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Abstract. We present a method to use lagrangian data from remote sensing observation

in a data assimilation process for parameters identification in a river hydraulics model

based on the bidimensional shallow water equations. The trajectories of particles advected

by the flow can be extracted from video images and are used in addition to classical eulerian

observations. This lagrangian data bring information on the surface velocity thanks to an

appropriate transport model. Numerical twin data assimilation experiments demonstrate

that this method makes it possible to significantly improve the identification of bed elevation

and initial conditions.

1 INTRODUCTION

The numerical simulation of river flows requires a precise modelling of the underlying
physics. The bidimensional shallow water equations can describe accurately many free
surface hydraulic configurations. In order to carry out a realistic simulation of a particular
system, numerical models require information on physical parameters such as bed eleva-
tion, roughness coefficients in addition to initial and boundary conditions. Unfortunately,
many model parameters are usually not well known and must be calibrated. Since the
quality of the simulation is largely dependent on these model inputs, the later must be
defined accurately.

To improve the quality of the simulation, data assimilation methods combine optimally
information from the model and observation data in order to identify the value of model
parameters consistent with reality. Variational data assimilation [1] consists in minimizing
a cost function that measures the discrepancy between simulation results and physical
measurements. The minimization is performed by a quasi-Newton method [2], which
requires the computation of the gradient of the cost function. The latter can be efficiently
computed using the solution to an adjoint model.
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However, in river hydraulics, observation data are available only in very small quanti-
ties. River water level can be measured locally at gauging stations, but such observations
are usually very sparse in space. Velocity measurements are even more scarce, since they
usually require complex human interventions. Consequently, the available eulerian obser-
vations are not sufficient to take full advantage of data assimilation for many identification
problems.

Therefore, new kinds of observations would bring additional information on the flow.
In particular, remote sensing techniques make it possible to get information on the water
surface. We present a method to use lagrangian data, which can be extracted from video
images, into the assimilation process. We consider observations of particles spread on the
water surface and advected by the flow. The link between the shallow water model and the
trajectories of these particles is made thanks to an appropriate transport model. To use
this information in the data assimilation process, we introduce a cost function measuring
the distance between the trajectory of model particles and the available observations. The
lagrangian data is used in addition to classical eulerian observations of water depth.

When considering real flows, the water surface is perturbed by physical phenomena that
cannot be represented in the model. To cope with this difficulty, an observation operator
based on a multi-scale filtering scheme is proposed to remove small-scale perturbations
from trajectories observations.

Lagrangian data assimilation is applied to the identification of bed elevation and initial
conditions for an academic configuration of a river hydraulics model based on the shallow
water equations. The discretization of the direct shallow water model rely on the finite
volume method and the HLLC [3] approximate Riemann solver. The adjoint model is
written using automatic differentiation tool Tapenade [4]. Numerical twin data assimi-
lation experiments demonstrate that the proposed method makes it possible to improve
significantly the quality of the identification.

The bidimensional conservative shallow water equations are introduced in Section 2 and
the variational data assimilation procedure for lagrangian data is described in Section 3.
The discretization of the direct model, the numerical scheme for the computation of
trajectories and the implementation of the adjoint model are presented in Section 4. A
filter used to smooth observations of trajectories is introduced in Section 5. Finally,
twin experiments and numerical results of data assimilation for the identification of bed
elevation and initial conditions are presented in Sections 6 and 7.

2 SHALLOW WATER MODEL

The river hydraulics model considered rely on the bidimensional shallow water equa-
tions in a conservative formulation. The state variables are the water depth h and the
local discharge q = hu, where u is the depth-averaged velocity vector. On a domain Ω
and for a computational time interval [0, T ], the shallow water equations associated with
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initial and boundary conditions can be written as





∂t h + div(q) = 0 in Ω×] 0, T ]

∂t q + div( 1
h
q ⊗ q) + 1

2
g∇h2 + gh∇zb + g n2‖q‖

h7/3 q = 0 in Ω×] 0, T ]

I.C. h(0) = h0 , q(0) = q0 ,

B.C. (q · n)|Γq
= −q̄ , (q · n)|Γw

= 0 , h|Γz
= z̄s − zb|Γz

,

(∂nh)|Γq∪Γw∪Γt
= 0 , (∂nq)|Γt

= 0 , ∂n(u · n + 2c)|Γz
= 0

(1)

where g is the magnitude of the gravity, zb the bed elevation, n the Manning roughness
coefficient, h0 and q0 the initial conditions for the state variables. The variable c =

√
gh

denotes the local wave celerity.
The boundary Γ of the domain Ω is split up as Γ = Γq ∪ Γz ∪ Γw ∪ Γt for four different

kinds of boundary conditions.

