
Static Analysis of Spam Call Blocking Applications
Common Android APIs Used for Call Interception and Blocking

Yoon Hwan Jeong
Supervisor(s): Dr. Apostolis Zarras, Dr. Yury Zhauniarovich

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

23-6-2022

Abstract
In order to combat increasing spam calls, many ap-
plications are developed and downloaded to block
those calls. Some studies about performance of the
applications were previously conducted, however,
the actual processes the applications go through to
intercept and block the spam calls are not well stud-
ied. This research presents a method to systemati-
cally explore Android APIs that are responsible for
intercepting and blocking the spam calls.

1 Introduction
Nowadays, it is hard to imagine living without having a
smartphone. According to Ericsson, there are more than 6
billion smartphone users worldwide and they predicted that
there will be more than 7 billion users by 2024 (Ericsson,
2022). As the number of users grows fast, scam calls are now
more than just annoyance. Hiya reported that a person re-
ceives 16 scam calls a month on average (Hiya, 2019). Not
only the number of scam calls increased, but they also be-
came more tricky to avoid. According to First Orion, scam
callers knew some personal information about their victims
in 75% of cases (Orion, 2019). It gets much harder to avoid
scam calls when caller ID spoofing technique is used. For
example, people who fell victim to scam calls and lost more
than 1000$ reported that the scam calls were from a known
business (Orion, 2019).

In response to the increasing number of scam calls, numer-
ous applications were developed and some of them are down-
loaded more than hundreds of millions. Despite their number
of downloads shows high needs of those applications in daily
life, little is known about them. Pandit et al. conducted a
study to investigate multiple data sources of blocklists and
analyze their effectiveness (Pandit et al., 2018). They con-
cluded that the blocklists could block more than half of scam
calls but effectiveness decreases as level of caller ID spoof-
ing increases. There were also other attempts to analyze the
applications from user experience perspective, however, it is
still unclear how those applications work under the hood.

In this research, few applications are selected and analyzed
to answer the following question. What Android APIs are
most commonly used to intercept and block calls? This re-
search provides the contribution to systematically extract An-
droid APIs used in an application and answering the proposed
research question provides better understanding of the appli-
cations from technical perspective and can contribute to find-
ing any privacy and security holes that they might have. In
addition to answering the question, a tool that can automat-
ically extract Android APIs used in the applications is also
developed to help analyzing a large set of applications.

2 Background
An Android application is distributed as an archive file with
an .apk suffix. It contains codes in binary files with a .dex
suffix, a manifest file where components are registered, and
other resources such as images. Android provides following
components with distinct lifecycle.

• Activities

• Services

• Broadcast receivers

• Content providers

Several Android classes serve as entry points for applications
to be called by Android system. Developers interact with the
system by inheriting those classes. While an application is
going through its lifecycle, callbacks are invoked by the sys-
tem and the application is notified about what is happening
on a device. While codes written by developers and libraries
included are included in DEX files, Android system codes are
not present in DEX files and provided at runtime.

DEX files are bytecodes for Dalvik VM. AndroGuard
parses and decompiles DEX files and provides all classes,
methods, fields and strings available in those files. Whenver
a class, method, field, or string is referenced somewhere else,
AndroGuard builds crossreferences. This allows finding what
methods are called by a method and what methods calls that
method, which essentially is a call graph. However, as men-
tioned above, Android classes are not included in DEX files,
thus, AndroGuard cannot extract methods called by Android
methods.

3 Methodology
The following steps were taken to extract Android APIs
used in applications using AndroGuard (AndroGuard, n.d.)
as a tool to decompile and analyze Dalvik Executable
(DEX) files found in Android Packages (APK files).
First, any calls to APIs belong to android.telecom and
android.telephony packages are extracted. These pack-
ages are responsible for managing calls. Then, only APIs that
actually intercept and block calls are filtered based on their
descriptions on Android API reference (Android, n.d.). From
those APIs, a call graph is constructed to find other APIs used
and get an overview of process. A Python program was devel-
oped to automate these steps on a set of applications and find
out what Android APIs are most commonly used among them
during their processes of intercepting and blocking calls.

