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Abstract

Understanding the mechanisms that underpin learning effects remains a central goal
in neuroscience, with functional neuroimaging offering a powerful avenue for observ-
ing brain activity. This work is situated within the domain of haemodynamic functional
neuroimaging, with a specific focus on functional ultrasound (fUS)—a relatively novel
modality that combines high spatio-temporal resolution and portability. The goal of
this project is to investigate the capacity of tensor-decomposition-based techniques to
extract meaningful, interpretable representations of stimulus-evoked learning effects
from a multi-subject fUS dataset while being robust to the non-idealities present in said
data. While numerous approaches exist for analysing neuroimaging data, many are
limited by scalability, interpretability, or an inability to capture changing neurological
patterns. This work is thus motivated by the need for methods capable of handling
large, dynamic datasets while extracting interpretable results. Tensor decompositions
offer such a framework but their ability to capture subject-specific time-varying effects
and their application to functional ultrasound is still under-explored. Several tensor
decomposition algorithms are examined, assessed in terms of their learning effect
extraction capabilities and robustness to non-idealities, and a novel shifted canonical
polyadic decomposition variant is developed to address time-varying effects. Results
from synthetic data analysis demonstrate that tensor decompositions are robust to
non-idealities in functional ultrasound data (to varying degrees) and can recover in-
terpretable latent components. Due to the data’s partial scan coverage, no novel
signatures of learning were identified in the real data; however, the extracted compo-
nents further substantiate the potential of these algorithms and highlight a promising
direction for analysing learning effects in functional neuroimaging data.
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Introduction

The vehicle of consciousness — the brain — has been the subject of interest and study
for centuries’. Modern technology has brought this study forward in leaps and bounds
in the form of sophisticated neuroimaging techniques, but just as these novel imaging
modalities offer new opportunities, they also present new challenges. Although these
techniques can illuminate in great detail what is happening in the brains of living sub-
jects, there is still a great need to process and decipher this information to shed light
on the underlying mechanisms.

There are a variety of neuroimaging techniques that provide researchers, neurolo-
gists, and medical practitioners invaluable insights into the brain, each technique with
its own advantages and disadvantages; many novel neuroimaging techniques are still
being researched to this day [34]. Within the realm of neuroimaging there are several
general types, including structural, connectivity, and, of particular interest, functional.
Functional neuroimaging refers to techniques that measure the neuronal activity within
the brain, often non-invasively on awake patients [14]. These characteristics offer a
unique lens through which to study the actual mechanisms of thought and behaviour
directly through recordings as they happen. Common challenges in processing func-
tional neuroimaging data include large data volumes, temporal and spatial alignment
between recordings or patients, and the general signal processing problem of distin-
guishing which signals are noise/artefacts or of actual interest.

Functional neuroimaging can be broadly divided into two main categories, based on
whether the techniques measure the electrical or haemodynamic signals [14]. Elec-
tric functional neuroimaging techniques such as electroencephalography (EEG) gen-
erally offer very high temporal resolutions (hundreds to thousands of Hz [18]), but
have much poorer spatial resolution. The other type is haemodynamic functional neu-
roimaging techniques, like magnetic resonance imaging (fMRI), which are conversely
characterised by good spatial resolution but relatively poor temporal resolution (0.5-
1 Hz). Based on their characteristics, these two functional imaging types naturally
lend themselves to different problems, with haemodynamic techniques used to iden-
tify regions associated with specific brain functions, while electrical methods are more
oriented towards the characterisation of temporal dynamics related to sensory, motor,
and cognitive function.

"Leonardo da Vinci’s dissections of the human brain were performed more than 500 years ago [29].

1



This work is directed toward the former of these two problem types, and unsurpris-
ingly is thus also focused on a functional haemodynamic neuroimaging modality. The
data in question involves an experiment where mice are subjected to sequences of
stimuli, and are expected to learn a specific response over time. To capture their neu-
rological responses the mice are recorded with an ultrasound probe which (after some
processing) produces functional ultrasound (fUS) data. This functional modality has
a few advantages over the ubiquitous fMRI. By using high-frequency acoustic signals
fUS is able to map changes in brain blood volume at speeds up to 4 Hz [20], a modest
improvement over conventional fMRI, while retaining good spatial resolution. Beyond
this, it is an inexpensive and highly portable technology, which makes it well suited to
task-based experimental setups, as mice do not need to be sedated during scanning.
The specific problem of interest is more complex than simple region activation though,
as the mice are expected to learn over time and the hope is to identify the neurological
signatures associated with these learning effects.

This experimental setup adds some additional challenges beyond just the standard
neuroimaging data processing issues. These challenges include: the dynamic na-
ture of the effects of interest (meaning that the analysis needs to capture temporal
changes), the multi-subject nature of the data, and fUS motion artefacts introduced
by awake subject activity and stimulus responses. The data analysis methods used
to process the data need to account for these various issues.

There are a variety of different algorithms to isolate effects in neuroimaging data, but
many of them have limitations or assumptions which make them ill-suited to this task.
Many machine learning algorithms suffer from lack of interpretability and dependence
on training data, while more general techniques which are sometimes employed to ex-
tract regions in haemodynamic neuroimaging data such as generalised linear models,
graph theory analysis or manifold learning either struggle to capture the time-varying
effects of interest or cannot handle the large data volumes well. The most promising
family of analysis tools is matrix and tensor based decompositions. They are able to
extract meaningful latent components from high order and large volume data. There
are however a variety of different options within this family of analysis approaches
which rely on different assumptions.

With this context the research question of this work is thus:

How well can tensor decomposition based algorithms extract meaningful stimulus-
evoked learning signatures from multi-subject functional ultrasound recordings in terms
of component interpretability?

With sub questions

1. Can tensor decompositions capture dynamic learning effects in a meaningful
way?

2. How robust are tensor decompositions to non-idealities in fUS data?

3. Which stimulus evoked learning effects can tensor decompositions effectively
identify?

The structure is as follows. A discussion regarding processing techniques for neu-
roimaging from literature elaborates on the pros and cons of various methods, and
why tensor decompositions are particularly promising for this task. Necessary back-
ground follows and covers the underlying mechanisms of fUS as well as the model
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Figure 1.1: Project pipeline overview depicting the broad steps taken to extract meaningful components from functional
ultrasound data using tensor decompositions.

definitions of selected tensor decompositions to provide a sufficient foundation to build
the methodology thereafter. The body of the work starts with a description of the
experimental data, the non-idealities present and possible learning effect structures.
Several algorithms are then defined and the shifted CPD algorithm is developed, fol-
lowed by dynamic effect representation tests. Based on the identified non-idealities
a synthetic data generation model mimicking fUS is defined and used to analyse the
non-ideality robustness of different algorithms. Finally the best performing algorithms
are applied to the real data, the results are discussed and conclusions are drawn with
some final notes on limitations and future work to be done. The broad steps of this

structure are shown in figure 1.1.



Related Work

Advances in neuroimaging techniques such as functional MRI (fMRI) and functional
ultrasound imaging (fUS) offer unique opportunities to gain insight into the underlying
mechanisms of learning, but there are several challenges associated with processing
neuroimaging data from these modalities, as well as isolating these effects. The focus
of this work is the analysis of f{US data to identify learning signatures evoked by stimuli.
However, as learning progresses the functional associations are expected to change,
making them more challenging to isolate. Furthermore, meaningful responses can be
masked by unrelated neural activations or other measurement artefacts, potentially
obfuscating instances of learning effects [26]. To make matters worse, fUS data gen-
erally has both high data order (multi-dimensional data with, e.g. space x time x
recording x subject) and volume, making data analysis far more challenging, as the
algorithms need to be sufficiently performant to make analysis worthwhile.

While fUS is a comparatively new modality, a variety of different analysis techniques
have been employed to analyse other neuroimaging data, but they all have their own
trade-offs, and many are not applicable to this task. The available techniques can
be loosely categorized based on whether they are data-driven or hypothesis-driven
and data-driven further grouped on if they are based on a static data model or more
complex dynamic model of neurological states [11].

Hypothesis-Based Algorithms

In this setting little to no a-priori assumptions regarding the learning signatures are
made, which means that almost all hypothesis-based algorithms are not applicable.
To elaborate, an example of such an algorithm would be atlas-based region-of-interest
extraction [27] which, in this application, would isolate specific regions where learning
would be expected to take place. It would then extract estimates of the signals in these
regions from the data that could then be inspected. This would require knowledge of
the specific regions where learning is expected to occur and would also rely extremely
heavily on effective atlas registration, which is a particular challenge in fUS due to lack
of anatomical landmarks (see appendix D for more details on registration of the dataset
of interest).



Deep Learning Algorithms

Moving to data-driven algorithms, deep neural networks have become very popular
in recent years thanks to their ability to learn complex non-linear mappings and have
been applied to great effect in the neuroimaging setting [30], but there are challenges
and issues with both supervised and unsupervised deep learning options for this appli-
cation. Firstly, these algorithms typically require large amounts of data and supervised
options need annotated data. Having annotated data would defeat the point of identi-
fying signatures of learning, as then these signatures could already be characterised
and hypothesis-driven algorithms applied. For unsupervised options the challenge
is to frame the problem, one option would be to apply an unsupervised clustering
algorithm to identify subjects where learning does and does not occur, but as there
are several other differences one could expect between subjects in such a dataset
this would likely not identify the desired clusters. Additionally, these models often
produce results which are not easily interpreted, which in combination with the other
limitations means that these algorithms are not well suited to the task of identifying
unknown learning signatures.

Data-driven Static Methods

On the topic of unsupervised clustering, more conventional clustering algorithms which
do not rely on deep learning could be an option. Methods like k-means can be used
to extract various types of groups within the fUS data. By clustering voxels one could
identify unique regions (parcellation), or by clustering on a subject level one could
separate the subjects into those exhibiting learning and those not. Aside from the
aforementioned issue of subject level data likely including other differentiating quali-
ties and leading to unhelpful clusters these clusters would also lack the structure to
capture patterns that exhibit the dynamic behaviour expected from the task-evoked
learning setting and additional processing would be needed. Manifold learning tech-
niques like UMAP [22] and t-SNE [5] can be used on a subject level to visualize sim-
ilarity between subjects in a lower dimension and thus identify which subjects exhibit
learning effects, but have the same issues mentioned and further require some de-
gree of consistent structure in feature vectors. Parcellation is an option, but comes
with the issue of having a discrete region associated with an entire time-course, mak-
ing interpretation challenging as the time courses likely have various other artefacts
and unwanted signals, and also makes comparisons between subjects challenging as
the regions identified may differ.

Data-driven Dynamic Methods

Moving to the dynamic setting it is possible to use the unsupervised data driven clus-
tering techniques on different images in temporal windows to identify unique brain
states and then model the state changes statistically (though this is often done after
parcellation). Hidden Markov Models (HMMs) [15] or other techniques [11] can then
be used to model the temporal evolution of these neural states. This relies on the
state identification step, the possible parcellation, on the identified states being com-
parable between subjects, and generally struggles to manage the multi-dimensional
nature of the data in a meaningful way. It is also challenging to capture the signatures
of learning in this manner as brain states will change as learning occurs.



Decomposition Based methods

Finally, there are a variety of matrix and tensor decomposition based approaches
which identify the underlying components comprising the data. Matrix techniques like
ICA [23] are very effective at dealing with large data volumes, and identify easily in-
terpretable latent components. Matrix decompositions are very similar to the parcella-
tion methods described prior, with the added benefits of non-binary region allocation
and inherent signal separation into different components, both greatly enhancing in-
terpretability. The one limit of these algorithms is that they operate only on matrices
so are not ideally suited to the multi-dimensional nature of the fUS dataset in question.
Conveniently these benefits are retained when moving to higher order tensor decom-
positions like IVA [2], CPD, coupled CPD (CCPD) [17], or convCP [24], while allowing
for additional dimensions in the data and still extracting meaningful and interpretable
latent components.

