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Summary

There is an ever growing industrial demand for the numerical simulation of complex industrial
flow problems. Although historically Reynolds-Averaged Navier-Stokes (RANS) methods been
have been widely used for such applications, there are many flow cases for which RANS simu-
lations are unsuitable. These include studies of the effects of flow control devices on turbulent
boundary layers, as researchers are interested in how such devices interfere with the structure
of the turbulence. To solve such flow problems, Large-Eddy Simulations (LES) can be used. In
the current study, the focus was put on providing an objective comparison of inflow modeling
techniques applicable to the simulation of flow control devices in a coarse LES framework, with
a special interest in general techniques applicable to a large range of flows.

Five different type of inflow conditions were implemented in OpenFOAM and applied to the
computation of a zero pressure-gradient turbulent boundary layer. The recycling and rescaling
method by Lund, Wu, and Squires (1998) was shown in previous publications to work well in LES
computations, and was therefore chosen as baseline solution to which the other models could be
compared. Similarly, the simplified recycling method by Spalart, Strelets, and Travin (2006) was
previously shown to work well in the context of Direct Numerical Simulations (DNS), and was
evaluated together with the method by Lund et al. Both inflows were compared to the highest
quality low Reynolds-number DNS data available.

However, as the recycling type inflows are known to be limited in application, inflows which
can be used in the simulation of more general flows were also investigated. The first of these
was a precursor-like method, implemented by recycling and rescaling channel-flow data using the
method by Lund et al. A random inflow was also implemented, and was tuned to match required
Reynolds stresses. As random inflows are know to suffer from long adaptation lengths, an extra
random inflow with a forcing method by Spille-Kohoff and Kaltenbach (2001) was tested, to
assess whether it could palliate to the deficiencies of the random type inflows.

After verifying the quality of the baseline recycling inflow, all the inflows were compared through
an evaluation of their shape-factor and skin-friction evolution as a function of Reθ.

The recycling type of inflow by Lund et al. (1998) and by Spalart et al. (2006) demonstrated
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adaptation lengths of x/δ0 = 18 and x/δ0 = 22 respectively.
The more general precursor-like method also showed very promising results, with an adap-

tation length of x/δ0 = 18, although it slightly underpredicted the shape factor evolution, and
overpredicited the skin friction evolution.

The random inflow without forcing planes was found to be uncompetitive. Its shape factor
and skin friction evolution could not adapt to that of DNS within the current domain size tested.

Finally, the random inflow method with forcing planes was also shown to give good results,
with a slightly longer adaptation length of x/δ0 = 30. After adaptation, it showed a skin
friction evolution similar to the baseline results, albeit slightly underpredicted. The low cost and
flexibility of this method make it an interesting candidate for future developments.
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CHAPTER 1

Introduction

Stimulated by an insatiable demand from the industry to solve complex industrial problems,
there is a large interest for the application of Computational Fluid Dynamics (CFD) to high
Reynolds number external flows. Although Reynolds-Averaged Navier-Stokes (RANS) methods
are widely used for this purpose, these require models for the effects of turbulence on the mean
flow. There exists several important flow classes for which it is difficult to develop adequate RANS
models, including those with separation from a smooth surface, or those with boundary-layer
control devices. The alternative is to compute rather than model the turbulence dynamics. One
approach, known as Direct Numerical Simulation (DNS), is to resolve turbulence dynamics at all
length scales. Due to the vast range of scales in high-Reynolds-number flows, however, the cost of
such simulations prohibitive. A more feasible alternative is Large-Eddy Simulation (LES), where
only the largest scales of turbulence are resolved. However, even with current computational
capacities, LES can only be applied to restricted parts of a typical problem domain, in which
the range of relevant length scales is sufficiently limited.

The reduction of domain size to the snuggest fit possible around the solution of interest
imposes stringent requirements on the artificial boundary conditions applied to the outer-limits
of numerical domains, to ensure the flow within the domain behaves as its physical, unbounded,
counterpart. Properly assessing the performance of artificial boundary conditions is therefore of
great importance, and calls for rigorous testing using a representative flow case. Ideally, such
a reference test case should also be analogous to the problems which will be simulated with
the artificial boundary conditions in question. In the context of external flows with boundary
layer development, the canonical zero pressure-gradient turbulent flat plate flow is a suitable
case for this purpose, due to its sensitivity to the quality of the turbulent information within the
boundary layer.
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Introduction

1.1 Reference Data for the Flat Plate Turbulent Boundary
Layer

Although there exists several sets of experimental results for low Reynolds-number flat plate
boundary flows, researchers have found these to be difficult to use as reference solutions. For
example, Schlatter and Örlü (2010) found that most experimental low Reynolds number flat plate
measurements were not supplemented by direct and independent skin-friction measurements, as
well as often not complying to zero pressure-gradient equilibrium conditions. This has a direct
effect on the usability of the experimental results, as the scaling relations derived from such data
are not accurate.

The lack of fully established reference data for low Reynolds-number flat plate experiments
led Schlatter and Örlü to investigate whether similar disparities could be found in recent Direct
Numerical Simulation (DNS) data. By comparing six DNS computations made after 2002, the
authors discovered that the simulation of the same canonical flat plate flow also gave surpris-
ingly inconsistent results, even for such basic quantities as shape factor, friction coefficient and
fluctuation maximum. As all the simulations compared in the study were obtained using reliable
computational methods at high enough resolutions, Schlatter and Örlü concluded that the dis-
crepancies could not solely be attributed to poor numerics. Instead, they postulated that such
differences came from different choices in numerical domain, such as domain dimension, settling
length, and artificial boundary conditions.

1.2 A Short History of Artificial Boundary Conditions

Practical numerical simulation of realistic flows often requires that artificial computational bound-
aries be imposed between the flow region of interest and the part of the flow which one would like
to avoid computing. This application of artificial boundary conditions should ideally be done
without influencing the solution within the computational domain. Within the field of turbulent
numerical simulations, both the inflow and outflow boundary conditions are of high importance.
The current study focuses on the modeling of artificial turbulent inflow conditions for numerical
simulations. Discussing artificial outflow boundary conditions is beyond the scope of this work.
The interested reader can refer to an extensive review by Colonius (2004) for more information.

Early approaches to turbulent inflow modeling used random velocity fluctuations imposed on a
mean flow. As original attempts supplying white noise as velocity fluctuation were unsuccessful,
researchers tried to improve on the random inflow method by developing stochastic models
using correlation information provided by experimental results. For instance, Lee et al. (1992)
used velocity perturbations with prescribed power spectrum and random phase, and claimed
an adaptation length of 12 δ0 before the flow could be considered realistic. While attempting to
include isotropy information using Fourier-modes based on random phase and amplitude, Batten
et al. (2004) reported needing at least 20 δ0 before obtaining a physically realistic flow. More
successfully, Pamiès et al. (2009) showed that channel flow mean and Reynolds-stress profiles
could be matched accurately by superimposing analytical hairpin-like vortical structures on a
mean profile, resulting in adaptations lengths of 6 δ0.

Another approach to the generation of inflow condition for turbulent numerical simulations
makes use of secondary simulations or precursor databases to provide turbulent information to
a primary computation, circumventing the problem of inflow condition by using an equilibrium
flow computed using periodic boundary conditions. Such an approach was applied by Schlüter
et al. (2004) for hybrid RANS/LES computations, and showed good agreement with experimental
results.

F.T. Pronk 2 MSc. Thesis



Thesis Outline

A third type of inflow modeling strategy is characterized by the recycling type of inflows pi-
oneered by Spalart and Leonard (1985). These rely on turbulent information obtained from the
outflow of the computational domain to provide the inflow condition, using a coordinate trans-
form to account for boundary layer growth. The quality of the results by Spalart and Leonard
later inspired Lund et al. (1998) to develop a similar recycling method, while circumventing the
need for an unwieldy coordinate transformation by extracting and rescaling a velocity field from
within the computational domain. They achieved an adaptation length of 8 δ0. Further simplify-
ing the approach by Lund et al., Spalart et al. (2006) managed to decrease the adaptation length
to 4 δ0.

The recycling type of inflow by Lund et al. (1998) is currently accepted as being the most ac-
curate turbulent inflow condition for developing boundary layer simulations. However, the scope
of application of such inflows is limited by the equilibrium turbulent flow conditions assumed
when choosing the scaling laws for the rescaling procedures. Moreover, they also implicitly re-
quire that the flow state and boundary conditions does not change between the inflow condition
and the recycling plane, to ensure the turbulence evolution at both location is similar. And
finally, they impose that the position of the recycling plane should be chosen carefully to avoid
coherence problems.

Such limitations are not present when using precursor or random inflow conditions as their
definition does not rely nor depend on downstream information, making them attractive when
considering inflow conditions for more general types of flows.

1.3 Thesis Outline

The goal of the current master thesis is to make an objective comparison of recent inflow modeling
techniques applicable to the simulation of flow control devices in turbulent wall-bounded flows.
Due to the ubiquitous nature of computational resources restrictions, the inflows will be evaluated
in the context of coarse, Large-Eddy Simulations.

The recycling and rescaling method of Lund et al. (1998) will be chosen as reference inflow
model, as it was shown in previous publications to work well in LES computations, and will
be tested together with the similar recycling and rescaling method by Spalart et al. which was
developed for DNS computations.

It will also be investigated whether more general type of inflow conditions could deliver
performance comparable to that of recycling methods. To this end, a precursor method will be
tested, and a flow correction method developed by Spille-Kohoff and Kaltenbach (2001) will be
applied to a random inflow method, to assess whether it is accurate enough to remedy to the
long adaptation lengths normally associated with random inflow conditions.

In the interest of compactness, the baseline results obtained with the two recycling procedures
will be considered first. Then, the comparison will be made with the more general precursor and
random inflow methods, to see how they compare to recycling methods.

The canonical zero pressure-gradient turbulent flat plate flow was chosen as a test case and
the highest quality existing low Reynolds-number DNS data is used as a reference solution.

To allow a more straightforward comparison between the different inflow methods, two specific
parameters will be considered. First of all, the evolution of the shape factor H as a function of
Reynolds number Reθ will be used. The shape factor, defined as the displacement thickness δ∗

divided by the momentum thickness θ, allows comparison of two integral properties of a turbulent
flow which do not depend on estimates of skin friction, which can be subject to significant
numerical errors in the contexts of LES. The shape factor was furthermore shown to be a sensitive
indicator of the quality of the boundary layer. Then the evolution of the skin friction coefficient

MSc. Thesis 3 F.T. Pronk



Introduction

will be considered independently, as it allows the indirect monitoring of the local level of turbulent
activity withing the boundary layer.

Using the shape factor and skin friction coefficient evolution, the adaptation length of the
various inflows will be estimated. In this study, the adaptation length will be defined as the
domain length needed before the shape factor and skin friction coefficient follow a streamwise
evolution similar to that of the DNS results. The longest of the two lengths will then be defined
as the adaptation length.

As a word of caution, it should be mentioned that a close comparison of the DNS data
by Schlatter and Örlü and that by Simens et al. (2009) revealed intriguing differences between
the two sets of data, which both groups of authors recognize as being caused by the different
strategies chosen when applying numerical boundary conditions. This will be described in more
detail in chapter 3.

F.T. Pronk 4 MSc. Thesis



CHAPTER 2

Turbulence Theory and Numerical

Simulation Technique

The following chapter will give a succinct introduction to turbulent flow theory, in a attempt to
make this master thesis more self-contained. As it is only meant as an introduction to the theory
relevant to the current study, readers familiar with the theory of turbulent wall-bounded flows
and with the implementation of LES can skip this chapter and proceed to the next.

In the following, the notion of turbulent scales will be presented first, a concept useful to
understand the rationale behind Large-Eddy Simulation, followed by a subsection describing the
specificity of wall-bounded turbulent flows. The focus will then shift towards the application
of the Navier-Stokes equations to the numerical simulation of turbulent flows, including a short
review of the most common computational techniques used at the time of writing, together with
a more in-depth description of the simulation strategy which will be used for the current study.

2.1 A Short Introduction to Turbulent Flow Theory

2.1.1 Different Scales in Turbulent Flows

Well over 100 years after the first true statistical analysis of turbulence by Osborne Reynolds,
turbulence is still an outstanding problem of fluid dynamics, with no analytical solutions of
turbulent flows available in geometries of interest to engineering applications. Due to the com-
plexity of turbulent flows, much of the knowledge on the flow characteristics have been derived
experimentally, to be completed only recently by more detailed numerical solutions thanks to
advances in computational hardware. Nonetheless, both experimental and numerical approaches
generally use the Navier-Stokes equations (NSE) as starting point to study the characteristics
of turbulent flows. The Newtonian fluid assumption and the continuum assumption used when
deriving the Navier-Stokes equations might be violated locally due to very high velocity gradients
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Turbulence Theory and Numerical Simulation Technique

but comparison between numerical and experimental data showed the variations observed when
omitting these effects to be negligible, making the NSE a proper analytical tool for turbulent
flow analysis.

A key word often encountered in the description of turbulent flows is the term “eddy”. As
defined by Davidson (2004), an eddy can be seen as a “blob” of vorticity and its associated
velocity field, or put more simply, a patch of air moving in a circular manner.

The first modern view on turbulence scales was officially formulated by the meteorologist and
mathematician Lewis Fry Richardson. Through observation Richardson noticed that velocity
fields displayed a broad spectrum of eddy sizes, and that the dissipation of the flow energy was
mainly associated with the smallest eddies. These observations led Richardson to introduce the
concept of energy cascade, describing a plausible energy transfer mechanism from the largest
eddies to the smallest structures. His theory was that the largest eddies in the flow were created
by instabilities in the mean flow, which were themselves also subjected to instabilities, leading to
a rapid break-down of the large eddies into smaller vortices. The smaller eddies would themselves
also be sensitive to instabilities and would break-down into smaller structures, and the process
would continue until the smallest structure size would be reached, at which point the smallest
vortices would dissipate their energy. Using the eddy size Reynolds number defined by

Rel =
ul

ν
, (2.1)

with l the eddy diameter, u the value of the fluctuation velocity and ν the kinematic viscosity,
Richardson explained that viscosity played no part in the energy cascade. Indeed, for large Re
the viscous stresses acting on the eddies are negligible and the whole cascade process is therefore
driven mainly by inertia forces. On the other hand, when the Reynolds number based on the
eddy size is of order unity, the cascade process comes to a halt as the viscous forces are no longer
negligible and dissipation becomes dominant.