• Γq : a scalar discharge q̄ is prescribed

• Γz : a water elevation z̄s is prescribed

• Γw : a slip condition on the velocity is prescribed

• Γt : homogeneous Neumann conditions for all state variables are prescribed.

The model state variables (h,q) are completely determined by the value of the control
vector c = (h0,q0, n, zb, q̄, z̄s).

3 LAGRANGIAN DATA ASSIMILATION

Variational data assimilation [1] is based on optimal control theory [5] and consists
in identifying the control vector c that minimizes a cost function measuring the discrep-
ancy between the state variable of the model and data obtained from the observation
of the physical system. An efficient minimization of the cost function is carried out a
quasi-Newton method that requires the computation of its gradient. We use the M1qn3

algorithm [2] based on the BFGS formula.
Lagrangian data assimilation consists in using observations described by lagrangian

coordinates in the data assimilation process. Here, we consider observations of particles
transported by the flow. However, the state of the flow is described in eulerian coordinates
by the shallow water model. The link between the lagrangian data made of particle
trajectories and the classical eulerian variables of the shallow water model is made by an
appropriate transport model.

3.1 Transport model

Let us consider a set of N particles transported by the flow. We state that their
trajectories Xi(t) are solutions of the following ODEs:

{
d
dt

Xi(t) = γ u
(
Xi(t), t

)
∀ t ∈ ]t0i , t

f
i [

Xi(t
0
i ) = x0

i ,
for i = 1, . . . , N (2)
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where t0i and tfi are the time when the particle enter and leave the observation domain.
The particles are transported by a velocity that is related to the shallow water model
velocity by a multiplicative constant γ. This set of ODEs is weakly coupled with the
shallow water model since the state variable of the latter is not dependent on the solution
of the former.

3.2 Observations and cost function

We consider two kinds of observations. The first one consists in classical, eulerian
observations of the water depth in some locations of the physical domain, denoted by
hobs(t). The second kind consists in the trajectories of physical particles transported by
the water flow. These lagrangian observations are denoted by Xobs

i (t).
In order to take into account both kinds of observations, we build a composite cost

function measuring the discrepancy between observation data and model state variables:

j(c) =
1

2

∫ T

0

∥∥Ch(t) − hobs(t)
∥∥2

dt +
αt

2

N∑

i=1

∫ t
f
i

t0i

∣∣Xi(t) − Xobs
i (t)

∣∣2 dt , (3)

where c = (h0,q0, n, zb, q̄, z̄s) is the control vector, αt a scaling parameter, C the ob-
servation operator that map the model variables to the space of eulerian observations.
The first term measures the discrepancy between water depth observations and model
state variable. The second term measures the distance between virtual particles of the
transport model and observations of trajectories.

3.3 Adjoint model

The adjoint method makes it possible to compute efficiently all partial derivatives of
the cost function j with respect to the components of the control vector c. We introduce
the following weakly coupled adjoint model set.




For i = 1, . . . , N
d
dt

X̃i(t) + γ[∇u]T X̃i = αt

(
Xi(t) − Xobs

i (t)
)

∀ t ∈ ]t0i , t
f
i [

X̃i(t) = 0 ∀ t ∈ ]0, t0i ] ∪ [tfi , T [

(4)





∂t h̃(t) −
[
(u · ∇) q̃

]
· u + gh div(q̃) − g q̃ · ∇zb + 7

3
g n2‖u‖

h4/3 u · q̃
= γ

h

∑N

i=1 u · X̃i(t) + CT
(
Ch(t) − hobs(t)

