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Abstract—To ensure safe operation of autonomous vehicles
(AVs), trajectory planners should account for occlusions. These
are areas invisible to the AV that might contain vehicles. Set-
based methods can guarantee safety by calculating the reachable
set, which is the set of possible states, for each potentially
hidden vehicle. A recently published method proved in simulation
experiments to reduce the cautiousness by reasoning about these
occluded areas over time, assuming perfect input data [1].
We present a novel algorithm that uses this reasoning and is
applicable on a real AV with its accompanying uncertainties
and imperfect sensor data. The uncertainties include sensor
errors and noise, computation and communication delays and
control errors in the trajectory following. This is achieved by
modelling the error distributions and accounting for them in
the calculations, where the confidence interval for each error is
exposed as a setting. Experiments indicate that our algorithm
can reduce the traversal time through an intersection by 2.2
seconds with reasoning. An ablation study of the different error
measures shows that the errors in the construction of the field
of view (FOV) limit the performance the most. Reducing the
errors in the FOV construction is therefore the most important
recommendation, besides making the method interaction-aware.

I. INTRODUCTION

Autonomous driving and advanced driver assistance systems
(ADAS) are supposed to have numerous benefits, given the
huge and ever-increasing investments made [2]. One of these
benefits is an increase in traffic safety, given that over 90% of
the accidents are human mistakes [3].

However, before the benefits can be unlocked, the failure
rate of autonomous vehicles (AVs) needs to be reduced. A
common problem are occlusions (Fig. 1), which are unob-
servable areas within the environment of the AV that possibly
contain other traffic participants that are relevant to the trajec-
tory planning of the AV.

There are multiple approaches proposed in the literature to
planning trajectories that account for possible vehicles in these
occlusions. However, only set-based approaches can guarantee
to be legally safe, meaning that the AV will not be involved
in a collision it is responsible for [4], [5].

A recently published set-based method keeps track of the
parts of the environment that are occluded [1]. Over time, it
can guarantee that certain occluded parts of the environment
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are free of vehicles, reducing the area that possibly contains
vehicles and thus the cautiousness. However, this approach has
only been used and tested in simulation, where it provides safe
trajectories by using perfect input data. In the real world, input
data is always imperfect because of errors and noise in the
measurements from sensors like the Lidar. Besides, the real
world adds delays due to computations and communication
and a trajectory cannot be perfectly followed, rendering the
algorithm in [1] unsafe on a real mobile robot.

Our goal is to map the uncertainties inherent to the real
world and generate models describing the noise and error
in the sensors. This will be used to develop an algorithm
that provides safe trajectories for real AVs, while using this
reasoning over time about occlusions from [1].

AV

Reachable set

OcclusionOcclusion

Occluded vehicle

Fig. 1: A scenario with occlusions, occluded vehicles and the
reachable set calculated for these vehicles.

A. Related work

When it comes to trajectory planners that account for occlu-
sions, there are several approaches, one of which is learning
based. Reference [6] trains a controller with reinforcement
learning that decides to accelerate or decelerate in every time
step. However, the tests in simulation indicated that the AV
was still involved in many collisions. This approach was
later extended with a risk-aware reward function [7], which
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significantly reduced the number of collisions. Another option
is to use expert human driver data to make a controller
because it contains plenty of examples of correct driving
behavior. One approach learned a cost function for an MPC
with inverse reinforcement learning [8], but the result was only
demonstrated in a few handcrafted scenarios. The method in
[9] determines the relation between a set of driving behaviors
and a map. However, this method is only applicable to the
map seen during training and simulation experiments reveal
that it struggles with trajectories that are not in the training
set. Besides, none of these methods have yet been implemented
on a real mobile robot or AV.

Another approach is to model the planning problem, in-
cluding occlusions, as a partial observable Markov decision
process (POMDP) and use a solver to find trajectories. The
probabilistic nature of a POMDP allows assigning a prob-
ability to each occlusion for the presence of an occluded
vehicle. This results in comfortable and human-like driving
behavior [10]. Besides, the generic approach of the solver
allows changing the model and cost function to make it, for in-
stance, incentivize a visibility increase [11]. The computational
load of the solver is a significant disadvantage which hinders
real-world implementations, but improvements are made [12].
Nevertheless, there are real-world implementations that work
on simple scenarios [13]. But all the same, a trajectory planner
based on a POMDP can never guarantee safety due to the
inherently probabilistic approach.

Set-based methods, on the other hand, calculate the reach-
able set. The reachable set of a vehicle includes all the states
it can reach at a certain time in the future, when it adheres to
certain legal and physical constraints (Fig. 1). By calculating
the reachable set for any (possibly occluded) traffic participant
and planning a trajectory that avoids these sets, the AV can
guarantee to be safe [4]. This approach was extended to
occluded pedestrians and cyclists and tested on a real AV [5].

Later, a method was developed that reasons about the set
of possible positions and velocities for vehicles in occlusions
[14]. This is achieved by considering only the position of
vehicles along the centerline of the road. As a result, the full
width of the road is considered to be visible when in fact only
the centerline is. This assumption might cause problems for
vehicles not on the centerline of the road or smaller ones, like
motorcycles, and negates the safety guarantee.

Another option is to only reason about the set of possible
positions, but to do this for any 2D position on the road [1].
Although this results in more cautious behavior because the
range of possible velocities is not reduced, it prevents from
making any assumption about the size of other vehicles. Since
our goal is to provide safe trajectories, the reasoning from [1]
will be used for our algorithm.

B. Contributions

Our contribution consists of making a set-based algorithm
using the reasoning from [1] that is applicable on a real AV
and accounts for the errors and uncertainties introduced by the
real-world. More specifically, our contributions are:

1) Modelling the expected error and uncertainty of the
Lidar, state estimation and trajectory following.

2) Using these models to make the algorithm account for
errors and uncertainties in the measurements and delays
in the computation and communication.

3) Performing experiments with a mobile robot to assess
the performance of the developed algorithm and an
ablation study to distinguish the contribution to the
cautiousness of the different errors.

Developing an algorithm that properly accounts for the real-
world uncertainties and assessing its performance, contributes
to the goal of delivering a swift trajectory planner that provides
a legal safety guarantee and is deployable on a real AV.

II. PROBLEM STATEMENT

The algorithm presented in [1], further referred to as
foresee, assumes perfect input data. The goal of this
paper is to develop an algorithm that allows for imperfect
input data and provides the same reasoning as foresee.
To ensure that a trajectory is safe, and the reachable set
really accounts for every possible state, set-based methods
overapproximate the reachable sets in case there is ambiguity.
This overapproximating characteristic should be maintained
in the real world despite uncertainties and delays. To achieve
this, the different sources of errors and delays are mapped
out in section IV. Section V discusses the modelling of these
errors and section VI describes the new algorithm that relies on
these models to account for these errors. The newly developed
algorithm is called foresee++.

Fig. 2: Mobile robot used for the experiments

Section VII covers the experiments performed with a
differential-driven mobile robot (see Fig. 2) running the de-
veloped algorithm foresee++. This robot is the perfect test
bed for the new algorithm, since its sensors provide input data
that is at least as imperfect as seen in real AVs. It sensor suite
consists of a 2D Lidar, IMU and wheel encoders.