Based on Richardson’s concept, the Russian scientist Kolomogorov published two papers
(Kolmogorov, 1941a,b) which had a profound impact on the way the energy spectrum in turbu-
lence is understood and modelled. He postulated that at sufficiently high Reynolds number the
directional biases of the larger eddies was lost in the chaotic scale-reduction process linked to the
energy cascade and that the small-scale turbulent motions were therefore statistically isotropic.
Kolmogorov further argued that in the same way the directional information of the largest struc-
tures was lost through the energy cascade, so was the information about the geometry of the
large eddies, implying that all the information and influence stemming from the boundary condi-
tions and the mean flow field was similarly lost in the process. An important consequence of this
hypothesis is that the statistical and structural properties of the small dissipation scales have in
a sense a universal form, and will be similar in all high Reynolds number flows. The behaviour
of the smallest scales can therefore be considered as only being determined by the energy fed to
them via the energy cascade, and by the effects of viscosity. From there, Kolmogorov formulated
his first similarity hypothesis stating that the statistics of the small-scale motions were uniquely
determined by a combination of the kinematic viscosity ν and the dissipation rate ǫ. He proposed
the following relationship for the smallest relevant length scales η present in a turbulent flow

η =

(
ν3

ǫ

) 1
4

. (2.2)

Similarly, Kolmogorov proposed a velocity and a time scale for the smallest structures of the
flow, defined respectively as

υ = (νǫ)
1
4 , (2.3)
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and

τ =
(ν

ǫ

) 1
2

. (2.4)

A detailed description of the method used to find these results can be found in Kolmogorov
(1941b). For a more tractable approach based on dimensional analysis, references as Bernard
and Wallace (2002) or Davidson (2004) can be consulted.

Using the first similarity hypothesis as basis, Kolmogorov went on to formulate a second sim-
ilarity hypothesis by suggesting the existence of an intermediate range of scales with dynamics
independent of both the large-scale turbulence-producing eddies and the small dissipation scales.
These intermediate scales transferring the energy received from the large scales down the cascade
to the smallest scales, would, according to Kolmogorov, only depend on the dissipation rate ǫ
of the flow and the wave number κ of the eddies, and not on viscosity. He therefore names this
intermediate range the “inertial range”. Kolmogorov further argued that this range had an im-
portant influence on the energy spectrum function E(κ), and proposed the following relationship
for the energy spectrum in the inertial range

E (κ) = Ckκ−
5
3 ǫ

2
3 , (2.5)

where Ck is the Kolmogorov constant and is found to have a value of approximately 1.4. A
qualitative plot of the three scale regions and their corresponding energy spectrum can be found
in figure 2.1.

1 10 100 1000 κ

Large-Scale
Range Inertial Subrange Dissipation

Range

E (κ)

Universal Equilibrium
Range

Figure 2.1: Qualitative Energy Spectrum of a Turbulent Flow

Despite the fact that some of the underlying assumptions made by Richardson and Kolmogorov
have been proved to be at least partially incorrect, their conclusions are still very useful concep-
tually. However, due to these flawed assumptions it should be kept in mind that the concepts
presented here-above remain an idealisation of the true behaviour of turbulent flows. As an exam-
ple, it has been proved in recent years that the energy transfer between scales happens genuinely
in two directions, instead of in the unidirectional fashion proposed by the cascade theory. It has
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also been shown that the energy isn’t necessarily transmitted homogeneously to all the length
scales through the energy cascade, but that large eddies could for instance transmit their energy
directly to much smaller structures in the flow. Nonetheless, Kolmogorov’s description still pre-
dicts the correct order of turbulent scales present in turbulent flows, as well as the correct energy
associated with these wavelengths. Similarly, the concept of Reynolds number independence,
although known to be partially incorrect, allows researchers to analyse low Reynolds number
flows and make behaviour predictions for higher Reynolds number situations.

For a more in-depth description of Kolmogorov’s hypotheses, their applications and limi-
tations, the interested reader is referred to the accessible description by Pope (2000, Chapter
6).

2.1.2 Wall-Bounded Flows

After this introduction to general turbulent flows, the focus will be shifted to wall-bounded flows.
Although the isotropy condition no longer hold for true wall-bounded turbulence, even in the
smaller scales, the concepts developed in the previous section are still very relevant to make the
analysis of these flows possible.

Boundary Layer Subdivision

When comparing boundary-layer velocity profiles in y/δ coordinates, the differences between
various types of flows are striking, with each flow displaying distinctive and highly non-linear
profiles, making a comparison between them improbable at first sight. However, the physical
insight from Luwdwig Prandtl (1933) and Theodore von Káramán (1930) permitted the subdivi-
sion of boundary layers in general regions, making a universal non-dimensional analysis possible.
Through their analysis they deduced that general turbulent boundary layer profiles could be
subdivided in an inner and an outer layer, with an intermediate overlap region between the two.

The inner layer is a region where the flow dynamics are dominated by viscous shear and
where the rate of turbulent energy production exceeds dissipation. This leads to part of this
energy being exported towards the higher layers of the flow. The part of the inner layer outside
the overlap layer, commonly called the viscous wall region, can be further subdivided into two
parts: the viscous sublayer, closest to the surface, and the buffer layer.

In the outer layer the turbulent shear or eddy shear dominates. This is a region where
dissipation exceeds production and turbulence is partly maintained by the energy transported
from the inner layer.

The overlap region, a region of overlap between the inner and the outer layer, can be seen
as a region of constant stress where dissipation equals production, and where both viscous and
inertial effects co-exist.

The relation between these different regions is illustrated in figure 2.2.

Wall Coordinates

The universal region subdivision by Prandtl and von Kármán allowed researchers to pinpoint the
parameters describing localized flow conditions, paving the way for a non-dimensional analysis
of boundary layer flows and permitting comparison between very different types of flows. The
key to obtaining dimensionless velocity profiles was to express flow properties in terms of wall
coordinates. When looking at boundary-layer velocity profiles it is common to use the y coor-
dinate normalized with the local boundary-layer thickness δ as spatial reference. However, this
does not show explicitly the similarity between various flows. By defining new non-dimensional

F.T. Pronk 8 MSc. Thesis
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Figure 2.2: Sketch Showing the Various Wall Regions and Layers Defined in Terms of the Wall
Coordinate y+ and in Terms of y/δ. (From Pope, 2000)

parameters based on local flow properties a switch can be made to a so-called wall coordinate
system.

First a local viscous time scale is defined as

tν =

(
∂ u

∂y

∣∣∣∣
y=0

)
−1

, (2.6)

where u is the mean streamwise velocity, and y is the coordinate measured perpendicular to the
wall. Very close to the wall, where the Reynolds stresses are negligible, the wall shear stress is
dominated by viscous contributions. From Pope (2000, p 269) the wall shear stress can then be
written as

τw ≡ µ

(
du

dy

)

y=0

, (2.7)

which, after substitution in equation (2.6), yields the following expression

tν =
µ

τw
. (2.8)

In a similar fashion a viscous length scale can be defined as

lν =
√

νtν , (2.9)

allowing the computation of the wall-friction velocity as

uτ =
lν
tν

=

√
τw

ρ

⇔ uτ =

√
ν

d u

dy

∣∣∣∣
y=0

.

(2.10)

From there, the reference quantities can easily be expressed in terms of wall units, also referred
to in literature as viscous lengths. The new distance from the wall measured in walls units is
defined by

y+ =
y

lν
=

yuτ

ν
, (2.11)

and the u- velocity can be expressed as

u+ =
u

uτ
. (2.12)
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Boundary Layer Description in Wall Coordinates

Using the newly defined coefficients, a better analysis of the dynamics of the boundary layer
can be made. Through measurements, scientists have found that in the viscous sublayer and for
y+ 6 5, the velocity profile is linear, that is to say

u+ = y+. (2.13)

Experimental results have also shown that for high enough Reynolds numbers, there is a region of
flow in the boundary layer where it can be supposed that viscosity has little effect, and boundary
layers tend to follow a universal law. This law was first postulated by von Kármán in 1930, and
is referred to as the logarithmic law of the wall, or simply, the log-law. It is defined as

u+ =
1

κ
ln y+ + B, (2.14)

where κ and B are constants. Common values for the von Kármán constant are κ ≈ 0.41
whereas the range for B varies from 5 to 5.5. Patel and Head (1969) determined that a necessary
condition to obtain a region where the coefficients of the log-law were universal constants, was
to have Rel > 3000. Extra information on the derivation of the logarithmic law can be found in
Pope (2000, chap 7).

Finding a simple description for the smooth transition from the viscous sublayer to the log-law
is a little less straightforward. White (2006) mentions the formula deduced by Spalding (1961)
covering the entire wall-related region, and given by

y+ = u+ + e−κB

[
eκu+ − 1 − κu+ − (κu+)

2

2
− (κu+)

3

6

]
. (2.15)

For the region of the outer layer outside of the log-law range, White (2006) suggests using Coles’
law given by

u+ ≈ 1

κ
ln
(
y+
)

+ B +
2Π

κ
f
(y

δ

)
, (2.16)

where Π is Coles’ wake parameter, and f is the wake function normalized to be zero at the wall,
and unity at y = δ. For more information, the reader is referred to White (2006, chap 6).

As a closing remark, it should be mentioned that the validity of describing the overlap region
using the logarithmic law of the wall presented here above is still subject to debate. And,
while the main argument of the log law antagonists is the non-universality of the “constants” κ
and B used in equation (2.14), they propose to describe the overlap region using a power law
instead. Nonetheless, although the debate might of importance for the proper quantification of
fundamental turbulent relations, both the power-law and the log-law are of sufficient accuracy
for engineering purposes.

2.2 The Navier-Stokes Equations

The following section will briefly describe the Navier-Stokes equations which will be used to
compute the turbulent flow under consideration, as well as the incompressible flow simplification
brought to the original set of equations.
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2.2.1 General Set of Equations

The governing equations describing the motion of a fluid in space and time are a coupled set
of non-linear partial differential equations referred to as the Navier-Stokes Equations (NSE).
These equations are often derived by considering a given quantity of matter and its properties,
such as mass, momentum or energy, inside a given control volume. From there, a set of integral
equations can be derived, describing the general properties of the system under consideration,
such as conservation of mass, momentum and energy. Applying Gauss’ theorem to the set of
equations obtained and assuming the control volume to be infinitesimally small then leads to
the following set of coordinate-free differential equations, where the energy equation has been
neglected

∂ρ

∂t
+ div (ρu) = 0, (2.17)

∂ (ρu)

∂t
+ div (ρuu) =

∑
f . (2.18)

These equations are referred to as the continuity and momentum equation, respectively. For
Newtonian fluids, where a linear relation exists between velocity gradient and shear stress, and
neglecting gravity forces, the momentum equation can be written as

∂ (ρu)

∂t
+ div (ρuu) = divT, (2.19)

where the stress tensor T is defined as

T = −
(

p +
2

3
µ divu

)
I + 2µD, (2.20)

with

D =
1

2

[
gradu + (gradu)

T
]
. (2.21)

Introducing the Del operator these equations can be re-written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.22)

∂ (ρu)

∂t
+ ∇ · (ρuu) = ∇ ·T, (2.23)

with the stress tensor written as

T = −
(

p +
2

3
µ∇ · u

)
I + µ

(
∇u + ∇uT

)
. (2.24)

For more information on the derivation of the Navier-Stokes equations, one can refer to standard
literature such as Bernard and Wallace (2002), Ferziger and Perić (2002), or Pope (2000).

2.2.2 The Incompressible Flow Simplification

The conservative equations (2.22) and (2.23) are the most general form of the Navier-Stokes
equation and assume that all fluid and flow properties change in space and time. For flow
velocities under 0.3 times the speed of sound, these equations can be simplified by considering
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the flow to be incompressible, leading to a constant density. By further assuming isothermal
conditions, the viscosity can also be considered constant. This yields the following simplified
continuity equation

∇ · u = 0. (2.25)

Similarly, using the incompressibility assumption combined with the new continuity equation,
the momentum equation can be simplified to

∂u

∂t
+ ∇ · (uu) = −∇p

ρ
+ ν∇2u, (2.26)

where ν = µ/ρ.

2.3 General Overview Of Modeling Techniques

Historically three parallel movements can be recognized in the analysis of turbulent flows. The
first analysis of turbulence was done from a purely statistical viewpoint, considering that it was
of no utility to precisely determine the exact structure of the turbulent flow, and concentrating
instead on trying to characterise its statistical behaviour. Half a century later, experimental
wall-bounded turbulent flow data started to show high correlation between velocities at differ-
ent temporal en spatial positions. It was then recognized that coherent structures must exist
within turbulent flows, implying that such flows could therefore not be totally random as was
first assumed. This led to a structural movement, yielding rich phenomenological descriptions
of certain classes of turbulent flows, still of use today when attempting to model and control
turbulent flow behaviour. A decade later, with the help the National Center for Atmospheric
Research, the first numerical solutions for models of the Navier-Stokes equations representing
critical properties of turbulent flows started to emerge. These early numerical simulations were
the first to show that turbulent flows were extremely sensitive to initial conditions, with very
slight perturbations developing in highly non-linear responses complex enough to appear as being
random. This was the start of the deterministic approach, viewing turbulence as a complex and
chaotic solution of the Navier-Stokes equations, depending on the variations in time of initial
perturbations, and void of randomness. The RANS simulation technique which will be described
shortly is primarily statistical in nature, whereas the DNS and LES approaches belong to the
deterministic approach.

