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Abstract: Manipulating a flexible ureteroscope is difficult, due to its bendable body and hand–eye
coordination problems, especially when exploring the lower pole of the kidney. Though robotic
interventions have been adopted in various clinical scenarios, they are rarely used in ureteroscopy.
This study proposes a teleoperation system consists of a soft robotic endoscope together with a
Guidance Virtual Fixture (GVF) to help users explore the kidney’s lower pole. The soft robotic arm
was a cable-driven, 3D-printed design with a helicoid structure. GVF was dynamically constructed
using video streams from an endoscopic camera. With a haptic controller, GVF can provide haptic
feedback to guide the users in following a trajectory. In the user study, participants were asked to
follow trajectories when the soft robotic arm was in a retroflex posture. The results suggest that the
GVF can reduce errors in the trajectory tracking tasks when the users receive the proper training
and gain more experience. Based on the NASA Task Load Index questionnaires, most participants
preferred having the GVF when manipulating the robotic arm. In conclusion, the results demonstrate
the benefits and potential of using a robotic arm with a GVF. More research is needed to investigate
the effectiveness of the GVFs and the robotic endoscope in ureteroscopic procedures.

Keywords: soft robot; virtual fixture; ureteroscopy

1. Introduction

Ureteroscopy is an endoscopic intervention in the urinary system. Ureterocopists
perform ureteroscopy to diagnose carcinoma in the urinary tract and to remove kidney
stones. Ureteroscopy is challenging, and requires long and intensive training because
of two main factors. The first factor lies in the instrument, the ureteroscope. To reach
the upper urinary tract, the ureteroscopist uses a flexible ureteroscope with a long and
compliant body, making it challenging to steer inside a human body. The second factor is
the hand–eye coordination problem, which occurs because when steering through a small
hole, the pose of the ureteroscope’s handle is not aligned with the pose of its front tip.
Furthermore, ureteroscopists can only see the view from an endoscopic camera attached
the ureteroscope, losing the direct sight of an endoscope’s tip. One of the most challenging
tasks when performing a ureteroscopy is exploring the kidney’s lower pole calyx, which can
only be reached with the tip of a ureteroscope in a retroflex position. To improve urologists’
performance, this study aims to develop a teleoperation system with a soft endoscopic
robot using a Virtual Fixture (VF) to guide urologists in navigation tasks inside calyxes.

1.1. Robotic Solution in Ureteroscopy

Robotic solutions have been developed, and have shown great potential for various
clinical scenarios. One of the most famous surgical robots, the da Vinci Surgical system,
has been applied to urology for almost 20 years. However, compared to this achievement,
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continuum robotic solutions for ureteroscopy are still in their early stages [1,2]. The devel-
opment of continuum robots in endoscopic procedures and minimally invasive surgeries
has risen in recent years due to the need to navigate deep inside the human body safely [3].
These robots are inspired by those manual, flexible, steerable instruments used in current
endoscopic procedures. Various robotic mechanisms and computer-assisted functionalities
have been studied [2–4]. Robotic ureteroscopes started by modifying a master-follower de-
vice, such as the Hansen Device, which was initially used in cardiology interventions. The
Sensei–Magellan system was introduced and performed in a clinical trial with 18 patients
in 2008 [5]. However, this project was discontinued due to the difficulty of designing the
scope. Then, Roboflex Avicenna (ELMED, Ankara, Turkey) was introduced in 2011 and
obtained a CE certificate in 2013 [6]. At the time of writing, this is the only robotic solution
for ureteroscopic procedures on the market. Reports show that it improves ergonomics
during a long-lasting ureteroscopy [7].

A new system, easyUretero (ROEN Surgical Inc), was presented in 2022 [8]. However,
this system was only tested in a test bed mimicking kidney calyx. Talari et al. used a “snap-
in” mechanism to build a robotic ureteroscope [9]. They proposed a framework to localize
the tip position of the scope by using Electromagnetic sensor (EM sensor) and pre-operative
Magnetic Resonance (MR) images to reduce the need for additional fluoroscopy.

Various studies have been conducted to address the navigation issues at different
levels when the robotized instruments are in a narrow tube-like structure. For example,
researchers focus on proposing different robot arm mechanisms in transoral robotic surg-
eries [4]. Duan et al. [10] implemented a path-planning system with an electromagnetic
sensor. Furthermore, Mo et al. [11] increased the Level of Autonomy of their robotic en-
doscopic system to a task autonomy level, which allowed the robot to follow trajectories
by itself.

On the other hand, in robotic endoscopic procedures, force feedback is a desired
function for the users because when an instrument is robotized, the users lose the direct
feedback from the instrument [12,13]. In this light, Shu et al. developed a robotic system
with force sensors installed at the joints of the follower robots [14]. Combined with a neural
network-based method, the robotic system can estimate the interactive forces and exert it
on the user through two haptic devices. To the best of this author’s knowledge, this is the
first and only example of enabling interactive force feedback function in the robotic system
for ureteroscopy.

