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Abstract

In radio astronomy (RA), one of the key tasks is the estimation of the
celestial source powers, i.e. imaging. To maximize the performance,
it is crucial to optimize the receiver locations before the construction
of a telescope array. However, although system calibration is an in-
tegral and crucial process of imaging, it has rarely been addressed
for RA sensor placement problems previously. This motivates us to
investigate whether incorporating calibration can result in better ar-
ray designs. In this thesis, we focus on the calibration of the sensors’
complex-scalar gains in particular, which are treated as nuisance pa-
rameters for the image estimation. The associated Cramer-Rao bound
(CRB) is derived and employed as the design criterion. The nonlinear
CRB-based sensor placement problem is cast as an NP-hard combi-
natorial optimization problem, and we adopt two approaches to solve
such by approximation: (i) greedy algorithm and (ii) convex optimiza-
tion with semidefinite relaxation. The former is chosen for simulations
due to its good performance and lower computational complexity. Ex-
tensive simulations shows that compared to the calibration-excluded
design, the proposed one only provides slight improvements to the
imaging quality. However, the proposed array demonstrates the po-
tential of accelerating the convergence of the gain estimation proce-
dures. Through further investigation, we conclude that the lack of
imaging quality improvident can be a consequence of the gain and
image being near-orthogonal parameters.
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Abstract

In radio astronomy (RA), one of the key tasks is the estimation of the celestial source
powers, i.e. imaging. To maximize the performance, it is crucial to optimize the re-
ceiver locations before the construction of a telescope array. However, although system
calibration is an integral and crucial process of imaging, it has rarely been addressed for
RA sensor placement problems previously. This motivates us to investigate whether
incorporating calibration can result in better array designs. In this thesis, we focus
on the calibration of the sensors’ complex-scalar gains in particular, which are treated
as nuisance parameters for the image estimation. The associated Cramer-Rao bound
(CRB) is derived and employed as the design criterion. The nonlinear CRB-based
sensor placement problem is cast as an NP-hard combinatorial optimization problem,
and we adopt two approaches to solve such by approximation: (i) greedy algorithm
and (ii) convex optimization with semidefinite relaxation. The former is chosen for
simulations due to its good performance and lower computational complexity. Exten-
sive simulations shows that compared to the calibration-excluded design, the proposed
one only provides slight improvements to the imaging quality. However, the proposed
array demonstrates the potential of accelerating the convergence of the gain estima-
tion procedures. Through further investigation, we conclude that the lack of imaging
quality improvident can be a consequence of the gain and image being near-orthogonal
parameters.
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Background

1.1 Introduction to radio interferometry

During the recent century, the advancement in radio astronomy (RA) has greatly ex-
tended our knowledge of the universe. Starting from Jansky in the 1930s [3], radio
telescopes have enabled the scientific community to explore the universe beyond the
visible spectrum. As single telescopes are limited by their apertures, the concept of
interferometry [1] was proposed, which allows a group of smaller receiver elements to
combine their data, leading to an array of telescopes with a much larger synthesized
aperture.

One of the key tasks in RA is imaging. The purpose of imaging is to infer the astro-
nomical source powers, or the brightness, from the noisy data received at each receiver.
The sources on different directions of arrival (DOAs) in the sky emit signals arriving at
the receivers with different geometric delays, which is exploited by radio interferometers
to achieve directional selectivity. This is done by correlating the received signals. The
correlation, in statistical expectation, is essentially a Fourier transform of the image,
thus the basic imaging problem can be regarded as retrieving the source powers from
its Fourier transformed data. [1]

In reality, such a process also requires the accurate knowledge of the system condi-
tions, which is often not known to the interferometer and has to be jointly estimated
along with the celestial source powers, the image. Examples of such conditions are
the thermal noise levels, the gain response of the receiver elements, and the distur-
bance due to the signal propagation through the ionosphere layer [1]. Apart from some
experimental trials of using artificial test sources, e.g. [5] [0] [7], the state-of-the art
calibration methods usually regard the celestial sources themselves as the calibrators,
whose power is exactly the parameter-of-interest. Therefore, standard RA imaging
pipelines often involve iterative schemes to achieve the joint acquisition of the image
and the calibration parameters.

A simplified iterative imaging scheme is shown in figure 1.1 (see e.g. Figure 13
of [1] for the detailed structure). The process is started by the initial calibration
process, which provides an estimation of some critical system conditions based on an
assumed initial sky model. After that, the system executes source extraction and self-
calibration iteratively. New astronomical sources are identified, subtracted from the
residual image and added to the existing sky model which is then used to update the
calibration parameters. The refined calibration parameters, in turn, assist the imaging
algorithm to detect more new sources. This is referred to as the major cycle. Such a
loop is executed until the system converges and the residual image becomes noise-like.
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Figure 1.1: An illustration of the bacis structure of the radio astronomy imaging pipeline (the
image is a simplified version of Figure 13 in [1]).

As the major cycle is computationally expensive to run, the practical solution is
to identify a large number of sources rather than a single one after the calibration
parameters are updated. This is usually regarded as the minor cycle of imaging [1].

1.2 Radio astronomy station calibration

As mentioned, in the ideal case, the interferometer only needs to take the geometric
phase delay into consideration. In reality, a number of additional system dynamics
also play their roles, which have to be estimated and compensated during the station
calibration: [3]

(1) the complex gain per signal path

(2) the system noise power

(3) the beam pattern per receiver

(4) the position and orientation of each receiver

While the electronic gain and system noise is required to be estimated with the image,
the rest can be treated as known. The receiver element beam pattern can be accurately
obtained via electro-magnetic modeling in lab conditions [1]. And it is shown that the
position and orientation of the receivers should better be directly measured in the field,
as practical testing in the field can achieve much higher precision than estimation from
the received data [8]. Therefore, in this project, we only consider the calibration of
effect (1) and (2).

The fluctuation of the complex gain is caused by two types of effects and they can
be modelled separately: [I]



1. Instrumental effects, which results in a direction-dependent response and a
direction-independent complex gain per receiver element. Since we assume the
direction-dependent response can be measured in lab conditions, it is assumed to
be factored into the sources themselves.

2. Propagation effects, which are caused by ionospheric and tropospheric irregu-
larity. This results in shifts of apparent source locations.

In particular, the propagation effect acts differently on the radio interferometer
depending on the system architecture, which can be grouped into four distinct categories
(figure 1.2) [2]. These four cases differ in the relative size of the field-of-view (FOV)
and/or the relative length of the maximum baseline, compared to the scale of the
ionospheric irregularity. The project is confined to study the first case, i.e. small FOV
and short aperture, but can be easily extended to the third category.

Therefore, in this project, we only consider the direction-independent scalar complex
gain for effect (1).

— ——
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Figure 1.2: Station calibration scenarios. Image is taken from [2].




1.3 Data model

For radio interferometry, the signals emitted by the celestial sources, which usually
spread across a wide frequency range, are delayed and physically summed together
at the receiving antennas. To process such a wide-band data, the analog signals are
divided into multiple narrow sub-bands so that a time delay of a sub-band signal can
be approximated by a phase shift of its complex envelope (i.e. narrowband condition)
[1]. To be explicit, suppose that for the k-th narrow sub-band centered at frequency
fx, there is a bandpass signal

5(t, k) = s(t, k) > /it (1.1)

which is continuous on time t. If such a signal is delayed by 7, i.e §,(¢, k) = §(t — 7, k),
its complex envelope s.(t, k) can be approximated by

s, (t, k) = s(t, k) e 2™, (1.2)

Since the astronomical sources are far away, the emitted electromagnetic waves can
be assumed as plane waves when they impinge on the array. As such, the phase shift
caused by the geometric time delay 7(t, k) is only dependent on the inner product of
the source and receiver locations, i.e.

a4t k) = e 2ThTER) = o=i* ka0 (1.3)

where ¢ is the wave speed, and z; and 1,(¢) are the coordinates of the j-th antenna
and the g-th source. The source locations vary over time due to the earth rotation.
Assuming there are M receivers and N celestial sources, by stacking all the phase
delays, we obtain the array response matrix [!]

ar1(t, k) aia(t, k) - ain(t k)
as1(t, k) aogs(t,k) -+ ayn(t,k

At k) = 2t K) - azalt, k) , L (6 K) (1.4)
aM,l(t7 k) aM,2(t7 k) T a’M,N(t7 k)

In this project, we only consider one narrow frequency band, therefore the frequency
index k is omitted for brevity. The basic data model is then given by [1],

x(t) = G(t) A(t)s(t) + n(t), (1.5)
where
o s(t) = [s1(t), ..., sn(t)]T stacks all the source signals
o n(t) = [ny(t),...,nn(t)]T stacks all the noises
o x(t) = [z1(t), ...,z (t)]" is the received array data vector

o G(t) = diag(g) and g = [g1(t), ..., gur(t)]* represents the direction-independent
complex gains.



For simplicity, first we only consider one time instance, hence the time index ¢ can
also be dropped for the following analysis. Assuming the source signals and noise are
both spatially white Gaussian processes, the data covariance can be computed as

R = E[xx"]
= GAXZAGY + 3, (1.6)
where ¥, = diag(o,) and X,, = diag(o,,) are the signal and noise covariance matrices.
Vectorization through the property [I, (4)] gives a covariance data model that is linear
in o,
r = vec(R)

=(GAoGA)o;+ (Io])0o,. (1.7)
In reality, the expectation in (1.6) is approximated by averaging sample covariances
over short periods of time, which are referred to as the short-term integration (STI)
intervals. The short time period ensures that the system dynamics such as gains and

signal powers remain stationary, and the effects of the earth rotation is negligible.
In this project, we only consider a single STI period, whereas the complete model
involving multiple STI periods can be found in [3]. Suppose within one STI inter-

val, there are P samples of the received data X = [x(1),x(2),...,x(P)]. The sample
covariance is then given as

|
R = FXXH. (1.8)

This would introduce an additional error term e in the covariance data model,
r=r-+e (1.9)

which follows a Wishart distribution. The covariance of e can be calculated as [3]

> = P@@ (%R) (1.10)

RoR. (1.11)



1.4 Problem statement

In the recent decades, radio telescope arrays tend to have much larger sizes, with
significantly increased numbers of receiver elements as well as unprecedented spatial
spreads. Such a rapid change is due to several reasons. First, this helps to increase
the resolution and sensitivity of the interferometer [1]. Second, recent interest from
the RA community in the low-frequency domain requires a telescope array with an
effective collecting area of around one square kilometer [9], which has become a driving
force for a series of current and future large-scale implementations such as LOFAR [10],
LWA [11] and SKA [12]. This of course makes the calibration and imaging much more
challenging. But before that, a more fundamental question is how to distribute such a
large amount of receivers in an optimal way, which is essentially the motivation of this
thesis work.

Based on the introduced data model, we regard the astronomical imaging as an
estimation process which aims to retrieve the signal powers of the celestial sources
from the covariance data 1 corrupted by the Wishart noise e. The model involves a
number of estimation parameters:

~ magnitudes of g

10} phases of g

os  imaging source powers
on imaging noise powers
o', calibration source powers
o), calibration noise powers

among which the parameter-of-interest is o, whereas the rest are nuisance parameters.

o’ and o, are the parameters associated with the calibration observations which are

S
related through a data model that is the same to (1.7) and (1.9) but is specifically
constructed for the calibration sources. We will come back to this in later chapters.
The estimation parameters are stacked to form a vector @ = [y7, 9", 0!, oL o7, o'T]".
The problem of sensor location optimization can be formulated as finding the opti-
mal set of sensor coordinates Z such that the imaging performance is maximized, while

keeping the number of sensors below a certain budget K, i.e.
max image quality
s.t. number of sensors < K (1.12)

The quality of the image is strongly related to the actual imaging algorithms being
used. There exist multiple efficient algorithms, for instance, the CLEAN algorithm [13]
and the weighted least squares (WLS) algorithm [11]. However, the positions of the
receiver elements are usually fixed once upon construction, thus it is inappropriate to
optimize the sensor placement for a particular algorithm while completely ignoring the
others. Moreover, the array design must accommodate potential future improvements
of the imaging algorithm in the extent of system lifetime.



For such a consideration, we propose to use the CRB of the estimation problem
as the optimization objective, since being a lower bound it reflects the best achievable
performance of an unbiased estimator.

1.5

Thesis outline

The remainder of the thesis is structured as follows:

Chapter 2: We derive the CRB for the introduced imaging problem and provide
some identifiability analyses for the model.

Chapter 3: We formulate a combinatorial scheme which transforms the CRB-
based continuous sensor placement problem into an NP-hard discrete sensor se-
lection problem. We further adopt two approaches to solve such a problem in
approximation.

Chapter 4: We introduce three RA imaging scenarios and subsequently perform
sensor selection tests for each one of them. This mainly intends to compare the
two employed optimization methods.

Chapter 5: We conduct simulations to assess the statistical (i.e. asymptotic) and
general performances of the selected arrays. We also assess their respective gain
estimation convergence speeds. We observe that incorporating gain calibration in
sensor selection does not provide promising improvement in imaging quality, but
is able to accelerate the iterative gain calibration.

Chapter 6: We provide further analysis to explain the lack of improvement in
terms of the imaging quality.

Chapter 7: We conclude the thesis and summarize the key findings. Directions
for possible future works are also suggested.



Cramér—Rao Bound

In this chapter, we derive the CRB for the considered RA image estimation process.
Section 2.1 introduces the closed-form FIM (i.e. the Bangs’ formula) that works gener-
ally for parameter estimations under Gaussian covariance models. Section 2.2 provides
the Jacobian matrices associated with the parameter vector @ so that we can configure
the Bangs’ formula specifically for the considered estimation task. Section 2.3 explains
how nuisance parameters can be dealt with so that the derived CRB only describes the
imaging error instead of the error for all the parameters in 6.

2.1 Basic theory

For multiple parameter estimation, the CRB matrix defines the lower bound of the

expected output covariance from an unbiased estimator. The CRB can be calculated
by

C=F" (2.1)

where F is the Fisher information matrix (FIM) [15].

For the covariance model (1.7), the input data x is zero-mean Gaussian, so the
covariance data r is corrupted by a Wishart distributed noise e as previously mentioned.
In this particular case, a closed-form expression has already been derived in previous
works, which is referred to as the Bangs’ formula [10]

F=PJ! R '@RY)J
—pPJix1g

where the Wishart covariance ¥ = R®R and the Jacobian matrix J is obtained by
evaluating the gradient of the covariance data r w.r.t. 87, that is

or(0)
J=—.
06"

Since the number of samples P only leads to a scaling of the CRB, setting it to any
positive integer value will result in the same array design based upon it. For simplicity
we fix P to 1 during the sensor selection process (which will be introduced in later
chapters), whereas for computing the performance in simulations P is set to other
desired values.

