback on my work.

On a personal note, I must thankmy partner, Alexandra, for patiently enduringmy endless thesis-related
rants and offering unconditional support along the way. Special thanks also go to my friends Alex, Alin,
Madalina, and Georgia for their encouragement and for keeping me distracted exactly when I needed it.
To my good old friends back in Romania, thank you for not forgetting me, even when I was radio silent
or embarrassingly slow to reply; your friendship has meant more than you know. I would also like to
thank my lab mates at AMR for making the challenging times of my Master’s more enjoyable, whether
through insightful discussions or a much-needed cup of coffee.

Of course, I owe immense gratitude to my family, especially my parents, for believing in me, encourag-
ing my ambitions, and always welcoming me home whenever I needed a break.

Finally, I dedicate this thesis to my cat, Cow, for all his supportive meows and comforting purrs, and
to my pet friends Albert, Apollo, Ava, and Pixel, who always managed to brighten even the toughest
days.

Andrei-Carlo Papuc
Delft, March 2025

i

Abstract

Autonomous drone racing presents a unique challenge that requires both high-speed motion planning
and strategic decision-making in a multi-agent setting. Prior work has primarily relied on model predic-
tive control (MPC) methods that treat opponents as dynamic obstacles, limiting their ability to model
strategic interactions. In this work, we formulate drone racing as a dynamic game and introduce game-
theoretic planning methods that compute open-loop Nash equilibria, incorporate blocking strategies,
and accelerate decision-making using learning-based techniques. These methods explicitly model
opponent behavior, allowing drones to anticipate and react strategically in high-speed racing scenar-
ios. To assess the effectiveness of our approach, we conduct a large-scale head-to-head tournament
against MPC-based planners, demonstrating that interaction-aware planning enables more effective
overtaking and defensive strategies, leading to a higher wining rate. However, computational delays
in high-speed decision-making can limit performance, highlighting the need for efficient techniques
that balance real-time feasibility with strategic adaptability. Our results show that learning-based ac-
celeration significantly improves decision-making speed while preserving competitive advantages. Fi-
nally, high-fidelity simulations and real-world drone racing experiments validate the feasibility of these
methods, confirming their ability to generate reliable and competitive strategies under practical racing
conditions.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Contributions . 2
1.4 Outline . 3

2 Related work 4
2.1 Model predictive approaches . 4
2.2 Game-theoretical planners . 6

2.2.1 Nash games . 6
2.2.2 Stackelberg games . 6
2.2.3 Potential games . 7

2.3 Race design . 7
2.4 Discussion . 7

3 Game theory preliminaries 9
3.1 Solution concepts . 10

3.1.1 Generalization . 11
3.2 Information structure . 11

4 Racing Game 12
4.1 Formal description . 12

4.1.1 Assumptions . 13
4.2 Racing rules . 13
4.3 Referee design . 14

5 Methodology 17
5.1 Model components . 17
5.2 Model predictive game - MPG . 20
5.3 Blocking method - MPGB . 23
5.4 Baseline method - MPC . 24
5.5 Lifted method - LMPG . 25
5.6 System architecture . 27

6 Experimental Setup 30
6.1 Simulation environment . 30

6.1.1 Race tracks . 31
6.1.2 Starting conditions . 32
6.1.3 Parameters . 32

6.2 Evaluation metrics . 33
6.2.1 Performance metrics . 33
6.2.2 Auxiliary metrics . 33

6.3 Large scale simulation . 33

7 Results 34
7.1 Synchronous racing . 34

7.1.1 Low speed . 35
7.1.2 Medium speed . 36

iii

Contents iv

7.1.3 High speed . 37
7.2 Asynchronous racing . 39

7.2.1 Low speed . 39
7.2.2 Medium speed . 41
7.2.3 High speed . 42

7.3 Extensions . 43
7.3.1 Accelerating game planners . 43
7.3.2 Strategic blocking . 45

7.4 High fidelity simulation . 46

8 Real-world experiments 48
8.1 Hardware setup . 48
8.2 Qualitative results . 50

9 Conclusion 53
9.1 Future work . 54

References 55

A Appendix 58

List of Figures

1.1 Examples of time-optimal drone racing strategies. The top image, from [27], and the
bottom image, from [31], depict autonomous drones navigating race tracks using model
predictive control and reinforcement learning methods to achieve minimal lap times. . . 2

2.1 Overview of different autonomous racing problems found in literature along with the pro-
posed methods of solving them . 5

4.1 Example of a 3D lemniscate race track. The track consists of two loops, traversed in
a ”clockwise” direction on the right side and a ”counterclockwise” direction on the left.
Players start at the center and must pass through two elevated gates while staying within
the designated flight corridor . 12

4.2 Illustration of the inverse mapping problem for determining a player’s progress θ. The
agent’s position p is projected onto the closest point on the track spline pd(·). The cor-
responding progress variable is given by π(p) = θ . 15

4.3 Functional diagram showing the the complete referee workflow 16

5.1 Visual representation of lag and contour terms, illustrating their roles in minimizing tra-
jectory deviation while maximizing progress. 18

5.2 Visualization of contouring weight scaling using 3D Gaussian modulation for gate pas-
sage enforcement. The left plot illustrates the contouring weight scale in 3D along the
race track, while the right plot shows it in 2D along the track length. The positions pg,1

and pg,2 indicate the locations of the gates. 19
5.3 Visualization of collision avoidance and velocity constraint cost functions 20
5.4 Pipeline of lifted games. Each player generates multiple trajectory candidates, and a

bimatrix game solver finds a Nash Equilibrium over these choices 26
5.5 Neural network input configuration for reference generation in lifted games (LMPG) . . . 26
5.6 Overview of the system architecture, illustrating the interaction between the optimizer,

WebSocket server, flight simulator, and referee module. 28

6.1 All four race tracks varying in size, complexity, length and gate configuration 31
6.2 Uniform sampling of the initial starting positions for each race 32

7.1 Performance results of MPC vs MPG at the low speed configuration in synchronous
mode . 35

7.2 Performance results of MPC vs MPG at the medium speed configuration in synchro-
nous mode . 36

7.3 Performance results of MPC vs MPG at the high speed configuration in synchronous
mode, MPC and MPG share the same collision weights 37

7.4 Comparison of MPC and MPG playing against themselves at the high speed configura-
tion in synchronous mode, where MPC and MPG share the same collision weights . . 37

7.5 Performance results of MPC vs MPG at the low speed configuration in asynchronous
mode . 39

7.6 Velocity and deviation violation as a consequence of the long solve times of MPG during
an overtake maneuver . 40

7.7 Distribution of solve times for MPC and MPG, highlighting the difference in median solve
times and outliers . 40

7.8 Performance results of MPC vs MPG at the medium speed configuration in asynchro-
nous mode . 41

7.9 Comparison of MPC and MPG playing against themselves at the medium speed con-
figuration in asynchronous mode . 42

v

List of Figures vi

7.10 Performance results of MPC vs MPG at the high speed configuration in asynchronous
mode, after inflating the collision penalties for MPC . 43

7.11 Distribution of solve times for MPC and LMPG, highlighting the difference inmedian solve
times and outliers . 44

7.12 Performance results of MPC vs LMPG at the medium speed configuration on the lem-
niscate track . 44

7.13 Performance results of MPG vs LMPG at the medium speed configuration on the lem-
niscate track . 44

7.14 Performance results of MPC vs MPGB at the medium speed configuration 45
7.15 Performance results of MPG vs MPGB at the medium speed configuration 45
7.16 Performance results of LMPG vs MPGB at the medium speed configuration on the

lemniscate track . 46
7.17 High fidelity simulation of MPC overtaking MPG at the medium speed configuration on

the lemniscate track . 47
7.18 High fidelity simulation of MPG overtaking MPC at the medium speed configuration on

the lemniscate track . 47

8.1 Illustration of the system architecture used for real-world autonomous drone racing ex-
periments. 48

8.2 Overview of the experimental setup used for real-world quadrotor racing. The drones’
position and attitude are captured by VICON and the two offboard computers exchange
current states x̃i

0 and strategies γi, to be executed by the quads. 49
8.3 Real flight validation of MPG overtaking MPC at themedium speed configuration on the

lemniscate track (Perspective view) . 51
8.4 Real flight validation of MPG overtaking MPC at themedium speed configuration on the

lemniscate track (Top view) . 51
8.5 Real flight validation of MPC overtaking MPG at the high speed configuration on the

lemniscate track (Perspective view) . 52
8.6 Real flight validation of MPC overtaking MPG at the high speed configuration on the

lemniscate track (Top view) . 52

List of Tables

2.1 Overview of methods used to incentivize interesting racing maneuvers 7

4.1 Summary of racing rules, including role assignments, overtaking conditions, track limits,
collision responsibilities, and velocity constraints. 14

6.1 Maximum speed configurations for the defender and attacker roles 31
6.2 Experimental setup racing parameters . 32

7.1 Breakdown of performance results of MPC vs MPG at low speed configuration in syn-
chronous mode . 35

7.2 Breakdown of performance results of MPC vs MPG at medium speed configuration in
synchronous mode . 36

7.3 Breakdown of performance results of MPC vs MPG at high speed configuration in syn-
chronous mode, after inflating the collision penalties for MPC 38

7.4 Comparison on wins and number of overtakes of MPC vs MPG at high speed configura-
tion in synchronous mode, for varying track size and lowered contour weights separately 38

7.5 Breakdown of performance results of MPC vs MPG at high speed configuration in syn-
chronous mode, with increased track size and lowered contour penalty at the same
time . 38

7.6 Breakdown of performance results of MPC vs MPG at low speed configuration in asyn-
chronous mode . 39

7.7 Breakdown of performance results of MPC vs MPG at medium speed configuration in
asynchronous mode . 41

7.8 Breakdown of performance results of MPC vs MPC at medium speed configuration in
asynchronous mode . 42

7.9 Breakdown of performance results of MPC vs MPG at high speed configuration in asyn-
chronous mode, after inflating the collision penalties for MPC 43

A.1 Track Parameters for Experimental Setup . 58

vii

1
Introduction

1.1. Background
Autonomous racing has emerged as a significant challenge in robotics, where the goal is to develop in-
telligent systems capable of competing at or above human performance levels. This involves designing
aerial vehicles that can navigate complex 3D environments at high speeds without human intervention,
while making real-time decisions that account for the presence of competitors. Advancements in the
fields of perception, planning, control, and decision-making are necessary for this, as demonstrated in
previous research efforts focused on time-optimal flight (see Figure 1.1).

Similar to other autonomous navigation tasks, autonomous racing requires navigating environments
filled with obstacles, making split-second decisions, and optimizing routes for efficiency. However,
racing presents unique challenges such as the need for aggressive maneuvers and real-time respon-
siveness while operating at the limits of handling. These extreme conditions drive the development of
robust algorithms that enhance not only racing performance but also broader applications in robotics
and autonomous systems. For instance, decision-making algorithms designed for overtaking or col-
lision avoidance in racing can improve safety and responsiveness in applications like urban driving,
drone navigation, and robotic coordination. The ability to plan dynamically under uncertainty and adapt
strategies in real time contributes to safer and more responsive autonomous systems across multiple
domains.

Beyond autonomous driving, the advancements made in autonomous racing research have significant
benefits for a wide range of other applications. With the emphasis on high-speed operation, which
directly relates to the concept of range efficiency, systems like autonomous drones and ground vehicles,
can cover larger distances within the same energy or battery capacity [2]. This is particularly critical
in time-sensitive applications such as search and rescue, where the ability to quickly scan large areas
can mean the difference between success and failure.

1.2. Motivation
While much of the recent research in autonomous racing has focused on optimizing single-agent per-
formance [3, 11], such as minimizing lap times, real-world racing scenarios often involve multiple com-
petitors, each with their own strategies and goals. This creates a dynamic, multi-agent environment
where decision-making is influenced by the actions of other participants.

The importance of considering opponent interactions in autonomous racing lies in the strategic depth
it adds to the problem. In competitive racing, success is not only about speed but also about exe-
cuting tactical maneuvers such as overtaking, blocking, and faking. These actions depend heavily
on the behavior of other agents on the track, which makes interaction-aware decision-making critical.
By incorporating opponent dynamics, autonomous systems can achieve a higher level of competitive
performance, better mimicking the strategies used by human drivers or pilots in real-world racing sce-
narios.

1

1.3. Contributions 2

Figure 1.1: Examples of time-optimal drone racing strategies. The top image, from [27], and the bottom image, from [31],
depict autonomous drones navigating race tracks using model predictive control and reinforcement learning methods to

achieve minimal lap times.

Beyond the racing domain, solving the challenges posed by multi-agent autonomous racing has practi-
cal implications for broader autonomous driving applications [6]. In urban driving or highway scenarios,
autonomous vehicles must interact with other vehicles, pedestrians, and cyclists, all of whom have
independent goals and behaviors.

The nature of these challenges also varies across different racing platforms. Drone racing introduces
additional complexity compared to ground-based racing, requiring the navigation of complex 3D envi-
ronments, precise gate-passing, and real-time adaptation to aerodynamic disturbances. Unlike autono-
mous cars, which operate on relatively structured roads, drones move in free space with six degrees of
freedom, making interaction-aware decision-making even more critical. Moreover, in first-person view
(FPV) drone racing, human pilots actively anticipate and react to their competitors’ actions, a capability
that autonomous drones must develop to compete effectively.

However, designing effective multi-agent racing algorithms is inherently difficult. The decisions of each
agent are coupled with those of their competitors, creating a problem where each vehicle’s actions
influence the strategies and outcomes of others. Finding a solution (or equilibrium) in such dynamic
settings, where agents are constantly adjusting their actions in response to others, requires models
that balance individual objectives with opponent predictions. Real-time performance is another critical
challenge, as decisions need to be made rapidly in high-speed environments, whether on the racetrack
or in the air.

1.3. Contributions
This thesis develops interaction-aware decision-making strategies for autonomous drone racing, lever-
aging game-theoretic methods to enhance competitive performance. The objective is to address the
limitations of existing model predictive control (MPC)-based approaches, which often model opponents
as dynamic obstacles without accounting for their strategic behavior. By integrating game-theoretic
planning, we enable drones to anticipate and react strategically to opponents in high-speed racing
scenarios. This allows for more adaptive and competitive decision-making in strongly dynamic environ-
ments.

The proposed methods are tested in both simulation and real-world racing environments, evaluating

1.4. Outline 3

their impact on key performance metrics such as number of wins, overtaking success, and block-
ing efficiency. We conduct a comparative analysis between game-theoretic methods and MPC in a
tournament-style evaluation, assessing their effectiveness in competitive racing scenarios. The results
provide insights into the advantages of interaction-aware decision-making and highlight the conditions
under which game-theoretic approaches outperform traditional MPC-based planners.

The contributions of this thesis can be summarized as follows:

• We implement model predictive control (MPC) and model predictive games (MPG), along with
tools for automating the transcription of 3D drone racing problems into these frameworks.

• We explore lifted game formulations to accelerate online computation, building on the approach
proposed by Peters et al. [26], and introduce a specialized training procedure tailored for racing
applications.

• We conduct a comparative analysis between game-theoretic methods and MPC in a tournament-
style evaluation, assessing their effectiveness in win rate, overtaking, and blocking behaviors.

• We provide extensive experimental validation through high-fidelity simulations and real-world
drone racing experiments, demonstrating the practical feasibility of game-theoretic planning in
competitive racing scenarios.

1.4. Outline
This remainder of this thesis is organized as follows. Chapter 2 reviews existing research on multi-
agent trajectory planning in autonomous racing. Chapter 3 provides an overview of fundamental game-
theoretic concepts relevant to multi-agent decision-making in racing. Chapter 4 formally defines the rac-
ing problem, specifying the assumptions, rules, and the design of the referee. Chapter 5 describes the
proposed game-theoretic planning methods, including their mathematical formulation, implementation
details, and integration into the racing framework. Chapter 6 outlines the simulation environment and
experimental setup used to evaluate the proposed methods, detailing the race tracks, agent dynamics,
and evaluation metrics. Chapter 7 presents a comparative analysis of different planning approaches,
discussing their performance in terms of speed, safety, and strategic interactions. Chapter 8 validates
the findings through real-world drone racing experiments. Chapter 9 summarizes the contributions,
highlights key insights, and discusses potential directions for future research.

2
Related work

This chapter presents a comprehensive review of state-of-the-art methods that specifically address
multi-agent autonomous racing. Interaction-aware methods focus on how autonomous racing agents
anticipate and respond to the actions of their opponents in real-time, aiming to maximize competitive
performance while adhering to racing constraints. In literature most approaches fall into two main cat-
egories: model predictive control (MPC) based planners and game-theoretic (GT) methods, as shown
in Figure 2.1.

