
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Visualizing Testsuites to Aid
in Software Understanding

Bas Cornelissen, Arie van Deursen, Leon Moonen
and Andy Zaidman

Report TUD-SERG-2006-003

SERG

TUD-SERG-2006-003

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2006, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Visualizing Testsuites to Aid in Software Understanding

Bas Cornelissen1, Arie van Deursen2, Leon Moonen2, and Andy Zaidman1

1Delft University of Technology – s.g.m.cornelissen@tudelft.nl, a.e.zaidman@tudelft.nl
2Delft University of Technology and CWI – Arie.vanDeursen@tudelft.nl, Leon.Moonen@computer.org

Abstract
Agile software development methods such as eXtreme Pro-
gramming have brought renewed attention to testing during
the software development process, both as a quality assurance
method and as a form of live documentation. It is for this rea-
son that a software system’s testsuite is an ideal starting point
for gaining knowledge about its inner workings. In this paper,
we propose to use sequence diagrams to visualize informa-
tion that is dynamically obtained from testsuites. We employ
abstraction techniques such as constructor hiding and stack
depth limitation to make the diagrams more scalable. We use
JPACMAN as a case study to validate our results by consult-
ing with domain experts, and use their feedback to fine-tune
our techniques.

1. Introduction

When implementing and maintaining software systems, test-
ing is of vital importance. The advent of Agile software de-

velopment methods such as eXtreme Programming (XP) [4],

Scrum [28] and DSDM [30] has ensured that testing is given

much attention. In these processes, testing serves two dis-

tinct purposes. Not only is testing considered to be essential

when implementing and maintaining software to help increase

the quality and correctness of code, but (unit) tests are also

a means of documentation [10, 18, 19, 9, 11]. Test-driven

development [5], which is related to Agile software devel-

opment, implies creating and maintaining an extensive test-

suite in order to guarantee that the various components work

correctly, both individually (by means of unit tests) and as a

whole (through use of acceptance tests).

Various testing methodologies have been devised for a

broad range of programming languages. Among these

approaches are the well-known xUnit frameworks that

were originally based on the JUNIT design by Beck and

Gamma [6]. JUNIT allows for the specification of both unit

tests and acceptance tests, and is relatively easy to use. A

JUNIT testcase consists of several steps: the creation of a fix-

ture, exercising the method(s) under test, comparing the re-

sults (i.e., assertions), and the teardown. Typically, a set of

testcases is run as a testsuite.

Visualizing testsuites Although most testcases might seem

easily comprehensible at first sight, they quickly tend to be-

come relatively complex for someone who wants to have a

look “under the hood”. When considering object-oriented sys-

tems, typically there are lots of interactions taking place be-

tween many objects, thus hindering comprehensibility. There-

fore, we propose to visualize testcases in a way that is suffi-

ciently detailed for comprehension purposes and, at the same

time, remains human readable. As such, the general approach

we follow can be described as either analyzing or tracing the

testcases, applying certain abstractions and, finally, present-
ing the results. Such visualizations can be extremely helpful

in the context of Agile software development, in which tests

serve as documentation.

UML sequence diagrams [20, 27] are a useful means to

visualize a system’s behavior [22]. A scenario diagram is a

somewhat simplified version of a sequence diagram that de-

scribes a single scenario, i.e., depicting one particular flow of

control. Scenario diagrams provide detailed information on

interactions at either the class level or the object level, and are

easy to read because the chronological order is intuitive. How-

ever, if no abstractions are applied, scenario diagrams tend to

become too large: the complete execution of a sizeable soft-

ware system would result in a scenario diagram that contains

more information than the reader can handle [23].

Goal In general terms we want to gain more knowledge about

the system at hand, while the ultimate goal is to facilitate the

implementation of change requests. We propose that users

build up this knowledge by studying reconstructed scenario

diagrams from JUNIT testsuites. Our choice for using test-

cases as scenarios is inspired by three major factors: (1) XP

and Agile software development in general advocate the use

of tests as a form of documentation [18, 19, 9, 11], (2) finding

relevant scenarios for executing software and performing dy-

namic analysis on them (e.g., constructing visualizations) is

not straightforward when domain knowledge is lacking [33],

and (3) scalability problems can in part be overcome by the

careful selection of relatively concise execution scenarios, i.e.,

testcases. This also fits in the as-needed reverse engineering

strategy that is often advocated in dynamic analysis [33].

Research Questions To structure our investigation towards

these goals, we define the following research questions:

• Are tests as typically written in JUNIT a suitable starting

point for program comprehension?

• Do scenario diagrams obtained from these tests offer in-

SERG Cornelissen et al – Visualizing Test Suites

TUD-SERG-2006-003 1

sight in the way the application works?

• Which abstractions do we need to make these diagrams

more easily understandable?

• JUNIT can be used to write tests focused on one class or

method (which are true unit tests), as well as for creating

high level testcases which act more like system or ac-

ceptance tests. Should these be treated differently when

leveraging testsuites for program comprehension?

In order to address these questions and to validate our tech-

niques, we conduct an extensive case study on JPACMAN, a

game written for educational purposes, that is a very suitable

case since it features a large testsuite. By consulting the de-

velopers we aim to collect useful feedback, particularly with

regard to (generic) abstractions that are needed in this context.