(2.4)



2.2 Jacobians

Up to this point, the estimation problem aims to retrieve the full parameter vector 6.
However, it will be shown that there exist system ambiguities in the model, as a result
some variables are not simultaneously identifiable: [17]

1. The magnitude ambiguity

~ and o, cannot be jointly estimated since an arbitrary factor can be extracted
from one and being multiplied with the other. To resolve this magnitude ambigu-
ity, whenever v and o, are both present in the parameter vector 8, we normalize
the first receiver’s gain magnitude to unity, i.e. 73, = 1. The same treatment is
done when ~ and o/, are simultaneously present. Since the exclusion of v; de-
pends on the presence of o, and o, we assume y; = 1 is automatically applied
when necessary. And, with some violation of the notation, we continue to use =
to denote [ys, ..., var]7 whenever applicable.

2. The phase ambiguity
The phases of the complex gains are also not jointly identifiable, because only the
phase differences can be inferred from the covariance data. Therefore, we fix the
phase of the first receiver element ¢; = 0 as a reference. Similarly, we continue to
use ¢ to denote [¢o, ..., dar]”.

Upon resolving the system ambiguities, the derivation can continue. We first partition
the Jacobian according to the parameter ordering in 0, i.e.

J = [J’WJ¢7J037Jan7‘]0g7*]agl]~ (25)

It is shown in [17, (12)-(15), (17)] that those Jacobian submatrices can be expressed in
closed-form as

[(GAE AT®) o 1+10(GAS,AY 6)} o7 (2.6)
J, [(GAE ATG)oI—-T0(GAS,AY G)} o7 (2.7)
J,. = GAoGA (2.8)
J, =1Iol (2.9)
J, = GA oGA’ (2.10)
3, =Tol. (2.11)

where the W1 is a column selection matrix (i.e. transpose of a row selection matrix)
used to exclude the first column of its left operand, eliminating the ambiguities in
magnitude and phase. The closed-from solution of the FIM can then be calculated by
the Bangs’ formula as previously introduced.



2.3 Nuisance parameters

By collecting the nuisance parameters in a vector v = [y7, ¢, a1, 0’7, a'"]", the FIM
and CRB matrix can be split into 4 submatrices,

Fa'so's Fasu o Cosas CUSU
F — [FWS FW] ., C= {Cws CW} . (2.12)

As will be demonstrated in Chapter 4, in some scenarios we assume a subset of the
nuisance parameters to be known. Those known parameters should be left out of v
since there is no need to estimate them anymore.

For image estimation, we are only interested in C,,,,. The closed-form solution
of C,,,, involves a block matrix inversion which can be obtained through the Schur
complement. Depending on the invertibility of the FIM submatrices, two equivalent
forms are available [15]:

o if F, . is invertible

CO—SO—S = F;:l + F;slUsFUSV(FVV 7FVUS F_l FUSV)_lFVUSF;SIJs (213)

s0s O0s50s
e if F,, is invertible

Casas = (Fasas - Fasu F;ul Fws)_l' (2-14)

It is clear from (2.14) that if there are no nuisance parameters, the CRB matrix would
just be a direct inversion of F,_, . Incorporating the nuisance parameters causes a
reduction in the Fisher information, and hence raises the resulting CRB.

It is obvious that a necessary condition for (2.13) and (2.14) to be valid is the invert-
ibility of F,_,, and F,, respectively. The next subsections will discuss such conditions
in detail.

2.3.1 Invertibility of F, ,,

As demonstrated in [19], the identifiability of the sources (and therefore the invertibility
of F,.,,) depends on the degrees of freedom (DOF') provided by the difference co-array.
The source power o, is only fully identifiable when the criterion “DOF > number
of sources” is fulfilled. To calculate the DOF of a difference co-array residing on a
regular grid, we employ the concept of the weight function introduced in [19]. The
weight function weight(d) shows the multiplicity of a specific baseline d provided by a
difference co-array. Thus, this co-array’s DOF can be computed by the [p-norm of its
weight function.

For a 1D array on an evenly spaced receiver domain, it can be described by a binary
sequence w(n), which indicates whether the k-th position has an array element or not
by having w(k) = 1 or 0. The weight function for its co-array is therefore given by [19,

(6)]

weight(n) = w(n) ® w(—n) (2.15)
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where (%) denotes the convolution operation. Such a result has important implications

that will be demonstrated in Section 4.2.2. But for now, it is clear that (2.13) is not
always valid.

2.3.2 Invertibility of nuisance-related FIMs

It is sometimes convenient to consider the gain-related parts together. Therefore, we
aggregate the magnitudes and phases of the gains into a single vector [y7, ¢T]T, and
denote the FIM and CRB matrix for the corresponding indices as

F, = B‘fl‘/ EW] ., Cyu= [g‘” g—m} : (2.16)
Y ol P ol

Note that Fy, is part of F,,,, and likewise for C%g.

Among the nuisance parameters v = [y7,¢", ol o'T o/T]T it is trivial to prove
that the invertibility of the noise-related FIM F, , is guaranteed (same applies to
F, 5 ). Also, in most imaging scenarios, the number of calibration sources is small
compared to the DOF provided by the array, so o, are unusually fully identifiable.
Thus, we only consider the invertibility analysis of the complex gain-related term F.

Proposition: For the sensor system described by the model (1.7), if a phase reference
is chosen to eliminate the phase ambiguity, the complex gains are always identifiable,
ie. Fyy is always full-rank.

Proof: see Appendix 1.
The immediate consequence is that in the usual imaging scenarios (i.e. when the
mentioned conditions hold), F,, is invertible, and thus we are allowed to express the
apparent FIM (the direct inversion of C,_,,) via (2.14). This is attractive since as will
be shown in the next chapter, the apparent FIM is extensively used as the optimization
objective.

11



Optimization

This chapter poses the optimization problem for which we solve to obtain the optimal
sensor locations. As the CRB-based objective functions can be highly nonlinear, in
Section 3.1 we first discretize the problem and adopt a combinatorial optimization
framework. Then the closed-form FIM derived in Chapter 2 is augmented to account for
the sensor selection as well as to eliminate the dependency on the true parameter value
0, such that it can be used for the adopted framework. Since the combinatorial problem
is NP-hard, in Section 3.2 we introduce two approaches to solve it by approximation.

3.1 Problem formulation

3.1.1 Combinatorial optimization problem

First, we re-iterate the problem statement
max image quality
s.t. number of sensors < K. (3.1)

Optimization objective. As mentioned previously, in this project we choose to use
the CRB as the optimization objective since it represents the best achievable perfor-
mance an array design can provide without regarding the actual estimation method
being used. However, since the estimation parameter is multi-variable, the CRB be-
comes a matrix. The estimation objective needs to be a scalar function of the CRB
matrix, i.e. f(C) = f(F ).

Different choices of f have been proposed in the past:

1. E-optimality - f = A\un(F) [20]
2. A-optimality - f=tr(F~!) [2]]
3. D-optimality - f =logdet(F) [22]

Among those optimality conditions, we choose to adopt the A-optimality criterion,
i.e. f=tr(F'), to assess the imaging quality since it represents the total estimation
variance [15].

Optimization variable. The objective f = tr(F~!) is a non-linear function of the
receiver locations Z, thus can be hard to solve directly. Extensive researches, e.g.
[20], have suggested transferring the problem into a combinatorial optimization prob-
lem through discretization of the receiver domain. This allows us to pre-compute the
contribution to the objective function at each location separately, and then to search
for a scheme that combines those individual contributions optimally. In such a way, the

12



search space can be greatly reduced (from a continuous domain down to M discretized
candidates). Moreover, a number of combinatorial optimization frameworks can be
adopted, such as convex relaxations [20] and greedy algorithms [21].

The formulation is made possible by assigning each candidate position with a binary
variable w; to indicate whether the position is selected or not. The binary variables are
stacked together to form a selection vector w. The optimization problem can therefore
be stated as

min tr (CUSUS (wW; 0)) =tr (F(W; 9))_1

w

st.  we{0,1}"
[wllo < K. (3.2)

where the apparent FIM F (the direct inversion of C,.,,) is

F=C,! =F,, -F,,FF,. (3.3)

Note that it is the CRB sub-block C,,,, rather than the full CRB that is used in
the objective function, as we are only interested in the estimation performance of o.
Also, note that the matrix F is a function of the selection vector w and parameterized
by 6.

3.1.2 Effect of sensor selection

Before introducing the selection methods, it is helpful to review how to split out the
contribution from each position to the overall FIM, such that a closed-form calculation
of the FIM is still possible after incorporating w.

Selecting a subset of sensors according to a certain w can be realized by applying a
selection matrix ¥, on the original array processing data model, i.e.

Xy = ¥, (GAs+n) (3.4)

where ¥, is essentially diag(w) but with its all-zero rows removed. Therefore for the
data covariance, we obtain

R, =9,R¥’ (3.5)
r, = vec(¥, R¥T)

=[(T,) @, ]r  [1,(2)]

= (¥, W¥,)r.

Denoting v=w®w and ¥, = ¥, ® ¥,, we have
r,=%¥,r (3.8)

This would change the FIM computation F = J* (ﬁ_l ®R ™) J from two aspects:

13



1. The Wishart covariance ¥ = R ® R now becomes

¥, =R,®R, (3.9)
= (¢,R, V) @ (¥,R,P)) (3.10)
= (2, ©%,) (R, ®R,) (¥, @¥,)  [1,(2)] (3.11)
=0, 2’ (3.12)

which is the original 3 being pre- and post-multiplied by ¥, to exclude the
covariance data associated with the candidate sensors not being selected.

2. The Jacobian sub-blocks are modified.

(a) For the source-related parameters o; and o, we only need to exclude the
rows of the Jacobians corresponding to the invalid covariance data, i.e.

Jas;w = lIIU JO'S (313)
Jopr = U, T, (3.14)

(b) For the sensor-related parameters -y, o', o, and o), an additional post-
multiplication by W’ is required. This is to exclude the columns associated
with the sensors that are not selected. More specifically, if a sensor is not
selected, we do not need to estimate its gain or noise power. This gives us

oy = Wy Jy ‘Ilg \I]sT ( )
Jow =0, Js U, U7 (3.16)
Jopiw =0, J,, UL (3.17)
Jorw =0, 1, WL (3.18)

Note that J, and J, above are actually slight violations of the notations de-
fined in (2.6) and (2.7). The selection matrices ¥ for ambiguity elimination
are moved to the end since this has to happen after sensor selection.

The FIM sub-blocks can be computed through the procedure above, and then the
apparent Fisher F can be assembled via (3.3).

3.1.3 Eliminating the dependency on true parameter values

Due to the non-linearity of the model, the objective function tr [F(W; 6)] ! and subse-
quently the optimal solution w*(8) are dependent on the true parameter values 6. But
the selection must be made without the knowledge of the exact 6.

In [20], it is suggested to substitute the worst-case parameter Gy in the FIM dur-
ing selection to break the dependency. In this project, we proposed to decouple the true
0 and the objective function by taking the expectation over an assumed distribution of

0,ie. Eg [tr {F(W; 0)_1}} , so that we can account for the general performance of the
array under different parameter settings.
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However, direct computation of the expectation is almost impossible due to the com-
plexity of the objective function. It was also attempted to approximate the expectation
by sampling or Taylor expansion, but the non-linearity and the high dimensionality pre-
vented further progress to be made. So the proposed solution is to plug in Eg[0)] instead.
Hence the optimization problem becomes

mvin tr (f‘(w; E[O])_1>

s.t. w € {0,1}M
wllo < K. (3.19)

Clearly this introduces an additional error since the trace-inverse is convex and by
Jensen’s inequality [23] we have

E[tr {F(w; 0)_1}} > tr {E[F(W, 0)_1]} > tr {E[F(w; 0)] }_1 > tr {F(w; E[O])}_l.
(3.20)

Among those choices, the current objective tr {F(W; E[6]) }71 is the loosest lower bound
of the desired objective function E[tr {F(W; 9)*1}}, which is undesirable. However,

the other objectives are too complicated to be expressed in closed-form. Numerical
methods, Monte-Carlo simulation for example, might not be a viable choice due to the
high dimensionality of the parameters space and the extremely large number of samples
required to stabilize the output. Therefore, we believe our choice of the objective is the
best compromise.

3.2 Selection methods

In this project we consider two optimization frameworks to efficiently solve the prob-
lem stated in (3.19), which are a greedy algorithm for the log-determinant (log-det)
surrogate [241] and convex optimization with semidefinite relaxation (SDR) [21].

3.2.1 Greedy algorithm

In the past years, the greedy algorithm has been proven to be effective to solve the NP-
hard combinatorial optimization problem by approximation. The sub-optimal solution
is found by sequentially selecting the candidate that gives the maximum improvement
in terms of the objective function. The exact algorithm can be found in [24].

Instead of using the original trace-inverse objective function, we implement the D-
optimality log-det

f(w; E[0]) = log det {F(w; E[])}. (3.21)

The main consideration is that the log-det has proven to be a submodular function for
many similar sensor selection problems and has a performance lower bound guaranteed
[25]. In contrat, the trace-inverse objective function is not submodular.
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To ensure the inversion of F is valid, a diagonal matrix I is added to raise the floor
of eigenvalues of the FIM where ¢ is sufficiently small. Furthermore, an N loge term
is subtracted from the objective function such that the the log-det is normalized (i.e.
f(@) =0) [24]. The final objective function used in the greedy algorithm is

f(w; E[6]) = log det {F(W; E[0]) + eI} — M loge. (3.22)

3.2.2 Convex optimization

For the problem (3.19), while the trace-inverse objective is convex on w, both the
Boolean and the [p-norm constraints are nonconvex. Different approaches have been
proposed to resolve this issue.

e In [20], the Boolean constraint w € {0,1}* is relaxed to a convex box constraint
w € [0,1]M whereas the lp-norm was approximated by the convex [;-norm.

e In [21], the conversion to a convex problem was realized by using semidefinite
relaxation [20]. Particularly, [21] considers the cases when the noise is white as
well as when the noise is weakly correlated. The latter fits our project’s context
since the Wishart covariance X is not completely but almost diagonal because of
the low SNR.

In this project, to make the problem simple, we approximate the finite-snapshot noise e
as being white, hence the off-diagonal entries of 3 are assumed negligible. The rationale
behind is that for radio astronomy the SNR is usually low, therefore the diagonal noise
variance matrix ,, becomes dominant in R. Since ¥ = R ® R, the Wishart covariance
3} can also be approximated as diagonal.

As a consequence, for a linear model, the overall FIM is just a summation of the
individual rank-one FIMs provided at each sensor location [20] [21]. However, our
problem (3.19) has three intrinsic difficulties compared to the convex formulation in

[21]:

e Nuisance parameters are involved.
This implies that we are only interested in a sub-block of the full CRB matrix,
and (3.3) needs to be applied to obtain the apparent FIM F. Unfortunately, this
makes a convex problem much harder to formulate, since the apparent FIM is no
longer a simple summation of the rank-one matrices.

