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Abstract

As urban environments become increasingly vertical, Land Administration Systems (LAS) must support complex 3D spatial repres-
entations. While Building Information Models (BIM) offer such capabilities, they are not always available. This paper investigates
an alternative approach using point clouds for 3D LAS, focusing on the integration of scanned cadastral floor plans and airborne
LiDAR from the Actueel Hoogtebestand Nederland (AHN). We present a semi-automated pipeline that extracts floorplan geo-
metries, segments and enhances AHN data, and synthesizes room-level point clouds. Results from a case study in Rotterdam
demonstrate the potential of this approach in the absence of BIM, supporting legal space definition and public visualization. How-
ever, challenges such as misalignment due to occlusion in AHN data and inconsistent quality in older floor plan drawings affect
the accuracy and automation of the process. The synthetic point clouds include room-level attributes, enabling a seamless integra-
tion with AHN, offering a representation of real-world features such as building facades, walls, and fences, which often delineate

cadastral boundaries.

1. Introduction

Rapid growth in urban areas has led to an increasing number
of apartment buildings. This growth requires a LAS capable of
optimally storing and visualizing the legal status of these struc-
tures, ideally with 3D representation. LAS is a system formed
by land administration and land registration, which maps the
land parcels and registers their Right, Restrictions, and/or Re-
sponsibilities (RRR). Building Information Modeling (BIM) has
been widely used in various studies as 3D representation in di-
gital twin (Nguyen and Adhikari, 2023} |Alonso et al.| [2019),
demonstrating great potential to represent LAS (Mao et al.|[2024;
Meulmeester, 2019). However, since not all buildings have
BIM data available, it raises the question of how to address this
limitation.

Recent studies have used point clouds as the basis for creating
digital twins. |Baauw|(2021) studies that the AHN point cloud is
capable of fulfilling the basic requirements of a digital twin as it
provides a realistic 3D visual representation and, through seg-
mentation and classification, the semantic information can be
derived, allowing direct interaction. Using point cloud, histor-
ical or previous epoch data can be easily compared for change
detection and integrated with temporal attributes. However, as
the point cloud from ALS can only capture the exterior building
envelope, an additional method to model the walls and slabs for
property boundaries needs to be explored. In the Netherlands,
providing notarial deeds to the Cadastre government is obligat-
ory, including floor plans to register the apartment rights. As
the land administration system required a real-world presenta-
tion, this study attempted to visualize the 3D LAS by directly
using the point cloud, enriching its semantics, and representing
the 3D spatial unit derived from the floor plan.

2. Related Works

2.1 AHN Point Cloud

AHN is a Dutch national dataset acquired using ALS techno-
logy containing a point cloud, digital terrain model, and digital
elevation model. Point cloud is a set of 3D data points that can
be organized to capture geometric information of the entire 3D
object, and also can contain attributes like semantic information
(e.g. classification) and RGB color. Since its first measurement
in 1996, AHN has been updated for a period of time and pro-
duced 5 (five) data series. AHN has a height accuracy of no
more than 5 (five) cm with a point density between 6 and 10
points per square meter for AHN2 and AHN3 and between 10
and 14 points per square meter for AHN4. The planimetric ac-
curacy of AHN versions 2 to 4 is roughly 5 cm random error and
8 cm systematic error (AHN|[2020). Since AHN3, the classific-
ation has been provided, such as ground, vegetation, building,
and water (AHN|, [2020); however, the current AHNS still does
not have a sufficient classification for building class as it only
classifies the roof, not the entire building as done in AHN3 and
AHN4.

2.2 Point cloud for 3D Land Administration

Visualization in the Land Administration context focuses on the
representation of ownership boundaries and their related legal
information. With a 3D map, the visualization is upgraded to
more complex 3D structures with a sense of depth that is closer
to the real world representation (Pouliot et al.,[2018). A 3D par-
cel is the fundamental spatial unit in a LAS to which a unique
and homogeneous set of rights, responsibilities, and restrictions
(RRRy) is assigned. Homogeneous means that the same com-
bination of RRRs applies uniformly to the entire 3D spatial unit.
The 3D parcel is the largest spatial extent where this homo-
geneity holds; extending the parcel would introduce different
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Figure 1. 2D Floor plan example in notarial deed (Meulmeester,
2019)

RRRs, while subdividing it would create neighboring parcels
with identical RRRs (Oosterom et al .| 201 1)).