In model predictive methods, the agent uses a receding horizon approach where it predicts the future
evolution of the race based on its own actions and those of its opponents. The control decisions
are formulated by solving an optimization problem at each time step, which typically includes various
constraints like avoiding collisions, maximizing speed, and adhering to track limits. These methods
manage interactions by predicting the opponents trajectories then considering them as static or dynamic
obstacles.

On the other hand, game-theoretic methods model the interactions between racing agents explicitly
as strategic decisions. These methods leverage the solution concepts of Nash and Stackelberg equi-
librium, where agents assume rationality among all players, and adjust their strategies accordingly
by taking into account their best responses. The planners reflect competitive settings where mutual
interactions, rather than just individual performance, shape decision-making.

2.1. Model predictive approaches
Model predictive control (MPC) is widely used in autonomous racing due to its ability to handle com-
plex constraints and optimize trajectories over a receding horizon. Predict-then-plan strategies are
commonly employed in MPC-based approaches, where the ego vehicle first predicts the future behav-
ior of opponents and subsequently computes an optimal trajectory under these assumptions. He et
al. [12] proposed a hybrid strategy that switches between a learning-based trajectory planner for min-
imizing lap time and an optimization-based planner for handling interactions with other vehicles. This
method integrates a low-level MPC controller with control barrier function constraints to ensure safety
during overtaking maneuvers. Similarly, Kalaria et al. [15] developed a two-stage approach that first ap-
proximates a globally optimal trajectory before refining it using nonlinear MPC (NMPC). Their method
incorporates inter-vehicle collision avoidance and drafting effects, demonstrating its effectiveness in
high-speed racing environments.

Other notable contributions to MPC-based racing include Evans et al.’s [5] hybrid local planner, which
integrates a path-following controller with a deep reinforcement learning (DRL) agent to improve ob-
stacle avoidance while maintaining a reference trajectory. Liniger et al. [22] introduced a hierarchical
two-level control framework, where a high-level planner generates feasible trajectories that are subse-
quently tracked by an NMPC controller. Their approach ensures real-time implementation on embed-
ded control platforms. Rowold et al. [28] proposed a spatiotemporal graph search method for trajectory
planning, emphasizing safety and competitiveness by incorporating track limits and opponent motion

4

2.1. Model predictive approaches 5

Figure 2.1: Overview of different autonomous racing problems found in literature along with the proposed methods of solving
them

2.2. Game-theoretical planners 6

predictions into the cost function. Vázquez et al. [35] extended this hierarchical approach by intro-
ducing a terminal constraint in the high-level planner’s solution, ensuring optimality even with limited
prediction horizons.

Despite their effectiveness, MPC methods generally rely on treating opponents as dynamic obstacles
rather than strategic agents. This limitation reduces their ability to capture adversarial behaviors, such
as blocking and strategic overtaking, which are essential in competitive racing. Furthermore, MPC
approaches often struggle with long prediction horizons due to high computational demands. Recent
work attempts to address these limitations by integrating reinforcement learning and imitation learning
components within MPC frameworks, enabling more adaptive and dynamic decision-making.

2.2. Game-theoretical planners
Game-theoretic approaches explicitly model strategic interactions between agents by leveraging equi-
librium concepts such as Nash and Stackelberg equilibria. These methods provide a more principled
approach to competitive decision-making by ensuring that each agent accounts for the responses of
others when computing its optimal strategy.

2.2.1. Nash games
Nash equilibrium-based planners compute strategies where no agent can unilaterally improve its out-
come. Iterative best response (IBR) is a popular method for approximating Nash equilibria, where
agents iteratively adjust their strategies based on the fixed responses of opponents. Spica et al. [32]
employed IBR with sensitivity analysis to predict and exploit opponent reactions, demonstrating supe-
rior performance compared to MPC-based approaches. Wang et al. [37] extended this method to 3D
racing using a sensitivity-enhanced IBR (SE-IBR), which guarantees convergence under specific con-
ditions. Williams et al. [39] applied best-response model predictive path integral control (BR-MPPI) for
real-world experiments in autonomous racing.

Other approaches use first-order optimality conditions derived from the Karush-Kuhn-Tucker (KKT)
conditions to compute Nash equilibria. Le Cleac’h et al. [20] introduced the ALGAMES solver, which
applies an augmented Lagrangian method to enforce state and input constraints. Zhu and Borrelli [42,
43] developed a sequential quadratic programming (SQP) approach for constrained dynamic games,
demonstrating improved success rates in racing scenarios. Additionally, hierarchical approaches that
blend Nash equilibria with reinforcement learning techniques [33, 34] are being explored to provide
computationally efficient yet adaptive planning strategies.

Differential dynamic programming (DDP) techniques, such as iterative linear-quadratic games (iLQ-
Games)[9], refine Nash equilibrium strategies by iteratively solving local approximations of the game.
Rowold et al. [29] extended iLQGames to racing scenarios, showing that feedback solutions lead to
more aggressive and strategic behaviors, such as blocking. However, iLQGames struggles with con-
straint handling, requiring soft penalty terms to enforce track boundaries and acceleration limits.

2.2.2. Stackelberg games
Stackelberg games introduce a leader-follower hierarchy where one agent commits to a strategy first,
and others respond optimally. Liniger and Lygeros [23] demonstrated that Stackelberg equilibria are
particularly useful for enforcing blocking maneuvers in racing. Hu et al. [13] developed a method
for optimizing the order of play in Stackelberg games, using a mixed-integer optimization framework
to determine socially optimal leader-follower assignments. Koirala and Laine [18] proposed a Monte
Carlo-based gradient-free algorithm for solving multilevel Stackelberg games, though its computational
complexity limits its real-time applicability.

A recent paper by Li et al. [21] builds on the principles applied in the computation of GFNE [19], and
aims to solve for the feedback Stackelberg equilibrium (FSE). The approach reformulates the feedback
Stackelberg equilibrium problem as a sequence of nested optimization problems, which enables the
derivation of the KKT conditions and second-order sufficient conditions for local FSE. Unlike iLQGames
[9], which quadraticize the cost function, Li et al. quadraticize the Lagrangian, using a primal-dual
interior point (PDIP) method. This provides a more computationally efficient solution compared to the
active set method used in [19], offering polynomial complexity rather than exponential complexity in

2.3. Race design 7

solving constrained LQ and nonlinear games.

2.2.3. Potential games
Potential games simplify multi-agent optimization by ensuring that all players’ objectives align with a
global potential function. Kavuncu et al. [17] introduced Potential iLQR, leveraging the efficiency of
iLQR for solving constrained multi-agent trajectory optimization problems. Jia et al. [14] extended po-
tential games to dynamic racing environments with RAPID, demonstrating strategic behaviors such as
overtaking and blocking in drone racing experiments. However, the assumption of symmetric cost struc-
tures limits their applicability in asymmetric racing interactions. Despite these challenges, the authors
suggest that the algorithm can be used as a fast warm-starting method in scenarios with asymmetric
couplings, offering computational advantages for solving more complex problems.

Additionally, another theoretical work [30] extends potential games to a feedback information structure
by formulating the necessary game conditions, further broadening their applicability in dynamic multi-
agent scenarios.

2.3. Race design
In multi-agent autonomous racing research, experimental setups are designed to showcase strategic
interactions between agents, such as overtaking, blocking, and collision avoidance. These setups
differ in the vehicle type used (e.g., ground vehicles or aerial drones), track dimensionality (2D vs. 3D),
starting conditions, speed variations, and track complexity to generate competitive racing scenarios.

For example, in ground vehicle racing, Thakkar et al. [34], ensure fairness by giving all vehicles identical
dynamic properties, including top speed, acceleration, and grip, while varying their initial lane positions
to create different starting conditions. To avoid bias, they alternate starting lanes between races. The
experiments in [16] and [34] involve head-to-head quadrotor races on both simple oval tracks and more
complex 3D tracks with challenging geometries, such as turns with varying radii and tight U-turns, which
demand careful long-term planning from the agents.

In [32], Spica et al. enforce interactions by handicapping one of the robots. The faster robot starts be-
hind the slower one, ensuring that it must engage with the slower opponent to overtake during the race.
Similarly, in [14] and [23], the initial positions of the agents are randomized to ensure they start within
20-50 centimeters of each other, with the trailing agent given a slightly higher maximum speed. This
setup guarantees frequent interactions between agents, promoting overtaking and strategic maneuvers
during the race.

Table 2.1 presents an overview of different methods used in designing the racing problem to generate
interesting behaviour. These methods involve varying collision responsibility [4, 23, 29, 33], setting
different acceleration and velocity limits based on relative positioning of the players [4, 29, 32], having
special cost terms for aggressiveness by penalizing large distances from opponents [14, 37, 43], and
varying the information structures by playing as a follower or leader [4, 23].

Table 2.1: Overview of methods used to incentivize interesting racing maneuvers

Racing problem setup Reference
aggressiveness term [14, 37, 43]

acceleration and velocity constraints [4, 29, 32]
information structure [4, 23]

varying collision responsibility [4, 23, 29, 33]

2.4. Discussion
The reviewed literature provides a comprehensive understanding of state-of-the-art methodologies in
multi-agent autonomous racing, highlighting different approaches to interaction-aware planning. While
both model predictive and game-theoretic methods have demonstrated their efficacy in competitive
racing scenarios, this section discusses how our research aligns with these approaches, the choices
made regarding the methodologies employed in this thesis, and the rationale behind these decisions.

2.4. Discussion 8

Our research adopts a game-theoretic approach, leveraging Nash equilibrium-based planning to model
the strategic interactions between agents. As discussed in the reviewed literature, Nash games capture
mutual influences between agents in a competitive setting, making themwell-suited for the autonomous
racing domain. However, we do not consider Stackelberg or potential game formulations in our study.
Solving for generalized Stackelberg equilibria in dynamic games is computationally expensive, making
it impractical for real-time racing applications. Similarly, potential games offer computational advan-
tages due to their alignment with global optimization techniques, but their assumption of symmetric
inter-agent cost structures limits their applicability in competitive racing scenarios where asymmetric
interactions are common.

Another key methodological choice in our study is the use of open-loop strategies rather than feed-
back strategies. While feedback-based approaches enable agents to continuously adapt their strate-
gies based on real-time observations, they require solving complex trajectory optimization problems at
each time step, making them computationally infeasible for real-time execution in high-speed racing
scenarios. Although multi-agent reinforcement learning (MARL) provides a potential solution to this
computational challenge by learning feedback strategies offline, it comes with its own drawbacks –
namely, the significant computational resources required for training these models. Given these con-
straints, we exclude MARL-based methods from this study.

Furthermore, our approach incorporates a hierarchical planning framework, where a game-theoretic
planner operates as a high-level controller to generate interaction-aware waypoints that guide the low-
level controller in real-time execution. This design choice aligns with recent hierarchical methods that
decouple long-term strategic planning from short-term control execution, allowing for a balance be-
tween computational efficiency and strategic adaptability. Additionally, our race design draws inspira-
tion from previous studies to construct competitive and strategically engaging race scenarios. Tech-
niques such as varying initial conditions, introducing velocity constraints, and incorporating aggressive-
ness terms in cost functions are key considerations in our experimental setup. These elements are
essential for ensuring meaningful interactions between agents, promoting behaviors such as overtak-
ing, blocking, and competitive positioning.

3
Game theory preliminaries

This chapter introduces the fundamental concepts of game theory relevant to multi-agent motion plan-
ning, especially in the context of autonomous racing. Game theory offers a mathematical framework
to model interactions where the outcome for each participant depends on the actions of others. Taking
inspiration from [8] [41], we first aim to make some distinctions between the different types of games.

Cooperative vs non-cooperative In cooperative games, agents cooperate to improve collective out-
comes, while in non-cooperative games, each agent optimizes their own payoff independently. Racing
is inherently a non-cooperative game since each agent (vehicle) aims to maximize its competitive suc-
cess and no agent shares it’s strategies with the opponents.

Static vs dynamic In static games, all agents choose their actions simultaneously for only a single
instant in time, whereas for dynamic games, the game is played for multiple instants over a period of
time, one other name for these is ”multi-stage” games.

Finite vs infinte Games in which the number of actions available to each player is finite are called
finite games, while games with an uncountable number of actions are called infinite.

Zero-sum vs general-sum In zero-sum games, one agent’s gain is balanced by the loss of others.
Racing is often modeled as a zero-sum game, where positions are directly competitive (i.e., overtaking
improves one agent’s rank while decreasing another’s). However, this could also be modeled as a
general-sum game, where agents have independent objectives but also shared goals, like avoiding
collisions.

Constrained vs unconstrained Constrained games include constraints on player’s states and ac-
tions. These constraints can only appear for a subset of the players, there’s no requirement that all
players should have the same constraints. Unconstrained games do not pose constraints for any play-
ers.

Pure vsmixed strategies In pure strategies, an agent always chooses a specific action in a determin-
istic manner, while in mixed strategies, they randomize over multiple actions. Mixed strategies are rele-
vant when dealing with uncertainties in the opponents’ behaviors. For instance, a racer might choose to
probabilistically switch between aggressive and conservative driving modes to maintain unpredictabil-
ity. Mixed strategies are also relevant for games which don’t possess equilibria in pure strategies, for
example the rock-paper-scissors game.

Trajectory games Following the definition from [8]: ”A game in which N agents interact in a physical
space over time. The agents, which could represent players in a race, for example, may each select of
sequence and states and control inputs (i.e. a trajectory). That is, Pi’s decision variable xi consists of

9

3.1. Solution concepts 10

sequences of state and control variables for that player, and must satisfy private constraints which en-
force, e.g., dynamic feasibility (physics), staying on road, maintaining speed limits, collision avoidance,
etc.”

3.1. Solution concepts
There are a wide variety of solution (or equilibrium) concepts. In this section, we introduce the most
relevant one for the scope of this paper, namely, Nash equilibria. To illustrate the construction and
assumptions of this concept, we turn our attention to non-cooperative, unconstrained, general-sum,
static finite games.

A normal form representation is the standard way of modeling static finite games. Each player selects
an action without knowing the choices of others, and the resulting payoffs are recorded in a payoff
matrix. Each player has its own objective function Ji, which it aims to optimize. Formally, a static finite
game in normal form consists of:

• A finite set of players N = {1, . . . , N},
• A finite action set U i for each player i,
• An objective function J i : U1 × · · · × UN → R that determines player i’s objective.

Each player aims to select an actionui ∈ U i that optimizes its individual objective J i. In non-cooperative
games, each player’s objective depends not only on its own action but also on the actions of others,
i.e.,

J i(u1,u2, . . . ,uN). (3.1)

To illustrate this, we consider a bimatrix game, where two players (Player 1 and Player 2) simultaneously
choose actions, and their payoffs are determined by payoff matrices. A well-known example is the
prisoner’s dilemma, taken from [8], which is defined by the following payoff matrices:

M1 =

[
2 0
3 1

]
and M2 =

[
2 3
0 1

]
(3.2)

whereM1 is the payoff matrix for Player 1, andM2 is the payoff matrix for Player 2. The players’ action
sets consist of two possible actions: ”confess” or ”stay quiet”. We encode these actions as vectors ui,
where the first entry of ui corresponds to the action “confess” and the second entry of ui corresponds
to the action “stay quiet”.

Given that each player aims to maximize their own payoff, the objective functions are:

J1(u1,u2) = u1TM1u2, J2(u1,u2) = u1TM2u2. (3.3)

Nash equilibrium A Nash equilibrium occurs in a game when no agent can unilaterally improve
their payoff by changing their strategy, assuming other agents keep their strategies fixed. In other
words, each player’s strategy is a best response to the strategies of the other players. This concept
assumes that all agentsmake their decisions simultaneously, or without knowing the strategies of others
beforehand. We formulate the given game as an optimization problem, where the strategy of player i
corresponds to their choice of action ui.

∀i ∈ N


ui∗ ∈ argmin

ui

J i(ui,u¬i∗)

s.t.
ci(ui) = 0

hi(ui) ≥ 0

(3.4)

Where:

• ui is any strategy from the set of strategies U i for agent i

3.2. Information structure 11

• ui∗ is the optimal strategy of agent i
• u¬i∗ = (uj∗)j ̸=i is the strategy profile of all agents except i
• ci and hi represent the equality and inequality constraints for player i
• J i represents the objective function of agent i

The N-tuple of strategies {ui∗; i ∈ N} constitutes a Nash equilibrium if

J i(ui∗,u¬i∗) ≤ J i(ui,u¬i∗), ∀ui ∈ U i (3.5)

This inequality implies that for each agent i, given the strategies of other agents the strategy ui∗ is the
best choice. In the previous bimatrix game, the Nash equilibrium is given by the point u1∗ = u2∗ =
(1, 0)T , which corresponds to both prisoners confessing.

