
Replacing The Acquisition Function in Bayesian Optimization by a
Neural Network

How effectively do meta-learned acquisition functions in Bayesian optimization perform
when optimizing for control variates of unknown functions, as compared to BO with standard acquisition

functions

Shayan Ramezani1

Supervisors: Matthijs Spaan1, Joery de Vries1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Shayan Ramezani
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Joery de vries, Christoph Lofi

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Bayesian Optimization (BO) has demonstrated sig-
nificant utility across numerous applications. How-
ever, due to it being designed as a universal opti-
mizer, its performance can often be suboptimal in
specialized environments. To overcome this issue,
research has been conducted into the application
of transfer learning for enhancing BO performance
in these specialized contexts. This paper describes
the research done into evaluating the MetaBO al-
gorithm in some specific environments. MetaBO
innovates by substituting the acquisition function
component in BO with a neural network that serves
as an acquisition function, trained via a reinforce-
ment learning framework. Although the results in-
dicate that the algorithm’s performance is not opti-
mal in the environments tested, these limitations are
ascribed to elements of the implementation rather
than the concept of the algorithm itself. Conse-
quently, further research is necessary to refine the
implementation process and fully exploit the poten-
tial of the MetaBO algorithm.

1 Introduction
Numerous real-world problems involve optimizing control
variates of complex systems without a solid understanding
of the underlying dynamics. Such complex systems can be
conceived as encompassing an objective function subject to
a limited budget, whether it is in terms of time or money,
for function evaluation. The array of problems1, with signif-
icant real-world implications, vary from drug design [2, 3]
to machine design [4, 5], from robotics [6] to automatic ma-
chine learning and hyper-parameter optimization [7, 8], and
beyond.

The research community has made substantial progress in
applying Bayesian optimization (BO) methods [1, 9–15] to
optimize such systems. This optimization process frequently
relies on numerical, derivative free, optimization methods
also known as black-box optimization. BO utilizes a surro-
gate model, typically a Gaussian process (GP), to generalize
over information from individual data points by incorporat-
ing a measure of uncertainty and uses this surrogate to find
the next data point to evaluate by optimizing “an acquisition
function (AF) that balances exploration and exploitation” [1].

Due to being designed as universal optimizers, the perfor-
mance of current Bayesian optimizers are suboptimal, e.g.
have slow convergence issues, in specialized scenarios [1,
13], and thus research effort has been directed towards re-
ducing the emphasis on universality by incorporating trans-
fer learning into BO for improved performance. In numer-
ous practical applications, optimization is often repeated un-
der similar settings, which means information garnered from
optimizing previous tasks could prove beneficial for optimiz-
ing an instance of a comparable task. In such cases, transfer
learning can help to leverage knowledge from previous tasks;

1For a thorough discussion see [1]

and even in the face of drastic changes in the settings to op-
timize in, there might still be some correlation between past
tasks and the current task at hand [1].

This paper explores the potential of using reinforcement
learning to replace standard AFs in BO by a neural network
that functions as the AF and uses the algorithm proposed by
Volpp et al.[13], called MetaBO, as inspiration and the main
source.

The primary goal of this research is to address the follow-
ing question: How effectively do meta-learned acquisition
functions in Bayesian optimization perform when optimizing
for control variates of unknown functions, as compared to BO
with standard acquisition functions?

The major contributions of this paper are centered around
answering this question through the testing of the MetaBO
algorithm on different objective functions, as provided by the
BBOx library2.

The structure of the paper is as follows: it begins with a
discussion of some related work. followed by the presenta-
tion of some essential background knowledge to aid reader
comprehension. The implementation steps of the algorithm
are detailed in section 4 and this implementation is put to the
test in section 5. Section 6 offers a brief digression into re-
sponsible research practices and how they have been applied
in the context of this project. The paper then concludes with
the conclusion and suggestions for potential future works.

2 Related Work
Transfer learning can be incorporated into the different com-
ponents of BO, which are the surrogate component, acquisi-
tion function component, initialization component and search
space design component [1]. More specifically for the AF
component, transfer learning can be applied by using a multi-
task BO function, ensemble GPs-based function, or a rein-
forcement learning based function [1].