1.2. Virtual Fixture in Medical Robots

Virtual Fixture (VF) is widely used in teleoperation systems, providing extra sensory
information, such as force feedback, to a remote operation site. This force is used to help the
human operator perform better-than-human performance when manipulating robots [15].
VF has been applied in a variety of fields, including medical applications, such as robotic-
assisted catheterization and minimally invasive robotic surgery [15–24]. To create a VF in
the remote operation site, the system must have the perception of the environment. There
are two main ways to determine the required geometry in clinical scenarios. The first
one is to use pre-operative images from the operating site. Park et al. [25] registered the
patient’s anatomy to the image data and used a VF to constrain the motions of the surgical
robot. They show a faster and more precise dissection than with conventional techniques.
He et al. [19,22] uses a point cloud model of CT image sequence on the nasal cavity to
create a Forbidden Region VF (FRVF) boundary. They also analyzed the motion constraint
of different stages to create a spatial-curve-based Guidance VF (GVF) and a hyperbolic-
plane-based FRVF. Their results show that GVF can reduce the path-tracking error and
that FRVF can avoid collisions during nasal examinations. The second way is to use intra-
operative imaging modalities. Park et al. used a camera to simulate the intra-operative
X-ray fluoroscopy in [18]. They segmented the vessel wall from the images, identified
the centerline of the vessel phantom, and used it to create a forbidden region border.
Endoscopic camera images can also be used to construct VFs dynamically. Moccia et al.
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used intra-operative endoscopic videos to create virtual fixtures. In [20], they used stereo
endoscopic images from the da Vinci Research Kit (dVRK) to generate a desired 3D path
for polyp dissection. Based on the path, a VF was generated and used to guide the follower
manipulator. The results showed that the absolute error was significantly reduced. In [23],
they also constructed a dynamic FRVF on two surgical tools by fusing the vision data and
robot kinematics to avoid tool collisions. There are also works using information data other
than image data; for example, Marinho et al. defined their dynamic constraints and virtual
fixture region by using the kinematics of the robotics arm and joint information [21,24].
However, research on using virtual fixtures on a flexible instrument is still lacking. In
addition, there is no VF application focusing on ureteroscopic procedures.

In summary, the force feedback function is highly requested by endoscopists when
performing robotic endoscopic procedures as force feedback can provide sensory informa-
tion to the users to avoid damaging the surrounding soft tissues. On the other hand, VF is
able to provide extra sensory information to guide movement or avoid dangerous regions
for the robot using an endoscopic camera. In this light, this research proposes using GVF to
help users navigate the robotic-assisted flexible endoscope when it is in a retroflex posture
and inside a partly confined area, e.g., the kidney’s lower pole. The remainder of the
article is structured as follows: Section 2 describes the soft robotic endoscope used in this
research to simulate a robotized ureteroscope, the teleoperation system and the dynamically
constructed GVF and the workflows of the user study, the experimental phantom set-up,
and the performance metrics for the experiments. Section 3 presents results from the user
study, and Section 4 discusses the findings. Lastly, Section 5 draws the conclusion.

2. Materials and Methods

This section first describes the robotic endoscope used in this study, consisting of a
3D-printed endoscopic arm, its actuation system, and the GVF in the teleoperation system.
Then, the protocols of the validation experiments with a user study are detailed.

2.1. Robotic Endoscope System

A robotic endoscope system, the ATLAScope, consisting of a soft robotic arm, was
built. The structure of the robotic arm is inspired by the HelicoFlex [26], and is manufac-
tured using 3D printing technology. The robot arm’s body is 5 mm in outer diameter and
90 mm in length. The body has a 70 mm long steerable segment as a helicoidal structure.
Along the body, four cable tunnels allow the driving cables to traverse the body and
connect the tip of the robot arm to the driving pulleys antagonistically. Two closed-loop
stepper motors with gearboxes (11HS12-0674D-PG27-E22-300, STEPPERONLINE) are
connected to these driving pulleys to actuate these driving cables. These motors and
pulleys are mounted on a linear stage for an extra linear motion. The robotic endoscope
has three degrees of freedom (DOFs), allowing its arm to bend in two perpendicular
directions and move forward and backward. The robotic endoscope is equipped with a
miniature RGB camera NanEye 2D (NE2DRGBV160F242M, OSRAM). This camera has a
resolution of 250 pixels by 250 pixels and a focal length of 10 mm. The whole set-up of
the ATLAScope is depicted in Figure 1.