Various studies have explored the use of point clouds for 3D
Land Administration. |Koeva et al.| (2019) demonstrated the
ability to automatically detect changes in building geometry
over time by utilizing point clouds linked to the Land Admin-
istration Domain Model (LADM). The study showed prom-
ising results, as relevant changes for 3D Land Administration
(e.g., walls and rooms) could be differentiated from tempor-
ary changes (e.g., people and furniture) and were connected to
spatial subdivisions. This approach enables the Land Admin-
istration database to be updated based on the detected changes.
However, the study was conducted in a university building, which
does not fully represent the full range of real-world scenarios
involving private units.

Another study by Bydtosz et al.| (2021), in Cracow Country,
Poland, proposed a 3D LAS using 3D BIM reconstructed from
TLS point clouds. While point clouds offer a more realistic rep-
resentation and can accommodate differences from the original
architectural design, preparing a 3D model using TLS involves
significant costs in terms of both time and money, which is not
always possible, especially for large-scale.

2.3 Floor Plan

When registering land, the boundaries of a parcel must be clearly
drawn to represent the exact division between it and neighbor-
ing properties. In the case of apartment buildings, the bound-
aries become more complex, as they must be represented not
only on horizontal planes but also on vertical planes. There-
fore, as stated in Articles 5 and 6 of the Implementation Regu-
lation of the Land Registry Act 1994, a detailed drawing must
be included when registering an apartment unit in a notarial
deed. This drawing should depict the boundaries of the land, as
well as a floor plan that clearly illustrates the division of private
and common areas on both the ground floor and upper floors of
the building (Koninkrijksrelaties| |n.d.). illustrates that
property boundaries are outlined with thick black lines (Meul-
meester, 2019), which are more prominent compared to normal
walls.

2.4 Parsing Floor Plan
Yin et al.| (2009) describes that to decipher layout information,

parsing the floor plan is required, which involves four steps:
(1) Noise removal: A scanned image often contains noise and

irrelevant details that need to be removed through image clean-
ing in order to enhance the quality of graphics recognition; (2)
Text extraction: The system identifies and separates text from
other graphical elements to facilitate further analysis; (3) Vec-
torization: To transform image pixels to the geometric primit-
ive traditionally includes two steps. First, the raster bitmap is
converted to a set of pixel chains with algorithms like paramet-
ric model fitting (HT), contouring, and skeletonization. After
that, by implementing polygonal approximation or estimating
curvature to determine key point segments, point chains can be
segmented into sets of lines, polylines, and circular arcs; (4)
Symbol recognition: After vectorization, it identifies and or-
ganizes architectural symbols or elements by using predefined
constraints, thereby creating a structured representation of the
building layout.

Thus, the floor plan would be preprocessed first, including clean-
ing the scanned image file, increasing the quality, and adjust-
ing its scale and orientation for easier further processing. After
georeferencing the raster file using QGIS, the information must
be extracted for vectorization. Nottrot et al. (2023) utilized
OpenCV to generate building outlines for each floor by identi-
fying shape contours and drawing a convex hull from floor plans
that contain multiple floors on a single page. The corresponding
floor can be identified from the text using ACV. The resulting
outline is then compared to the BAG polygons to match their
scale and orientation, ensuring consistency with real-world rep-
resentations.

3. Methodology

Three cadastral apartment drawings from Kadaster are used as
samples for this research, drawn in different years: 1999, 2002,
and 2019, located in the Rotterdam municipality. To reconstruct
building point clouds from the apartment drawings for 3D LAS
web visualization, five main steps are conducted. The follow-
ing subsection will address the following challenges: (1) What
is the suitable method to parse the cadastral floor plan? (2) How
can the AHN data sets (time series, multiple versions) be integ-
rated and pre-processed to best represent building outer envel-
opes? (3) What approach can be used to represent apartment
spatial units and their boundaries using point cloud?