)
∀ t ∈ ]0, T [

∂t q̃(t) + ∇h̃ + (u · ∇) q̃ + (∇q̃)T u− g n2‖u‖

h4/3 q̃

− g n2

h4/3‖u‖
(u⊗ u)q̃ = −γ

h

∑N

i=1 X̃i(t) ∀ t ∈ ]0, T [

I.C. h̃(T ) = 0 , q̃(T ) = 0 ,

B.C. q̃|Γq
= 0 , (q̃ · n)|Γw

= 0 , q̃|Γt
= 0 , (q̃ · τ)|Γz

= 0 ,

(∂nh̃)|Γq∪Γw
= 0 , h̃|Γt

= 0 ,
(
h̃ + 2(u · n)(q̃ · n)

)
|Γz

= 0

(5)
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A backward integration in time of the adjoint transport model (4) followed by a backward

integration in time of the adjoint shallow water model (5) give a solution (X̃, h̃, q̃) to the
weakly coupled system. Then, the partial derivatives of the cost function are simple
functions of the adjoint state variables h̃ and q̃. For example, we have

∂j

∂h0
(c) = −h̃(0) ,

∂j

∂q0
(c) = −q̃(0) ,

∂j

∂zb

(c) = −
∫ T

0

div
(
gh(t)q̃(t)

)
dt ,

∂j

∂q̄
(c) = −h̃|Γq

,
∂j

∂z̄s

(c) =
[
(q̃ · n)

(
c2 − (u · n)2

)]
|Γz

.

These partial derivatives are used as inputs to the minimization algorithm. A single
integration of the direct model (1)–(2) followed by a single integration backward in time
of the adjoint model (4)–(5) are sufficient to compute all components of the gradient of
the cost function.

4 DISCRETIZATION

4.1 Finite Volume solver

The bidimensional shallow water equations described in Section 2 are solved numeri-
cally on a structured mesh using the finite volume method. The system (1) can be written
in a general form as

∂tU + div F (U) = S(U) , (6)

where U = (h,q)T is the vector of conservative variables, F (U) =
(
G(U), H(U)

)T
the

flux vector and S(U) the source term

G(U) =




qx

1
h
q2
x + 1

2
gh2

1
h
qxqy



 , H(U) =




qy

1
h
qxqy

1
h
q2
y + 1

2
gh2



 , S(U) =

(
0

−gh∇zb − g
n2‖q‖2

h7/3 q

)
.

The computational domain Ω is discretized using quadrangular cells. We define the mean
value of the state variable U on an arbitrary cell Ki by

Ui =
1

|Ki|

∫

Ki

U dΩ ,

where |Ki| denotes the surface of the cell. By integrating (6) over Ki, using the divergence
theorem, we obtain

∫

Ki

∂t U dΩ +

Ni∑

j=1

∫

Eij

T−1
ij G(TijU) ds =

∫

Ki

S(U) dΩ ,

where Ni denotes the number of faces of the cell Ki (3 or 4), Eij is the cell interface (see
Fig. 1) and Tij is the 3× 3 rotation matrix of angle θij . The usual flux term derived from
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Marc Honnorat, Jérôme Monnier and François-Xavier Le Dimet

R

ȳ

θij

L ≡ Ki

x

y x̄

Eij

Figure 1: Two adjacent finite volumes.

the divergence theorem has been replaced by integrals over the cell edges thanks to the
rotational invariance property of the shallow water equations (see [3, p. 65]). Hence, the
bidimensional problem actually consists in a sum of one-dimensional Riemann problems
that can be solved numerically using a Riemann solver. One can write the following
semi-discrete scheme

d

dt
Ui +

1

|Ki|

Ni∑

j=1

T−1
ij G̃(UL, UR) = Si , (7)

where G̃(UL, UR) is an approximation of the flux through the cell interface Eij . Subscripts
L and R denote cells respectively to the left and to the right of the interface. To compute
numerically the discrete flux G̃(UL, UR), we use the HLLC approximate Riemann solver [3].
The discretization of the bed slope is actually included in the flux term. A forward Euler
scheme is used for time discretization. The following stability condition on the time step

∆t must be satisfied: ∆t ≤ min(dL,R)

max(‖u‖+c)
, where dL,R is the distance between the cell center

and the center of interface.