2.2. Teleoperation System

The teleoperation system consists of three major modules: a leader controller, a
follower robot, and a communication channel. A schematic of the proposed teleoperation
system is shown in Figure 2.
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Figure 1. The robotic endoscope system, ATLAScope, to simulate a robotized ureteroscope. (1) Two
stepper motors; (2) two pulleys; (3) cable tunnels to guide driving cables; (4) soft robotic arm with
HelicoFlex design, with a total length of 90 mm and a steerable segment of 70 mm; (5) miniaturized
endoscopic camera and the two bending directions of the robotic arm.

Figure 2. The teleoperation system with the GVF consists of ATLAScope, a haptic controller and
a communication channel. The user commands the haptic controller with u̇c, the velocity of the
tip of the haptic controller. This movement is translated into ẏi, a desired moving velocity of the
target in the image space. Then, the velocity of motors θ̇ in the actuation space is determined by
the Moore–Penrose inverse of the model-free Jacobian matrix J†

f ree. After the motors move the tip of
the endoscopic camera into a new position, t, the camera captures a new image. The Segmentation
and Target Detection module processes this new image and returns a new target vector, pi, which
is the shortest vector from the center of the image to the route. Within the Virtual Fixture module,
this target vector is translated into a force f c by the spring-damper model F(·) and exerted on the
user. K, k, and ξ are working space transformation matrix, spring constant, and damping constant,
respectively. Ω stands for coordinate space, and its superscript C, I, A, and E stand for controller,
image actuation and end-effector, respectively.

The ATLAScope, serving as a follower robot, is connected to a commercially available
Omni Phantom haptic controller (Sensable Technologies) via a PC which runs the Robot
Operating System (ROS). The endoscopic camera and image processing algorithm are
running on a separate PC but are connected with ROS via Ethernet bus. There are two goals
for the teleoperation system. The first is calculating and exerting the guidance force in the
user’s controller space ΩC. The second goal is to steer the robotic arm in its task space with
a user command in ΩC. Because the user steers the robotic arm relying on the information
from the endoscopic video stream, which is in the image space ΩI , ΩI is regarded as the
task space of the teleoperation system. Then, it is essential to define the transformation
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between ΩC and ΩI . Suppose a desired target movement, yi ∈ R2 in ΩI , moves when a
user moves the leader device with uc ∈ R3 in ΩC. Their relationship can be obtained by:

yi = Kum, (1)

where um ∈ R2 is the projection of uc into x− y plane of ΩC and K is a two-by-two scaling
transformation matrix. If the coefficients, Kii, i = 1, 2, are too large, the camera view will
change rapidly in response to small movements from the haptic controller; conversely, if
the coefficients are too small, the user has to move the haptic controller with larger arm
movements. The matrix K was determined heuristically to allow the user easily reach
one side of the camera space using only wrist movements to ease physical burdens. With
Equation (1), the user is commanding in the controller space of the haptic controller with
the same orientation as in the image space. Furthermore, a button on the haptic controller
serves as a clutch, which can set K into a zero matrix when pressing the button. With
this clutch, the controller can move freely without steering the tip of the robotic arm and
increase the working space of the robotic arm easily. This relationship between ΩC and ΩI

is illustrated in Figure 3.

Figure 3. GVF coordinate transformation between the image space ΩI (Left) and controller space ΩC

(Right) by the scaling transformation matrix K. Both the teleoperating manipulation and the GVF
rely on the information in ΩI . To link ΩI with ΩC, uc in ΩC are projected into x− y plane to form
um. Using space transformation matrix K, um is transformed into desired target movement, yi, in ΩI .
Reversely, the guidance vector, pi created by GVF in ΩI can be also transformed into ΩC as pc using
K−1. In the top figure, R is the set of two-dimensional vectors of the segmented route. c, rs, and pi is
the center of the image, the closest point in R to c, and the guidance vector, respectively.

Next, to steer the robotic arm based on yi, the corresponding actuation movement,
θa in the actuation space, ΩA, has to be determined to steer the robotic arm into a new
position, te in the end-effector space ΩE. An image Jacobian matrix J determines the desired
movement in ΩA from the information in ΩI from the endoscopic video. It has the form of

J =
d f (x)

dx
= [

∂ f (x)
∂x1

...
∂ f (x)
∂xn

], (2)

where f (.) contains image features, and x is actuators’ movement.
Based on previous successful studies [27,28], where soft robots were controlled without

prior knowledge of their kinematic model, this research utilizes a model-free image Jacobian
matrix, J f ree. In this teleoperation system, the dimension of ΩI and ΩA are equal to two;
therefore, the J f ree ∈ R2×2 and can be estimated by
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J f ree =


∆y1(θ)

∆θ1

∆y1(θ)
∆θ2

∆y2(θ)
∆θ1

∆y2(θ)
∆θ1

 (3)