3.1 Limitations
Although this method is enough to answer the proposed ques-
tion, three limitations were found during the process. First,
extracted APIs are not guaranteed to be called while an ap-
plications is running because those are extracted by a static
analysis. Second, many components of an application work
by inheriting classes provided by Android and defining call-
backs as discussed in section 2. There is no indication in byte-
code whether a method is overridden or not and any classes
not defined in DEX files are represented incompletely in An-
droGuard, thus, it is hard to identify if the method is written
by the application developers or overrides Android API. In
addition, since the callbacks are called internally by Android,
there can be no incoming edges to the callbacks when con-
structing a call graph unless they are explicitly called within
the application. In order to decrease false negative errors, if
a class inherits any Android classes in the previously men-
tioned packages, all of its methods are extracted. This is re-

Figure 1: Flowchart of evaluation procedure

lated to the last limitation where a manual inspection is re-
quired for finding which APIs are used to intercept and block
calls and checking whether methods override APIs or not.
Some of these limitations can be solved by using more ad-
vanced frameworks, however, AndroGuard is chosen because
of its ease of use and better performance from its naı̈ve strat-
egy of building cross-references.

4 Evaluation

A typical spam call blocking application works like follow-
ing. First, Android system notifies the application that there is
an incoming call. Then, the application decides whether to al-
low or reject the call based on information it has on the caller.
Lastly, if the application has decided to block the call, it noti-
fies Android system through APIs. This research is interested
in finding Android APIs used in the first and last steps. 10
applications from Google Play (Google, n.d.) were analyzed
as described in section 3. The complete list of applications
can be found in Appendix A.

Figure 2 shows a collection of Android APIs found in DEX
files of all 10 applications. These APIs are from the third step
shown in Figure 1 so they can be from libraries as libraries
are also included in DEX files and it is not guaranteed that
the APIs used to intercept calls lead to the APIs used to block
calls. Since there are multiple APIs with similar functionality,
developers are free to choose which APIs they want to use in
their applications. All extracted APIs per application can be
found in Appendix B.

Figure 2: Overview of Android APIs used

4.1 Call Interception APIs
BroadcastReceiver#onReceive was found in all applica-
tions. This API can be used to intercept calls, however, it is a
general-purpose API used to listen to an intent broadcast sent
by Android system. Therefore, further inspections by either
looking at source code or manifest are needed to conclude
if it is actually used to intercept calls or not. Second most
used API was CallScreeningService#onScreenCall
which was used in 6 applications. Third most used
API was InCallSservice#onCallAdded which was
used in 5 applications. These two APIs are similar in
functionality but CallScreeningService can allow
or disallow incoming calls before they are shown to a
user while InCallService provides more functionality
for managing phone calls like an in-call user interface
when the device is in a call and a means to initiate
calls. PhoneStateListener#onCallStateChanged
was used in 4 applications. This API is deprecated in
API level 31 and TelephonyCallback was added in
API level 31 to replace it. Only one applications was
found to use TelephonyCallback.CallStateListener
#onCallStateChanged. ConnectionService
#onCreateIncomingConnection was used in one ap-
plication. Connection can also represent VoIP (Voice over
Internet Protocol) as well as typical calls.

4.2 Call Blocking APIs
All APIs mentioned above are callbacks that Android system
calls so developers need to override those methods. Over-
rides of those methods that seem to be implemented by the
applications are chosen as entry points for call graphs. Dur-
ing this process, packages that look like libraries and obfus-
cated packages are excluded and only APIs described above
were considered, thus, it is possible that not all APIs shown in
Figure 2 are reached via call graphs because of missed entry

points.
Most common APIs were from CallScreening

Service.CallResponse.Builder. This class is
used to build CallResponse which is used to call
CallScreeningService#respondToCall and has
setDisallowCall and setRejectCall that can
be used to block calls. Next common API for call
blocking was Call#reject and Call#disconnect.
TelecomManager#encCall was deprecated in API level 29
and was only reachable from one application.

4.3 Other APIs
While traversing call graphs, other telecommunication re-
lated APIs were found. Call.Details, which is a class
that holds details of a call, was used frequently. Especially,
getHandle was used the most. Some applications also used
TelephonyManager that provides various information about
the telephony services on the device. getSimCountryIso
and getNetworkCountryIso were found to be used. This
can be a sign that some applications block different numbers
based on the location.

5 Responsible Research
The ethical aspects and the reproducibility of the method
were kept in mind while conducting this research. Regard-
ing the ethical aspects, it was made sure that the results do
not contain any closed information that can be used against
those applications, since this research contains decompiling
applications whose sources are not openly available.