Summary

In summary, analysing stimulus-evoked learning through neuroimaging requires tech-
niques that can handle multi-dimensional, large-volume, temporally evolving data with-
out relying heavily on prior information. While many techniques have not been applied
to fUS due to its relative recency, approaches developed in the context of fMRI and
other neuroimaging settings still have significant promise thanks to the similarities to
fUS. Many machine learning based approaches lack interpretability and require large
amounts of training data and time, making them unsuited to this task. The only tech-
niques discussed here which offer interpretability, efficiency on large data volumes,
and the ability to meaningfully incorporate multi-dimensional data are tensor decom-
positions. This work explores and expands on several tensor decompositions with the
aim of identifying stimulus-evoked learning signatures from fUS data.



Background

3.1. Conventions

This section elaborates on several notational, nomenclatural, and variable meanings
used throughout this work in an attempt to reduce ambiguity and help orient the reader
in the context. Starting with notation, several mathematical operations are either spe-
cific to the tensor context, or have symbols which have other meanings in other con-
texts, so these are all described in table 3.1.

Table 3.1: Symbols in tensor and matrix operations.

Symbol Operation Description
: Scalar multiplication
Convolution
Outer product of vectors or tensors
Kronecker product
Column-wise Khatri-Rao product
Hadamard product
Mode-n product of a tensor with a matrix

® O o *

X
3

Some terms used to describe parts of a three-way tensor are shown in figure 3.1. The
term “slices” is shared with the neuroimaging context where slices of the brain are
imaged, so there is some ambiguity. To clarify at least one point on this topic: in this
work the term frontal slices always refers to tensor anatomy not biological anatomy
or scan location.
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3-Way Tensor Anatomy

T

Frontal Lateral Horizontal
Slices Slices Slices
% % ‘ |
Mode-3 Mode-2 Mode-1

(Tube) (Row) (Column)
Fibers Fibers Fibers

Figure 3.1: Terminology for anatomy of a three-way Tensor.

»” ”»

In this context the terms "way”, "order”, and "dimension” are largely interchangeable,
referring to the number of dimensions in a tensor (for example a three-way tensor, third-
order tensor and a three-dimensional tensor are the same thing). Unfolding refers
to collapsing one dimension into another (as depicted visually in figure 3.2) thereby
reducing the overall order of the tensor.

Unfolding

Figure 3.2: Depiction of a third-order tensor unfolded into a second order tensor (matrix).

For tensor decompositions a "component” refers to a single (typically rank one) outer
product of factors, a "factor” refers to one vector in such a component, "factor matrix”
refers to all factors associated with one dimension and "rank” refers to the number
of components extracted. These terms are also described for a mode-two rank-two
decomposition in figure 3.3, and in this setting a factor is generally a time-course, a
spatial map, or a vector of weights, for a specific component.

Tensor Decomposition Anatomy

- TN
Component Factor ; Factor

— 1 Matrix :
— — + £ A — ! —
— !

) SR —

Figure 3.3: Tensor decomposition terms.

Table 3.2 shows the common variables used throughout this work. When developing
tensor decompositions M, N, and K are used as general dimensional placeholders.
These generally align with the use of these variables for the data, however there are
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instances where transposes or permutations are made to explicitly enforce certain
structures on the data. These values are scalar and refer to total dimensional sizes,
and in most cases the lowercase letter is used to refer to a specific value in that
dimension (i.e. 1 < n < N)

Table 3.2: Notation for Variables Used in this work.

Symbol Description

First spatial dimension (Dorsal-Ventral)
Second spatial dimension (Rostral-Caudal)
Slice index (Medial-Lateral)

Voxels in a recording (typically X x Y)
Time points in a recording

Time points per frame

Frames

Recordings

Subjects

TRRZZE N =

Tensor, matrix, and vector notation is described in table 3.3 while tensor element in-
dexing notation is described in table 3.4. When indexing, the selected convention
is that the dimension order will be retained with all collapsed dimensions (size-one
dimensions) removed, i.e. a vector extracted with indexing will always be a column
vector unless explicitly permuted or transposed.

Table 3.3: Notation for scalars, vectors, matrices and tensors.

Notation Description
Scalar
Vector
Matrix
Tensor

> x =

Table 3.4: Tensor indexing notation.

Notation Description

X (ijk) Scalar element at position (4, j, k)
X5k Column fibre at position (j, k)
Xk Frontal slice at position (k)

3.2. Functional Ultrasound

Functional ultrasound is a neuroimaging technique which has gained traction over
the last decade since its first appearance in literature in 2011 [20]. This technology
uses ultrasonic plane-wave illumination to measure blood volume in neurovasculature
at higher spatio-temporal resolution than many other neuroimaging techniques. The
scanning depth of fUS means that it can be used to get full depth planar scans of
human (and by implication rodent) brains. Ultrasound probes are very portable, and
the primary drawbacks of this technology are that the ultrasound waves generally
cannot penetrate through bone [8] and that it has an indirect measure for neurological
activation in the form of blood volume.

There are three main steps for f{US data collection beyond the planar scanning itself:
compound image creation, filtering, and Doppler intensity extraction. First a number
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Figure 3.4: A diagrammatic representation of the basic steps of the fUS algorithm with two different clutter removal pipelines.
Figure a) shows the originally proposed high-pass filter based clutter removal, while b) shows the singular value decomposition
based method which showcases improved preservation of smaller blood vessels.

of images are obtained from several plane wave emissions tilted at slightly different
angles (in the original paper, [20], angles of —8° to 8° with a 1° increment were used).
These 17 images are then added together to produce a compound image once ev-
ery millisecond (effectively 1kHz). Ultrasound probes measure the reflections of the
emitted waves created by scatterers meaning that these measurements are affected
by Doppler effects if a scatterer is moving. This phenomenon is what allows fUS
to measure blood volume as red blood cells move, but also introduces undesirable
clutter effects as a result of tissue motion from respiration, cardiac cycles, subject
movement, and probe motion. Tissue motion is slower than the motion of most blood
cells and can be removed by applying a high-pass filter to each voxel within a fUS
sequence of typically 200 compound images, as shown in figure 3.4a. Unfortunately
the low-pass filtering method also removes the slow-moving capillary flow measure-
ments, so alternatively a singular value decomposition (SVD) based clutter filter [10]
can be used. The SVD is applied to a matrix of spatially vectorised and temporally
stacked compound images to extract orthogonal constituent components. The high
spatial coherence of tissue based clutter effects means that their decomposed com-
ponents have high energy compared to the much more localised vasculature effects,
and in turn that these components can be isolated in the SVD based on the magni-
tude of the diagonal singular values and removed from the data. The outline of this
clutter removal is depicted with the other steps in figure 3.4b. A frequency spectrum
per voxel can be obtained from the filtered fUS sequence and analysed to identify the
blood cell velocity in that voxel, but generally in f{US each voxel is instead averaged
over the 200 filtered compound images to create an intensity map. This intensity map
is known as the power Doppler image (PDI) and is proportional to the blood volume.

It is worth noting that the blood volume associated with the PDI intensity is an indirect
measure of neurological activity caused by neurovascular coupling. As such it is im-
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portant to recognise that a PDI response is both delayed from underlying neurological
activity, and may be influenced by any number of factors affecting the cardiovascular
system which are unrelated to neurological activity. An approximation of the stages
of a stimulus-response model from [7] are shown in figure 3.5. This model highlights
the challenge of identifying the underlying neurological response from a blood volume
signal when neither the perfusion response nor the haemodynamic response function
(HRF) are known, as estimating both responses from data is not unique thanks to
uncertainties such as time delays. In practice, unless one has access to neurological
activity measurements like firing rate or the true perfusion response or HREF, it is com-
mon to simply estimate a single response function by viewing the stimulus signal as
an approximation of the underlying neural activity. For the purposes of simplicity the
term haemodynamic response function or HRF is often used to refer to a combined
response from stimulus to the final haemodynamic response; this practice is adopted
henceforth.

> R

Perfusion Haemodynamic
B

Function (HRF)

oo

Figure 3.5: Haemodynamic response model based on a decaying perfusion response and a convolution with a haemodynamic
response function (HRF) based on [7].

Stimulus Event Onset Neurological Firing Rate| Haemodynamic Signal

3.3. Decompositions

Matrix and tensor decompositions underpin almost all the algorithms discussed in this
work and are built up in this section. The first step is describing the outline of the
family of dyadic (or matrix) decompositions, which are not used directly, but lay a
foundation to be extended with additional constraints and higher dimensions. Inde-
pendent component analysis (ICA) is a specific dyadic decomposition which forms
the basis of a three-dimensional independent vector analysis (IVA). Unlike IVA, which
is a three-dimensional decomposition but interprets data as a series of linked dyadic
decompositions, the canonical polyadic decomposition (CPD) is a more general ex-
tension of the dyadic formulation to higher order tensors. The CPD is also known as
parallel factorization (PARAFAC), and an extension thereof called parallel factoriza-
tion 2 (PARAFAC2) allows for more freedom. Finally there are some notes on the
block term decomposition (BTD) and a variant of CPD which allows for shifts in one
mode called, unsurprisingly, the shifted canonical decomposition (SCP). A visual map
of these decompositions (as well as the multi-shift CPD developed later in this work)
and how they relate is included in figure 3.6.
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Figure 3.6: Decomposition map showing relationships, number of modes and relative degrees of freedom.

3.3.1. Dyadic Decompositions
The dyadic decomposition is based on a simple premise of breaking a matrix into
constituent parts to facilitate interpretation or operations thereon. It can be simply
framed for a matrix X € R™*¥ as a matrix product or summation of R rank-one vector
products

X = AB”

R
X = Z Ao By

r=1

(3.1)

A simple graphical representation of this is depicted in figure 3.7. This decomposition
often also includes a diagonal weight matrix between A € RM*% and B € RV*¥ (for
example in the SVD), but this is neglected in this work with the weights instead being
absorbed into the respective component vectors. Looking at equation (3.1) it is clear
that the decomposition is entirely non-unique, the natural remedy to which is additional
constraints. These constraints could be something like orthogonality, as in the case
of SVD, or statistical independence between components as in ICA.



3.3. Decompositions 13

Dyadic Decomposition

N R N

= XRI

X A BT

Figure 3.7: Graphical depiction of the dyadic decomposition.

3.3.2. ICA

ICA [33] is a dyadic decomposition which imposes statistical independence assump-
tions on the second factor matrix. By treating each component vector in the second
factor matrix B as several realisations of a random variable, ICA can maximize the
statistical independence between the components in B. Each row of X is thus com-
posed of a linear mix of multiple independent sources, and when framed in this way
the decomposition is also known as an unmixing problem. This model is depicted
graphically in figure 3.8.

Independent Component Analysis
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D
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Figure 3.8: Graphical depiction of ICA’'s data model.

Since neither A nor B are known, ICA solves for a demixing matrix W e R**M to
extract independent sources. The demixed sources B € RY*® are obtained from

B” = WX. (3.2)
By maximizing the independence of the sources (columns) of B ICA aims for
W = A~ (or equivalently W' = A), (3.3)
so that ideally when substituted into equation (3.2) with equation (3.1)

B” = WX = WAB” = A"'AB” = B”, (3.4)

assuming the independence assumption matches the underlying data structure of X.
There are various approaches to maximize the independence of sources and estimate
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W, such as minimizing mutual information, maximizing non-Gaussianity or using max-
imum likelihood estimates, some details of which may be found in [33].

There are a few nuances to be addressed regarding the assumptions and ambigui-
ties of ICA. Firstly, thanks to both A and B being unknown there are obvious sign
and permutation ambiguities in the extracted demixing matrix W. More importantly
equation (3.3) is only possible if W~! exists, which is only possible if W is square
(R = M). This is of course not a reasonable assumption, so to apply ICA, dimension
reduction in the form of principal component analysis (PCA) is first applied to the mea-
surement matrix X such that M is reduced to the number of desired sources R. This
is for the over-defined case since the under-defined case is not relevant to this work.
As a result the number of independent components to extract needs to be known a-
priori or selected by the user (though, approaches do exist to estimate the number of
components from the data).