The proposed solution is to first construct the full FIM F, and then extracting
the corresponding rows and columns from F~! to obtain the sub-block of interest
C,.o.-

e Post multiplication of selection matrices.
To illustrate the issue, we first express the combinatorial optimization problem
(3.2) explicitly in terms of the selection vector w. Substituting the post-selection
Jacobians and Wishart covariance into Bang’s formula gives

F(w) =%, J' ¥ (U, 30,)"'¥,J¥] (3.23)
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where ¥, =[Ol WIWT 1 @l T W17 aggregates all the post-
multiplications in (3.15)-(3.18). The W, terms apparently introduce additional
complications in the formulation established in [21], and it would be a challenge
to find a feasible way to include these terms while maintaining the convexity of the
formulation. Therefore, we omit the ¥y terms (which makes sense since Chapter
6 demonstrates that those entries’” influence on the overall FIM is negligible) and
the problem reduces to

F(w)=J"9" (v, 9w, J (3.24)

However, since the modified FIM F(w) now includes the entries for non-existing
parameters, it is no longer invertible due to the lack of identifiability. Therefore,
we employ the eI term again to make sure restore invertibility,

F(w)=J"9! (0, 297)"'¥, J + I (3.25)

As 3 is approximated as being diagonal, the inversion can be applied on 3 only

[21], i.e.
Fw)=J'9Tw, S 0TWw, J+ (3.26)
= J diag(w @ w) 27" diag(w@w)J + €l (3.27)
=J" [diaglw@w) © 27| I+ el (3.28)

Covariance data is used.

The sensor selection is made on the received data x, but it is the covariance
model that is actually used in the FIM derivation. Such a mismatch results in
the diag(w ®@w) in (3.28) rather than a diag(w) term. To resolve this issue, we
exploit the relationship vec(W) = w ®@ w and arrive at an optimization problem
that is linear in W,

-1

min  tr (JH | diag (vee(W)) © 21} J+ eI)

W,w
s.t. W = ww’
w € {0,1}M
[wllo < K. (3.29)
Note that although the formulation is similar to the one in [21], the function of
the auxiliary variable W is different. In [21], W is employed to relax the rank-

one constraint in the problem. But in our formulation, W is used to replace the
diagonalized Kronecker product.

Finally, we extract C,,,, from C by using the selection matrices ¥, and \IIZS.
The Schur complement is applied to achieve a convex relaxation as in [21], which
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gives

min tr(¥, C¥.)
W,w,F,C

s.t. I ¥

F=J" [diag (vec(W)) © E_l] J + e
tr(W) < K

diag(W) =w

[W w

wl 1

EHEC

} = 0. (3.30)

The solution W* of the SDR problem (3.30) is usually not exactly rank-one,
therefore not being feasible and cannot be directly used. To get back a valid
binary selection vector, a subsequent randomization scheme is commonly applied
[26]. The randomization process treats the convex solution W* as a probability
distribution, and draws realizations from it. The realizations are subsequently
rounded to satisfy the Boolean constraint. The final output is the best performing
candidate Boolean solutions. The exact formulation of the randomization scheme
is problem-dependent. However, for the derived convex optimization problem
(3.30), a suitable randomization algorithm has already been proposed in [21], and
it is employed in this project.
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Sensor Selection

This chapter details the sensor selection results for three main estimation scenarios.
Section 4.1 introduces all the considered scenarios, in which the associated FIMs are
constructed for different subsets of the parameters in @, and we focus on different
parameters-of-interest. Section 4.2 to 4.4 show the sensor selection results for the three
estimation scenarios and provide related analysis.

4.1 Estimation scenarios

As mentioned, in radio astronomy interferometry systems, imaging usually involves an
iterative procedure. There exist a group of strong astronomical sources that are being
constantly tracked, and their positions in the sky are usually well-known. Those sources
can help with the initial system calibration to set up the iterative procedure until the
system conditions are well estimated and sufficient weaker sources are identified. To
abstract this complicated process, we split the observation data into two categories:

e Imaging observation x = GAs +n
e Calibration observation x’ = GA’s' + n’

The calibration observations are obtained in the same way as in (1.5) but with the
calibration sources.

S}
S
®©

W
T

sources

O calibration sources

X candidate sensor locations
—&  example selection

y-coordinate [m]
=

w
T

8 A R AU AV AU A OO i

-20 -10 0 5 10 15 20
x-coordinate [m]

Figure 4.1: Example 1D geometry of the estimation problem

An example problem geometry is shown in figure 4.1. The candidate sensor locations
form a regular grid with a spacing of %, where \ = fi is the wavelength determined by
the ratio of the speed of light ¢ and the narrowband centre frequency f.. The sky is
segmented in a way that the discretized source locations have a uniform x-projection.
This geometry is assumed for the remainder this chapter.
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To simplify the analysis, we consider the following three different estimation scenar-
i0s.
1. Pure imaging, with weak-source self-calibration

(only the imaging observations are used)

2. Pure calibration, with strong calibrators

(only the calibration observations are used)

3. Imaging with enhanced calibration, i.e. the complete scenario

(both the imaging and calibration observations are used)

The first two scenarios only describe the problem partially, which paves the way to-
wards the final one, the complete estimation problem. The details of the three scenarios
are given in the next subsections.

4.1.1 Scenario 1 — Pure imaging, with weak source self-calibration

In the first scenario, we consider the pure imaging case (the parameter-of-interest is
the imaging source power o), assuming only the imaging observation X is available.

There are two sets of nuisance parameters in this setup. The first one is the complex
gain g. Even though no calibration observation X’ is used, the complex gain still needs
to be estimated from the imaging data X, i.e. self-calibration by the weak imaging
sources themselves. The other set of nuisance parameters is the noise power o,,.

Since both sets of nuisance parameters can affect the selection, we first study their
joint estimation with o4 separately, and then consider them together in the same scene.
This is made possible by treating each set as either being known parameters or being
unknown, nuisance, and hence to be estimated. This gives four different combinations:

e Scenario 1.1a - v, ¢ are known; o, is known. Without loss of generality, g is
assumed to be 1.

e Scenario 1.2a - 7, ¢ are nuisance; o, is known.
e Scenario 1.1b - ~, ¢ are known; o, is nuisance.

e Scenario 1.2b - 7, ¢ are nuisance; o, is nuisance.

The constitutions of the FIMs for those sub-scenarios are shown in figure 4.2 below.
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(1.1a) (1.22) (1.1b) (1.2b)

Figure 4.2: The structures of the FIMs for scenario 1 (The color scale does not strictly
correspond to the actual magnitudes of the matrix entries.)

4.1.2 Scenario 2 — Pure calibration, with strong calibrator

In scenario 2, we momentarily shift our attention onto the calibration process - the
parameter-of-interest is now the instrumental gain g. The objective function is therefore
changed to

f(w; E[6]) = tr (Cyy(w: E[6)) ) (4.1

= tr (F'(w: E[O]))l (4.2)

where ' is inversion of C, (i-e. the apparent FIM for gain estimation). In practice, the
el term is brought in whenever necessary to ensure invertibility as already mentioned
in Section 3.2.

In this scenario, only the calibration observation X' is assumed available. Fur-
thermore, we assume the positions of the strong calibration sources are known, which
makes sense since they can be tracked from past observations. But the powers of those
calibrators, o, are assumed to be unknown, even for the most famous astronomical
calibrators that have been constantly monitored. The rationale is that the ionospheric
scintillation can heavily alter the apparent calibration source powers in practical imag-
ing scenarios [3, p.38]. If we ignore such an effect and keep assuming the apparent
source power can be derived from past observations, the instrumental gain should be
modelled as significantly unstable (i.e. large variance).

Similarly, four sub-scenarios are considered:

e Scenario 2.1a - o, is known; o7, is known.
e Scenario 2.2a - o, is nuisance; o/, is known.

e Scenario 2.1b - o, is known; o7, is nuisance.

s

e Scenario 2.2b - o, is nuisance; o, is nuisance.

s

The structures of the FIMs are shown in figure 4.3 below.

21



(2.1a) (2.2a) (2.1b) (2.2b)

Figure 4.3: The structures of the FIMs for scenario 2 (The color scale does not strictly
correspond to the actual magnitudes of the matrix entries.)

4.1.3 Scenario 3 — Imaging with enhanced calibration

In the final case, we consider the most complete scenario which combines the imaging
and separate calibration processes. The observations are stacked to form up a new data

vector
X1 |G oA of|¢ n'
x = [x} o [O G} {0 Al |s t n (4.3)
and the covariance becomes
R:p’x’ Rz’z Rm’z’ 0 ]

which apparently makes the calculation of the FIM more challenging. Fortunately, the
new Jacobian matrix can be easily obtained by inserting some all-zero rows into the
original Jacobians J and J’ derived in (2.6)-(2.11), and then stack them together. To
see this, we start from the new covariance data

o)) ]

where the selection matrices W,» and W, are defined as

1
v, =Iy® {0} @ In (4.6)
0
v =I,,® H ® Iy, (4.7)
which effectively add all-zero rows to their right operands. Therefore the new Jacobian
is given by
v, .Y
=" | 4.8
l v, -J ] ( )
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And the Fisher can be calculated from R” and J” through Bangs’ formula,

F=J"®R @RI (4.9)
Likewise, two sub-scenarios are considered:
e Scenario 3a - o, is known
e Scenario 3b - o, is nuisance

The structures of the FIMs are shown in figure 4.4 below.

(3a) (3b)

Figure 4.4: The structures of the FIMs for scenario 3 (The color scale does not strictly
correspond to the actual magnitudes of the matrix entries.)

Finally, we summarize all the sub-scenarios in table 4.1.

Scenario parameters-of-interest nuisance parameters known parameters

1.1a o - Y, 0,0,
1.1b o on Y, @
1.2a o ~, P o
1.2b o Y, P, 0 -
2.1a ¥, ¢ - o0,
2.1b ¥, ¢ ol ol
2.2a ¥, ¢ ol o
2.2b ¥, ¢ ol ol -

3 0. 7., o,
3b o Y, ¢, 0,0, 0 -

Table 4.1: A Full list of considered scenarios in the project. The different scenarios are formed
by categorizing the estimation parameters differently.

23



4.2 Scenario 1

4.2.1 Selection results

Due to the limitation of space, the full selection results are included in Appendix A.2.
Figure 4.5 plots the objective function f(w;E[0]) = tr [(]?‘—i—d)_l] against an increasing

number of selected antennas K for each sub-scenario. Five array designs are compared,
including

1. ULA, which serves as a comparison since generally, ULA is one of the worst-
performing arrays due to its low DOF (for identifiability) and spatial spread (for
angular resolution).

2. Greedy algorithm
3. Convex optimization, with randomization [20]

4. Convex optimization, without randomization, but only choosing K sensors corre-
sponding to the K highest magnitudes in the direct optimization result w*

5. Exhaustive search, which serves as a performance lower bound

4 X 104 Scenario 1.1a «10% Scenario 1.2a
% —e—1ULA ™ —e—ULA
—A— Greedy —&— Greedy
3t —+— Convex (no rand.) | | —+— Convex (norand.) | |
_ Convex (rand.) ~ Convex (rand.)
g — — — Exhaustive search g — — — Exhaustive search
= —
w w
+ 2 +
Uy 1y o
E/ E N
b e .
0 YO GG VTS S N AAAAAAAAAA\;&“A
0 5 10 15 20 0 10 15 20
K K
s 104 Scenario 1.1b «10* Scenario 1.2b
" —o—ULA N —o—ULA
—A— Greedy —A— Greedy

Convex (rand.)
— — — Exhaustive search

—+— Convex (no rand.) | |

—+— Convex (norand.) | |
Convex (rand.)
— — — Exhaustive search

Figure 4.5: Change of CRB with increasing K (Scenario 1)



As shown, the array selected by the greedy algorithm performs the best compared to
the other design methods, resulting in a CRB being the closest to the exhaustive search
lower bound. The convex optimization, even with the randomization scheme, struggles
to obtain reasonable solutions. By inspecting the full selection results in Appendix A.2,
we suspect that the poor performance of the convex optimization approach is possibly
due to a lack of progress of the randomization scheme for this particular scenario.
Another observation is that the objective function for the exhaustive search de-
creases monotonically with K in all the sub-scenarios, which matches the intuition
that the image estimation error is generally reduced when more receivers are used.

4.2.2 Parameter identifiability

In order to analyze the identifiability of the estimation problem, we focus on scenario
1.2b, and temporarily set ¢ — 0 such that the objective can blow up to infinity if the
FIM is rank-deficient. In the actual experiment, € is set to 1072 rather than 0 to ensure
numerical stability of the result (see figure 4.6). The DOF is calculated by using the
weight function as introduced in Section 2.3.1.
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35+ —A— Greedy | -
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Figure 4.6: Parameter identifiability analysis for the ULA and the Greedy algorithm (under
scenario 1.1a).

When the number of selection K is low, the CRBs for both arrays explode to infinity.
Each curve meets its turning point when the number of DOF equals the number of
sources N = 39. When the DOF exceeds N, the CRB immediately becomes finite and
considerably small.

As a conclusion, the identifiability of the problem is mainly dictated by the invert-
ibility of F,_,,, essentially being determined by the difference co-array’” DOF vs. the
number of sources. The influence of Fy, on the identifiability is not clearly visible,
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since it is always full-rank. All of these results agree with the theory demonstrated
previously.

4.2.3 Optimal array geometry for imaging

The recovery of the signal’s second-order statistics - the celestial source powers o in
our case - from the observed data is frequently termed as covariance sensing. A study
[27] introduces the utilization of the sparse rulers as optimal sparse samplers (or array
designs) for retrieving the second-order statistics. This motivates us to compare our
selection results with such array designs.

It is found that the array selected by exhaustive search in scenario 1.1a is identical to
the minimal sparse ruler. Figure 4.7 compares those two selection schemes under some
particular settings of (]\Ig) combinations when minimal sparse rulers are available. This
confirmed that sparse rulers are optimal array geometries for pure image estimations
(i.e. with no nuisance parameters).

As mentioned in [27], earlier works of minimal sparse ruler designs are mostly based
on criteria related to identifiability and the associated compression rates. So this result
may help to prove the optimality of sparse rulers from a CRB perspective.

minimal sparse ruler
o -eo@ o exhaustive search result

Figure 4.7: The scenario 1.1a exhaustive search result compared to minimal sparse ruler
arrays.
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4.3 Scenario 2

4.3.1 Selection results

The scenario 2 selection results are shown in figure 4.8. We emphasize again that in
this scenario we are interested in Cg,y, hence the objective is

F(w;E[0]) = tr [cgg(w;E[a])] ~ tr [(F’(W;E[e]) +eD) . (4.10)

Overall, the greedy and convex (rand.) arrays provide the best performances in most
cases, staying close to or even attaining the exhaustive search lower bound. Although
there are some exception, e.g. when K = 3 in scenario 2.2a and 2.2b, in which they
perform worse than the ULA, their associated objective values soon fall back rapidly
with the increase of K and become better than the ULA results again. The greedy
algorithm slightly outperforms the convex-based approach in almost all the cases.
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Figure 4.8: Change of CRB with increasing K (Scenario 2)

In scenario 2.1a, the exhaustive search provides a monotonically increased objec-
tive function w.r.t. K, which fits the intuition that the more sensors get selected, the
more gain estimation errors are summed up. In the other sub-scenarios, the exhaustive
search’s optimization costs first surge to high magnitudes, then fall back and increase
monotonically as well. The initial surges might be consequences of the lack of identifi-
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ability. For example in scenario 2.1b, when K is small (say K = 1), the arrays cannot
provide sufficient DOF to identify all the 4 calibration sources’ powers.