This paper is structured as follows. The next section out-

lines the issues and design choices. Section 3 presents our

Scenario Diagram Reconstruction (SDR) framework. Sec-

tion 4 discusses the prototype implementation that was used

for the case study in Section 5. Related work is described in

Section 6, and we conclude with Section 7.

2. Design Options and Requirements
In the course of converting testsuites to scenario diagrams,

we face several challenges. This section addresses the most

prominent issues and requirements.

2.1. Design Options
Static vs. dynamic In obtaining scenario diagrams from

testcases, we can choose whether to capture the system’s be-

havior by means of static analysis (i.e., analyzing the code)

or through dynamic analysis (i.e., tracing the execution). The

well-known benefits of a static approach are the genericity and

compactness, whereas a dynamic technique potentially offers

more details on important aspects such as late binding.

A frequently mentioned drawback of dynamic analysis is

that one needs specific scenarios to exercise the system. These

scenarios, however, come for free when using testcases to

drive the comprehension process. Another drawback of dy-

namic analysis is that the information derived represents only

part of the system’s behavior. We take the position that in our

context, having more detailed information pertaining directly

to testcases is to be favored over genericity.

Recognizing stages in a scenario The second issue that

arises is how one can distinguish between particular stages
during the execution of a scenario. In particular, we are inter-

ested in recognizing the various stages in executing a testcase,

i.e., the test initialization, test execution, result validation and

teardown1. Being able to separate these stages provides a

more focused view on the execution of a testcase and allows

the viewer to skip a stage (if desired), or to put it in a separate

1The earlier naming conventions for these stages were replaced by anno-

tations in JUNIT v4.

diagram. Furthermore, as we will see later, recognizing which

methods and objects play a role in the various stages allows

for particular filtering and abstraction techniques. For exam-

ple, the assertions made during the result validation stage of a

(unit) test are generally of less interest in the context of com-

prehending the inner workings of a software system.

Class vs. object level Another design choice concerns

whether we want to trace the interactions at the class level

or at the object level. The former is easier because it does

not require an administration of all runtime objects, whereas

being able to distinguish between objects provides detailed

information on object interactions, and exposes occurrences

of polymorphism and late binding, which is very suitable for

display in scenario diagrams. However, with diagrams at the

class level already being susceptible to size problems, one will

definitely encounter scalability issues with additional object

information.

Scalability Despite the fact that (in general) the execution

of a unit test is relatively short, scalability problems are in-

evitable. Most simple unit tests will probably fit on a single

or a limited number of “screens”, but more complex testcases

(i.e., acceptance tests) induce too many interactions to simply

put in a diagram without applying any form of abstraction.

Therefore, we will need abstraction and filtering techniques

that are both efficient and useful: we must determine which

interactions are presumably irrelevant and can therefore be

combined or omitted for an initial view.

2.2. Design Requirements
In order to create a flexible and generic tool that can aid in the

understanding of a variety of software systems, we define the

following requirements:

Obliviousness The system-under-analysis should not require

any changes to its implementation to enable its examination.

Extensibility The framework should allow addition of new

or customized (1) event listeners to capture (dynamic) system

behavior, (2) abstraction and filtering techniques to combine

or omit information, and (3) output renderings to facilitate

flexible visualization and embedding in other environments

(e.g., a software development environment like Eclipse).

Interactivity The framework should allow interactive ex-

ploration of reconstructed diagrams. We take the position that

a human in the loop is required since no automated analy-

sis can capture which improvements in comprehensibility are

achieved by employing certain abstractions or filterings. The

user should remain in control of the level of detail.

Comprehensibility When talking about generating “under-
standable” sequence diagrams, we need criteria that capture

comprehensibility. The following two properties, taken from

the realm of visual programming languages, seem appropri-

ate to determine when a diagram is understandable [32]: (1)

Accessibility of related information. Viewing related informa-

tion in close proximity is essential. When two screen objects

are not in close proximity, there is the psychological claim

Cornelissen et al – Visualizing Test Suites SERG

2 TUD-SERG-2006-003

execution
trace modeltest case

model
transformation

scenario
diagram model

scenario
diagram

instrumented
execution

abstractions

visualization

Figure 1. Overview of the SDR framework.

that these objects are not tightly related to each other or are

not dedicated to solving the same problem; (2) Use of screen
real estate. The term “screen real estate” refers to the size

of a physical display screen and connotes the fact that screen

space is a valuable resource. Making optimal use of the avail-

able screen real estate is necessary to save the user time when

locating information.

3. SDR Framework

Based on the design options and issues discussed earlier, we

have designed a framework for Scenario Diagram Reconstruc-

tion (SDR). Figure 1 provides an overview. It is an extensi-

ble framework in that there is a clear separation between the

tracing part, the abstraction part and the rendering of scenario

diagrams. In the remainder of this section we will discuss and

motivate various features of the framework.