2.3.1 RANS

Using equation (2.25), and switching to Einstein notation, the motion of an incompressible fluid
is governed by the continuity equation

∂ui

∂xi
= 0, (2.27)

and the momentum equation

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xk∂xk
. (2.28)

The impossibility of solving equations (2.28) and (2.27) under turbulent flow conditions analyt-
ically, except for very simple cases, led researchers to try to solve the Navier-Stokes equations
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numerically. Unfortunately, computational requirements have long limited such solutions to low
Reynolds number flows. Alternative approaches were sought, and led to a method separating
the flow properties into a mean and a fluctuating part, in the hope of obtaining a simpler set of
equations, albeit at the price of modelling accuracy. This was in fact the approach used originally
by Osborne Reynolds at the end of the 19th century in an attempt to define a statistical model
for the study of turbulence. The decomposition of the velocity can be written as

ui = ui + u′

i, (2.29)

where the averaging ui of ui can be done in space or in time. A time average of ui could be
written as

ui(xi, t) =
1

T

∫ t+T/2

t−T/2

ui(xi, s)ds. (2.30)

The same can be done for the pressure. Substituting these decompositions into equations (2.28)
and (2.27) yield the Reynolds Averaged Navier-Stokes equations given by

∂ui

∂xi
= 0, (2.31)

and

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xk∂xk
, (2.32)

which can be simplified according to the Reynolds averaging rules (see for instance Moran, 1984,
p 212) as

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xk∂xk
−

∂u′

iu
′

j

∂xj
. (2.33)

These two equations are in the same form as the Navier-Stokes equations, except for the u′

iu
′

j

term. This term, often referred to as the Reynolds stress because of its form, is in fact the
representation of the flux of momentum caused by the turbulent fluctuations flowing in or out
of the volume under consideration. Equations (2.31) and (2.33) can now be used to simulate a
fluctuation-less fluid, travelling with averaged velocity. One should notice that the new set of
equations being dealt with is unclosed, as there is no direct means of relating u and p to the
Reynolds stress, and a proper closure model has to be found before the RANS equations can be
solved numerically.

Going further into details on the different closure models and limitations of the RANS equa-
tions is beyond the scope and interest of this study, and interested readers are informed that
more formal and detailed derivations of the RANS equations can be found in various textbooks
such as White (2006), Davidson (2004) or Sagaut and Méneveau (2006).

Analysing equation (2.32) one can understand that the Reynolds Averaged Navier-Stokes
equations do not resolve the small eddies present in turbulent flows, but merely try to model the
effect of turbulent fluctuations on a mean flow. Such an approach has the advantage of relieving
the user of the need to use a fine mesh to capture the viscid turbulent scales present in a flow.
Indeed, only a relatively coarse mesh is needed to capture the mean flow variations, while the
influence of the turbulent fluctuations on the mean flow are accounted for by the turbulence
model.

This intrinsic property of RANS computations therefore limits the scope of simulations to
cases where the macroscale flow dynamics are of interest, and can therefore not be used as a
tool to investigate small-scale turbulence. This renders RANS simulations inappropriate for the
current study.
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2.3.2 DNS

The non-linear and complex behaviour of turbulent flows is the consequence of a fairly simple
set of equations, the Navier-Stokes equations (NSE), described in equation (2.28). However, as
most of the analytical solutions available for the NSE are only of very limited use for engineering
applications, alternative solutions of obtaining a complete description of flow variables as a
function of space and time have to be sought. This can be done by solving the NSE numerically,
through an approach called Direct Numerical Simulations or DNS. When compared to statistical
solutions, or even semi-deterministic solutions like LES, DNS computations have the advantage
of not requiring ad hoc models to obtain a closed set of equations or to model the effects of a
range of scales not captured by the computational grid. From this point of view, DNS solutions
can be considered exact, as they truly capture all the wavelengths present in the flow.

However, DNS accuracy comes with a heavy computational price, as capturing all length
scales present in a flow requires a large amount of grid points due to two constraints. First of all,
the domain size has to be large enough to capture the largest scales of turbulent eddies, which
is not specific to DNS as it is also a constraint imposed on LES. And secondly, the grid must be
sufficiently fine to capture the dissipation length scales of the flow, that is to say the smallest
length scales present in the flow. It was shown in section 2.1.1 that the dissipation scales are on
the order of the Kolmogorov length scale, which is defined by

η ∼
(

ν3

ǫ

) 1
4

. (2.34)

The energy passed down the energy cascade by the larger eddies is of order

Π ∼ u2

l/u
=

u3

l
, (2.35)

and should be equal to energy dissipation, yielding

ǫ ∼ u3

l
. (2.36)

The Reynolds number of the large eddies defined as

Rel =
ul

ν
, (2.37)

and substitution in equation (2.34) yields

η ∼
(

lν3

u3

) 1
4

=

(
l4

ν3

l3u3

) 1
4

= l Re
−

3
4

l

⇔ η ∼ l Re
−

3
4

l .

(2.38)

From there, an estimate of the minimum number of points required can be made. The mesh
interval should be able to capture the smallest eddy size, meaning that the spatial separation of
the sampling points cannot be larger than η, that is

∆x ∼ η ∼ l Re
−

3
4

l . (2.39)
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The number of data points required for a three-dimensional simulation can therefore be approx-
imated by

Nx ∼
(

Lbox

∆x

)3

⇔ Nx ∼
(

Lbox

l

)3

Re
9
4

l ,

(2.40)

with Lbox the length of the domain.
Furthermore, in order to compute the unsteady dynamics of the Kolmogorov scales, the com-

putational time step should be chosen such that ∆t ∼ (η/ul) with ul the large-scale velocity.
The simulation should further be run for several eddy turnover times, each having a value pro-
portional to l/ul. The number of time steps required for the computations is therefore equal
to

Nt ∼
T

∆t
∼ T

η/ul

⇔ Nt ∼
T

l/ul
Re

3
4

l ,

(2.41)

leading to a total cost of DNS which scales as

Ntot ∝ NxNt ∼
(

T

l/ul

)(
Lbox

l

)3

Re3
l , (2.42)

or O (Rel)
3
. Several studies do however specify that the smallest length scales that must be

accurately resolved for an “exact” solution depend on the energy spectrum present in the flow,
and can sometimes be larger than the Kolmogorov scales, allowing for larger grid spacings. For
instance, Kim et al. (1987) report using a grid spacing of ∆x+ = 12, ∆y+ = 0.05 − 4.4 and
∆z+ = 7 for a Kolmogorov length scale of η ≈ 2, and affirm their resolution is sufficient to
capture all essential turbulent scales present in the flow. Similarly Moser and Moin (1987) note
that most of the dissipation in the curved channel they studied occurred at scales greater than
15η. Spectral DNS methods in particular tend to show very good agreement with experimental
results although the Kolmogorov scales aren’t resolved, whereas on the contrary, finite-difference
schemes may require a mesh size of half the Kolmogorov length scale in all directions to obtain
the same level of accuracy.

It can in any case be concluded that the costs of DNS are still prohibitive, and that DNS
simulations in the near future will be limited to low Reynolds number flows.

2.3.3 LES

Trying to improve on the accuracy and applicability of RANS while decreasing the prohibitive
cost associated with the use of DNS, researchers have developed a simulation technique interme-
diate between the two, called Large-Eddy Simulation (LES).

Through observation, scientists discovered that the isotropic inertial ranges were more or less
universal for all turbulent flows and that they could be parametrized by using only the energy
transfer rate, through the energy cascade principle. From there, they theorized that if this energy
transfer rate could be properly estimated and modelled, they should be able to avoid computing
not only the effect of the dissipation scales, but also the scales which could be considered as
approximately isotropic and in equilibrium. As estimated in Pope (2000), more than 99% of the
computational effort of DNS is devoted to resolving scales in the dissipation range, making LES
an attractive computational method. It will be described in more detail in the following section.
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2.4 Large Eddy Simulation

As described in the previous subsection, LES is based on the principle that the large scales
present in the flow are computed directly, while the dissipation scales and part of the inertial
cascade are substituted by specific models.

Its origin can be traced back to the meteorological community in the early 1960’s when
computational resources were severely limited and alternatives to resolving all the computational
scales were sought. Based on the theory of Kolmogorov, the smallest scales present in a flow
could be considered as the energy drains from the larger scales, dissipating the turbulent energy
into heat, and were assumed to behave isotropically. Thus, the larger eddy scales could be
considered as being responsible for most of the kinetic energy transport and are therefore also the
most affected by boundary conditions. This requires the direct computation of the large scales,
whereas the uniform nature of the small scales make them prime contenders for substitution by
simplified computational models. This has led to the LES computational technique, where the
large flow scales are computed directly, and where the scales close to the dissipation scales are
represented by SubGrid Scale (SGS) models.

2.4.1 Governing Equations

In order to separate the computation of the resolved scales from that of the modelled scales, a
filtering operation can be applied to the equations governing the flow motion. Formally, for any
flow variable f , LES elements are composed of a large scale and a small scale contribution which
can be written as

f = f − f ′, (2.43)

with the overbar component representing the larger scales, and the prime denoting the contribu-
tion of the small scales. From there, one can define a filter to extract the large scale components.
This can can be done by using a convolution integral over the computational domain defined as

f (x) =

∮
G (x, x′; ∆) f (x′) dx′, (2.44)

where ∆ is the filter width, and is proportional to the wavelength of the smallest scale retained
by the filtering operation, and where the convolution integral G, or filter kernel, should satisfy
the following relation

∮
G (x, x′; ∆) dx′ = 1. (2.45)

The most commonly applied filters in LES include the Gaussian filter, defined as

G (x, ∆) =

√
6

π∆2
exp

(
−6x2

∆2

)
, (2.46)

and has the advantage of being smooth and differentiable, and the top-hat filter, which is a
simple average over a rectangular region.

The top-hat filter is a common choice for finite-volume methods primarily because the average
taken is over a grid volume of the finite volume mesh where the variables are a piecewise linear
function of x. This implies that when the filter width ∆ is chosen to be equal to the grid spacing,

the averaged and the local value of f will be equal (f = f). The top-hat filter is defined as

G (x) =

{
1
∆

if |x′| ≤ ∆/2
0 otherwise.

(2.47)
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Switching to Fourier space allows the use of a filter called the sharp Fourier cutoff filter, elimi-
nating all the wave numbers above a chosen frequency, and is most naturally used in conjunction
with spectral methods. However, it tends to be difficult to apply to inhomogeneous flows, and
due its nature, it creates a sharp transition between resolved and unresolved scales, which in
practice, might hamper the energy transfer from the larger to the smallest scales, resulting in an
energy build-up in the larger scales. The sharp Fourier cutoff filter is defined in Fourier space as

Ĝ (k) =

{
1 if k ≤ π/∆
0 otherwise.

(2.48)

For extra information on the different type of filters and their effect the reader can refer to LES
literature as Sagaut and Méneveau (2006) and Bernard and Wallace (2002).

It should be noted that many researchers have recently moved away from the filtering concept,
to use the variational multiscale approach. In the variational multiscale method, modeling is
confined to the effect of small-scale Reynolds stress, as opposed to classical LES methods in
which the entire subgrid-scale stresses are modeled. Due to classical approach implemented in
the CFD packaged used for this simulations of the current study, variational multiscale methods
are beyond the scope of this master thesis. For more information on the method, readers can
consult the original paper by Hughes et al. (2000).

Applying the filtering operation given by (2.44), one obtains the filtered version of the in-
compressible Navier-Stokes equations. The continuity equation becomes

∂ui

∂xi
= 0, (2.49)

and similarly, the following momentum equation is obtained

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xk∂xk
, (2.50)

which is identical to (2.32). However, from here, it is important to notice that because

uiuj 6= uiuj , (2.51)

and because the quantity uiuj is not easily computed, a modeling approximation has to be found
for this term. By introducing the difference between both sides of the inequality as

τij = uiuj − uiuj , (2.52)

Equation (2.50) can be re-written as

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
− ∂τij

∂xj
+ ν

∂2ui

∂xk∂xk
. (2.53)

The term τij is referred to in LES as the subgrid-scale (SGS) stress tensor, and can be considered
as the term accounting for the effect of the small, unresolved scales which have to be modelled.
By decomposing the velocity vector as u = u + u′, the SGS stress can be decomposed into
different terms as follows

τ = (ui + u′

i) (uj + u′

j) − uiuj

=
(
uiuj − uiuj

)
+
(
uiu′

j + u′

jui

)
+ u′

iu
′

j

= Lij + Cij + Rij ,

(2.54)
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where

Lij = uiuj − uiuj

Cij = uiu′

j + u′

jui

Rij = u′

iu
′

j.

(2.55)

The first term Lij is generally known as the Leonard stress, and represents the interaction of the
large eddies which produces subgrid turbulence. As this quantity is resolved, it can be computed
directly from the velocity field. The second term, Cij , often referred to as the “cross-term”
stress, is a measure of the energy transfer between the resolved and the unresolved scales of the
flow, and can transfer energy in either direction as a function of the sign of the fluctuations u′.
However, following the energy cascade assumption, the average energy transfer is from the larger
to the smaller scales. The last term represents the interaction of the small, unresolved eddies,
and is know as the subgrid Reynolds stress.

Although (2.54) seems an attractive description of the SGS stresses, it is quite challenging to
model due to the dependence of the Leonard and cross stresses on the type of reference frame
used. As it stands, the total SGS stress and the SGS Reynolds stress term are independent
of the reference frame used, while the Leonard and cross stresses are not. To make matters
worse, the correlation terms used to model the different elements of this SGS decomposition
tend to be approximations containing substantial errors that largely offset the targeted gain of
accuracy which motivated the decomposing of the subgrid stress term in the first place. Therefore,
although Germano (1986) came with a Galilean invariant redefinition of the turbulent stresses
used here-above, modern applications of filtered LES have largely abandoned the decomposition
of subgrid stresses in favour of a modelling of the SGS term τij as a whole.

2.4.2 Subgrid-Scale Models

The main role of subgrid-scale models is to remove the energy from the resolved scales in a
manner mimicking the drain associated with energy cascade theory. This subsection will present
the most commonly used subgrid-scale modelling approaches.

Smagorinsky Models

The simplest and oldest approach to subgrid-scale modeling was introduced by Smagorinsky in
the early 1960’s and models the subgrid-stress tensor by using an extension of the eddy-viscosity
assumption developed by Boussinesq in the 1870’s. The general idea behind the Boussinesq ap-
proximation is that the turbulent mixing momentum has a contribution similar to the molecular
transport of momentum, described by

ν
∂2ui

∂xk∂xk
(2.56)

term in equation (2.53). From there, Boussinesq postulated that the effect of turbulent mixing
of momentum was to increase the effective viscosity locally. He therefore proposed to model the
SGS stress similarly to the laminar stress, by introducing an eddy viscosity ντ . Following the
eddy-viscosity model, the subgrid-stress tensor can be written as

τij = −2ντSij +
δij

3
τkk, (2.57)
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where the term Sij is referred to in literature as the strain-rate tensor, and can be computed
from the filtered velocity u using the relation

Sij =
1

2

[
∂ui

∂xj
+

∂uj

∂xi

]
. (2.58)

As closure model, Smagorinsky chose to approximate the viscosity term ντ as a function of the
strain-rate tensor, leading to

ντ = C2
S∆2

(
2SijSij

) 1
2 , (2.59)

with CS a dimensional constant referred to as the Smagorinsky constant, and with ∆ a measure
of the filter width. The Smagorinsky model further assumes that the small unresolved scales are
in equilibrium and instantly dissipate all the energy they received from the resolved scales.