4.2 Trajectories

The trajectories of the particles are obtained by the integration of (2) using a second-
order Runge-Kutta scheme. Let (tn)n be a subdivision of the time interval [t0i , t

f
i [ and let

∆tn = tn+1−tn. To compute an approximation Xn
i of the solution Xi(tn) to the transport

model (2), we use the second-order time integration scheme

X0
i = x0

i ,

For n = 0, . . . :




Xn,1
i = Xn

i + ∆tn γ u
(
Xn

i , tn
)

Xn,2
i = Xn

i + ∆tn γ u
(
Xn,1

i , tn+1

)

Xn+1
i = 1

2

(
Xn,1

i + Xn,2
i

)

(8)

This scheme needs the value of the velocity u for an arbitrary position P = (px, py) in the
domain Ω. Since the velocity field is known only as a discrete finite volume solution to the
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shallow water equations, we use an interpolation to compute an approximation uP (tn) of
u(P, tn). Figure 2 shows a part of a structured, rectangular mesh of the computational
domain. The velocity u is known at each computational time tn by an approximation

P∆x

hy

hx

∆y

j j+1

k

k+1

Figure 2: Interpolation grid for the velocity field.

of its mean value on each cell Kj,k denoted by un
j,k. Using the notations of Figure 2, we

introduce the following interpolation scheme

uP (tn) = 1
hxhy

(
(hx − ∆x)(hy − ∆y) un

j,k + ∆x∆y un
j+1,k+1

+ ∆x (hy − ∆y) un
j+1,k + (hx − ∆x)∆y un

j,k+1

) (9)

Since the mesh is structured and the cells are rectangular, this scheme is second-order
accurate.

4.3 Adjoint model

In practice, there are three main methods to obtain an implementation of the adjoint
model. The continuous adjoint model (5) can be discretized using an appropriate nu-
merical scheme which is then implemented. A major difficulty relies on the fact that the
adjoint equations are not in a conservative form, therefore the numerical scheme used for
the direct equations cannot be applied. A second solution consists in writing the adjoint
of the direct numerical scheme and implement it. Actually, we use a better way that
consists in writing directly the adjoint code of the implementation of the direct model. A
large part of this extensive task can be automated using algorithmic differentiation [6].
Here, the direct program is coded in Fortran 90 and we use the automatic differentiation
tool Tapenade [4].

The direct and adjoint codes are included in a sofware called Dassflow [7] designed to
carry out data assimilation experiments.
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5 TRAJECTORY FILTERING

When we consider real flows, surface velocity is perturbed by many physical phenomena
that are not taken into account neither in the shallow water model nor in the particle
transport model. Therefore, if a large number of trajectories observations is available, it
should be profitable to filter this information in order to remove small-scale perturbations
from the data set. Such a filter based on a priori information on the flow can improve
the quality of data assimilation and consequently the quality of parameter identification.

In the proposed method, filtered trajectories are reconstructed from a local average in
time and space of the velocity field. We seek to create a set

{
Xm

j

}
j=1,Nm

of trajectories

defined as {
d
dt

Xm
j (t) = um

(
Xm

j (t), t
)

∀ t ∈ ]t0j , t
f
j [

Xm
j (t0j) = x0

j

. (10)

where um is the local average velocity and x0
j the starting point of the filtered trajectory

j. Let um,j (t) = um
(
Xm

j (t), t
)

denote the velocity of filtered particle j at time t. It
is computed as the mean velocity observed at time t on a time-space window W =
Wt × WXm

j (t), where Wt denotes a temporal neighborhood of t and WXm
j (t) a spatial

neighborhood of Xm
j (t). Using these notations, we define

um,j (t) =
1
� j

t

Nobs∑

i=1

∫

Wt

d

ds
Xobs

i (s) �Xobs
i (s)∈WXm

j
(t)

ds , (11)

where
� j

t =

Nobs∑

i=1

∫

Wt

�Xobs
i (s)∈WXm

j
(t)

ds .