III. HOW TO MAKE FORESEE WORK WITH SENSOR DATA

Before diving into the specifics, a general description is
given of foresee. The field of view (FOV) is a polygon
describing the area visible to the ego vehicle, further referred
to as ego. In the initial update step, the occluded part of the
road is the area projection of the set of states for possible
hidden obstacles P0 (see Fig. 3a). In the next update step,
the reachable set R(P0) of the set P0 is calculated for the
time passed between the two update steps (Fig. 3b) and a new

2



FOV
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Vehicle

Occluded
area

(a) Initial update step: the oc-
cluded areas are the area projec-
tion of the set of states of possible
hidden obstacles P0.

(b) Next time step: the reachable
set of the set of states of possible
hidden obstacles R(P0).

(c) The intersection between the
projection of the reachable set
R(P0) and the FOV is removed
from R(P0).

(d) Updated set of states of pos-
sible hidden obstacles P1.

Fig. 3: Visualization of the reasoning performed in foresee

FOV is obtained. The part of the projection of the reachable
set R(P0) that intersects with the new FOV is removed (Fig.
3c), resulting in the updated set of states of possible hidden
obstacles P1 (Fig. 3d). This last figure shows that an occluded
part of the environment is guaranteed to not contain vehicles,
which is the advantage of reasoning.

The reasoning is also given in Eq. 1, where X is the set
of all possible states and projxy(x) is the area projection of a
state x. The last line shows how this reasoning is continued
in subsequent steps.

P0 = {x ∈ X | projxy(x) /∈ FOV0}
P1 = {x ∈ R(P0) | projxy(x) /∈ FOV1}
Pi = {x ∈ R(Pi−1) | projxy(x) /∈ FOVi}

(1)

Foresee does not rely on simulated sensor data, but just
receives the FOV and ego state from the simulation. Besides,
a trajectory is followed by simply assigning the desired state
to the ego. Therefore, the first step is to determine how the
FOV and state of the ego can be calculated from the sensor
measurements and how the motors can be controlled to follow
a trajectory (Fig. 4).

A. FOV

The FOV is constructed from the point cloud that results
from the Lidar measurements. This approach is easy to imple-
ment because it does not rely on obstacle detection, requires
few computations and fits the sensor suite of the robot.

B. State

The odometry is obtained from respectively the wheel
encoders and IMU which are combined in an extended Kalman

State

Trajectory

FOV FOV

State

Lidar

Odometry

Hidden Obstacles
Reasoning

Trajectory
Planning

FOV
Construction

State
Estimation

Trajectory
Follower

Real
Robot Simulation

TrajectoryMotor voltage

Foresee++ with sensor data Foresee in simulation

Fig. 4: Flow diagram that describes foresee with the
simulation input and foresee++ with sensor data input

filter (EKF), the velocity EKF. The odometry is necessary
to smoothly follow a trajectory. Lidar-based SLAM is used
for the localization and is merged with the odometry in the
position EKF to obtain the state. The global localization keeps
the uncertainty on the pose (position and orientation) estimate
bounded, and the EKFs provide a real-time pose estimate
based on all sensors with the accompanying uncertainty.

C. Trajectory

To follow a trajectory, the steering angle control law from
[15] is used together with two PID controllers for the linear
and for the angular velocity. Both the control law and PIDs
are simple controllers that give an upper bound on the perfor-
mance, since AVs normally rely on more advanced controllers.

IV. SOURCES OF ERROR WHEN USING IMPERFECT
SENSOR DATA

When imperfect sensor data is used to calculate the FOV and
ego state, errors are introduced in the calculations. Besides, the
actual state will unavoidably deviate from the trajectory. This
section discusses the sensor and control errors and the delays
that should be accounted for in the trajectory planning.

A. FOV

The FOV is constructed from Lidar measurements, which
consist of a list of angles and the ranges measured at these
angles. This can be converted to a point cloud.

The different sources of error are:

1) the error in the angles and ranges from the Lidar
measurement.

2) the uncertainty in the pose of the ego relative to the road,
and thus the pose of the point cloud.

3) the change of the ego pose during a scan (Fig. 5a).
4) a rotation of the ego opposite to the Lidar, resulting in

a scan with less than 360◦ of the environment (Fig. 5b).
5) the significant delay between the scan and actual use of

the FOV, affecting the validity of the FOV.

3



t0

t1

(a) Movement of the ego dur-
ing the Lidar scan from t0 until
t1 influences the resulting point
cloud.

t0
t1

(b) Movement of the ego might
cause that a part of the envi-
ronment is unobserved by the
scan.

Fig. 5: Two error sources in the Lidar explained

B. State

The state is estimated from the odometry and global local-
ization. Errors are introduced by:

1) uncertainty in the IMU velocity measurements.
2) uncertainty in the wheel encoder velocity measurements.
3) uncertainty in SLAM pose estimate.

C. Trajectory

The occupancy set of a trajectory is calculated by placing
the ego shape at the planned pose for each time step. This is
the area the ego is expected to occupy and is similar to the
area projection of a reachable set. Errors between the actual
and planned pose are introduced because:

1) the ego cannot follow perfectly the planned trajectory.
2) the estimated state, which is used as a feedback signal,

is imprecise itself.
3) a trajectory planned from the state at the beginning of

an update step will already have a significant tracking
error when it is returned at the end of the update step.

V. MODELLING AND MAPPING THE ERRORS

To account for the errors identified in the previous sec-
tion, the error distributions should be determined. The error
distribution in the Lidar measurement and on the trajectory
following are modelled as a function of parameters for which
a Gaussian process is used as described in the first section.
The next subsections describe the errors in the Lidar, trajectory
following, odometry and pose estimation.1

A. Gaussian Processes

Gaussian processes (GPs) are used to model the scalar error
y as a distribution y ∼ N (µ(x), σ(x)2), which is a function
of a parameter vector x. Both the µ(x) and σ(x) are modelled

1The code and data for the error models can be found at: https://github.
com/christiaantheunisse/Foresee-Error-Models.git

by a separate GP to be able to have a heteroskedastic (non-
constant) variance. GPs are nonparametric, their hyperparame-
ters can be optimized using the log-likelihood and they model
the epistemic uncertainty. We will use GPs with either 1 or
2 parameters, further referred to as 1D and 2D GPs. Error
data that is strictly positive can be modelled with a lognormal
distribution by converting the original error data ylog = log(y).

Since inference on a GP is computational costly and time-
consuming, a lookup table is generated for µ(x) and σ(x).
These tables are linearly interpolated for online inference.
The results in Tab. V in appendix A-A show that the error
introduced using the lookup tables is negligible.

B. Lidar error

In general, the Lidar measurement accuracy depends on
the distance to, inclination angle to and reflectivity of the
reflecting object. External factors like sunlight and rain are
also influential. For our implementation, we modelled both
the error in the measured ranges and angles with a 2D GP as
a function of the parameters range and inclination angle. The
parameters are relatively easy to obtain and are expected to
have a considerable influence.

Range
error

Actual measurement

True measurement

(a) Lidar range error

Angle
error

Actual measurement

True measurement

(b) Lidar angle error

Fig. 6: Lidar errors explained

1) Range error: The range error is the distance between
the measured and true range (Fig. 6a). Data about the range
error was obtained by scanning a straight wall and manually
measuring the true distance to it (Fig. 19a in appendix A-B).
The true orientation of the wall is obtained by fitting a
line through the measurements. Using the true position and
orientation, the range errors can be calculated (Fig. 7).