When using the SGS tensor defined in (2.57), the LES momentum (2.53) will be slightly
re-written as

∂ui

∂t
+

∂

∂xj
(uiuj) = −1

ρ

∂p∗

∂xi
− ∂τij

∂xj
+ ν

∂2ui

∂xk∂xk
, (2.60)

where p∗ is a modified pressure term accommodating the isotropic part of the stress tensor τkk

to avoid its computation, and is written as

p∗ = p − 1

3
ρ δij τkk. (2.61)

For open turbulent flows the Smagorinsky constant takes values between 0.18 and 0.23. A
detailed description of one of the methods allowing the evaluation of the Smagorinsky constant
can be found in Lilly (1967). However, Bernard and Wallace (2002) warn that the values for
CS given here above were found to be overly diffusive in flows containing mean shear, such as
wall-bounded flows, and that a lower value of CS should be chosen for those types of flows. They
found that a value of CS = 0.065 gave better predictions for wall bounded flows.

As can be seen, the major disadvantage of the Smagorinsky model is that it requires differ-
ent values for the constant CS for different flow conditions, which is a serious drawback when
simulating complex and varying flow conditions. Another weakness of the Smagorinsky model
stems from the assumption of isotropy of the unresolved scales made when choosing for an
eddy-viscosity based model. While the isotropy conditions holds for a large subset of flows and
filters, it is far from being universal. For instance, choosing for a large mesh spacing may induce
anisotropic motions in the unresolved scales. Similarly, near a solid boundary even the smallest
scales do not conform to the isotropy assumptions, with the added problem that anisotropic
grids will often resolve even isotropic eddies differently depending on their orientation. Although
these problems can be reduced by increasing the mesh refinement, the problem as whole is better
addressed by trying to avoid the isotropy assumption.

Adding to the deficiencies named here above, the accuracy of the Smagorinsky model is fur-
ther degraded the more the flow conditions deviates from the assumption of equilibrium of the
unresolved scales made when trying to find a relation for the subgrid eddy-viscosity. Quite unfor-
tunately, non-equilibrium conditions are often encountered in turbulent flows, and are common
in applications ranging from separating and reattaching flows, to boundary layer flows and wall
dominated domains. This effect is therefore non-negligible.
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One-Equation Models

In order to try to improve on the accuracy of the Smagorinsky model by dropping the assumption
of equilibrium of the unresolved scales the one-equation family of models was developed. Most
one-equation models are, as the Smagorinsky model, based on the eddy-viscosity concept. As
an improvement, they try to add a history effect to the model by solving extra equations, such
as transport equations, for one or more of the subgrid turbulence characteristics. One of the
quantities often chosen for the extra transport equation is the subgrid-scale kinetic energy, defined
as

Ksgs ≡ 1

2

∑

i

τii, (2.62)

which provides an SGS velocity scale to the model. Other potential transport equation candidates
include the transported SGS viscosity, or the transported SGS vorticity, as presented in de Villiers
(2006, chap 3).

The eddy-viscosity model can then be cast in the form

ντ = CK∆
√

Ksgs. (2.63)

According to Horiuti (1985), the Ksgs transport equation then takes the form

∂Ksgs

∂t
+ uj

∂Ksgs

∂xj
=

1

2
τijSij +

∂

∂xj

[(
Ckk∆

√
Ksgs + ν

) ∂Ksgs

∂xj

]
− Cǫ

K
3/2
sgs

∆
, (2.64)

where the different constants take the value CK = 0.05, Cǫ = 1.0 and Ckk = 0.1 respectively.
As a whole, the one-equation models mostly suffer from the same deficiencies as the Smagorin-

sky type of models due to the common choice of eddy-viscosity approach and the consequent
assumption of isotropy of the unresolved scales. The one-equation models do however have the
advantage of providing a more accurate time scale to the unresolved scale-model through the
independent definition of the velocity scale in the extra transport equation. As a result, a study
of the performance of different SGS models in channel flows by Fureby et al. (1997) has shown
the one-equation model to be quite effective and superior to algebraic models of the Smagorinsky
type.

Dynamic Models

Unsatisfied with the inability of the previously mentioned subgrid-scale models to correctly rep-
resent different turbulent fields and flow regimes with a single universal constant, researchers
oriented their studies towards dynamical methods allowing the computation of SGS coefficients
using local flow conditions. The first of such methods was presented by Germano et al. (1991),
and has the advantage of also being applicable to the previously described models. In dynamic
models, the coefficients of the SGS models are determined as part of the flow calculations, and
use the energy content of the smallest resolved scales to locally determine the value of the closure
coefficients. This imposes, however, the assumption that the behaviour of the smallest resolved
scales is analogous to that of the subgrid scales.

The new dynamic model by Germano et al. (1991) is based on the introduction of two filters.
In addition to the original grid filter ∆ -also referred to in literature as ∆- defining the resolved
and subgrid scales, a new test filter ∆̂ is introduced, which differs from the original grid filter by
its smoothing over a larger flow region. The application of the grid filter to the Navier-Stokes
equations yielded the subgrid-stress tensor found in (2.52) which was formally written as

τij = uiuj − uiuj .
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This equation was then re-written in the Smagorinsky model by casting the SGS tensor in the
eddy-viscosity form, and led to (2.57). Piomelli and Liu (1995) re-wrote this expression slightly
as

τij −
δij

3
τkk = −2Cdyn∆2

∣∣S
∣∣Sij

= −2Cdynβij ,
(2.65)

where the quantity Cdyn has replaced the square of the original Smagorinsky coefficient CS .
Similarly, the introduction of a new test filter introduces a new set of stresses, or subtest-scale

stresses, defined formally as

Tij = ûiuj − ûiûj . (2.66)

In similar fashion to (2.65), this equation can be expressed in terms of a Smagorinsky type closure
as

Tij −
δij

3
Tkk = −2Cdyn∆̂2

∣̂∣S
∣∣Ŝij

= −2Cdynαij ,
(2.67)

where

Ŝij =
1

2

(
∂ûi

∂xj
+

∂ûj

∂xi

)
, (2.68)

and where typically

∆̂ = 2∆. (2.69)

From there, the major contribution to the subgrid-scale model brought in by Germano et al.
(1991) was to identify that keeping consistency between (2.65) and (2.67) depended on a proper
choice of Cdyn. Although cases where the two values of Cdyn could differ are not difficult to find,
as in wall-bounded flows where the test filter can experience very different local phenomena than
the grid filter, Germano et al. (1991) chose to make no distinction between the two coefficients.
According to various literature references (e.g. Lilly, 1992, Piomelli and Liu, 1995 or Bernard
and Wallace, 2002) a proper choice of Cdyn can be made by finding an identity relating the
resolved turbulent stress

Lij = ûiuj − ûiûj (2.70)

to the subgrid and subtest-scale stresses. From the definitions of equation (2.52) and (2.66), it
follows that the resolved part of the SGS stress can be linked to the subgrid and subtest-scale
stress by

Lij = Tij − τ̂ij . (2.71)

Substitution of (2.65) and (2.67) into (2.71) yields

Lij = −2Cdynαij + 2Ĉdynβij , (2.72)

with

βij = ∆2
∣∣S
∣∣Sij , (2.73)
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and

αij = ∆̂2
∣̂∣S
∣∣Ŝij . (2.74)

However, the set of equations (2.65), (2.67), (2.71), (2.73) and (2.74) are five independent equa-
tions which cannot be solved explicitly for Cdyn because it appears in a filtering operation through
(2.72). The further assumption that the coefficient Cdyn is only a function of time and space,
and not filter width allows to write the following

Ĉdynβij = Cdynβ̂ij , (2.75)

circumventing this problem.
The next problem arising when trying to determine Cdyn is the fact that Cdyn is now overde-

termined by the set of 5 equations referenced here-above. To avoid this problem, Lilly (1992)
proposed to determine Cdyn using the least square approach by minimizing the error produced
by (2.72). In least-square terms the error is defined as

Q =
(
Lij + 2Cdynαij − 2Cdynβ̂ij

)2

. (2.76)

Upon setting ∂Q
∂Cdyn

= 0, the coefficient Cdyn can be determined as

Cdyn = −1

2

Lij

(
αij − β̂ij

)

(
αij − β̂ij

)(
αij − β̂ij

) . (2.77)

A later study by Ghosal et al. (1995) found the method developed above to contain non-negligible
mathematical inconsistencies coupled with numerical instabilities due to possible sharp fluc-
tuations in the value of Cdyn. Although not thoroughly documented, a commonly applied
workaround to this problem was to average the numerator and the denominator of (2.77) over
a homogeneous flow direction. Despite the fact that this workaround showed in some cases very
good agreement with DNS results, it still has the disadvantage of being an ad hoc procedure
limiting generalization of these types of dynamic models, with the added limitation of requiring
a least one homogeneous direction in the flow under consideration, serious restricting the type
of flows the dynamic model can simulate. An other common workaround only applicable to
isotropic turbulent flows, is to take an average over the whole computational domain, leading to
Cdyn = Cdyn (t).
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CHAPTER 3

Evaluation of Flat Plate Reference Results

Historically, experimental turbulent flat plate boundary layers have been extensively and thor-
oughly studied by scientists trying to determine non-dimensional scalings for turbulent flow
properties. The wealth of experimental data available made it a logical step to use experimental
measurements as benchmark results to assess the accuracy of early numerical flat plate simula-
tions. Over time, as available computational resources became more significant, low Reynolds
number DNS computations started to surpass the accuracy experimental measurements could
offer, due to probe size limitations. In parallel, numerical computations started showing very
good agreement between different simulations of channel flow test cases, leading to a general
agreement that low Reynolds number DNS simulations could be considered more accurate than
their experimental counterparts.

In order to test the performance of different type of turbulent inflows, a representative test
case was sought as a benchmark. As explained in the introduction, the canonical zero pressure-
gradient turbulent flat plate was chosen due to its sensitivity to the quality of the turbulent
information within the boundary layer. At the time of writing, the DNS data of Schlatter and
Örlü (2010) and that by Simens et al. (2009) were considered the highest quality flat plate data
available, and were both used as reference solution for the current study. However, a detailed
comparison of both data sets revealed slight differences which are illustrative of the sensitivity of
numerical computations to artificial boundary conditions. This short chapter will therefore try
to highlight the most relevant differences noticed between both DNS results, but will also serve
as a general warning to researchers by emphasising some of the mismatches which can be expect
in low Reynolds-number experimental and numerical flat plate data.

3.1 General Turbulent Flat Plate Discrepancies

As mentioned in the introduction, the lack of independent skin friction measurements has a direct
effect on the usability of the experimental data as reference solution, as the scaling relations
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derived from such data will be inaccurate. As an example, the current author was unable to

match the u′2
+√

cf/2 scaling derived from experimental data in the reference work by DeGraaff

and Eaton (2000) to DNS data from Schlatter and Örlü (2010) or Simens et al. (2009), in spite of
the fact that the two data sets were in the same Reynolds number range. The scaling in question

was applied as data non-dimensionalization to allow the partial collapse of the u′2
+

stress, when
plotted on a logarithmic y+ scale. Unfortunately, no such collapse could be obtained.

As explained in the introduction, . Comparing six DNS computations made after 2002, the
authors discovered that the simulation of the same canonical flat plate flow also gave surpris-
ingly inconsistent results, even for such basic quantities as shape factor, friction coefficient and
fluctuation maximum.

The lack of fully established reference data for low Reynolds-number flat plate experiments
led Schlatter and Örlü to investigate whether the similar disparities could be found in recent
Direct Numerical Simulation data. After finding surprisingly inconsistent results for such basic
quantities as shape factor and friction coefficient, Schlatter and Örlü further analysed the various
DNS data to conclude that such differences came from different choices in numerical domain sizes
and boundary conditions. They further concluded that the two computations with the largest
domains, i.e. their own simulation and that by Simens et al. (2009), were also the ones that
yielded the most similar results compared to established turbulent relations and compared to
each other.

3.2 Comparing DNS Data From Schlatter and Örlü (2010)
and Simens et al. (2009)

In this section, the relevant differences between DNS data from Schlatter and Örlü (2010) and
Simens et al. (2009) will be highlighted. The simulation parameters of both DNS computations
can be found in table 3.1, with the domain sizes normalized by δ0, the inflow boundary layer
thickness used in the current study. As an indication, the domain size used for the computations
in this master thesis also appear in the table.

Table 3.1: Domain parameters for the DNS computations by Schlatter and Örlü (2010), Simens et al.
(2009), and for the current setup

Reθ (Lx, Ly, Lz)/δ0 Inlet Outlet Top

Schlatter and
Örlü (2010)

180 - 4300 5228 × 174 × 210
Laminar

+ Tripping
Fringe
Region

Neumann

Simens et al.
(2009)

620 - 2140 143 × 7.74 × 23.52
Recycled

Type Inflow
Convective
Outflow

Suction

Current Study 620 - 1330 60 × 4 × 8
Recycled

Type Inflow
Zero

Gradient
Neumann

For clarity it should be added that all simulations use cyclic-type boundary conditions in
the spanwise direction. However, from table 3.1, one can directly notice that the simulation by
Schlatter and Örlü and by Simens et al. use very disimilar domain sizes and boundary conditions.
Noticeably so for the top of the domain, to which Simens et al. needed to apply suction to obtain
proper boundary layer growth. In contrast, Schlatter and Örlü have enough domain height to

F.T. Pronk 24 MSc. Thesis



Comparing DNS Data From Schlatter and Örlü (2010) and Simens et al. (2009)

simply apply a Neumann boundary condition to the velocity vector.

Further comparing the DNS results by Schlatter and Örlü to that by Simens et al., notice-
able differences were observed in the streamwise evolution of non-dimensional wall-normal mean
velocity V +, as illustrated in figures 3.1 and 3.2.