On Figure 3 is drawn a square spatial window for a particle located in Xm at time t.
Two raw trajectories of observed particles are represented with dotted lines. The solid
lines correspond to the part of the trajectories included in the time window Wt while the
bold lines match the intersection of the latter with the space window, i.e. the parts of

X
obs,i

X
obs,i+1

W
Xm(t)

X
m(t)

Figure 3: Space and time windows for trajectories filtering.
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the trajectories actually taken into account in the computation of the local mean velocity
um,j (t). The filtered trajectories Xm

j are used instead of the raw observations Xobs
i in the

data assimilation process.

6 TWIN EXPERIMENTS

6.1 Description

Twin experiments consist in data assimilation experiments where the observations are
created by the model with a given set of parameters. This makes it possible to evalu-
ate a data assimilation method with a complete knowledge of all parameters, with no
dependence on external variables.

A reference simulation is performed using a known set of parameters cref . The resulting
state variables, called href and uref are used to create observations. Here, we will consider
observations of water depth, denoted by hobs and observations of trajectories, denoted by
Xobs.

Then, a different configuration resulting from a modified set of parameters c̃ made of a

priori hypotheses on the reference flow is used as an initial guess for a data assimilation
experiment. The aim is to identify the reference set of parameters cref using the synthetic
observations.

In order to evaluate the quality of the identification, we introduce a diagnostic func-
tion jtot measuring the discrepancy between the reference state variable and a simulation
resulting from an arbitrary parameter vector c.

jtot(c) =
1

2

∫ T

0

(∥∥h(t) − href(t)
∥∥2

Ω
+
∥∥u(t) − uref (t)

∥∥2

Ω

)
dt (12)

If the observations are perfect, directly derived from the model state variables with no
additional noise, then jtot(c

ref) = 0.

6.2 Perturbation of trajectories

For the numerical twin experiment, we will actually construct observations of per-
turbed trajectories, i.e. trajectories of particles transported by a turbulent velocity field
denoted by ut . We consider a simple perturbation model where the observations consist
in trajectories of particles transported by a velocity field made up of the sum of the model
velocity γu and a perturbation up.

ut(x, t) = γu(x, t) + up(x, t) . (13)

We define the perturbation up as a Gauss-Markov stochastic process. Let the random
variable up

n = up(·, tn) denote the perturbation velocity field at time tn. We introduce the
Reynolds tensor R(tn) and the time correlation tensor Λ(tn, tm) defined as

R(tn) = �
(
up

n up
n
T
)

Λ(tn, tm) = �
(
up

n up
m

T
)

.
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The perturbation up
n is defined recursively by the following recursive equation

up

n+1 = Λ(tn+1, tn)R−1(tn)up
n + vn ,

where vn is a random variable with a zero-mean gaussian distribution and a covariance
matrix Vn defined by

Vn = R(tn+1) − R−1(tn)Λ2(tn+1, tn) .

We will consider the particular case where the Reynolds tensor R does not depend on
time and where the time correlation tensor Λ is an exponentially decreasing function in
time.

R(tn+1) = R(tn) = R

Λ(tn + ∆tn, tn) = e
− ∆tn

TLn R ,

where TLn is the local turbulence characteristic duration at time tn and R is a sym-
metric positive-definite matrix. With these additional assumptions, we have the following
expressions

Vn =

(
1 − e

− 2∆tn
TLn

)
R (14)

up

n+1 = e
− ∆tn

TLn up
n + vn (15)

7 NUMERICAL RESULTS

We present results of twin experiments carried out to evaluate lagrangian data assim-
ilation. Observations of particle trajectories are used in combination with local water
depth measurements, first for the identification of the bed elevation zb as the only control
variable and for the joint identification of zb and the initial conditions h0 and u0 in a
second time.

7.1 Flow configuration

We consider a 100 × 16 m rectangular channel. The bed has a longitudinal slope of
0.4% and features a bump spanned on the whole width, centered in x = 40 m with an
amplitude of 0.25 m and a length of 30 m. This bump generates an acceleration of the
flow in the region x ∈ [25, 60].

A constant discharge q̄ = 8 m3/s is prescribed at the boundary Γq : x = 0 m. The
boundaries y = 0 and y = 16 m are defined as walls and denoted by Γw. Finally, Neumann
conditions are prescribed on the boundary Γt : x = 100 m (see Figure 4 (a)). In order
to simulate boundary layer effects, the value of the Manning coefficient n is variable in
space. In the central part of the domain, denoted by Ω1 and defined by |y − 8| < 4 m, n
is set to 0.02. In the complement of Ω1 in Ω, i.e. the lateral sides of the domain, denoted

10
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by Ω2, the value of n increases linearly from 0.02 at the intersection with Ω1 up to 0.04
at the boundary Γw.