Currently, various methods have been developed to en-
hance the surrogate model through transfer learning. One
of the common methods involves utilizing transfer learning
to improve the surrogate component in situations where data
from previous optimization runs is used to warm-start a new
run. Feurer et al. [16] developed an RPGE ensemble model
for BO that can accomplish this, “while avoiding the poor
scaling that is associated with incorporating all the results into
a single GP model”. Another solution for the same problem
is offered by Golovin et al. [17] where the idea is to con-
struct a stack of GP models, where each model is associated
with an optimization problem it was used in, and these opti-
mizations are done in a linear fashion where the model from
one run is trained on the residuals relative to the model before
it. In addition, there are numerous other examples of employ-
ing transfer learning to improve the surrogate component, e.g.
[18–20].

As may be clear from the introduction, applying transfer
learning to improve the AF component of BO is more impor-
tant to this research. In the literature, one can find different
ways of achieving this. Wistuba et al. [21] proposes the idea

2This library is not yet publicly available but will be in the future:
https://github.com/joeryjoery/BBOx

1

https://github.com/joeryjoery/BBOx


to use a common AF to do the transfer learning. Specifically,
the AF can be replaced by the weighted average of the ex-
pected improvement3 on the data from the current problem
and the predicted improvement on all the data from the pre-
vious problems, to learn a mapping between the data and the
improvement.

As pointed out in the previous section, the algorithm pro-
posed by Volpp et al. [13] is the main inspiration for this
paper and proposes another way of applying transfer learning
to replace AFs. The contributions of that paper to the fields
of BO are[13]:

• Transfer learning structural knowledge about related ob-
jective functions by replacing the AF of BO with a
learned neural AF with the goal of increasing data-
efficiencies on new comparable tasks;

• Meta-learning in such a way that the procedure is fully
compatible with the black-box optimization setting, i.e.,
not requiring objective function gradients

• Demonstration of the efficiency and practical application
of MetaBO

An important part for the transfer-learning in this case is
the reinforcement learning algorithm which is used to train
the neural network replacing the AF. More specifically, a type
of Proximal Policy Optimization algorithm is used for rein-
forcement learning, which was first proposed by Schulman et
al. [22]; this, in theory, has the benefits of trust region pol-
icy optimization4 while being ”simpler to implement, more
general, and having better sample complexity (empirically)”.

In addition, there is also research that has been done into
the initialization component, e.g. [23–25], and into the search
space design component, e.g. [26, 27].

For a more thorough discussion of works on transfer learn-
ing, refer to the work by Bai et al. [1].

3 Preliminaries
Bayesian Optimization
As mentioned in the introduction, Bayesian optimization is
useful for optimizing functions that are complex to evaluate,
typically due to time or cost of evaluation. Its utility has been
demonstrated in continuous domains of less than ±20 dimen-
sions and it tolerates stochastic noise when evaluating func-
tions [28]. The four components of BO are the search space
design component, the initialization component, the surrogate
model component, and the acquisition function component.

Bayesian optimization starts with first initializing its sur-
rogate model, typically a Gaussian process. This model is
intended to statistically model the objective function. To ini-
tialize it, often random points, distributed uniformly in the
search space, are evaluated for the objective function; keep-
ing in mind that this will cost part of the evaluation budget.
The GP model is then fitted on these evaluated points.

3The expected improvement indicates what the expected magni-
tude of improvement of evaluating for a next data point compared to
the best data point so far.

4https://arxiv.org/abs/1502.05477

To optimize for the objective function, the acquisition func-
tion is updated with the latest GP model by using the mean
and the standard deviation, at different points in the domain,
that can be obtained from the GP model. Afterwards, the
maximum of the AF indicates what point to evaluate next for
the objective function. A snapshot of a BO process is given
in Figure 1.

Figure 1: Snapshot of the BO process: The upper plot is showing the
objective function, the GP model with 2 times the standard deviation
around it and the points the GP is fitted on. The lower plot shows the
acquisition functions that needs to be maximized, so the next point
of evaluation is around 7.5 as marked.