3.1.1. Generalization
In many multi-agent systems, agents often face constraints that are not only private but also shared
among others, leading to the concept of a Generalized Nash Equilibrium (GNE). This differs from the
standard Nash equilibrium as it includes the consideration of these coupled constraints. Mathematically,
a GNE is a solution to the following problem which also satisfies Equation 3.5

∀i ∈ N


ui∗ ∈ argmin

ui

J i(ui,u¬i∗)

s.t.
ci(ui,u¬i) = 0

hi(ui,u¬i) ≥ 0

(3.6)

Where ci and hi represent coupled equality and inequality constraints, respectively. The players’ strate-
gies must jointly minimize their objectives while satisfying all relevant constraints.

In both standard and generalized Nash equilibria, multiple equilibria can exist. Non-uniqueness in
equilibria arises in cases where multiple sets of strategies satisfy the equilibrium conditions. In the
case of racing, non-uniqueness can manifest as different, equally optimal trajectories or strategies that
satisfy the equilibrium conditions.

3.2. Information structure
The information structure of a game plays a crucial role in determining the strategies of agents. A key
distinction is made between open-loop and feedback games:

Open-loop (static) information structure An open-loop information structure refers to a scenario
where agents commit to their strategies at the beginning of the game, without the ability to adjust them
based on the evolving state of the game. Once the game starts, players have no access to updated
information about their opponent’s actions or the game’s progression, leading them to make decisions
purely based on initial conditions. This results in the class of open-loop strategies.

Feedback information structure In contrast, a feedback information structure allows agents to ad-
just their strategies dynamically based on the current state and time, leading to the class of feedback
strategies. These strategies ensure strong time consistency, meaning that decisions remain optimal
when re-evaluated at any future time. As discussed in [1], feedback strategies are often formulated as
Markovian strategies γ, where the control action ui depends on the current state of the game xt:

ui = γi(xt) (3.7)

This adaptability often leads to superior performance compared to open-loop strategies, except in cases
where precommitment provides a strategic advantage.

4
Racing Game

This chapter defines the structure of the autonomous racing game, focusing on planning and control
in a non-cooperative setting where players compete for position without sharing strategies. The racing
rules, inspired by real-world competitions, enforce fair overtaking, track limits, collision responsibility,
and velocity constraints to prevent unintended exploits. Additionally, a referee system is introduced,
ensuring compliance with race rules by monitoring player states, enforcing constraints, and detecting
collisions.

4.1. Formal description
The autonomous racing game is structured as a multi-agent dynamic system, where each player aims
to navigate the race track while optimizing its own control strategy under a set of predefined rules. The
game environment consists of a closed-loop race track with a known layout, parameterized using a
smooth periodic spline representation.

The race track includes designated checkpoints in the form of gates as shown in Figure 4.1. These
gates serve as verification points that enforce adherence to the intended trajectory, preventing short-
cuts or excessive deviations from the track. The track is further confined within a predefined flight
corridor, which players must remain within to avoid penalties. The corridor width is set adaptively to
accommodate different sections of the track, such as narrow gate regions.

(a) Top view of the lemniscate race track (b) Perspective view of the lemniscate race track

Figure 4.1: Example of a 3D lemniscate race track. The track consists of two loops, traversed in a ”clockwise” direction on the
right side and a ”counterclockwise” direction on the left. Players start at the center and must pass through two elevated gates

while staying within the designated flight corridor

12

4.2. Racing rules 13

4.1.1. Assumptions
In the formulation of the racing problem and throughout this paper, the focus is primarily on control and
planning, rather than perception. To simplify the problem the following assumptions are formulated:

• Full knowledge of opponents’ states: each player is assumed to have complete information
about the states of all other players at any given time, including their positions, velocities, and
accelerations. If this were not the case, uncertainty and observational errors would need to be
accounted for, significantly complicating the problem.

• Full global knowledge of the race track: each player knows the layout of the race track, includ-
ing its current position and progress along the track. This eliminates the need for track discovery
or learning during the race and allows players to focus on decision-making based on known track
conditions.

• Non-cooperative game setting: the game is non-cooperative, meaning players do not share
their strategies or intentions with each other. Each player is focused on its own objectives, and any
interaction between players arises naturally from the dynamics of the game, such as competing
for track position or avoiding collisions.

4.2. Racing rules
The racing rules are designed to ensure fair competition while addressing edge cases that could lead
to unintended strategic exploits. Each rule is motivated by potential ambiguities and practical consid-
erations observed in competitive autonomous racing1.

To structure competitive interactions, players are assigned roles at the start of the race:

• The attacker starts behind and aims to overtake the defender, who starts in front.
• Roles switch once an overtake is considered valid, which occurs when the attacker moves at
least 0.75 m ahead of the defender along the track.

• The winner is determined by the total time spent as the defender, promoting continuous engage-
ment in overtaking rather than last-minute maneuvers.

This role-based structure and metric discourages passive racing strategies and ensures that players
remain engaged in the competition throughout the race.

Players must follow track limits and pass through all gates to ensure adherence to the racecourse:

• Missing a gate results in disqualification.
• Players must remain within the track boundaries; exceeding this limit also leads to disqualification.

These constraints prevent players from gaining an unfair advantage by taking unintended shortcuts.

Collisions and velocities are regulated to enforce safe racing and interesting interactions:

• The attacker will have a higher velocity limit than the defender.
• The attacker is responsible for avoiding collisions.
• A collision results in the attacker’s disqualification, and a win attributed to the defender.

This rule follows the precedent set by real-world autonomous racing competitions, where right-of-way
is typically granted to the defender in ambiguous cases.

To prevent players from exploiting stopping or excessive speed differences to manipulate race out-
comes:

• Exceeding the maximum velocity by a large margin results in disqualification.
• Exceeding the maximum velocity by a small margin for a long period results in disqualification.
• Players must maintain a minimum speed. Dropping below this for a long period results in disqual-
ification.

1More specifically the Indy Autonomous Challenge Rulebook https://www.indyautonomouschallenge.com/rules

https://www.indyautonomouschallenge.com/rules

4.3. Referee design 14

Table 4.1 provides a structured summary of the racing rules.

Table 4.1: Summary of racing rules, including role assignments, overtaking conditions, track limits, collision responsibilities,
and velocity constraints.

Race Rules
ID Rule Description
R1 Role assignment At the start of a head-to-head race, players are assigned roles:

the attacker (behind) and the defender (in front). Roles switch
once a valid overtake has occurred.

R2 Overtaking An overtake is considered valid when the attacker moves at least
0.75 m ahead of the defender along the track.

R3 Gate passage Players must pass through all gates. Missing a gate results in
disqualification (by deviation violation).

R4 Track limits Players must not deviate more than 2.0 m off-track. Exceeding
this limit results in a disqualification (by deviation violation).

R5 Collision responsibility The attacker will always be responsible for collision and shall
maintain a distance larger than 0.35 m. A crash results in the
disqualification (by collision violation) of the attacker.

R6 Velocity limits Players shall adhere to their respective speed limits depending
on their roles.

R7 Hard velocity limit Exceeding vmax+4.0ms−1 results in disqualification (by velocity
violation).

R8 Max soft velocity duration Exceeding vmax+0.25ms−1 for more than 5.0 s results in disqual-
ification (by velocity violation).

R9 Min soft velocity duration Players must maintain at least 0.5 ms−1; flying below this speed
for more than 5.0 s results in disqualification (by velocity viola-
tion).

R10 Race duration The race is limited to a maximum of 5 laps.
R11 Winner determination The winner is decided based on the total time spent as the de-

fender (i.e., leading the race).

4.3. Referee design
The referee system maintains fair competition by enforcing race rules, monitoring player behavior, and
determining race events such as the start, finish, and disqualifications. It operates based solely on
observable agent states – positions, velocities, and accelerations – without access to internal control
inputs. This section outlines the referee’s role in computing track position, monitoring deviations, de-
tecting collisions, enforcing velocity constraints, and interacting with other system components.

To evaluate whether agents comply with race rules, the referee must determine each agent’s position
along the track. This requires solving an inverse mapping problem: given an agent’s arbitrary position
p in 3D space and a parametrized racetrack pd, the corresponding progress variable θ along the race
track must be determined. In other words, the aim to find the closest point on the track to the agent’s
current position.

Since the track is parameterized as a periodic spline, we formulate this as an optimization problem
below, where the objective is to find θ that minimizes the squared Euclidean distance between the
agent’s position and the closest point on the track spline.

π(p) = argmin
θ

||p− pd(θ)||2

s.t. θinit − 1.5 ≤ θ ≤ θinit + 1.5
(4.1)

This root-finding problem is efficiently solved using Brent’s method, a hybrid approach combining the
reliability of the bisection method with the speed of inverse quadratic interpolation methods. Brent’s

4.3. Referee design 15

method guarantees convergence while maintaining fast numerical performance. We use the implemen-
tation from Optim.jl [25], with a search window of radius 1.5 around the previous estimate θinit. This
constraint accelerates convergence and reduces erroneous solutions, particularly in small or high cur-
vature tracks. For instance, given a perfectly circular track: if the agent is positioned at the center of
the circle, multiple values of θ correspond to track points that are equidistant from the agent. Without
a constrained search window, the optimization might return an incorrect θ. By leveraging prior knowl-
edge of the agent’s position at the start of the race, we effectively limit the search space and ensure
an accurate estimate of progress along the track. A visual representation of this optimization problem,
illustrating the search for the closest point on the track, is provided in Figure 4.2.

Figure 4.2: Illustration of the inverse mapping problem for determining a player’s progress θ. The agent’s position p is
projected onto the closest point on the track spline pd(·). The corresponding progress variable is given by π(p) = θ

Once the agents’ positions along the track are established, the referee determines their respective
roles before assessing any rule violations. The roles – attacker and defender – are assigned based
on the agents’ relative progress along the track. Specifically, the attacker is the agent whose position
is behind or within a small threshold ϵov of the opponent’s position, while the other agent assumes the
defender role. This assignment follows the rule

attacker =

{
i if θi ≤ θ¬i + ϵov

¬i otherwise
defender =

{
¬i if θi ≤ θ¬i + ϵov

i otherwise
(4.2)

where θi and θ¬i denote the progress variables of the ego player and opponent, respectively. The
threshold ϵov ensures that minor position fluctuations do not cause frequent role switching.

The referee monitors deviations from the track center line to ensure that agents remain within track
limits. This is implemented via a deviation function below that defines an allowable deviation radius
rdev as a function of the agent’s progress along the track. The deviation tolerance varies depending on
proximity to the 3D Gaussians placed at gate centers pg,j .

dev(pd(θ)) = rmax
dev + (rmin

dev − rmax
dev)

M∑
j=0

e−
1
2 (p

d(θ)−pg,j)
TΣ−1(pd(θ)−pg,j) (4.3)

Here, Σ is the diagonal covariance matrix that indicates the width of the Gaussians in x, y, and z axes,
rmax
dev represents the maximum allowable deviation in open track sections, while rmin

dev is the stricter
deviation constraint enforced near gates. The allowable flight corridor, which visually represents this
function, is shown in Figure 4.1.

Moreover, the referee continuously measures the euclidean distance between players, and absolute
velocities of both agents to check whether they are causing any violations according to the rules pre-
sented in Table 4.1. The whole workflow of the referee is presented in Figure 4.3.

4.3. Referee design 16

Figure 4.3: Functional diagram showing the the complete referee workflow

At the start of each race, the referee initializes the competition and continuously estimates each agent’s
progress along the track by solving the inverse mapping problem formulated in Equation 4.1. Once
progress estimates are established, the referee assigns roles based on relative positions. With roles
determined, the referee enforces race rules by monitoring compliance with track boundaries, velocity
constraints, and collision responsibilities. Throughout the race, the referee logs state information and
checks for completion conditions. If an agent completes five laps or violates a race rule, the compe-
tition is halted. The winner is determined either based on the total time spent as the defender or by
disqualification due to rule violations, where the non-violating player is declared the winner.

5
Methodology

In this chapter, we present the methodological framework used to develop and analyze interaction-
aware autonomous racing strategies. Our approach builds upon game-theoretic principles and model
predictive control to enable strategic decision-making among competing agents.

We begin by defining the model components, including the track representation, gate passage formula-
tion, and cost components inspired by Model Predictive Contouring Control (MPCC) [27]. Next, we in-
troduce Model Predictive Game (MPG), which formulates the racing problem as a multi-agent dynamic
game, followed by Model Predictive Game with Blocking (MPGB), which explicitly incorporates blocking
strategies. We then describe the Baseline Method (MPC), which serves as a non-game-theoretic refer-
ence, and the Lifted Model Predictive Game (LMPG) approach, which accelerates online computation
by leveraging learned trajectory candidates.

Finally, we outline the system architecture detailing the interaction between the optimizer, simulator,
and referee module, which ensures asynchronous communication and real-time enforcement of racing
rules.

5.1. Model components
The model components used in our approach are inspired by MPCC, which employs spline-based
trajectory representations and a contouring formulation for time-optimal flight. Specifically, we adopt a
periodic spline parametrization of the track and contouring weight scaling for gate passage, ensuring
smooth trajectory tracking while allowing for deviations to optimize racing performance.

Race track parametrization The track is defined by a sequence of P points forming a closed loop,
and a third-order spline interpolation is used to obtain an arc-length parametrization.

pd(θ) =


ρ0(θk) θ0 ≤ θk ≤ θ1

ρ1(θk) θ1 ≤ θk ≤ θ2
...

ρP−1(θk) θP−1 ≤ θk ≤ θP

(5.1a)

s.t. ρi(θk) = ai + biθk + ciθ
2
k + diθ

3
k, i ∈ [0, ..., P − 1] (5.1b)

ρ0(θ0) = ρP−1(θP) (5.1c)
ρ′
0(θ0) = ρ′

P−1(θP) (5.1d)
ρ′′
0(θ0) = ρ′′

P−1(θP) (5.1e)

where pd is the arc length parametrized periodic spline, ρi are piecewise cubic splines. Equation 5.1c
to Equation 5.1e represent the periodicity conditions.

17

5.1. Model components 18

Contouring terms The contouring terms are used to minimize the projected distance from the current
position p to the desired position pd(θ) while maximizing the progress θ along the race track. These
terms quantify the deviation from the reference path and are key components in optimizing the vehicle’s
motion. Figure 5.1 aims to help visualize these terms.

Figure 5.1: Visual representation of lag and contour terms, illustrating their roles in minimizing trajectory deviation while
maximizing progress.

The contour error ec(θ) represents the lateral deviation from the desired trajectory, measuring how far
the drone is from the optimal racing line in a perpendicular direction, while the lag error el(θ) quantifies
the longitudinal deviation. Since the task is to maximize the progress θ, the point on the track pd(θ) is
acting as a moving reference the drone should track both laterally and longitudinally.

Mathematically, these errors are defined as

el(θ) = el(θ)t(θ)

ec(θ) = p− pd(θ)− el(θ)
(5.2)

where pd(θ) is the desired position on the track at progress θ, p is the current position of the vehicle,
and t(θ) is the unit tangent vector to the trajectory at θ, indicating the forward direction of motion. The
lag error el(θ) is the magnitude of the displacement along the tangent direction, and the contour error
ec(θ) captures the lateral deviation from the reference trajectory after accounting for the longitudinal
displacement.

Contour weight scaling To enforce gate passage, the contouring weight is modulated using 3D
Gaussian functions centered at gate positions, similarly to how the referee deviation check was formu-
lated in the previous chapter. This method encourages alignment with the race track while still allowing
controlled deviations when beneficial. The contouring weight formulation is given in as

qc(p
d(θ)) = qnomc + (qmax

c − qnomc)

M∑
j=0

e−
1
2 (p

d(θ)−pg,j)
TΣ−1(pd(θ)−pg,j) (5.3)

In this equation, pd(θ) represents the arc-length parameterized trajectory from Equation 5.1, while
pg,j denotes the position vector (x, y, z) of the j-th gate among a total of M gates. The weighting
parameters qnomc and qmax

c control the influence of the 3D Gaussians. This allows a nominal contouring
cost in regions without gates and a peak contouring penalty at gate locations. A visual representation
is given in Figure 5.2.

5.1. Model components 19

Figure 5.2: Visualization of contouring weight scaling using 3D Gaussian modulation for gate passage enforcement. The left
plot illustrates the contouring weight scale in 3D along the race track, while the right plot shows it in 2D along the track length.

The positions pg,1 and pg,2 indicate the locations of the gates.