3.1. Tracing testcases

There exist several methods to obtain traces from software

systems, among which the most commonly used are manu-

ally instrumenting code (e.g., [2]), using a debugger or pro-

filer [34], and instrumentation through aspects [1]. The ad-

vantages and shortcomings of each of these techniques are

mostly well-known (and, for example, discussed in [33]).

Our framework uses AOP (Aspect Oriented Programming)

since aspects offer a very flexible solution in this context.

Moreover, using AOP satisfies our requirement of oblivious-

ness: the system-under-analysis does not require any changes

to enable its examination. Aspects allow us to specify very

accurately which parts of the execution are to be considered,

where tracing must start and stop, and what postprocessing

needs to take place. In addition, aspects can obtain detailed

information on all interactions, such as the unique objects that

are involved, the runtime arguments, and the actual return val-

ues in case of method and constructor calls.

Finally, most aspect languages allow for patterns in the def-

inition of which classes and interactions are to be traced (i.e.,

pointcuts). This enables us to distinguish between the various

stages in a testcase by exploiting the naming conventions or

annotations used for these stages within xUnit frameworks.

Our traces are captured in a common format describing the

events that can take place during the execution of a system.

Figure 2. Trace metamodel.

We make a distinction between the beginnings and endings of

method calls, static method calls and constructor calls. An

execution trace consists of a set of events, each type of event

having its own characteristics. Associated with each method

start, for example, is a method identifier, two objects (i.e., the

caller and the callee), a signature, and zero or more (runtime)

parameters; A method end-event features a method identifier

and the actual return value.

Figure 2 shows the model describing our traces. Note that

due to space constraints, details for static method calls and

constructor calls were omitted, but these are similar to those

of the regular calls that are shown in the figure.

3.2. Abstraction and Filtering
In order to make large scenario diagrams easier to read, we

need several abstraction and filtering techniques to reduce the

amount of information. In the context of scenario diagrams,

one intuitively thinks of omitting or joining objects, classes

or combining interactions to shrink the dimensions of the di-

agram. But which messages and objects can be removed or

combined while ensuring that the essence of the testcase is

preserved? Below, we collect and discuss a catalog of ab-

stractions and filterings that we have defined in the context of

test-scenario diagrams.

• Constructor hiding. Omit all constructors and their con-

trol flows. This is especially applicable in the initializa-

tion stages of complex testcases.

• Selective constructor hiding. Omit irrelevant construc-

tors, i.e., those pertaining to objects that are never used.

This allows reduction of the diagram’s dimensions with-

out loss of essential information. The selection in one

particular stage can also be based on objects that appear

in certain other stages of the scenario. This can, for ex-

ample, be used to filter objects created for result valida-

tion in testcases.

• Maximum stack depth. Omit all interactions that occur

above a certain stack depth threshold. Intuitively, this fil-

ters low level messages that tend to be too detailed, at

SERG Cornelissen et al – Visualizing Test Suites

TUD-SERG-2006-003 3

Figure 3. Reconstructed scenario diagram at a low
abstraction level.

least for an initial viewing. This is illustrated by Fig-

ures 3 and 4. A similar abstraction was applied in [25],

in which (in a static context) the length of a call chain is

considered.

• Minimum stack depth. Omit all interactions below a cer-

tain threshold, i.e., remove high-level interactions. This

can be used to omit “control messages” that start up a

certain scenario.

• Fragment selection by using stack depths. Choose a set

of methods of interest and, by selecting appropriate min-

imum and maximum stack depths, highlight its direct en-

vironment. Method selection can e.g. be done using the

techniques described by Zaidman et al. [34].

• Fragment selection by zooming. Zoom in on areas of

interest [29].

• Pattern recognition. Summarize recurrent patterns [22,

31]. Patterns may be identical or very similar (sets of)

method calls.

• Object merging (clustering). Merge lifelines of closely

related (or manually selected) objects, thereby hiding

their mutual interactions [24].

• Colors. Use color techniques (e.g., graying out, or using

different colors for various fragments) to “distinguish”

between (ir-)relevant parts [29].

• Getters and setters. Omit simple getters and setters. We

will see this abstraction applied in the case study.

Figure 4. Reconstructed scenario diagram at a high
abstraction level.

• Textual techniques. (1) Omit return values in case of void

methods, (2) abbreviate full parameters, and/or (3) ab-

breviate return values.

4. Implementation

The design mentioned in the previous section has been imple-

mented in a prototype tool, which we call the Sequence Dia-
gram Reconstruction (SDR) tool. It is entirely implemented

in Java and AspectJ and was used to conduct the case studies

described later in the paper.

Scenario diagram model The scenario diagram metamodel

that we use is loosely based on the UML standard for se-

quence diagrams [20]. It is a simplified version in that we do

not focus on genericity: a scenario diagram corresponds with

the execution of one particular scenario (one testcase). As

such, constructs such as conditions and repetitions are omitted

in our model, whereas detailed information such as runtime

parameters and actual return values are included in each dia-

gram. A distinction is made between various types of events.

The model is depicted in Figure 5, and illustrates that we

define a scenario diagram to be a sequence of messages be-

tween objects. Each message is associated with a correspond-

ing method, has zero or more actual parameters and possibly

a return value.