3.3.3. IVA

As is, ICA can only be applied to matrices, not tensors, unless the tensors are first
restructured. For example, in the case of three-dimensional data (X € RM*NxK) this
limitation can be circumvented by unfolding the third mode along one of the first two
modes. However, if unfolding along the second mode this implicitly assumes that
all tensor frontal slices share the same mode-one mixing matrices and that the same
random variables (RVs) are responsible for the components in each tensor frontal slice.
If the data tensor is of the shape (IRspacextimexrecording) “then this unfolding assumes that
all recordings have the same spatial maps, and the same RVs generating the time-
courses. Conversely, if unfolded along the first mode it implies that all frontal slices
are a mix of exactly the same components. Alternatively, without unfolding, one could
frame it as separate dyadic decompositions for each frontal slice k£ where 1 < k < K:

X = AF(BI)T. (3.5)

This is effectively just K separate ICA decompositions, and is a viable approach, with
some caveats. Unfortunately the permutation ambiguity between sources discussed
prior makes the comparison between recordings challenging as an additional step
to group similar sources between recordings is needed. An added challenge to this
grouping is that there is no guarantee that the different applications of ICA will identify
sources that are at all related.

Independent vector analysis (IVA), first introduced in [16], addresses these issues by
extending ICA to a three-dimensional setting by jointly solving for sources in multiple
frontal slices of a tensor simultaneously. By treating the sources as being generated
by multivariate RVs, instead of univariate RVs as in ICA, this model is able to capture
both independence between components in a frontal slice, and dependences in com-
ponents across frontal slices. These multivariate sources are each represented as a
random vector known as the source component vector (SCV). The r’'th SCV is defined
as:

b, = [Bl, . pK]" (3.6)

To be clear, b is a random variable for the 'th source of the k’th frontal slice while
bl [n] would be a single sample instance of this random variable and b, is a random
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vector of the r’'th source for all K recordings. All the instances of a single SCV may
also be captured in a matrix as

Independent vector analysis estimates a demixing matrix W* for each recording
by enforcing independence between every SCV, while maximizing the dependence
between the random variables that compose the SCV. This approach automatically
solves the problem of permutation ambiguity as sources are already grouped together
inan SCV. ltis also able to exploit information between different recordings to improve
source estimates while still having no hard restriction on the differences in demixing
matrices and extracted sources between recordings.

The data model is shown graphically in figure 3.9, where one can see that it is similar
to multiple ICA’s, but that there is an added dependence across frontal slices, as
depicted by the component colours.

Independent Vector Analysis
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>< B I Dependence
“ Across Recordings
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Figure 3.9: Graphical depiction of IVA's data model.

3.34. CPD

The canonical polyadic decomposition (CPD) [3] is the natural extension of the dyadic
decomposition to higher dimensions. Much like a dyadic decomposition, CPD decom-
poses a tensor into R rank-one tensors. While it can be trivially extended to higher
orders, the third-order version of this model using outer products is

R
X=) AunoBenoCpun, (3.8)

r=1

and the similarity to equation (3.1) is immediately clear. As before X € RM*¥*K gnd
the factor matrices are A ¢ RM*% and B € RV*% with the added C € RX*%. Two
equivalent depictions of this model are shown in figure 3.10 for the third-order case,
as higher orders are challenging to visualise.
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For the third-order case this formulation can be rewritten in a frontal slice form as
Xk = ADFBT, (3.9)

where DI¥l € RE* js a matrix whose diagonal elements are the k’th row of the third-
mode factor matrix C. In this form the relation to IVA is clear and shows that even when
applied to a three-dimensional tensor and formulated in the same way this decompo-
sition has some stark differences to the IVA algorithm. There are far fewer degrees of
freedom in the CPD model than in IVA; using the same terminology as in IVA, there is
only a single mixing matrix A and a single source matrix B for all frontal slices, with
these frontal slices able to vary only in terms of the magnitude of each component per
frontal slice. This is in contrast to IVA, which can have an entirely arbitrary mixing ma-
trix for each frontal slice, and while there are dependence constraints on the source
matrices, they can in theory also vary significantly between different frontal slices. As
an important note, the uniqueness issues that plague the dyadic decomposition are
not an issue for the CPD (under mild conditions), and the imposed structure allows
for more interpretable and informative components to be extracted, assuming that the
data actually exhibits the assumed structure.

Canonical Polyadic Decomposition

R
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Figure 3.10: Two graphical depictions of CPD’s data model in both a standard three-way tensor format (top) and in a flattened
matrix multiplication format (bottom) illustrating the relation to the PARAFAC2 and IVA decompositions.

3.3.5. PARAFAC2

Parallel factorization 2 (PARAFAC2) [13] is an extension of CPD which allows for the
factor matrix in one of the modes to vary for the different values in another mode,
offering an intermediate option with more freedom than CPD, but with more structure
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Figure 3.11: Graphical depiction of PARAFAC2’s data model.

than IVA. Only the mode-three tensor version of PARAFAC?2 is used in this work, and
in this setting it is typical to have the second mode factor matrix vary along the third
mode [35]. This structure is reminiscent of the model in equation (3.5) employed by
IVA and the CPD model in equation (3.9), as a data tensor X € RM*VN*K jg ggain split
into frontal slices along the third axis as

X = ADMBMT 1 <k < K, (3.10)

with an additional constraint that the cross product of the second mode loadings is
constant:

(BFYTBH = H. (3.11)

Comparing equation (3.10) to the CPD model in equation (3.9) one can directly ob-
serve the added freedom in the second mode factor matrix B!* which varies per frontal
slice for the PARAFAC2 model. Similarly D! ¢ R#*% is a matrix whose diagonal ele-
ments are the £’th row of the third mode factor matrix C € R**% as in equation (3.9).

The decomposition is shown visually in figure 3.11 and by comparing this structure
to equation (3.5) and figure 3.9 there are also some similarities. While in the IVA
case the mixing matrix Al¥l is unconstrained and can vary along the third mode, in the
PARAFAC2 case A is fixed. Conversely IVA imposes an independence structure onto
the mode-two matrix BI*) and dependence for different k’s while PARAFAC2 imposes
only the constraint of equation (3.11).

3.3.6. BTD

Another decomposition which is used in the neuroimaging context is the block term de-
composition (BTD) [9]. The block term decomposition is an extension of CPD, where
each term is no longer the outer product of single vectors, but is the outer product of
an arbitrary number of vectors in each component [28]. This decomposition does not
make any statistical assumptions regarding the structure of the data as is the case for
ICA and IVA, and as such has the potential to capture patterns in the data that may be
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suppressed by such assumptions. BTD is a general framework, but specific variants
of it add structure which often has advantages for decomposing neuroimaging data
such as fUS.

Despite these potential advantages, after an investigation, it was not used in this work
and is included here only for completeness. The first challenge with BTD is rank
estimation, since there are now far more parameters to select than just the number of
components thanks to the variable per-component rank. While this rank estimation is
challenging, the main reason for its exclusion is based on uniqueness issues which
deteriorate the interpretability and quality of results and further increase the challenge
of rank estimation.

3.3.7. SCP

The last CPD extension discussed is the shifted canonical decomposition (SCP) [25].
This model is very similar to a normal three-dimensional CPD, except that components
in one mode (the second by convention) can have a different shift per element in
another mode (the third by convention). The data model can be viewed per element
g in the frequency domain as

R
¥ » —j2rLr
Ximak) = D A Bigr) e 728700 (3.12)

r=1

Where X € CM*x@xK js the DFT of X along the second mode, A € RM*f, C e RF*#
are the mode-one and mode-three factor matrices, and B € C¢*% is the DFT of the
second factor matrix along the first mode. 7, is the time shift applied to component
r at the mode-three index k. The exponential component is responsible for the phase
shift associated with the time shift 7, ..

By exploiting the shift-invariance properties in the frequency domain this algorithm’s
underlying model is still an entirely linear model, and can be implemented efficiently
with an alternating algorithm. In terms of flexibility it is somewhere between CPD and
PARAFAC?2, as the second mode has added freedom to shift, but not as much freedom
as in PARAFAC2, which can model shifts as well as more arbitrary vector rotations.

3.4. Tools and Resources

Data analysis, algorithm implementation and visualisation was performed in MATLAB
(R2025a) [21] using the Image Processing Toolbox (25.1), Medical Imaging Toolbox
(25.1), Signal Processing Toolbox (25.1), Statistics and Machine Learning Toolbox
(25.1), Matlab Tensor Tools [31] and Group ICA/IVA software (4.0.6.8) [6]. ChatGPT
(OpenAl, 2025) versions GPT-40 and GPT-5 were used to support grammatical check-
ing and formatting. The experimental design, the experiment itself and data acquisition
for the functional ultrasound dataset used was done by Laurens Bosman, Stephanie
Dijkhuizen, Bas Koekkoek, Bas Generowicz and Pieter Kruizinga from the Center of
Ultrasound Brain imaging at Erasmus MC (CUBE).



Data Investigation

The underlying fUS data plays a significant role in the simulated investigation setup,
the selection and definition of decompositions, as well as the structural assumptions,
due to dependencies on tensor orders and lengths. Therefore it is prudent to first
provide context by discussing the dataset and experimental setup in more detail. The
assumptions implicit in a decomposition algorithm dictate which data patterns are iden-
tified and which are suppressed, so, to inform the decomposition selection, the first
section describes the experimental learning paradigm itself, and speculates on the
possible effects that may be present. The following section covers practical details,
including the data structure, number of subjects, scan orientations and locations, num-
ber of recordings, and how the data is represented in tensor format. The final part of
this section highlights initial findings related to data non-idealities and errors, which
also influence algorithm selection.

4.1. Learning Paradigm - Classical Eye-Blink Conditioning

The experiment producing the data is based on classical eye-blink conditioning (EBC)
[32], specifically the delay eye-blink conditioning (d-EBC) paradigm. In this setting
mice are subjected to a conditioned stimulus (CS) and an unconditioned stimulus
(US) which evokes an eye-blink. The eye-blink response is also referred to as the
conditioned response (CR) in this setting. In the d-EBC case the CS precedes the US
and then both stimuli terminate simultaneously as shown in figure 4.1. Over time the
mice learn to associate the US with the CS, and blink before the US occurs. The CS
in this case is a LED light shone into one eye, and the US is a puff of air.

Without going into the underlying neuroscience underpinning this learning phenomenon,
we can hypothesize three general learning effects which could conceivably occur and
be of interest:

* A response magnitude change in a region (figure 4.2a)
» Changes in the regions activated (figure 4.2b)
» Changing time-to-activation in a region after stimulus (figure 4.2c)

19
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Stimulus Activation Pattern in the Delay Eye-blink Conditioning Paradigm
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Figure 4.1: Example of a single stimulus event showing CS and US activation over time in ms relative to CS activation onset.
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(a) Spatial maps and time-courses for two classes showing differences in response magnitude.
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(b) Spatial maps and time-courses for two classes showing differences in activated regions.
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(c) Spatial maps and time-courses for two classes showing differences in time-to-activation.

Figure 4.2: Spatial maps and time-courses illustrating different hypothetical learning effects comparing a reference (class 1) to
a learning effect (class 2).
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The first possible effect is fairly obvious, as the degree to which a region is activated
could increase as the subject learns to react to the CS and a responsible region has a
stronger response. Instead of an increase in magnitude in a specific region an entirely
new region responsible for activating the learned response or retrieving a memory
relating to the response is also conceivable. Finally, it could be that a specific region
reacts faster over time as the CR becomes associated with the CS and occurs earlier.
Combinations of these effects are of course also possible, so ideally the selected
algorithms should be able to account for all three occurring.

4.2. Data Format

On a more pragmatic note this subsection goes into more depth than the experimental
paradigm, and delves into the data setup and tensor definitions. The data consists of
4 sagittal planar scans of 12 habituated murine subjects being exposed to the afore-
mentioned stimuli. There are on average 5 recordings per scan location (slice), each
having been recorded separately for a total of 20 recordings per subject. Each record-
ing consists of a series of f{US PDI images (156 by 128 voxels after registration and
cropping) taken at a rate of 4 Hz over a period of ~500 s for a typical size of 2000 PDls
per recording. Due to truncated recordings and absent slices 1 subject and numerous
recordings were discarded, leaving 11 subjects and at least 3 recordings for all slices
excluding one slice of one subject which only has 2 viable recordings. Since extreme
magnitude artefacts were observed at the start and end of many recordings a central
subset of 1000 PDIs in each recording were selected to ensure the removal of these
effects. These experimental parameters are recorded in table 4.1.