The range errors rapidly increase beyond an inclination an-
gle of 70 degrees. The maximum inclination angle is therefore
set at 70 degrees, and any data with an inclination angle bigger
than this is not included in the model (GP plot in Fig. 20 in
appendix A-B).

The Lidar used in this project does not obtain the inclination
angle, so the dependency on the inclination angle was removed
by assuming the worst-case value at each range.

2) Angle error: The range error is the discrepancy between
the reported angle for a range measurement and the true angle
(Fig. 6b). There are at least two different causes for this error:
1) the error in the orientation of the rotating Lidar and 2) the
divergence of the Lidar beam.

4

https://github.com/christiaantheunisse/Foresee-Error-Models.git
https://github.com/christiaantheunisse/Foresee-Error-Models.git
https://github.com/christiaantheunisse/Foresee-Error-Models.git
https://github.com/christiaantheunisse/Foresee-Error-Models.git


Fig. 7: Range error as function of range and inclination angle.

Angle error data was obtained by scanning an object placed
in different positions on a grid that was aligned with the
Lidar (Fig. 19b in appendix A-B). The biggest angle with a
beam reflecting on the object was compared to the true angle
to the edge of the object. Fig. 8 shows the resulting error
measurements (GP plot in Fig. 21 in appendix A-B).
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Fig. 8: Angle error as function of range and inclination angle

C. Trajectory following error

The trajectory following error is the error between the
estimated pose and the planned pose and is distinguished
into three errors (Fig. 9). A trajectory is a list of poses and
velocities for each step on the planning horizon.

In general, the trajectory following error in a certain state
is expected to depend both on the current and previous states.
This is especially true for the poses, since these form the shape
of the path, which has a significant influence on the error.
The dependency on the previous states asks for a complicated
model and a considerable number of test trajectories.

Therefore, our approach focussed on finding the dependen-
cies between the different errors and the parameters used to
describe a trajectory: velocity, acceleration and curvature. The
acceleration is added because it captures the relation with the

velocity in the previous state, and the curvature describes the
shape of the path.

Two sets of test trajectories are run to collect error data
(more details in appendix section A-C): 1) straight trajectories
with varying accelerations and 2) corner trajectories with
varying curvatures but constant accelerations. This produces
two error datasets, which are used to evaluate the dependencies
and fit the corresponding error model for each error:

• VelAcc: contains data from the straight trajectories for
varying velocities and accelerations and curvature 0.

• VelCurv: contains data for varying velocities and curva-
tures and acceleration 0, obtained from corner trajectories
and straight trajectories parts with acceleration 0.

The error models for the trajectory following errors are 2D
GPs fitted on one of these datasets. Thus, the parameters of the
error models are either velocity and acceleration when using
VelAcc or velocity and curvature when using VelCurv.

RobotPath

Tangent

Goal state

Longitudinal

Error:

Lateral
Orientation

Fig. 9: Trajectory following errors

1) Longitudinal error: The velocity error or the longitu-
dinal error rate is modelled because the trajectory controller
tracks the velocity instead of the position. The longitudinal
error rate mean and variance are both dependent on the
acceleration (Fig. 10a) and the variance also depends on
the curvature and velocity (Fig. 10b and c). Therefore, the
longitudinal error rate model should include the acceleration,
so it is fitted on the VelAcc dataset.

2) Lateral error: The absolute value of the lateral error
is used, which assumes that the error is equally distributed
around zero. As a consequence, the error is strictly positive
and a lognormal distribution fits the data better. The lateral
error measurements are subsampled because they are not i.i.d.,
which violate the GP assumptions (appendix A-C).

Fig. 10e and f show that respectively the lateral error mean
and variance relate with the velocity and the variance also
weakly relates with the curvature. The acceleration data (fig.
10d) is not reliable, since positive accelerations always occur
at the start of a trajectory, while the initial lateral error is 0.
The error model is fitted on the VelCurv dataset because the
relation with the acceleration in VelAcc is unreliable.

3) Orientation error: The orientation error also uses a
lognormal distribution and has been subsampled for similar
reasons (appendix A-C). The mean and variance of the error
strongly correlate with the curvature, while much weaker with
the acceleration (Fig. 10g and h). The variance also has a
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Fig. 10: Trajectory parameters and following errors fitted with 1D GPs to show the correlation.

strong relationship with the velocity (Fig. 10i). Consequently,
the error model is fitted on the VelCurv dataset.

D. Odometry error
The error distribution of the odometry sensors, the wheel

encoders and IMU, will likely depend on the velocity and
acceleration. A proper error analysis method will compare the
true velocity with the measured velocity for a wide range of
velocities and accelerations, and fit a GP. Our approach just
models the error with a constant calibration factor and constant
variance because it is difficult to obtain true velocity values,
especially for the IMU.

For the wheel encoders, the sensor readings were compared
to tachometer measurements for different velocities to obtain
error data. The model is shown in Fig. 26 in appendix A-D.

For the IMU, the orientation over 30 seconds of a constantly
rotating robot reported by the SLAM was used to calculate
the average velocity and compared to the average of the
velocities from the IMU. This gives at least a rough estimate
of the calibration factor. The variance was estimated with the
Mean Square Successive Difference (MSSD) [16] because the
variance cannot be calculated assuming that the mean is the
same for every measurement (Fig. 27 in appendix A-D).

E. Pose estimation error
The pose with its accompanying variance is estimated by the

velocity and position EKF. Both have a tunable process noise

covariance matrix Q that influences the output uncertainty. The
state consists of the position (x, y) and orientation ψ and the
derivatives, resulting in the state vector: [x, y, ψ, ẋ, ẏ, ψ̇, ẍ, ÿ].

The matrix Q of the velocity EKF is tuned in such a way
that it heavily relies on the input data to leave the predictions
to the position EKF. This was done by comparing the in- and
output velocity plots.

The matrix Q of the position EKF should be tuned such
that the estimated uncertainty is at least as conservative as
the actual uncertainty. In general, this can be achieved by
comparing the measured error distribution to the predicted
covariance. More specifically, for a conservatively tuned EKF
it should be true that at least x% of the error values are in the
x%-confidence interval for every value in the range [0, 100].

For our approach, the SLAM poses were used as an approx-
imation of the true poses to calculate the error. The chosen Q
matrices (Tab. VI in appendix A-E) result in the distributions
in Fig. 11 indicating a conservative uncertainty estimation.

Appendix A-E explains that using the uncertain SLAM pose
results in an overapproximation of the actual position error.
This effect is mitigated when the EKF pose uncertainty is
relatively big compared to the SLAM, which is also reflected
by the results for the longer SLAM intervals (Fig. 11).
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Fig. 11: The cumulative proportion of the position and ori-
entation errors plotted against the EKF confidence interval
estimation for different SLAM update intervals.

VI. INNER WORKINGS OF THE FORESEE++ ALGORITHM

This section describes foresee++, which accounts for
the errors described in section IV using the models from V.
The confidence interval to use for each error is exposed as a
setting, since we believe that these values are not engineering
decisions, but should be a result of public debate.

The size of the error ϵ to account for is calculated from
the modelled mean µ, variance σ2 and the desired confidence
interval, the z-score z (Eq. 2). In case a lognormal distribution
is used, the predicted distribution has to be converted (Eq. 3).