In order to make the method reproducible, APK files and
Python scripts used in this research are available on the
GitHub repository. The AndroGuard version used in this re-
search is from the master branch of AndroGuard’s GitHub
repository. The hash of the latest commit is 8d091cb and was
committed on November 24, 2020. Currently, AndroGuard
is not actively maintained, thus, the Python scripts should
remain usable unless AndroGuard is maintained again and
breaking changes are made.

6 Discussion and Future Work
In some applications, only BroadcastReceiver
#onReceive and other call intercepting APIs were ex-
tracted. This could mean that they use libraries to intercept
and block calls or due to human errors while filtering entry
points manually. Some applications were also found to
interfere with SMS (short message service).

Since Android provides several APIs for intercepting calls,
it is up to developers to choose which APIs suit their appli-
cations best. Furthermore, some applications were found to
implement more than one API. There were some APIs that
are deprecated as of current API level 32. However, depre-
cated APIs remain available and working without further of-
ficial support, thus, developers can still use them but they are
recommended to replace them with new APIs.

Some limitations discussed in subsection 3.1 can be im-
proved. For example, Android APIs not being included in
DEX files unless explicitly referenced can be fixed by also

loading and decompiling Android JAR. This will allow iden-
tifying overridden methods systematically. For more accu-
rate static analysis of callbacks, FlowDroid (Arzt, 2017) can
be used. FlowDroid models Android component lifecycles
by analyzing AndroidManifest.xml and creating dummy
entry points. This allows obtaining a complete call graph.

7 Related Works
7.1 Asynchrony-Aware Static Analysis
As mentioned in section 2, an Android application is event-
driven which makes it asynchronous. Android system invokes
lifecycle callbacks in specific order, however, static analy-
sis technique used by AndroGuard does not consider asyn-
chronous nature of the application and may result in unsound
analysis. Mishra et al. presented Android inter-component
control flow graph (AICCFG) which represents control flow
of Android applications and accruately models asynchronous
nature of callbacks (Mishra et al., 2016).

7.2 Taint Flow Analysis
One contribution this research makes is to provide security
analysis and make sure applications do not leak call activi-
ties of a user to somewhere else. One approach of detecting
potential information leaks is a taint analysis. Klieber et al.
described a new static taint analysis that tracks both inter-
component and intra-component data flow in an Android ap-
plication (Klieber et al., 2014).

8 Conclusions
In this research, common Android APIs used to intercept
and block calls among 10 spam call blocking applications
were statically analyzed and their descriptions are briefly dis-
cussed. Figure 2 shows all traces of Android APIs that were
present in DEX files. They are slightly different to APIs
presented in sections subsection 4.1 and subsection 4.2 be-
cause libraries were excluded while constructing call graphs.
Furthermore, some APIs related to location were also found,
which can be concluded that some applications use location
in order to decide whether a call is blocked or not. Although
there were some limitations as discussed in subsection 3.1,
possible improvements are discussed in section 6.

A List of applications used in evaluation
• Showcaller: Caller ID & Block

• CallApp: Caller ID & Recording

• Caller ID, Phone Dialer, Block

• Call Control - SMS/Call Blocker

• Stop Calling Me - Call Blocker

• Spam Call Blocker - telGuarder

• Truecaller: Caller ID & Block

• Call Blocker - Stop spam calls

• Hiya - Call Blocker, Fraud Detection & Caller ID

• Should I Answer?