Table 4.1: Data parameters before and after processing for the delay EBC experiment.

Parameter Original  Processed
Subjects 12 11
Slices 4 4
Recordings/Slice 5 3
PDlIs/Recording ~2000 1000
Voxels 256 x 128 156 x 128
Total Voxels 32768 19968

With these parameters established and the dimension lengths of all recordings aligned
the data can now be represented as tensors in preparation for the tensor decomposi-
tions. The k£’th recording of slice index z € {1,2, 3,4} of subject p € {1,2,...,11} with
X =156, Y =128, N = 1000 can be represented as

X'E‘k,z,p] c RXXYXN (41)
or by vectorising the spatial dimensions into a unified dimension of size M = 19968 as
X kzpl ¢ RMXN, (4.2)

The vectorised recordings for all subjects can be added to form a grouped tensor per
slice location:
X[Z] c RMXNXKXP (43)

“2xslice
with K = 3 and P = 11. And by concatenating the slices on a fifth dimension as well
one can form a single tensor

XGR]\JXNXKXPXZ (44)
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of the entire dataset.

4.3. Non-idealities

In preparation for the model selection, pre-processing setup, and synthetic data con-
struction, an initial investigation of the data using several simple techniques is per-
formed. These methods include correlations, direct inspection, spatial averaging, tem-
poral averaging, spatial clustering, and spatial gradients, the details of which can be
found in appendix A. In an ideal case the data is composed of only the signal of inter-
est: the stimulus responses and learning effects in regions aligned over all subjects
and recordings. Anything other than this signal which deteriorates the spatial maps or
time courses is considered a non-ideality. This is a list of the identified non-idealities
in the data as well as some typical fUS non-idealities:

* Response fluctuations - A region’s response fluctuates both in magnitude and in
time-to-peak after stimulus events.

* Tissue deformation - Between different subjects and recordings there are changes
in region location and overlap due to tissue deformation.

» Extraneous signals - There are of course other neurological signals measured in
the fUS data aside from the stimulus-evoked responses.

* Measurement noise - The measurement process itself introduces noise on each
voxel.

* Movement artefacts - When the subject or the ultrasound probe moves it intro-
duces large movement artefacts over the whole image.

» Reference misalignment - It was found that the stimulus reference was misaligned
between different recordings.

» Scan plane consistency - Ideally a scan of a specific slice is in the same loca-
tion along the off-plane axis so that the same regions are captured in different
recordings and subjects, which is not always the case in this data.

* In-plane misalignment - In-plane misalignment hinders cross-recording spatial
comparison. This can be addressed with registration techniques, however even
then there are often still small misalignments.

 Ultrasound-specific effects - There are a number of effects specific to ultrasound
such as reverberations, shadows and mirrors, though these are often addressed
in preprocessing stages, or cannot be removed as they are a feature of the ma-
terial properties. Due to the complexity of modelling such effects they are not
explored further in this work

These non-idealities are mapped in figure 4.3 in terms of their cause — if it is an un-
desirable physiological reality being measured, or if it is some artefact introduced by
the measurement or processing steps — and in terms of their primary effect, namely
temporal or spatial.
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Figure 4.3: Map of fUS non-idealities in terms of underlying cause and dimension of primary impact.

Several of these non-idealities are removed or minimized with pre-processing steps.
With perfect spatial pre-processing the tissue deformation and spatial misalignment
can be entirely removed, however this is a challenging task, especially for f{US as there
is not a lot of structural information contained in the PDIs to rely upon. The registra-
tion process used for this data is discussed and outlined in appendix D. Movement
artefacts create very significant increases in magnitude in entire PDIs and do not re-
act well to typical standard deviation based outlier detection algorithms, but can be
handled with a slightly modified algorithm described in appendix C. Finally, reference
misalignments can be very challenging to fix without additional information. In this in-
stance it is presumed to be the result of the experimental setup and thus expected to
be a fixed offset, so it was tackled by selecting a group of aligned recordings as a ref-
erence, identifying the optimal shift for the remaining recordings based on their stimuli
response times, and adjusting the reference signal accordingly for the affected record-
ings. These steps, the standard pre-processing and some optional artefact removal
steps which will be discussed later are shown in figure 4.4.
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Figure 4.4: Pre-processing pipeline for the fUS dataset, including various optional steps required for either specific recordings
or specific decomposition algorithms.



Decomposition Development &
Modelling Learning Etfects

5.1. Algorithms

When analysing neuroimaging data with decompositions both the arrangement of the
data and the decomposition chosen change the implicit structural assumptions signifi-
cantly. This section motivates algorithms based on three promising tensor decomposi-
tions (IVA, CPD, and PARAFAC?2) using the theorised characteristics of the signals of
interest and the inherent structure of the data. Thereafter an additional decomposition
algorithm based on SCP is developed.

5.11. IVA

Starting with the most unconstrained model of the data, IVA lets one extract compo-
nents without relying on any alignment other than in a single mode. This is incredibly
powerful, as the investigation of the data showed that there are various effects that can
detrimentally impact the comparability of data in different recordings and subjects, and
this model can accommodate for many of these without issue. IVA generally performs
well on diverse sets of tasks and is regularly used in the neuroimaging setting, with
two common approaches: temporal IVA (tIVA) and spatial IVA (sIVA), each operating
on the temporal or spatial modes respectively.

By assuming independence between components in the temporal dimension (and de-
pendence across related components between recordings) tIVA is able to identify sim-
ilar patterns of response in different recordings — something which is very reasonable
to expect in a stimulus-evoked setting if the stimuli are applied similarly to all record-
ings. This allows tIVA to exploit information in multiple recordings for source estimates
with no limitations on the spatial maps at all. Misalignments or warping in the spatial
maps may introduce difficulties when interpreting the extracted components of tIVA,
but will have little to no detrimental effects on the algorithm’s ability to identify these
components. This approach can identify learning effects which cause variations in
the response magnitudes of regions by comparing sources in the same SCV to one
another as well as region activation differences between subjects by inspecting the
associated spatial maps.

The alternative structure (namely, sIVA) assumes that the spatial maps can be sepa-

24
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rated into independent components with dependence across recordings. In practice
this translates to components with similar spatial maps between recordings/subjects
which generally do not overlap with the spatial maps of other components. As suchiitis
well suited to identifying learning effects which trigger specific region activations, how-
ever it is dependent on spatial alignment between subjects to ensure the extracted
spatial components are consistent. It is also able to capture both magnitude and
shifted structures in the time courses, but since these are entirely unconstrained this
means that any undesired artefacts or signals are also included, which can make in-
terpretation challenging.

Applying these algorithms to the data starts with the data tensor X described in equa-
tion (4.4). The immediate issue is of course that IVA is only suited to decompose
three-way tensors, and X is a five-way tensor. But, because tIVA relies exclusively on
statistical independence between components in the second dimension (time courses)
and dependence across recordings — and all recordings are exposed to the same stim-
ulus — this issue can be simply remedied by flattening the recording, subject and slice
dimensions as

Xtemporal S RMXNXKPZ? (51)

with the tensor subscript referring to the data along the second mode, since in many
of these decompositions the second mode factors are the ones with unique charac-
teristics. For sIVA the data structure is more challenging as there are four different
brain slices in the data capturing different regions. Since these slices cannot be com-
pared spatially the only real recourse is to split the dataset into four (one per slice
location), assess each slice’s decomposition independently and then compare the

components manually afterwards. For this we start with the per-slice tensor XL”;}Z_C@
from equation (4.3), similarly flatten the recordings and subjects, and permute the first
two dimensions to form

X[Z]

Xepatial c RNXMXKP‘ (52)

The steps that follow this data structuring include dimensionality reduction to the de-
sired number of sources R, applying the core IVA algorithm to get the de-mixing matrix,
and extracting the sources. Since these steps are identical for both tIVA and sIVA, the
data tensor distinction is omitted for the rest of this section and a general tensor nota-
tion X € RM*NxK with frontal slices denoted X*! is used for illustration. As discussed
prior, the data model for IVA is the same as ICA — a simple linear model,

X = AFBIT £ NW 1 <k < K, (5.3)

with the noise captured in N*! ¢ RM*N_ The dimensionality reduction step projects
all the recordings to a common column subspace using PCA. For PCA the data is first
concatenated horizontally and then broken down using the singular value decomposi-
tion (SVD) as follows

(XM, xP X = Usv. (5.4)

Then the columns of U associated with the R largest diagonal values in S are se-
lected to form U, which defines the common subspace. The data matrices are then
all projected onto this subspace:

XM = UTXH ¢ REXN, (5.5)
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IVA is now applied to all the data to get de-mixing matrices W*! and thus the sources,
(BIHT — Wik, (5.6)

Based on equations (3.3) and (5.5) the mixing matrices Al¥l can also be extracted
using W and U, by inverting the de-mixing matrix and then projecting back to the
original space:

AW = U (W~ ¢ RM*R (5.7)

To inspect the spatial maps of each component it is of course necessary to reshape
them back into 2D maps from their vector form in A*! or BI*! for tIVA and sIVA respec-
tively.

Both tIVA and slIVA are very flexible and make very few assumptions regarding the
data, only really relying on temporal and spatial alignment respectively. In the case
of tIVA this means that it may struggle to deal with component recognition if there are
temporal shifts, and may not capture meaningful shifts in an interpretable manner. For
sIVA this means that it relies rather heavily on the spatial registration of the recordings.
The flexibility of these algorithms also has some downsides in that they have no way
to prioritise the identification of signals of interest, and will capture other unimportant
signals and artefacts, potentially hindering interpretation.

5.1.2. PARAFAC2

Instead of leaving some modes entirely unconstrained, the next data model explicitly
exploits the shared information across recordings and subjects. All the recordings
of a specific slice should theoretically have the same structures in the spatial dimen-
sion, assuming good co-registration, which is information that can be exploited. It is
also conceivable that since the same stimulus sequences are used for all recordings
the time-courses for stimulus related components will also have the same or similar
profiles. IVA exploits one or the other of these effects while leaving the other mode
free, but it could be beneficial to place more stringent constraints on a dimension than
just statistical dependence across recordings/subjects, as this could help in suppress-
ing unwanted artefacts. The parallel factor analysis 2 (PARAFAC2) model enforces
shared factors in the first mode for all recordings/subjects while still allowing for (struc-
tured) variation per recording/subject in the second mode. Similar to IVA, this decom-
position can be applied assuming either shared spatial maps (referred to as temporal
PARAFAC?2 since the temporal dimension has the latent space which distinguishes
PARAFAC2 from the other decompositions) or shared time-courses (referred to as
spatial PARAFAC2 for the same reason).

While the assumptions differ, the underlying data model for PARAFAC2 has a lot of
commonality with IVA, and the data is structured in similar fashion to sIVA. Here, due
to the increased structural enforcement on both the first and second dimensions, de-
composing different slices simultaneously is not advisable as they contain different
regions. Starting with equation (5.2), one can easily restructure it by separating out
the (physical) slices in the data to create

X[z} € RMXNXKP7 (5.8)

==tempora

for temporal PARAFAC2 and the permuted version with switched space and time di-
mensions

XD o € RVMXKP (5.9)
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for spatial PARAFAC2. Here again the algorithmic steps that follow are the same
regardless of the data structure so we move to a general X ¢ RM*VN*K with frontal
slices denoted X!*, With this generalized notation the data model is

XM = ADMBFYT + NF 1 <k < K. (5.10)

The matrices are as described in equation (3.10) and N* captures any unmodelled
noise.

Instead of the independence between sources in recordings that IVA uses, PARAFAC?2
imposes only a fixed covariance structure on the second mode, allowing the factors
in this mode to vary. This relatively simple constraint has some more complex impli-
cations, as it creates low rank encodings of structures in the second mode which are
then arbitrarily rotated to form B(¥l and scaled by the diagonal values of DI*! to form
the components of recording k. This means that components which share a latent
structure can be compared across recordings by looking at the rows of D(B*)7
for different k£’s while the "mixing matrix” A is shared between all recordings, and the
mixing vectors associated with specific components are in the columns of A.