Figure 3.1: V + for increasing Reynolds
number, from Schlatter and
Örlü (2010)

Figure 3.2: V + for increasing Reynolds num-
ber, from Simens et al. (2009)

It is clear that, although both simulations represent the same canonical test case, the non-
dimensional wall-normal velocities display a very different evolution with increasing Reynolds
number. The simulation by Schlatter and Örlü shows a decrease of non-dimensional mean with
increasing Reynolds number, while the simulation by Simens et al. shows the exact opposite
trend. It is also important to notice that all the non-dimensional velocities from the data by
Schlatter and Örlü are constant beyond y/δ = 1.25, a trend which can only be seen in the lowest
Reynolds number mean by Simens et al.. Coincidentally, the top boundary condition of the
domain from Schlatter and Örlü is clearly located much further away from the boundary layer
than in the simulation by Simens et al..

One could argue that, because the mean velocity in wall-normal direction is three orders
of magnitude smaller than that in streamwise direction, the changes shown here-above could
be considered irrelevant. However, it was found during this thesis that the wall-normal mean
velocity had a large influence on the quality of the boundary layer computed, probably due to its
influence on boundary layer growth. There is, of course, no guarantee that DNS computations
would be affected in the same way, but it is something worth investigating.

It should also be noted that the non-dimensional units chosen in figures 3.1 and 3.2 could
mask a correct dimensional evolution of velocity, due to slight errors in derived quantities such
as skin friction cf and viscous velocity uτ . No dimensional data was available for the DNS data

from Schlatter and Örlü, preventing a dimensional comparison with the data of Simens et al.
(2009). Nonetheless, the data by Simens et al. can be used for a one-sided qualitative analysis.
The dimensional velocity from Simens et al. (2009) is shown in figure 3.3. Using Moran (1984, p
200), the mean wall-normal velocity at the boundary layer edge for incompressible flows can be
defined as

Vn =
d

dx
(U∞δ∗) , (3.1)

with δ∗ the displacement thickness. Further assuming that the mean velocity U∞ is constant
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yields

Vn = U∞

dδ∗

dx
. (3.2)

From equation (3.2), one can infer that for zero pressure-gradient boundary layers the mean
velocity in wall-normal direction will decrease going downstream, since the derivative of the
displacement thickness is decreasing.

Figure 3.3: V for increasing Reynolds number, from Simens et al. (2009)

From figure 3.3, it is clear that the dimensional velocity change as a function of Reynolds
number is not what was anticipated by equation (3.2), as the mean velocity beyond the boundary
layer edge at Reθ = 1968 is similar to that at Reθ = 1551. This might be an indication of wall-
normal mean velocity mismatch due to the influence of artificial boundary conditions. This
conjecture is supported by the fact that the top of the domain is only located at 1.5 δ0 from the
boundary layer at Reθ = 1968. It is suspected that the DNS results by Schlatter and Örlü will
be less influenced by the top boundary condition, due to the higher domain available.

Nonetheless, it is important to assess whether both DNS computations do have similar bound-
ary layer growth rate. This can be estimated by comparing the evolution of the displacement
thickness Reynolds number Reδ∗ as a function of the momentum thickness Reynolds number
Reθ, as show in figure 3.4. An indirect estimate of boundary layer growth could also be done, by
comparing the evolution of the skin friction, cf , as a function of Reθ. This can be seen in figure
3.5.
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Figure 3.4: Comparison of displacement thick-
ness growth as a function Reθ

Figure 3.5: Comparison of friction coefficient
evolution as a function Reθ

From figure 3.4, one can observe that both boundary layers have a nearly identical displace-
ment thickness evolution as a function of Reθ, which seems to indicate that they are both growing
at the same rate, a comforting thought. Analysing figure 3.5, it can be seen that the two DNS
computations have a slightly different friction coefficient evolution when progressing downstream.
Although this could party explain the differences observed between figure 3.1 and 3.2 through
the influence of a scaling by uτ , it cannot explain the mismatch observed in figure 3.3, as the
quantities observed are independent of any viscous scaling.
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CHAPTER 4

Inflow Boundary Condition Treatment and

Flow Control

Spatially evolving turbulence poses an extra challenge to numerical simulation approaches, as
in most cases the flow downstream is highly dependent on the conditions at the inlet. Ensuring
the correct development of all turbulent properties therefore imposes stringent requirements on
the inflow condition. Conversely, poorly-defined inflow conditions will result in undesirably long
adaptation lengths, wasting useful computational resources. In this light, the following chapter
will introduce various inflow modeling techniques applied to the Large-Eddy Simulation (LES)
of incompressible flat-plate boundary layers.

This chapter will be subdivided into four parts. The first section will start with a brief
overview of the different inflow strategies which can be used for turbulent inflow generation. The
focus will then shift towards describing the different inflow modeling approaches used for this
master thesis, first presenting an inflow model developed by Lund et al. (1998), then describing a
simple outer-coordinate rescaling technique and a random-perturbation inflow developed by the
present author, and finally introducing a flow forcing technique by Spille-Kohoff and Kaltenbach
(2001) which can be used to improve inaccurate inflow conditions.

4.1 Generation of Turbulent Inflow Data for Spatially De-

veloping Boundary Layers

The simulation of turbulent boundary layers requires detailed and precise inflow information to
ensure all the flow properties in the computational domain evolve as their physical counterparts.
In the case of LES, the largest of the unsteady and three-dimensional energy carrying eddies
are resolved, requiring that the inflow should represent an as realistic as possible boundary
condition for those eddies. Failing to deliver the proper structural information with the inflow
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condition will result in the flow having to undergo adjustments until eddies are generated with
the correct phase information. This puts stringent requirements on the inflow velocity vector.
Several strategies have been developed to try to come up with consistent inflow condition for
the computation of spatially developing boundary layer flows, and will be presented hereafter.
This section is similar to the short historical review of artificial boundary conditions made in the
introduction to this thesis, but describes the various inflow strategies in slightly more detail.

Early approaches to turbulent inflow modeling used random velocity fluctuations imposed
on a mean flow. Although it is quite feasible to match the different moments and energy spec-
tra per wavelength using random models, the phase information is somewhat more delicate to
obtain, as it is strongly dependent on the type of flow and the location within the flow under
consideration. Researchers soon found out that supplying white noise as random turbulence did
not provide correct energy levels at the right wavelengths, which resulted in a rapid damping
of the turbulence back to laminar conditions. From there, researchers tried to improve on the
random fluctuation method by developing better random models with correlation information
provided by experimental results, with varying degrees of success. For instance, simulations by
Lee et al. (1992) using velocity perturbations with a prescribed power spectrum and random
phase information resulted in adaptation lengths over 12 δ0 before the flow could be considered
physically realistic. Batten et al. (2004) concentrated on building a fluctuation field based on
a superimposition of Fourier-modes with random-based phase and amplitude information also
include anisotropy information, and reported that at least 20 boundary layer thicknesses where
needed to obtain a physically realistic flow. More successfully, Pamiès et al. (2009) improved
on an approach by Marusic (2001) which showed that channel flow mean and Reynolds-stress
profiles could be matched accurately by superimposing analytical hairpin-like vortical structures
on a mean profile. They achieved realistic friction coefficient and shape factor growth within 6 δ0

of the inflow. For further information one can consult the excellent introduction of the paper by
Pamiès et al. (2009), the paper by Keating et al. (2004), or for a detailed review, the book by
Sagaut et al. (2006).

Another approach to the generation of inflow condition for turbulent numerical simulations
makes use of secondary simulations or precursor databases to provide turbulent information to a
primary computation. This is done using a separate calculation of an equilibrium flow with peri-
odic boundary conditions, storing the velocity field of a plane normal to the streamwise direction
at each time step, and then re-using the information obtained as inflow data for the simulation
of a more complex turbulent flow. This method has the advantage of facilitating the control of
different boundary layer parameters, such as the friction coefficient, and the displacement and
momentum thicknesses, but at the considerable cost of having to run a precursor simulation.
A variant of such an approach was developed by Schlüter et al. (2004) for hybrid RANS/LES
computations, and showed good agreement with experimental results. The method had the ad-
vantage of not requiring the precursor simulation to be at the same Reynolds number as the real
LES study, or in the same configuration. An alternative approach was implemented by Druault
et al. (2005), who reconstructed data from experimental measurements to use as inflow condi-
tions for LES simulations. They claimed obtaining good results, although they did not specify
the adaptation length needed by their approach.

A third type of inflow modeling strategy includes the recycling methods pioneered by Spalart
and Leonard (1985) and relies on providing inflow conditions using turbulent information ob-
tained from within a computational domain. The original method by Spalart and Leonard (1985)
was further improved in Spalart (1988), and applied to flat plate computations. It made use of an
ingenious coordinate transformation allowing for the calculation of spatially evolving boundary
layers while keeping a form of periodic boundary conditions. The results published by Spalart
(1988) proved to be acceptable, although the computed friction coefficient was overestimated by

F.T. Pronk 30 MSc. Thesis



Recycling and Rescaling Methods

5% compared to experimental measurements, and the <uu> and <ww> spectra did not collapse to
the Kolmogorov energy spectrum law of κ−

5
3 when normalized with ν and uτ . Their work later

inspired Lund et al. (1998) to develop a similar recycling method, while circumventing the need
of an unwieldy coordinate transformation. They extracted a velocity field downstream of the
inflow, and rescaled it to compensate for boundary layer growth, achieving an adaptation length
of 8 δ0. Simplifying the approach of Lund et al. by only using an outer-coordinate rescaling,
Spalart et al. (2006) managed to further decreased the adaptation length to 4 δ0, based on skin
friction coefficient evolution.

Although the Lund et al. family of inflows show very promising results, the rescaling pro-
cedures used are based on the assumption of equilibrium turbulent flows, limiting their scope
of applicability. They have also been shown, in some cases, to add unphysical forcing to the
computed flow due to the introduction of a form of temporal periodicity (see for instance Simens
et al., 2009). Simulating more general wall-bounded turbulent flows will therefore require more
versatile inflow conditions.

4.2 Recycling and Rescaling Methods

Based on a personal study, Lund et al. (1998) concluded that Spalart-type inflows produced
the most accurate inflow condition for the case of spatially developing boundary layers on a flat
plate, with the added benefit of also providing the best control over skin friction and momentum
thickness of the flow entering the domain. Their primary complaint about the Spalart method
was that it was slightly difficult to understand and implement, with the added drawback that
the coordinate transformation of the Navier-Stokes equation, based on boundary-layer growth,
required a special-purpose flow solver. From there, Lund et al. decided to develop a recycling
method keeping the skin friction and momentum thickness control offered by the method from
Spalart, but not requiring a coordinate transformation of the Navier-Stokes equations. Capital-
izing on the quality of the inflow method by Lund et al., Spalart et al. (2006) simplified it even
further, and also managed to further decrease the adaptation length in the process.

The following subsections will present the recycling and rescaling methods by Lund et al.
(1998) and by Spalart et al. (2006) which will be implemented for the current research.

4.2.1 The Recycling and Rescaling Method by Lund, Wu, and Squires
(1998)

The main idea behind the recycling and rescaling type of inflows is to extract data at a station
downstream from the inflow, and rescale it to account for boundary layer growth. In the approach
by Lund et al., the flow at the extraction station is averaged in spanwise direction and in time,
to allow the decomposition of the flow field in a mean an fluctuating part as

u′

i (x, y, z, t) = ui (x, y, z, t) − Ui (x, y) , (4.1)

with x, y and z denoting the streamwise, wall-normal and spanwise directions respectively, and
were the subscript i is part of the so-called Einstein notation, and implies an operation on every
component of a variable.

The mean velocities and fluctuations are then rescaled according to the law of the wall in the
inner region, and the defect law in the outer region, and then blended together using a weighted
average of the inner and outer profiles. For a more detailed description of these laws, please refer
to section (2.1.2).
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The perturbations are rescaled according to

u′ inner

i, infl = γ u′

i,recy

(
y+
infl, z, t

)
(4.2)

and

u′ outer
i, infl = γ u′

i,recy (η infl, z, t) , (4.3)

with the subscript recy referring to the data from the recycling plane, the subscript infl to that
from the inflow, and where the parameter γ is defined as

γ =
uτ, infl

uτ, recy
. (4.4)

These equations also contain inner coordinates y+ defined as

y+ =
y uτ

ν
, (4.5)

and outer coordinates η defined as

η =
y

δ
, (4.6)

with uτ the local viscous velocity and δ the local boundary layer thickness.
The rescaling of the mean profiles differs per velocity component. The mean in x direction is

rescaled as

U inner
1, infl = γ U1,recy

(
y+
infl

)
(4.7)

Uouter
1, infl = γ U1,recy (ηinfl) + (1 − γ)U∞, (4.8)

with U∞ the freestream velocity. The mean in y direction is rescaled as

U inner
2, infl = U2, recy

(
y+
infl

)
(4.9)

and

Uouter
2, infl = U2, recy (ηinfl) . (4.10)

The mean velocity in z direction is set to zero, as flows without spanwise gradients are considered
here.

The velocity profiles are then assembled as

ui, infl =
[
U inner

i, infl + u′ inner

i, infl

]
[1 − W (ηinfl)]

+
[
Uouter

i, infl + u′ outer

i, infl

]
W (ηinfl) ,

(4.11)

with the weighting function W (η) defined as

W (η) =
1

2

{
1 +

1

tanh (α)
tanh

[
α (η − b)

(1 − 2b) η + b

]}
, (4.12)

and the coefficients chosen as α = 4 and b = 0.2. This function was chosen so that W (0) = 0,
W (b) = 0.5 and W (η) = 1.
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Transposing the data from the recycling plane grid points to inlet grid points might require
interpolation due to a mismatch in grid point location. Lund et al. found a linear interpolation
to be sufficiently accurate for use with their second-order scheme.

Similarly, the rescaling operation requires the scaling parameters uτ and δ to be known both at
the recycling station and at the inlet. However, it turns out that the problem is overdetermined if
both uτ and δ are fixed independently at the inlet, therefore an additional compatibility relation
is needed to connect one of these parameters at the inflow to the solution at the recycle plane.
In the context of zero pressure-gradient turbulent boundary layers, Lund et al. (1998) remarked
that although several relations could be used to achieve this goal, they obtained the best results
by fixing δ at the inlet and by computing uτ, infl using

uτ, infl = uτ, recy

(
θrecy

θinfl

) 1
8

, (4.13)

with θ, the momentum thickness.