These conditions drive the flow to a steady state that is used as an initial condition
for the twin experiments. A vertical cut of the fluid domain in the longitudinal plane in
Figure 4 (b) shows the bed and the free surface elevation for this configuration. Twin data

x

y

100

16

0

Γw

Γw

Γq Γt

Ω2

Ω1

Ω2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100
H

ei
gh

t z
 (

m
)

Distance x (m)

Bed
Free surface

(a) Domain description (b) Vertical cut of the fluid domain

Figure 4: Twin experiments flow configuration

assimilation experiments are carried out for a simulation time T = 100 s and a constant
time step ∆t = 0.1 s.

7.2 Creation of observations

Observations are created by the model from the reference steady flow described above.
Water depth is recorded continuously in time at the abscissae x1 = 15 m and x2 = 70 m,
for the whole width of the domain. These measurements are used as observations denoted
by hobs

i (y; t) for i = 1, 2 in the twin experiments.
For the creation of trajectories observations, virtual particles are dropped in the ref-

erence steady flow near boundary Γq and transported by a turbulent surface velocity
ut = γu + up , where γ = 1 and up is a Gauss-Markov process as described in section 6.2.
The correlation matrix R can be written as

R =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

with standard deviations σ1 and σ1 defined as

σ1 =

√
c1

1 + u2
1

and σ2 =

√
c2

1 + u2
2

.

This choice corresponds to a perturbation that lessen when the magnitude of the ve-
locity increases. The numerical value of the parameters depends on the position in the
domain. They are summarized in Table 1. A set of 32 particles are released in the flow,
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Figure 5: Trajectories of particles transported by a turbulent surface velocity field.

every 2 seconds of simulation, uniformly distributed over the width of the channel at the
point x = 10 m. Altogether, we take into account Nobs = 640 particles. The trajectories of
these particles transported by the turbulent velocity field ut are used as raw observations,
denoted by Xobs

i . They are drawn with dotted lines in Figure 5. Reference trajectories
of particles that would be transported by an undisturbed velocity field (where up ≡ 0)
are drawn in bold continuous lines. Such reference trajectories will be denoted by Xref

i

in the following. In the same way, the longitudinal and transversal velocities are traced
respectively in Figures 6 (a) and 6 (b).
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(a) Longitudinal velocity (b)Transversal velocity

Figure 6: Velocities of particles transported by a turbulent surface velocity field.

ρ c1 c2 TL

domain Ω1 0.2 0.5 0.3 0.6

domain Ω2 0.3 0.6 0.4 0.3

Table 1: Values of Gauss-Markov process parameters.
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Marc Honnorat, Jérôme Monnier and François-Xavier Le Dimet

7.3 Trajectories filtering

Filtered trajectories are reconstructed from the observed trajectories Xobs
i using filters

with different scales. From the a priori hypothesis that the flow is stationary, we choose
the largest possible time window Wt = [0, T ] for all time t.

The dimensions of the space window should be chosen in order to be large enough
to remove small-scale perturbations, yet small enough to prevent from smoothing most
important characteristics of the flow. Since the flow features large longitudinal variations,
the corresponding dimension of the space window is set to 1% of the domain length, i.e.

1 m. Concerning the transversal dimension, a filter width equal to the size of the domain
would remove boundary layer effects. On the other hand, a too small value would not
smooth enough transversal perturbations. A good compromise has been found with 1

16
of

the channel width, i.e. 1 m. A total of 200 filtered trajectories are reconstructed using
sets of 10 particles released in the flow every 2 seconds, uniformly distributed over the
width of the channel at the point x = 10 m.

7.4 Identification of topography

We seek to identify the reference topography used to create the observations, from
the a priori hypothesis that the bed is made of a longitudinal slope of 0.4% without
bump. To that purpose, we carry out data assimilation using the available observations,
i.e. water depth measurements and particle trajectories. In this experiment, the only
modified parameter when compared to the reference flow is the bed topography zb. In
particular, the initial condition remains unchanged.