Making more assumptions than IVA, this approach is better suited to identify some
effects than others, but also relies on certain characteristics of the data. The most
obvious benefit of temporal PARAFAC2 structure is that responses can be shifted in
time and still captured easily by the model, in theory other vector rotations and scal-
ings could also be captured, so as long as stimulus-evoked responses can be well
captured in a low rank latent form this approach has potential. A downside as well
as potential advantage is that the spatial map is fixed for a given component. This
means that if the spatial maps do not align, then the results will be deteriorated, or
if in different recordings a different region is activated when a stimulus event occurs
then it would either be stored in a different component or not stored at all, and if multi-
ple regions have a similar response then comparison and interpretation would require
one to inspect and compare all components. On the other hand, if the spatial maps
are aligned, and the learning effects do not manifest as spatially different region ac-
tivations, then this model leverages the commonality of spatial maps to decompose
the data. The converse is true for spatial PARAFAC2 with spatial maps in the second
mode. This model can capture some degree of spatial variation such as translations,
but it requires that the temporal signals are the same for all recordings. This tem-
poral consistency is not guaranteed in fUS data considering response variations, but
since only the stimulus related effects are likely to be correlated across recordings this
approach could potentially suppress undesired signals.

5.13. CPD

Continuing the trend of increasing the amount of restrictions on the decomposed data
the natural next step is to have both the spatial and the temporal factors shared across
recordings and subjects to maximally suppress unwanted artefacts using the canon-
ical polyadic decomposition. An added benefit of using the CPD is that it is easy to
extend to higher order tensors, and given that there is no latent representation on the
second mode like for PARAFAC2 there is no reason not to make full use of this. By
noting that the time courses are similar because they share stimulus responses at
similar locations, and that the stimulus locations are known, one can directly encode
the stimulus similarity into the decomposition by restructuring the data tensor to ex-
tract responses using a fourth order CPD instead of extracting time-courses with a
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third-order’ CPD. With the shared factors in the spatial dimension this naturally also
needs to be applied to each set of slice data independently.

To achieve this the slice-wise data matrix from equation (5.1),

X[Z} | c R]WXNXKP’ (511)

==tempora

is restructured into a four-way tensor

X]LZ] c RMXNfXFXKP. (512)
This restructuring is achieved by first splitting the time dimension of Xt[z]mporal into '
different frames of length Vi, each starting when a stimulus occurs (or optionally a few
samples before in cases where the stimulus indices are suspect). These frames are
then concatenated along a new dimension which is permuted with the third dimension
to form X[?. Most of the information from X!/ is retained in X!, but some loss of

|
temporal data is possible if the frequency of t%rrgosriimuli combined with the length of the
frames leaves gaps in the temporal coverage. Though given the focus on stimulus-

evoked learning this is unlikely to contain valuable information.
This structure can now be decomposed using a fourth-order CPD with data model

R
Xf[Z] = Z A(:;T) © B(:zr) © C(:vr) © D(:’r) + M’ (513)
r=1

Here A € RM*E B ¢ RV *E C € RF*E and D € REP*E refer to the spatial, tem-
poral, frame and recording/subject factor matrices respectively and N € RV *NsxI'xKP
accounts for any unmodelled noise in the data. A small implementation detail which is
worth mentioning is that the component magnitudes are stored in the recording factor
matrix D, with all the component vectors in the other factor matrices scaled to contain
no magnitude information.

This model is in many ways more restrictive than the aforementioned IVA and PARAFAC2
options, but this downside comes with some advantages when interpreting data. The
IVA and PARAFAC2 models each allow for a lot of variation in a single component
between recordings in at least one dimension. For the CPD model this is not the case,
and recordings can only vary in the magnitude of a certain component’s contribution —
which can be directly extracted from the values of the recording factor matrix D. This
limitation has the benefit of making inter-recording comparisons exceedingly simple,
unlike IVA and temporal PARAFAC2, where one needs to compare entire time courses,
the differences are all encoded directly in the values of D. By inspecting the frame
factor matrix C it is possible to directly identify response magnitude trends over time
for a specific component (which combined with the recording factor matrix magnitudes
can give an indication of how strong this effect is in that recording/subject).

Beyond the improved interpretability, this algorithm is specifically well suited to iden-
tify stimuli-evoked response effects. By not allowing component variation between

"While it is entirely possible to apply a third order CPD as is, it results in weaker artefact suppression and less interpretable
results, though if one expects the response profile to change consistently over time in the same way for all recordings and
subjects (unlikely but not entirely inconceivable) then this would be a better model than the fourth order option.
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recordings and aligning the frames around stimuli it suppresses noise and other un-
desired neurological signals in the extracted components. Spatial effects such as
specific region activation in only some recordings would also be easy to identify by
simply inspecting the spatial maps in A. Unfortunately the rigidity of the structure
means that this model cannot effectively capture changes such as temporal shifts or
changes in response profile. Furthermore, as the spatial map for a given component
is fixed between recordings as in temporal PARAFACZ2, it means that this data model
is also very reliant on accurate spatial alignment.

5.1.4. Multi-shift CPD

The CPD model offers very interpretable components and owing to its structure has
good noise and unwanted signal suppressions properties, but it lacks the ability to
address temporal shifts like some of the other models. Since it is known that the time-
to-responses after stimuli vary per stimulus, and a change in response time is one of
the hypothetical learning effects, the ability to account for and model such effects is
very desirable. It would be further beneficial if it were possible to identify the same
response profile in different regions with different time shifts, as this could indicate
functional relationships between different regions,

The SCP model is a promising candidate for capturing these time shifts while preserv-
ing the same structure as the CPD model, but it has a number of drawbacks. The
first is a simple matter of volume: a single recording has nearly 20000 voxels and
ideally one would have a shift associated with every voxel for every component, and
while SCP can do this it takes over 5 minutes to do a single update iteration on one
recording, leading to prohibitive runtimes?. The second issue is that the model only
allows for a different shift in the second mode for each element in the third, but to
capture both functional region response shifts and the stimulus instance specific re-
sponse delay it requires a unique shift to be stored for every voxel (mode 1) and every
stimulus event (mode 3). Finally it would also be desirable to be able to constrain the
range of possible shifts, as the response time variability is only so much. To address
all these issues, instead of using the SCP model, we develop and implement a new
decomposition model which still shares some of the qualities of SCP.

2A runtime comparison between SCP and the full multi-shift CPD is included in appendix E
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Multi-shift Canonical Polyadic Decomposition
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Figure 5.1: Graphical depiction of the multi-shift CPD data model. The model is the same as that of CPD except that each
element in the first and third mode factor matrices is composed of both a magnitude and a shift affecting the factors in the third
mode.

This model does not operate in the frequency domain like the original SCP and for the
three way case the data model is

R
X(m,n,k) = Z A(mvr)B(n'i_T(m,r)""w(k,r)7T)C(kvr) (5.14)

r=1

or perhaps more intuitively for mode-two fibres

R
T (T m,r + n,r )
X2 =Y ApunCunBL Sy e, (5.15)

r=1
With:

* Tim,r) the integer shift associated with the 'th component and m’th entry along
the first mode (voxels in this case) and constrained to |7, )| < Tmax-

* Y, the integer shift associated with the r’'th component and »’th entry along the
third mode (stimulus instance) and constrained to |/, )| < ¥max-

+ S% is a shifting matrix of size N x N defined as:

ur ifp>0
Sk =11, ifp=0 (5.16)
Uy ifp<0

where U, is the upper shift matrix of size N x N with ones only on the upper diagonal
and Z,, is an N x N identity matrix. This model also explicitly constrains the number
of shifts to a range in each mode.

B Update Development
Much like an alternating least squares algorithm used for CPD this model can be op-
timised using an alternating approach where all mode factor weights and shifts are
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fixed while the remaining factor weights (and shifts if present) are updated. This pro-
cess then repeats over all modes until a convergence criterion is met. Starting with
the factor containing the shifted components B the main challenge is of course to also
account for the shifts. To develop this update step it is easiest to start with a model of
order two, then to solve it by including the shifted structures explicitly before extending
the model to higher orders.

The mode-two shift model,

R
Xy = Z A (SN B, (5.17)

r=1
can be written as a single matrix operation
Xmy = Apb, (5.18)
by stacking the coefficients and shift matrices horizontally in
AL = [A (S A (ST o A (Sy™P)T] € RVYE - (5.19)
and vectorising B into a single column vector
b = [Bl, B, .. B, cRVE (5.20)

Since the vector b’ here does not depend on the mode-one index m, equation (5.18)
can be further expanded to a standard dyadic model including the whole of X in vec-
torised form by vertically concatenating for all m’s

X = AT (5.21)
with X’ € R"M transposed rows vertically stacked
T
X'= [X(TL:) X(TZ:) X{M,:)} (5.22)
and A” € RVM*NE similarly stacked and having a block structure
A(1,1)(S]T\§1’1>)T A(LR) (S]T\;LR))T
A — : : (5.23)
A(M,l)(S;;M’l))T A(M,R) (S]T\;M,m)T

Now theoretically, despite all the shifts, all the elements of B can be estimated in
closed form using the pseudo-inverse of A”:

b’ = (A"TA")TTATX (5.24)

B Update Implementation

But there is a catch, even in this mode-two case, A” is colossal®, and may not even fit
in memory, let alone be performant during operation. On the other hand there is a lot of
structure in A” —there are many repeated entries and it has a sparsity which is at least

3For the dataset in question M is in the order of 20000, so even with a modest number of samples per voxel (say 100) and
10 components this matrix takes up nearly 15Gb. For higher order extensions this problem just grows larger.



5.1. Algorithms 32

Njgl. The goal now becomes to avoid explicitly constructing A” at any point, and since

A" is a very tall matrix we separate the left side of equation (5.24) into the Gram matrix
and the cross-product matrix to avoid the large first dimension of A”. Exploiting the
block structures we can compute A”" X’ € RN very efficiently as stacked weighted
sums of shifted versions of the rows of X

St A SN X,

m=1

ATX = (5.25)

> et Ay X,
In practice the shift matrices in this step are also not constructed, and simply imple-

mented using matrix indexing (in blocks that share the shift) to avoid redundant com-
putation.

Now for AT A” ¢ RNEXNE we exploit the same block structure to compute
Ay AR
ATA = 2 (5.26)
AR AY R
with each block A" | the products of the coefficients and appropriate shifts

71,7

1,72

M
AL = A A Sy (ST (5.27)
m=1

Since M is very large we can further optimise this step by defining the set of unique
delay pairs:

Viirs = L (Tonm)s Tamn)) | m=1,..., M} (5.28)
and each unique pair (o, 8) € V,, ,,, define the index set:
./\/laﬂ = {m S {1, .. ,M} } (T(myrl), T(m7r2)) = (Oé, ﬁ)} (529)

Then the expression for A7 = becomes:

A=y S A A | SH (sﬁ)T (5.30)

(avﬁ)evr‘l sTQ meMOﬁ/j

T
This speeds up the process by reducing the number of repeated S§ <$f,) matrix prod-

ucts. A few other small improvements also include computing only the upper triangle
of A”TA” since it is symmetric, and using sparse matrix data structures. Computing
the inverse of this matrix is still not ideal, but with efficient linear solvers the problem
is entirely tractable.

Extending this update step to a higher order setting is surprisingly simple, much like
with CPD’s alternating least squares algorithm it can be directly formulated in the mode
two case by computing the flattened version of the other modes using the column-wise
Khatri-Rao product

(COA) e R (5.31)
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and a new shift matrix using a column-wise outer sum formulation
£ =1 0O Lo + iy @7 € R™T (5.32)

and then simply applying the same update steps with a flattened X matrix.