ϵ = µ+ z · σ (2)

ϵ = eµlog+z·σlog (3)

A. FOV

The FOV is constructed from Lidar measurements (pseu-
docode in Alg. 1). The first step (line 2) is to ensure that
the scan contains exactly a 360◦ view of the environment. If
necessary, a part of the previous scan is added or a part of
the current scan is removed. This introduces an inherent, but
negligible error as described in appendix B-A.

Next, only 1 in every 5 measurements is used to reduce
the computational effort of the following steps (line 8). The
error for each range and angle is obtained from the Lidar error
models (line 11). In addition, the uncertainty of the ego pose
relative to the road is obtained from the EKF.

To construct the FOV (line 16), the position and orientation
errors are first added to the range and angle errors, respectively.
The angle and range measurements are adjusted to compensate
for the errors (Fig. 12a). Subsequently, the ranges are changed
to account for the maximum inclination angle (Fig. 12b). The
resulting scan is step interpolated in such a way that the FOV
is never overestimated (Fig. 12c), which is particularly relevant
when the resolution of the Lidar is low. Finally, the scan is
converted to 2D points that form the vertices of a polygon.

This polygon is transformed to the road frame using a
different transform for each point to account for the time
passed during the scan (line 22).

Algorithm 1 FOV construction in foresee++

1: define scan = Lidar measurement
2: procedure COMPLETE SCAN(scant, scant−1)
3: if counterclockwise rotation then
4: scancomplete ← scant + part of scant−1

5: else
6: scancomplete ← part of scant
7: return scancomplete

8: procedure SUBSAMPLE SCAN(scan)
9: scansub ← Keep 1 in 5 (angle, range)-pairs in scan

10: return scansub
11: procedure CALCULATE ERRORS(scan)
12: Use the Lidar error models to calculate the range
13: ϵranges and angle errors ϵangles.
14: Get the pose uncertainty ϵpose
15: return ϵranges, ϵangles, ϵpose

16: procedure BUILD FOV(scan, ϵranges, ϵangles, ϵpose)
17: Adjust the scan according to the errors and the
18: maximum inclination angle (see Fig. 12a and b)
19: Step interpolate the scan (see Fig. 12c)
20: Convert the scan to FOV polygon vertices
21: return polygon vertices (in the Lidar frame)
22: procedure DESKEW FOV(scan, transforms)
23: Transform the polygon vertices to the world frame
24: with the appropriate transforms.
25: return polygon vertices (in the map frame)

B. Reasoning about occlusions

The reasoning and its implementation in foresee++ (Alg.
2) is almost the same as in foresee, described in Eq.
1. On the implementation level, the set of state of possible
hidden obstacles P is considered separately for each different
occluded part of the road, referred to as shadows. First, the
reachable set for each shadow is calculated (line 4). Next,
foresee++ accounts for the fact that there is a significant
delay ∆tFOV between a Lidar scan and the use of the FOV.
This is achieved by applying a padding on the FOV similar
to the distance an occluded vehicle can drive in an ∆tFOV

amount of time (line 8). Finally, the intersection with the FOV
is removed from the shadows (line 12).

The calculation of the reachable set is taken from [1], but it
is not interaction-aware. This means that it is possible that the
reachable set of (occluded) vehicles following the ego extend
beyond the position of the ego. This makes it impossible to
find collision-free trajectories and therefore freezes the ego.
As a workaround for the experiments, it was assumed that no
vehicles exist in the starting lane of the mobile robot.
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Range error
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(a) First, the range errors are subtracted from
the ranges. Subsequently, each range is pro-
jected on several adjacent angles, with the
exact number depending on the angle error.
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should respect the maximum inclination an-
gle to account for objects with a too large
inclination angle w.r.t. the Lidar.
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Initial range
New range
Obstacle

(c) Extra (angle, range)-pairs are added to the
scan if necessary to ensure that the FOV is
step interpolated and not linearly, to avoid
intersecting obstacles.

Fig. 12

Algorithm 2 Reasoning about occlusions in foresee++

1: define shadow = area that possibly contains occl. vehicles
2: define ∆tstep = time since last update step
3: define ∆tFOV = delay between scan and FOV use
4: procedure CALC REACHABLE SET(shadows, ∆tstep)
5: for shadow in shadows do
6: Calculate the reachable set for ∆tstep
7: return R(shadows)
8: procedure FOV ACCOUNT DELAYS(FOV , ∆tFOV )
9: dpadding ← vmax ·∆tFOV

10: FOVpad ← Apply a padding of dpadding on the FOV
11: return FOVpad

12: procedure UPDATE SHADOWS(shadowsreach, FOVpad)
13: for shadow in R(shadows) do
14: shadow ← shadow\FOVpad ▷ Set difference
15: return shadowsnew

C. Trajectory planning

A safe trajectory avoids the reachable sets of the shadows
and ends with a safe state. A safe state is defined as a
standstill outside the no-stop-zone, which is, in our case, the
intersection. The trajectory planner (Alg. 3) therefore, starts
with generating velocity profiles that end with zero (line 4).

Since the total planning time is limited, the velocity profiles
are considered one at a time to ensure that there is a safe
trajectory found as soon as possible (line 9). This starts with
mapping the profile along the center of the lane, resulting in
the poses and velocities that form a trajectory.

Subsequently, the errors are obtained for each state using the
velocity and acceleration in each state. The highest curvature
in the trajectory is used for every state to ensure a conservative
error estimation, which has two reasons: 1) the curvature in
one state is expected to influence the errors in subsequent
states and 2) the errors increase with the curvature. The
longitudinal error rate is integrated to get the absolute error,
while the variance is corrected (see appendix B-B). For the
pose uncertainty, the worst-case value encountered during
normal operation is used.

Next, the set of occupancies for each time step is constructed
by placing the ego shape at each planned pose and expanding
it with the errors (Fig. 13). The orientation errors are applied
by calculating the additional length and width.

Lateral traj. error
Longitudinal traj. error
Position local. error
Orientation local. &
traj. error

Fig. 13: Occupancy set construction: the shape of the ego
vehicle is extended with the errors.

If the occupancy set does not collide with the area projection
of the reachable sets of the shadows, it is stored as the safe
trajectory and returned when the planning time is over. The ve-
locity profiles are selected with a branch-and-bound approach
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that selects only profiles faster than the safe trajectory.

Algorithm 3 Trajectory planning in foresee++

1: define v-profile = list of velocities v
2: define vcurrent = current velocity
3: define vnext = planned velocity at end of planning step
4: procedure GENERATE V-PROFILES(vcurrent, vnext)
5: Make trapezoidal v-profiles starting with
6: vcurrent and vnext for the first two velocities
7: return Set of v-profiles
8: trajectorysafe ← empty variable for a trajectory
9: while time left for planning do

10: B&B approach to select a v-profile from v-profiles
11: procedure GENERATE TRAJECTORY(v-profile, lane)
12: trajectory ← Map the v-profile along the lane
13: return trajectory

14: procedure GET THE ERRORS(trajectory)
15: Get the trajectory following errors ϵtraject
16: Get the localization errors ϵlocal
17: return ϵtraject, ϵlocal

18: procedure MAKE OCCUPANCY SET(trajectory,
ϵtraject, ϵlocal)

19: Construct the occupancy set from the trajectory
20: and the errors ϵtraject and ϵlocal (Fig. 13)
21: return occupancy set

22: procedure COLLISION CHECK(occupancy set)
23: Check for collisions with (occluded) vehicles
24: if collision-free then
25: trajectorysafe ← trajectory

26: return trajectorysafe

VII. EXPERIMENTS

We evaluate foresee++ in two parts: 1) experiments that
focus on the cautiousness and 2) an ablation study of the
different error measures. The cautiousness is quantified by 1)
the traversal time until the intersection is crossed and 2) the
gap size between two vehicles necessary for the ego to cross.