3.1 Parsing Floor Plan

Parsing the floor plan starts by preprocessing a single PDF (scan)
of the cadastral apartment that contains multiple floor plans of
one building. Please note there are two type of boundaries on
the floorplan: the thick boundaries represent property boundar-
ies (with a identifying label) and the thin boundaries represent
the spaces inside of them. The Python package easyOCR is
used to detect floor keywords and cadastral id. The OpenCV
library is then applied to detect contours in the drawing near
the label. If a matching contour was found above the label, it
crops the image using the bounding box of the contour and ex-
ports it into a PNG image. depicts the vectorization process.
Initially, each PNG image must first be converted into gray-
scale. Using OpenCY, it applies thresholding to create an inver-
ted binary image, where pixel values greater than the threshold
become 0 (black), while pixels with lower values (darker) be-
come 255 (white), with the threshold determined automatically
from the image histogram. Followed by morphological opera-
tions with their corresponding kernels; morphological opening,
remove white pixels near edges first (erosion) then add white
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pixels around edges (dilation) to remove noise, and morpholo-
gical closing, add white pixels near edges first (dilation) then
remove pixels around edges (erosion) to fill small gaps to en-
sure full contours of walls are formed. Afterwards, it retrieves
all contours and simplifies them to ensure the contour shape
without redundant vertices. The tiny areas, less than 500 pixels,
are removed. This minimum area, however, also relied on the
resolution of input image. Before the remaining contours are
converted into a polygon using Shapely, their Y coordinates are
flipped to conform to the standard Cartesian coordinate system
used in GIS platforms and in mathematics, and any wiggles in
the remaining contours are cleared through contour approxim-
ation with a certain epsilon. The polygons are simplified again
with the simplify and buffer method from Shapely and rectan-
gularized, ensuring the symmetric shape of the polygons and
removing redundant vertices. The parameters used in these
Shapely functions have a similar effect to the epsilon parameter
in contour approximation, controlling the balance between sim-
plification and shape fidelity. OCR reads the room numbers in
the image and assigns the room number if it is inside the room
polygon. All room polygons in the same image or floor are
extracted into each layer of a geopackage file per building.

3.2 Georeferencing Floor Plan

Coordinate transformation typically involves three fundamental
steps: scaling, rotation, and translation (Wolf et al.}|2014). Geor-
eferencing is initialized by matching the CRS, then computing
the orientation of the floor plan and parcel polygon using their
respective MBR. The computation involves creating a convex
hull to simplify geometry, where each pair of consecutive ver-
tices is extracted from its exterior coordinates to form an edge.
For each edge, its x and y differences (dx,dy) between the pair
of vertices and their arc-tangent are calculated to determine its
angle or direction towards the horizontal line (x-axis). The ori-
ginal polygon is virtually rotated by the negative of that angle to
align that particular edge horizontally. After each rotation, the
area of the bounding box is calculated, which varies depending
on the angle of rotation. The angle with the smallest bounding
box area is chosen, representing the most compact and efficient
rectangular representation of the shape. The difference between
the MBR angle of the cadastral and the floor plan reveals how
much the floor plan must be rotated to align with the cadastral.
After the floor plan is rotated at this angle, the bounding box of
the rotated floor plan and the parcel polygon are recalculated to
measure the x and y scale factor by comparing their width and
height extent. Following this, translation offsets are computed
by aligning the lower-left corners of the latest bounding boxes
to shift the floor plan exactly at the cadastral footprint. The
polygons are then georeferenced based on the cadastral polygon
downloaded from PDOK.nl using minimum bounding rectangle
(MBR) calculation.