Tracing Tracers are implemented by specializing the abstract

tracing aspect AbstractTracer that specifies the common (de-

fault) behavior. Upon initialization, it starts an event listener

Figure 5. Scenario diagram metamodel.

Cornelissen et al – Visualizing Test Suites SERG

4 TUD-SERG-2006-003

and contains only one advice: it notifies the current listener

before and after the startingPoint() pointcut is encountered.

In case of testsuites, this pointcut is useful for defining a test-

case’s toplevel methods. This pointcut, along with pointcuts

for the events that need to be traced and the type of listener, are

all abstract and defined in specific tracers for specific cases, so

as to provide maximum flexibility.

The prototype currently offers several “stock” tracers that

can be extended for specific cases, e.g., SimpleTracer for cap-

turing basic method and constructor calls and ObjectTracer

for doing so while distinguishing between objects. As an ex-

ample, consider the occasion in which one merely wants to

capture all method and constructor calls. In this case, the

SimpleTracer must be extended in a custom tracer that con-

tains definitions for the abstract pointcuts (see Listing 1).

import sdr.tracers.SimpleTracer;

public abstract aspect CustomTracer extends SimpleTracer {

protected pointcut theConstructors() :
call(org.package..*.new(..));

protected pointcut theCallers() :
call(* org.package..*.*(..));

protected pointcut startingPoint() :
execution(* org.package..*.myStartMethod(..));

}

Listing 1. Extending an existing tracer to capture
method and constructor calls.

Listening to events Attached to each tracer is an event lis-

tener. In event listeners, one can define how to process the

captured events. They implement the EventListener inter-

face and, as such, define routines for starting and stopping the

listening phase, and processing generic events.

Our prototype features listeners that perform various tasks,

among which are simply printing all events, writing trace-

files, and gathering statistics. Selecting a certain event lis-

tener is done by extending the tracer containing the pointcuts

and specifying the listener of choice.

Handling testcases For the purpose of tracing testcases,

our framework includes a tracer, PerStartTracer, that dis-

tinguishes between toplevel methods, i.e., the testcases in a

testsuite. It is an extension to the ObjectTracer and, as such,

identifies unique objects. It is extended by a custom tracer,

in which the startingPoint() is typically defined as a pattern

that matches testclasses that have ”Test” in their names. This

way, the listener will be informed whenever a (new) testcase

in a testclass is executed.

The SequenceListener is responsible for turning trace

events into scenario diagrams. It keeps track of all method

and constructor calls and performs the mapping between the

trace metamodel and the scenario diagram metamodel. The

output consists of a collection of scenario diagrams: one dia-

gram for each of the toplevel methods in the testcases that are

being executed.

5. The JPacman Case Study
The objective of the JPACMAN case study is to validate our

approach, i.e., to verify the usefulness of visualizing testcases,

which abstractions are needed, and under which conditions

these are to be applied.

We will try to find answers to such questions by studying

the JPACMAN application and its testsuite. It is a fairly simple

Java (1.5) application consisting of approximately 20 classes

and 3000 lines of code, which implements a rudimentary ver-

sion of the well known Pacman game. JPACMAN is used for

teaching purposes in a software testing course at Delft Univer-

sity of Technology. In their lab work, students have to extend

both the testsuite and the functionality of JPACMAN using a

test-driven / test-first approach, and making use of such tools

as Eclipse, Ant, and the code coverage tool CLOVER 2.

JPACMAN features a JUNIT testsuite of approximately

1000 lines of code. The testcases have been derived systemati-

cally using various strategies mostly obtained from Binder [7],

including branch coverage (100%), exercising domain bound-

aries at on points as well as off points, testing class diagram

multiplicities, deriving tests from decision tables (describing,

e.g., whether moves on the board are possible), and state and

transition coverage (in the state machine describing the over-

all game behavior). The testsuite consists of 60 testcases in

total, divided over 15 high level acceptance tests exercising

the top level public interface only, as well as 45 class level

unit tests, all implemented in JUNIT (version 4.1).

We have investigated the role that scenario diagrams recov-

ered from these testcases can play when implementing two

change requests into JPACMAN. The first is adding an undo
feature to JPACMAN, so that users can get back to life if they

missed a food element or unintendedly bumped into a mon-

ster. Relevant testcases include moving a player or a monster,

as well as losing a game. The second change request is turning

JPACMAN into a multi-level game including a stack of mazes

growing in complexity. Relevant testcases here deal with win-

ning and restarting the game with a different board.

We used SDR to derive scenario diagrams from all 60 test-

cases, and analyzed them in light of the above change scenar-

ios.3 Below we describe our findings, formulate a number of

observations, and establish a connection between the scenario

diagrams and program comprehension.

5.1. Unit Tests
Dynamically obtained key statistics for the JPACMAN case

study are shown in Table 1, including such data as the number

of constructors, objects and methods, as well as the maximum

and most common stack depth.

The data presented was derived from the actual tests them-

selves, e.g., it does not include the setup phase, in which the

2http://www.cenqua.com
3A selection of these diagrams has been included in the most recent JPAC-

MAN distribution.