7.4.1 Water depth measurements

We first try to identify the topography using only water depth measurements hobs
i at

the abscissae x1 = 15 m and x2 = 70 m. The corresponding cost function is the following

j1(zb) =
1

2

2∑

i=1

∫ T

0

∫ ymax

0

∥∥h(xi, y; t) − hobs
i (y; t)

∥∥2
dy dt +

αp

2

∥∥∇zb

∥∥2
. (16)

A regularization term involving the norm of the topography gradient is introduced in
the cost function in order to smooth the solution. The parameter αp is the weight of
this penalization with respect to the observations. In this experiment, it set to the value
αp = 10−4.

In this configuration, the minimization algorithm converges very slowly to an identified
topography that is not very satisfactory when compared to the reference. Figure 7 (a)
presents the reference topography in a bold solid line as well as the identified one with a
fine grey line. We can see that the latter comprises large variations with respect to the
reference before the bump. The evolution of the cost function, the norm of its gradient
and the value of the diagnostic function jtot are shown in Figure 7 (b). We can see that the
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Figure 7: Identification of the topography using water depth measurements. αp = 10−4.

value of jtot has not even be divided by 2, which means that the identification is globally
far from being satisfactory.

7.4.2 Observation of reference trajectories

In this experiment, we add observations of the 640 reference trajectories Xref
i to the wa-

ter depth measurements. The particles are transported by the undisturbed shallow water
velocity field, so this experiment will be used as a reference to evaluate the performance
of the filtering process in the following sections.

The cost function is built from j1 with an additional term measuring the distance
between virtual particles and reference particles.

j2(zb) = j1(zb) +
αt

2

Nobs∑

i=1

∫ T

0

∣∣Xi(t) − Xref
i (t)

∣∣2 dt , (17)

where αt is the weight given to the observations of trajectories. It is set to αt = 10−5,
which roughly balances the value of the term associated to the water depth measurement
and the one associated the observations of trajectories. The weight αp remains set to 10−4.
As we can see in Figure 8 (a), the identified topography is very close to the reference. This
observation is confirmed by the fact that the value of the diagnostic function jtot is divided
by 530 at the end of the optimization process. The quality of the identification is thus
very good.

7.4.3 Observation of perturbed trajectories

In this experiment, we add observations of the 640 perturbed trajectories Xobs
i to the

water depth measurements. The cost function is built from j1 with an additional term
measuring the distance between virtual particles and particles transported by the turbu-

14
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lent velocity field.

j3(zb) = j1(zb) +
αt

2

Nobs∑

i=1

∫ T

0

∣∣Xi(t) − Xobs
i (t)

∣∣2 dt (18)

When using the same values for the parameters αp and αt as in section 7.4.2, the identified
topography is very irregular with small-scale variations of large amplitude, as shown in
Figure 9 (a). Nevertheless, the shape of the bump is roughly identified. As we can see in
Figure 9 (b), the value of the diagnostic function jtot decreases in a first time during the
minimization process, but then increases up to a quarter of its initial value.

It is possible to obtain slightly better results by increasing substantially the weight αp

of the regularization term. For instance, with αp = 10−2, the final value of jtot is divided
by 7 with respect to its initial value instead of 4. However, the identified topography is
too much smoothed when compared to the reference.

7.4.4 Observation of filtered trajectories

We now use the filtered trajectories Xm
j as observations. The cost function is built from

j1, with an additional term measuring the distance between the trajectories of virtual
particles and Nm filtered trajectories.

j4(zb) = j1(zb) +
αt

2

Nm∑

j=1

∫ T

0

∣∣Xj(t) − Xm
j (t)

∣∣2 dt (19)

As described in Section 7.2, we have Nm = 200. For the weight parameters, we choose
αt = 2×10−5 and αp = 10−3. Figure 10 (a) shows a substantial improvement in the quality
of topography identification. Unlike the case with unfiltered trajectories, the value of the
diagnostic function jtot regularly decreases all along the minimization process. Finally, it
is divided by 37 with respect to its initial value.
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Figure 8: Identification of the topography using water depth measurements and reference trajec-
tories. αt = 10−5, αp = 10−4.
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Marc Honnorat, Jérôme Monnier and François-Xavier Le Dimet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  20  40  60  80  100