Two other mobile robots are used as obstacle cars. Addi-
tional vehicles can be simulated to be able to do experiments
with more than 2 obstacle cars and use a four-way intersection
despite the limited space. The four-way intersection used
consists of 0.5 meters wide lanes which is necessary because
of the errors, 1 meter corners to align with the error models and
a median strip of 0.06 meters (see Fig. 16 for an impression).
The robot hardware is discussed in appendix section C.2

A. Performance experiments

The first series of experiments explore the effect of error
models and reasoning on the performance, resulting in the
following algorithms:

1) baseline: algorithm without reasoning, so the set Pi

is calculated as P0 in Eq. 1 in every update step.

2The code for the algorithms can be found at: https://github.com/
christiaantheunisse/Foresee-the-Unseen-ROS.git

TABLE I: Parameters for the experiments

Parameter Performance
experiments

Ablation
study Unit

Planning frequency 3 3 Hz
Planning Horizon 7.33 6.67 s
FOV range 5 5 m
Ego goal velocity 0.4 0.4 m/s
Obstacle maximum velocity 0.48 0.48 m/s
Maximum acceleration 0.2 0.2 m/s2

Maximum deceleration 0.25 0.25 m/s2

z-values* FOV
Range error 2 2 -
Angle error 2 2 -
Localization position error 2 2 -
Localization orientation error 2 2 -
z-values* occupancy set
Longitudinal traj. follow error 2 2 -
Lateral traj. follow error 1 1 -
Orientation traj. follow error 1 1 -
Localization position error 1 1 -
Localization orientation error 1 1 -
*z-values are the values for z in Eq. 2

2) foresee: algorithm described in section III
3) baseline++: baseline with error measures.
4) foresee++: foresee with error measures.

Each algorithm runs three times on each scenario, unless
otherwise specified, and the parameters are given in Table I.

1) Normal traffic scenarios: The first experiment considers
six normal traffic situations from the 300 scenarios in [1]. Two
with no traversal time improvement, two with a considerable
improvement and two where foresee even finds a gap earlier
than baseline.

Reference [1] uses SUMO [17] to simulate the obstacle cars.
Our intersection layout was converted to SUMO and the start
positions were changed to maintain the same travel time to
the intersection. Subsequently, simulations were run to obtain
trajectories for the simulated and obstacle vehicles.

The traversal times are shown in Fig. 14. Appendix C-A
discusses the statistical significance of each of the time im-
provements using the T-test. In essence, it can be concluded
that for all scenarios, the improvement between baseline
and foresee is significant. For the algorithms with error
measures, scenarios 2, 3 and 6 show a significant improve-
ment.

The biggest advantage for algorithms that reason is achieved
when the ego is waiting for a vehicle that leaves in the
east direction because this vehicle blocks the view of the
adjacent lane for a long period of time. By reasoning, it can
be concluded that the adjacent lane cannot contain vehicles,
giving these algorithms the advantage of not having to wait
until the lane is observable again. This effect results in the
significant difference for scenarios 2, 3 and 6 and is visualized
for the algorithms with error models in Fig. 15a.

In scenario 1 there are two vehicles leaving in the east
direction. Foresee can still gather enough information about
the adjacent lane to have an advantage over baseline.
Foresee++, on the other hand, cannot because the two
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Fig. 14: Traversal times recorded on the normal traffic scenarios during the performance experiments.

vehicles are too close, and the error measures on the FOV
block its sight (Fig. 15b).

In scenario 4, two vehicles are leaving the intersection
at approximately the same time in east and west direction.
Foresee can merge behind the vehicle in the west direction
and has the advantage of reasoning for the vehicle driving east.
However, foresee++ needs more space to merge and while
it is waiting for that, it looses the required information about
the east lane to have an advantage (Fig. 15c).

In scenario 5, the ego has to give priority to a vehicle
driving from north to south. Due to reasoning, foresee
does not have to wait for the vehicle to clear its view
on the west lane, while baseline does. However, due to
the maximum inclination angle and the close distance to
the passing vehicle, the FOV for foresee++ is greatly
reduced. Consequently, it cannot gather enough information
to outperform baseline++ (Fig. 15d).

Besides, a test was performed to find out if the error models
make the ego behave more cautious. Since this requires to
compare more than two distributions, i.e., multiple algorithms
over six scenarios, a two-way ANOVA test was used which
indicates that algorithms with error models are significantly
more conservative than algorithms without (Appendix C-A).

2) Gap size: The following experiment measures the mini-
mum gap size for each algorithm. The gap size was considered
big enough if the algorithm did not fail to cross in the first
three attempts. The results (Tab. II) show an approximately
similar gap size reduction by reasoning for both the algorithms
with and without error models.

3) Parked vehicle: The simulation experiments in [1]
demonstrated that foresee can solve the “freezing robot
problem” (FRP). The goal is to find out if that ability is
retained for foresee++. Therefore, a parked vehicle is

TABLE II: Minimum gap size for performance experiments

Algorithm Gap size (m) Reduction
baseline 3.9 -31%
foresee 2.7

baseline++ 6.7 -30%
foresee++ 4.7

placed to the right of the ego lane and the distance from the
intersection is varied (Fig. 16a).

The different parked vehicle positions are given in Table IV
together with the number of successful crossings out of 7 tries.
The no-stop-zone size is increased in the first setup to create
an even harder scenario, allowing foresee to demonstrate its
capabilities. The no-stop-zone is increased with an additional
0.17 m for the algorithms without the error measures, since
this is the mean distance with which they violated the no-stop-
zone in the normal traffic experiments.

The results (Tab. IV) show that foresee can indeed solve
the FRP, but foresee++ lost the ability. Fig. 16b shows the
reason for this, namely that the error measures for the FOV
make it impossible for the ego to look around the parked car
into the relevant lane before passing the parked car.

B. Ablation study

The ablation study aims to find the contribution of each error
measure, and thus each error, to the increased cautiousness of
foresee++. The ablated versions of foresee++ are:

• foresee++ abl. FOV: does not consider the Lidar
errors, maximum inclination angle, pose uncertainty and
delays in the FOV

• foresee++ abl. Lidar: does not consider the Li-
dar errors, maximum inclination angle and pose uncer-
tainty in the FOV
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Fig. 15: The position of the obstacle cars (yellow boxes with velocity vectors) is updated in real-time, but the shadows (dark
red areas with predictions), trajectory (cyan areas) and FOV (blue area) are updated after the planner computations.

0.15m

d

n

(a) The setup used in the
experiments with the parked
vehicle. d = distance to the
intersection and n = no-
stop-zone size increase.

(b) Foresee++ cannot view the lane
behind the parked vehicle because of the
error measures for the FOV.

Fig. 16: Parked vehicle scenario

• foresee++ abl. local: does not consider the pose
uncertainty in the FOV and occupancy set

• foresee++ abl. traject: does not consider the
trajectory following errors in the occupancy set

• foresee++ abl. delay: does not consider the de-
lays in the FOV

1) Converted experiments: The normal traffic scenarios 1,
2 and 4 are chosen from the performance experiments because
they provide three unique obstacle vehicles configurations. The
resulting traversal times are shown in Fig. 17.