7 Update

Unlike updating B, the challenge of estimating the time shifts is not in data volume,
but in traversing a combinatorially exploding tree of possible options. Starting with the
same mode two shift model in equation (5.17) we instead absorb the shifts into the B
matrix to form a different dyadic model

X =A'B". (5.33)
Here B’ is composed of R sub-matrices

B'= [B] Bj .. B} € RV #Cmatl) (5.34)

each containing all possible shifts of one of R components

BZZ[SF“B@M SN VBl o SY™ By }GERNXQWMHX (5.35)

The mixing matrix A’ € RM*:(2max+1) |ogically also has R sub-matrices,
A= [A7 AL - AY] (5.36)

where each A” ¢ RM*(2max+1) gncodes time-shift selection weights for the r-th compo-
nent. We denote by A7, € RVl the m-th row of the r-th sub-matrix with the
following constraint to ensure selection sparsity such that only a single shifted version
of a component is included:

ATyl <1 Yre{l,...,R}, Yme{1,...,M}. (5.37)
This new formulation has the shifts explicit, but introduces a new problem — if one were
to estimate anew A’ there is no easy way to ensure that the structure of equation (5.37)
is preserved. An exhaustive search of all possible shift combinations for each row of

X is not feasible and a convex gradient based method with relaxed constraint is still
far too slow. We are thus forced to estimate the optimal values per component.

Let us define the residual matrix X—r by excluding the r-th component from the de-
composition:
X, =X-A"B'T (5.38)

=r )’

where A”_ and B’ are formed by removing the r-th sub-matrices from A’ and B/,
respectively. Each row of the residual X_,, is projected onto the columns of B to get

Pr = XﬁTB;I dlag (H Zl(:,].) H;l L) ||B;:1(:,27'max+1) H;l) (539)

For each row m of P,, identify the index of the largest entry

Jo, = arg max | S (5.40)
j
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Then update the shift and coefficient matrices with the optimal values

T(m,r) = ]:»L — 1 — Tmax, (541)
Pr m,j¥
oy = T (5.42)
’ B”
B

and repeat the process for all components r.

The implementation of this process is fairly straightforward, and the main optimisation
comes from updating the residual sequentially in each step instead of recomputing it
for every component:

X, =X, +Al/ BT — A B/". (5.43)

Extending the solution to higher orders is also straightforward, as one simply frames it
as a matrix operation by computing the Khatri-Rao product of the other factor matrices
as usual while also shifting the B with the relevant shift. Due to the nature of sample
shifts though it is essential that the shifted component B be the last in the Khatri-Rao
product, and of course that X is permuted to have aligned dimensions. One other
small nuance is that to ensure consecutive components in the flattened form do not
cross-contaminate one another in the projection step one needs to zero pad between
the components by 27,.x, and then accordingly also add zeros at the same locations
in the flattened form of X.

Application to data
To exploit this model’s ability to model multiple signal shifts one would want to have
a unique shift for each instance of a stimulus response, and each voxel. This can be
simply achieved by unfolding the third mode of equation (5.12) into the fourth to form
a tensor

XF] c RMfoxFKP. (544)

and applying the model in equation (5.15). This will then capture a unique magnitude
and shift for each response instance of every recording, while keeping the spatial
maps and response envelopes fixed.

5.1.5. Decomposition Assumptions
A summary of the assumptions each algorithm places on the data is described in
table 5.1 along with the resulting implications of these assumptions.
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Table 5.1: Assumptions and structural implications of various tensor decomposition algorithms.

Algorithm Assumptions Structural Implications
tIVA Assumes statistical independence Time courses of interest will be
between temporal components within  statistically dependent across
recordings and statistical depen- recordings, but differ between
dence within the same components components.
across recordings (SCVs).
sIVA Assumes statistical independence Spatial maps of interest will be
between component spatial factors statistically dependent across
within recordings and statistical de- recordings but with minimal spatial
pendence of the same components overlap between components.
across recordings (SCVs).
Temporal Allows variations across the tempo- Spatial maps will be the same for all
PARAFAC2 ral mode while assuming a common recordings while time-courses can
factor structure in the spatial dimen- vary up to a rotation of a latent
sion; assumes a shared latent repre- representation.
sentation of the temporal factors in all
recordings.
Spatial Allows variations across the spatial Time-courses will be the same for all
PARAFAC2 mode while assuming a common fac- recordings while spatial maps can
tor structure in the temporal dimen- vary up to a rotation of a latent
sion; assumes a shared latent repre- representation.
sentation of the spatial factors in all
recordings.
CPD (4D) Assumes shared factor matrices Spatial maps, response envelopes
across all modes. and response magnitude changes
over time are the same for all
recordings and can vary only in
component magnitude per recording.
Multi-shift CPD Assumes shared factor matrices Spatial maps, response envelopes,

across all modes, but the second
mode factors can be shifted by an
amount for each element in the other
factors.

and shift per voxel are shared
between all recordings but response
magnitude and shift per stimulus
instance can vary.

5.2. Experimental Setup - Dynamic Effect Representation

All the algorithms described are in part motivated by their ability to capture the prospec-
tive learning effects in an interpretable manner, and their use depends on this ability.
To validate this, this section assesses the decompositions’ abilities to capture the the-
orised learning signatures, and if one can observe distinctions between recordings
based on these signatures.

For this experiment a synthetic recording for two different subjects is constructed.
Each subject belongs to a different class, where the first class is some baseline re-
sponse, and the second class implies a recording with a learning effect injected into it.
There are also shared responses which do not differ between classes alongside the
injected effects. The decompositions are applied to both subjects simultaneously, and
the decomposed components are inspected directly. There are four possible learning
effects which are tested for. The first format is a simple spatial variation, where the
same stimulus response occurs in both recordings with an additional region being ac-
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tivated in the second recording, shown in figure 5.2a. In the second case (figure 5.2b)
the spatial maps are the same for both recordings, but the temporal response is ad-
justed to have a varying response magnitude. As learning takes place a certain re-
gion could respond faster over time, so a temporal shift effect is modelled in figure 5.2¢
where one region has a progressively faster response in one of the recordings. Finally
learning effects could include localized magnitude changes where a certain region has
increasing or decreasing response magnitudes or conceivably that a region does not
respond initially, and then starts to respond at a later stage once learning has occurred
as depicted in figure 5.2d.
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(a) The time-course and spatial maps for both classes in the differing region based synthetic learning effect test.
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(b) The spatial map and time-courses for both classes in the differing response magnitude based synthetic learning effect test. One can see the
decreasing magnitudes for the second class.
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(c) The spatial map and overlaid time-courses for both classes in the temporally shifted learning effect test, showing the gradual speed-up of
responses for class 2.
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(d) The spatial map and time course for the localized magnitude change which only occurs in class two (one can see the associated time course
has zero magnitude for class 1).

Figure 5.2: Figures of the spatial maps and time courses characterising the learning effects in all the different experiments for
dynamic effect representation.

5.3. Results - Dynamic Effect Representation

The results of the interpretation of extracted components for all experiments and all
decompositions are displayed in table 5.2, and the extracted components themselves
can be found in appendix G. For the tabular results in table 5.2 each setup is given
an integer score of 0,1 or 2. A score of 0 means that the decomposition was not able
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to effectively use the injected learning effect to distinguish between the recordings. A
score of 1 or 2 means that the decomposition can distinguish between the recordings
using the learning effect, but in the case of a 1 this difference is difficult to interpret
from the results themselves, and a 2 means that the differences are easily identified
in the extracted components. To illustrate some interesting effects a few relevant

components are also shown in figures 5.3 to 5.5.

Table 5.2: Learning effect identification scores for different learning effect types and decompositions. A score of 0 is a failure to
extract the learning effect, a score of 1 denotes that there is a class distinction but the components are not interpretable, and a

2 is successful extraction and easily interpretable components.

Learning Effect Capturing Capacity of Model Variants

. Multi-
Experimental Temporal Spatial .
Differences tVA SVA' paraFAC2 PARAFAC2  CFP ot
Differing Region 2 2 2 2 2 2
Response Magnitude 2 1 1 0 2 2
Response Shift 1 0 0 1 0 2
Isolated Region 2 2 1 2 2 2
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Figure 5.3: This figure contains the plots for components 1 and 2 of the temporal IVA decomposition in the shifted response
experimental setup. This model captures some level of distinction between classes, interpreting the effect as a time shift is not

obvious, and requires that one look at all the components simultaneously.
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Figure 5.4: This figure contains the plots for components 1 and 2 of the spatial PARAFAC2 decomposition in the changing
response magnitude experimental setup. There is no easily distinguishable difference between the subjects in the extracted

components.

5.4. Discussion - Dynamic Effect Representation

From table 5.2 there are several interesting observations to be made regarding both
the decompositions and the hypothesised learning effects. Looking at the rows it is
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Figure 5.5: The first and only component of the multi-shift CPD decomposition in the time shifted experimental setup. Here
one can clearly observe the time shifts in subject 2, and between regions, however there is some level of response warping
occuring.

clear to see that the most challenging effect to model is the temporal shifts. This is
unsurprising considering that most of these algorithms are based on instantaneous
linear models, and have no way to explicitly capture time shifts — which was one of the
two motivations behind the development of the multi-shift CPD algorithm.* The high
levels of flexibility which IVA affords still allows it to capture shifted effects, however
not in a particularly interpretable manner, as one can see in figure 5.3. In contrast,
the multi-shift CPD component shown in figure 5.5 trivializes the identification of time
shifts. Looking at the columns instead of the rows the worst performing decomposition
is certainly PARAFAC2. This may not be as conclusive as it seems, as with sufficient
components the PARAFAC2 based algorithms will certainly be able to capture the
effects in questions, though this would deteriorate interpretability due to increased
components needing to be cross examined. The spatial PARAFAC2 model is the only
one which failed to capture the magnitude changes entirely, as shown in figure 5.4.
This effect is fairly simple, and with the flexibility of PARAFAC?2 it should be able to
capture this effect in a meaningful manner. It is worth noting that in this case it is
likely an issue of experimental setup in the form of decomposition rank selection, and
the addition of one or two more components for this algorithm would likely lead to
very interpretable results. One last point worth mentioning is that while the effects
of interest are very clear in the multi-shift CPD component shown in figure 5.5, one
can also see some response warping that occurs. This effect could conceivably be
introduced either due to time shifts between regions, or more likely by the fact that
the response shifts are not multiples of the sampling frequency, which leads to the
stepped structure of the shift graph which could lead to warping during the response
update step.

4The second motivation was to be able to estimate large numbers of shifts more efficiently than SCP. Evidence of its success
may be found in the runtime speed-up comparison between SCP and multi-shift CPD included in appendix E.



Robustness to Non-idealities

Beyond just the ability to capture learning effects, it is also important for the decompo-
sitions to be robust to various non-idealities that occur in real data. This chapter per-
forms algorithm performance analysis using synthetic data generated from a variety
of different scenarios and assesses performance in terms of subgroup identification
using the extracted components. The topics covered include discussion of the syn-
thetic data generation, how subgroup identification is performed per decomposition,
and the overall results obtained. The synthetic data is generated using a model which
is designed to match real fUS data as far as is reasonable.

6.1. Synthetic Data Generation

The generation of synthetic neurological fUS data can be broken down into three steps:
generation of the temporal response, generation of the voxel grid, and the combination
of the two. The addition of errors, noise, and other non-idealities takes place in one
of these steps. This model will be used to investigate the effects of different non-
idealities, and is based on both physiological and measurement-induced non-idealities
as identified in real fUS data (described in appendix B) using the algorithms described
in appendix A.

6.1.1. Ideal Model

This subsection elaborates on the basic underlying model used to generate synthetic
fUS data. The steps that follow include the response generation, the spatial map
(voxel grid) generation, and the combination of the two.