It should specified that in the current implemenation of the inflow method by Lund et al., the
viscous velocity at the inlet was computed slightly differently, as equation (4.13) also requires an
estimation of θinfl using empirical formulas. Instead, the friction coefficient at the inlet was first
determined using

cf, infl = 0.02

(
1

Reδinfl

) 1
6

, (4.14)

which is a power-law curve-fit approximation derived in White (2006, p 433). From there, the
viscous velocity at the inlet follows by

uτ, infl = U∞

√
cf, infl

2
, (4.15)

which proved as accurate as the method derived in equation (4.13).

4.2.2 The Recycling and Rescaling Method by Spalart, Strelets, and
Travin (2006)

An outer-coordinate rescaling method inspired on that by Spalart et al. (2006) was also imple-
mented, as a simplification to the method by Lund et al. (1998). In this method the inflow
velocity field is simply obtained by rescaling the velocity vector at the recycling station such
that

Uinfl

(
0,

y

δinfl

, z, t

)
= Urecy

(
xrecy,

y

δrecy

, z, t

)
, (4.16)

where δ corresponds to the 99%-thickness of the boundary layer. To determine δ, a spanwise
and time average of the recycling plane was computed on the fly.

Contrary to the original implementation by Spalart et al., no shift in z coordinate was used.
This choice is justified by the fact that in the simulations under consideration, the recycling planes
are located at 400 θ0 from the inflow, which is beyond the eddy coherence length determined by
Simens et al. (2009) for this type of inflow.
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4.2.3 A Small Note on Applying Recycling Methods to LES

In the context of Large-Eddy Simulations, it is important to make sure that the signal provided
to the inlet of a computational domain does not contain information at a higher frequency than
what the mesh can represent. Failing to do so might lead to an unphysical forcing of the computed
solution.

In the case of recycling and rescaling inflow methods, aliasing might occur when rescaling
from a thicker boundary layer downstream of the inflow to a thinner boundary layer at the inflow,
due to a possible decrease in boundary layer resolution. Whether aliasing can occur would be
dependent of the type of grid used, but if its effect appeared to be significant, a low-pass filtering
of the inflow information would have to be implemented.

It should be specified that such effects were not investigated in the current study, and that
no filtering was applied to the information provided as recycled inflow conditions. This was
done because neither the original paper by Lund et al. (1998) nor the paper Simens et al. (2009)
explicitly mentioned applying any type of filtering to the recycled flow field they used as inflow
condition. Theoretically, as the resolution at the recycling station is twice as high as at the
inflow, about 50% of the lower frequencies could be aliased through recycling. However, it could
be argued that the high discretization error noticed when using OpenFOAM, combined with
the SGS model viscosity, would diffuse the high frequency content out of the flow, decreasing or
removing aliasing issues. Unfortunately, due to time constraints, the assumption that filtering
was not required has not been verified a posteriori, and would have to be done in a follow-up
study.

4.3 Precursor Method

The precursor method implemented for the current study used data obtained from a secondary
channel flow simulation which was recycled and rescaled according to the method by Lund et
al. to provide on inflow condition. The channel flow was driven by a constant pressure gradient
dp
dx = 1, which allowed a few simplifications to the method by Lund et al.

Considering a channel flow of half-width h and length L, and driven by an average pressure
gradient ∂p

∂x , the mean shear stress will be defined as

τw = µ
∂u

∂y

∣∣∣∣
y=0

,

leading to the average force balance in the x direction

2h∆p − 2τwL = 0.

This equation simply states that the mean pressure change between x = 0 and x = L multiplied
by the cross-sectional area counterbalances the mean shear stress on the upper and on the lower
wall applied over the domain length. Having a constant pressure gradient, the change in pressure
over the domain will be defined as

∆p = −L
∂p

∂x
,

which will lead to

τw = −h
∂p

∂x
.
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The friction velocity was defined in equation (2.10) as being

uτ =
lν
tν

=

√
τw

ρ
.

Then, by simply choosing

ρ = 1,

h = 1,

− ∂p

∂x
= 1,

the friction term will become

τw = 1,

leading to a friction velocity

uτ = 1.

Therefore, the viscous velocity is chosen as uτ, recy = 1. Similarly, the boundary layer thickness
at the recycling plane is chosen as the half-channel width, leading to δrecy = 1.

No special rescaling was developed to account for the non-zero Reynold stresses in the mid-
dle of the channel flow, and it is anticipated that will affect the adaptation length and the
development of the flat plate boundary layer.

4.4 Random Inflow

A random turbulent inflow was also implemented, to determine whether it could compete with
recycled-inflow methods. Although quite elaborate random inflow models have been developed
in recent years, a relatively simple method was developed for the current test case. Since in
most practical problems, very little information is available a priori on the turbulent state of the
flow entering the LES domain. This immediately disqualifies the more elaborate random inflow
models available, as they are calibrated for very specific flow conditions. The current inflow
model is a good example of what can be used in the context of mixed RANS/LES simulation,
where the inflow has to be defined using the limited information available from a RANS solver.

The implementation of the current random inflow is inspired from that by Batten et al. (2004),
and is based on the construction of a perturbation field using Fourier modes with random phases
and amplitudes, and scaled with a tensor scaling based on a Cholesky decomposition of the
Reynolds stress tensor. The fluctuation field is computed using

vj (z, t) =

√
2

N

N∑

n=1

pn
j cos

(
2πϕn

j z + 2πωn
j t + φn

j

)
, (4.17)

where ϕ is the spatial phase, ω the temporal phase, and φ a random phase shift.
As LES is considered, care was taken to avoid unwanted physical forcing by adding modes

at the inflow beyond what the mesh could represent. A sharp cut-off filter was implemented
by choosing the random spatial phases so that the shortest wavelength imposed at the inflow
spanned at least 10 cells. The range of the random temporal phase was determined using a Fast
Fourier Transform of flat plate data obtained using the method by Lund et al. All variables were
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computed using random variables uniformly distributed between [0, 1] and then multiplied by
the prescribed range. The inflow velocity field was then assembled with

ui (y, z, t) = Ui (y) +
∑

j

aijvj (z, t) , (4.18)

where the amplitude tensor aij is related to the Reynolds stress tensor through

a11 =
√

R11,

a21 = R21/a11,

a22 =
√

R22 − a2
21,

a33 =
√

R33,

(4.19)

and were all aij elements not listed above were set to zero, and where values for the Reynolds
stress were obtained from DNS data. It can be noted that the a31 and a32 elements of the
Cholesky decomposition are missing in the equation above. This is due to the lack of flat plate
DNS Reynolds stress information needed for these terms, whereupon it was decided to set them
equal to zero. Comparing channel flow DNS Reynolds stress data, for which all the cross-stresses
were available, justified this choice, as the R31 and R32 stresses were found to be 3 orders of
magnitude smaller than the other stresses.

4.5 Controlled Forcing Method by Spille-Kohoff and Kal-
tenbach (2001)

To decrease the adaptation length of the random inflow, the forcing method by Spille-Kohoff
and Kaltenbach (2001) was used. Applying their method to the LES computation of turbulent
boundary layer on a very short domain using a random inflow with fluctuations based of random
Fourier modes with prescribed energy spectrum, the authors claimed an adaptation length of
6 δ0.

The method by Spille-Kohoff and Kaltenbach compares a time-averaged Reynolds shear stress
<u′v′> at a location x0 to a target Reynolds shear stress, and applies a forcing term to the normal
momentum equation to amplify or damp velocity fluctuations in the wall-normal direction. The
force was determined using

f (x0, y, z, t) = r (y, t)
[
u (x0, y, z, t)− 〈U〉z,t (x0, y)

]
, (4.20)

with the amplitude defined as

r (y, t) = αe (y, t) + β

∫ t

0

e (y, t′) dt′. (4.21)

The error function e (y, t) was computed using

e (y, t) = −ρ〈u′v′〉z,t (x0, y, t) − g (x0, y) , (4.22)

where the 〈〉z,t exponents denote an average in spanwise direction and in time, and where g (x0, y)
is the target stress.

In the current study, an averaging time window of Tavg = 2δ/U∞ was used, together with
α = 75 and β = 0.
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To avoid unrealistically large shear stress events, the forcing term f are only applied if the
following conditions are satisfied

|u′| < 0.6 U∞,

|v′| < 0.4 U∞,

u′v′ < 0,

|u′v′| > 0.0015 U2
∞

.

(4.23)
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CHAPTER 5

Baseline Results and Their Sensitivity

In the context of the current study determining the performance of different type of turbulent
inflow conditions, a reference method was sought to give a baseline for comparison in the frame-
work of coarse Large-Eddy Simulation. The recycled type inflows were known a priori to be the
most accurate for the simulation of turbulent, zero pressure-gradient flat plate boundary-layers,
and were therefore chosen as baseline solutions to which the more general precursor and ran-
dom inflow methods could be compared. The following chapter will evaluate the performance
of two recycled inflows developed by Lund et al. (1998) and by Spalart et al. (2006), through a
comparison of averaged flow quantities to DNS data.

5.1 Comparison Procedure and Numerical Setup

The following section will introduce the parameters which will be used to compare the recycled-
type of inflows by Lund et al. and Spalart et al., as well as the numerical domain and averaging
used to sample the computed data.

5.1.1 Comparison Procedure and Parameters

The performance of the inflow method by Lund et al. (1998) and that by Spalart et al. (2006)
will be evaluated using coarse incompressible Large-Eddy Simulation (LES) computations of a
turbulent flat plate boundary layer, and compared to DNS data by Schlatter and Örlü (2010)
and by Simens et al. (2009). To get a feel for how well each method performed, velocity means
and Reynolds stress averages were sampled, and compared to the DNS data. From now on, to
avoid ambiguity in the plots, the current implementation of the method by Lund et al. will be
refered to as “Recycling-I” in plot legends, and the implementation of the method of Spalart
et al. will be refered to as “Recycling-II”.
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As discussed in the introduction, two specific parameters allowing a straightforward compari-
son between different inflow conditions will be considered. First of all, the evolution of the shape
factor H as a function of Reynolds number Reθ will be used, as it allows the comparison of two
integral properties of a turbulent flow which do not depend on estimates of skin friction. The
shape factor was furthermore shown by Chauhan et al. (2009) to be a sensitive indicator of the
quality of the boundary layer. The evolution of the skin friction coefficient will be considered
independently, as according to Schlatter and Örlü (2010), it allows the indirect monitoring of
the local level of turbulent activity withing the boundary layer.

For compactness, only the mean and Reynolds stress profiles of the inflow from the method
by Lund et al. will be extensively presented, as they showed the best match with DNS. The mean
and Reynolds stress plots of the method by Spalart et al. will not be included in this chapter,
as it was observed that they did not contribute to more information than what the plots of the
shape factor and skin friction coefficient already described.

Using the shape factor and skin friction coefficient evolution, the adaptation length of the
inflows by Lund et al. and Spalart et al. will be estimated. As defined in the introduction to this
thesis, in this study, the adaptation length will be defined as the domain length needed before
the shape factor and skin friction coefficient follow a streamwise evolution similar to that of the
DNS results. The longest of the two lengths will then be chosen as adaptation length. Formally,
the adaptation length could be defined as the length after which

dH

dReθ

∣∣∣∣
sim

≈ dH

dReθ

∣∣∣∣
DNS

,

and

dcf

dReθ

∣∣∣∣
sim

≈ dcf

dReθ

∣∣∣∣
DNS

.

5.1.2 Computational Procedure

LES computations were performed on a 60 δ0 × 4 δ0 × 8 δ0 domain using a second-order finite-
volume method. A mean freestream velocity U∞ = 20 m/s and a viscosity ν = 0.001937 m2/s
were chosen such that a Reynolds number Reθ = 620 was reached at the inlet, for the chosen
initial boundary layer thickness δ0 = 0.5 m. This combination of domain size and flow parameters
also ensured that the domain height was at least twice that of the maximum boundary layer
thickness in the domain, while capturing at least 5 to 6 low-speed streaks in spanwise direction.
The domain was also long enough to ensure that the two lower Reynolds numbers stations from
Schlatter and Örlü, Reθ = 670 and Reθ = 1000, could be reached, without being too close to the
outflow boundary.

The grid used was uniform in all directions, with a resolution of 320× 64× 64 cells. Periodic
boundary conditions were used in spanwise direction. Neumann boundary conditions were im-
posed on the outlet and the top of the domain for the velocity, and on the inlet and the outlet
for the pressure. A Dirichlet boundary condition was applied for the pressure on the top of the
domain.

The extraction plane for the recycling methods was placed at 48 δ0 from the inflow, or 400 θ0,
beyond the eddy coherence length determined by Simens et al. (2009).

During the simulations, velocity means and perturbations were sampled and time averaged
at planes located at every 2 δ0 in streamwise direction. The mean velocities were first sampled
for 5 time units before starting the perturbation sampling, which were sampled for another 35
time units. This is equivalent to the 1400 inertial timescales δ/U∞ used by Lund et al.
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Due to under resolution in the viscous sublayer, the skin friction coefficients, computed using
finite difference applied to equation (2.10), were underpredicted by about 10%. This was also
observed by Sagaut et al. (2004) and Spyropoulos and Blaisdell (1998). To overcome this under-
prediction, new friction coefficients were determined using a Clauser chart technique, in which
the mean velocity profile is fitted to the logarithmic law of the wall. This fit yields a viscous
velocity uτ , from which a new friction coefficient can be determined. This method is often used
in experimental flat plate boundary layer measurements, although there is some debate on the
exact values to be used for the law of the wall. Other methods based on velocity profile fitting
have also been investigated, but proved cumbersome and less accurate. More details on the
Clauser chart technique can be found in Wei et al. (2005).

Readers interested in reproducing the results presented in the current chapter can find the
exact solver and domain settings used for the current inflow study in appendix 8.

5.2 A Detailed Analysis of the Results Obtained Using the

Inflow by Lund et al. (1998)

In this section, more insight will be given into the quality of the results obtained using the
recycling and rescaling method by Lund et al. (1998).

The following plots will show the mean flow averages in streamwise and wall-normal direction
and the Reynolds stress averages corresponding to a sampling station were the local averaged
Reynolds number is Reθ = 670. As the sampling planes are located every 2 δ0, it is highly
probable that such a Reynolds number would be reached between two sampling planes, in which
case a linear interpolation between two adjacent planes is applied. For the current inflow case,
the Reynolds number Reθ = 670 was reached at x/δ0 = 3.55 from the inflow.