To determine if there are statistically significant differences
among the ablated algorithms, Tukey’s HSD test was used
to do a multiple comparison test. This test is often used and
recommended in the literature as a robust method for post hoc
testing, that is neither extremely conservative nor liberal [18],
[19]. The details of the test results are described in appendix
section C-B, and indicate that the reduction in cautiousness
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Fig. 17: Traversal times average over three runs for the ablation
study on the normal traffic scenarios.

is significantly more for foresee++ abl. Lidar and
FOV than for foresee++ abl. delay and traj. The
performance of foresee++ abl. local is somewhere in
the middle of the two aforementioned groups. This means that
the errors in the perception limit the performance the most.

2) Gap size: The experiments to find the minimal gap were
also done for the ablated algorithms (Table III). The results
show a similar or better performance for the ablations con-
cerning the occupancy set calculation, namely foresee++
abl. local and traject compared to the perception
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ablations foresee++ abl. FOV and Lidar.

TABLE III: Minimum gap size for ablation study

Algorithm Gap size (m)
foresee 2.6

foresee++ abl. FOV 3.9
foresee++ abl. Lidar 4.5
foresee++ abl. local 3.7
foresee++ abl. traject 3.9
foresee++ abl. delay 4.4

foresee++ 4.6

3) Parked vehicle: The ablated algorithms are compared
against a version of baseline++ with similar ablations to
ensure a fair comparison. The results are shown in Table IV.
It can be concluded that foresee++ abl. FOV can solve
the FRP in some scenarios. The data on foresee++ abl.
Lidar indicates that a specific scenario might be found,
where it can convincingly solve the FRP.

TABLE IV: Parked vehicle scenario experiments results

Scenario setup
Distance to intersection (m)* 0.0 0.0 0.1 0.3 0.5
No-stop-zone increase (m)* 0.15 0.0 0.0 0.0 0.0

Algorithm Number of successful passes
out of seven runs

foresee 7 7 7 7 7
baseline 0 7 7 7 7

foresee++ abl. FOV 7 7 7 7 7
baseline++ abl. FOV - 0 7 - -
foresee++ abl. Lidar 0 3 7 7 7
baseline++ abl. Lidar - 0 7 - -
foresee++ abl. local 0 0 0 7 7
baseline++ abl. local - - - 7 -
foresee++ abl. traj 0 0 0 7 7
baseline++ abl. traj - - - 7 -
foresee++ abl. delay 0 0 0 7 7
baseline++ abl. delay - - - 7 7

foresee++ 0 0 0 0 7
baseline++ 0 0 0 0 7

Scenario where reasoning solves the FRP
*These are defined in Fig. 16a

VIII. DISCUSSION

A. Does reasoning reduce the cautiousness?

The performance experiments on the normal traffic scenar-
ios show that foresee++ provides an advantage by reason-
ing in some situations despite the error measures. However, in
other situations this advantage is gone. The gap size scenarios
similarly showed that foresee++ can provide the same
proportional improvement as foresee. This leads to the
conclusion that reasoning still has an advantage despite the
error measures, but the threshold for the available information
is higher and the advantage is mostly all or nothing.

B. Can foresee++ solve the FRP?

Furthermore, it is shown that foresee++ lost the ability
to solve the FRP. However, foresee++ abl. FOV and

foresee++ abl. Lidar (partly) regain the ability to
solve the FRP.

C. Which errors increase the cautiousness the most?

The FRP results lead to the conclusion that the errors in the
perception part of the algorithm are the greatest limitation.
This is supported by the performance of the ablations on the
normal traffic scenarios, since foresee++ abl. FOV and
Lidar both perform significantly better than foresee++
abl. delay and traject. An important footnote is
that foresee++ abl. FOV ablates many error measures
and is expected to perform well in any case. Nevertheless,
foresee++ abl. Lidar shows a similar improvement,
indicating that the perception is the main bottleneck.

This makes the results from the gap size experiments for the
ablated algorithms particularly interesting. Here, the ablations
considering the occupancy set, namely foresee++ abl.
local and traject, are among the best performing ones.
This gives rise to the conclusion that when perception is not
the bottleneck, there is a lot to win by reducing the necessary
margins on the occupancy set calculation.

D. What is the influence of not being interaction-aware?

Besides, it was noticed that the fact that the planner is not
interaction-aware reduces the performance considerably. When
the ego wants to cross an intersection, the reachable set of
nearby vehicles coming from other directions and moving into
the same lane extend from behind over the occupancy set of
the ego. This results in a collision for every possible trajectory
when the other vehicles are too close. This is amplified because
the other vehicles are assumed to drive faster to account for
minor speed violations, meaning that a longer planning horizon
will perform worse. This is supported by the results in Fig.
18, where a longer horizon results in a longer traversal time.
Besides, for a planning horizon of 30 steps, the ego cannot
even pass the intersection because it collides with potentially
occluded vehicles at the boundary of the FOV.
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Fig. 18: Traversal times for an empty intersection for three
runs for different horizons with planning time step 0.33s.

E. What are occlusion tracking problems to solve?

Another problem which is not accounted for, is that the
Lidar very rarely does not have a single detection on an
obstacle car, meaning that the vehicle is completely missed.
Subsequently, a related problem will occur, namely, that due to

12



the reasoning, once the algorithm thinks that the area occluded
by this missed vehicle is clear, it will lose track of this area
and thus of this vehicle. Despite detecting the vehicle again in
the next scan, this area is not re-added and collisions are likely
to happen. This could potentially also happen for a vehicle that
is substantially exceeding the speed limit.

IX. CONCLUSIONS

A set-based planner that properly handles imperfect input
data and reasons about the set of hidden obstacles has been
implemented. The experiments indicate that reasoning still
provides an advantage and is thus worth further development.

Since the perception of the environment which results in the
FOV contains the most limiting source of error, it is probably
the most relevant issue to work on. This can be achieved by
adding other sensors, like a camera, or improving the current
sensors, e.g., implementing a Lidar algorithm that obtains the
inclination angle for each measurement [20].

Another important issue to solve is to adjust the reasoning
process to deal with vehicles the algorithm looses track of.
This could be achieved by adding Lidar detections within the
road boundaries to the set of possible hidden obstacles.

A possibility that will significantly reduce the cautiousness
around other vehicles is to make the algorithm interaction-
aware, like the method in [21]. In this approach, the reachable
set of the (occluded) vehicles is constraint to never extend
beyond the vehicle in front.

Lastly, it has been argued that the confidence intervals for
each error measure should be the result of public debate.
Regardless of the chosen values, the errors will exceed these
intervals occasionally. To be able to make well-informed
decisions, it is necessary to provide information about the
possible consequences and accompanying probabilities for
each error exceedance. For instance, not every underestimation
of the localization error will result in an accident. Besides, this
will also differ for each environment, e.g., highway or urban,
and thus require different settings for each environment.

The suggestions are just a few pointers resulting from this
research to accomplish a reliable and swift set-based algorithm
for trajectory planning in AVs.
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APPENDIX A
MODELLING AND MAPPING THE ERRORS

A. Lookup table errors

Using a lookup table introduces an error. Tab. V gives
the maximum error size found for each of the error models,
indicating that the errors are negligible.