The ∆yi(θ) and ∆θj, with i and j = 1, 2, can be obtained by commanding each actuator
and record the changes of the features in the endoscopic image. With J f ree, the actuator
velocity θ̇a can be derived as

θ̇a = J†
f reeẏi, (4)

where the symbol † denotes the Moore–Penrose inverse of a Jacobian matrix.
Lastly, the actuator velocity is fed into the low-level controllers in the ATLAScope,

which actuate its motors using the Proportional Integral (PI) controllers:

v(t) = Kpe(t) + Ki

∫ t

t0

e(τ)dτ, (5)

where v(t) is the effort determined by the PI controller to drive the motor, and e(t) is the
error between the desired motor displacement and the actual motor displacement read by
an encoder. The coefficients, Kp and Ki, from the PI controller were first determined by the
autotune function in the ROS PID package and then fine-tuned to prevent overshooting
while keeping a low settling time. The values of Kp and Ki for both motors used in this
study are set to 5.0 and 0.1, respectively.

2.3. Dead Zone Compensation

The cable-driven mechanism of the soft robotic arm introduces hysteresis behavior,
particularly a dead zone. When a driving cable is within the dead zone, it is unable to
actuate the soft robotic arm. This will decrease the user’s performance when teleoperating
with the ATLAScope. To address this issue, a dead zone compensation algorithm is
implemented as follows.

First, the initial size of the dead zone is estimated by rotating one motor in a single
direction. During the dead zone, the image on the endoscopic camera will not change.
When the image begins to change, the soft robotic arm has reached the boundary of the
dead zone. The motor angle at which the first change occurs is noted as δ+i . Next, the motor
is rotated in the opposite direction until the image changes again, and this motor angle is
noted as δ−i . The size of the dead zone of one driving cable, δi, is estimated as

δi = l ∗ ||δ+i − δ−i ||, 0 ≤ l ≤ 1, (6)

where l is a constant to prevent an overshoot from the dead-zone compensation.
When the ATLAScope is in its initial state with motor angles θi = 0, it is assumed

that the motors are positioned in the middle of the dead zone. Therefore, the initial dead
zone boundary at time t0 is set to SDZ(t0) ← [−δi/2, δi/2]. Whenever θi falls within this
range, the actual rotation speed will be m times faster than the original motor velocity, θ̇,
determined by Equation (4), to help the users rapidly overcome the dead zone. On the other
hand, when the θi falls outside the dead zone range, the motor velocity remains unchanged.
Since the dead zone occurs when the motors change their original moving direction, when
the θi is not within the initial dead zone range, it needs to be updated according to the
current motor moving direction and motor angle. If the ATLAScope reads a new angle
θi(t), that is larger than the upper boundary of the initial dead zone range at time t, the
dead zone is updated. The updated upper boundary becomes the current time angle and
the updated lower boundary becomes the current time angle minus the full size of the dead
zone, δi. It can be expressed as SDZ(t)← [θi(t), δi − θi(t)]. Similarly, when θi(t) is smaller
than the lower boundary of the dead zone range, the updated dead zone is updated as
SDZ(t)← [θi(t), θi(t) + δi]. Algorithm 1 details the dead zone compensation algorithm.
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Algorithm 1 Dead zone compensation and update

θi(t0)← 0 ▷ Initialization of variables.
SDZ(t0)← [−δi/2, δi/2]
while do

θi ← θi(t + 1) ▷ When the motor movements are updated.
if θi /∈ SDZ(t) then

θ̇i(t + 1)← J†
f reeẏd(t + 1)

if θi > Max(SDZ(t)) then
SDZ(t + 1)← [θi − δi, θi] ▷ Update the dead zone boundary.

else if θi < Min(SDZ(t)) then
SDZ(t + 1)← [θi, θi + δi] ▷ Update the dead zone boundary.

end if
else if θi ∈ SDZ(t) then

θ̇i(t + 1)← m× J†
f reeẏd(t + 1) ▷ Motors moves m times than within dead zone

SDZ(t + 1)← SDZ(t)
end if

end while

2.4. Guidance Virtual Fixture

The GVF in the teleoperation system takes the guidance vector, pi in ΩI and translates
it into force feedback, which exerts on the users with the haptic controller in ΩC. The
guidance vector is defined as follows when a desired target, rs in ΩI , is detected in the
endoscopic image:

pi = rs − c, (7)

where c is the center coordinate of the image space. How to find rs in the endoscopic
image will be discussed later in Section 2.5.1. To determine the force exerted on a user by
the haptic controller, pi has to be transformed into ΩC. Recall the scaling transformation
matrix, K in Equation (1), which transforms coordinates from ΩI into ΩC; pc in ΩC can be
determined by

pc = K−1 pi (8)

Finally, the guidance force f c on ΩC created by the GVF is defined as

f c = kG pc (9)

where kG is the spring constant of the guidance force. f c exerts on the user from the
haptic controller and guides the user to the desired target position. In this GVF system, to
guarantee the effeteness of the guidance force from the haptic controller and the freedom
to allow the user to move along the route, the spring constant was determined using the
soft guidance approach [15]. It was set heuristically based on three participants’ feedback
in a simulator pilot study. This amount of force feedback allows the users to move freely
with little interference within small errors and to be guided when the errors become
larger. Throughout this study, kG is equal to 0.006 (N/pixel). The detailed diagram of the
coordinate transformation between ΩI and ΩC of the GVF is illustrated in Figure 3.