B Android APIs per application
B.1 Showcaller: Caller ID & Block

• BroadcastReceiver#onReceive

B.2 CallApp: Caller ID & Recording
• BroadcastReceiver#onReceive

• CallScreeningService#onScreenCall

• InCallService#onCallAdded

• Call$Callback#onStateChanged

• PhoneStateListener#onCallStateChanged

B.3 Caller ID, Phone Dialer, Block
• BroadcastReceiver#onReceive

• SmsMessage#getTimestampMillis

• SmsMessage#getOriginatingAddress

• SmsMessage#getMessageBody

• SmsMessage#createFromPdu

B.4 Call Control - SMS/Call Blocker
• BroadcastReceiver#onReceive

• CallScreeningService#onScreenCall

• Call$Callback#onStateChanged

• InCallService#onCallAdded

• TelecomManager#getDefaultDialerPackage

• Call$Details#getCallerDisplayName

• CallScreeningService$CallResponse$Builder
#setDisallowCall

• CallScreeningService$CallResponse$Builder#build

• CallScreeningService$CallResponse$Builder
#setRejectCall

• PhoneNumberUtils#isEmergencyNumber

• CallScreeningSerivce#respondToCall

• CallScreeningService$CallResponse$Builder
#setSkipCallLog

• CallScreeningService$CallResponse$Builder
#setSilenceCall

• Call$Details#getHandle

• CallScreeningService$CallResponse$Builder
#setSkipNotification

• Call#getState

• Call#disconnect

• Call#reject

• DisconnectCause#getCause

• Call#getDetails

• Call$Details#getDisconnectCause

• InCallService#setAudioRoute

• Call#answer

• Call$Details#getVideoState
• InCallService#startActivity
• Call#registerCallback
• TelephonyManager#getNetworkOperatorName
• TelephonyManager#getSimCountryIso
• TelephonyManager#getLine1Number
• TelephonyManager#getDeviceId
• TelephonyManager#getSimState
• TelephonyManager#getSimSerialNumber

B.5 Stop Calling Me - Call Blocker
• BroadcastReceiver#onReceive
• CallScreeningService#onScreenCall
• CallScreeningService$CallResponse$Builder

#setRejectCall
• Call$Details#toString
• CallScreeningService$CallResponse$Builder

#setDisallowCall
• CallScreeningService$CallResponse$Builder#build
• CallScreeningSerivce#respondToCall
• Call$Details#getExtras
• CallScreeningService$CallResponse$Builder

#setSkipNotification
• Call$Details#getIntentExtras

B.6 Spam Call Blocker - telGuarder
• BroadcastReceiver#onReceive

B.7 Truecaller: Caller ID & Block
• BroadcastReceiver#onReceive
• InCallService#onCallAdded
• ConnectionService#onCreateIncomingConnection
• PhoneStateListener#onCallStateChanged
• CallScreeningService#onScreenCall
• ConnectionRequest#getAddress
• ConnectionRequest#getExtras
• TelephonyManager#listen
• CallScreeningService$CallResponse$Builder#build
• CallScreeningSerivce#respondToCall
• CallScreeningService$CallResponse$Builder

#setDisallowCall
• CallScreeningService$CallResponse$Builder

#setSkipNotification
• Call$Details#getCallDirection
• Call$Details#getAccountHandle
• Call$Details#getIntentExtras
• PhoneAccountHandle#getComponentName
• Call$Details#getHandle

B.8 Call Blocker - Stop spam calls
• BroadcastReceiver#onReceive
• PhoneStateListener#onCallStateChanged
• TelephonyManager#listen
• SubscriptionInfo#getSubscriptionId
• SubscriptionManager#getActiveSubscriptionInfoList
• TelephonyManager#createForSubscriptionId
• TelecomManager#endCall
• TelephonyManager#getSimCountryIso

B.9 Hiya - Call Blocker, Fraud Detection & Caller
ID

• BroadcastReceiver#onReceive
• CallScreeningService#onScreenCall
• InCallService#onCallAdded
• Call$Callback#onStateChanged
• Call#answer
• Call#reject
• PhoneNumberUtils#normalizeNumber
• Call$Details#getCallDirection
• CallScreeningService$CallResponse$Builder#build
• CallScreeningService$CallResponse$Builder

#setDisallowCall
• CallScreeningSerivce#respondToCall
• Call$Details#getCallerNumberVerificationStatus
• Call$Details#getHandle
• Call$Details#getHandlePresentation
• Call#getDetails
• Call#getState
• Call#registerCallback
• SmsMessage#getDisplayMessageBody
• SmsMessage#getOriginatingAddress
• DisconnectCause#getReason
• Call$Details#getDisconnectCause

B.10 Should I Answer?
• BroadcastReceiver#onReceive
• PhoneStateListener#onCallStateChanged
• CallScreeningService#onScreenCall
• InCallService#onCallAdded
• InCallService#onConnectionEvent
• Call$Callback#onStateChanged
• TelephonyManager#getNetworkCountryIso
• TelephonyManager#getSimCountryIso
• Call$Details#getCreationTimeMillis
• GatewayInfo#getOriginalAddress

• GatewayInfo#getGatewayAddress
• Call$Details#getExtras
• Call$Details#getCallerDisplayName
• CallScreeningService$CallResponse$Builder

#setSkipNotification
• Call$Details#getStatusHints
• CallScreeningService$CallResponse$Builder#build
• Call$Details#getCallDirection
• TelephonyManager#isNetworkRoaming
• Call$Details#getGatewayInfo
• Call$Details#getIntentExtras
• StatusHints#getLabel
• CallScreeningService$CallResponse$Builder