Collision avoidance As outlined in the previous chapter, collision avoidance is handled by the at-
tacking player. To enforce this, a cost term penalizing proximity beyond a predefined threshold is
introduced.

col(pi,p¬i) =

{
0 if ||pi − p¬i||2 ≥ r2col
(||pi − p¬i||2 − r2col)

2 otherwise
(5.4)

In this formulation, pi and p¬i represent the position vectors (x, y, z) of ego and opponent, and rcol
defines the minimum allowable separation distance. The cost function evaluates to zero when the
players are sufficiently far apart, but increases quadratically if the separation falls below the threshold.

Velocity soft constraints Velocity limits are modeled as soft constraints via the cost function, distin-
guishing between the two roles. This formulation guarantees that each player adheres to the maximum
imposed speed limits while penalizing any violations.

vel(vi) =(v2max − ||vi||2 − |v2max − ||vi||2|)2

s.t. vmax =

{
vattacker if attacker = i

vdefender otherwise

(5.5)

In this equation, vi represents the velocity vector (x, y, z) of player i. The cost function is designed
to be zero when the velocity remains within the prescribed limits and increases quadratically when
the speed exceeds the threshold. The maximum velocity, vmax, differs for attackers and defenders,
enforcing role-specific constraints as described in the previous chapter.

The following Figure 5.3 aims to visualize the cost functions for collision avoidance and velocity con-
straints.

5.2. Model predictive game - MPG 20

(a) Collision avoidance cost term from Equation 5.4 (b) Velocity soft constraints via cost function from Equation 5.5

Figure 5.3: Visualization of collision avoidance and velocity constraint cost functions

Notably, the use of soft constraints for collision avoidance, velocity limits, and gate passage ensures
that the optimization problem remains feasible and computationally tractable, even at high speeds. By
penalizing constraint violations rather than imposing hard constraints, the approach allows for smoother
control actions and better adaptability to dynamic interactions. While a detailed discussion on the
implementation and experimental setup appears later, these design choices play a key role in handling
the complexities of real-time decision-making in high-speed competitive racing scenarios.

5.2. Model predictive game - MPG
We adopt a point mass dynamic model with jerk control to describe the motion of the agents. The
system state includes position, velocity, and acceleration, while the state space is further extended
to incorporate progress dynamics. The control input consists of jerk and a virtual input for progress
acceleration, denoted as ∆vθ = dvθ

dt , where vθ is the speed of the progress along the track. The
corresponding augmented state and input spaces are defined as

xi = [px py pz vx vy vz ax ay az θ vθ]
T , ui = [jx jy jz ∆vθ]

T (5.6a)
ẋi = [ṗ v̇ ȧ θ̇ v̇θ]

T = [v a j vθ ∆vθ]
T = Axi +Bui (5.6b)

where A and B are the state and input control matrices that follow the continuous time dynamics.

The continuous-time dynamics of each player i are expressed in Equation 5.6b, where the state deriva-
tive comprises velocity, acceleration, jerk, and the progress terms. These dynamics describe the evo-
lution of the player’s state over time and serve as the foundation for the discrete-time system.

Since the game involves multiple players, the joint state vector in Equation 5.7 is formed by concatenat-
ing the individual state vectors of all N players. This allows for a compact representation of the entire
system.

x =

 x1

...
xN

 (5.7)

The game is played over a discrete-time horizon of lengthK, where each stage k ∈ K = {0, . . . ,K−1}
represents a time step in the decision-making process. The discrete-time dynamics, which govern
the evolution of the joint state xk in this K-stage dynamic game, are formulated as a time-invariant
nonlinear function fk:

xk+1 = fk(xk,u
1
k, ...,u

N
k) (5.8)

This function captures how the state transitions from one time step to the next based on the control in-
puts of all players. The discretization process relies on the fourth-order Runge-Kutta method in allowing
for stability and accuracy in the numerical integration of the continuous-time dynamics.

5.2. Model predictive game - MPG 21

Ak = I+∆tA+
∆t2

2!
A2 +

∆t3

3!
A3 +

∆t4

4!
A4

Bk = (I∆t+
∆t2

2!
A2 +

∆t3

3!
A3 +

∆t4

4!
A4)B

(5.9)

where ∆t is the discretization time step.

At each stage k of the receding horizon plan with lengthK, player i incurs a stage cost that depends on
both its control inputs ui

k ∈ ui = {ui
0,u

i
1, ...,u

i
K−1} and the system state xk. The sequence of states is

influenced by the control inputs of all players, which is often expressed using the notation ¬i to denote
all players except i. Given an initial state x0, the total cost for player i is computed as the sum of the
stage costs gik over the horizon, with an additional terminal cost giK applied at the final step.

J i(x0,u
i,u¬i) =

K−1∑
k=0

gik(xk,u
i
k) + giK(xK) (5.10)

In the context of competitive multi-agent decision-making, each agent computes a sequence of ac-
tions to maximize their performance in the race. The policy governing an agent’s action selection
process is referred to as its strategy. A strategy γi(·) = {γi

0(·), γi
1(·), . . . , γi

K−1(·)} of the strategy space
Γi = {Γi

0,Γ
i
1, . . . ,Γ

i
K−1} determines the sequence of control inputs ui at each stage k, based on the

information available to player i. In an open-loop setting, all players observe the initial state x0 and
precompute a sequence of control inputs for the entire time horizon in a single act. The strategy at
stage k is a constant function, with γi

k(·) ∈ Γi
k = U i, meaning that players do not adjust their actions

based on new observations beyond the initial state.

Γi
k 3 γi

k : X → U i

ui
k = γi

k(x0)
(5.11)

Similarly, we define the strategy vector of player i for the receding horizon as

γi(x0) = {

ui
0︷ ︸︸ ︷

γi
0(x0),

ui
1︷ ︸︸ ︷

γi
1(x0), . . . ,

ui
K−1︷ ︸︸ ︷

γi
K−1(x0)} = ui (5.12)

The N -tuple of strategies {γi∗(x0) ∈ Γi; i ∈ N}, directly translates into the players’ input sequences
{ui∗ = γi∗(x0); i ∈ N}, and constitutes an open-loop Nash equilibrium if

∀i ∈ N : J i(x0, γ
i∗(x0), γ

¬i∗(x0)) ≤ J i(x0, γ
i(x0), γ

¬i∗(x0)) (5.13)

In other words, no player can improve its outcome by unilaterally altering its strategy. Starting from
the given initial state, x∗

0 = x0, the discrete system dynamics generate the corresponding open-loop
trajectory {x∗

k+1; k ∈ {0, 1, . . . ,K − 1}}.

Using the previously defined model components, we construct the cost function for player i, which
depends on the initial state and the strategies of both the ego player and the opponent.

J i(x0,

γi(x0)︷︸︸︷
ui ,

γ¬i(x0)︷︸︸︷
u¬i) =

K−1∑
k=0

||el(θik)||2ql + ||ec(θik)||2qc(pd(θi
k))

(5.14a)

+ 1{attacker = i}qcol col(pi
k,p

¬i
k) (5.14b)

+ qvel vel(vi
k) (5.14c)

+ ||∆viθ,k||2q∆v
+ ||jik||2qj (5.14d)

+ µ(v¬i
θ,k − viθ,k) (5.14e)

5.2. Model predictive game - MPG 22

Equation 5.14a consists of contouring and lag cost terms, adopted from [27], with the appropriate
contour cost scaling qc(p

d(θik)) defined in Equation 5.3. Equation 5.14b includes the collision cost term,
which is active only for the attacker role. The operator 1{·} evaluates to 1 if the condition holds and 0
otherwise. Equation 5.14c introduces the cost component for the soft velocity constraints, as defined
in Equation 5.5. Equation 5.14d comprises of regularization terms on the control inputs of player i.
Finally, the term in Equation 5.14e incentivizes the ego player to maximize progress along the track by
increasing its progress velocity while simultaneously minimizing the opponent’s progress velocity. This
addition is intended to encourage blocking and other competitive strategic behaviors, as demonstrated
in the method of [37].

We now formulate the game as a coupled optimal control problem for the two-player case. At each
simulation time step t, an optimal strategy γi∗ is computed in a receding horizon fashion, where each
player selects a sequence of control inputs that minimizes its cost function while anticipating the actions
of the opponent. This approach operates with a moving horizon, meaning that the initial state x0 is
updated at each re-planning phase to reflect the current system state, accounting for the dynamically
changing environment and potential deviations from predicted opponent behavior.

In a moving horizon implementation, the control inputs can be warm-started using the solution from the
previous planning step. This initialization reduces the number of required solver iterations and therefore
allows for real-time capabilities. The game takes the form

γ1∗(x0) = u1∗ ∈ argmin
u1

K−1∑
k=0

J1(x0,u
1
k,u

2
k) (5.15a)

s.t.
c1(u1

k) = 0

h1(u1
k) ≥ 0

(5.15b)

γ2∗(x0) = u2∗ ∈ argmin
u2

K−1∑
k=0

J2(x0,u
1
k,u

2
k) (5.15c)

s.t.
c2(u2

k) = 0

h2(u2
k) ≥ 0

(5.15d)

Each player must satisfy its respective equality constraint ci and inequality constraint hi. The equality
constraints ensure that the resulting sequence of states and control inputs remains dynamically feasi-
ble, meaning that the computed trajectories are physically consistent with the vehicle dynamics. The
inequality constraints define upper and lower bounds on the states and control inputs, limiting factors
such as maximum acceleration, jerk, and velocity along the track. By incorporating these constraints,
the optimization problem accounts for the physical limitations of the quadrotors, ensuring feasible and
safe trajectories during the race.

To analyze the necessary optimality conditions for this problem, we define the Lagrangian function as

Li(x0,u
i,u¬i, λi, µi) = J i(x0,u

i,u¬i)− λiThi(ui)− µiT ci(ui) (5.16)

The Lagrangian incorporates the objective function J i for player i, along with the associated equality
and inequality constraints weighted by the Lagrange multipliers λi and µi, respectively. Using this
formulation, we derive the coupled KKT conditions that characterize the open-loop Nash equilibrium.
The system consists of three conditions as follows

∀i ∈ [N]


∇uiLi = 0

0 = ci(ui)

0 ≤ hi(ui) ⊥ λi ≥ 0

(5.17)

The first condition enforces stationarity, requiring that the gradient of the Lagrangian with respect to
the decision variables of player i is zero, ensuring that no player can unilaterally improve their strategy.

5.3. Blocking method - MPGB 23

The second condition enforces primal feasibility, ensuring that the equality constraints ci are satisfied
exactly and that the inequality constraints hi remain non-negative. The third condition imposes dual fea-
sibility and complementary slackness, meaning that the Lagrange multipliers associated with inequality
constraints must be non-negative and that each inequality constraint is either strictly satisfied or active
with a corresponding nonzero multiplier. Together, these conditions establish the first-order necessary
requirements for an open-loop Nash equilibrium. For further details on necessary optimality conditions
and the derivation of KKT conditions in multi-agent optimization and Nash equilibrium problems, we
refer to [1].

The KKT conditions can now be reformulated as a Mixed Complementarity Problem (MCP), to explicitly
capture the structure of the optimization problem where each player’s strategy must satisfy stationarity,
feasibility, and complementarity conditions.

Given F : Rd 7→ Rd;w,w ∈ Rd; find w ∈ Rd s.t. (5.18a)
if wj = wj then Fj(w) ≥ 0 (5.18b)

if wj < wj < wj then Fj(w) = 0 (5.18c)

if wj = wj then Fj(w) ≤ 0 (5.18d)

The MCP framework defines a function F : Rd 7→ Rd along with lower and upper bounds w,w. The
solution w must satisfy three possible conditions at each element j: Equation 5.18b if wj is at its
lower bound, the corresponding function value must be non-negative; Equation 5.18c if wj lies strictly
between the bounds, the function value must be exactly zero; and Equation 5.18d if wj is at its upper
bound, the function value must be non-positive.

Mapping this to the problem presented in Equation 5.15, the decision vector w consists of the players’
decision variables u1,u2, the Lagrange multipliers for inequality constraints λ1, λ2, and the Lagrange
multipliers for equality constraints µ1, µ2. The function F (w) encodes the first-order optimality con-
ditions, including the stationarity conditions for each player’s strategy, as well as the feasibility con-
straints. The choice of infinite upper and lower bounds for certain variables ensures that they are
treated as unconstrained, meaning they fall under the second case where Fj(w) = 0. This applies
to the strategy variables and equality constraint multipliers, while the inequality constraint multipliers
remain non-negative, enforcing complementarity. The values are given as

w = [u1,u2, λ1, λ2, µ1, µ2]T , F (w) = [∇u1L1,∇u2L2, h1, h2, c1, c2]

w = [−∞,−∞, 0, 0,−∞,−∞]T , w = [∞,∞,∞,∞,∞,∞]T
(5.19)

To compute a local NE for this problem, we leverage MCPTrajectoryGameSolver.jl1 [24]. This toolchain
is specifically designed for formulating dynamic trajectory games by transcribing the equilibrium con-
ditions into a mixed complementarity problem. The resulting problem is then solved using PATH.jl2, a
widely used solver for MCPs.

5.3. Blocking method - MPGB
The cost function in Equation 5.14, consisted of a term that includes the opponent’s progress velocity
to incentivize blocking behavior. However, when expanding the stationarity condition of the Lagrangian
in the equation below, we observe that this term does not influence the ego player’s decision. Since
the opponent’s strategy is fixed from the ego player’s perspective in the open-loop setting, the progress
velocity term acts as a constant and merely shifts the overall cost landscape without altering the op-
timal solution. As a result, no actual blocking behavior emerges, and the Nash equilibrium remains
unchanged.

1https://github.com/JuliaGameTheoreticPlanning/MCPTrajectoryGameSolver.jl, accessed: March 2025
2https://github.com/chkwon/PATHSolver.jl, accessed: March 2025

https://github.com/JuliaGameTheoreticPlanning/MCPTrajectoryGameSolver.jl
https://github.com/chkwon/PATHSolver.jl

5.4. Baseline method - MPC 24

∇uiLi = ∇uiJ i(x0,u
i,u¬i)−∇ui

(
λiThi(ui) + µiT ci(ui)

)
= ∇ui

(
||el(θik)||2ql + ||ec(θik)||2qc(pd(θi

k))
+ 1{attacker = i}qcol col(pi

k,p
¬i
k)

)
+∇ui

(
qvel vel(vi

k) + ||∆viθ,k||2q∆v
+ ||jik||2qj

)
+�����:0

∇uiµv¬i
θ,k −∇uiµviθ,k

−∇ui

(
λ1Thi(ui) + µiT ci(ui)

)
(5.20)

To explicitly introduce blocking strategies, we modify the previous cost functional of by adding an addi-
tional blocking term.

J i(x0,u
i
k,u

¬i
k) = ||el(θik)||2ql + ||ec(θik)||2qc(pd(θi

k))
(5.21a)

+ 1{attacker = i}qcol col(pi
k,p

¬i
k) (5.21b)

− 1{attacker 6= i}qblock col(pi
k,p

¬i
k) (5.21c)

+ qvel vel(vi
k) (5.21d)

+ ||∆viθ,k||2q∆v
+ ||jik||2qj (5.21e)

− µviθ,k (5.21f)

The term from Equation 5.21c encourages the ego player to minimize the distance to the opponent
when in the defender role. Unlike the previous formulation, this new term actively depends on the ego
player’s decision variables, meaning it does not cancel out in the KKT conditions. Specifically, when the
ego player is not the attacker, the cost function now includes a negative collision penalty, incentivizing
the defender to approach the opponent and obstruct their movement.

This modification ensures that blocking is an emergent strategic behavior rather than an incidental
outcome of the optimization. By structuring the cost function in this way, we allow players to dynamically
switch between aggressive overtaking and defensive blocking, depending on their assigned role. This
adjustment enables the model to capture competitive interactions more effectively, leading to more
realistic and tactically rich racing strategies.

5.4. Baseline method - MPC
The baseline method, based on model predictive approaches, formulates the trajectory planning prob-
lem as a single-player optimal control problem. In this formulation, the opponent is treated as a constant
velocity obstacle, meaning that its future positions are predicted using a simple kinematic model rather
than being actively optimized as in the game-theoretic approach.

Unlike the previous methods, there is no strategic coupling between players, meaning the ego player’s
strategy does not directly depend on the opponent’s decisions. The cost function for the ego player is
given by:

J1(x1
0,u

1
k,p

2
k) = ||el(θ1k)||2ql + ||ec(θ1k)||2qc(pd(θ1

k))
(5.22a)

+ 1{attacker = 1}qcol col(p1
k,p

2
k) (5.22b)

+ qvel vel(v1
k) (5.22c)

+ ||∆v1θ,k||2q∆v
+ ||j1k||2qj (5.22d)

− µv1θ,k (5.22e)

The optimal control problem for the single player is given in the equation below. At each time step, the
ego player calculates an optimal sequence of control inputs while treating the opponent’s motion as
a known quantity. The opponent’s position p2

k is derived by assuming it moves at a constant velocity,

5.5. Lifted method - LMPG 25

following a simple kinematic rule. The same constraints applied in previous game-theoretic methods
are retained here.