2.5. System Validation

This subsection describes the experimental set-up to test the effect of using VF, the
user study, and the selected performance metrics.

2.5.1. Experiment Design and Set-Up

The experimental set-up is shown in Figure 4. To simulate a ureteroscope exploring the
kidney’s lower pole, the robotic arm of the ATLAScope is fixed in a retroflex configuration,
which means that the robotic arm is bent 180 degrees. In addition, the proximal part of the
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robotic arm is fixed by a 3D printing fixture (Figure 4(2)), while the distal part is allowed to
move freely.

Figure 4. Experimental set-up with the flexible arm bent in a retroflex posture. (1) Soft robotic arm;
(2) 3D printed fixture mold to restrict the movement of the soft robotic arm; (3) tip of the robotic
arm equipped with a miniaturized endoscopic camera in a retroflex posture; (4) target plane with a
triangle or oval route; (5) two designed routes and their dimensions.

Two route patterns are designed to evaluate how a user navigates rounded and sharp
corners: an oval and a triangle pattern (Figure 4(5)). The patterns are positioned 10 mm
before the miniature camera. During the experiments, participants are asked to follow the
edge of the two patterns through the video stream captured by the miniature camera.

According to Equations (7)–(9), to determine the guidance force f c, first we have to
find rs. In this experiment, rs is defined as the nearest point of a route to c. The route
is defined as the boundary of the triangle and oval patterns. In ΩI , the pattern is first
segmented using a binarization algorithm to find the route R(t) = r1, r2, . . . , rn, which is
expressed as a set of two-dimensional vectors, where ri for i from 1 to n is one-pixel point
on the image that belongs to the routes and n is the number of pixels in the routes at time t.
Lastly, rs is the ri in R(t) that satisfies

min
ri∈R(t)

||ri − c|| (10)

2.5.2. User Study Protocol

A user study was conducted to evaluate the proposed GVF teleoperation system using
ATLAScope. In this study, participants were requested to complete two sets of trajectory
tracking tasks: one with GVF enabled and one without, noted as GVF-on and Control,
respectively. During these tasks, participants manipulated the haptic controller from the
proposed system to control the ATLAScope following the trajectories displayed on the
endoscopic video stream. Both the GVF-on and Control tasks consisted of two subsets
of tasks: Oval Route and Triangle Route, where the trajectories were in the shapes of an
oval and a triangle pattern, respectively. For each route, the participants were requested
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to follow the displayed pattern five times. Participants are randomly assigned into two
groups, each starting with a different set of tasks and then crossing over. The group that
starts with the GVF-on, followed by Control, is noted as Group A, and the other group,
which begins with Control, followed by GVF-on, is noted as Group B (Figure 5).

Figure 5. A flow diagram showing the user study protocol. After the first training session, the
participants are divided into two groups (Group A and Group B). Each group has two sets of runs:
one set of Control tasks (Control) and one set of Guided Virtual Fixture tasks (GVF-on). Within each
set, there are two different routes (Oval Route and Triangle Route) that participants had to repeat five
times, and they had to fill in one NASA TLX Questionnaire. Finally, all the participants had to fill in a
Comparison Questionnaire. It is worth noting that a crossover group is being highlighted within the
dashed line, and the colors and dashed lines represent the group of data shown in the next figures.

After completing one set of tasks (GVF-on or Control), participants are asked to self-
evaluate themselves based on NASA’s Task Load Index (NASA TLX) [29] questionnaire.
After completing both the GVF-on and Control tasks, the participants are asked to complete
a final comparison questionnaire to evaluate their preferences toward the GVF-on and
Control tasks.
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Prior to the experiments, the participants had a 5 min training session on how to
manipulate the ATLAScope using the haptic controller. This is followed by a 10 min trial
session in which the participants manipulate the ATLAScope to become familiar with the
haptic controller and the system, both with and without GVF enabled. During the trial
session, a cross-pattern is placed in front of the camera, which is different from the pattern
used in the actual tasks. The detailed procedure of the user study is illustrated in Figure 5.