Reinforcement Learning
Reinforcement learning is designed to teach an agent appro-
priate behaviour within a specific environment by letting the
agent take actions and rewarding/punishing the agent accord-
ingly. The environment can be formally defined as a 5-tuple
Markov Decision Process [29], ⟨S,A,R, P, ρ0⟩, where:

• S is the set of all valid states;

• A is the set of all valid actions, which in this study is
related to the input of the objective function;

• R : S × A × S → R is the reward function, with rt =
R(st, at, st+1);

• P : S × A → P(S) is the transition probability func-
tion, with P (s′|s, a) being the probability of transition-
ing into state s′ if you start in state s and take action
a;

• ρ0 us the starting state distribution.

A critical aspect in this context is the policy, which is a part
of the agent that stipulates the rule the agent adheres to when
deciding what actions to take. Here, a balance between ex-
ploration and exploitation is necessary, where exploration is
meant to prevent the policy from getting stuck in local max-
ima and exploitation is used to exploit what the system has
learned.

2

https://arxiv.org/abs/1502.05477


In this paper, PPO is the policy optimization method used
within the RL algorithm, where the key idea is to increase
the probability of selecting actions that give a higher return
and to decrease the probability of choosing actions that lead
to lower returns [29]. PPO aims to identify the most signifi-
cant improvement step for the policy using the collected data,
while at the same time imposing a limit on the improvement
step to maintain training stability.

4 Implementation
The algorithm implemented in this paper comprises three
main parts:

• The agent that should learn to replace the AF compo-
nent of the BO, called the neural AF as it uses neural
networks internally;

• The environment, constructed around the objective func-
tion, within which the agent trains and evaluates;

• The training/evaluation module which uses the other two
components to conduct the training/evaluation

This section will go into the details of the implementation
and the training, which is heavily inspired by the MetaBO
algorithm [13], while the subsequent section will delve into
the conducted evaluations.

Agent
The agent is meant to be used in a Proximal Policy Optimiza-
tion framework, drawing inspiration from the actor-critic ar-
chitecture, where the actor controls how the agent behaves
and the critic estimates the expected cumulative reward. The
actor is subdivided into two components: the first being a
network that takes as inputs a potential action (x), the mean
(µ(x)) and standard deviation (σ(x)) corresponding to that
action as inferred from the GP, the current step (t), and the
budget (T ) 5.The network outputs a value, intended to be
larger for more promising actions. This can be represented
as:

αt(x) = αt(µ(x), σ(x), x, t, T ) (1)

The second component, the action selector, interprets out-
puts of the network, which simulates Equation 1, at differ-
ent action points as the log probabilities of a categorical dis-
tribution and outputs the next action that should be taken.
This forms the agent’s policy and should lead to the meta-
algorithm updating its actor network such as to output higher
values for more promising actions.

The critic, consisting solely of a neural network, aims to
learn a value function to predict the expected cumulative re-
ward from a state. Volpp et al. [13] suggest using the current
step and budget as inputs for the critic network, arguing these
to be reliable indicators of future regrets. Despite any reser-
vations on its logical correctness, their method, as validated
on multiple objective functions by them, serves as a strong
starting point.

5Together these five values for all possible actions form the true
state of the environment, which is explained in the Environment sub-
section

Environment
The environment, where the agent takes incremental steps
and adjusts itself based on received rewards, first and fore-
most encapsulates the objective function. It also estimates
the optimum of its contained objective function, enabling re-
ward computation during training. The reward is formulated
as the negative simple regret, as used by Volpp et al.[13].

In addition, the environment houses the budget, current
step, action space, observation space, the GP model that it fits
on evaluated points, and keeps a record of the actions taken
and the best reward achieved. The state of the environment is
seen as the composite of the updated GP model, the step and
the budget. Although the step and budget are easily used as
input for the neural AF, the GP model needs to be approxi-
mated by discretizing the continuous action space.

For this, looking back at what the agent does is helpful.
For the actor part of the agent to be able to select the optimal
action at step t, it needs to have the outputs of its network
for the state (which consists out of infinitely many actions),
this way enabling the action selector to make the right choice.
Volpp et al.[13] suggests one way of evaluating the actor net-
work at step t, which is to start with a coarse static Sobol
grid of actions, which produces a discretized representation
of the state, ζglobal. After evaluating the actor network for
this set, local Sobol grids around the k actions corresponding
to the highest outputs of the network can be created, giving
ζlocal,t, which further refines the state approximation. The
static grid is useful for exploration while the adaptive grid
encourages exploitation. The union of these sets, ζt, repre-
sents a discretized version of the state that in reality contains
a continuous action space.