γ1∗(x0) = u1∗ ∈ argmin
u1

K−1∑
k=0

J1(x1
0,u

1
k,p

2
k)

s.t.

p2
k = v2

0k∆t

c1(u1
k) = 0

h1(u1
k) ≥ 0

(5.23)

5.5. Lifted method - LMPG
The lifted method is based on the work by Peters et al. [26] and reformulates the problem by having
each player optimize a distribution over multiple trajectory candidates rather than a single deterministic
strategy. This is formulated as a game where players select both the trajectory candidates and their
respective mixing weights, enabling them to sample from an optimized distribution during execution.

min
q1,τ1

1 ,...,τ
1
m

E
τ1∼T 1

τ2∼T 2

[J1(x0, τ
1, τ2)] min

q2,τ2
1 ,...,τ

2
m

E
τ1∼T 1

τ2∼T 2

[J2(x0, τ
1, τ2)] (5.24)

T i := Cat({τ i1, . . . , τ im}︸ ︷︷ ︸
trajectory candidates

,

mixing weights︷︸︸︷
qi) (5.25)

where a single trajectory candidate is equal to a strategy τ ij = γi(x0) for j ∈ {1, . . . ,m} possible
candidates, and T i represents the categorical distribution from which player i samples to minimize its
expected cost.

While this formulation admits mixed strategies, it drastically increases problem size. To mitigate this,
the method incorporates a computational framework that learns competitive trajectory candidates to
accelerate online decision-making.

The key idea is to shift part of the computational load to an offline phase by training a neural network-
based reference generator for each player to solve the game in Equation 5.24. This generator, denoted
as πi(x1

0,x
2
0), maps the initial states of both players (x1

0,x
2
0) to a set of reference trajectories ξi. These

reference trajectories serve as guiding solutions for an embedded differentiable trajectory optimizer,
which refines them into dynamically feasible trajectories τ i. The reference generator is typically imple-
mented as a multi-layer perceptron (MLP) trained on a dataset of prior game configurations.

The overall pipeline of lifted games is illustrated in Figure 5.4. Each player generates a set of m
trajectory candidates, forming a bimatrix game where a NE in mixed strategies is computed.

5.5. Lifted method - LMPG 26

Figure 5.4: Pipeline of lifted games. Each player generates multiple trajectory candidates, and a bimatrix game solver finds a
Nash Equilibrium over these choices

To effectively learn competitive trajectories, the reference generator must be designed to capture key
aspects of racing dynamics. This is achieved by structuring its input representation in a way that
provides relevant spatial and dynamic information to the network. The design of this input configuration
is illustrated in Figure 5.5.

Figure 5.5: Neural network input configuration for reference generation in lifted games (LMPG)

The input to the network consists of the following components:

• Positional References: The current position of the ego player, denoted as pi
0, is projected onto

the track. Future positions, pi
1 to pi

3, are defined at equal intervals along the track. These posi-
tional references are designed to help the network learn the structure of the track by providing
information about upcoming turns, bends, and trajectory changes. By incorporating future points,
the network can anticipate the track layout and adjust its strategy accordingly. Importantly, each
position is defined relative to the previous one, forming a shifted coordinate system where

– pi
0 is relative to the ego player’s current off-track position.

– pi
1 is measured from pi

0.
– pi

2 is measured from pi
1, and so on.

5.6. System architecture 27

• Opponent Information: The relative position of the opponent, p¬i, is measured from the ego
player’s off-track position. This provides the network with information about the opponent’s spatial
configuration, relevant for avoiding collisions.

• Velocity Terms: The velocity of both the ego player and the opponent are included as vi and v¬i,
respectively.

• Progress Velocity: The longitudinal velocity along the track, denoted as viθ, provides insight into
the player’s motion along the racing trajectory.

• Attacker Variable: An indicator specifying whether the ego player is in an attacking or defending
role, allowing the network to learn strategic variations based on the competitive context.

The complete input layer used for reference generation is mathematically defined in Equation 5.26:

πi
input = [pi

0,p
i
1,p

i
2,p

i
3,p

¬i,vi,v¬i,ai, viθ, attacker]
T (5.26)

To ensure the lifted game framework effectively learns competitive trajectory generation, we design a
structured training pipeline that enables the model to refine its strategy through self-play and against
predefined opponents. We use Weights & Biases (WANDB)3 to monitor whether the running cost is
decreasing for each player, ensuring that training progresses as expected.

The training procedure consists of the following steps:

1. Dataset collection: We gather a dataset of observed game states by simulating races between
the previously defined Baseline method (MPC) and Model Predictive Game (MPG).

2. Input normalization: We compute Z-score normalization for all input features based on the col-
lected dataset. The mean and standard deviation of each feature from Equation 5.26 are calcu-
lated to ensure consistent scaling during training.

3. Positional constraints: We impose upper and lower bounds on the player’s positional states based
on the race track extremities. This ensures that players do not stray too far from the track, im-
proving the realism and relevance of the learned strategies.

4. Disabling referee rule enforcement: In the early training phase, referee rule enforcement is dis-
abled. Keeping it on during initial training leads to frequent race resets, which can slow down
generalization to the whole track. Allowing unconstrained gameplay at first helps the model ex-
plore a broader range of scenarios before stricter rules are introduced.

5. Self-play training (Part 1): The model is trained on-policy for 50, 000 steps playing against itself
to learn competitive and adaptive trajectory strategies without external interference.

6. Training against a defined opponent (Part 2): After self-play, the model is trained for an addi-
tional 50, 000 steps against one of the predefined methods (such as MPC or MPG) with a smaller
learning rate. At this stage, referee rule enforcement is re-enabled to ensure that the learned
strategies adhere to racing rules while still being competitive.

Once training is complete, learning is completely disabled, and the trained reference generators operate
in inferencemode. Tomaintain consistency, input normalization is applied using themean and standard
deviation computed during training, ensuring that test-time inputs are processed in the same scale
as those seen during training. To evaluate the model under realistic racing conditions, referee rule
enforcement is re-enabled, meaning that players must adhere to racing rules such as staying on track
and avoiding collisions. However, positional constraints are lifted, this ensures that the learned policy is
not overly restricted by artificial constraints imposed during training but still operates within the expected
rules of the game.

5.6. System architecture
The methods presented so far include Model Predictive Game (MPG), Model Predictive Game with
Blocking (MPGB), Baseline method (MPC) and Lifted Model Predictive Game (LMPG). These methods

3https://wandb.ai/, accessed: March 2025

https://wandb.ai/

5.6. System architecture 28

are integrated into a system architecture designed for real-time interaction between the optimizer, a
flight simulator, and a referee module.

Figure 5.6 provides an overview of the interaction between different components in our architecture.
The optimizer module, which represents any of the defined methods, communicates with a flight simu-
lator via websockets. The flight simulator executes the point mass strategies, while the referee ensures
rule enforcement and race progression.

Figure 5.6: Overview of the system architecture, illustrating the interaction between the optimizer, WebSocket server, flight
simulator, and referee module.

The optimizer process initializes a WebSocket server, which facilitates communication with the players
inside the flight simulator. Each time a new quadrotor state is received from one of the clients, the non-
augmented game state x̃0 is updated and stored in a shared variable. The flight simulator is unaware
of the contouring terms, therefore we define x̃i as

x̃i = [px py pz vx vy vz ax ay az]
T (5.27)

In a separate thread, the latest received non-augmented game state x̃0 is augmented with the players’
progress θ by solving the problem formulated in Equation 4.1. The remaining state component vθ is
found by projecting the velocity vector v onto the tangent t(θ) unit vector. These two components
for each player are augmented to x̃0, therefore resulting in x0. The referee module processes this
augmented game state, enforces race rules, and determines whether the race should continue or be
terminated. If the race needs to be terminated, the referee communicates with the WebSocket server,
which in turn signals the flight simulator to stop. Additionally, the referee assigns player roles and logs
the game state.

5.6. System architecture 29

On separate processes, each player’s optimizer utilizes the latest available augmented game state
and solves an optimization problem in the form of Equation 5.15, then stores and communicates back
the latest strategy γi∗(x0). Inside the flight simulator, each element of the received strategy is time-
stamped using the simulator time t0 at which the quad state was communicated. The strategy becomes
γi(x0) = {γi

t0(x0), γ
i
t0+∆t(x0), . . . , γ

i
t0+∆t(K−1)(x0)}. The flight simulator then executes the strategy

while accounting for any delays between the request time t0 and current time t.

It is important to note that the optimizers, WebSocket server, and referee operate asynchronously, each
relying on the most recently stored shared variables.

In the following chapters, we analyze the performance of the proposed methods using the point mass
dynamics simulator. However, in Chapter 8, we transition to a high-fidelity flight simulator, where a
low-level nonlinear model predictive control (NMPC) controller is introduced to track the point mass
strategies in a hierarchical manner.

6
Experimental Setup

This chapter presents the experimental setup used to evaluate the performance of various autono-
mous racing strategies in a competitive, head-to-head racing scenario. The goal is to benchmark the
proposed methods under controlled conditions, ensuring reproducibility and fairness. We implement a
structured tournament format where each method competes against others in a round-robin style, with
multiple variations in environmental configurations to assess robustness and adaptability.

6.1. Simulation environment
All implementations utilize PATH as the low-level mixed complementarity problem (MCP) solver, ensur-
ing consistent numerical optimization across all tested methods. The evaluated methods include:

• MPC (Model Predictive Control)
• MPG (Model Predictive Game)
• MPGB (Model Predictive Game with Blocking)
• LMPG (Lifted Model Predictive Game)

The simulation supports both synchronous and asynchronous execution modes, which define how
agents process information and make decisions. These modes are described as follows:

Synchronous mode In synchronous execution, all agents make decisions at the same
discrete timestep, ensuring that they have access to the same updated state information before
computing their respective strategies. The agents must then wait for each other to complete
their computations before executing their strategies simultaneously.

Asynchronous mode In contrast, asynchronous execution allows agents to observe the en-
vironment, compute and execute strategies at their own independent rates, without waiting for
other agents. This results in a setting that better captures real-time decision-making and re-
sponse dynamics.

Additionally, large-scale testing is conducted across three different speed configurations, summarized
in Table 6.1. These configurations define the maximum speeds for both the attacker and defender roles,
ensuring a range of difficulty levels.

30

6.1. Simulation environment 31

Table 6.1: Maximum speed configurations for the defender and attacker roles

Configuration vdefender (ms−1) vattacker (ms−1)
Low Speed 1.0 2.0
Medium Speed 2.0 3.0
High Speed 4.0 5.0

6.1.1. Race tracks
The competition takes place on four distinct race tracks, each designed to introduce unique challenges
in terms of layout complexity, gate configurations, and required maneuvering skills. The tracks are
parametrized using periodic functions, specifically sine and cosine, to create smooth and dynamic
racing paths. The parameters and mathematical formulations of the tracks are given in Appendix A.
The race tracks shown in Figure 6.1 are constructed within the dimensions of the real-world flight cage,
facilitating potential physical testing of the methods.

Figure 6.1: All four race tracks varying in size, complexity, length and gate configuration

6.1. Simulation environment 32

6.1.2. Starting conditions
To avoid bias from fixed starting locations, we employ uniform sampling around predefined starting
positions. These positions are set at 1 and 2.5 meters along the track length behind the start line and
the sampling is performed within a spherical region of 0.15 meters in radius. Figure 6.2 shows uniform
sampling for 10 initial conditions on the lemniscate track.

Moreover, each set of sampled initial positions is used for two races: in the first race, Method 1 starts
as the defender andMethod 2 as the attacker; in the second race, their roles are reversed, withMethod
2 defending and Method 1 attacking. This setup ensures a fair and comprehensive evaluation of per-
formance where both methods experience the same initial conditions.

Figure 6.2: Uniform sampling of the initial starting positions for each race

6.1.3. Parameters
The referee parameters and experimental conditions are adjusted to reflect real-world limitations of the
testing area and hardware. Collision thresholds, deviation limits, and velocity violation tolerances are
set based on physical feasibility, and rules described in Table 4.1.

To promote strategic and competitive behavior, the shared cost function parameters are tuned to bal-
ance safety and aggressive racing behavior, particularly in asynchronous mode where decision-making
is decentralized.

All methods share identical referee, environment and cost parameters unless explicitly stated otherwise.
The complete list of parameters used for the large scale simulation is summarized in Table 6.2.

Table 6.2: Experimental setup racing parameters

Referee Parameters Solver Parameters Cost Parameters
Parameter Value Parameter Value Parameter Value
Collision limit dij ≤ 0.35 m Gate radius 0.875 m ql 3.0
Hard speed limit v ≥ vmax + 4.0 Horizon 15 qmax

c 3.0
Soft speed limit v ≥ vmax + 0.25 Time step 50 ms qnomc 1.5
Min speed limit v < 0.5 Mass 0.6017 kg q∆v,qj 0.001
Soft violation time 5.0 s amax 10 ms−2 qcol 1.5
Deviation limit di,track ≥ 2.0 m jmax 100 ms−3 rcol 1.0
Overtake threshold ϵov 0.75 m qvel 0.75
Max laps 5 µ 1.5
Defender vmax 1, 2, 4 ms−1 qblock 0.5
Attacker vmax 2, 3, 5 ms−1

6.2. Evaluation metrics 33

6.2. Evaluation metrics
To ensure a fair and structured assessment of the proposed autonomous racing methods, we employ a
set of evaluation metrics that account for both competitive performance and rule adherence. Thesemet-
rics are categorized into performance metrics, which determine racing success, and auxiliary metrics,
which provide additional insights into method characteristics.

6.2.1. Performance metrics
Performance metrics measure which method performs best in direct competition. The win rate is a
primary indicator, capturing how often a method secures victory based on the rules outlined in Table 4.1.
Wins are further classified to distinguish between strategic superiority and rule enforcement:

• Clean wins - The race concludes after themaximum number of laps without violations. The winner
is determined based on the time spent in front (i.e. defender role).

• Collision wins - The opponent triggers a collision violation by getting too close, awarding victory
to the ego player.

• Deviation wins - The opponent strays too far from the track or fails to pass through a gate, resulting
in a win for the ego player.

• Velocity wins - The opponent exceeds the speed limits assigned to their role, leading to a win for
the ego player.

This classification highlights whether a method favors safer or more aggressive strategies.

6.2.2. Auxiliary metrics
These metrics provide a deeper understanding of method efficiency, rule compliance, and competitive-
ness:

• Solve time - The computational time required for the methods to compute a receeding horizon
plan.

• Number of violations - The frequency of violations on each separate track separated by collisions,
track deviations, or speed limit breaches.

• Number of overtakes - The total count of successful overtaking maneuvers.

6.3. Large scale simulation
To ensure fair comparisons, each method pair was tested across four different tracks, with ten distinct
sampled starting conditions per track. Each sampled starting condition was used for two races – one
with the original roles and one with swapped roles – to guarantee that both methods experienced the
same initial conditions.

Overall, the large-scale experimental study includes 4 tracks, 10 starting configurations per track, and
2 races per starting configuration, resulting in a total of 80 races of 5 laps each per method-vs-method
pair per speed configuration. This setup provides a comprehensive evaluation framework, ensuring
that the tested strategies are assessed under diverse and realistic racing conditions.

7
Results

With the experimental setup and conditions established in the previous chapter, this chapter presents
the results and discussion of the large-scale empirical study on head-to-head racing simulations con-
ducted in an all-vs-all tournament format. The results are organized based on the execution mode –
synchronous or asynchronous – and further categorized by speed configurations, as described in sec-
tion 6.1. This structured analysis allows us to examine the interplay between different control strategies
under varying conditions and highlight their strengths and weaknesses.

The key findings from this chapter include

1. MPG consistently maintains a competitive advantage over MPC in synchronous mode. This is
evident across different speed configurations where MPG executes strategic overtakes and main-
tains a dominant racing position.

2. Induced delays and decentralized play reduces racing performance, particularly affecting MPG
at higher speeds, which suffers from increased computational overhead.

3. By accelerating MPG via learning, we are able to achieve solve times comparable to MPC while
maintaining its competitive edge in both synchronous and asynchronous modes.

4. The introduction of an extra blocking cost term enables strategic behaviors such as preventing
overtakes by actively obstructing opponents.

5. The effectiveness of the proposed planners is demonstrated through high-fidelity simulation, where
the combination of hierarchical planning and a nonlinear low-level controller results in successful
overtaking maneuvers.