2.5.3. System Performance Metrics

Two different types of metrics are used. The first type of metric is the objective data
recorded and interpreted from the ATLAScope. This includes:

• Completion Time (CT) of the task is the interval between the starting time t0, when
participants are asked to begin following the route, and the ending time te when they
complete the route.

• Mean Absolute Error (MAE) along the routes. In each task, the error is defined as the
smallest distance between the center of the image view and the routes, which can be
expressed as p(tn) at any time point tn. MAE is defined as

MAE =
1
N

N

∑
n=0
|p(tn)| (11)

where N represents the total number of data time points recorded in one task.
• Maximum Error (ME) that occurred in each task is the maximum p(tn) found between

t0 and te.

It is worth noting that even though |p(tn)| is a measurement in the image space
with the pixel as its unit, we approximate the error in mm in the result section. This
approximation assumes that the displacement of the camera during the tasks is relatively
small; hence, the change in depth between the camera sensor and the plane of the route is
negligible. Then, the transformation factor between the real world and the camera sensor is
simply a constant, 0.067 (mm/pixel), according to the camera calibration process before
the experiments. Also, the distance between the target route and the endoscopic camera is
fixed throughout all the tasks. Therefore, the MAE and ME extracted from each run of the
experiments can be compared directly without further adjustment.

The second type of metrics are the subjective indicators from the questionnaires. Each
participant filled in three questionnaires during the experiment. The first two questionnaires
are the NASA TLX questionnaires for each set of tasks. The participants self-evaluated
their workload towards the tasks with GVF-on or Control. In the NASA TLX, there are six
subscales, with scores ranging from −10 to 10, and they evaluate mental demand, physical
demand, temporal demand, performance, effort, and frustration of the user. The lower the
scores, the lower the participants consider the task loads are, and vice versa. For the last
comparison questionnaire, which is a variation of the NASA TLX, the participants were
asked to evaluate their preferences toward each task on a scale of 0 (no preferences) to 10
(strong preferences). Significant tests were performed with the Mann–Whitney U test for
the NASA TLX on ordinal scales.

3. Results

This user study was approved by the Human Research Ethics Committee at Delft
University of Technology with ID 3272. Before the experiments started, all the participants
signed the informed consent forms and were well-informed about the purpose of the
experiments and how their data would be processed. In total, 14 participants (six women
and eight men) were included in the user study. All the participants had no prior knowledge
regarding medical surgeries, manipulating an endoscope or the ATLAScope. They are
equally and randomly allocated to Group A (n = 7) and Group B (n = 7). The results will be
presented with the metrics from objective machine data and from subjective questionnaires.
In addition, all the statistical significance tests in this section were performed with the
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Mann–Whitney U test as all the test samples were not normally distributed (p < 0.05 with
Shapiro–Wilk test), and p < 0.05 is considered significantly different.

3.1. Machine Metrics
3.1.1. Overall Results

The overall performance metrics of the experiments performed by Groups A and B
with respect to two different sets of tasks (Control and GVF-on) are presented in Figure 6
and Table 1. All these results did not show a significant difference (p > 0.05).

Figure 6. Box and whisker plots comparing overall results for the three performance metrics,
Completion Time (CT), Mean Absolute Error (MAE), and Max Error (ME). The color blue represents
the Control set, while the color orange represents the GVF-on set. Those boxes with slashes are the
results of Triangle Route. The hollow circles are the outliers, and the black horizontal lines in the box
indicate where the median values are.
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Table 1. Overall performance metrics by all the participants.

CT MAE ME

Route Mode Median (IQR) Median (IQR) Median (IQR)

Oval Route GVF-On 50.2 (36.9, 66.0) 0.89 (0.66, 1.29) 2.8 (2.2, 4.3)
Control 54.0 (42.7, 76.5) 1.10 (0.63, 1.51) 3.7 (2.4, 4.7)

Triangle Route GVF-On 63.1 (43.6, 76.7) 0.87 (0.63, 1.32) 3.6 (2.4, 4.7)
Control 57.4 (47.0, 73.0) 0.96 (0.72, 1.40) 4.0 (2.8, 4.9)

Completion Time (CT), Mean Absolute Error (MAE), Maximum Error (ME), InterQuartile Range (IQR).

3.1.2. Crossover Groups Results

All metrics per run for different routes and systems are presented in Figure 7. The first
observation in these runs was that some weak learning curves were visible. The majority
of the task sets presented a negative correlation (R) along the progress, but not significant
(R2 > 0.8). In Figure 8, these results were further grouped into each crossover group.

For CT, a notable finding lay in the Oval Route. Here, GVF-on showed much smaller
variances than Control in each run in the First Crossover Group. However, in the Second
Crossover Group, this trend did not continue. The IQR in each run was bigger in GVF-on
than in Control Figure 7a,b. However, no significant difference was found between Control
and GVF-on in any run.