H
ei

gh
t z

 (
m

)

Distance x (m)

Reference
Identified topography

 1e−04

 0.001

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60  70  80  90

Nb. of iterations

j

| ∇j |
jtot

(a) Identified topography (b)Evolution of the cost function

Figure 9: Identification of the topography using water depth measurements and perturbed tra-
jectories. αt = 10−5, αp = 10−4.
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Figure 10: Identification of the topography using water depth measurements and filtered trajec-
tories. αt = 2 × 10−5, αp = 10−3.

7.5 Joint identification of topography and initial conditions

We now seek to identify jointly the topography zb and the initial conditions (water
depth h0 and velocity u0) using the available observations from the initial assumption
on both parameters. Like in Section 7.4, we make the a priori hypothesis that the bed
is made of a longitudinal slope of 0.4% without bump. However, regarding the initial
condition, we use the steady state obtained with the modified topography instead of the
reference one.

7.5.1 Water depth measurements

We first try to identify the topography using only water depth measurements hobs
i at

the abscissae x1 = 15 m and x2 = 70 m. The corresponding cost function is the following
When using only water depth measurements as observations for the identification of

topography and initial conditions, the cost function is similar to j1 in section 7.4.1. The
only difference is that the initial condition h0 and u0 are now control variables. The new
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cost function can then be written as

j5(zb, h0,u0) =
1

2

2∑

i=1

∫ T

0

∫ ymax

0

∥∥h(xi, y; t)− hobs
i (y; t)

∥∥2
dy dt +

αp

2

∥∥∇zb

∥∥2
(20)

The weight for the regularization term is set to αp = 10−4. One can see in Figure 11 (a)
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Figure 11: Joint identification of the topography and the initial conditions using water depth
measurements. αp = 10−4.

that the use of water depth measurements only is far from being sufficient for the identi-
fication of the topography together with the initial conditions. The identified topography
is very different from the reference, just as the initial conditions not represented here.
The diagnostic function jtot is barely divided by 2.

7.5.2 Observation of filtered trajectories

Finally, we use the filtered trajectories Xm
j as observations in addition to the water

depth measurements for the joint identification of topography and initial conditions. The
cost function is built from j5, with an additional term measuring the distance between
the trajectories of virtual particles and Nm filtered trajectories.

j6(zb, h0,u0) = j5(zb, h0,u0) +
αt

2

Nm∑

j=1

∫ T

0

∣∣Xj(t) − Xm
j (t)

∣∣2 dt (21)

The weight given to the observations of trajectories is set to αt = 10−4 while the one for
the regularization term is set to αp = 8 × 10−3. As shown in Figure 12 (a), the identified
topography is close to the reference, with a good recovery of the bump. It is similar to
the result in section 7.4.4. As for the initial conditions, we can see in Figure 12 (c) and
(d) that it reproduce the same main features as the reference. However, we can notice
irregular variations in the identified variables in the upper part of the flow, as well as a
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Figure 12: Joint identification of the topography and the initial conditions using water depth
measurements and filtered trajectories. αt = 1 × 10−4, αp = 8 × 10−3.

slight over-estimation of the water depth combined with a slight underestimation of the
longitudinal velocity in the area just downstream from the bump.

The value of the diagnostic function jtot is divided by about 20 at the end of the
optimization process with respect to its initial value.

8 CONCLUSION

We have presented a method to include lagrangian observations into a data assimilation
framework in order to improve the identification of control variables for a river hydraulics
model based on the shallow water equations. The link between the eulerian state variables
from the shallow water model and the lagrangian observations of particle trajectories
is made thanks to a transport model. Numerical twin data assimilation experiments
demonstrate that this method makes it possible to significantly improve the identification
of bed elevation and initial conditions in an academic configuration.

A simple spatio-temporal filter has been successfully used to improve the quality of the
identification with trajectories observations transported by a velocity field with small-
scale perturbations. In reality, however, physical phenomena that affect the free surface
are more complex and a better surface velocity model should be very beneficial to an
application of this method to real river flows.
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