The GP model connects the action space to the state, allow-
ing for the state of the environment to be defined first by eval-
uating the GP model for a static discrete set of actions, and
then expanding this set to encompass the top k most promis-
ing actions.

The state hence becomes a set of actions, their correspond-
ing mean and standard deviation (from the GP model), the
current step, and the budget. Notably, the network part of the
actor is also a part of the environment as it is used to select
the k most promising actions for the local grids.

Training
The training part can be divided into making observations in
the environment and taking actions, and updating the policy
for this gathered data. At the start, an environment with a
random objective function belonging to a specific group is se-
lected. Afterwards, a set of states, actions taken in each state
and rewards for each action are obtained by iteratively feed-
ing ζt into the agent’s policy to select an action, take a step in
the environment with that action, and subsequently update the
GP model and hence ζt. Here, the rewards granted after each
step in the environment are recorded for policy updates. This
data collection continues until some batch size is reached. To
complete the batch, depending on whether the environment is
to be reused or not, it may be reset after reaching the budget,
or a new environment with a different random function from
the same group is created.

3



Once a batch of data has been accumulated, the policy is
updated according to the PPO algorithm 6. This process con-
tinues until a pre-determined number of steps has been exe-
cuted.

Worth mentioning is the fact that before arriving at the
implementation described here, considerable amount of time
was spent exploring alternative implementations, as outlined
in the following subsection.

Alternate implementation
There have been different attempts of implementing the algo-
rithm to have the agent be able to learn well. One approach
mirrored the main features of the implementation outlined in
the previous subsection but altered the distribution of tasks
between the agent and the environment. In addition, a slightly
different PPO implementation was contemplated.

After no satisfactory results, the original MetaBO imple-
mentation by Volpp et al. [13] was considered. This required
introducing the objective function as an environment7. After-
wards, the training algorithm was run on a constant budget
but the learning showed no improvement in the rewards, see
Figure 2. Importantly, it has not been possible to utilize the
original implementation with a fluctuating budget upon func-
tion reset, a feature crucial for some flexibility in the learned
knowledge.

Figure 2: The evolution of the rewards when training with the origi-
nal implementation of MetaBO by Volpp et al. [13]

.

Training performance
Before diving into the evaluations performed, it is informative
to examine a representative instance of the agent’s learning
performance during training. Figure 3 and Figure 4 demon-
strate the evolution of important loss functions during the
training. Based on these, it can be inferred that the agent
is not learning to approximate a desired AF, as the losses do
not appear to converge at all.

Seeing the learning capability of the agent in this imple-
mentation and alternative implementations has led to the con-
clusion that the correct implementation of the MetaBO algo-
rithm is challenging, especially when one has limited knowl-
edge of RL. It also underscores the complexity involved in
implementing MetaBO. Despite the availability of numerous

6For detailed discussion of how PPO is used in RL and thus in
this paper, see the original paper [22].

7To be specific, the objective function was added as one of the
hard-coded functions in the MetaBO class.

Figure 3: Policy loss during one of the training runs with 50000
timestep

Figure 4: Value loss during one of the training runs with 50000
timestep

plug-and-play reinforcement learning algorithms requiring
only the design of an environment, these algorithms appear
to underperform due to the intricate nature of the MetaBO
environment.

5 Evaluation
The primary objective of the evaluation process was to mea-
sure the efficacy of the implemented algorithm, that is, how
effectively the agent had learned an acquisition function. This
was achieved by running Bayesian Optimization (BO) with
different acquisition functions (AFs). The first was the trained
agent itself, serving as the AF. Additionally, the well-known
AFs Probability of Improvement (POI), Expected Improve-
ment (EI), and Upper Confidence Bound (UCB) were em-
ployed. In order to establish a benchmark, a random action
selector was also utilized as an AF. The subsequent subsec-
tion elucidates the specific setup of the evaluation algorithm.