TABLE V: Lookup table errors

Error model Maximum error Average value
µ σ µaverage σaverage

Lidar range [m] 3.24e-7 1.16e-6 0.036 0.0078
Lidar angle [rad] 1.22e-7 3.88e-8 0.0078 0.0057

Trajectory longitudinal
rate [m/s] 1.18e-7 3.01e-8 0.0044 0.054

Trajectory lateral
[log(m)]* 4.97e-7 7.59e-7 -4.86 1.27

Trajectory orientation
[log(rad)]* 1.59e-7 2.00e-7 -4.13 1.17

*these are lognormal distributions

B. Lidar error

The procedure to collect data for the range error of the Lidar
is visualized in Fig. 19a. Similarly, the procedure for the angle
error is visualized in Fig. 19b.

The Gaussian process fits for the range and angle data are
visualized in Fig. 20 and 21, respectively.

C. Trajectory following error

1) Test trajectories configurations: The maximum velocity
of the robot is around 0.6 m/s with a full battery. With a
horizon length of approximately 7 seconds, this results in
trajectories at most 4 meters long. Besides, the acceleration
should be limited to achieve acceleration and deceleration
times similar to a real vehicle. This results in the following
parameters for the test trajectories with varying velocity v,
acceleration a, curvature kappa and length l. The straight
trajectories (κ = 0 m-1) have a trapezoidal velocity profile
with varying velocities (v ∈ {0.25, 0.5} m/s), accelerations
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Lidar measurement

Wall

Maximum range = 5 m

Maximum inclination angle = 70°

Wall distance

(a) Method to collect Lidar range error data

Lidar measurement

Box

Max. incl. angle = 70°

Maximum range = 5 m

(b) Method to collect Lidar angle error data

Fig. 19: The methods to collect Lidar error data

Fig. 20: GP that models the Lidar range error distribution as
a function of the range and inclination angle.

(a ∈ {0.125, 0.25} m/s2) and lengths (l ∈ {0.4, 0.8, ..., 4}
m). The constant velocity trajectories (a = 0 m/s) with a
corner have varying curvature (κ ∈ [0.67, 1] m-1) and velocity
(v ∈ [0.25, 0.5] m/s).

2) Subsampling of the lateral and orientation errors: The
error data consists of 30 measurements per second. However,
the subsequent lateral and orientation error measurements are
each not independent over time because the robot cannot
immediately change its position. However, one of the assump-
tions of the input data of a Gaussian Process (GP) is that it is
i.i.d, so subsampling is needed

The Ljung-Box test [22] relies on the autocorrelation and
provides a formal approach to quantify the probability that

Fig. 21: GP that models the Lidar angle error distribution as
a function of the range and inclination angle.

the data is i.i.d. More specifically, it calculates the probability
of observing similar or more extreme data given that the
hypothesis that the data is i.i.d. is true. A probability smaller
than 0.05 is considered to be too small for the hypothesis to
hold and therefore means that the data is not i.i.d.

Since every test trajectory is a different series, the data
measurements should be subsampled with such a rate that the
data of 95% of all trajectories has a probability bigger than
0.05. By using only 1 in 30 samples for the orientation error
and 1 in 60 for the lateral error, i.e., one per second and one
per two seconds, respectively, the error data of 52 out of 55
test trajectories has a score bigger than 0.05 for both errors.

The error measurements of the different trajectories are
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Fig. 22: Autocorrelation values for each error and dataset
before and after the subsampling.

concatenated for each dataset, and the autocorrelations before
and after the subsampling are shown in Fig. 22. Although
concatenating the trajectories is not strictly proper when
calculating the autocorrelations, it gives an indication of the
independence.

When it comes to the longitudinal error rate, the error rate
depends on the velocity, which changes much more rapidly.
The autocorrelation does not work for the straight start-stop
trajectories (VelAcc dataset), since the acceleration varies
over these trajectories. As a consequence, the autocorrelation
assesses the general trend, which is expected to show a strong
correlation. This is indeed observed in Fig. 22 for the blue
line belonging to the VelAcc dataset.

The Ljung-Box test is therefore only applied for the data
from the corner trajectories, where the velocity is constant.
As expected, the autocorrelation is entirely different for these
trajectories, as shown by the line for the VelCurv dataset in
Fig. 22. This is also supported by the results from the Ljung-
Box test, where all corner trajectories have a probability bigger
than 0.05, rendering subsampling not necessary.

3) The Gaussian process fits of the errors: The longitu-
dinal, lateral and orientation error (rate) distribution fits are
given in Fig. 23, 24 and 25, respectively.

D. Odometry errors

The velocity errors are described with a constant calibration
factor and a variance estimate. The results for the wheel
encoders and the IMU are visualized in Figures 26 and 27,
respectively. For the IMU, the highest MSSD value is used as
the variance estimate, which also belongs to the measurements
with the highest average velocity.
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Fig. 23: GP that models the longitudinal error rate distribution
as a function of the velocity and acceleration.

0.0
0.2

0.4
0.6

0.8
1.0

curvature [m 1] 0.25
0.30

0.35
0.40

0.45
0.50

ve
loc

ity
 [m

/s]

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

er
ro

r [
m

]

GP lateral trajectory following error
mean
variance
data

Fig. 24: GP that models the lateral error distribution as a
function of the velocity and curvature.

0.0 0.1 0.2 0.3 0.4 0.5
velocity [m/s]

0.000

0.005

0.010

0.015

ve
lo

cit
y 

er
ro

r [
m

/s
]

Wheel encoder linear velocity error
raw encoder
calibrated encoder
mean error

Fig. 26: Linear velocity errors and the fitted error distribution
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Fig. 25: GP that models the orientation error distribution as a
function of the velocity and curvature.
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Fig. 27: Angular velocity errors and fitted calibration factor.
The MSSD estimate for each run is also visualized.

E. State estimation

1) EKF noise covariance matrices: The values for the noise
variances are given in Tab. VI for both EKFs. These are the
values on the diagonal of the noise covariance matrices Q.

TABLE VI: Process noise variances for both EKFs.

EKF State variable
x y ψ ẋ ẏ ψ̇ ẍ ÿ

Velocity
EKF n/a n/a n/a 0.01 0 0.1 0.1 0.1

Position
EKF 0.01 0.01 0.01 0.01 0 0.05 0.01 0.01

2) Error introduced by uncertain SLAM pose: Fig. 28
visualizes the effect of using the uncertain SLAM pose to
calculate the error. If both the EKF and SLAM have the true
position at the boundary of the 68% confidence interval, the

confidence interval of the EKF is often overestimated, i.e.,
higher than 68% for almost all positions. Only if the EKF and
SLAM position deviate in approximately the same direction,
the error will be underestimated. This effect is stronger when
the SLAM position uncertainty is relatively big compared to
the uncertainty of the EKF position.

91%

84%

78%

72%

23%

44%

EKF position SLAM position True position Found confidence interval

Fig. 28: The effect of the SLAM position uncertainty on the
estimation of the EKF position accuracy. If both have the true
position at the boundary of the 68% confidence interval, the
confidence interval of the EKF is often overestimated, i.e.,
higher than 68%.

APPENDIX B
INNER WORKINGS OF THE FORESEE++ ALGORITHM

A. FOV construction

Adding a part of the previous scan to create a 360◦ view of
the environment still leaves a small part of the environment
unobserved. Fig. 29 shows that the combination of moving
forward and steering results in a lateral movement. The size
of the lateral movement is the width of the region not observed,
referred to as ϵmerge.