SERG Cornelissen et al – Visualizing Test Suites

TUD-SERG-2006-003 5

Unit Tests Acceptance Tests
Min Max Median 0.75-Perc. Min Max Median 0.75-Perc.

Constructors 0 22 1 1 0 543 1 3

Methods 2 177 13 43 55 1,791 73 170

Objects 1 32 4 8 39 578 13 14

Max. depth 1 7 4 5 7 9 8 8

Most common depth 1 5 1 3 3 6 5 6

Table 1. Key statistics for the JPACMAN case study.

fixture is created in which the method under test can be in-

voked. For that reason, the number of constructors is much

lower than the amount of objects involved.

A first observation from this table is that most unit tests are

fairly simple in terms of the number of objects and method

calls. Half of the unit testcases use four or less objects (me-

dian 4), and three quarter of the testcases use fewer than 8

objects (0.75-percentile). Likewise, three quarters of the test-

cases have fewer than 43 method calls.

Observation 1. Without any abstractions, three quarters of
the unit testcases result in scenario diagrams that are small
enough to be comprehensible.

A typical example of such a small diagram is shown in Fig-

ure 6. The diagram shows how the test method first occupies

a given cell, and then verifies that the result is as desired, i.e.,

that the inhabitant of the cell is indeed equal to the food item

that was placed there. By studying this diagram (and those of

the related testcases), one can learn to understand how moves

are implemented (i.e., by means of double dispatch), making

it an excellent basis for implementing an undo functionality.

A more complex example, that just falls within the 0.75

percentile, is shown in Figure 7. Although the diagram is

full, it is still useful for one of our change requests, namely

adding undo functionality. The diagram at hand illustrates a

basic player move, which involves creating a Move object that

is linked to the source and target cells, followed by the invo-

cation of the apply() method to actually conduct the move

(here, the Command design pattern is used [12]).

While Figure 7 is understandable in itself, it also demon-

strates several opportunities for applying abstractions:

• The diagram contains several simple getters, which just

result in an self-arrow to the currently active lifeline.

Since these do not illustrate any object-interaction (un-

Figure 6. Sequence diagram for a typical unit test.

less they result in nested calls), these can usually be

safely omitted.

• The diagram contains several recurrent patterns. For ex-

ample, there are four fairly large blocks in which the first

three objects interact in order to determine the current

state of the game (which may affect whether the move

is allowed at all). All four blocks contain the same se-

quence of calls and interactions, and there is no need to

unfold them all.

• The diagram includes the interactions for conducting the

move, as well as for asserting that the move was indeed

applied successfully. In understanding how moves are

implemented, there is no need for the detailed interac-

tions involved in checking the results. Omitting all inter-

actions obtained from JUNIT’s assert methods results in

leaving out (or summarizing) two of the repeated blocks

mentioned above.

Observation 2. The abstractions “Omit Getters”, “Collapse
Recurrent Patterns”, and “Omit Asserts” can be applied with-
out loss of essential information required for change requests.

With these abstractions in place, the scenario diagrams for

most JPACMAN unit tests become sufficiently small. While

this will not be the case for all unit testcases in general, we

expect a similar result to hold for other systems:

Observation 3. The abstractions in Observation 2 are suffi-
cient to make 90% of the scenario diagrams of unit testcases
understandable.

A final observation that should be made concerning the

unit tests, is that according to the XP and test-driven method-

ologies, tests should run instantaneously. That is, it should

be possible to run the full testsuite within several seconds at

most, in order not to discourage developers from running the

tests continuously. Performance, scalability, system, or accep-

tance tests that take longer should not be included in the unit

testsuite, but in a different suite that should be run at regu-

lar intervals (one or more times per day) automatically on the

basis of a checkout from the revision system.

As a result, we actually expect such metrics as the num-

ber of objects and methods involved in unit tests to be low. In

the JPACMAN case, we encountered several testcases in which

these metrics were unexpectedly high. The reason turned out

to be an error in the loading of maps: the default map (inher-

ited from a superclass of this testcase) was always loaded first,

Cornelissen et al – Visualizing Test Suites SERG

6 TUD-SERG-2006-003

Figure 7. Sequence diagram for a player move.

Stack depth 1 2 3 4 5 6 7 8 9

Frequency 13 29 105 210 614 1035 245 88 4

Table 2. Depth frequencies in one of the acceptance
tests.

and then immediately overwritten by a custom map. Since the

default maze was large, and the custom map was deliberately

chosen to be small for testing purposes, this was easily seen in

the metrics, i.e., the number of constructors involved. While

the code was exercised by the testcases, the unnecessary load-

ing was never observed, so no failure was generated.

Observation 4. Dynamically obtained testcase metrics can
help to identify faults and refactorings.

5.2. Acceptance Testing
When looking at acceptance tests, obviously the figures are

substantially larger than those of the unit tests. This is due

to the many interactions taking place, and the fact that these

tests require more elaborate fixtures, i.e., more objects. This

is illustrated by the rightmost portion of Table 1.

However, the figures for the tests would have been far

greater had the test stages not been separated. This holds true

especially for the acceptance tests, as in JPACMAN these re-

quire the construction of large fixtures, e.g., a map with certain

dimensions.