Setup
In order to deploy the agent as an alternative for the AF, a
similar environment was set up as the one used during the
training process, containing an objective function from the
group it was trained for. For the evaluation in this paper, two
different groups were used. The first group consisted of a
simple convex function, while the second was a more com-
plex Gaussian process function.

Once the environment and the objective function within
it were established, the agent was iteratively tasked with
proposing an action to be executed. Following this, the en-
vironment was updated with the action, and the agent was
updated with the new state of the environment. This process
was repeated until the budget was exhausted.

Moreover, the objective function of the environment was
incorporated into the other BO algorithms8 with the different
AFs mentioned, as well as the random action selector. The

8The BO implementation by Nogueira was employed in this pa-
per [30]

4



BO algorithm was subsequently run until the budget was de-
pleted.

Results

As suggested in the preceding subsection, two distinct groups
of objective functions were employed to evaluate the BO al-
gorithms. The performance of the different AFs was mea-
sured using the metric of simple regret, essentially reflecting
how close the algorithm was able to get to the optimum value
of the objective function.

Due to randomness of budget and noise when generating
the objective functions, the evaluation was executed multi-
ple times. However, due to suboptimal performance, a more
comprehensive evaluation was deemed unnecessary and de-
ferred to a point in time when a more effective implementa-
tion has been accomplished.

Figure 5 depicts a few runs of the evaluation when assess-
ing the algorithms for the simple convex functions, in which
we can see the performance of the MetaBO algorithm to be
comparable to the other ones. Figure 6 shows a few runs
when applying them for the Gaussian process function, which
shows the lack of performance of the MetaBO algorithm.

Figure 5: The performance of different AFs when optimizing for a
simple convex objective function with domain [−1, 1]. These results
suggest that the performance of the MetaBO algorithm is akin to
standard BO and the random action selector (which although taking
more steps, still manage to make other algorithms appear weaker).
Note: the negative simple regret is due to the optimum value of the
objective function being an approximation. Thus, the smaller the
value of the simple regret, the better.

Based on these figures, it can be inferred that the MetaBO
algorithm does not surpass the performance of standard BO
under any circumstances. This can primarily be attributed to
the training process failing to demonstrate any learning capa-
bility, as detailed in the subsection on training performance
in the preceding section.

Figure 6: The performance of different AFs when optimizing for
a simple convex objective function with domain [−1, 1]. These re-
sults highlight the poor performance of the MetaBO algorithm in
comparison to standard BO and the random action selector. Note:
the negative simple regret is due to the optimum value of the objec-
tive function being an approximation. Thus, the smaller the value of
the simple regret, the better.

6 Responsible Research
Research without integrity is of no value. Therefore, The
Netherlands Code of Conduct for Research Integrity report
[31] defines principles that can be the basis of integrity in re-
search. These principles are honesty, scrupulousness, trans-
parency, independence, and responsibility. These principles
are important to this paper in the following ways:

Honesty This paper explicitly mentions the fact that the
writer is not fully confident about the result. section 5 shortly
discusses why the results are not acceptable and what the rea-
sons are.

Scrupulousness This principle has been the hardest to fully
comply to. The main reasons were the lack of knowledge
of reinforcement learning combined with underestimation of
how much knowledge was required plus the fact that the
project had only a duration of ten weeks. So, designing and
implementing the algorithm has not been done as effectively
as possible. However, the reporting of the research has been
done in a thorough manner as to help clarify mistakes.

Transparency This paper describes the exact implementa-
tion of the final algorithm and describes the evaluations done
step by step as to help reproducing the research later on. In
addition, the code can be shared with parties interested in im-
proving directly on the implementation already available in-
stead of starting from nothing.

Independence The research done for this paper is fully in-
dependent of any involved party’s interest, which is actually
only the researcher himself, the responsible professor, and the
supervisor. This means that the paper states all the observa-
tion as they were and these can be verified by replication.

5



Responsibility The responsibility in this paper is mainly
present in connection to the fact that a research has been con-
ducted that is scientifically relevant. By improving Bayesian
optimization, different fields that need to optimize for com-
plex objective function as part of their work, can carry out
this work more efficiently.