4.3.2 Optimal array geometry for gain estimation

Figure 4.9 shows the scenario 2.1a greedy selection result, as well as the geometric
phase delays of the signals from each calibration source to all the candidate locations,
i.e. the angle of the array manifold vector Za'(c}), i = 2,3,4, where o} is the DOA
of the i-th calibration source. The phases are wrapped into the [—m, 7] interval. The
reason not to plot Za’(«/)) is that the first source is located at the zenith (see figure
4.1), thus all the geometric delays are zero.

By comparison, it is clear that the selected positions are the common zero-crossing
points of the geometric delays. To be more precise, the optimal array to estimate the
gain is an array with receiver elements that experience coherent phase delays from all
the sources.

3 Scenario 2.1a

——@ sensor selection
2 Lal (o)
/al(a3)

[T ! ! ! i1

0 000H0000 0008 /H)00060 006006/ D0oOEO 00600/)0000—
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3 | | | | | | |
-30 -20 -10 0 10 20 30

x-coordinate [m]

Figure 4.9: Optimal array for gain estimation.

Such a phenomenon coincides with physical intuitions:

e For magnitude estimation: At those locations, signals are added coherently due
to the same phase delay, which results in the highest SNR and hence better
magnitude estimation.

e For phase estimation, at each sensor, phase deviations in the received data all come
from the fluctuating complex gain. There is no contribution from the geometric
delay, and therefore the phase estimation can be easier.

Therefore, no matter from a magnitude’s or a phase’s point of view, it is desirable to
distribute the sensors at those locations.
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4.4 Scenario 3

The scenario 3 selection results are shown in figure 4.10, which is similar to the results
in scenario 1. This makes sense as they both focus on imaging. It is observed that the
greedy selection gives the best results, being the closest to the exhaustive search lower
bound. The convex SDR with randomization also provides good sub-optimal outcomes,
which does not happen in scenario 1.
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Figure 4.10: Change of CRB with increasing K (Scenario 3)

In order to demonstrate the effect of taking nuisance parameters into account during
the selection process, figure 4.11 compares some exhaustive search outcomes for scenario
1.1a and 3b when K = 2,4,6 and 8 respectively. It can be seen that the scenario 3b
results do differ from that of scenario 1.1a.

[ ] Scenario 1.1a
Scenario 3b

OXXXXXXXXXXXXX@XXXXX OXOXXOXXXBXXXXXXXXXX
XXXXXXXXXOXXXXXXXXX XXX XXXXXX XXX XX XX
OXXPOXXXXXXXOXXXXOXO® QOO X XX XOXXXOXXOXXOXO®
X XXXXXXOXXXOXXXX XXXOXXXXOXOXXXOX

Figure 4.11: Comparison of the exhaustive search results for scenario 1.1a and 3b (K = 2,4, 6
and 8)

It is also worth mentioning that both in scenario 1 and 3 when imaging is the
main estimation task, the outermost sensors are more likely to be selected. One of the
intuition is that the outermost sensors are able to provide larger baselines which can
increase angular resolution of the observations.

4.5 Conclusion

In conclusion, the greedy algorithm offers a good sub-optimal solution to this combi-
natorial optimization problem in almost all the considered cases. Convex optimization
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does not perform well in scenario 1, but provides reasonable selection outcomes in sce-
nario 2 and 3 (although they are still sightly worse compared to that of the greedy
algorithm). Furthermore, the convex approach has a relatively high computational
complexity, which results in a dramatically increased execution time as the problem
size scales up. Therefore, we conclude that the greedy algorithm is more suitable for
the derived optimization problem, and it is chosen for the simulations in the next
chapter.
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Simulation

In order to test the performance of the resulting array designs, in this section, two types
of simulations are conducted, which are designed to fulfill different purposes:

e The statistical behavior tests
The standard CRB for the coavriance model - the Bangs’ formula - has already
been derived rigorously. However in our case, a number of modifications was
introduced. We incorporated the sensor selection and nuisance parameters into
the closed-form expression. And for scenario 3, the CRB expression is even more
complex as the data vectors are stacked. Therefore, it is critical to verify if the

derived CRBs are reliable.

A straightforward way to check the CRBs is through Monte-Carlo simulations.
Ideally, this should be accomplished by MVU estimators since their outputs attain
the CRB [15]. In practice, as MVUs are apparently not available, asymptotically
efficient algorithms are used instead, and we verify if the overall variance converges
to the theoretical CRBs on a large-sample basis.

Moreover, as will be demonstrated soon, the estimators employ some approxima-
tions/simplifications, e.g. assuming the covariance R ~ I. Therefore, it is also
beneficial to see how much error would those modifications introduce.

e The general performances tests
Once the CRBs and the estimators are verified, we proceed to some general testing
in which the setups are more realistic. For example, the amount of data are
moderate, and the imaging system is underdetermined (i.e. the number of sources
N > the number of selected sensors K). This should give us an idea of whether
the CRB-based array designs can generally lead to good performance as well.

The remainder of the chapter is organized as follows. Section 5.1 provides various
aspects of the simulation setup. Section 5.2 introduces the estimation methods used
throughout the tests. Section 5.3 presents the statistical behavior tests. Section 5.4
demonstrates the general performances of the selected arrays. Section 5.5 shows the
gain calibration convergence speed for the considered array designs.
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5.1 Simulation setup

The arrangement of the simulations is shown in figure 5.1. In the selection phase, the
algorithms utilize the given scenario setup information to compute the optimal selection
vector w*. As already mentioned, E[6] is substituted to decouple the objective function
and the true 6.

In the simulation phase, the imaging observations X and the calibration observations
X' are generated according to the realizations (i.e. the true values) of @ rather than the
expectation E[]. It is worth to highlight that the imaging system has no knowledge of
the selection process apart from the selection vector w*. The algorithms only use the
data that is associated with the selected sensors and perform estimations accordingly.

Py ) Data generation

X = GA'(0)S'(0) + N'(0)
X = GA(8)S'(8) + N(6)

Selection

Gain estimator ) Image estimator

(StEFCal) (WLS)

algorithm

Scenario
setup

Exact sky when taking
calibration observations
Ror = AVESVAVH

Figure 5.1: Illustration of the simulation procedure

The estimation is performed in a sequential manner, in contrast to the standard
iterative procedure adopted by most real-world RA imaging systems. This is due to the
consideration that for the statistical behavior tests the Monte-Carlo simulations have
to be executed extensively (for 10% or even 10° times), which cannot be accomplished by
the iterative scheme within limited time. As demonstrated in figure 1.1, in an iterative
procedure the gain estimation relies on a repeatedly updated sky model to refine the
gain estimates. In order to implement a sequential procedure, we break such an iterative
process by supplying the gain estimator with the true sky model Ry. Apparently such
a simplification will make the results to be over optimistic compared to the CRB, since
the Ry is provided to the estimator as oracle information. However, as will be shown
later, the difference is negligible.

The true parameter 0 is drawn from a distribution detailed in table 5.1. The
amplitude v and the phase ¢ of the gain are assumed to be normally distributed.

For the amplitude, we assume the standard deviation o, = % such that 99.7% of
the samples stay within the range [0.5,1.5]. This assumption is inline with the true
parameter distribution in LOFAR, which is equipped with a robust fault identification
mechanism that rejects data from any receiver having a gain outside [0.5,1.5] [9]. For
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the phase, we assume o, = 7/3 such that nearly all the samples are concentrated within
the full [—m, ] interval.

The noise powers are assumed to be deterministic and normalized to unity, hence
the SNRs are controlled by setting the source powers to different levels. The imaging
source powers o are assumed to be uniformly distributed in dB scale from 10~ to
1072, whereas the calibration source powers are uniformly distributed in dB scale from

1072 to 107!, Hence, notice that the source powers are much smaller than the noise
power.

Variable Distribution Simulation setting
Gain amplitude ~ N (., o21) m,=1,0,=1/6
Gain phase ¢ N (g, o31) my =0, 0y = 7/3[deg]
Imaging source power o Uniform in dB scale, 104[a:t1/10 ¢ — _40, b = —20 [dB]
Imaging noise power o, deterministic o, =1
Calibration source power ¢’, Uniform in dB scale, 1048/10 ¢ = —20 b= —10 [dB]
Calibration noise power o, deterministic o, =1
Imaging source signal s CN(0,diag(os)) o above
Imaging noise n CN(0,diag(o,)) o, above
Calibration source signal s’ CN (0, diag(o?)) o’ above
Calibration noise n’ CN(0,diag(al,)) o), above

Table 5.1: Default distributions used in simulations
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5.2 Estimation methods

To fulfil the simulation purposes, a natural choice of the estimator would be the ML
estimator since it is asymptotically efficient. The ML formulation can be obtained by
minimizing the associated log likelihood function related to our data model [2¥], i.e.

6 = arg;nin In|R(0)| + tr (R(G)_lf{) (5.1)

However, such a problem cannot be in easily solved in closed-form. A previous study [3]
proposed an alternative by using the weighted least squares (WLS) covariance matching
technique. The merit of such an approach is that the solution it is equivalent to the
ML solution on large sample basis hence is also asymptotically efficient. The WLS
formulation is given as

6 = argmin | X7Y2 (& —1)|? (5.2)
6
= argmin (t —r)? ;' (¢ —r) (5.3)
0
where 3, is the weighting covariance matrix. It is suggested in [28] that by setting 3.

to the covariance of ¥, namely ¥ = R® R, the estimates will become a large-sample
approximation of the ML solution. Hence, the covariance matched solution is given as

6 = argmin |W, (i —1)|? (5.4)
0

where the optimal weighting matrix W, = > = I_{_l/2®R_1/2. By using the
property [, (2)], we arrive at another equivalent formulation which is in R,

6 = argmin |[W (R — R) W|2. (5.5)
(4

Although by using the WLS approach the formulation has been simplified from (5.3)
greatly, it is still too complicated for all the parameters in @ to be solved as a whole.
From the data model (1.7), it is easy to notice that there are two distinct groups of
parameters:

e Complex gain. which scales the rows of the array manifold A.
e Source and noise powers. The model is linear in o, and o,,.

which leads to 2 different WLS sub-problems for which the solutions are well-studied.
Therefore, a viable solution is to leverage the alternating direction implicit (ADI) prin-
ciple which iteratively alternates between these two sub-problems until their solutions
converge [3]. In the next two subsections, we will introduce the methods to efficiently
solve the sub-problems.
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5.2.1 Gain estimation method

In this subsection, we introduce an efficient WLS-based iterative gain calibration al-
gorithm, namely, the StEFCal algorithm [29]. The calibration problem involves the
retrieval of the directional-independent gain g from the calibration sample covariance
R = I%X’X’H , with the uncertainty of the calibration sources and noise powers o, and
o!. Therefore, the related WLS minimization problem is given as

{g, 0,0} = argmin [[W (R’ — R)W|% (5.6)
g7o'{s'7a.;’l,

= argmin [W#[R' — (GR,GY + ) |W||% (5.7)
g7a-/87a-;’l,

where R) = A'Z;A'H , and the weighting is configured as W = R/"2 to achiveve the
desired statistical performance as mentioned previously.

To make the problem easier to solve, two simplifications were adopted in [29]. First,
it is assumed that R' ~ X! = 0,1, as the astronomical source powers are usually
much lower than the noise, and the noise powers are usually homogeneous. Also, the
diagonal entries of R’ and Ry are set to zero, as only the diagonal entries of the sample

covariance R are largely contaminated by the noise. By doing so, the problem can be
reduced to

g = argmin |R — GR,GY|%. (5.8)
g

Such a simplification might seem to conflict with our data model since we only assume
the noise to be white, i.e. X! = diag(o,), but not necessarily having the same power.
However, it is further demonstrated in [29] that violating the homogeneous noise power
assumption only leads to a small increase in estimation MSE. To ensure such an argu-
ment still holds under the project’s context, extensive tests of the algorithm’s statistical
performance were conducted and will be presented in the next section.

In order to efficiently solve such a problem, the ADI principle is applied again. It
turns out that the update equation of G and G are identical - for the k-th iteration,
the ADI update of the m-th receiver gain g,, is [29]

At

R .zl
[k] o ,m Lm
12251113

where ZM = GIMR,. And by averaging every even-iteration solution with its previous
odd iteration one, the convergence speed and stability can be improved, which leads to
the StEFCal algorithm [29, Algorithm 1].

5.2.2 Source power estimation method

As mentioned in [11], the WLS imaging problem can be posed as
{6,,0,} = argmin |W,(t — Hyo, — H,0,)|% (5.10)
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where H, = GA o GA and H,, =Iol, and W, is the weighting matrix as mentioned.
The closed-form solution for (5.10) is given in [11] as

o, = (W.H,)'W.i (5.11)

where the modified weighting W, = [I — (W(;Hn)(WCHn)T}WC removes the contribu-
tion of noise.

5.3 Statistical behaviors

In the section, the statistical performances of the resulting arrays are tested through
the aforementioned estimation algorithms. First, the tests are applied to the StEFCal
algorithm and the WLS image estimator individually. This is to isolate them such that
they are not affected by each other. Then, the joint estimation is evaluated.

The tests are conducted for two arrays designs:

e ULA. Similar to the previous chapter, we employ the ULA as a comparison.

e Greedy. The sparse arrays obtained by solving the greedy algorithm for the
respective scenarios assumed in each experiment.

To give a fair comparison, we keep the number of selected elements the same for both
arrays. In fact, throughout the three experiments in this section, we always select
K =10 sensors from M = 100 half-wavelength spaced uniformly distributed candidate
locations. The geometry is the same as in figure 4.1 but with more candidate locations.
Since the Nyquist sampling criterion has to be fulfilled, the ULA design can only be
10 candidates being consecutively selected. Therefore, ULA always has a much smaller
aperture (spatial extent) than the arrays sparsely selected by the greedy algorithm.

5.3.1 Gain estimation
5.3.1.1 Experiment design

In this experiment we intend to test the gain calibration part solely. The true sky
model is supplied to the StEFCal algorithm for the discussed reason. This implicitly
assumes scenario 2.1b. And the greedy algorithm obtains the sparse array by solving
the scenario 2.1b problem.

Because a normalization step is invoked for the gain estimates, for the sake of clarity,
here we explicitly state the simulation procedure:

e The calibration signal S’ and noise N’ are generated according to the distribu-
N
tions listed in table 5.1, and subsequently the sample covariance R is generated
A/
by R = $X'X"".

e The StEFCal algorithm is executed to obtain the gain estimate g.

e The phase of g is normalized by makeing sure the gain of the first element has
unity magnitude and zero phase.
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5.3.1.2 Example estimates

An example gain estimate is shown in figure 5.2, in which P = 10* samples of x’ are
used to calculate the estimated data covariance R, during data generation. It can be
seen that the estimates all fall in the close vicinity of the true gains, which indicates
the estimations to be successful. Note that the true gains in the ULA and greedy cases
are not the same, which is due to the fact that different sensors are selected for each

array.