A single scan takes 125 ms to complete. The maximum
linear velocity is 0.5 m/s and the minimum corner radius is
0.25 meters, which is a setting of the trajectory follower. So
during one scan, the robot can travel 14 degrees and 0.0625
meters along this minimum corner radius. This means that the
maximum size of the error ϵmerge is 7.4 mm. For comparison,
the resolution of the Lidar at 5 meters is 2.9 cm.
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ϵmerge

14°

0.25 m

Fig. 29: ϵmerge is the width of the area that is not included
when merging two scans.

B. Trajectory planning

The longitudinal trajectory error rate needs to be integrated
over time to obtain the longitudinal error, which is done
numerically as shown in equation 4. Here is ϵ̇long,i the
longitudinal error rate distribution and ϵlong,i the longitudinal
error distribution. The first state on the trajectory is i = 0,
meaning that the rate in the first state is not considered in the
integration, since the backward Euler method is used. ∆t is
the planning time step of the trajectory.

ϵ̇long,i = N(µrate,i, σ
2
rate,i)

ϵlong,i = N(

i∑
j=1

µrate,j ·∆t,
i∑

j=1

σ2
rate,j ·∆t2)

(4)

However, it is also important to consider the difference
between ∆t and the time interval between the longitudinal
error rate measurements used for the variance calculation,
since a longer time interval results in a lower variance. The
formula to account for this difference and to correct the
variance estimate accordingly, is given in Eq. 5.

The formula is derived from the fact that different time steps
and therefore a different number of integration steps should
result in the same variance for the integrated error. Herein
are ∆trate and ∆ttraj respectively the time step at which the
data is recorded and the time step of the trajectory planner.
σ2
rate is the variance predicted by the model and σ2

traj is the
variance to be calculated that is valid for the integration with
∆ttraj . nrate and ntraj are the number of integration steps
and since the total time is fixed, the following equality holds:
nrate ·∆trate = ntraj ·∆ttraj .

σ2
integral =

ntraj∑
i=1

σ2
traj,i ·∆t2traj =

nrate∑
i=1

σ2
rate,i ·∆t2rate

ntraj · σ2
traj ·∆t2traj = nrate · σ2

rate ·∆t2rate
σ2
traj ·∆ttraj = σ2

rate ·∆trate

σ2
traj =

∆trate
∆ttraj

· σ2
rate

(5)

Provided with this information, equation 4 should be rewrit-
ten to account the time step difference (Eq. 6).

ϵlong,i = N(

i∑
j=1

µrate,j ·∆ttraj ,
i∑

j=1

∆trate
∆ttraj

· σ2
rate,j ·∆t2traj)

(6)

APPENDIX C
EXPERIMENTS

The mobile robot used in the experiments (Fig. 2) is
differential-driven with a Raspberry Pi 4 with an Adafruit
motor HAT to control the two 7.4V powered motors. The
sensor suite consists of wheel encoders, a LSM9DS1 IMU
(Inertial Measurement Unit) and a 2D Slamtec RPLIDAR A1.
A laptop is used to do the computations for foresee++ and
SLAM, and the communication happens over the local Wi-Fi
network. All the software is implemented in ROS 2. The ROS
package robot_localization is used for the EKFs, and
the package slam_toolbox is used for the SLAM.

A. Performance experiments

1) Significance test of traversal time improvements: A
T-test is performed to determine if the traversal time im-
provements per scenario (Fig. 14) between foresee and
baseline and between foresee++ and baseline++ are
statistical significant. A T-test simply compares two distribu-
tions and indicates if the difference between the means is
significant, i.e., a significant improvement. The threshold for
rejecting the null hypothesis is 0.05.

The traversal time difference between baseline and
foresee is significant for all scenarios except scenario 1
according to the T-test results because it has such a high
variance. This is because foresee can find a gap in one of
the runs, leading to a big difference in the traversal time. The
distribution of the traversal times is therefore not Gaussian,
which violates the assumption of the T-test. Replacing this
value with the worst traversal time for foresee on this
scenario, does result in a significant difference according to the
T-test. It is therefore safe to say that the improvement for the
algorithms without error measures is statistically significant
for all scenarios.

When it comes to the algorithms with error measures,
scenarios 2, 3 and 6 show a significant improvement in the
traversal time. The results of the T-tests are shown in Tab.
VII.

2) Significance test of traversal time difference for the
error measures: To assess if adding error measures results
in a significant increase in the traversal time, the algorithms
with reasoning, i.e., foresee and foresee++ and the
algorithms without, i.e., baseline and baseline++ are
compared. The result of the two-way ANOVA for foresee
and foresee++ is F (1) = 64.21, p < 0.05 and for
baseline and baseline++ F (1) = 537.7, p < 0.05. This
clearly indicates a significant increase in the traversal time for
the error measures.
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TABLE VII: T-test results for the normal traffic scenarios in
the performance experiments

scenario t-value degrees of freedom p-value
baseline vs. foresee

1 2.295 0.148 2.009
1 adjusted 12.248 0.001 2.972
2 11.941 0.006 2.083
3 12.558 0.000 4.000
4 5.181 0.035 2.003
5 3.078 0.041 3.684
6 8.773 0.002 3.367

baseline++ vs. foresee++
1 -1.267 0.328 2.101
2 11.917 0.001 3.492
3 5.999 0.024 2.090
4 -0.241 0.828 2.504
5 -1.392 0.272 2.561
6 10.191 0.001 3.392

B. Ablation study

As described in section VII-B, Tukey’s HSD was chosen
as the multi comparison test (MCT). Where an ANOVA can
only tell that a certain quantity (e.g., algorithm type) exhibits
a significant correlation with the results, an MCT also makes
pairwise comparisons among all groups within this quantity
(i.e., between each pair of two different algorithms).

The traversal time improvements are compared to the worst-
case performance of foresee++ for each scenario. These
are used to normalize the results for the different scenarios
and allow comparing the results for multiple scenarios. The
Tukey’s HSD test results indicate a statistical significant dif-
ference between foresee abl. Lidar and FOV on the
one hand and foresee abl. delay and traj on the
other hand, where the former are less cautious. Foresee
abl. local did not have a significant difference with any of
the other algorithms, which aligns with the visually observed
result that its performance is somewhere in between the two
aforementioned groups of algorithms (Fig. 30). The results of
the test are given in Table VIII.

TABLE VIII: Tukey’s HSD test results for the ablated algo-
rithms on the normal traffic scenarios.

Compared foresee++ versions mean
difference

adjusted
p-value

is
significant

abl. delay abl. fov 2.848 0.0004 X
abl. delay abl. Lidar 2.165 0.0099 X
abl. delay abl. local 1.109 0.3955
abl. delay abl. traj -0.098 0.9999
abl. fov abl. Lidar -0.683 0.8051
abl. fov abl. local -1.740 0.0565
abl. fov abl. traj -2.946 0.0002 X
abl. Lidar abl. local -1.057 0.4436
abl. Lidar abl. traj -2.263 0.0064 X
abl. local abl. traj -1.206 0.3119
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Fig. 30: Distribution of the traversal time improvements for
the different versions of the ablated algorithms. The difference
between the algorithms in the blue and orange groups is
statistical significant, according to Tukey’s HSD test.
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