Ethical issues for the application
As a researcher, it is worth pondering upon what the ethical
issues are with the research one is involved with. Although
the research done for this paper has had no ethical issues in-
volved during implementation, the application of the solution
offered varies a lot. And although as researcher there is no
full control on these application, a part of the responsibility is
to discuss these applications and be aware of them.

As indicated in the introduction, BO has many different
applications but due to it being an abstract concept and more
often than not being a part of a larger system, it usually will
not be directly used for unethical applications. It can however
be part of an application that can be used unethically, e.g.
hackers could try to explore a system’s vulnerabilities with
BO, or it can be used in finding optimal ways of maximizing
user engagement for the spread of misinformation.

Despite these application being a possibility, there are
many useful and valuable applications like helping with drug
design as mentioned in the introduction. Altogether, it seems
that the further improvement of BO does more good than
harm, certainly when taking into account that the unethical
applications mentioned have not been researched in any way
and will be much harder to implement than the valuable ap-
plications.

Looking at this research specifically, it is fair to say that the
ideas mentioned will not be a catalyst for unethical applica-
tions as BO in general is a fairly well-developed concept and
can already be applied in many ways.

7 Conclusions and Future Work
This study explored the possibility of replacing the acqui-
sition function component in Bayesian Optimization with
a neural network trained through reinforcement learning,
termed as the MetaBO algorithm. The overarching aim was to
ascertain the performance of meta-learning acquisition func-
tions in BO when optimizing control variates of unknown
functions, in comparison to BO equipped with standard ac-
quisition functions.

The detailed implementation of the algorithm was pre-
sented, and the ensuing examination of the training perfor-
mance and evaluation results underscored the subpar perfor-
mance of the MetaBO algorithm. One contributing factor
to this is the limited expertise of the author in reinforce-
ment learning, which raises questions about potential en-
hancements in the implementation. Nonetheless, it also un-
derscores the complexity involved in implementing MetaBO.
Despite the availability of numerous plug-and-play reinforce-
ment learning algorithms requiring only the design of an en-
vironment, these algorithms appear to underperform due to
the intricate nature of the MetaBO environment.

Despite these disappointing results, this work aims to pro-
vide clarity on some of the steps involved in implementing

the MetaBO algorithm and testing it on objective functions
supplied in the BBOx library.

One possible approach for enhancing the training process
could involve modeling the objective function on which the
algorithm will be trained, as opposed to using the objective
functions themselves. The rationale for this is that objective
functions are often too complex for training purposes in prac-
tical applications, and must therefore be simplified by models
that can still facilitate learning for the algorithm. Another po-
tential improvement could involve modifying the input pro-
vided to the critic, as briefly discussed in section 4.

Moreover, future research could examine the application of
transfer learning to multiple components of BO concurrently.
This could potentially enhance the algorithm’s performance
by capitalizing on previously learned features and applying
them across multiple components.

References
[1] T. Bai, Y. Li, Y. Shen, X. Zhang, W. Zhang, and B. Cui,

Transfer learning for bayesian optimization: A survey,
2023. arXiv: 2302.05927 [cs.LG].

[2] M. Imani and S. F. Ghoreishi, “Bayesian optimization
objective-based experimental design,” in 2020 Ameri-
can Control Conference (ACC), 2020, pp. 3405–3411.
DOI: 10.23919/ACC45564.2020.9147824.

[3] E. O. Pyzer-Knapp, “Bayesian optimization for accel-
erated drug discovery,” IBM Journal of Research and
Development, vol. 62, no. 6, 2:1–2:7, 2018. DOI: 10.
1147/JRD.2018.2881731.

[4] J. Shigley, C. Mischke, and T. Brown, Standard Hand-
book of Machine Design (McGraw-Hill standard hand-
books). Mcgraw-hill, 2004, ISBN: 9780071441643.
[Online]. Available: https: / /books.google.nl /books?
id=Mafom8J9sqYC.

[5] R. Gupta, A Textbook of Machine Design. Eurasia Pub-
lishing House, 2005, ISBN: 9788121925372. [Online].
Available: https : / / books . google . nl / books ? id =
6FZ9UvDgBoMC.