Regarding MAE, four significant differences are found in the two crossover groups.
Among them, there was one in the First Crossover Group. This happened in the 5th run
of the Oval Route, where the MAE is significantly lower (p = 0.040) in Control than in
GVF-on. On the other hand, the other three significant differences showed that the MAEs
in GVF-on are significantly lower than in Control. These three runs were the 3rd and 4th
runs in the Oval Route, and the 3rd run in the Triangle Route, with p = 0.040, 0.017 and
0.026, respectively.

Oval Routes

(a) (b)
Figure 7. Cont.
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Triangle Routes

(c) (d)
Figure 7. Results of Crossover Groups in each run. The box and whisker plots show the three
performance metrics (Completion Time, Mean Absolute Error, Max Error) per run with respect to the
Oval Route (in the upper row) and the Triangle Route (in the lower row). Blue: Control; orange: GVF-
on, respectively. Darker color tones: Group A; lighter tones: Group B. (*) p < 0.05. (a) First Crossover
Group. (b) Second Crossover Group. (c) First Crossover Group. (d) Second Crossover Group.

Similar observations were found in metric ME. All of the significant differences were
found in the Second Crossover Group, indicating that MEs were lower in GVF-on than in
Control. That are the median MEs in the 3rd (p = 0.011) and 5th (p = 0.017) runs in the
Oval Route; and in the Triangle Route, the median MEs in the 2nd (p = 0.026) and 3rd
(p = 0.017) runs.

Figure 8. Cont.
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Figure 8. Results of each Crossover Group. Compared into two different dimensions, within its
Crossover Groups and in Control and GVF-on. Blue: Control; orange: GVF-on. Darker tones: Group
A; lighter tones: Group B. Boxes without slashes: Oval Route; boxes with slashes: Triangle Route.
(*) p < 0.05 and (**) p < 0.01.

3.2. Workload and Comparison Questionnaires

The results of the NASA TLX Questionnaire and the Comparison Questionnaire are
presented in Figure 9 and Figure 10, respectively. Note that both ordinary scales in the
questionnaires were transferred into percentages.

The results for all the participants are presented in Table 2. In summary, the Total Task
Load indexes were 58% and 52% for Control and GVF-on, respectively. No significance was
found in the subjective scales. In the comparison questionnaire, 10 out of 14 participants
chose GVF-on. For the remaining participants, three preferred Control, and one showed no
preference. In all task load categories but Temporal Load, participants preferred having
GVF enabled while performing the tasks.

Table 2. NASA TLX Questionnaire of all the participants.

Group A Group B All

Average STD Average STD Average STD

Mental 57.1 18.2 64.3 20.7 60.7 19.1
Physical 60.0 20.0 57.1 21.6 58.6 20.0

Temporal 47.1 9.5 45.0 28.1 46.1 20.2
Performance 52.9 21.2 60.7 19.9 56.8 20.2

Effort 70.7 21.1 68.6 17.7 69.6 18.8
Frustration 55.7 21.1 51.4 28.5 53.6 24.2
Total Load 57.3 7.7 57.9 15.9 57.6 12.0
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Figure 9. Bar plots representing the results of NASA TLX Questionnaires. Left: all Participants,
middle: Group A, right: Group B. The bars and error bars show each TLX index’s mean and standard
error, respectively. Note: Scales are transferred into percentages.

Figure 10. Bar plot showing the results of Comparison Questionnaires. The bar shows the preferences
of participants toward the two tasks with respect to the six task load indexes and their general
preferences toward the two sets of tasks.

4. Discussion

From the user study results, the participants tended to perform better when GVF was
enabled, especially in reducing errors. This is also the case if comparing the results of errors
as a group, but not per run, as shown in Figure 8. With the progression of the tasks, a
weak learning curve was visible in a few cases. It was expected that the participants may
experience a stronger learning effect as presented in educational training in endourological
procedures [30], and their performance may be easily distinguished, as shown in [31].
A potential explanation is that because the tasks are much simpler than those surgical
tasks presented in [30,31], the participant quickly adapted the steep learning part and then
reached to plateau curve. Therefore, after the Training Session, often no learning curve was
found within the five runs. In the Second Crossover Group, MAEs decreased significantly
by 45.5% (p < 0.001) for Oval Route and 43.8% (p < 0.001) for Triangle Route with GVF-on.
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Also, MEs were significantly reduced (p < 0.001) in GVF-on by 36.5% and 41.7% in the Oval
Route and Triangle Route, respectively. However, the results in the First Crossover Group
were completely the opposite, with a significant increase in MAEs of 58.3% (p = 0.008) and
24.0% (p = 0.022) in the Oval Route and Triangle Route, respectively. Regarding ME, there
is no significant difference in the First Crossover Group. Our explanation of this finding is
that learning how to manipulate the ATLAScope, especially with haptic feedback enabled
at the same time, is a big challenge. In the First Crossover Group, all of the participants had
their first experiences with the designed tasks. After having gained prior experiences with
the ATLAScope, just as those participants in the Second Crossover Group, they can benefit
from the GVF feedback force. Therefore, the best approach to learning using a system such
as the ATLAScope might be to begin with learning with GVF disabled and then introduce
haptic feedback later. Eventually, when users are familiar with such a system, they could
benefit from the support of GVF. This explanation is also supported by the comparisons of
the results per run in the Second Crossover Group, which showed a significant reduction
in MAE and ME in their later runs of the tasks. When comparing the results from the Oval
Route and the Triangle Route, in general, a similar trend is found. This suggests that when
users are familiar with the ATLAScope, having GVF enabled is beneficial to both round
corners as well as sharp corners.