The mean velocity in streamwise and wall-normal direction is shown in figure 5.1 and 5.2
respectively, together with the mean profiles from Schlatter and Örlü (2010) at the same Reynolds
number. From those figures, it can be seen that the streamwise mean velocity profile is well
captured by the grid, even though the mesh resolution near the wall is relatively low. On the
other hand, the wall-normal mean velocity profile appears to match the DNS data less accurately,
especially close to the wall were numerical oscillations at the grid frequency are observed, and
just above the boundary layer where the mean velocity is slight over-estimated.

The cause of the oscillations could not be determined with certainty, and similar oscillations
were also observed in streamwise direction, as will be illustrated when comparing integral quan-
tities in later figures. Several stabilizing discretization schemes were tested to try to remedy to
this problem, but without success. However, it was observed that the numerical oscillations in
wall normal direction decreased when increasing the grid resolution, as illustrated in figure 5.3.

The time and spanwise-averaged Reynolds stresses can be seen in figure 5.4. As can be seen,

the u′2
+

and w′2
+

are slightly overpredicted, with a noticeable peak close to the wall. This peak
is attributed to mesh under-resolution close to the wall, as the peaks were shown to decrease

with increasing grid resolution. Further analysing figure 5.4 shows that the uv′
+

stresses are
well captured by the mesh, although being very slightly overpredicted in the upper half of the

boundary layer. Similarly, the v′2
+

show a good match to DNS results, albeit with a small
underprediction.
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Figure 5.1: U+ Mean velocity as a function of y/δ

Figure 5.2: V + Mean velocity as a function of y/δ
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Figure 5.3: V + Mean velocity as a function of y/δ, on a 420× 80× 80 grid

Figure 5.4: Reynolds stresses as a function of y/δ. The lines are from DNS data by Schlatter and
Örlü.
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5.3 Pressure Gradient and Outer Mean-Velocities

The following subsection will analyse the pressure gradient and the mean velocity components
on the top of the computational domain for the simulations made using the inflow procedure by
Lund et al. The general idea behind this analysis it to verify that the simulation ran conforms to
zero-pressure gradient flow conditions, where the mean velocity in streamwise direction should
be constant, and equal to U∞, and where the mean velocity in wall-normal direction should
follow a certain decay. The pressure gradient and mean quantities were averaged in spawnwise
direction, and averaged in time over 1400 inertial timescales δ/U∞.

Figure 5.5: Evolution of streamwise pressure gradient dp

dx

From the pressure gradient plot shown in figure 5.5, one can notice two pressure gradient drops
in the inflow and outflow regions of the computational domain, where the pressure gradient
departs from a fluctuating average around zero, to small negative pressure gradient values of
around dp

dx = −0.001. The pressure gradient change at the inflow of the domain can be linked
to the adaptation region of the flow. Interestingly, the pressure gradient seems to stabilize
back around zero after a development length of 8 δ0, which is the adaptation length Lund et al.
(1998) observed when using this type of inflow. The pressure gradient change at the end of the
computational domain is caused by an adaptation of the flow to the numerical outflow boundary,
of Neumann type, which creates an abrupt truncation of the vortices leaving the domain. It is
legitimate at this point to ask oneself in how far a better outflow condition would help increasing
the useful length of the computational domain. Using a convective boundary condition, Simens
et al. (2009) report loosing the last 1.5 exit boundary layer thicknesses of the domain to outflow
influences, which is about half the length lost here with a simple Neumann boundary condition.
Combined with the fact that the influence of the pressure gradient is probably neglegible, the
gain seemed minimal, so the Neumann boundary condition on the outflow was kept. Other
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solutions tried to decrease the effects of the outflow boundary on the numerical results will be
further discussed in section 5.5, when comparing the shape factor and skin friction evolutions.

Figures 5.6 and 5.7 display the evolution in streamwise and wall-normal mean velocity at the
top of the computational domain, going downstream. The empirical wall-normal mean velocity
evolution shown in figure 5.7 is based on data from an external code for the boundary-layer
equations, and is only used to have a qualitative comparison of what the decay in wall-normal
velocity should look like.

Figure 5.6: Evolution of streamwise mean ve-
locity U∞

Figure 5.7: Evolution of wall-normal mean ve-
locity V∞

From figure 5.6, it is clear that the mean velocity U∞ can be considered constant, a good
indication that no significant streamwise acceleration is present in the computational domain.
On the other hand, the wall-normal mean velocity evolution, as show in figure 5.7, is clearly
not matching the theoretical evolution. This mismatch highlights one of the most important
unsolved challenges encountered when applying Lund’s recycling procedure to the computation
of a zero pressure-gradient boundary layer. It proved difficult to match both the zero pressure-
gradient boundary condition, without flow acceleration in streamwise direction, and the correct
wall-normal mean velocity. This is probably due to the proximity of the upper-boundary with
the boundary layer being computed, which imposes stringent requirements on the numerical
boundary condition to accurately reproduce physical effects which would normally take place
beyond the edge of the computational domain. Unfortunately, various attempts at improving on
the upper boundary condition, mostly focusing on applying suction on the top of the domain,
proved unsuccessful. They either led to numerical instabilities, for example when trying to
impose a prescribed V∞ with a fixed pressure, or proved generally ineffective, as when imposing
both U∞ and V∞ on the top boundary, while allowing the pressure to change. It was therefore
to chosen to impose a Dirichlet type boundary condition on the pressure, and a Neumann type
boundary condition on velocity for the upper boundary, ensuring the flow did not accelerate in
streamwise direction, at the cost of having a mismatch in the mean wall-normal velocity.

It may appear that the mismatch obtained in wall-normal velocity due to the current choice
of boundary conditions is trivial, as the wall-normal mean velocity V + is 3 orders of magnitude
smaller than the mean flow velocity U+

∞
. However V + is thought to have a significant influence

on the turbulent solution as it evolves downstream in the domain. This solution discrepancy will
be further discussed in the next section.

Another unresolved issue which can be conceptually highlighted by figure 5.7 is that equation
(4.10) imposes the exterior mean velocity extracted at the sampling plane as inflow condition,
without accounting for streamwise decay in V∞. This problem could be simply resolved by scaling
the entire mean profile at the inlet until the exterior velocity matches a certain value. However,
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no accurate estimation of V∞ as a function of boundary layer thickness was found, making such a
rescaling difficult. Indeed, different models were implemented, and were found to produce more
inaccurate results than when just leaving the boundary condition how it originally was.

5.4 Revisiting Means and Reynolds Stresses

A closer look at figures 5.1 to 5.4 would show that the y coordinates are non-dimensionalized
by the local boundary layer thickness, yielding so called outer-coordinates. In terms of non-
dimensionalization of turbulent boundary layer flows, two straightforward choices are possi-
ble. One can either choose to compare data using the inner-coordinates introduced in equation
(2.11), which allows to compare small-scale or viscous-related phenomena, or choose to use outer-
coordinates, as in the figures above, to compare flow effects influenced by larger scales. The choice
of outer-coordinate scaling made here-above is logical in the context of zero pressure-gradient
boundary layer computations, due to the form of self-similarity which then emerges for certain
flow quantities. It has the disadvantage, however, of masking slight mismatches appearing as the
flows evolves going downstream. The switch will now be made to inner-coordinates to discuss
the mismatches in question.

Figure 5.8: Mean streamwise velocity at two sampling stations Reθ = 670 and Reθ = 1000, in y+

coordinates

Comparing the Reθ = 670 averages in figures 5.8 and 5.1, it can be seen that although the
mean profile seems like a very good match with DNS in y/δ coordinates, the same profile in y+

coordinates suffers from a slight velocity defect in the upper part of the boundary layer. It would
be legitimate to think that the mismatch is only due to an error made in estimating the viscous
velocity uτ with the Clauser plot technique, but the non-dimensional U+ mean velocity shows a
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very good intercept of the DNS data in the freestream part of the flow, proving the right viscous
velocity was estimated. This indicates that the mismatch observed is due to a mismatch in the
flow properties.

Shifting to the Reθ = 1000 data in y+ coordinates, it can be seen that the velocity defect on
the top part of the boundary layer is much more pronounced. This time, the intercept of the
non-dimensional mean velocity U+ in the freestream region shows that viscous velocity uτ was
slightly overpredicted, which will also affect the y+ coordinate scaling. Nonetheless, the slight
overprediction in uτ is not sufficient to explain the large velocity defect observed in the upper
part of the boundary layer, between y+ = 150 and y+ = 400. Such a defect is a clear indication
that the solution is diverging from DNS results going downstream.

This divergence effect can also be found in the Reynolds stresses, as shown in figure 5.9. Once

more, the match at Reθ = 670 is excellent, and comparable to the Reynolds stress v′2
+

match
in figure 5.4. And identically, an important mismatch can be seen at Reθ = 1000 in the upper
part of the boundary layer. Similar mismatches were noticed in all the Reynolds stresses.

Figure 5.9: v′2
+

at two sampling stations Reθ = 670 and Reθ = 1000, in y+ coordinates

From both figures presented in this section can be observed that the computed solution
diverges from DNS results going downstream. As the match with DNS at the sampling station
of Reθ = 670 is excellent, it can be concluded that the mismatch is not a result of inflow
modeling errors. The differences can also not be attributed to under-resolution, as, once more,
the upstream results were a good match to DNS, and because the relative resolution in the
boundary increases going downstream. It was therefore concluded that the solution divergence
observed was probably caused by the influence of the artificial top boundary condition, which
was not defined accurately enough to supply a physical wall-normal mean to the domain going
downstream. Such an effect would becomes more important as the ratio between domain height
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and by boundary layer thickness decreases as the solution evolves downstream. This can be
illustrated by the plot of the wall-normal mean velocity from the sample station at Reθ = 1000,
shown in figure 5.10, where the non-dimensional wall-normal mean velocity was shown to be
overpredicted. This observation, combined with an overprediction in uτ at higher Reynolds
number, implies that the dimensional wall-normal mean velocity is at least 10% larger than
what it should be to accurately simulate a flat plate flow.

Figure 5.10: V + Mean velocity as a function of y/δ

To try to substantiate this conclusion that the mismatch observed is due to the influence
of the top boundary condition, a new simulation was run on a domain twice as high as the
baseline domain, keeping the same grid stretching. Such a domain should have had the effect of
decreasing the influence of a poorly defined top boundary condition on the computed solution.
Unfortunately, the results obtained could not support the postulate claim that the mismatches
were due to the top artificial boundary condition, as the mismatch with DNS was only increased
at Reθ = 1000 compared to the solution on the baseline domain. In fact, the wall-normal mean
on the top part of the boundary was found to be worse than that on the baseline domain,
as illustrated in figure 5.11. Since a placing of the outer-boundary far enough away should
eliminate this source of error, this result indicates that the solution is still quite sensitive to the
approximations on the upper artificial boundary.

Thus, it is believed that an artificial boundary condition representing a more physical con-
dition for the top of the current computational domain will largely remedy to the solution mis-
matches observed in this section. It is unfortunate that the attempts at implementing such a
boundary condition were unsuccessful, as mentioned in section 5.3.
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Figure 5.11: Evolution of wall-normal mean velocity V∞ for two domains of different height

5.5 Adaptation Lengths

Using the shape factor and skin friction coefficient evolution, the adaptation length of the inflows
by Lund et al. and Spalart et al. will be estimated. The comparison procedure outlined in
subsection 5.1.1 will be used.

Figures 5.12 and 5.13 show the evolution of shape factor H = δ∗/θ and skin friction coefficient

cf = 2 (uτ/U∞)
2

as a function of Reθ. Figure 5.12 also includes an empirical shape factor fit,
based on experimental data, and taken from Monkewitz et al. (2007), together with DNS data
points from Schlatter and Örlü (2010) and Simens et al. (2009). It is important to underline
that this empirical formula was derived using medium to high Reynolds number experiments,
and therefore solely serves as a qualitative approximation of the shape factor evolution. The
empirical fit was plotted with a ±2% tolerance. Similarly, figure 5.13 plots the recomputed
friction coefficients estimated using the Clauser plot technique, together with DNS data points,
and with an empirical friction coefficient fit by Smits et al. (1983). This fit, based on a power

law, estimates the friction coefficient as cf = 0.024 Re
−1/4

θ , and is plotted in figure 5.13 with

a ±5% tolerance. It was shown by Schlatter and Örlü to be a surprisingly accurate fit to low
Reynolds-number DNS friction coefficients.

Although both shape factors show a very different evolution in the first 100 Reθ of the compu-
tational domain, they tend to following a similar evolution after around Reθ = 860, and arguably
also the same evolution as DNS from the same point onwards. This corresponds to an adaptation
length of x/δ0 = 18 for the method by Lund et al. and an adaptation length of x/δ0 = 22 for
the method by Spalart et al., base on shape factor.

Turning to figure 5.13, a much smoother and comparable evolution of the friction coefficient
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Figure 5.12: Shape factor evolution as a function of Reθ

as a function of Reynolds number is shown for both inflow methods. A clear jump in skin friction
can be observed at around Reθ = 700 for the method by Lund et al., after which it arguably
more or less follows the DNS evolution A closer inspection of the data averages places the jump
at x/δ0 = 6.5. The skin friction of the method by Spalart et al. also show a clear inflection
point at Reθ = 670, after which it follows an evolution similar to the method by Lund et al. The
Reynolds number at the inflection point corresponds to an adaptation length x/δ0 = 8. Contrary
to the shape factor adaptation lengths, the adaptation lengths determined from the skin friction
are comparable to that determined by the authors of the original inflow methods.

It should be noted that both figure 5.12 and 5.13 show oscillations in their value at higher
Reynolds numbers, going downstream. This is caused by the influence of the numerical outflow,
of Neumann type, which creates an abrupt truncation of the vortices leaving the domain. To
try to remedy to this problem, both an advective and a convective type of outflow boundary
conditions were tested, and proved effective in reducing the oscillations at the outlet, at the cost
of creating oscillations at the inlet. The original Neumann boundary condition was therefore
kept.