[6] W. Burgard, O. Brock, and C. Stachniss, “Active policy
learning for robot planning and exploration under un-
certainty,” in Robotics: Science and Systems III. 2008,
pp. 321–328.

[7] M. Feurer, A. Klein, K. Eggensperger, J. Springen-
berg, M. Blum, and F. Hutter, “Efficient and robust
automated machine learning,” in Advances in Neu-
ral Information Processing Systems, C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,
vol. 28, Curran Associates, Inc., 2015. [Online]. Avail-
able: https://proceedings.neurips.cc/paper files/paper/
2015 / file / 11d0e6287202fced83f79975ec59a3a6 -
Paper.pdf.

[8] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Al-
gorithms for hyper-parameter optimization,” in Ad-
vances in Neural Information Processing Systems,
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Weinberger, Eds., vol. 24, Curran Asso-
ciates, Inc., 2011. [Online]. Available: https : / /

6

https://arxiv.org/abs/2302.05927
https://doi.org/10.23919/ACC45564.2020.9147824
https://doi.org/10.1147/JRD.2018.2881731
https://doi.org/10.1147/JRD.2018.2881731
https://books.google.nl/books?id=Mafom8J9sqYC
https://books.google.nl/books?id=Mafom8J9sqYC
https://books.google.nl/books?id=6FZ9UvDgBoMC
https://books.google.nl/books?id=6FZ9UvDgBoMC
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf


proceedings .neurips .cc /paper files /paper /2011/file /
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[9] B. Hsieh, P. Hsieh, and X. Liu, “Reinforced few-shot
acquisition function learning for bayesian optimiza-
tion,” CoRR, vol. abs/2106.04335, 2021. arXiv: 2106.
04335. [Online]. Available: https://arxiv.org/abs/2106.
04335.

[10] S. Jiang, D. R. Jiang, M. Balandat, B. Karrer,
J. R. Gardner, and R. Garnett, “Efficient nonmyopic
bayesian optimization via one-shot multi-step trees,”
CoRR, vol. abs/2006.15779, 2020. arXiv: 2006.15779.
[Online]. Available: https://arxiv.org/abs/2006.15779.

[11] B. Letham, R. Calandra, A. Rai, and E. Bakshy, Re-
examining linear embeddings for high-dimensional
bayesian optimization, 2020. arXiv: 2001 . 11659
[stat.ML].

[12] A. Shah and Z. Ghahramani, “Parallel predictive en-
tropy search for batch global optimization of expen-
sive objective functions,” CoRR, vol. abs/1511.07130,
2015. arXiv: 1511 . 07130. [Online]. Available: http :
//arxiv.org/abs/1511.07130.

[13] M. Volpp et al., Meta-learning acquisition functions
for transfer learning in bayesian optimization, 2020.
arXiv: 1904.02642 [stat.ML].

[14] J. Wang, S. C. Clark, E. Liu, and P. I. Frazier, Par-
allel bayesian global optimization of expensive func-
tions, 2019. arXiv: 1602.05149 [stat.ML].

[15] J. Wu and P. I. Frazier, The parallel knowledge gra-
dient method for batch bayesian optimization, 2018.
arXiv: 1606.04414 [stat.ML].

[16] M. Feurer, B. Letham, and E. Bakshy, “Scalable meta-
learning for bayesian optimization using ranking-
weighted gaussian process ensembles,” 2018.

[17] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. E.
Karro, and D. Sculley, Eds., Google Vizier: A Service
for Black-Box Optimization, 2017, pp. 1487–1495.
[Online]. Available: http : / / www. kdd . org / kdd2017 /
papers/view/google-vizier-a-service-for-black-box-
optimization.

[18] T. Theckel Joy, S. Rana, S. Gupta, and S. Venkatesh,
“A flexible transfer learning framework for bayesian
optimization with convergence guarantee,” Expert Sys-
tems with Applications, vol. 115, Aug. 2018. DOI: 10.
1016/j.eswa.2018.08.023.

[19] H. C. L. Law, P. Zhao, L. Chan, J. Huang, and D. Se-
jdinovic, Hyperparameter learning via distributional
transfer, 2019. arXiv: 1810.06305 [stat.ML].