ULA Greedy
1.5 1.5
+
1 + 1 )
+
0.5 0.5 +
" . ¢a . —

o true gains o rue gains e
£ 0 4+ estimates & E 0 +  estimates +
-0.5 ++ -0.5 +

+ " + +
£
1 + 1
1.5 -1.5
1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5
real real

Figure 5.2: Example gain estimates by the StEFCal algorithm
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Figure 5.3: The distribution of the gain estimates following 10* Monte-Carlo runs

To showcase the statistical performance provided by the two arrays, the above ex-
periment was run for 10 times and the resulting estimates are presented in figure 5.3.
It can easily be observed that the greedy estimates (the clusters centered around the
true gains) are more compact than the ULA ones. Also observe that the estimates
located around (1,0) in the complex plane stay on the real axis. This is due to the
phase normalization imposed such that the first element always has zero phase.
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5.3.1.3 Statistical performance

The quantitative assessment of the statistical behavior can be done by evaluating the
estimation bias and MSE achieved through Monte-Carlo simulation. To show this, an
additional 10° experiments are performed. The results are shown in figure 5.4, and we
have the following observations:

e Bias. Compared to the square roots of the CRB and the MSE, the biases are
insignificant. This suggests that the estimates are unbiased.

e MSE. Since the estimation is more or less unbiased, the MSE approximates the
variance. It can be seen that the MSEs are all close to their respective CRBs,
and it is clear that greedy selection does yield a better array than a ULA with
the same number of sensor elements.
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Figure 5.4: Statistical performance of the gain estimation. A total of N,,. = 10°> Monte-Carlo
simulations are conducted for this experiment.
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Finally, we perform a series of Monte-Carlo simulations under an increased P to
demonstrate how it influences the statistical performance. Figure 5.5 shows that the
MSEs of the estimates converge to their respective CRBs over large samples (when
exceeding P = 10%).
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Figure 5.5: The sum of gain estimation MSE as a function of the number of samples P.

5.3.2 Image estimation
5.3.2.1 Experiment design

This time we switch to the imaging part. The true gains are supplied to the WLS
algorithm during tests, and scenario 1.1b is assumed throughout the experiment, for
which the greedy algorithm is tailored to obtain the sparse array.

Different from the normal imaging scenarios, this experiment is conducted under an
overdetermined geometry, in which the number of imaging sources N = 9 is less than
the number of selected sensors K = 10. Such a configuration ensures the identifiability
of the parameters so that the noise does not blow up in the WLS solutions. This is
important for the statistical performance tests, since if the estimator fails to recon-
struct the image, the MSE as well as the bias are not meaningful and hence cannot be
compared with the CRB.

1D images %1077

true

unifrom

N e N

greedy

1 2 3 4 5 6 7 8 9

Figure 5.6: Example image estimation results.
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5.3.2.2 Example estimates

An example estimate is shown in figure 5.6, for which P = 10* samples are used. Both
arrays provide good reconstructions, and the noise does not blow up.

5.3.2.3 Statistical performances

Figure 5.7 displays the overall statistical imaging performances for 10° Monte-Carlo
simulations. We observe similar outcomes as the previous simulation. The biases of
the source power estimates are considerably small compared to the square root of the
CRB, and their MSEs are all above but close to the CRBs. This implies that the
estimation is asymptotically consistent. Such an argument is further supported by
figure 5.8, which plots the sum of the MSEs as a function of the number of samples P.
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Figure 5.7: Statistical performance of the image estimation. A total of N,,. = 10°> Monte-

Carlo simulations are conducted for this experiment.

Figure 5.8: The sum of imaging MSE as a function of the number of samples P.
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5.3.3 Joint imaging

Finally, we concatenate the gain and image estimators to form a sequential imaging
pipeline as demonstrated earlier in Section 5.9. The desired estimation scenario is 3b,
but due to the true sky model being supplied as an oracle, the experiment outcome
could outperform the CRB. Thus, it is also one of the goals of conducting this test in
order to see how large this difference is. As before, the sparse array is obtained by
solving the scenario 3b problem in a greedy fashion.
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Figure 5.9: Statistical performance of the image estimation while the complex gains are
considered as nuisance. A total of N,,. = 10° Monte-Carlo simulations are conducted for this
experiment.
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Figure 5.10: The sum of joint imaging MSE as a function of the number of samples P.

Similar tests are performed and the results are shown in figure 5.9 and figure 5.10
respectively. An interesting observation is that in figure 5.9, the MSEs of some of the
brightness estimates are less than their corresponding CRBs. Also, notice that in figure
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5.10 the sum of the MSEs approach the CBBs from below. This rarely happens for
previous experiments where the CRB matches the actually scenario. We suspect that
these phenomenons are consequences of utilizing the oracle Ry. Nevertheless, when a
large number of samples are used, the MSEs converge to the CRBs with nearly invisible
deviations, which suggests that the effect of the oracle Ry is negligible, and the derived
CRBs are reliable.

5.3.4 Conclusion

For all the above experiments, the outcomes are unbiased and the estimation MSEs
converge to their respective CRBs over large samples. Recall that the estimator has no
knowledge of the CRBs, but just performs estimation based on the selected synthetic
data. Therefore, by witnessing the MSE and the CRB are asymptotically inline with
each other, it is sufficient to conclude that the CRBs are correctly derived.

We observe that for all the three cases, the threshold for convergence is at P = 10%.
This is important for general performance tests in the next section, since it suggests
how many samples are required for the imaging system to obtain a good performance.

A final remark is that the sequential procedure can be a good proxy for the iterative
pipeline in the simulation. Under large sample conditions, we do not observe the
estimation variance to deviate from the CRB, which implies that supplying the true
sky model as oracle information only results in a negligible difference.
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5.4 General performance

5.4.1 Experiment setup

In this section, as we would like to test the arrays’ imaging performances under more
realistic conditions, an underdetermined geometry is used, in which the number of
imaging sources N = 39 is larger than the number of selection K = 10. As before, we
emphasis that such a K is kept the same for all the tested arrays in order to give a fair
comparison.

Since the main goal of the project is to investigate if incorporating the nuisance
parameter g can result in a better array design, an additional array is assessed in the
following simulation. The details of the three tested arrays are provided as follows:

e ULA which serves as a comparison

e G-CAL, Greedy algorithm tailored for scenario 3b (i.e. the most comprehensive
scenario).

e G-NCAL, Greedy algorithm with no calibration taken into account. This effec-
tively corresponds to the greedy design for scenario 1.1b.

For G-CAL For G-NCAL

Figure 5.11: Constitution of the FIM for the compared greedy algorithms

To clarify the distinction between the two greedy arrays, their corresponding FIM used
as the respective selection criterion is depicted in figure 5.11. The FIM for G-CAL
comprises all the sub-blocks. In contrast, the FIM for G-NCAL does not contain the
gain-related entries, which implies that no calibration-related process is assumed.

We utilize three performance measures to describe the quality of estimation:

e MSE.

1
MSE = N”&s - Us”% (5'12)
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e PSNR. PSNR effectively normalizes the image estimate by its largest brightness
value so that the performance measure is no longer affected by the variation of
pixel intensities in the realizations. It also displays the results on log-scale, which
is easier to interpret.

PSNR = 10 log,, (%) (5.13)

e Normalized [;-norm.The [;-norm describes how good the source structure is
recovered, therefore can be used to detect the failed reconstruction. Likewise,
we normalize it to make sure the performance measure is not affected by the
magnitudes of particular realizations.

|65 — ol

Normalized [{-norm =
los[ly

(5.14)

5.4.2 Example estimates

We first present two example estimation outcomes under different true source condi-
tions:

e Single point source
In the first case, we consider the simplest image — a single point source. The
results are shown in figure 5.12 and table 5.2. Observe that the noise already
blows up in the ULA estimates such that the output does not resemble the true
image very well. In contrast, the two arrays selected by greedy algorithms are
still able to provide reasonable reconstructions of the true image. Such a result is
also reflected by the [;-norm.

The poor performance of the ULA can potentially be explained by the following
reasons. Firstly, the relatively low DOF makes it hard for the ULA to retrieve the
image in this underdetermined case. Also, the ULA has a much smaller spatial
extent, thus provides the lowest resolution.

true .

ULA .

G-CAL ’

G-NCAL .
5 10 15 20 25 30 35

source index

—o— ULA )
—A— G-CAL I\

G-NCAL I\
. — — — true source I/\\
1

5 10 15 20 25 30 35
source index

magnitude
(=1
G

Figure 5.12: Example imaging result for a single point source (P = 10° samples are used)
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Selection Scheme MSE (x107°) PSNR [dB] Normalized [y

ULA 1399.8* 51.584* 2.1387
G-CAL 1.1339 59.454 0.12391
G-NCAL 1.6998 57.696 0.19003

Table 5.2: Example imaging result for a single point source. * Note that since the ULA fails
to recover the image, the associated MSE and PSNR is therefore meaningless. Here, they are
shown just for qualitative comparison.

¢ Random source
In the second case, we consider a more general sky condition, in which the true
image is generated randomly without any assumed structure. By either inspecting
the reconstruction result or comparing the [;-norm, it is clear to see that the
ULA fails to reconstruct the image. In comparison, both greedy arrays facilitate
good image estimation. Not only the peaks (distinct point sources) but also the
extended structure (e.g. around source index 29) are reconstructed.

5 10 15 20 25 30 35
source index

0.01

—&— ULA

—A— G-CAL
G-NCAL

0.005 | — — — true source
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magni

A .
A 7\
/W
15 20 25 30 ' 35

source index

Figure 5.13: Example imaging result for a randomly generated true sky (P = 105 samples
are used)

Selection Scheme MSE (x107%) PSNR [dB] Normalized Iy

ULA 59.276* 52.271* 1.1409
G-CAL 1.3205 68.793 0.17136
G-NCAL 2.5433 65.946 0.23198

Table 5.3: Example imaging result for a randomly generated true sky. * The ULA’s MSE and
PSNR results are not reliable due to the discussed reason.

5.4.3 General performance

Previous examples are only for specific sets of parameters 6. To have a clear view of
how the selected arrays behave generally, another 1000 Monte-Carlo runs are executed,
each with a different @ drawn from the distribution.
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Since the MSE and PSNR are only meaningful when the estimation is successful,
an additional step is applied which identifies the failed image reconstructions based on
their [;-norm. That is, the estimates resulting in an [;-norm greater than a threshold
T;, are flagged as failed estimates. In this particular experiment, the threshold is set

to 0.02.
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9 PSNR distribution
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Figure 5.14: Distribution of the PSNR for 1000 Monte-Carlo simulations.

For each run,

P = 10* samples are used. The PSNRs of the ULA results are not meaningful. They are
displayed here to serve as a qualitative comparison.

Selection Scheme

Optimization objective

Number of  Avg. PSNR [dB]

Avg. PSNR [dB]

f(w; E[0]) failed cases (incl. failed cases) (excl. failed cases)
ULA 2.0003 1000 - -
G-CAL 5.842 x107° 27 58.0050 58.0593
G-NCAL 5.906 x107° 22 57.9122 57.9604

Table 5.4: Summary of imaging result for 1000 Monte-Carlo simulations

The result is shown in table 5.4 whereas figure 5.14 presents the distribution of the
image PSNRs. Note that since all ULA results are failed reconstructions, their PSNR
values are no longer meaningful, hence this is not shown in the table. In comparison,
the greedy designs only result in 27 and 22 failed estimations respectively, whereas the
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vast majority successfully resembles the sources.

However, we do not observe a significant improvement when the calibration is taken
into account. The distribution of PSNR does not show a clear performance difference
between the two greedy arrays. And the average PSNR for G-CAL, either including or
excluding the failed cases, is just slightly higher than that for G-NCAL.

5.5 Gain estimation convergence speed

As previously mentioned in Section 1.1, the iterative parameter refinement is a
computationally-intensive process. Thus it would be a great help if any part of the
process can be sped up. In this section, we focus on the gain estimation and compare
the convergence speed of the StEFCal algorithm for the three considered array designs
in the general performance test, namely the ULA, the G-CAL and the G-NCAL designs.

First, as an example, we show the convergence of the StEFCal algorithm for the
synthetic calibration data X’ generated according to E[@]. The calibration data co-

variance R, is obtained by using 10* samples. The error for each StEFCal iteration is
shown in figure 5.15, and we have the following observations:

Convergence of the StEFCal algorithm

10°
ULA
A G-CAL
\ G-NCAL
107 1
bo@}
10710 L 4
107 15 L L I
0 50 100 150 200

number of iterations

Figure 5.15: Comparison of the StEFCal convergence for ULA, G-CAL and G-NCAL. The
expected parameter vector E[6)] is substituted as the true parameter vector for data generation.
The convergence is assessed by evaluating §, = ||gl¥l — gl*=1||2 / ||g[*!||2 with & being the
iteration index.

e The ULA achieved the fastest convergence among the three compared arrays. A
possible explanation is that the greedy arrays are designed specifically for imaging
purposes. Therefore, their calibration capability might be sacrificed in exchange
for much better imaging performances.
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e A more interesting observation is that the G-CAL array facilitates a much faster
convergence than the G-NCAL array. It takes 128 iterations for the G-CAL array
to reach the StEFCAL stopping criterion, roughly 2/3 of that consumed by the
G-NCAL design.

To test if those observations remain the same for difference system conditions, we
conduct 1000 Monte-Carlo simulations. In each simulation a different 0 is drawn from
the mentioned distribution. The result is displayed in a boxplot in figure 5.16, and
similar behaviors are observed.
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Figure 5.16: Distribution of the StEFCal convergence speed for ULA, G-CAL and G-NCAL.
The result is obtained by performing 1000 Monte-Carlo simulations, each with a different 6
generated. The three array designs used 84.6480, 137.9920 and 166.7540 iterations on average
to reach their convergence.

As a conclusion, the presented results demonstrate a potential of accelerating the
calibration process by considering the calibration during the sensor design (i.e. G-
CAL), while not compromising any imaging capability. Such may become useful for
the next generation RA telescope array designs, e.g. SKA [12], as the number of sensors
will be greatly increased and large-scale joint calibration and imaging can become a
great challenge [9].
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Discussion

From previous chapters, it is found that considering calibration only has a negligible
influence on the CRB. This chapter aims to provide a more involved analysis to explain
this particular phenomenon.

In order to simplify the analysis, we shift our attention back to scenario 1.2a, where
0 only contains v, ¢ and o,. The error in the final image estimate comprises two parts:

1. C,,,, - imaging error due thermal noise, assuming the gain estimates are the true
gains.

2. Cyy_ 0.0, - gain estimation error due to thermal noise that is propagated to the
image.

Both parts are visible in the Fisher information

F

0s0s Fgg_>0'so'5

-1
vsos ~FogF oy Foo .

F
F

As stated before, if the true gain is known, then Fy, is effectively all-zero hence
the CRB is the direct inversion of F,,,, ie. C = F, . If the gain is treated as
nuisance, the uncertainty in the gain estimates manifests itself as a reduction in the
Fisher information, effectively being the second term Fgy_,, . in (6.1).

An experiment was conducted to examine how each component of the
imaging error varies with a changing receiver location z. The tested
array is a minimal sparse ruler array with 20 receivers (on position
{0,1,2,3,7,14,21,28,43,58,73,88,103,111,119,127,135,136,137,138}), but the third el-
ement is re-located and swept through the 1D receiver domain along the x-axis, with
a resolution of 0.1 half-wavelength. The array is assumed to estimate a total of 999
sources evenly distributed on the 1D sky.