Observation 5. Separation of the testcase stages leads to
more readable diagrams without loss of essential information.

By filtering out these phases, we get a smaller diagram en-

abling us to fully concentrate on the testcase that is being ex-

ecuted. In case the viewer is interested in the initialization or

the assertions, it can be viewed in a separate diagram.

Observation 6. In the light of Observation 5, half of the
acceptance tests lead to readable scenario diagrams without
use of abstractions.

Among the 15 acceptance tests is a relatively large test-

case (543 constructors and 1,791 methods) that involves sev-

eral consecutive movements and game restarts, making it the

most complex testcase by far. If we look closer at the metrics

for this testcase – the stack depth frequencies in particular –

we get the figures of Table 2.

Based on these metrics and an initial viewing, we applied

two abstractions: hiding the control flow of constructors, and

limiting the stack depth to 2 (Figure 8). This diagram effec-

tively depicts the essence of the testcase at hand: instantiat-

ing the Pacman-class (which would normally induce a large

amount of interactions), starting the Engine, and conducting

the moves. For a more detailed view, one can set the maxi-

mum stack depth to 3, resulting in a diagram that (according

to Table 2) features approximately 100 more calls. It is from

these detailed diagrams that the necessary information can be

SERG Cornelissen et al – Visualizing Test Suites

TUD-SERG-2006-003 7

Figure 8. Scenario diagram with a max. stack depth
of 2.

derived for gaining insight into the procedure that concerns

loading maps: using this knowledge, the change request re-

garding multiple maps can be facilitated.

Observation 7. Using more advanced abstractions such as
stack depth limitation and hiding control flows of construc-
tors, all acceptance tests lead to readable scenario diagrams.

5.3. Discussion

The JPACMAN case has taught us several lessons.

First of all, the dynamically obtained scenario diagrams

contain lots of detail, such as runtime parameters, actual re-

turn values, and occurrences of late binding. While this is use-

ful, especially for change requests that require detailed knowl-

edge, we often get diagrams that are too large to comprehend.

This holds true especially in the case of acceptance tests, mak-

ing abstractions essential in this context.

Separating the testcase stages was clearly a useful measure,

as most scenario diagrams became significantly smaller when

leaving phases (e.g., the setup) to distinct diagrams.

Several abstractions have been succesfully applied in view-

ing the diagrams obtained from the JPACMAN testsuite. Hid-

ing constructors, omitting assertions and stack depth limita-

tion have proven useful to shrink the diagrams without losing

the essence of the testcases at hand. The viewer is constantly

in control of these abstractions and, by changing the diagram’s

specifications, can always adjust the abstraction parameters

and regenerate the diagram.

With many of the proposed abstraction techniques, how-

ever, it is preferable to use them in an interactive fashion,

i.e., apply them on-demand. One could think of making mes-

sages and objects clickable, and subject to (un-)folding. Using

metrics to automatically apply abstractions is a good starting

point, but the viewer must ultimately be in control of which

information to show and which to hide.

Each testcase that we have treated in our study was a re-

view, resulting in improvements in both our technique and the

testcases at hand. Various mistakes (such as duplicate setups)

were exposed and have been resolved in the next version.

Threats to validity The case study that we conducted has

some limitations that hinder the generalization of any conclu-

sions. First, in spite of its extensive testsuite, JPACMAN is

a relatively small system. While certain conclusions and hy-

potheses can be drawn from the results, they may not hold for

large cases: certain abstractions mentioned in this paper may

turn out to be insufficient. Second, JPACMAN is an educa-

tional example: it is a well-maintained system with a testsuite

that covers 100% of the system’s code. One must acknowl-

edge that this is not necessarily true for real life cases, e.g.,

industrial systems.

6. Related work
Using dynamic analysis for program comprehension purposes

is an active field of research. This section provides a short

overview of related work.

General approaches Various approaches reconstruct sce-

nario and interaction diagrams based on static analysis of pro-

gram code [25, 16, 26, 17]. The techniques that are used vary

from mapping of control flow graphs [26] to interprocedural

dataflow analysis [25]. A comparison of various approaches

is presented in [17].

Sequence diagrams UML sequence diagrams (and varia-

tions thereof) have since long been used to visualize dynami-

cally obtained information from a system. We now provide a

selection of the existing research in this area.

De Pauw et al. propose several abstractions in reconstruct-

ing sequence diagrams [22]. Among these techniques is pat-

tern recognition, and they introduce the concept of execu-

tion pattern notation [23]. Their techniques (formerly imple-

mented in Jinsight) are used in a plugin that is part of Eclipse’s

Test & Performance Tools Platform (TPTP) Project [3].

Systä et al. aid in the understanding of Java systems in

an environment called Shimba, which uses both static analy-

sis and dynamic information [31]. The Shimba environment

Cornelissen et al – Visualizing Test Suites SERG

8 TUD-SERG-2006-003

considers static and dynamic information to be complemen-

tary and uses static information to bring focus to dynamically

generated diagrams, and vice versa.