[20] M. Poloczek, J. Wang, and P. I. Frazier, Warm start-
ing bayesian optimization, 2016. arXiv: 1608 . 03585
[stat.ML].

[21] M. Wistuba, N. Schilling, and L. Schmidt-Thieme,
“Scalable gaussian process-based transfer surrogates
for hyperparameter optimization,” Machine Learning,
vol. 107, pp. 43–78, 2017.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization al-
gorithms,” CoRR, vol. abs/1707.06347, 2017. arXiv:
1707.06347. [Online]. Available: http://arxiv.org/abs/
1707.06347.

[23] J. Kim, S. Kim, and S. Choi, Learning to warm-start
bayesian hyperparameter optimization, 2018. arXiv:
1710.06219 [stat.ML].

[24] M. Feurer, T. Springenberg, and F. Hutter, “Initializ-
ing bayesian hyperparameter optimization via meta-
learning,” Proceedings of the Twenty-ninth AAAI Con-
ference on Artificial Intelligence, vol. 29, pp. 1128–
1135, Feb. 2015. DOI: 10.1609/aaai.v29i1.9354.

[25] M. Wistuba, N. Schilling, and L. Schmidt-Thieme,
“Learning hyperparameter optimization initializa-
tions,” in 2015 IEEE International Conference on Data
Science and Advanced Analytics (DSAA), 2015, pp. 1–
10. DOI: 10.1109/DSAA.2015.7344817.

[26] V. Perrone, H. Shen, M. Seeger, C. Archambeau, and
R. Jenatton, Learning search spaces for bayesian op-
timization: Another view of hyperparameter transfer
learning, 2019. arXiv: 1909.12552 [stat.ML].

[27] M. Wistuba, N. Schilling, and L. Schmidt-Thieme,
“Hyperparameter search space pruning - a new compo-
nent for sequential model-based hyperparameter opti-
mization,” Sep. 2015, pp. 104–119, ISBN: 978-3-319-
23524-0. DOI: 10.1007/978-3-319-23525-7 7.

[28] P. I. Frazier, A tutorial on bayesian optimization, 2018.
arXiv: 1807.02811 [stat.ML].

[29] J. Achiam. “Spinning Up in Deep Reinforcement
Learning.” (2018), [Online]. Available: https : / /
spinningup.openai.com/. (Accessed on: 13-06-2023).

[30] F. Nogueira, Bayesian Optimization: Open source con-
strained global optimization tool for Python, 2014–
. [Online]. Available: https : / / github . com / fmfn /
BayesianOptimization, (Accessed: 18.06.2023).

[31] KNAW, NFU, NWO, TO2-federatie, N. A. of Univer-
sities of Applied Sciences, and VSNU, “Netherlands
code of conduct for research integrity,” 2018. [Online].
Available: https://doi.org/10.17026/dans-2cj-nvwu.

7

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://arxiv.org/abs/2106.04335
https://arxiv.org/abs/2106.04335
https://arxiv.org/abs/2106.04335
https://arxiv.org/abs/2106.04335
https://arxiv.org/abs/2006.15779
https://arxiv.org/abs/2006.15779
https://arxiv.org/abs/2001.11659
https://arxiv.org/abs/2001.11659
https://arxiv.org/abs/1511.07130
http://arxiv.org/abs/1511.07130
http://arxiv.org/abs/1511.07130
https://arxiv.org/abs/1904.02642
https://arxiv.org/abs/1602.05149
https://arxiv.org/abs/1606.04414
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://doi.org/10.1016/j.eswa.2018.08.023
https://doi.org/10.1016/j.eswa.2018.08.023
https://arxiv.org/abs/1810.06305
https://arxiv.org/abs/1608.03585
https://arxiv.org/abs/1608.03585
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1710.06219
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1109/DSAA.2015.7344817
https://arxiv.org/abs/1909.12552
https://doi.org/10.1007/978-3-319-23525-7_7
https://arxiv.org/abs/1807.02811
https://spinningup.openai.com/
https://spinningup.openai.com/
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://doi.org/10.17026/dans-2cj-nvwu

	Introduction
	Related Work
	Preliminaries
	Implementation
	Evaluation
	Responsible Research
	Conclusions and Future Work