3.3 Combining Multiversion AHN Point Cloud

Combining multiple versions of AHN can overcome the oc-
clusion of the latest version of AHN data as demonstrated in
In this example, missing sections of a building in
one version are completed by corresponding parts from another
version. This improvement is due to the variations in the flight
path during AHN laser scanning, resulting in different parts of
the building being scanned. Therefore, the AHN from multiple
versions, from AHN 1 to AHN 5, would be combined together
and cropped with 1-meter buffer towards the building footprint

(a) AHN3

(b) AHN 1-5

Figure 2. Comparison of AHN datasets: (a) AHNS and (b) AHN
1-5

obtained from pdok.nl to retrieve the building points. A seg-
mentation process should be implemented to distinguish outside
walls and roofs of building points.

3.4 Ground Classification using Cloth Simulation Filter
(CSF)

Ground points are filtered using the CSF through filters.csf fea-
ture in PDAL. CSF is based on simulating a simple physical
process to extract ground points from LiDAR points. It inver-
ted the original point cloud, and then a rigid grid called cloth
was dropped onto the inverted surface from above. The inter-
actions between the nodes of the cloth and the corresponding
point clouds can determine the final shape of the cloth to distin-
guish point clouds into ground and non-ground points. There
are user-defined parameters: resolution, which represents grid
resolution or cell size; step or time step, which adjusts the trans-
lation of points due to gravity during each iteration; and rigid-
ness, which determines the stiffness of the cloth, where a higher
value is preferred for flat terrain while a lower value is sugges-
ted for steep slopes (Zhang et al., [2016).

3.5 Segmenting AHN Point Cloud

Segmentation is grouping several homogeneous points based on
their common features. RANdom SAmple Consensus (RANSAC)
is a model-fitting method that uses a mathematical representa-
tion. It defines a model parameter from a minimum sample of
random points. Iteratively checking their neighboring points,
then a consensus set is formed if they are a match. The non-
ground points identified by the CSF filter are iteratively seg-
mented into individual planar patches using RANSAC, imple-
mented via the segment_plane function from Open3D, with a
distance threshold of 0.3 meters and a minimum of 3 points.
Normal for each point in the plane is estimated through Open3D’s
estimate_normal function and converted as a numpy array with
Numpy’s asarray to compute the angle between the normal vec-
tor and the vertical Z-axis using the inverse cosine (arccos). By
calculating the angle of arccos degree, the points can be classi-
fied into Flat Roof if the angle of normal is below 25°, Sloped
Roof if the angle is between 25 and 60°, and Wall if the normal
is more than 60 °.

3.6 Generating Synthetic Point Cloud

To construct a synthetic building point cloud, it initially load
a floor plan layer from a Geopackage input file and iterates
through each room polygon, searching the boundary using poly-
gon.exterior and calculate its boundary to estimate how many
points are needed to be created based on the user-defined point
density, where 20 points per square meter as point density means
0.05 m spacing between points. Following that, it iterates over
the number of points and, by using linestring.interpolate on the
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boundary line, it returns a point with 0.05 spacing, generating
points with even spacing on the boundary line of every room
polygon. Each point is then iterated and numpy.arrange(start,
stop, step) is implemented to generate points along the z-axis
from the floor to the ceiling with the height of the floor as start,
the height of the ceiling plus the spacing as stop, and the spacing
as step. The 3D coordinates along their attributes are stored as
well inside this loop, creating the wall points that are generated
vertically along the boundaries of the polygon from the floor to
the ceiling. The height for the ground floor is calculated based
on the ground point from AHN, while the height for the ceiling
is computed based on the average height of the roof point in
AHN divided by the total number of floors above the ground.