#setDisallowCall
• CallScreeningService$CallResponse$Builder

#setSkipCallLog
• CallScreeningService$CallResponse$Builder

#setRejectCall
• Call$Details#getHandle
• Call#getState
• Call#answer
• Call#reject
• Call#getDetails
• Call#registerCallback
• Call#disconnect

References
AndroGuard. (n.d.). AndroGuard. https://github.com/

androguard/androguard.
Android. (n.d.). Android API reference. https://

developer.android.com/reference.
Arzt, S. (2017). Static data flow analysis for android appli-

cations (Doctoral dissertation, Technische Universität,
Darmstadt). Retrieved from http://tuprints.ulb
.tu-darmstadt.de/5937/

Ericsson. (2022). Number of smartphone sub-
scriptions worldwide from 2016 to 2027 (in
millions). https://www-statista-com
.tudelft.idm.oclc.org/statistics/330695/
number-of-smartphone-users-worldwide.

Google. (n.d.). Google Play. https://play.google.com.
Hiya. (2019). State of the Phone Call: Half Yearly Re-

port 2019. https://assets.hiya.com/public/
pdf/HiyaStateOfTheCall2019H1.pdf.

Klieber, W., Flynn, L., Bhosale, A., Jia, L., & Bauer,
L. (2014). Android taint flow analysis for app
sets. In Proceedings of the 3rd acm sigplan inter-
national workshop on the state of the art in java
program analysis (p. 1–6). New York, NY, USA:
Association for Computing Machinery. Retrieved
from https://doi-org.tudelft.idm.oclc.org/
10.1145/2614628.2614633 doi: 10.1145/2614628
.2614633

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://developer.android.com/reference
https://developer.android.com/reference
http://tuprints.ulb.tu-darmstadt.de/5937/
http://tuprints.ulb.tu-darmstadt.de/5937/
https://www-statista-com.tudelft.idm.oclc.org/statistics/330695/number-of-smartphone-users-worldwide
https://www-statista-com.tudelft.idm.oclc.org/statistics/330695/number-of-smartphone-users-worldwide
https://www-statista-com.tudelft.idm.oclc.org/statistics/330695/number-of-smartphone-users-worldwide
https://play.google.com
https://assets.hiya.com/public/pdf/HiyaStateOfTheCall2019H1.pdf
https://assets.hiya.com/public/pdf/HiyaStateOfTheCall2019H1.pdf
https://doi-org.tudelft.idm.oclc.org/10.1145/2614628.2614633
https://doi-org.tudelft.idm.oclc.org/10.1145/2614628.2614633

Mishra, A., Kanade, A., & Srikant, Y. N. (2016).
Asynchrony-aware static analysis of android applica-
tions. In 2016 acm/ieee international conference on
formal methods and models for system design (mem-
ocode) (p. 163-172). doi: 10.1109/MEMCOD.2016
.7797761

Orion, F. (2019). Scam Call Trends and Projections Report.
http://firstorion.com/wp-content/uploads/
2019/07/First-Orion-Scam-Trends-Report
Summer-2019.pdf.

Pandit, S., Perdisci, R., Ahamad, M., & Gupta, P. (2018).
Towards Measuring the Effectiveness of Telephony
Blacklists. NDSS.

http://firstorion.com/wp-content/uploads/2019/07/First-Orion-Scam-Trends-Report_Summer-2019.pdf
http://firstorion.com/wp-content/uploads/2019/07/First-Orion-Scam-Trends-Report_Summer-2019.pdf
http://firstorion.com/wp-content/uploads/2019/07/First-Orion-Scam-Trends-Report_Summer-2019.pdf

	Introduction
	Background
	Methodology
	Limitations

	Evaluation
	Call Interception APIs
	Call Blocking APIs
	Other APIs

	Responsible Research
	Discussion and Future Work
	Related Works
	Asynchrony-Aware Static Analysis
	Taint Flow Analysis

	Conclusions
	List of applications used in evaluation
	Android APIs per application
	Showcaller: Caller ID & Block
	CallApp: Caller ID & Recording
	Caller ID, Phone Dialer, Block
	Call Control - SMS/Call Blocker
	Stop Calling Me - Call Blocker
	Spam Call Blocker - telGuarder
	Truecaller: Caller ID & Block
	Call Blocker - Stop spam calls
	Hiya - Call Blocker, Fraud Detection & Caller ID
	Should I Answer?

	References