Response Generation
To start it is assumed that a discrete stimulus timing function a[n], of the form

aln] = on—ng] = s, ], (6.1)

K
k=1 k=1

is known. Here n; denotes the sample at which the k’th stimulus occurs and d[n] is
the discrete unit sample function defined as

39
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(5[71] :{17 n=>0 ,or 5d[n] :{é’ Z;Z (62)

Using this stimulus signal one can construct a synthetic haemodynamic response,

s = [s[1], 2], ..., s[N]]", (6.3)

of length N, where

s[n] = (a * h)[n]. (6.4)

Here h refers to a discrete canonical hemodynamic response function (CHRF) [19]
described as

nal—le—n/ﬁl A nag—le—n/ﬁz
BT (o) LB (an)

where I'(«) is the gamma function and the «, 5 and A parameters have been tuned
to match murine fUS responses.

hin] = A, - (6.5)

Voxel Grid Generation

The stimulus response s is modelled as occurring in a number of predefined regions.
A binary 3D voxel grid W € R**¥*Z of the locations associated with the stimulus
response is generated using

wW=>V, (6.6)
JjeT

In this equation V; € R****” is the binary voxel grid of the j’th of ./ non-overlapping
regions of interest chosen and constructed from the Allen Mouse Brain Atlas [1], and
J C{1,2,...,J} is the index set of the regions associated with the response. Assum-
ing the fUS plane is in the first two spatial dimensions of W and the slice is located at
a location n., then the fUS measurement spatial map R € R**Y is generated as

R=W x;f, (6.7)

where f ¢ R'*Z is the off-plane measurement profile vector. This is a vector which
aims to model the off-plane resolution typical of fus. While more complex options
are available, this function uses a simple truncated Gaussian shape, effectively per-
forming a weighted average of all the off-plane voxels around the scan-plane. Thus
equation (6.7) is a contraction over the third dimension of W weighted by the vector
f which is defined as

f= [/, f2,.... fZ]] (6.8)
with
fln] = (y * p)[n]. (6.9)
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Here y[n| = 4,,.[n], while p[n| refers to the Gaussian spatial window around the slice
location to model the effect of the poor out-of-plane resolution and slice compounding
found in fUS.

Optionally at this stage, if lower in-plane spatial resolution measurements than those
of R are desired, then the two remaining spatial dimensions of T can simply be sub-
sampled (or interpolated for resolutions which are not multiples of the original spatial
resolution). This distinction is neglected in the notation as it has no mathematical
bearing beyond changing a pair of spatial dimensions (X and Y in this case).

Spatio-temporal Combination
Finally, the full 3D spatio-temporal data tensor X € R**Y*¥ can be easily constructed
using the outer product as

X =Ros. (6.10)

This equation can be trivially extended to a multiple stimulus case,

S
X =) Rjos, (6.11)
=1

where i simply refers to the i'th of S stimuli with its own response vector s; and mea-
surement spatial map R,;. In combination with equations (6.1), (6.6) and (6.7) this
implies that each source has its own stimulus timing vector a;, region index set 7; and
voxel grid W,. In the rest of this work these subscripts are treated as notational clutter
and neglected unless the distinction is significant.

6.1.2. Modelling Non-Idealities

This synthetic data model described so far is the ideal case, laying the groundwork for
data generation, but with a number of explicit assumptions worth noting which may
differ from real data. Since the spatial maps are fixed, it assumes that region locations
and tissues do not change over time. The stimulus response function h[n] does not
vary, regardless of time, voxel, region and subject, which is known not to be the case
[12]. Furthermore, all data is perfectly aligned with the atlas, since the voxel grids are
generated from the atlas itself, and the measurements are entirely noiseless. These
idealities and others are addressed in the following subsections.

Sensor Noise

Sensor or measurement noise is easily added to the data by adding a Gaussian white
noise tensor N € RX*Y*N (scaled by cgxp to match a desired SNR) to the measure-
ment

X = (Ros)+N. (6.12)

Here N is constructed using

N ymy = csvr * N (0, 1), (6.13)

where N

—(%y,n

) refers to the element in the tensor N indexed at position (z,y, n).



6.1. Synthetic Data Generation 42

Random Response Variation

Since the speed and magnitude of a haemodynamic response to a stimulus is not in
general fixed, one can adjust the A’s and 5’s of the CHRF randomly at each stimulus
event to create stochastic stimulus response using equation (6.3) and

Mw

k::l

instead of equation (6.4). Here h; is as in equation (6.5) but with small random vari-
ations in the A’s and f’s to create changes in the magnitude and peak time after
stimulus.

Region Based Response Variation

Different regions generally have different haemodynamic responses to a stimulus.
This variability can be included in the model by introducing a region specific response
s; and combining equations (6.6), (6.7) and (6.10) to produce

X=> [(V,x3f)os;]. (6.15)
JjeT

In this form s; can have a scaled, time shifted, and/or otherwise altered haemodynamic
response h;[n| as the vector s; is generated from

0] = (ax hy)n). (6.16)

It is worth noting that as the contraction with f in equation (6.15) does not depend on j
it could be moved out of the summation, however, since it reduces the size of V; con-
siderably while the outer product with s; increases it, it is worth doing the contraction
first for both computation and memory reasons.

Source Based Response Variation

In cases where there are multiple sources and the haemodynamic response to a spe-
cific stimulus is expected to be different from the CHRF one can easily add this to the
model by having a source specific h;[n] to generate s;[n] as

siln] = (a; * hy)[n]. (6.17)

Rigid Misregistration

To model a case where the data is spatially not exactly aligned with the atlas (and
other scans) one starts by spatially warping the voxel grid W using a discrete vector
field T. To remain consistent and since all values are discrete and dimensions are
defined, conventional vector notation is not used and T is simply treated as a tensor
T ¢ R¥*Y*x2x3_ The voxel grid is then transformed into U € R**Y*Z in scalar form as

(z,y,2) — =1 (W T (z,y, z)) ) (618)

or in tensor form as
U=7(W,T), (6.19)
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where Z (W, -) is the trilinear interpolation operation, U, , ., is the element at position
(z,y,z)inthe tensorU,and T, , ) € R3 refers to the three-element vector at position
(z,y, z) of the vector field T. In this case T is the vector field produced by a rigid
transformation with only translation and rotation. The new voxel field U can be used
with equations (6.7) and (6.10) to produce

X = (U x;f)os. (6.20)

Tissue Deformation

Tissue deformation can be modelled as in equations (6.15) and (6.16) with the excep-
tion that T is now a flow field generated by applying broad spatial Gaussian smoothing
to a random vector field. This is an approximation of the elastic deformation that tis-
sues would experience. While they seem similar, this and the rigid deformation aim at
modelling very different types of non-idealities. The non-rigid deformation preserves
the isotropic structure of the voxel map and models errors introduced when different
scans are not registered correctly (which happens after a measurement). The tis-
sue deformation transformation instead aims at modelling physical changes (which
happen before a measurement) and mathematically does not preserve the isotropic
structure of W. However, since it is targeted at modelling tissue deformation not mea-
surement issues the resulting measurement is still an isotropic reflection of what is
being modelled physically.

Relative Recording Errors

There are issues that have not been mentioned which can occur in data when multiple
measurements are taken on different subjects and would not be a problem on their
own, but cause inconsistency between data tensors. These errors include truncation,
different out-of-plane scan locations and temporal reference misalignment. These
three issues are easy to model by: truncating the synthetic data tensor, using a differ-
ent or random slice location n_, and shifting the stimulus timings n;, by a fixed amount
respectively.

Summary
While they have been presented in isolation, all these non-idealities as well as multiple
stimuli can be included simultaneously in one data model as shown in

S
X=> LZ [(Z(V;,T) x3f)0s,,]| + N, (6.21)

i=1 Lje;
with the vector s, ; computed in the manner of equation (6.3), but with

K
sig[n) =) (6n, * hijx)[n]. (6.22)

k=1
In equation (6.21) T now refers to both the rigid and tissue deformation vector fields.
This can be achieved by simply adding the two vector field tensors together. Addi-
tionally this transformation is now applied to each region voxel map V; separately
since each region could have its own response s, ;. Finally &; ; ;[n] now refers to a re-
sponse which can differ for any combination of region, source, and stimulus instance.
A high-level illustration of the synthetic data generation process is shown in figure 6.1.
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Figure 6.1: This diagram is a graphical representation of the operations shown in equations (6.21) and (6.22) used to generate
synthetic fUS data.

There are still a number of issues that are present in real data which are not modelled
here, including but not limited to non-white noise, motion artefacts, data corruption,
undesired non-stimulus signals and physiological effects.

6.2. Subgroup Identification

Non-idealities are highly stochastic in nature, and so require extensive testing to en-
sure good estimates of their influence on decompositions, but looking at large numbers
of realisations and judging the performance of different decompositions is not realistic.
Thus this investigation is framed as a subgroup identification problem with classifica-
tion accuracy estimates used as indicators for decomposition robustness. Subgroup
identification can be used to separate the data into different clusters, but the large
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amounts of raw PDI data and potential for misalignment make clustering the data di-
rectly ill advised. The decomposition results however are much more compact, and
inherently comparable, so clustering algorithms can be applied to the components
after decomposition. The components extracted by the different decompositions do
not share the same structure so this section elaborates on how the components are
processed and clustered for each decomposition.

6.2.1. IVA

From the IVA extracted sources, B[k], the SCV matrices BT can be obtained using
equation (3.7). These are used to get covariance matrix estimates for each SCV

C, = B,B! e RE*K (6.23)

Two clustering algorithms, k-means and spectral clustering, are applied to the data to
identify two clusters. The k-means approach is applied to a matrix which is the mean
of the SCV covariance matrices, while spectral clustering operates on the sources
Bl directly as features for each recording k. Since the spectral clustering operates
on the covariance matrices of the features it is actually also using a matrix which is
similar to the SCV covariance matrix estimates, and performing k-means on extracted
eigenvectors of this matrix.

6.2.2. PARAFAC2

The structure of the sources produced by PARAFAC2 are similar to those of IVA in
that there are temporal or spatial sources which vary between recordings, so a similar
clustering approach is applied. Before making use of the source matrices it is first
worthwhile to do some intelligent component masking. Since the components are es-
timated using an optimization process with noise, the elements of D (the third mode
weights) are unlikely to be exactly zero, however they may be negligibly small. This
causes some issues in some clustering algorithms as they normalise the extracted
components, destroying the weight information, so to preserve some of this informa-
tion all values of D*/ below some threshold 7 are set to 0 to form D’*I:

(%] (k]
D’([f}.) _JPuy 7S D(izj) (6.24)
" 0 , otherwise

with 7 = 1075 used. Secondly a mode-two factor matrix associated with each recording
can be extracted as
FiH = D(BM)T, (6.25)

Spectral clustering directly uses these source matrices as features for each recording.
The other clustering approach uses k-means and a matrix storing all the recording
varying component vectors which are associated with a given component, constructed
by selecting the r’'th component from all recordings:

F, = [(e,F")", .., (e,FIK))T]" | (6.26)

wheree, = [0,...,0, 1,0, ..., 0] is a one-hot column selection vector with a one at position
r. These matrices, F,, can now be used in a manner similar to the SCV matrices to
construct covariance matrices for each component.

C, =F,F ¢ RF*E, (6.27)
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K-means is then applied to the mean of these covariance matrices, while spectral
clustering is applied to the original sources.

6.2.3. CPD

In contrast to IVA and PARAFAC2 the CPD structure is far simpler to apply clustering
algorithms to since differences between recordings are all stored in the forth mode
factor matrix D. Thus the first clustering algorithm applies k-means directly to D. The
second clustering algorithm only uses components which have some level of spread
as determined by the following metric

1 K K
72 2.2 [Din = Dy

m, = —— =1 _ . 6.28
max(D) — min(D) ( )

This metric can range from 0 to 0.5, so a threshold of 0.3 is used, and components
with a spread lower than this are ignored. K-means is also applied to the covariance
matrix of the fourth mode factor matrix

Cp = DD? € RF*K, (6.29)

Finally spectral clustering can also be applied to D as is.

6.2.4. Multi-shift CPD

The clustering of the multi-shift CPD is just a matter of taking the mode three weights
C from the decomposition (equation (5.15)) and restructuring them such that all the
weights for a given recording are stored in the same row, and then the same clustering
algorithms used earlier (k-means and spectral clustering) can be directly applied to this
matrix.

6.3. Experimental Setup

This experiment aims to ascertain how well the different clustering algorithms (and
by implication the decompositions) can deal with non-idealities that naturally occur in
fUS data as a result of both underlying physiological effects and the measurement
paradigm itself. For this experiment the synthetic data configuration is fixed, while
the impact of a single non-ideality is tested by varying the strength of its effect and
applying all the different decompositions and clustering algorithms.