The bounding box for every room polygon is computed to gen-
erate a grid of points within the interior of the polygons, creat-
ing a floor and a ceiling with different z coordinates. After it
iterates through all floor layers, all the points are combined into
a new pandas.DataFrame along their attributes, then exported
into a LAZ 1.4 point cloud file with the same CRS as the AHN
file. Each point is assigned a unique ID along their detected ca-
dasral ID which is also used as classification for the LAZ file.
The entire process of this step is outlined in

3.7 Point Cloud Alignment

After the synthetic point cloud is generated, it will be aligned
to AHN using ICP. ICP is a popular spatial registration-based
method to align two point cloud datasets. The algorithm oper-
ates over two main steps: first, it initially finds correspondences
between the target point cloud and the source point cloud by
finding the nearest neighbor in Euclidean space; second, given
these correspondences, it iteratively estimates the optimal ri-
gid transformation that best aligns the source to the target by
minimizing cost function (the sum of squared distance between
matched pairs) until convergence or the value is less than the
threshold. This algorithm is known as point-to-point ICP with
equation as follow:

E(T)= Y ((p—Ta) np)’ M

(p,a)EK

The other ICP variant, point-to-plane ICP, uses the intersec-
tion of the normal point in both datasets to determine the cor-
responding points. To increase convergence speed, the cost
function is improved by replacing point-to-point distances with
point-to-plane distances, which minimizes the distance between
the source point and the tangent plane of the corresponding tar-
get point (Wang and Zhao| [2017). The formula for this method:

> llp—Tal? @

(p,@)ex

E(T) =

After the alignment, both point cloud, AHN and synthetic floor
plan point cloud will be combined into one LAS file with the
same header as the latter to preserve the generated attributes.
Since AHN is the envelope of the building, the kadaster ID for
AHN would be the same as the outer wall in synthetic points,
which is the name plus 0, as there is no cadastral number.

4. Results and Discussion

1.
(B

(a) Sample 2

(b) Sample 3

Figure 3. Noises in Image that needed to be cleaned manually

During the preprocessing of the image, OCR can read the floor
label that is associated with keywords such as “’begane” and
“verdieping”; as a result, the contour block for each floor is
able to be generated. The interior of the apartment can be de-
tected and vectorized into geometric polygons. Cadastral apart-
ment drawings depict cadastral boundaries with thicker lines
and room segmentation with thinner lines. The algorithm is
able to differentiate the thicker and thinner lines in the newest
cadastral drawing, thus generating cadastral boundaries without
room segmentation; on the contrary, for old cadastral drawings,
Sample 1 and Sample 3, the polygons are generated from all
room segmentation, not cadastral boundaries, as the thick lines
are hard to distinguish even by eyesight. Some input images
need to be cleaned manually using an image editor due to in-
consistent lines or stair areas that cannot be detected during
the automatic cleaning process. As Sample 1 does not require
any manual cleaning, Sample 2 in shows that stairs
and annotations in the drawing create noises, and inconsistent
width boundaries lead to lines not being generated, while stairs
in Sample 3 prevent room segmentation. The parameters must
also be tuned for different drawing files, as each file may vary
in resolution, style, and quality. The kernel size affects the res-
ult, where a higher kernel size in the open kernel removes more
and larger noise. In contrast, in the close kernel, it connects
larger gaps, which also influences thicker lines to be generated
instead of thinner ones. A higher epsilon results in simpler con-
tours with fewer vertices, while a lower epsilon retains more
detail but may introduce jagged or overly complex geometries.
This effect also applies to the parameters in simplify and buffer.
The specific parameter values used are listed in [Table T] below.

Parameter
Process Sample 1  Sample 2  Sample 3
open kernel 3x3 2x2 2x2
open iteration 3 2 1
close kernel 20x20 10x10 5x5
close iteration 1 2 1
epsilon 0.013 0.001 0.005
simplify 10 1 9
buffer 8 5 5

Table 1. Parameter during Vectorization
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m

(b) Vectorization Result in
Sample 2

(a) Vectorization Result in
Sample 1

(c) Vectorization Result in Sample 3

Figure 4. Vectorization Result in All Samples

As described in previous section, the georeferencing algorithm
estimates transformation parameters, including rotation, scal-
ing, and translation. Although the georefencing algorithm uses
a simple calculation, it presents an adequate result where the
polygon is located in the same place as the cadastral boundary,
as illustrated in[Figure 5] The RMSE is also below half a meter,
as shown in the [Table 2] However, for certain cases, one must
add additional rotations in the code input parameter, where the
value of the input degree is tuned manually based on the orient-
ation and shape of the vectorized polygon. For instance, since
Sample 1 has a rectangular shape, which has rotational sym-
metry, it may need to be flipped.