This chapter is structured to first present results under ideal conditions, where all agents operate syn-
chronously, evaluating performance across different speed configurations and analyzing how the meth-
ods compare when all players have unlimited time to compute a solution. Next, the asynchronous
mode is examined, investigating the effects of communication delays and solve-time differences on
performance, as well as assessing how execution constraints influence competitive balance and over-
taking dynamics. The chapter then explores extensions to the game-theoretic methods designed to
enhance real-world racing performance, including the learning-based method (LMPG) that improves
MPG’s solve time and the integration of a blocking cost function (MPGB) to influence competitive inter-
actions and defensive strategies. Finally, the proposed methods are validated in a hierarchical control
setup, where a nonlinear MPC serves as the low-level controller within a high-fidelity simulation environ-
ment. This validation compares planned trajectories against actual drone performance, demonstrating
the effectiveness of the approaches in executing successful overtaking maneuvers.

7.1. Synchronous racing
Synchronous racing provides insight into competitive performance under ideal conditions, where all
agents operate with perfect state awareness and make decisions simultaneously. This means that

34

7.1. Synchronous racing 35

all agents compute their strategies at the same timestep and wait for each other to complete their
computations before proceeding with executing the strategies.

7.1.1. Low speed
The low-speed configuration was selected to replicate the experimental conditions presented in [32],
where both robots were constrained to a maximum velocity of either 0.3ms−1 or 0.6ms−1 depending on
their initial starting positions. Maintaining the same ratio of maximum velocities between the attacker
and defender, the results in Figure 7.1 show that MPG wins 100% of the races against MPC, regardless
of its starting position.

Figure 7.1: Performance results of MPC vs MPG at the low speed configuration in synchronous mode

The figure illustrates the win rate of both methods (MPC and MPG) across two different starting posi-
tions. Each horizontal bar represents a different case:

• The top bar corresponds to the scenario where MPC starts as the defender and MPG starts as
the attacker.

• The bottom bar represents the reverse situation, where MPC starts as the attacker and MPG
starts as the defender.

In both cases, MPG consistently secures victory, regardless of whether it begins ahead or behind
its opponent. This dominance is visually evident as the bars are entirely filled with MPG’s win color,
indicating that MPC does not achieve any wins in these scenarios. Moreover, the breakdown of win
types reveals that all of MPG’s victories are categorized as clean wins, meaning that the opponent has
not committed any violations. Additional details and a more granular performance analysis across all
four race tracks are provided in Table 7.1.

Table 7.1: Breakdown of performance results of MPC vs MPG at low speed configuration in synchronous mode

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
circle 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
lissajous 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
eight 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10

all tracks 0 (0) / 40 (40) 0 (0) / 40 (40) 0 / 0 0 / 0 0 / 0 0 / 40

The table presents the results for all tracked metrics across both players in a structured manner for

7.1. Synchronous racing 36

clarity. Each cell reports values for Player 1 / Player 2. In the last row, the number of clean wins
out of total wins as attacker and defender is recorded in parentheses. The results confirm that MPG
successfully overtakes MPC in every race when starting as the attacker, while MPC is never able to
overtake MPG. This is a significant finding given that both methods share the same cost function and
racing parameters, highlighting the superior decision-making of MPG in strategic racing scenarios.

7.1.2. Medium speed
Figure 7.2 presents the performance comparison between MPC and MPG at medium speeds in syn-
chronous mode. Similar to the low-speed case, MPC fails to secure any victories as an attacker, while
MPG continues to win consistently across all race tracks. The performance of MPG remains superior,
demonstrating the effectiveness of game-theoretic reasoning in strategic positioning and overtaking
maneuvers.

Figure 7.2: Performance results of MPC vs MPG at the medium speed configuration in synchronous mode

At medium speeds, the overtaking process becomes more gradual, particularly in tracks with complex
curvature, and short gate to gate sections (lemniscate and eight tracks). The breakdown in Table 7.2
reveals that overtakes by MPG occur in every track. Notably, on the eight track, the plot indicates
a singular instance where MPC won by time spent as a defender, and the breakdown reveals MPC
successfully overtook MPG once in one of the 20 races. This anomaly can be attributed to the open-
loop prediction error inherent in MPC’s constant velocity model, which temporarily misrepresents the
opponent’s trajectory, allowing for an opportunistic overtake.

Table 7.2: Breakdown of performance results of MPC vs MPG at medium speed configuration in synchronous mode

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
circle 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
lissajous 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
eight 0 / 9 1 / 10 0 / 0 0 / 0 0 / 0 1 / 11

all tracks 0 (0) / 39 (39) 1 (1) / 40 (40) 0 / 0 0 / 0 0 / 0 1 / 41

Despite this isolated occurrence, the overall results are consistent with the low-speed configuration.
MPG retains its advantage due to its strategic decision-making, while MPC struggles to anticipate dy-
namic interactions effectively. These findings highlight the limitations of MPC’s predictive assumptions.
Nevertheless, both methods remain collision-free under the current collision avoidance settings, con-
firming the safety of the racing policies in this speed regime.

7.1. Synchronous racing 37

7.1.3. High speed
Increasing the maximum velocities further to match the high-speed configuration exposes critical weak-
nesses in the MPC baseline, primarily due to its reliance on the constant velocity assumption for oppo-
nent modeling. As shown in Figure 7.3, MPC consistently fails when starting as the attacker, resulting
in frequent collisions leading to solely collision wins attributed for the opponent. This outcome sug-
gests that at high speeds, the opponent’s trajectory prediction is no longer accurately represented by
the constant velocity assumption, leading to severe misjudgments in close-proximity racing scenarios.

Figure 7.3: Performance results of MPC vs MPG at the high speed configuration in synchronous mode, MPC and MPG
share the same collision weights

A deeper analysis is provided by examining self-play scenarios in Figure 7.4. The MPC vs. MPC
race further confirms that MPC’s opponent model becomes unreliable at high speeds, as both agents
frequently crash when competing against each other. In contrast, MPG vs. MPG races remain stable,
indicating that MPG inherently incorporates strategic collision avoidance. These results suggest that
MPC, in its current form, requires additional tuning to remain viable under high-speed conditions.

(a) Performance of MPC vs MPC (b) Performance of MPG vs MPG

Figure 7.4: Comparison of MPC and MPG playing against themselves at the high speed configuration in synchronous mode,
where MPC and MPG share the same collision weights

To address this issue, the collision penalty weights for MPC were systematically increased until crashes
were eliminated in self-play. After applying these adjustments, the modified MPC was tested against
MPG, yielding the results shown in Table 7.3. Unlike previous configurations, both methods now ex-
hibit equivalent performance, winning only when starting as defenders and never securing victories as
attackers. Furthermore, neither method successfully overtakes the other, as reflected in the absence
of recorded overtakes. This stagnation suggests that, at high speeds, overtaking opportunities are
constrained by track design and the high cost of deviating from the optimal racing line.

7.1. Synchronous racing 38

Table 7.3: Breakdown of performance results of MPC vs MPG at high speed configuration in synchronous mode, after
inflating the collision penalties for MPC

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 0 10 / 10 0 / 0 0 / 0 0 / 0 0 / 0
circle 0 / 0 10 / 10 0 / 0 0 / 0 0 / 0 0 / 0
lissajous 0 / 0 10 / 10 0 / 0 0 / 0 0 / 0 0 / 0
eight 0 / 0 10 / 10 0 / 0 0 / 0 0 / 0 0 / 0

all tracks 0 (0) / 0 (0) 40 (40) / 40 (40) 0 / 0 0 / 0 0 / 0 0 / 0

To validate this hypothesis, two separate ablation studies were conducted: (i) halving the contouring
weights to reduce the penalty for lateral deviations from the track centerline, and (ii) scaling all race
tracks by a factor of two to provide more space for overtaking maneuvers. The number of wins and over-
takes under these conditions is summarized in Table 7.4. The results reveal that halving the contouring
weights significantly increases overtakes in the lissajous track, where its pre-existing wide straight sec-
tions and gentle curvature provide feasible overtaking zones. However, simply increasing track size
does not yield additional overtakes, indicating that track width alone is insufficient to facilitate strategic
overtakes without also reducing the constraint of lateral positioning.

Table 7.4: Comparison on wins and number of overtakes of MPC vs MPG at high speed configuration in synchronous mode,
for varying track size and lowered contour weights separately

Race track Wins as attacker Wins as defender Overtakes
Low contour Scaled track Low contour Scaled track Low contour Scaled track

lemniscate 0 / 0 0 / 0 10 / 10 10 / 10 0 / 0 0 / 0
circle 0 / 0 0 / 0 10 / 10 10 / 10 0 / 0 0 / 0
lissajous 1 / 1 0 / 0 9 / 9 10 / 10 28 / 29 0 / 0
eight 0 / 0 0 / 0 10 / 10 10 / 10 0 / 0 0 / 0

all tracks 1 / 1 0 / 0 39 / 39 40 / 40 28 / 29 0 / 0

Combining both ablations—reducing contour weights and enlarging track size—restores MPG’s domi-
nance, as shown in Table 7.5. The results indicate that under these conditions, MPG consistently wins,
securing clean victories with a significantly higher number of overtakes from both methods compared
to the previous scenarios. This reinforces the conclusion that high-speed racing is fundamentally con-
strained by track design and lateral maneuverability, and that MPG’s advantage is most evident when
overtaking opportunities are structurally present.

Table 7.5: Breakdown of performance results of MPC vs MPG at high speed configuration in synchronous mode, with
increased track size and lowered contour penalty at the same time

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 9 1 / 10 0 / 0 0 / 0 2 / 0 60 / 61
circle 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 0 / 10
lissajous 0 / 10 0 / 10 0 / 0 0 / 0 8 / 0 138 / 143
eight 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 43 / 50

all tracks 0 (0) / 39 (34) 1 (1) / 40 (35) 0 / 0 0 / 0 10 / 0 241 / 264

These findings highlight the necessity of incorporating adaptable opponent models in MPC to maintain
competitiveness at high speeds. While cost tuning can mitigate crashes, the lack of strategic reasoning

7.2. Asynchronous racing 39

in overtaking situations remains a fundamental limitation. In contrast, MPG continues to demonstrate
superior adaptability, making it a more reliable approach for high-speed competitive racing scenarios
under synchronous conditions.

7.2. Asynchronous racing
In contrast to the synchronous mode, asynchronous execution allows agents to process and compute
strategies independently. This means that agents no longer wait for each other to complete their com-
putations; instead, they solve and communicate their strategies asynchronously. Furthermore, both
methods utilize the latest state updates of each player to compute a strategy. Because of the asyn-
chronous nature of this approach and the communication delays it introduces, the initial states observed
by the optimizers no longer fully represent the true state of the game.

7.2.1. Low speed
At low speeds, the transition from synchronous to asynchronous execution introduces new competitive
dynamics, but the overall trend remains consistent – MPG continues to outperform MPC. As seen in
Figure 7.5, MPG still wins themajority of races, indicating that the core advantages of its game-theoretic
approach transfer effectively to asynchronous conditions at low speeds. However, a key difference from
the synchronous case is the increased number of victories attributed to MPC, primarily due to deviation
and velocity violations committed by MPG.

Figure 7.5: Performance results of MPC vs MPG at the low speed configuration in asynchronous mode

The breakdown in Table 7.6 confirms that these violations play a crucial role in shifting race outcomes.

Table 7.6: Breakdown of performance results of MPC vs MPG at low speed configuration in asynchronous mode

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 10 / 1 9 / 0 1 / 0 0 / 15 0 / 4 31 / 37
circle 8 / 0 10 / 2 2 / 0 0 / 12 0 / 2 90 / 96
lissajous 1 / 9 1 / 9 18 / 0 0 / 1 0 / 1 81 / 90
eight 0 / 10 0 / 10 0 / 0 0 / 0 0 / 0 97 / 100

all tracks 19 (0) / 20 (10) 20 (6) / 21 (10) 21 / 0 0 / 28 0 / 7 299 / 323

A deeper analysis of these violations reveals that MPG’s computational delays are a primary contribut-
ing factor. Figure 7.6 illustrates a representative failure case on the lemniscate track. In Figure 7.6a,
MPG drifts off the track and incurs a velocity violation, leading to a loss. The corresponding solve time

7.2. Asynchronous racing 40

analysis in Figure 7.6b reveals a critical issue: MPG experiences a prolonged computational delay,
during which it fails to generate a new control solution. This is evident in the flat solve time profile,
where for approximately one second, MPG executes its last computed trajectory without updating its
strategy. As a result, it is unable to correct its course, ultimately violating track constraints.

(a) Trajectories of MPC vs MPG (b) Solve time of MPC vs MPG

Figure 7.6: Velocity and deviation violation as a consequence of the long solve times of MPG during an overtake maneuver

This computational bottleneck becomes especially problematic during overtaking events, where the
optimization complexity increases. The solve time distributions in Figure 7.7 highlight this discrepancy
– MPC achieves a median solve time of 17ms, whereas MPG’s median solve time is significantly higher
at 47ms. This translates to an average reaction-time advantage of 30ms for MPC, allowing it to make
decisions more frequently and adapt to the evolving race dynamics more effectively. More critically,
MPG exhibits outliers with solve times reaching up to 2 seconds, whereas the highest observed solve
time for MPC is 0.5 seconds. These observations are based on a sample size of 15, 000 data points,
collected across all MPC vs. MPG races.

Figure 7.7: Distribution of solve times for MPC and MPG, highlighting the difference in median solve times and outliers

Another apparent feature of asynchronous execution is the emergence of overtaking opportunities for
MPC. Unlike in the synchronous case, where MPC was unable to overtake MPG, the asynchronous
setup introduces state update mismatches that create new openings. Because state communication
occurs independently for each agent, MPC can sometimes compute its trajectory based on outdated

7.2. Asynchronous racing 41

opponent state information. This, combined with its faster reaction time, enables MPC to detect and
benefit on overtaking opportunities that were unavailable in synchronous execution. The effect is clearly
visible in the overtaking statistics from Table 7.6, where MPC achieves a substantial number of over-
takes.

7.2.2. Medium speed
At medium speeds, asynchronous execution intensifies the impact of computational delays on racing
dynamics, significantly influencing competitive outcomes. Figure 7.8 illustrates the performance com-
parison between MPC and MPG, revealing a stark contrast to the synchronous case. Unlike in the
low-speed asynchronous scenario, MPC now consistently secures more victories due to a combination
of clean wins and opponent violations.

Figure 7.8: Performance results of MPC vs MPG at the medium speed configuration in asynchronous mode

The breakdown in Table 7.7 confirms that MPG suffers frequent velocity and deviation violations, pri-
marily caused by excessive solve times that prevent timely replanning.

Table 7.7: Breakdown of performance results of MPC vs MPG at medium speed configuration in asynchronous mode

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 8 / 2 8 / 2 4 / 0 0 / 0 0 / 16 38 / 32
circle 10 / 0 10 / 0 0 / 0 0 / 6 0 / 1 74 / 77
lissajous 3 / 5 5 / 7 12 / 0 0 / 2 0 / 0 141 / 149
eight 1 / 9 1 / 9 18 / 0 0 / 0 0 / 0 37 / 45

all tracks 22 (9) / 16 (0) 24 (12) / 18 (0) 34 / 0 0 / 8 0 / 17 290 / 303

A key observation is that MPG still wins a substantial number of races through collision-based outcomes,
suggesting that while asynchronous effects degrade its performance, its game-theoretic framework con-
tinues to enforce perfect collision avoidance against MPC. However, a closer look at the self-play com-
parisons in Figure 7.9 provides additional insight. The MPC vs. MPC matchup exhibits a high number
of collision violations, particularly on the lemniscate and eight tracks, where sharp turns necessitate
rapid adjustments. This observation suggests that MPC’s reliance on a constant velocity opponent
model becomes even more problematic under asynchronous conditions. In contrast, MPG vs. MPG
races remain safer, highlighting the benefit of its strategic opponent reasoning.

7.2. Asynchronous racing 42

(a) Performance of MPC vs MPC (b) Performance of MPG vs MPG

Figure 7.9: Comparison of MPC and MPG playing against themselves at the medium speed configuration in asynchronous
mode

Examining the underlying cause of the high collision rates in MPC vs. MPC races from Table 7.8,
we observe that in tracks with high-curvature sections, such as the lemniscate and eight tracks, MPC
frequently mispredicts the opponent’s future trajectory. Instead of anticipating a sharp turn, it assumes
a straight-line continuation, leading to direct collisions.

Table 7.8: Breakdown of performance results of MPC vs MPC at medium speed configuration in asynchronous mode

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 0 10 / 10 10 / 10 0 / 0 0 / 0 0 / 0
circle 0 / 0 10 / 10 0 / 0 0 / 0 0 / 0 102 / 100
lissajous 1 / 1 9 / 9 3 / 3 0 / 0 0 / 0 257 / 253
eight 0 / 0 10 / 10 10 / 10 0 / 0 0 / 0 0 / 0

all tracks 1 (1) / 1 (1) 39 (16) / 39 (16) 23 / 23 0 / 0 0 / 0 359 / 353

This phenomenon, absent in the synchronous case, confirms that the combined effects of asynchro-
nous state updates and open-loop constant velocity assumptions degrade MPC’s predictive reliability.
Thus, while asynchronous conditions improve MPC’s relative competitiveness against MPG, they also
introduce fundamental weaknesses in its trajectory planning under dynamic race conditions.