If analyzing the Workload and Comparison Questionnaires, it was found that nine out
of fourteen participants found that the workload is less in GVF-on tasks. For the remaining
five participants who found a higher workload in GVF-on tasks, it is worth noting that four
out of five participants are in Group B, where the participants started the user experiment
with GVF-on first. This finding may also support the explanation in the previous paragraph,
suggesting that learning to use the ATLScope with the GVF function enabled in the first
place causes extra burdens to users.

There are still several challenges and limitations with the current ATLAScope and
its teleoperation system. Among them, the significant dead zone results in a poorer user
performance when the robotic arm undergoes substantial bending. While a dead zone
compensation algorithm was implemented in the teleoperation system to reduce this issue,
users still experience difficulties when the motors begin to rotate in opposite directions.
Several studies have proposed different modeling techniques and mechanisms for tendon-
driven systems [32,33], but further improvements are necessary to enhance the performance
of ureteroscopists in the current robotic endoscope system.

Regarding the experimental set-up, the phantom is still far from realistic. According
to [34,35], which provides guidelines for surgical robots and surgical tasks, this system
and the set-up using a rigid phantom only fall into Level of Clinical Realism (LoCR) 1. As
the GVF system provides guidance force to the user and allows the user to continuously
control the robot, this system is in the Level of Autonomy (LoA) 1. In clinical scenarios, the
operating space inside a kidney is more dynamic and unstructured. Additionally, limited
by the system design and experimental set-up, this study only assessed the temporal and
outcome metrics (the ME and MAE in the camera space). Future validation experiment
should consider other performance metrics presented, for example, in [34]. Considering
the magnitude of the force feedback from the haptic controller may affect the performance
of the user, further validation study is encouraged to focus on analyzing the force feedback
along the route and how to optimize the user performance by finding the optimal spring
constant KG. From the current experiments, using Equation (9) and the errors occurred
during the experiments, it can be estimated that the force the participants experienced
along the route is approximately 0.1 Newton, and the maximum force did not exceed more
than 1 Newton.

It is also important to know that the current experimental set-up did not validate the
computer vision system, which serves a critical role in the GVF system and detects targets
of interest. With the advancement of technology, several data-driven computer vision
algorithms have demonstrated the ability to easily detect carcinoma and kidney stones in
urinary tracts [36,37]. In this context, the proposed GVF system can be integrated with
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existing computer vision algorithms to address challenges in ureteroscopy in the future.
This integration must be capable of detecting targets in real time along with the disturbance
from the environment. The current proposed GVF is able to extract the target and calculate
the guidance vector, pi, much faster than the video stream rate (approximately 35 fps).
Therefore, there is no perceptible delay between the visual and force feedback for the user.

5. Conclusions

This study aimed to develop an assistive system for improving the current ureteroscopy
procedures, particularly in the kidney’s lower pole. To test the virtual fixture technology,
a teleoperation system with ATLAScope and a haptic controller was developed and a
user study was conducted with GVF function in a phantom environment. From the user
study, measures of errors, i.e., MAE and ME, improved when the participants performed
designated tasks with the GVF function enabled in the Second Crossover Group. These
findings suggested that the GVF can have a positive and significant influence when the
participants are familiar with the manipulation of flexible robotic arms. Based on the
subjective self-evaluation questionnaires, most participants preferred using GVF when
performing these tasks. In contrast, the majority of the participants in the group who
started using the robotic endoscopes with GVF enabled experienced a higher workload
when completing the tasks with GVF. These two findings indicate that the GVF can have a
positive influence on users when performing these tasks if they receive a proper training
procedure and enough training. In conclusion, the results demonstrate the potential of
GVF when a robotic system is accessible and helpful for following a predefined path. More
research and realistic experiments are needed to investigate whether the support of GVF
improves performance in ureteroscopy procedures, especially in challenging locations such
as lower poles.
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