The result is shown in figure 6.1. We examine three different error components as
a function of x3 (the x-coordinate of the third receiver element):

1. Total imaging error due to thermal noise f,, = tr {F;slas} (shown in (a))

99

2. Total calibration error f, = tr {F_l} (shown in (b))

3. Gain estimation error propagated into image f,.,, = f— f,, (shown in (c)), where

f=tr { [FMS “FY (Fyy) " Fggs]_l}. (6.3)
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Figure 6.1: Components of imaging error. The half-wavelength locations are highlighted by
markers.

As expected, among integer half-wavelength locations, the lowest CRB is achieved
when the third receiver is moved to the position 2 x % [m], forming an optimal sparse
ruler array together with the other 19 antennas.

From (a) it is clear that the difference between f and f,, is almost invisible. Al-
though the gain estimation error f, is at an order of 10%, it barely gets propagated into
the image. As shown in (c), f,., peaks at merely 80, and even much lower (close to
zero) at integer multiples of % Compared to the image error due to thermal noise, the
propagated gain error is negligible. This suggests that there is no difference between
whether to consider gain estimation or not in array designs.

Similar results can be found in [30], in which it was found that for almost all the
sources, the image covariance due to calibration errors are 2 orders of magnitude smaller
than due to measurement noise. However, the result does not demonstrate if altering
the sensor positions makes any difference. So our experiment makes more sense in the
context of sensor location optimization.

500

450

350

(a) Magnitude of the CRB matrix (b) Mesh plot of the CRB matrix’s magnitude

Figure 6.2: (a) Magnitude plot of an example scenario 3b CRB matrix. (b) The same content
of (a) displayed in a mesh plot for the ease of visual interpretation.
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Further evidence can be found by inspecting the CRB matrix. Figure 6.2 plots
an example CRB matrix under scenario 3b for a 10-element ULA. Observe that the
entries of the sub-matrices C,,, and C, 4, have nearly zero magnitudes, which implies
that there is almost no cross-correlation between the errors of g and o4 estimates. The
submatrices C,4, and C,_,, form a block diagonal structure in the CRB, and so do F,
and F,_,, in the FIM. Therefore, by definition, g and o5 can be more or less considered
as orthogonal parameters [31]. To be more explicit, as F, , and F,,, have near-zero
magnitudes, the second term F, g, Fg_g1 F s in (6.1) is heavily attenuated. Therefore,

the apparent FIM F is approximately the same to F,_,,, which explains the discussed
phenomenon.

We suspect that the near-zero magnitudes of F,_, and F, are consequences of the
extremely low SNR in the considered RA scenarios. To see this, we express the FIM
sub-blocks by the Bangs’ formula,

FUSUS = JUs 2_1 JO'S’ (64)
F,,=J,, 277, (6.5)

where J, = [J,,J4]. In (2.6), (2.7) and (2.8), the gain-related Jacobians J. and J, all
contain a 3 factor which is small under low SNR conditions. In contrast, J,, is not
reduced by any factor at all. Thus, Fy, and F, ., are heavily attenuated as well.
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Conclusion and Future Works

7.1 Conclusion

In this thesis, we investigated the optimal sensor placement problem in the context of
calibration-involved radio astronomy imaging processes. Three scenarios were consid-
ered: (i) pure imaging, (ii) pure calibration, and (iii) imaging with nuisance gains. A
CRB analysis was conducted. Starting from the standard Bangs’ formula, closed-form
CRBs for each scenario are derived, which incorporate sensor selection and nuisance
parameters.

Based on the derived CRBs, we discretized the problem and adopted a combinatorial
optimization framework. We further employed two approaches to solve such a prob-
lem in approximation, which were the greedy algorithm and the convex semi-definite
relaxation. A series of sensor selection tests demonstrated that the greedy algorithm
suites the research problem better due to its good performance and significantly low
computational complexity. As such, it was chosen as the selection algorithm in the
simulation.

The simulation was two-fold. First we verified CRBs through the statistical behavior
tests of the designed arrays. After that, we performed general behavior tests for the
complete imaging scenario (i.e. scenario 3b). We found that considering gain calibration
in array design does not provide promising improvements in terms of the resulting
estimation MSE. With further investigation, it was found that such a phenomenon can
be explained by the estimation error propagation.

The key findings of the thesis work can be listed as follows:

e During the CRB analysis, we have proven that the gain-related FIM F4 is guar-
anteed to be full-rank for the considered estimation problems, thus it makes the
apparent FIM formulation (2.14) valid. The invertibility of the apparent FIM is
however dependent on the rank of J,_, which is closely related to the DOF of the
difference co-array studied in [19].

e The optimal array design for imaging tends to be the minimal sparse ruler if the
parameters fit such a ruler. In [27], the utilization of sparse ruler designs was
proposed for achieving the maximum compression while preserving the identifia-
bility of the signal covariances. In this thesis, we confirmed such a design for a
CRB-based optimality criterion.

e The optimal array configuration for calibration is an array with all elements expe-
riencing coherent phase delays from the calibration sources. Such a result might
not be directly useful, but it may become a design reference to provide more
insights for other future applications. For example, it suggests that if an array
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design would like to accommodate gain calibration, it might need to have a wider
spatial extent since the elements have to spread out to take those said locations.

e Regarding scalar gains as nuisance parameters has an insignificant impact on the
CRB-based optimal imaging array design. This is mainly caused by the gains to
be nearly-orthogonal parameters to the image. One possible reason could be the
extreme low SNR that leads to considerably small magnitudes of J., and J.

e The calibration-incorporated design demonstrates the potential to accelerate the
gain calibration process. In the experiment, compared to the G-NCAL design,
the proposed G-CAL array reduces the required number of StEFCal iterations by
roughly 17% on average.

7.2 Future works

The potential improvements and future works are presented as follows:

e Incorporating more system dynamics
The current work only considers one time-frequency bin. In reality, the optimal
sensor placement problem must take the full range of operating frequencies into
account. The impact of other effects, e.g. earth rotation and ionospheric layer
irregularity, also needs to be analyzed. These all bring new challenges into the
proposed sensor placement method. And in those scenarios, the gain calibration
may have a more pronounced impact on imaging.

e Data selection for large-scale telescopes

— For large-scale telescopes, the data throughput becomes a serious bottleneck
of the whole system. For instance, in each LOFAR Netherlands station, only
48 digital receiver units (RCUs) are available at a time, whereas the station
can generation 3 times the amount of data (96 LBAs and 48 HBAs) [9]. This
illustrates the demand of a reliable data reduction scheme.

— Sensor placement and sensor selection are essentially the same under the
the combinatorial optimization framework, so the existing materials can be
directly used for the additional objective.

— To switch to the sensor selection problem, we set the receiver domain as the
union of existing antenna coordinates. Since the selection can be made on
a per time-frequency bin basis, the selection is not required to be fixed, and
does not need to take the expectation E(0). The selection can be made for
the true @ which can be approximated by the 8 from the previous STI interval
assuming appropriate stationarity.

e Unevenly spaced candidates

— In this thesis, the receiver domain is descritized evenly to form a regular
grid. However, figure 6.1 (a) clearly shows that when the sensor is positioned
between half-wavelength grid points (i.e. x3 is not an integer multiple of %),
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much lower estimation MSEs can be obtained. This reveals a possibility for
utilizing irregular arrays to achieve better imaging performances.

— One feasible approach is to distribute the candidates in a denser way such
that the spaces between half-wavelength grid points are sufficiently sampled.
However, this would scale up the computational complexity considerably.

— Another possible approach would be considering gridless methods, where we
optimize the sensor locations Z directly. A pioneer work has been done by

[32].

e Incorporating source sparsity
As the sky is usually filled with point sources and the image r is sparse, incor-
porating such an additional constraint may provide a more accurate CRB for
the astronomical imaging problem. A detailed study for the CRB with sparse
parameters was done in [33].

e Extension to other fields
Although this thesis focuses on radio astronomy applications, as the data model
is considerably generic, we believe our work can be extended to various other
domains such as radar or acoustic system designs.
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Appendix

A.1 Invertibility of F,

First, two conditions that are often implicitly assumed in common imaging scenarios
to ensure the sky model Ry = AX,A is non-singular:

e The number of sources N is greater than the number of receivers M, such that A
is wide.

e There is only one imaging source at single discretized pixel of the sky, i.e. no
imaging sources are co-located. This is to ensure that the columns of A are
linearly independent.

Therefore, the data covariance matrix R = G Ry G + 3, and the Wishart covariance
3 = R®R are also non-singular.

As derived in Section 2.2, the Jacobians corresponding to gain estimation are given
as

J, = [(G—RO@ ol+To (GROE)] vl (A1)
Jy =] {(G—ROG) ol-To (GRoﬁ)} 18 (A.2)

In the proof, we first ignore the W’ matrices and demonstrate that Jacobian J g =
[J.,Js] becomes rank-deficient.

J, = [(GRO ®) o I+10(GRy 6)] (A.3)
Jo=] {(GRO G)oI-10(GRy E)} : (A.4)
This motivates us to apply the selection matrix ¥ to fix a phase reference. After that,
J4 becomes full rank. The proof is structured as follows:
(A.1.1) Providing some preliminary works.

(A.1.2) Demonstrating that J, has a full column-rank.

(A.1.3) Proving that J, is rank-deficient, but can become full rank by excluding
any single column of J4, and consequently F,, can become invertible. The
proof is done by applying some elementary matrix operations on J, and
observe the structure of the transformed matrix T.
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A.1.1 Proof of E,, E;, D, and Dy to be full-rank

To make the derivation concise, we denote the Jacobians in the Khatri-rao sum structure
J,=D,+D,=E,0ol+IcE, (A.5)

J¢:D¢+D_¢:j<E¢oI—IoE_¢>. (A.6)

Since Ry is full rank, E, and E, are also full rank because they are essentially Ry being
multiplied by full rank diagonal matrices G and ®.

We further notice that D, 57, D, and D_¢ can be proven to have full column ranks
since they are Khatri-rao products with identity matrices:

e Post-Khatri-rao by an identity matrix (i.e. Aol) creates a stacked diag-
onal structure as shown in figure A.la. The i-th single diagonal sub-matrix are
diag(A;.) where A;. is the i-th row of the matrix A.

5

e Pre-Khatri-rao by an identity matrix (i.e. IToB) creates a block diagonal

structure, whose block matrices on the diagonal are the columns of B as shown
in figure A.1b.

Magnitude Phase Magnitude Phase
1.5 1.5
2 2
2.5 25
1
4 4 !
2 2
6 0.5 0.5
8 15 0 1.5 0
10 10
1 -0.5 1 0.5
12 12
14 0.5 -1 14 05 1
16 0 -1.5 16 0 1.5
2 4 2 4 2 4 2 4

(a) An example of the structure of Aol (b) An example of the structure of IoB
Figure A.1: Matrix structures of the Khatri-Rao product with identity matrices
As E, and E4 are both full rank, the Katri-rao products cannot contain all-zero
columns. Considering the block-diagonal structures, D,, D,, Dy and Dy must be
full-rank.
A.1.2 Proof of J, to be full-rank

As shown in figure A.2a, for the i-th column of J., (size M?-by-M), the [(i — 1) M +i]-th
element (shown in yellow in the magnitude plot) is the only non-zero element of the row
where it is located. As a side note, theses entries corresponds to the diagonal entries
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of the covariance R. Hence, the columns of J, are linearly independent, which ensure
it to have a full column-rank.

Magnitude p Phase Magnitude p Phase

25
1
2
15
05 .
05
0 3 0
0.5
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-15
1 1 5
-1
25
0 0
2 4 2 4 2 4 2 4

(a) An example of J, (b) An example of J
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Figure A.2: Examples of the J, and J4 matrices

However, this is not true for J, since the minus sign in (A.6) cancels the non-zero
values, leaving zeros on these entries (see figure A.2b). This also explains why phase
estimation of gain is usually harder to achieve compared to magnitude estimation -
we cannot infer phase information from the diagonal entries of R as self-correlation
E[z;7;], i = 1,...M, cancels out the phase.

A.1.3 Proof of J, = [J,,J;] to be full-rank (with the condition of fixing a
phase reference)

First we do some elementary matrix operations to simplify the structure of J,. Note
that

E,=E.T (A7)

where I' = diag(-y). Hence,

D, = D, (jT) (A8)
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So we scale J,’s columns by applying I' and scale J, by —j, which gives
ar 3] - [(GRee) o1+ Lo (GR )T,
[GRiG) o T-To RG] (a9)
— {(G—RO@I‘) oI+10(GRy®T),
(GRoG) oI -10(GRg G)} (A.10)

= [(G—ROG) oI+10(GRyG),

(GRyG)oI—-To (GRoﬁ)} (A.11)
:{EOHIOE, EoI—IoE] (A.12)
= {Jl, JQ} (A.13)

Apply elementary operations 3(J; + J2) and 3(J; — J2) gives the transformed matrix
T = [EOI, IOE} (A.14)
-l (A15)

which has the structure as illustrated in figure A.3. The left half, T, is post-Katri-
rao multiplied by identity, whereas the right half, T5, is pre-Katri-rao multiplied by
identity.

Magnitude Phase

3
1
2.5
4
0.5
6 2
8 1.5 0
10
1
12 -0.5
14 0.5
-1
16 0
2 4 6 8 2 4 6 8

Figure A.3: An example structure of the transformed matrix T.
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Since E is Hermitian, the rows of E are the transpose of the columns of E, which
enables us to relate T; and T,

[ diag(|E]..) diag([E],,.)

T 5 _ 5 (A.16)
diag([E]. ar) diag([E]ps.)
diag(E,,) O -+ O

- 0 diag([B>,) B © (A.17)
e ¢} - diag([E]n,)

where [E];. and [E].; the i-th row and j-th column of E respectively.
It is apparent that T is rank-deficient. The ¢-th column of T is equal to the linear
combination of the rest of T’s columns through

CORE (A9
where [Ts].; is the i-th column of T, and e; is the unit basis vector which is all-zero
but with only the i-th entry being 1.

However, if any single column of Ty is removed (which corresponds to fixing one of
the gain’s phase as a reference), T immediately becomes full-rank. For example, if we
remove the first column of Ty, then no matter what linear combination we apply, the
non-zero components in the first M columns can never be cancelled completely. This
argument still holds when we further exclude one of T’s column (which corresponds to
resolving the magnitude ambiguity), as T already has a full column-rank and removing
one of the column does not harm the full-rankness.