7.2.3. High speed
At high speeds, the negative impact of asynchronous effects becomes even more pronounced. Fig-
ure 7.10 presents the results for the high-speed configuration under asynchronous conditions, using the
standard track size and contour weights, and incorporating inflated collision penalties for MPC to miti-
gate the crashes observed in synchronous mode. Unlike the synchronous case, where neither method
could reliably overtake the other at high speeds, due to the constraints imposed by high contouring
costs and limited track space, the asynchronous configuration allows MPC to exploit communication
and computational delays in MPG’s strategy updates.

7.3. Extensions 43

Figure 7.10: Performance results of MPC vs MPG at the high speed configuration in asynchronous mode, after inflating the
collision penalties for MPC

This is evident in the overtaking counts in Table 7.9, which show that MPC frequently overtakes MPG
across all race tracks, while MPG fails to act on similar opportunities. Despite the presence of asyn-
chronous effects, MPG’s behavior is closer to its synchronous counterpart.

Table 7.9: Breakdown of performance results of MPC vs MPG at high speed configuration in asynchronous mode, after
inflating the collision penalties for MPC

Race track Wins Violations Overtakes
Start as attacker Start as defender Collision Velocity Deviation Count

lemniscate 0 / 0 10 / 10 2 / 1 0 / 0 0 / 0 3 / 0
circle 10 / 0 10 / 0 0 / 0 0 / 3 0 / 0 19 / 18
lissajous 10 / 0 10 / 0 0 / 2 0 / 0 0 / 2 68 / 60
eight 5 / 0 10 / 5 3 / 0 0 / 0 2 / 1 5 / 0

all tracks 25 (22) / 0 (0) 40 (34) / 15 (8) 5 / 3 0 / 3 2 / 3 95 / 78

Overall, these findings highlight a critical limitation of game-theoretic planning in high-speed
asynchronous settings. While MPG remains superior in idealized synchronous conditions, its
computational overhead becomes a severe bottleneck when real-time adaptability is required.
In contrast, MPC, despite its simplistic opponent modeling, benefits from its lower computational
demands, enabling it to exploit asynchronous update delays and secure victories through faster
reaction times. These results underscore the necessity of optimizing solve times for game-
theoretic methods to ensure their viability in real-time, high-speed racing scenarios.

7.3. Extensions
In the previous section, results demonstrated that high-speed racing is fundamentally constrained by
track design and lateral maneuverability. Since scaled-up track dimensions are impractical in real-
world scenarios, the following extensions to the game planners were tested on standard track sizes at
medium speeds. This configuration represents the fastest setting that still produces interesting racing
behaviors while remaining feasible for real-world implementation on hardware.

7.3.1. Accelerating game planners
In this extension, we evaluate how accelerating game planners impact the competitive dynamics be-
tween different planning methods. We compare the performance of MPC, MPG, and LMPG under both

7.3. Extensions 44

synchronous and asynchronous execution modes on the lemniscate track at medium speeds. Lifted
game planners are designed to mitigate the long computation times observed with MPG, thereby reduc-
ing the delays that hinder real-time racing. As shown in the solve time analysis of Figure 7.11, LMPG
now achieves a median solve time of 15ms, surpassing even MPC, while the maximum solve times are
reduced to only 40ms. This suggests that accelerating the planning process levels the playing field in
terms of reaction time.

Figure 7.11: Distribution of solve times for MPC and LMPG, highlighting the difference in median solve times and outliers

The experimental results show that LMPG consistently outperforms both MPC and MPG in terms of
clean wins, primarily because it was trained through self-play and fine-tuned specifically against MPG.
Figure 7.12 and Figure 7.13b provide a detailed comparison of performance across synchronous and
asynchronous execution modes. Notably, LMPG maintains strong performance even under asynchro-
nous conditions, where previously, game-theoretic planners were at a disadvantage.

(a) Synchronous performance (b) Asynchronous performance

Figure 7.12: Performance results of MPC vs LMPG at the medium speed configuration on the lemniscate track

(a) Synchronous performance (b) Asynchronous performance

Figure 7.13: Performance results of MPG vs LMPG at the medium speed configuration on the lemniscate track

7.3. Extensions 45

However, the increased performance of LMPG comes at a cost. When competing against MPC, all wins
observed are based on collision violations. This phenomenon occurs because the trained solver has
learned to execute maneuvers – such as sudden deceleration, that cannot be accurately anticipated
by MPC’s simplistic constant velocity model. A second reason behind the large number of collisions
can be attributed to the limited training with the MPG method. Although similar behaviors are observed
when LMPG faces MPG, the effect is less pronounced, likely due to MPG’s better reasoning model of
the opponent. In essence, accelerating game planners provide a clear competitive edge by reducing
solve times, while still maintaining strategic decision-making advantage.

7.3.2. Strategic blocking
In this extension, an additional blocking cost term is incorporated into MPG to encourage defensive ma-
neuvers. This term induces behaviors where an agent intentionally decelerates and alters its heading
to obstruct an opponent’s overtaking maneuver. When playing as the defender, the blocking-enabled
planner (referred to asMPGB) actively positions itself to force collisions as the attacker attempts to pass.
For instance, in the race against MPC, as illustrated in Figure 7.14, MPGB’s defensive maneuvers re-
sult in a high number of collisions committed by MPC, highlighting the strategic advantage provided by
blocking.

(a) Synchronous performance (b) Asynchronous performance

Figure 7.14: Performance results of MPC vs MPGB at the medium speed configuration

Figure 7.15 shows the results of MPG vs MPGB for both synchronous and asynchronous cases. In
synchronous races against MPG, however, MPGB’s ability to force a collision is less consistent. De-
spite MPG’s lack of explicit strategic knowledge regarding opponent blocking, its more sophisticated
reasoning model allows it to evade collisions even when being blocked, and successfully overtake its
opponent.

(a) Synchronous performance (b) Asynchronous performance

Figure 7.15: Performance results of MPG vs MPGB at the medium speed configuration

In Figure 7.16, LMPG has not been explicitly trained against blocking strategies. The blocking method
consistently wins by triggering collisions, as the opponent encounters states outside its training distribu-
tion. In asynchronous mode, both methods suffer from asynchronous effects discussed in the previous

7.4. High fidelity simulation 46

sections.

(a) Synchronous performance (b) Asynchronous performance

Figure 7.16: Performance results of LMPG vs MPGB at the medium speed configuration on the lemniscate track

Overall, the strategic blocking extension reveals that while the addition of a blocking cost can suc-
cessfully disrupt overtaking attempts, the effectiveness of the maneuver depends critically on both the
execution mode and the sophistication of the opponent’s reasoning model.

7.4. High fidelity simulation
While the large-scale experiments presented thus far have relied on simplified point-mass dynamics
inside the flight simulator, the ultimate goal is to ensure that the game-theoretic planners can be reliably
deployed in real-world scenarios. To this end, a high fidelity simulation was conducted in which the
developed planners function as the high-level decision maker, coupled with a nonlinear MPC (NMPC)
as the lower-level controller that handles the full drone dynamics. This architecture is presented in the
following Chapter 8.

In the high fidelity simulation, we evaluated head-to-head races between MPC and MPG on the lem-
niscate track under medium-speed conditions, in asynchronous mode. As shown in Figure 7.17, one
scenario highlights MPC successfully overtaking MPG, whereas Figure 7.18 depicts the reverse sce-
nario with MPG overtaking MPC. The race dynamics are more intricate in the high fidelity setup. Both
planners exchange overtaking maneuvers throughout the race, ultimately resulting in each method
achieving successful overtakes.

Notably, compared to the earlier experiments using a point-mass model (such as those presented in
Figure 7.6a), the high fidelity simulation exhibits larger deviations from the track. These deviations
are attributable to the complex nonlinearities of full drone dynamics, which introduce additional chal-
lenges not captured by the simpler model. Despite these challenges, the results validate that the
game-theoretic planners, when integrated with a robust low-level NMPC controller, can generate com-
petitive and reliable high-level strategies that translate effectively into physical overtaking maneuvers.
This integration thus demonstrates the practical viability of the proposed hierarchical control approach
and system architecture for real-world drone racing.

7.4. High fidelity simulation 47

Figure 7.17: High fidelity simulation of MPC overtaking MPG at the medium speed configuration on the lemniscate track

Figure 7.18: High fidelity simulation of MPG overtaking MPC at the medium speed configuration on the lemniscate track

8
Real-world experiments

The results obtained in simulation provide valuable insights into the effectiveness of different control
strategies for multi-agent racing. However, real-world experiments are essential to validate these find-
ings under practical conditions. In this chapter, we present a series of hardware experiments conducted
with quadrotors to evaluate how well the proposed methods transfer to real-world scenarios.

8.1. Hardware setup
The system architecture for real-life racing is illustrated in Figure 8.1. It closely follows the setup used
in point mass simulations, with the key difference being the use of real hardware instead of a flight
simulator. Additionally, the architecture supports the high fidelity RotorS [10] flight simulator as an
alternative to the custom-built point mass simulator, allowing for more realistic quadrotor dynamics in
simulation-based experiments.

Figure 8.1: Illustration of the system architecture used for real-world autonomous drone racing experiments.

An offboard computer runs the optimizers for each drone and communicates with another computer

48

8.1. Hardware setup 49

running a custom-built ROS node called Julia Flight Interface. This ROS node interacts with the opti-
mizer server via WebSockets. To minimize communication delays, these two offboard computers are
connected through a wired local network.

The decision to separate the optimizers from the ROS master computer is motivated by the need to re-
duce the computational load on the optimizer processes. Specifically, this prevents memory exhaustion
on the optimizer computer and avoids overloading the CPU with additional tasks.

The ROSmaster serves as the central control unit, forwarding strategies to the drones viaWiFi and inter-
facing with them through Agilicious [7]. Agilicious is a software framework designed for agile quadrotor
flight and includes an implementation of a nonlinear model predictive controller (NMPC), which we use
as a low-level controller.

The Julia Flight Interface, running on the ROS master, timestamps the strategies received from the
optimizer and transmits the corresponding point mass plan to the NMPC controller. Each drone runs
an Agilicious pilot, which includes the NMPC controller and performs state estimation using onboard
IMU data combined with real-time position and attitude from a motion capture system. Additionally,
each drone is connected to its respective Julia Flight Interface, ensuring continuous communication
with the optimizer server.

The hardware experiments were conducted at the Autonomous Multi-Robots Lab at Delft University of
Technology using a custom-built micro aerial vehicle (MAV) called Falcon. The MAV is equipped with a
Raspberry Pi 5 onboard computer and relies on a VICON motion capture system for localization, which
tracks reflective markers attached to the drones.

The experimental setup, corresponding to the system architecture, is depicted in Figure 8.2.

Figure 8.2: Overview of the experimental setup used for real-world quadrotor racing. The drones’ position and attitude are
captured by VICON and the two offboard computers exchange current states x̃i

0 and strategies γi, to be executed by the quads.

8.2. Qualitative results 50

8.2. Qualitative results
Before conducting live experiments, we first validate the system’s behavior in the RotorS simulator,
which is supported by Agilicious. This step helps identify potential issues and refine the racing strategies
before deploying them on real hardware.

During validation in RotorS, we frequently observed that races ended in a ”collision win.” As discussed in
the previous chapter, MPC often leads to collisions on the lemniscate track due to inaccurate predictions
of opponent behavior, particularly in high-curvature regions. However, these effects were observed to
be even more prominent in the high fidelity simulations.

To ensure the safety of both the quadrotors and human operators, we increased the collision avoidance
radius used for MPC, as specified in Table 6.2. Specifically, we set rcol = 1.25 for the medium-speed
configuration and rcol = 1.5 for the high-speed configuration.

Additionally, simulation testing revealed that LMPG was not sufficiently safe for real-world deployment.
This suggests that LMPG requires further training and tuning to generalize effectively to nonlinear dy-
namics, particularly when coupled with the low-level nonlinear controller. As a result, the following
experiments focus exclusively on races between MPC and MPG.

We conducted two speed configurations for the MPC vs. MPG comparison. The drones raced for five
laps on the lemniscate track, navigating through designated gates.

Medium speed Figure 8.3 and Figure 8.4 illustrate MPG overtaking MPC. Throughout the race, both
methods continue to overtake each other repeatedly. At this speed configuration, both methods are
competitive however, MPC manages have a slightly faster overtakes, and wins the race by time spent
as defender.

High speed Figure 8.5 and Figure 8.6 demonstrate MPC overtaking MPG in the high-speed con-
figuration. Once MPC takes the lead, MPG is unable to regain its position and ultimately loses the
race.

These findings align with the results from the previous chapter. At both medium and high speeds, MPC
outperforms MPG due to its superior reaction time, which stems from a lower solve time.

8.2. Qualitative results 51

Figure 8.3: Real flight validation of MPG overtaking MPC at the medium speed configuration on the lemniscate track
(Perspective view)

Figure 8.4: Real flight validation of MPG overtaking MPC at the medium speed configuration on the lemniscate track (Top
view)

8.2. Qualitative results 52

Figure 8.5: Real flight validation of MPC overtaking MPG at the high speed configuration on the lemniscate track (Perspective
view)

Figure 8.6: Real flight validation of MPC overtaking MPG at the high speed configuration on the lemniscate track (Top view)

9
Conclusion

This thesis has explored the application of game-theoretic andmodel predictive planners in autonomous
drone racing, focusing on competitive behaviors such as overtaking, blocking, and strategic decision-
making. The distinction between the two lies in the way agents anticipate and respond to the actions
of their opponents. Model predictive planners optimize an agent’s trajectory by predicting opponent
behavior as external factors, while game-theoretic planners explicitly model multi-agent interactions as
strategic decisions using equilibrium concepts.

The research evaluated performance in both synchronous and asynchronous execution modes to as-
sess the methods under idealized and real-world conditions. In synchronous racing, all agents make
decisions at the same discrete time step and wait for each other to compute a solution before executing
their strategies, ensuring they have access to a fully updated and consistent state of the environment.
This eliminates timing discrepancies, allowing for a controlled analysis of strategic decision-making. In
contrast, asynchronous racing allows agents to make decisions at their own independent rates, mean-
ing they do not wait for one another before computing or executing strategies. This introduces real-time
decision-making challenges, where factors such as solve time variability, delayed opponent informa-
tion, and communication latency can affect performance. Testing across both modes was crucial to
assessing the robustness and adaptability of the proposed methods, securing their feasibility in practi-
cal racing scenarios where perfect synchronization cannot be assumed.

The key findings of this research reveal the strengths and limitations of different planning approaches.
In synchronous racing, Model Predictive Game (MPG) consistently outperformedMPC across all speed
configurations, securing clean wins by leveraging its ability to model opponents’ strategies and antici-
pate their actions. However, in asynchronous execution, MPG’s performance suffered due to increased
solve times, leading to violations of track constraints and losses to MPC, which benefited from its lower
computational demands. The introduction of Lifted Model Predictive Game (LMPG) demonstrated that
learning-based acceleration could mitigate some of these challenges. By achieving solve times compa-
rable to MPC while preserving the ability to account for opponent strategies, LMPG consistently outper-
formed bothMPG andMPC, achieving the highest win rate across all tested conditions. Additionally, the
incorporation of a blocking cost term into MPG (resulting in MPGB) enabled effective defensive maneu-
vers against MPC, though its success depended on the opponent’s reasoning capabilities. High-fidelity
simulations and real drone flights further validated the practical viability of the proposed game-theoretic
planners when integrated with a nonlinear MPC (NMPC) as the low-level controller, showing that the
hierarchical control approach could generate competitive and reliable strategies even under complex
drone dynamics. These simulations also highlighted the limitations of MPC, particularly on tracks with
high curvature, where its simplistic constant velocity model of the opponent led to frequent collisions
and safety concerns. This underscores the importance of more sophisticated opponent modeling for
safe and effective racing.

This research highlights the potential of game-theoretic methods for autonomous drone racing, partic-
ularly in synchronous scenarios where strategic reasoning provides a competitive edge. However, the

53

9.1. Future work 54

challenges posed by asynchronous execution and computational overhead underscore the need for
further optimization and innovation, in order to fly at higher speeds.