Jerding et al. have developed the ISVis (Interactive Sce-

nario Visualizer) environment [15]. Its main purpose is to al-

leviate the architecture localization problem, or the problem

of finding the exact location in a system’s architecture where

a specific enhancement can be inserted. Most of the abstrac-

tion techniques that are being used are not fully automatic.

Briand et al. [8] reverse engineer UML sequence diagrams

for (1) program understanding in the face of incomplete docu-

mentation, and (2) quality assurance, when reverse engineered

diagrams are compared with existing design sequence dia-

grams. Their major contribution lies in the fact that they are

among the first to tackle the reverse engineering of UML se-

quence diagrams from distributed (Java) systems. However,

they do not reason from the viewpoint of testsuites, and ab-

stractions play a minor role.

General visualizations Riva et al. [24] combine static and

dynamic analysis to reconstruct message sequence charts. In

their trace-based approach, they provide an abstraction mech-

anism based on the decomposition hierarchy that is extracted

from the system’s source code. It is not described how the

scenarios are defined, and in dealing with large diagrams, they

only offer manual abstraction techniques.

Furthermore, Pacione et al. make a comparison of dynamic

visualization techniques [21] and Hamou-Lhadj et al. discuss

trace visualization tools [14].

7. Conclusions and Future Work
Testing is an essential part of the software lifecycle. Not only

are tests important to guarantee correctness: in the context

of Agile methods and eXtreme programming, testcases are

used as documentation as well. Moreover, by understanding

a system’s testsuite, one can gain a great deal of knowledge

about its inner workings. It is for this reason that visualizing

both units tests and acceptance tests can be of great help in

program comprehension.

To this end, we have employed dynamic analysis and sce-

nario diagrams. By gathering knowledge of a system’s test-

suite, we gain more insight into the way the application works.

We have discussed the issues and design choices that we en-

countered and, through several examples, elaborated on our

choices for these techniques.

To compensate for scalability issues associated with dy-

namic analysis and scenario diagrams, we have established a

set of metrics that recommend a number of abstractions that

should be used to keep the scenario diagram (for each testcase

stage) readable, while preserving the desired amount of detail.

We performed a case study in which we sought to answer

the research questions that were posed in the introduction.

Based on our experiences with this case study, we can now

formulate answers to these questions:

• JUNIT tests are a useful starting point for program com-

prehension. They induce scenarios that effectively de-

compose a system’s functionalities.

• The scenario diagrams that are obtained from these tests

offer knowledge about a system’s inner workings. Our

case study has shown that through the application of sev-

eral abstractions, scenario diagrams effectively visualize

how testcases (and the associated functionalities) work,

which aids greatly in planning change requests.

• The amount and the type of abstractions that are nec-

essary to make the scenario diagram of a testcase suf-

ficiently understandable, depend greatly on the type of

tests. We have listed several abstraction techniques and

implemented part of them in our case study.

• Our experiences indicate that in case of unit tests, simple

techniques such as omission of getters and setters and

collapsing recurrent patterns suffice, whereas more com-

plex acceptance tests require more complicated filterings

such as stack depth limitation and control flow hiding.

Having answered our research questions, we now conclude

this section by listing our contributions:

• We have presented a technique to effectively trace the

various stages of a JUNIT testcase.

• We have listed a broad range of abstractions in the con-

text of scenario diagrams, some existing and some new,

of which some were implemented in a prototype tool.

These were automatically applied, based on metrics that

were collected during execution.

• By means of an extensive case study, we have shown the

extent to which our techniques are useful for testsuite and

program understanding.

Future work Developing visualizations that are specifically

optimized for testsuite comprehension is a relatively new field

of research. Besides investigating existing general purpose vi-

sualizations, we have established a number of research direc-

tions that we wish to pursue in the future.

Among others, we plan to examine new abstraction tech-

niques that help make test-scenario diagrams easier to under-

stand. Currently, we have a preliminary list of such abstrac-

tions (see Section 3.2), but further research on a set of diverse

case studies remains necessary to determine the adequacy of

these abstractions in the context of testing.

The JPACMAN case yielded interesting results, but focus-

ing on a more complex system will undoubtedly raise new

issues. Among the issues that we expect are: (1) how to deal

with threads, (2) how to handle incomplete testsuites, (3) how

to deal with software systems that have no clear unit testing

approach and rely merely on integration and acceptance tests

(e.g., Apache Ant [13]).

Finally, we feel that that we should integrate our tool within

the Eclipse framework, which would allow for a more interac-

tive approach to gathering knowledge about the testsuite and

the complete system. Moreover, integration into Eclipse will

SERG Cornelissen et al – Visualizing Test Suites

TUD-SERG-2006-003 9

make the tool more attractive to a broader audience.

Acknowledgments Part of the research described in this pa-

per was sponsored by NWO via the Jacquard Reconstructor

project and by the ESI TRADER project.

References
[1] AspectJ: The AspectJ project at Eclipse.org, http://www.

eclipse.org/aspectj/.

[2] InsectJ: A generic instrumentation framework for collect-

ing dynamic information within Eclipse, http://insectj.
sourceforge.net/.

[3] The Eclipse Test & Performance Tools Platform (TPTP)

Project, http://www.eclipse.org/tptp/.