RMSE (cm)
Sample 1 32.18
Sample 2 18.25
Sample 3 25.71

Table 2. RMSE of Georeferencing

Combining multiple AHN versions can overcome occlusion in
the AHN as it provides more points for the building, as can be
seen in[Figure 6f however, wall points are still sparse, and some
parts are still missing. Another problem is that the buildings
are row houses, and they were located between other units as
depicted in [Figure 7} therefore, the surrounding walls, particu-
larly the shared or common wall, were impossible to acquire by
LiDAR scanning.

Ground points are effectively extracted from the complete build-
ing point clouds using the CSF algorithm, configured with de-
fault parameter values suitable for moderately flat terrain. The
resulting ground points are visualized as blue-colored points
in However, during subsequent segmentation, dis-
tinguishing non-ground points, specifically separating wall and
roof components (shown in red and white, respectively), re-
mains challenging. This is particularly evident in cases in-
volving sparse wall points and sloped roofs, such as in Sample
3 (Figure 8¢). Additionally, some outliers and vegetation points

- \

(a) All Georeferenced Floor plan
in Sample 1

(b) All Georeferenced Floor plan
in Sample 2

(c) All Georeferenced Floor plan in
Sample 3

Figure 5. Overview of Georeferencing Results

(b) Combination of All Versions

(a) AHN 5 of AHN

Figure 6. Comparison of AHN 5 and Combination in Sample 3

(c) Building location for Sample 3

Figure 7. Building location for All Samples
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(a) Segmentation in Sample 1 (b) Segmentation in Sample 2

(c) Segmentation in Sample 3

Figure 8. Result of Segmentation in All Samples

persist after classification, as seen in Sample 1 (Figure 8a), in-
dicating limitations in the accuracy of the AHN-based classific-
ation.

The height of the ground floor fits the AHN as it uses the z
value of ground points. However, the floor height does not seem
to correctly conform to AHN, due to some misclassified roof
points, as mentioned before in the previous step.

Sample 1  Sample2  Sample 3
Fitness 3.7e-05 6.92e-05  1.31e-04
Initial RMSE 1.406 1.478 1.418
Correspondences 44 249 141
Poini-to- Fitness 5.22e-05 8.73e-05  1.89e-04
Point ICP RMSE 1.480 1.480 1.459
! Correspondences 62 314 141
Point-t Fitness 0 7.43e-05 0
Plons 1P RMSE 0 1537 0
Correspondences 0 267 0

Table 3. RMSE of ICP in cm

Although the floor plan polygons have been georeferenced based
on the parcel polygon, and the generated point clouds from the
floor plan are aligned with AHN through ICP, the highly accur-
ate position is still hard to acquire, with an RMSE between 1.3
and 1.6 cm as can be seen in This is due to sparse
points in AHN that affect the performance of ICP. Point-to-
point needs to find the corresponding point between the data-
sets; thus, it would be challenging if no matching points are
available. Meanwhile, point-to-plane exploits normal calcula-
tion, which also becomes problematic if the surrounding neigh-
bour points are not adequate to correctly calculate the normal
for each point. For that reason, Point-to-Plane ICP only per-
forms better for Sample 2 (Figure 9b), which has more cor-
respondence points, while it fails completely for Sample 1 and
Sample 3 (Figure 9aJand[Dc), which have fewer correspondence
points. The algorithm will automatically use the ICP method
that has lower RMSE and higher number of correspondences
points. Point-to-Point ICP is preferred for Sample 1 and Sample
3, and Point-to-Plane ICP is opted for Sample 2. Although all

the resulting RMSEs are slightly higher or worse than the ini-
tial for the three cases, the values for correspondences increase,
depicting a greater number of matched point pairs between the
source and target after alignment. This also leads to a slightly
higher fitness value, which means the proportion of total source
points that matched within a threshold of 2 cm.