To facilitate future work and address these challenges, this thesis introduced a set of automated tools
designed to simplify the transcription of complex 3D drone racing scenarios into both model predictive
control (MPC) and model predictive game (MPG) frameworks. These tools are modular and flexible,
enabling researchers to easily modify race tracks, adjust gate positions, employ diverse cost formula-
tions, and systematically generate detailed race statistics. Consequently, these tools offer a versatile
foundation that supports further investigations into both model predictive and game-theoretical planning
methods, streamlining experimental setup and fostering reproducibility for future research inmulti-agent
autonomous drone racing.

9.1. Future work
Several immediate improvements can enhance the current approach. Finding an optimal set of weights
for more competitive behavior at high speeds remains a challenge, as manual tuning is time-consuming;
an automated hyperparameter search could streamline this process. Learning based MPG could be
refined by training against MPC and MPGB to enhance safety and reliability, while incorporating a re-
play buffer would help mitigate catastrophic forgetting and improve learning efficiency. To extend plan-
ning horizons without excessive computation, a non-uniform time discretization could be introduced,
thus avoiding scenarios where prolonged solve times cause the MPG to exhaust its available strategy
waypoints, and drift off the track. Alternatively, instead of relying solely on learning for solve time ac-
celeration, delays could be explicitly modeled in the game formulation, for example, as a disturbance
player. Another way to manage long solve times is to explore anytime solvers, such as interior point
solvers [36], which can provide approximate solutions when stopped early. Finally, a large-scale ex-
perimental study incorporating a nonlinear low-level controller would offer a more realistic evaluation
of all methods.

Another promising direction for improvement is the introduction of a middle-level controller that acts
as an intermediary between the high-level planner and the low-level controller. Instead of directly ex-
ecuting the high-level strategies, this middle layer would focus on reference tracking while ensuring
that critical constraints – such as track deviations, collision avoidance, and velocity limits – are strictly
enforced. By embedding these as hard constraints within the middle-level controller, the number of vio-
lations committed by all methods could be significantly reduced. At the same time, this approach would
preserve the high-level game theoretic planner’s strategic decisions, preventing excessive deviations
from the intended trajectory. This structured control hierarchy could provide a balance between com-
putational efficiency and robust constraint enforcement, making it particularly useful for asynchronous
execution, where real-time adjustments are necessary.

A more ambitious direction for future work is the development of feedback strategies and their learning-
based approximations. Unlike the current open-loop implementation in MPG, feedback strategies can
generate more competitive strategies [29] by capturing indirect interactions, without requiring additional
cost terms, as was necessary for MPGB. However, solving for feedback solutions is significantly more
computationally expensive[9][19]. The only viable approach to reducing computational costs is through
learning-based methods, such as multi-agent reinforcement learning (MARL) [16][38] or imitation learn-
ing[40], which can approximate feedback strategies efficiently while preserving strategic adaptability.
This would enable game-theoretic planners to remain competitive in real-time, asynchronous racing
scenarios.

Another potential improvement is to accelerate model predictive games through learning, while incorpo-
rating nonlinear dynamics within the inner loop. The current implementation of LMPG relies on simpli-
fied dynamics, which may not fully capture the complexities of real-world drone racing. By integrating a
nonlinear MPC as the low-level controller during training, the learned policies would better account for
aerodynamic effects, motor constraints, and other real-world nonlinearities. This would lead to more
accurate high-level strategies, improving both predictive accuracy and real-world applicability without
necessarily increasing computational overhead during execution.

References

[1] Tamer Başar and Geert Jan Olsder. Dynamic Noncooperative Game Theory, 2nd Edition. Society
for Industrial and Applied Mathematics, 1998. DOI: 10.1137/1.9781611971132. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611971132. URL: https://epubs.siam.org/
doi/abs/10.1137/1.9781611971132.

[2] Leonard Bauersfeld and Davide Scaramuzza. “Range, endurance, and optimal speed estimates
for multicopters”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 2953–2960.

[3] Johannes Betz et al. “Autonomous vehicles on the edge: A survey on autonomous vehicle racing”.
In: IEEE Open Journal of Intelligent Transportation Systems 3 (2022), pp. 458–488.

[4] Andrew Cinar and Forrest Laine. Does bilevel optimization result in more competitive racing be-
havior? 2025. arXiv: 2402.09548 [cs.GT]. URL: https://arxiv.org/abs/2402.09548.

[5] Benjamin Evans, Herman A Engelbrecht, and Hendrik W Jordaan. “Learning the subsystem
of local planning for autonomous racing”. In: 2021 20th International Conference on Advanced
Robotics (ICAR). IEEE. 2021, pp. 601–606.

[6] Jaime F Fisac et al. “Hierarchical game-theoretic planning for autonomous vehicles”. In: 2019
International conference on robotics and automation (ICRA). IEEE. 2019, pp. 9590–9596.

[7] Philipp Foehn et al. “Agilicious: Open-source and open-hardware agile quadrotor for vision-based
flight”. In: Science Robotics 7.67 (June 2022). ISSN: 2470-9476. DOI: 10.1126/scirobotics.
abl6259. URL: http://dx.doi.org/10.1126/scirobotics.abl6259.

[8] David Fridovich-Keil. Smooth Game Theory. 2024. URL: https://clearoboticslab.github.
io/documents/smooth_game_theory.pdf.

[9] David Fridovich-Keil et al. “Efficient iterative linear-quadratic approximations for nonlinear multi-
player general-sum differential games”. In: 2020 IEEE international conference on robotics and
automation (ICRA). IEEE. 2020, pp. 1475–1481.

[10] Fadri Furrer et al. “Robot Operating System (ROS): The Complete Reference (Volume 1)”. In:
ed. by Anis Koubaa. Cham: Springer International Publishing, 2016. Chap. RotorS—A Modular
Gazebo MAV Simulator Framework, pp. 595–625. ISBN: 978-3-319-26054-9. DOI: 10.1007/978-
3-319-26054-9_23. URL: http://dx.doi.org/10.1007/978-3-319-26054-9_23.

[11] Drew Hanover et al. “Autonomous Drone Racing: A Survey”. In: IEEE Transactions on Robotics
40 (2024), pp. 3044–3067. DOI: 10.1109/TRO.2024.3400838.

[12] Suiyi He, Jun Zeng, and Koushil Sreenath. “Autonomous racing with multiple vehicles using a par-
allelized optimization with safety guarantee using control barrier functions”. In: 2022 International
conference on robotics and automation (ICRA). IEEE. 2022, pp. 3444–3451.

[13] Haimin Hu et al. “Who Plays First? Optimizing the Order of Play in Stackelberg Games with
Many Robots”. In: Proceedings of Robotics: Science and Systems. Delft, Netherlands, 2024. DOI:
10.15607/RSS.2024.XX.116.

[14] Yixuan Jia, Maulik Bhatt, and Negar Mehr. “Rapid: Autonomous multi-agent racing using con-
strained potential dynamic games”. In: 2023 European Control Conference (ECC). IEEE. 2023,
pp. 1–8.

[15] Dvij Kalaria et al. “Local nmpc on global optimised path for autonomous racing”. In: arXiv preprint
arXiv:2109.07105 (2021).

[16] Yu Kang et al. “Autonomous multi-drone racing method based on deep reinforcement learning”.
In: Science China Information Sciences 67.8 (2024), p. 180203.

[17] Talha Kavuncu, Ayberk Yaraneri, and Negar Mehr. “Potential ilqr: A potential-minimizing controller
for planning multi-agent interactive trajectories”. In: arXiv preprint arXiv:2107.04926 (2021).

55

https://doi.org/10.1137/1.9781611971132
https://epubs.siam.org/doi/pdf/10.1137/1.9781611971132
https://epubs.siam.org/doi/pdf/10.1137/1.9781611971132
https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://arxiv.org/abs/2402.09548
https://arxiv.org/abs/2402.09548
https://doi.org/10.1126/scirobotics.abl6259
https://doi.org/10.1126/scirobotics.abl6259
http://dx.doi.org/10.1126/scirobotics.abl6259
https://clearoboticslab.github.io/documents/smooth_game_theory.pdf
https://clearoboticslab.github.io/documents/smooth_game_theory.pdf
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1109/TRO.2024.3400838
https://doi.org/10.15607/RSS.2024.XX.116

References 56

[18] Pravesh Koirala and Forrest Laine. “Monte carlo optimization for solving multilevel stackelberg
games”. In: arXiv preprint arXiv:2312.03282 (2023).

[19] Forrest Laine et al. “The computation of approximate generalized feedback nash equilibria”. In:
SIAM Journal on Optimization 33.1 (2023), pp. 294–318.

[20] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “Algames: a fast augmented la-
grangian solver for constrained dynamic games”. In: Autonomous Robots 46.1 (2022), pp. 201–
215.

[21] Jingqi Li et al. “The Computation of Approximate Feedback Stackelberg Equilibria in Multiplayer
Nonlinear ConstrainedDynamicGames”. In:SIAM Journal onOptimization 34.4 (2024), pp. 3723–
3749.

[22] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-based autonomous
racing of 1: 43 scale RC cars”. In:Optimal Control Applications andMethods 36.5 (2015), pp. 628–
647.

[23] Alexander Liniger and John Lygeros. “A noncooperative game approach to autonomous racing”.
In: IEEE Transactions on Control Systems Technology 28.3 (2019), pp. 884–897.

[24] Xinjie Liu, Lasse Peters, and Javier Alonso-Mora. “Learning to Play Trajectory Games Against
Opponents With Unknown Objectives”. In: IEEE Robotics and Automation Letters 8.7 (2023),
pp. 4139–4146. DOI: 10.1109/LRA.2023.3280809.

[25] Patrick Kofod Mogensen and Asbjørn Nilsen Riseth. “Optim: A mathematical optimization pack-
age for Julia”. In: Journal of Open Source Software 3.24 (2018), p. 615. DOI: 10.21105/joss.
00615.

[26] L. Peters et al. “Learning Mixed Strategies in Trajectory Games”. In: Proceedings Robotics: Sci-
ence and System XVIII. Ed. by Kris Hauser, Dylan Shell, and Shoudong Huang. Robotics: Sci-
ence and Systems. Robotics Science and Systems (RSS), 2022. DOI: 10.15607/RSS.2022.
XVIII.051.

[27] Angel Romero et al. “Model predictive contouring control for time-optimal quadrotor flight”. In:
IEEE Transactions on Robotics 38.6 (2022), pp. 3340–3356.

[28] Matthias Rowold et al. “Efficient spatiotemporal graph search for local trajectory planning on oval
race tracks”. In: Actuators. Vol. 11. 11. MDPI. 2022, p. 319.

[29] Matthias Rowold et al. Open-Loop and Feedback Nash Trajectories for Competitive Racing with
iLQGames. 2024. arXiv: 2402.01918 [cs.RO]. URL: https://arxiv.org/abs/2402.01918.

[30] Maria Luisa Scarpa and Thulasi Mylvaganam. “Open-loop and feedback LQ potential differential
games for Multi-Agent Systems”. In: 2023 62nd IEEE Conference on Decision and Control (CDC).
IEEE. 2023, pp. 6283–6288.

[31] Yunlong Song et al. “Autonomous drone racing with deep reinforcement learning”. In: 2021 IEEE
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 1205–1212.

[32] Riccardo Spica et al. “A real-time game theoretic planner for autonomous two-player drone rac-
ing”. In: IEEE Transactions on Robotics 36.5 (2020), pp. 1389–1403.

[33] Rishabh Saumil Thakkar et al. “Hierarchical control for cooperative teams in competitive autono-
mous racing”. In: IEEE Transactions on Intelligent Vehicles 9.5 (2024), pp. 4845–4860.

[34] Rishabh Saumil Thakkar et al. “Hierarchical control for head-to-head autonomous racing”. In:
Field Robotics 4 (2024), pp. 46–69.

[35] José L Vázquez et al. “Optimization-based hierarchical motion planning for autonomous rac-
ing”. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE.
2020, pp. 2397–2403.

[36] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming”. In: Mathematical programming 106
(2006), pp. 25–57.

[37] Zijian Wang, Tim Taubner, and Mac Schwager. “Multi-agent sensitivity enhanced iterative best
response: A real-time game theoretic planner for drone racing in 3D environments”. In: Robotics
and Autonomous Systems 125 (2020), p. 103410.

https://doi.org/10.1109/LRA.2023.3280809
https://doi.org/10.21105/joss.00615
https://doi.org/10.21105/joss.00615
https://doi.org/10.15607/RSS.2022.XVIII.051
https://doi.org/10.15607/RSS.2022.XVIII.051
https://arxiv.org/abs/2402.01918
https://arxiv.org/abs/2402.01918

References 57

[38] Peter Werner et al. “Dynamic multi-team racing: Competitive driving on 1/10-th scale vehicles via
learning in simulation”. In: 7th Annual Conference on Robot Learning. 2023.

[39] GradyWilliams et al. “Autonomous racing with autorally vehicles and differential games”. In: arXiv
preprint arXiv:1707.04540 (2017).

[40] Jiaxu Xing et al. “Bootstrapping reinforcement learning with imitation for vision-based agile flight”.
In: arXiv preprint arXiv:2403.12203 (2024).

[41] Alessandro Zanardi et al. Game Theoretical Motion Planning. Tutorial ICRA 2021. ETH Zurich,
2021. DOI: 10.3929/ethz-b-000507914.

[42] Edward L. Zhu and Francesco Borrelli. “A Sequential Quadratic Programming Approach to the
Solution of Open-Loop Generalized Nash Equilibria”. In: 2023 IEEE International Conference
on Robotics and Automation (ICRA). 2023, pp. 3211–3217. DOI: 10.1109/ICRA48891.2023.
10160799.

[43] Edward L. Zhu and Francesco Borrelli. A Sequential Quadratic Programming Approach to the
Solution of Open-Loop Generalized Nash Equilibria for Autonomous Racing. 2024. arXiv: 2404.
00186 [cs.RO]. URL: https://arxiv.org/abs/2404.00186.

https://doi.org/10.3929/ethz-b-000507914
https://doi.org/10.1109/ICRA48891.2023.10160799
https://doi.org/10.1109/ICRA48891.2023.10160799
https://arxiv.org/abs/2404.00186
https://arxiv.org/abs/2404.00186
https://arxiv.org/abs/2404.00186

A
Appendix

This appendix presents the parametrizations and mathematical formulations for the race tracks used
in the experiments. The parameters for each track are summarized in Table A.1. All tracks share a
common rotation and translation operation defined by:


x′

y′

z′

 = Rz(αz)Ry(αy)Rx(αx)


x

y

z

+


xc

yc

zc


where Rx, Ry, Rz denote rotations around the x-, y-, and z-axes by angles αx, αy, αz respectively, and
(xc, yc, zc) is the offset from the origin.

Lemniscate:


x(t) = wx sin(t),

y(t) = wy sin(t) cos(t),

z(t) = 0

Circle:


x(t) = wx sin(t),

y(t) = wy cos(t),

z(t) = 0

Eight:


x(t) = wx cos(t),

y(t) = wy sin(t) cos(t),

z(t) = wz sin(t)

Lissajous:


x(t) = wx sin(axt),

y(t) = wy sin(ayt),

z(t) = wz sin(azt)

t ∈ [0, 2π]

Table A.1: Track Parameters for Experimental Setup

Track αx αy αz wx wy wz xc yc zc ax ay az

Lemniscate 0.0 0.0 0.0 3.635 4.0 − 0.78 0.0 1.9 − − −
Circle 0.0 15.0 0.0 3.0 3.5 − 1.0 0.0 2.5 − − −
Eight 0.0 0.0 0.0 3.0 3.5 1.0 1.0 0.0 2.5 − − −
Lissajous 0.0 0.0 0.0 3.0 3.5 3.0 1.0 0.0 5.0 3.0 1.0 2.0

58

	Acknowledgements
	Abstract
	Introduction
	Background
	Motivation
	Contributions
	Outline

	Related work
	Model predictive approaches
	Game-theoretical planners
	Nash games
	Stackelberg games
	Potential games

	Race design
	Discussion

	Game theory preliminaries
	Solution concepts
	Generalization

	Information structure

	Racing Game
	Formal description
	Assumptions

	Racing rules
	Referee design

	Methodology
	Model components
	Model predictive game - MPG
	Blocking method - MPGB
	Baseline method - MPC
	Lifted method - LMPG
	System architecture

	Experimental Setup
	Simulation environment
	Race tracks
	Starting conditions
	Parameters

	Evaluation metrics
	Performance metrics
	Auxiliary metrics

	Large scale simulation

	Results
	Synchronous racing
	Low speed
	Medium speed
	High speed

	Asynchronous racing
	Low speed
	Medium speed
	High speed

	Extensions
	Accelerating game planners
	Strategic blocking

	High fidelity simulation

	Real-world experiments
	Hardware setup
	Qualitative results

	Conclusion
	Future work

	References
	Appendix