The shared parameters for the data generation itself are described in table 6.1 while
the non-ideality parameters tested are described in table 6.2. Each run includes all
the decomposition and clustering algorithms applied to synthetic data consisting of 8
recordings which are randomly allocated to one of two classes (with a minimum of 2 per
class). For each non-ideality parameter at least 20 runs are performed, and the accu-
racy for a given clustering algorithm is averaged. All recordings in a run are generated
using the same stimulus signal and the same spatial map generated from the same
6 selected regions. The difference between classes is in the response magnitudes,
where class 1 has a fixed response magnitude, while class 2 has a variable response
magnitude scale starting at 1.2 and decreases by 0.1 every response. The class dif-
ference is selected based on the following considerations. Having both temporal and
spatial differences between classes, for instance including or excluding regions from
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Table 6.1: Table describing the fixed parameters used in the isolated non-ideality experimental setup to generate synthetic fUS

data.
Parameter Value
Number of samples 220
Sampling rate 4 Hz
Off-plane resolution 850 ym
In-plane resolution 200 um
Number of stimulus events 5

Table 6.2: Non-ideality effect strengths tested for.

Non-ideality Effect Strengths
Physiological

Response magnitude deviation [0.01, 0.05, 0.1, 0.25]
Response peak variation range [0.01,0.05,0.1,0.25,0.5]
Non-rigid voxel shift [1,2,3,4,5,10, 15, 20, 40]
Measurement

Measurement noise SNR [-20, -10, 0, 5, 10, 15, 20]
Reference shift (temporal misalignment) max [12345]
Off-plane index range [1510 20 50]
Spatial rotation variation [1234510 15 20]
Spatial Translation variation [1234510 20 40]

one class, would be a reasonable way for learning effects to manifest, however this
simplifies the subgroup identification significantly as now there are spatial and tempo-
ral distinctions, and there is no guarantee that this will indeed be the case, leading to
over-optimistic results. Significant spatial differences are also easily captured by all
the different decompositions as illustrated in the previous section. Secondly, simply
having entirely different signals between classes is both unrealistic, as it is expected
that any learning effects would be correlated with the stimulus, and an easier problem
than a variable magnitude change of the same signal. In essence the chosen type of
class distinction is expected to be realistic and simultaneously challenging enough to
get good indications of relative decomposition robustness.

Once the average accuracies are obtained a robustness score is calculated per non-
ideality for each decomposition type. Since the topic of interest is the decomposition,
not the clustering algorithms used, the best performing accuracy is selected from all
the results for a single algorithm. Another important note is that the absolute minimum
accuracy one can achieve in this experiment thanks to the nature of unsupervised bi-
clustering is 0.5. Furthermore, the accuracy of a completely uninformed cluster alloca-
tion in a setting with random cluster allocation and a minimum allocation of 2 per cluster
for an even number of recordings, n, can be calculated as follows in equation (6.30):

n—2 ny .ok n n)\ . 9n=2) ”)-0.5
Ziha 02 + (@4 Q)20 4 (05

which equals approximately 0.627 in the case of 8 recordings as in this experiment.
This means that any results around this value are no better than random guessing.
With this information a robustness score can be calculated using an area under the
curve based metric. For a given non-ideality Let e = [eq, es, . .. ,en]T be the vector of

E(accuracy) =
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ordered (decreasing) non-ideality effect strengths?, and s = [s1, 5o, ..., s, T the vector
of associated accuracies for a decomposition. First adjust the accuracy vector by
subtracting the uninformed accuracy to obtain:

§; = max(s; — 0.627,0), fori=1,2,...,n (6.31)

which ranges from 0 to 0.373. Compute the area under the curve using the trapezoidal
rule:

[y

N —

Areaactua| = (62'4_1 — 60(51 + §i+1) (632)
=1

For perfect robustness the maximum possible area is

Areamax = (e, —e1) - (1 —0.627). (6.33)
Finally, the robustness is defined as
Robustness = Are8actal (6.34)
Areamax

and ranges from 0 to 1, where 1 implies complete robustness to error effects and 0
the opposite.

6.4. Non-ideality Results

The full accuracy plots for all clustering algorithms may be found in appendix H and
the robustness scores for all the decompositions are shown in figure 6.2. To aid in
interpretation the non-idealities are grouped by type not cause, so the shifting effects
are in the 2nd and 3rd columns, the response affecting non-idealities are in columns
3 and 4, and all spatial effects are in the right half of the figure (columns 5-8).

Decomposition Robustness scores to Various Non-idealities
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Figure 6.2: Depiction of robustness scores for different decompositions and non-idealities.

The average runtime until convergence for each decomposition algorithm is also in-
cluded in plotted format for different ranks in figure 6.3.

"For the measurement noise case this refers to the noise magnitude not the SNR.
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Decomposition Runtime to Convergence with Different Ranks
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Figure 6.3: Runtime for different decomposition algorithms with different ranks. One can see that with a fixed data tensor size
the IVA and PARAFAC?2 algorithms’ runtime has reasonably slow growth relative to the rank, while CPD continues to scale
exponentially with rank increases and multi-shift CPD even more so.

6.5. Discussion

The robustness scores in figure 6.2 convey how susceptible different algorithms are to
different types of issues in the data. Firstly, when interpreting this data it is important
to take into account that the robustness scores are normalized by the best possible
score in the range of tested effect strengths. That means that the score is inherently
specific to the range over which experiments are being performed? and this needs to
either be taken into account when looking at the score, or one must only look at the
relative score between different decompositions.

There are three interesting patterns to note in these scores. To start, IVA performs
fairly well in general, unless it is exposed to time shifts, as can be seen from the very
poor scores showcased relative to the other decompositions in the second and third
columns of figure 4.3. While better than IVA, all decompositions seem to perform ex-
ceedingly poorly in the reference shift cases, this is of course affected by the large
range of shifts (0-5), but even so, looking at figure H.5 one can see that just a single
sample shift nearly incapacitates all the algorithms. Lastly, the PARAFAC2 models
do not seem to tolerate spatial effects in the slightest, with CPD outperforming it by
a very significant margin despite also relying on shared factor matrices across com-
ponents. This could be the result of the innately different clustering techniques used
for CPD and PARAFAC?2, but if this is the case it still implies that the results of the
CPD based algorithm are easier to interpret in the presence of errors. That being
said, CPD works on the best rank 1 estimate per component, meaning that it simply
suppresses variations while IVA captures the variations. By forcing the variation into
a single mode PARAFAC2 potentially allows for non-idealities to cross contaminate
data in other modes (for example a spatial misalignment, instead of being captured in
the first mode as in IVA or simply suppressed as in CPD, results in noise from other re-
gions warping the response for a specific subject, which in turn deteriorates accuracy
and interpretability).

2For example, even though the noise robustness score seems exceedingly poor, it is worth noting that the "distance” being
integrated over from SNR —10 to SNR —20 is 68% of the entire range, a range which is sure to be have poor accuracy and as
a result will severely impact the area under the curve based robustness score.



Application to Real Data

Finally, the decomposition algorithms are applied to a real dataset of murine fUS
recordings. First, the dataset restructuring and the recording parameters are de-
scribed, followed by additional preprocessing steps applied to the data. Two of the
most promising decomposition algorithms are then applied to extract components:
tIVA and multi-shift CPD. The other algorithms were not used owing either to poor
learning effect identification or to bad non-ideality robustness.

7.1. Experimental Setup

The fUS data is processed before the algorithms are applied. Outlier detection and
removal is performed on each recording, and aims to identify PDIs which have abnor-
mal magnitudes. These outliers are typically caused by subject movement, and the
regularity of occurrences in a given recording or for a given subject can vary greatly.
As such an iterative algorithm based on second order magnitude statistics described
in appendix C is used for outlier removal. Standardisation, which is heavily impacted
by outliers, can now be performed on each voxel making them comparable, otherwise
voxels containing large vasculature (which naturally has higher blood volume) domi-
nate the PDIs and results. At this point it is also helpful but not necessary to mask
regions which are not in the cerebrum itself, or are not of interest. To prevent acci-
dental loss of information due to misaligned scans, and to aid in the identification and
removal of artefacts that occur in and outside of the cerebrum on the PDls it is chosen
not to perform masking.

As seen earlier, it is important to be aware of the data structure when applying different
decompositions. In the case of tIVA the model has a lot of freedom, so it can be applied
to the real data with minimal restructuring as in equation (5.1):

Xtemporal S RMXNXKPZ' (71)
For the multi-shift CPD algorithm though this is not advised, since it would imply that
the factors are the same between subjects/recordings/slices which is not the case.
There is another issue with the multi-shift CPD that has not yet been discussed: be-
cause of the shift structure alignment, the model introduces additional local minima
into the loss landscape (described in more depth and illustrated in appendix F), and
since this algorithm does not exhaustively search all shift alignment options like some

50
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other algorithms, nor does it operate in the cyclic and unconstrained frequency space
like SCP, it is important to ensure that good factor initialisations are chosen to avoid
these local minima. To face these obstacles we first apply a CPD to the full dataset,
then use the extracted components to initialise the multi-shift CPD decompositions
(which are all coupled along the temporal dimension) for each slice and recording. To
achieve this the full dataset tensor

X c ]RMXNXKXPXZ (72)

is first restructured as in equation (5.12) to have the responses on one dimension and
the frame weights on a second, but without separating out the slices to form

Xf c RMfoxeKxPXZ‘ (73)

This is further restructured and flattened to contain the slices in the first mode with the
voxels, and the recordings with the frames to form

X; c RMZfoXFKxP’ (74)

since it is expected to have different frame weights for different recordings. A CPD is
applied to this full tensor to extract components

R
X~ Z AiyoBinyoCuy oDy (7.5)
r=1

with the extracted factor matrices
A € RMZxE B ¢ RVM*E C e RFEXE D ¢ RPXE, (7.6)

These can be restructured

A c R]V[XZXR)Q c RFXKXR (77)
and then slices/recordings selected to form
Al e RMxE clil ¢ RFXE, (7.8)
and
EM = cll o D € RFP*E (7.9)

Constructing a new data tensor per slice and recording as
X[k,z] _ Xf(:,:,:,k,:,z) c RM*NixFxP (710)

A final step is applied to Y** to remove artefacts, where a CPD is performed on it,
and any components which have a single weight in the fourth mode larger than approx-
imately 0.4 are removed. This means any component which is primarily contributed
by a single subject is considered an artefact, iterating until there are 2 components
which do not meet the artefact criteria. This artefact-removed tensor is then flattened
to

X/[k,z] e RMXNixFP (711)

Now the multi-shift CPD is applied to Y'**/ and the three factor matrices are initialised
with Al B, and EI*! respectively. Furthermore, the second mode factors B are shared
between all multi-shift CPDs regardless of slice or recording, effectively a joint multi-
shift CPD.
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7.2. Results

This section applies the decompositions to real f{US data and discusses the compo-
nents of the decompositions for analysis purposes. Only the components that had
some significance are included herein, and components capturing isolated noise are
not shown.

7.2.1. tIVA

Several different rank IVA decompositions were run and tested, the plots are included
for a few of the more illustrative components from the rank two decomposition. All
the components for this particular decomposition are included in the supplementary
material document under section 1.
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Figure 7.1: tIVA spatial maps and time-courses for Slice 1, Subject 1
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Figure 7.2: tIVA spatial maps and time-courses for Slice 2, Subject 1
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Figure 7.3: tIVA spatial maps and time-courses for Slice 2, Subject 3
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Figure 7.4: tIVA spatial maps and time-courses for Slice 4, Subject 4

7.2.2. Multi-shift CPD

This subsection details some relevant results from the multi-shift CPD algorithm. The
first interesting result comes from the CPD components used to initialise a run of the
multi-shift algorithm for a single recording, as it illustrates how the responses tend
to have a general downward trend in magnitude within a recording session. These
results are not from the same decomposition setup as the remaining results, as they
specifically look at a single recording to observe trends.
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Figure 7.5: CPD components extracted for a single recording prior to applying the joint multi-shift CPD algorithm. The top right

frame weights graph illustrates the typical downward trend of responses within a recording.

The following results all pertain to the same rank two multi-shift CPD based decompo-
sition of the data, starting with the joint temporal response functions in figure 7.6. The
factors associated with component one for all four slices and component two for slices
three and four are shown in figures 7.7 to 7.10. The full results for this decomposition

can be found in appendix I.
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Figure 7.6: The two coupled responses for component one and two for the multi-shift CPD algorithm of rank two.
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Figure 7.7: Coupled multi-shift CPD results for Slice 1, Component 1
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