[4] K. Beck. Extreme Programming Explained - Embrace Change.

Addison-Wesley, 1999.

[5] K. Beck. Test-Driven Development: By Example. Addison-

Wesley, 2003.

[6] K. Beck and E. Gamma. Test infected: Programmers love writ-

ing tests. Java Report, 3(7):51–56, 1998.

[7] R. Binder. Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley, 2000.

[8] L.C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engi-

neering of uml sequence diagrams for distributed java software.

IEEE Transactions on Software Engineering, 32(9):642–663,

2006.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[10] A. van Deursen. Program comprehension risks and benefits in

extreme programming. In Proc. 8th Working Conf. on Reverse
Engineering (WCRE’01), pages 176–185, 2001.

[11] A. Forward and T. C. Lethbridge. The relevance of software

documentation, tools and technologies: a survey. In Proc. ACM
symposium on Document engineering (DocEng’02), pages 26–

33, 2002.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.

[13] J. van Geet and A. Zaidman. A lightweight approach to deter-

mining the adequacy of tests as documentation. In Proc. 2nd
Int. Workshop on Program Comprehension through Dynamic
Analysis (PCODA’06), pages 21–26, 2006.

[14] A. Hamou-Lhadj and T.C. Lethbridge. A survey of trace ex-

ploration tools and techniques. In Proc. 2004 Conf. of the
Centre for Advanced Studies on Collaborative Research (CAS-
CON’04), pages 42–55, 2004.

[15] D. Jerding and S. Rugaber. Using visualization for architec-

tural localization and extraction. In Proc. 4th Working Conf. on
Reverse Engineering (WCRE’97), page 56, 1997.

[16] R. Kollmann and M. Gogolla. Capturing dynamic program be-

haviour with UML collaboration diagrams. In Proc. 5th Conf.
on Software Maintenance and Reengineering (CSMR’01),
pages 58–67, 2001.

[17] R. Kollmann, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf.

A study on the current state of the art in tool-supported UML-

based static reverse engineering. In Proc. 9th Working Conf. on
Reverse Engineering (WCRE’02), pages 22–32, 2002.

[18] B. Marick. Agile methods and agile testing.

http://testing.com/agile/agile-testing-essay.html (accessed

October 9th, 2006), 2004.

[19] K. W. Miller. Test driven development on the cheap: text files

and explicit scaffolding. J. Comput. Small Coll., 20(2):181–

189, 2004.

[20] OMG. UML 2.0 infrastructure specification. Object Manage-

ment Group, http://www.omg.org/, 2003.

[21] M.J. Pacione, M. Roper, and M. Wood. Comparative evaluation

of dynamic visualisation tools. In Proc. 10th Working Conf. on
Reverse Engineering (WCRE’03), pages 80–89, 2003.

[22] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides,

and J. Yang. Visualizing the Execution of Java Programs, pages

151–162. Springer-Verlag, 2001.

[23] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Ex-

ecution patterns in object-oriented visualization. In Proc. 4th
USENIX Conf. on Object-Oriented Technologies and Systems
(COOTS’98), pages 219–234, 1998.

[24] C. Riva and J. V. Rodriguez. Combining static and dynamic

views for architecture reconstruction. In Proc. 6th Conf. on
Software Maintenance and Reengineering (CSMR’02), pages

47–55, 2002.

[25] A. Rountev and B. H. Connell. Object naming analysis for

reverse-engineered sequence diagrams. In Proc. 27th Int. Conf.
on Software Engineering (ICSE’05), pages 254–263, 2005.

[26] A. Rountev, O. Volgin, and M. Reddoch. Static control-flow

analysis for reverse engineering of UML sequence diagrams.

In Proc. 6th Workshop on Program Analysis for Software Tools
and Engineering (PASTE’05), pages 96–102, 2005.

[27] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley, 1998.

[28] K. Schwaber and M. Beedle. Agile Software Development with
Scrum. Prentice Hall, 2001.

[29] R. Sharp and A. Rountev. Interactive exploration of UML se-

quence diagrams. In Proc. 3rd Int. Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT’05), pages

8–15, 2005.

[30] J. Stapleton. Dynamic Systems Development Method: The
method in practice. Addison-Wesley, 1997.

[31] T. Systä, K. Koskimies, and H. Müller. Shimba - an environ-

ment for reverse engineering Java software systems. Software
- Practice and Experience, 31(4):371–394, 2001.

[32] S. Yang, M. M. Burnett, E. DeKoven, and M. Zloof. Repre-

sentation design benchmarks: a design-time aid for vpl naviga-

ble static representations. J. Visual Lang. & Computing, 8(5-

6):563–599, 1997.

[33] A. Zaidman. Scalability Solutions for Program Comprehension
through Dynamic Analysis. PhD thesis, University of Antwerp,

2006.

[34] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-

plying webmining techniques to execution traces to support the

program comprehension process. In Proc. 9th Conf. on Soft-
ware Maintenance and Reengineering (CSMR’05), pages 134–

142, 2005.

Cornelissen et al – Visualizing Test Suites SERG

10 TUD-SERG-2006-003

TUD-SERG-2006-003
ISSN 1872-5392 SERG