Since J, can be obtained through applying elementary matrix operations on T, it
also has a full column-rank. Furthermore, notice that J, cannot be a wide matrix. This
is owing to the fact that as our model involves least two receivers. When no ambiguity
is resolved, J, has a size of M?-by-2M (M? > 2M for M > 2). If any ambiguity is
resolved, J, becomes an even taller matrix. Therefore, combined with the assumption
that 3 is non-singular, we can immediately see that

Fgo =PI 71T, (A.19)

is non-singular as well, and thereby completes the proof.
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A.2 Full selection results

This section includes the complete array selection results for all the scenarios introduced
in Chapter 4. As the ULA does not change between scenarios (it just selects the
candidates one-by-one sequentially), we report it at the beginning of the section for
once and omit it in the rest of the results:

ULA

0 T T T T
O X X X X X X X X X X XX XX XXX X X
2F® @ X X X X X X X X X X X X X X X X X X o
® 00 X X XXX XXX XXXXXXXX X
4 ® ® ® ® X X X X X X X X X X X X X X X X -
® 0 0 % P X X X X X X X X X X X XX X X
6F® ® 0 00 0 X X X X X X X XX X XX X X+
®© 00000 O X X X XXX XXXXXXX
SF® ® ® ® 000 Oo X X X X XXX XXX X X A
© 0000 0®O®OOX XXX XXXXXXX
I0F ® ®® 000000060 x X X XXX XX X X -
k‘ © 000006 O®O®O®O® X X XX X XX X X
12F® ® ® 000000000 X XX X X X X X o
© 0000000000006 x %X XX XXX
14-® ® ®© 000000000060 X X XXX XA
© 0000000000000 06 X X XXX
16F ® ® ®© 0000000000000 xXx X X X -
© 0000000000000 00 0 x xxX
18- ® ®© ® ®© ® ®© 0000000000 0 x x4
0000000000000 000 0 0 x
200Fr © © 0000000000000 00 0 0 -
L L L L
0 5 10 15 20

sensor index
Figure A.4: ULA selection results, which is identical for all the

shown for once.
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XX 000000000000000000
XXX XX 000000000000000
XXXXXXOOOO0000000000
XXXXXXXX X 00000000000
FXXX XXX XX XXX 000000000
XXX XXX XX XXX X 00000000
XXX XXX XX XXX XX XX OO0
XXX XXX XX XXX XX XXX OO0
XXX XXX XX XXX XX XXX XX OO
XXX XXX XX XXX XX XXX XX X@
XXX XXX XX XXX XX XXX X OO
XXX XXX XX XXX XXX 000000
XXX XXX XX XXX XX 0000000
XXX XXX XX XX 0000000000
XXX XXX XX 000000000000
XXX XXX X 0000000000000
XXXXOCOOO000000000000
XXX 00000000000000000
xX0000000000000000000

Convex (no rand.) (scenario 1.1a)

L

(=) v

L L
vy =]
— N

=
=
M

XXX X 0000000000000000-
XXX XXX XX XX 0000000000
XXXXXX X 0000000000000
XXX XXXXX XXX X 00000000
XXX XXX XX XXX XX XX 00000
r < 0000000000000000000
XX 000000000000000000
XXX XXX XX XXX XXX 000000
XXX XX 000000000000000
XXX XXX XX XXX XX XXX XXX
EXXX XXX XX XXX XX XXX XOO®-
XXX XXX XX XXX 000000000
XXX XXX XX XXX XX XXX XX OO
XXX XXX XX XXX XX XXX OO
XXX XXX XX 000000000000
XXX 00000000000000000-
XXX XXX XX XXX XX 0000000
XXX XXX XXX 00000000000
XXXXXXOOOOo000000000
00000000000000000000

L

o vy

Greedy (scenario 1.1a)

L L
vy =]
— IS

=
=
M

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 1.1a)

Convex (rand.) (scenario 1.1a)

FXX0x0000000000000000-
XX X@X X X 0000000000000
XXX OX 000*X 00000000000
XXX XX XXX 0OXOX0000000
XX X@@XX XXX XX 00000000
 X@BXX XXX X X 000X 000000-
XX@XXXXXXX XX XOX OO0
XXX XOX 000X OXOXOX 0000
XXX XX XXX X@XXX@XX XOO®
XXX XX X@XOX@@XXXXXXX@®
FXXX XX XXX X@XXOX 000000
XXX XX@XOXX XX 00000 X 00
XXX X@XXXXXXOXOXOX OO0
XXX@XXXXXXOOXXOX 0000
XXX XX OXOOOXX XX XO000®
F X@X XX X@XX@X X 00000000-
XXX XXXXXX X 0000000000
XXX XXX X 00X 0000000000
XXX X 000X 000000000000

OXX XX 000000000000000

L L
] Ve v =
— N

=
=
M

rX XOX 1
XXOXXX

XXXXXX

XXX XX XXX

XXX XXXXXX

FXXXXXXXXXX 1
XXXXXXXXXX XX
XXXXXXXXX XXX XX

XXXX XXXXXXXXXX

XX XXXXXXXX XXX
FXXX X XXX XXXXXX .
XXX XXOXXXX XX XX XXX
XXXXXXXXX XXX XXX
XXXXXXXXXXOX
XXXXXXXXXX

FXXXXXXXXX .
XXX XX XXX

XXXXXX

XXXXXX

X X

20 ¢

L
(=] ) v
—

=
=
M

15 20

10
sensor index

15 20

10
sensor index

Convex (no rand.) (scenario 1.1b)

Greedy (scenario 1.1b)

XX000000000000000000
XXX XX 000000000000000
XXXXXXXOOOO000000000
XXX XX XXX X 00000000000
FXXX XX XXX XX XO00000000-
XXX XX XXX XX XX 00000000
XXX XX XXX XX XX XX 000000
XXX XX XXX XX XX XXX XX OO®
XXX XX XXX XX XX XXX XX XK@
EXXXXX XXX XX XX XXX XXX OO
XXX XX XXX XX XX XXX X OO0
XXX XX XXX XX XX XXX OO0
XXX XX XXX XX XXX 0000000
XXX XX XXX XX 0000000000
FXXXXX XXX 000000000000
XXXXXXOOOO0000000000
XXX X0000000000000000
XX x00000000000000000
xX0000000000000000000

= v =] s} =)
— Q

M

XXX XX XXX 000000000000
XXX XX 000000000000000
XXX XX XXX XXX 000000000
XXX XX XX 0000000000000
XXX XX XXX XX XXX 0000000
EXXX XX XXX XX XX XXX XOOOO-
xX0000000000000000000
XXX XX XXX XX 0000000000
XXX XX XXX XX XX XXX XX XO®
XXX XX XXX XX XX XXX XX XK@
FXX000000000000000000
XXX XX XXX XX XX XXX OOOOO
XXX XX XXX XX XX 00000000
XXX XX XXX XX XX XXX XX OO®
XXX XX XXX X 00000000000
FXXX XX XXX XXX XXX O00000-
XXX 00000000000000000
XXXXXXOOooooooooooon
XXXXO000000000000000
00000000000000000000

L

[e=] vy

L L
) o
— [\l

=)
M

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 1.1b)

FX XXX X 000000000000000
XXXXXX00000000000000
XXX XOOXOX X 0000000000
XXXXXXXXOX 00X 0000000
XXX XOXOX XOX X 00000000
FX@X XXX XX X@XXOX 00000V
XXXXXXXXXXOOX XX 00000
XX X@XX XOOX X 0000 X 0000
XX XXX XX XXX XX@XXXXOO®
XXX XXX X@OXXX XX XX QOO
FXXXXXX@X XX OOOXOOOX X @
XXX XX@XOXOX X 00000000
XX X@OXOXXXO@XX XX OXOO®
XXXXXXXXXXXXXOOX OO
XX XOXOXOOX 00X X X 00000
F X@@X XX XX XXX X 00000000
OXXXXX XX XOX 000000000
XXXXXX00000000000000
XXX 00X X 000000000000

XXX X000 000000000000

(=] vy (=] vy j=]
— — N

Convex (rand.) (scenario 1.1b)

FX XOX 1
XXXXXX

XXXXXX

XXXXXXXX

XXXXXX XXX

FXXXXXXXX XX 1
XXXXXXXXXXXX
XXXXXXXXXX XXX XX

XXXX XXXXXXX XXX

XX XXXXX XX XXX
FXXX X XXXX XX XXX XD
XXXXXOXXXX XXX XX XX
XXXXXXXXXX XXX X
XXXXXXXXXXOX
XXXXXXXXXX

FXXXXXX XXX 1
XXXXXXXX

XXXXXX

XXXXXX

20t

X
=) "
= =
M

15 20

10
sensor index

15 20

10
sensor index
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X0000000000000000000
XX 000000000000000000
XXX 00000000000000000
XXXX0000000000000000
XX XX X000000000000000-
XX XXX X 00000000000000
XXXXXX X 0000000000000
XXXXXXXX 000000000000
XXXXXXXX X 00000000000
FXXXXXXXX XX 0000000000
XXXXXXXX XXX 000000000
XXXXXXXXXX XX 00000000
XXXXXXXXXX XXX 0000000
XXXXXXXXXXXXXX 000000
FXXXX XXX XXX XX XXX OOOOO-
XX XX XX XX XX XX XX XX OOO®
XX XX XX XX XX XX XX XX XOO®
XX XX XX XX XX XX XX XX XXO®
XX XX XX XX XX XX XX XX XX X@

Convex (no rand.) (scenario 1.2a)

L L L L

(=] vy (= v (=]
— — Q

M

FXXXXXX X 0000000000000
XX XXX 000000000000000
XXXXXXXXXX XX 00000000
XXXXOO00000000000000
XXXXXXXXXXXXXX X000
FXXXXXXXX XX 0000000000
XX XX XX XX XX XX XX XX XOO®
X0000000000000000000
XX 000000000000000000
XXXXXXXXXX XXX 0000000
F XX XX XX XK XX XX XK XX XX X@
XX XX XX XX XX XX XX XX XXO®
XXXXXXXXXXXXXX XX OOO®
XXXXXXXX 000000000000
XXXXXXXXXX X 000000000
FXX XX XXX XXX XX XX OOOO0®-
XX x00000000000000000
XXXXXXOOO00000000000
XXXXXXXX X 00000000000
00000000000000000000

L

(=) v

Greedy (scenario 1.2a)

L L
vy =]
— N

e 107

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 1.2a)

Convex (rand.) (scenario 1.2a)

F XX XX X000000000000000-
XX X 00X X 0000000000000
XOX X 0000X X 0000000000
XX XX XXX XOX X 000000000
X@XXOXO@XXOX X 00000000
FXXXXXXX@XO®X XX X 00O0®-
XX XX XXX XXX XOX 0000000
XX XXX X@XOXOOX XX X OO0
XX XX XXX XXX XXOOOX X000
XX XX XXX XOOOXOXOX X XO®
FXX X @@XOOX X X@X XX OOOX®-
XX XX X@XXX@XXXOXOOXO®
XX X@XXX XXX XX 000X 000
XXOOXXX@XX@XX XXX OO
XX@X XOX XOX X 00X 000000
FXXXX@XX XXX XX 00000000-
XX XX XXX XX 000X 0000000
XX XX XXX 0000000000000
XX@X X 00X 000000000000

XXX X000000000000000

L L
(=] ) v (=
— N

=)
=
M

FXOXX
X XXXOX

XX XX XX

XX XXX X

XX XXX X
FXXXXXX 1
XXXXXXX

XXXXXXXX

XXXXXXXXX

XXXXXXXXX

FXXXXXXX XXX 1
XXXXXX XXX
XXXX XXX XXX X
XXXX XXX XXX X
XXXXXXXXXXXX

FXXOXXXX XXX XX X 1
XX XXXXXXXXXOX

XXX XXXXXXXXOXOX
XXXXXXXXXXXXXOXX X
XXX XXXX XXX XXX

L L L

L
[« vy =] v [
N
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M

15 20

10
sensor index

15 20

10
sensor index

Convex (no rand.) (scenario 1.2b)

Greedy (scenario 1.2b)

X0000000000000000000
XX 000000000000000000
XX x00000000000000000
XXXXO000000000000000
FXX XXX 000000000000000 -
XXXXXXOOOO0000000000
XXXXXXX 0000000000000
XXXXXXX X 000000000000
XXXXXXX XX 00000000000
FXXXXXXX XX X 0000000000
XXXXXXXXXXX 000000000
XXXXXXXXXXXX 00000000
XX XX XXX XX XXX X 0000000
XXXXXXX XX XXX XX 000000
FXXXXXXXXXXXXXX X OO0
XXXXXXXXXXXXXXXX OO
XXXXXXXXXXXXXX XXX OO
XXXXXXX XX XXXXX XX XX OO
XX XXXXX XX XXKXXX XX XXX

o v (=) ) (=]

— —_ Q

M

FXXXXXX00000000000000-
XXXXXXX X 000000000000
XXXXXXXXXXX 000000000
XXXXOOOoooooonoooo0n
XXXXX000000000000000
FXX XX XXX XX XXX 00000000
XXXXXXXXXXXXXX XX OO
XXXXXXX XX XXXXX XX XX OO
XXXXXXXXXXXXXX 000000
XXXXXXXXXXXXXX XXX OO
EX XXX XXX XX XX KKK XX XXX O
XXXXXXX XXX 0000000000
XXXXXXX 0000000000000
X0000000000000000000
XX 000000000000000000
FXX XXX XX XX XXX XX X OO0
XXXXXXXXXXXXX 0000000
XX X00000000000000000
XXXXXXX XX 00000000000
00000000000000000000

L

=] )

L L
) =
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=
=
M

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 1.2b)

Convex (rand.) (scenario 1.2b)

FXXX@X X 00000000000000
XXX X 0X00000000000000
XXOX X000 < 00000000000
X@XX XXX X 00X 000000000
XX X@OXX XXX X X 00000000
FXXXXXXX@XX@X X X OO0
XX XX XXX XXX XOXX X OO
XXX X XOOXOX 000X <0000
XXXX XXX XXXXXOOOX X OO0
XOXX XOX XOOOX XX XXX XO®
FXXXXXXX@XXXOX X OOOOX®-
XX@XXX@XXOX X OOXOOX 00
XXXXXXXXXXXXXXOOXOO®
XXXX@XXOXXOX 000X 0000
XX XX XXX XOOXOX X X000
FX XX X@®X X X@X X X 0000000-
OXXXXXOXX X 0000000000
XXX@XX X 00X 0000000000
XXOOX0X X 000000000000
XXX X 0000000000000000

(=) v

) (=]
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e 107

FXXXX XXXXXXOXXO
XX X XX
XXXX X
XXXXX X
XXXXX

FXXXXXX .
XXXXXXX

XXXXXXXX

XXXXXXXXX

XXXXXXXXX

FXXXX XXX XXX .
XXXXXX XXX
KXXXXXXXXXX
XOXXXXXXXXX
XOXXXXXXXXXXX

FXXOX XXX XXX X XXX 1
XX XXX XXXX XXX

XXX XXXXXX XXX X
KXXXXXXXXXXXXXOXX
XXX XXXXXXXXX

L L L

(=) v (=) vy

—_ —

M

20 ¢

15 20

10
sensor index

15 20

10
sensor index
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FX XX XXX XXX XX XX XX XX XX @
XXX XOXOXXOX X 00000000
XXX XX 0000X0xX 00000000
XXX XXX 000X X 000000000
XXX XX XXXOXX 000000000
FXXX XX XXX XOOXO@XX XX OO®-
X000xX 0000 x00X X0x0000
XXX XX XXX X@@XX XX XX OO0
XXX 0000 X 0X0X X 00000
XXX X@XX XX 00000000000
FXXXXXOX 00X 0000000000
XXX XX XXOOXX X 00000000
XOXOXOX 00X X 0X 0000000
XXX XX XOXXOX 000000000
XXX X@XX XX 00X 00000000
FXXXX@XX XX 00000000000
XXX X@XXXXOX 000000000
XXXXXXXXXOXOX 0000000
XXX 0000 X 00X X X 00X 00