(a) ICP Result in Sample 1

(b) ICP Result in Sample 2

(c) ICP Result in Sample 3
Figure 9. Comparison of ICP results in three samples.

After aligning the synthetic point cloud to AHN, both datasets
are combined into one LAS file for each sample and uploaded
into Cesium Ion. To deliver a real-world representation, integ-
rating other datasets, including reference objects and a topo-
graphy map, can offer a reference to interpret the parcel in terms
of location and size (Cemellini} 2018}, Kalogianni,[2016). Since
the 3D parcel is represented as a point cloud, the AHN dataset
can serve as a reference object, enabling seamless integration

of spatial data, as illustrated in[Figure 10}

Overall, the proposed pipeline requires approximately between
44 and 97 seconds per sample from processing the floor plan
to generating the synthetic building point cloud, as detailed in
However, this estimate does not account for manual
interventions that may be necessary in certain cases, such as
image noise cleaning, parameter tuning, and missing cadas-
tral number assignment. Despite these exceptions, the pipeline
demonstrates sufficient efficiency for large-scale or nationwide
implementation, provided that some manual input is accom-
modated when necessary.

Process Sample I Sample2 Sample 3
Preprocessing 7 7 8
Vectorize 8 22 10
Georeference 1 2 1
Crop AHN 13 15 14
Segment AHN 5 6 6
Construct PC 9 31 4
Align & combine AHN 2 14 1
Total 45 97 44

Table 4. Processing times across samples (in seconds).

5. Conclusion

Instead of using a BIM model, this project presents an altern-
ative using point clouds as 3D spatial units in a LAS. By com-
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(b) Visualization of Sample 2

(c) Visualization of Sample 3

Figure 10. Visualization of all three samples.

bining cadastral drawings and a point cloud nationwide dataset,
AHN, the apartment complexes with their own spatial units can
be generated in this framework without additional survey or an
existing BIM model. The floor plan parsing algorithm success-
fully detects and vectorizes the interior layouts of all three ca-
dastral apartment samples into geometric polygons. The pipeline
manages to align the vectorized polygons to the cadastral poly-
gons with RMSEs of 18-32 cm and aligns the generated syn-
thetic point cloud to the combined version of AHN using ICP,
achieving RMSEs between 1.48 and 1.51 cm with 62-298 match-
ing points due to the sparse AHN points on building facades.
These error measurements are close to the current cadastral map
in the Netherlands that has a graphic quality accuracy where the
standard deviation of boundaries is 20 cm for urban areas and

40 cm for rural areas (Hagemans| [2024).

Although point clouds are widely used as input data, compared
to mesh building, they can enable the seamless integration of
real-world features provided from AHN such as building facades,
walls, and fences, which often delineate cadastral boundaries.
Another advantage is their ability to preserve geometric rep-
resentation that can be directly compared to cadastral refer-
ence points measured with GNSS. Moreover, the system is cap-
able of generating a synthetic building point cloud in under two
minutes per sample, indicating the feasibility of future nation-
wide implementation. However, some limitations are found in
this study that require further improvement, particularly some
manual intervention (e.g. the removal of stairs, OCR not recog-
nizing all labels, etc.).

6. Future Work

Future research directions include the following:

1. Scaling and Algorithmic Robustness: Expand to large-
scale pilot areas and more diverse floor plans to improve
robustness. Develop deep learning methods for floor plan
parsing and enhance point cloud segmentation to recon-
struct more complex and realistic building geometries.

2. International Applicability: Explore applicability in other
countries by addressing differences in cadastral drawing
formats and assessing the availability or alternatives to na-
tionwide point cloud datasets.

3. Accuracy Evaluation for 3D LAS: Conduct ground-truth
validation using GNSS-based cadastral reference points.
Improve accuracy through occlusion correction (e.g.,
[2019), alternative alignment methods, and integ-
ration of higher-resolution LiDAR (e.g., drone ALS, TLS,
MLYS).
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