Convex (no rand.) (scenario 2.1a)

OXXXXXXXX 000X 0000000

L L
S v ] v (=]
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M

XXX XX 000000000000000-
XXXXXXX XX 00000000000
XXX XX XX XXX 0000000000
XXX XX XX XX XX XX XX XX XO@
XXX XX XX XX XX XX XX XX OO®
FXXX XX XX XX XXX XXX OOO0®-
XXX XXXXXX XXX 00000000
XXXXX XX 0000000000000
X X000000000000000000
X0000000000000000000
XXX X0000000000000000-
XXX XX XXX 000000000000
XXXXXXXXX XX 000000000
XXX XX XX XX XX XX XX XOOO®
XXX XX XX XX XX XX XX XX XX@
FXXXXXXXXXXX XXX OOOO0®-
XXX XXXXXXXX XX 0000000
XXXXXXOO000000000000
XXX 00000000000000000
00000000000000000000

L

o vy

Greedy (scenario 2.1a)

L L
vy =]
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=
=
M

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 2.1a)

Convex (rand.) (scenario 2.1a)

F X X@X X 00 0000000000000
XX@XXX XXX 00000000000
XXX XXXXXXXOX 00000000
XXX XXX XXXXX XXX XOXOO®
XXX XXX XXXXX XXX XX X@XO®
FX@X XXX XXX XX XXX XX@XOO-
XXX XXXXXXXX 000000000
XXX 00X X 0000000000000
XXX 00000000000000000
XXX x0000000000000000
F XXX XX 000000000000000-
XX@XXX XX 000000000000
XXX XXX XXX XXX 00000000
XXX XXX XXXXXXXXXOOO0®
XXX XXX XXXXX XXX XXX XOO
FX@X XXX XXX XX XXX OXOOO®-
XXX XXX XXXXXOX 0000000
XXX 00X 0000000000000
XX 00000000000000000
XXX XX 000000000000000

L

=] v

L L
) =
— N

=
=
M

FRXXXXXXXXXXXOXOX 1
XXX XXX XOXX

XXXOXX XXX

XOXOXXXX XX
XXXXXXXX XXXXXX X
FXXXXXXXX XXXXXXOX 1
XXXXXOXX XX

XXOX X

XXOX XXX

XXXX XX

FXXXXXXXOX 1
XXXXXX XXX X

XXXOXXX X X
XOXOXXXX XOXX X
XXXXXXXX XOXXXXXX

FXXXXXXOXOXXXXXX 1

XXXXXXOXXXXXOXOX
XXXOXOXXX

XXOX XX

XXXXXOXOXX

L L

(=] vy (=]

—

M

15+
20

15 20

10
sensor index

15 20

10
sensor index

Convex (no rand.) (scenario 2.1b)

Greedy (scenario 2.1b)

FX XXX XX XX XX XX XX XXX XX @
XXXXOXOX XX OXOX 000000
XXOOOXXOOOoooXooooon
XX XOXOXOXOX X 00X 00000
XXOX X 00X X 000X 0000000
FX@XXXXOXOX X 00X 00000 -
XXX X@X XXX 000X 0000000
XX X@XXXXXXXOOOXOX X 00
OXXXXOXOXOX 0000 X 0000
XX XX X@XX XXX OOX 00X 000
FXXXXXXXOXOXOX OO} OO0V
XXXXXOX 000X 000000000
XX XX XX XOO0X X 00X 00000
XXXXXX 000X 0000000000
XOXXOXOX XX 00X 0000000
FXXXXXX@XOX X 000000000
XXXXXXOX 000X X 0000000
XXXXX@XX XX 000X 000000
XXOOXX X0000X0X0X 0000

XXXX@XXX@X@X X

L
(=] sl o v o
— N

M

XX XX X000000000000000-
XXXXXXXX X 00000000000
XXXXXXXXXX X 000000000
XX XX XX XX XX XX XX XXX QOO
XX XX XX XX KX XX XX XXX XX@
FXXXX XXX XXX XX XX X OOOO®-
XXXXXXXXXX XXX 0000000
XXXXXX X 0000000000000
XX 000000000000000000
X0000000000000000000
FXXXX 0000000000000000 -
XXXXXXXX 000000000000
XXXXXXXX XX 0000000000
XXXXXXXXXXXXXXXXOOO®
XX XX XX XX XX XX XX XXX XO®
FXXXXXXXXXX XX XX OO0
XXXXXXXXXX XX 00000000
XX XXX X 00000000000000
XX x00000000000000000
00000000000000000000

L
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15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 2.1b)

Convex (rand.) (scenario 2.1b)

FXX@X X 00 0000000000000
XX@X XXX XX 00000000000
XX XX XXX XX XXX 00000000
XXXXXXXXXXXXXXXOXOO®
XXX XXX XX XXX XXX XXX X@
FXXXX@XX XX XXX XXX XOOO®-
XX XX@XX XXX XOX 0000000
XX X@X X X 0000000000000
XOxX0x000000000000000
XX XX X000000000000000
FXX XX X000 000000000000
XX@X XXX X 000000000000
XX XX XXX XX XXX 00000000
XXXXXXXXXXXXXX X000
XXX XXX XX XXX XX XXX XO®
FXXXX@XX XX XXX XXOXOOO®-
XX XX XXX XX X 0000000000
XX XOX X 0000000000000
XOxX0x000000000000000

XXX X000 000000000000

L L
(=] ) ) j=)
— N

=
=
M

rX X XXX 1
XXOX XX
XXXXOXOXXX
XXXOXXXOXXOXX XX
XXXOXXXXXXXXXX XX
FXXXXXXXXXOHXX XXX 1
XXXXXXXX XOXXX
XXXXXXX X
XXXXXXXXOX

XXXXX X

FXOXX X 1
XXOX XX XX
XXXXXX XX
XXXOXXXOXXOX XXX
XXXOXXXXXXXXXXOXX
FXXXXXXXXXOHXX XXX 1
XXXXXXXX XX X

XXXXXXXX X X
XXXXXXXX
XXXXXOXX
o v = '] =
— — N
M

15 20

10
sensor index

15 20

10
sensor index
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FX XX XXX XXX XXX XXX XXX OO
XXX XXX XXX XXX XXX XXX X@
XXX XXXXXXXXX XXX XOOOO
XXX XXX XXX X 0000000000
XXXXXXX0000000000000
r X0000000000000000000
XXX 00000000000000000
XXX XX 000000000000000
OXXXXXXXO0X000000000
XXX XXX XXX XXX XXX OXOO®
FXXX XXX XXX XXX X 0000000
XXXXXXXXXXXX 00000000
XXX XXX XXX XXX XXX XOOO®
XXX XXX XXX X 0000000000
XXX X0X 00000000000000
r X0000000000000000000
XX 000000000000000000
XXX XX000000000000000
XXXXXXXXX 00000000000
XXX XXX XXX XXX XX OO0

Convex (no rand.) (scenario 2.2a)

L L L
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FXXXXXX X 0000000000000
XXX XXX XXX XX 000000000
XXX XXX XXX XXX XXX XX OO®
XXX XXX XXX XXX XXX XXX O®
XXXX0000000000000000
FXXX XXX XXX 00000000000
XXX XXXXXXXXX XXX XOO0O
XXXXXXXXXX0000000000
XX 000000000000000000
X0000000000000000000
F XXX 00000000000000000
XXX XXX XXX XXX X 0000000
XXX XXXXXXXXX XXX 00000
XXXXXXXXXXXXXX 000000
XXX XXX XXX XXX XXX XXX X@
FXXX XXX XXX XXX 00000000
XXX XX000000000000000
XXX XXX 00000000000000
XXX XXX XX 000000000000
00000000000000000000

Greedy (scenario 2.2a)

(=] vy = vy (=
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M

15 20

10
sensor index

15 20

10
sensor index

Exhaustive sesarch (scenario 2.2a)

Convex (rand.) (scenario 2.2a)

X X 0000X X000000000000
XXXXXXX XX 00000000000
X X@XXXX X XOOX 00000000
XXXOXX@XXXOX XXX OOXO®
XXX X XOBXXXXXXXXXXXO®
FX@X XXX @@X XXX XXX X OO
XXXXOXOX 00X 0000X 0000
XX XOX0000*<0000000000
XXXXXX X 0000000000000
X XOX X 000000000000000
XXX XXX XOX 00000000000
X XXX XXX XOX X 000000000
XXX X@XX X@XX X 00000000
XXXXXXXXXXXXXXXXXOO®
XXXXXXX@XXXX XXX OOOX®
FX@XXXX@XXXX@X X OOX OO
XXXXX@X@X XXX X000
XXXXXXXOX00000000000
XXX XOOX X 000000000000
OXXOOX X X0 00000000000

L
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FXXXXXXXXXXOXXX 1
XXXXXXXXXXOX XX
XXXXXXX XX XXX X

XXXOX XOOXOXXX
XXXXXXOX X

FX XXXX XOXOX 1

XXX XXX X

XXXXX

XXXOOXOX

XXXXOXXX X

FXXXXXOX XXX XX 1
XXXXXOXOXXXX

XXXX XXXOX
XXOXXXXOXOX

XXXXXX X
FXOXOXXOXX XXX 1
XXOXXXXXOX XXOX
XXXXOXXXOXOX X
XXXXXXX XXX XXX
XXXXXXX XXX XX XX

o vy (=] gl
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M

20t

15 20

10
sensor index

15 20

10
sensor index

Convex (no rand.) (scenario 2.2b)

Greedy (scenario 2.2b)

FXXXXX XXX XX XX XX XX XX X@
XXXXXX XX XX XX XX XX XX O®
XXXXXXXXXXXX XX 00000
XXXXXXXXXX X 000000000
XXXXXX X 0000000000000
F XX x00000000000000000
XXX X 0000000000000000
XXXXXXXX 000000000000
XXXXXXXXXX XXX 0000000
XXXXXX XX XX XX XX XX XOO®
r X0000000000000000000
00000000000000000000
XXXXXXXXXXXXXXXOOOO®
XXXXXXXX XX 0000000000
XXXXXX 00000000000000
F X X000000000000000000
XXXX X 000000000000000
XXXXXXXX X 00000000000
XXXXXXXXXXXX 00000000
XXXXXXXXXXXXXX XX OOO®

L L L L
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FXXXXXX X 0000000000000
XXXXXX00000000000000
XXXXXXXXXX XX 00000000
XXXXXXXXXXXX XXX OO0
XXXXXX XX XX XX XX XX XOO®
FXXXXX XXX XX XX XX XX XX OO
XXXXXXXXXX XXX 0000000
XXXXX 000000000000000
X X000000000000000000
X0000000000000000000
F XX x00000000000000000
XXXXXXXXXX X 000000000
XXX X 0000000000000000
XXXXXXXXXXXXXX XX QOO
XXXXXX XX KX XX XX XX XX X@
FXXXXXX XX XX XX XX OO0V
XXXXXXXX 000000000000
XXXXXXXX XX 0000000000
XXXXXXXX X 00000000000
00000000000000000000
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15 20

10
sensor index

Exhaustive sesarch (scenario 2.2b)

Convex (rand.) (scenario 2.2b)

FXXXX@X X 0000000000000
X XXX X 00X X X 0000000000
X XXX X0000X X0X 0000000
X X@OXX@XXXXXXXX@XXO®
XXXXXX@XXX XX XXX XXX X@
FX@XX X@@XXX XX XXX XOOO®-
X XXX X@X XX X 0000000000
XXXX@XXOX 00000000000
XXXX@X X 0000000000000
XXXXXXXXX 00000000000
FX XXX X X0 0000000000000
X X@X XX X 000X 000000000
XX@XO@XX XX 00X 00000000
XXX X X@BXXXXX XXX XOOO®
XXXXXOXXXXXXXXXXXOO®
F X@X@XXX XXX XX XX O0000®-
X XXX XXX XO0X X 00000000
XXX@XXXXOX 0000000000
X XXX XXX 0000000000000
XX 00X X 0000000000000
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L L
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FXXXXXXX XXX XX XX 1
XXXX XXX XXX XX XX
XXXXOXOXXX XXX
XXXOX XX XOX
XXXXX XOXXXXXXOXXX
FXOXXXX XXXX 1
XXXXXX X X
XXOXXX X

XXXXXXX

XXOXXOXX

FXXXX XXX 1
XXXXXOXXX

XXXXXOX XXX
XXXX XXX XXX XXOX

XXX XX XXXXOXOX
FXOXOXXX XX XXX 1
XXXXXXX XXOX

XXX XX XXX XX
XXOXOXXXX

XXX XX XX

L
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15 20

10
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15 20

10
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XX XX XXX XX XXX X 0000000
XX XX XXX XX XXX XX XXX XX @
X000 0000000000000000
XX 000000000000000000
FXXXX XXX XX XXX XX XOOOOO-
XXXXXXXXXXXXXXXOXOO®
XXXXXXXXXXX 000000000
XX XX XXX XOXXX 00000000
XX XX 0000000000000000
FXXXXXXXXXXXXXXOX OO0
XX XX XXX XX X 0000000000
XX XX XXX XX XXX XX XXX OO
XXXXXXX0X 00000000000
XX x00000000000000000
FXXXXXX00000000000000-
XXXXXXXXX 00000000000
XX XX XXX XX XXX XX XXOXOO
XXXX XXX 0000000000000

Convex (no rand.) (scenario 3a)

XXXXX00X000000000000
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XXXX XXX 0000000000000
XX XX XXX XX XXX XX 000000
XX XX XXX XX XX 000000000
FXXXX XXX XX X0000000000-
XXXXXXX X 000000000000
XX XX XXX XX XXX XX XXX OO
XX XX XXX XX XXX XX XXX X OO
X0000000000000000000
FXXXX XXX XX XXX XO000000-
XX XX XXX XX XXX XX XXX XX O
XX XX X000000000000000
XXXXXXXXXXXXXXXXOOO®
XX XX XXX XX XXX XX X OO0
FXX XX 0000000000000000-
XX XX XXX XX XXX 00000000
XXXXXXOOO00000000000
XXXXXXXXX 00000000000
00000000000000000000
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o vy

Greedy (scenario 3a)
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15 20
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15 20

10
sensor index

Exhaustive sesarch (scenario 3a)

Convex (rand.) (scenario 3a)

F XX x00000000000000000-
XX XXX XX 0000000000000
XX XXX X@XX 00000000000
XX@X XXX 000X 000000000
X@XXX XX XXX XX 00000000
FXX XXX XX XX X@OXX X OOOO®-
XX XXX@XXXXXXXXOXOOO®
XX XXX XOOOXOXXOXOX 000
XXX XOOXXXOX X 00000000
XXX X0X 000X 0000000000
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