5.6 A Summary of the Sensitivity of the Results to the
Domain and Grid

From the baseline 60 δ0 × 4 δ0 × 8 δ0 domain with uniform 320× 64 × 64 mesh, several different
domains were tested:

• A 60 δ0×4 δ0×16 δ0 domain with uniform 320×64×128 mesh, doubling the domain width
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Figure 5.13: Skin friction coefficient evolution as a function of Reθ

while keeping the grid spacing constant, to test whether the domain was large enough. No
changes were noticed in mean velocities, Reynolds stresses, shape factor or skin friction
coefficient evolution.

• A 60 δ0×84 δ0×8 δ0 domain with uniform 320×128×64 mesh, doubling the domain height
and keeping the grid spacing constant, to test what the effect of increasing the distance
between the upper-boundary and the solution would be. Although it was expected that the
results would improve, it was found that the mean velocity averages and Reynolds stresses
were actually slightly worse than those obtained on the baseline domain.

• A 60 δ0×4 δ0×8 δ0 domain with uniform 400×80×80 mesh, keeping the domain constant

while uniformly increasing the grid resolution. It was found that the u′2
+

and w′2
+

where
a slightly better match to DNS than the baseline domain, mainly through a small decrease
of their overprediction near the wall. The mean velocities and other Reynolds stress were
found to be only marginally more accurate. It was noticed, however, that the shape factor
curve was shifted upward, and was more accurately following the DNS results. Similarly,
the skin friction coefficient curve was shifted downwards, closer to the DNS results. To

illustrate those effects, a plot of the u′2
+

stress and shape factor evolution are shown in
figures 5.14 and 5.15.

• A 60 δ0 × 4 δ0 × 8 δ0 domain with a very lightly stretched 320 × 64 × 64 mesh, to assess
the effect of grid stretching on the solution. The grid stretching was hyperbolic, chosen
such that the largest cell on top of the domain was twice the size of the small cell next to
wall. The results were unexpected, as all quantities were a much worse match to DNS than
the baseline domain. The wall-normal mean velocity V was largely underpredicted, and a
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Figure 5.14: u′2
+

stress on two domains with different uniform mesh resolution

velocity defect appeared in the streamwise mean velocity. Similarly, the Reynolds stresses
where underpredicted and more smeared out in wall-normal direction, a good indication
of numerical diffusion. To illustrate those effects, a plot of the wall-normal mean velocity
and skin-friction coefficient evolution are shown in figures 5.16 and 5.17.

• Finally, a 60 δ0×4 δ0×8 δ0 domain was used, and three test cases were compared with either
a doubling of resolution in wall-normal, or in streamwise, or in spanwise direction, keeping
the grid uniform. This was done to assess the sensitivity of the solution to cell aspect-ratio.
The results were once more unexpected, with variations up to 20% in Reynolds stresses,
and again, a noticeable smearing-out in wall-normal direction. This effect is illustrated for

the w′2
+

Reynold stress in figure 5.18, for a sampling station at Reθ = 1000.
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Figure 5.15: Shape factor evolution on two domains with different uniform mesh resolution

Figure 5.16: Wall-normal mean velocity, without and with grid stretching
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Figure 5.17: Shape factor evolution on two domains, without and with grid stretching

Figure 5.18: Sensitivity to cell aspect ratio

F.T. Pronk 54 MSc. Thesis



Placement of the Recycling Plane

5.7 Placement of the Recycling Plane

In this section, the effect of placing the recycling planes at the alternate locations used by the
original researchers will be presented. In their original flat plate computations, Lund et al. (1998)
placed their recycling plane at x = 8 δ0, while Spalart et al. (2006) placed their recycling plane
at x = 5 δ0. As the means and Reynolds stresses were very similar to those already presented
in this chapter, they will not be reproduce here, for compactness. The shape factor and skin
friction evolution, did, however, show different evolutions to those shown in the previous section.
They can be seen in figures 5.19 and 5.20 respectively.

Figure 5.19: Shape factor evolution as a function of Reθ

As can be seen from the shape factor plot, both shape factor are now much flatter, and follow
the evolution of the DNS shape factor much more closely. Therefore, both adaptation lengths
are much shorter. The method by Spalart et al. follows the DNS evolution from Reθ = 700
onwards, corresponding to an adaptation length x/δ0 = 6. Similarly, the method by Lund et al.
follows DNS evolution from Reθ = 800 onwards, yielding an adaptation length x/δ0 = 12.

The plots of the skin friction coefficient evolution, although being straighter than their coun-
terparts of the previous section, show very similar adaptation lengths, so will new adaptation
lengths will not be re-estimated here.

The interesting observation brought by the plots in this section is that placing the recycling
plane close to the inflow, in the part most susceptible to creating high correlation in the flow,
seems to produce a more usable solution, due to the shorter adaptation lengths, and more
“physical” shape factor and skin friction evolution. However, such observations are more likely
to be created by fortuitous mutually canceling effects. In fact, Simens et al. (2009) warn that
placing the recycling plane in the first x/θ0 = 60 would create artificial periodicity in the flow,
which can be detected even in instantaneous velocity maps. As the recycling plane for the method
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Figure 5.20: Skin friction evolution as a function of Reθ

by Spalart et al. was placed at x/θ0 = 40 in the current case being discussed, such effects should
be expected. It cannot be stressed enough that solution periodicity should be avoided at all
costs, since it will lead to unphysical forcing of the solution, and unphysical results. Simens
et al. determined that the eddies in the current type of flows would probably stay coherent for
200 to 300 θ0, which implies that recycling plane should be put beyond this coherence region.

5.8 On The Need Of Determining The Correlation Length

The observations made at the end of the previous section motivate the need for a proper corre-
lation length determination when using the recycling and rescaling type of inflows, to ensure the
recycling plane is placed beyond the correlation length of the inflow to avoid unphysical forcing
and artificial periodicity. The capability of such inflows to create highly periodic flows should not
be underestimated. Nikitin (2007) showed that a periodicity with less than 1% deviation could
be maintained for more than 70 pipe radii when rescaling information from a periodic domain
to a pipe flow.

Unfortunately, no convincing correlation length determination was obtained for the current
inflow study due to a lack of time. Early correlation plots of unfiltered data proved inconclusive.
Therefore, a proper correlation length determination would have to be done to confirm that
the recycling plane was, indeed, put beyond the coherence length of the inflow. Very detailed
guidelines for such a study are outlined in the paper by Simens et al. (2009), and extra information
on coherence in turbulent flows can be found in Marusic and Heuer (2007). It should be mentioned
that such a study is not a trivial one to do, and, that when doing such as study, one should not
forget that the eddies in the flow correlate with local y/δ, as this is often overlooked when
determining correlation lengths of spatially evolving boundary layers.
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CHAPTER 6

Inflow Generation Comparison

In this section, the more general precursor, random inflow and random forced methods will be
compared to the baseline results obtained with recycling. Specifically, the following types of
inflows will be considered: an inflow using the recycling and rescaling method by Lund et al.,
an inflow using the outer-coordinate recycling method by Spalart et al., a precursor-like method
using channel-flow data rescaled according to the method by Lund et al., a random inflow method
using the approach described in chapter 4.4, and a random inflow method using the approach
described in chapter 4.4 augmented with the forcing plane method by Spille-Kohoff and Kalten-
bach.

6.1 Inflow Comparison and Numerical Setup

The comparison procedure to assess the performance of the various inflows is similar to that
outlined in subsection 5.1.1 for the baseline study, and will not be repeated here. It should be
mentioned that only the shape factor and skin friction coefficient evolution plots will now be
used as comparison tools.

The same numerical setup was used for all test cases, and is identical to that described in
subsection 5.1.2. Some extra parameters will be added here for completeness. The channel flow
simulation for the precursor method was run with a 643 mesh on a 12 δ0 × 4 δ0 × 8 δ0 domain,
with the same viscosity ν = 0.001937 m2/s, ensuring the grid resolution was identical to that
of the flat plate, at similar physical flow conditions. Periodic boundary conditions were used in
spanwise and streamwise direction, and the flow was driven by a source term dp/dx = 1, added
to the Navier-Stokes equations.

When running the forcing method by Spille-Kohoff and Kaltenbach (2001), 4 forcing planes
where used at locations x/δ0 = 0.6, 1.3, 2.6 and 5.2, with an averaging window of Tavg = 2 δ/U∞,
together with weight factors α = 75 and β = 0.
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Readers interested in reproducing the results presented in the current chapter can find the
exact solver and domain settings used for the current inflow study in appendix 8.

6.2 Results

Figures 6.1 and 6.2 show the evolution of shape factor H = δ∗/θ and skin friction coefficient

cf = 2 (uτ/U∞)
2

as a function of Reθ, with the first sampling points located at a distance
x/δ0 = 2 from the inflow. Both figures also include the empirical shape factor and skin coefficient
fits described in section 5.5.

Figure 6.1: Shape factor H evolution as a function of Reθ

As presented in chapter 5, the recycling method of Lund et al. and that by Spalart et al.
show very similar shape factor evolution in figure 6.1, although the Reynolds number at the first
sampling station of the recycling method of Spalart appears to be slightly lower than the expected
value of Reθ = 620. Nonetheless, both methods show a reliable shape factor growth. The effect of
the forcing method by Spille-Kohoff and Kaltenbach on the random inflow is also clearly visible.
Compared to the inflow without forcing, the random inflow with forcing planes displays a much
more realistic evolution of the shape factor. Interestingly, despite underpredicting the absolute
shape factor when compared to the recycling method by Lund et al., the precursor method seems
to result in a shape factor following the correct growth trend.

Similar trends can be observed in the evolution of the skin friction, as shown in figure 6.2.
The recycling methods by Lund et al. and Spalart et al. produce very similar results, although it
can be argued that recycling method by Spalart et al. needs a slightly longer adaptation length
before following the same evolution trend as the recycling method by Lund et al. For the random
inflow, once again, the effects of the forcing planes are substantial, that with forcing planes having
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Figure 6.2: Friction coefficient cf as a function of Reθ

a more realistic skin friction evolution than the unforced random inflow. It is interesting to notice
that after adaptation, the skin-friction coefficient evolution of the random inflow with forcing
is almost parallel to that of the recycling type of inflows. And finally, the precursor method
correctly simulates a decreasing skin friction as a function of increasing Reynolds number, albeit
with an over-estimation of the skin-friction.

From figures 6.1 and 6.2, a qualitative adaptation length can be determined, following the
definition introduced in subsection 5.1.1. The adaptation lengths of the recycling inflow methods
by Lund et al. and Spalart et al. were previously determined in chapter 5 to be equal to x/δ0 = 18
and x/δ0 = 22 respectively.

From the shape factor plot of the random inflow, no true adaptation length can be determined,
as with the current domain length no part of the evolution reaches a point where it follows
shape factor evolution of DNS. From the current evolution, it could be expected, however, that
the random inflow would converge towards DNS evolution, given enough adaptation length.
Switching to the random inflow with forcing, it can be argued that its shape factor evolution
follows DNS from Reθ = 900 onwards, corresponding to an adaptation length of x/δ0 = 30.
The shape factor evolution of the precursor method shows a similar evolution to DNS relatively
rapidly, at around Reθ = 700. This corresponds to an adaption length of x/δ0 = 18, which
is similar to the adaptation length determined for the method by Lund et al. (1998), based on
shape factor.

When analysing the skin friction coefficient evolutions, it is once more difficult to determine
an adaptation length for the purely random inflow, as it does not yet follow the DNS evolution.
The random inflow with forcing planes, on the contrary, rapidly shows a stable evolution, from
Reθ = 600 onwards. This corresponds to an adaptation length of x/δ0 = 8. The adaptation
length of the precursor method is also slightly difficult to determine as it does not follow a
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slightly curved decay which a correct evolution should have. However, the evolution of the skin
friction seems to follow a smooth trend from Reθ = 550 onwards, which would correspond to an
adaptation length of x/δ0 = 8.

Choosing the longest of the two adaptation lengths for every test case, it can be determined
that the precursor method has the shortest adaptation length, on par with that from Lund
et al., at x/δ0 = 18, followed by the random inflow with forcing which has an adaptation length
of x/δ0 = 30.

It is interesting to notice that, although the shape factor of the random inflow with forcing
planes needed a relatively long adaptation length, the skin friction coefficient followed a physical
evolution relatively rapidly, especially when compared to the purely random inflow.

6.2.1 Turbulence Evolution

In this section, a qualitative comparison of turbulence evolution within the computational domain
will be made, by visualising planes of instantaneous velocity magnitude extracted at different
streamwise locations. 4 planes where extracted per domain, at locations x/δ0 = 0, 10, 20 and
30. The results from the method by Spalart et al. (2006) are omitted here, as they were similar
to the method by Lund et al. (1998).

Figure 6.3: Streamwise turbulence evolution, Lund et al.

Figure 6.4: Streamwise turbulence evolution, precursor-like method

Comparing the precursor-like method to the baseline inflow by Lund et al., one can unmis-
takably recognize the truncation of the channel-flow boundary layer in figure 6.4, at y = δ0.
Clearly, the structure of the channel-flow boundary layer is different to that from the flat-plate,
as the perturbations do not, on average, decrease back to zero towards the boundary-layer edge.
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Figure 6.5: Streamwise turbulence evolution, random inflow without forcing planes

Figure 6.6: Streamwise turbulence evolution, random inflow with forcing planes

This explains the extensive patches of high velocity, in red, in the upper part of the boundary-
layer. Nonetheless, the turbulence seems to be similar in chaotic content and intensity variation
as that from the baseline solution. This illustrates once more the quality and usability of the
precursor-like inflow method.

Evaluating the streamwise evolution of the random-inflow method without forcing planes,
show in figure 6.5, one can see that the frequency limit imposed on the method may have been
slightly conservative, as little “chaos” is observable at the inflow compared to the baseline inflow.
Nonetheless, the turbulence seems to adapt reasonably quickly, as the chaotic content in the third
plane already seems quite physical. A slight sideways bias can be observed in the second plane,
which is due to the random inflow implementation. This bias was observed in every run of the
random inflow, and might be due to the solver trying to impose a divergence-free condition on
in the inlet.

The effect of the forcing planes on the random-inflow method case are also apparent, as can
be seen in figure 6.6. The sideways bias has been removed, to be replaced by a more chaotic and
turbulence-like boundary layer. It should be noted that there are few differences visible visually
between the two random inflows in the last two planes.

Comparing both random inflows to the baseline inflow by Lund et al., it seems that in the last
two planes of the random inflow methods the turbulence does not quite approach the chaotic
intensity that can be seen in baseline results. This might be remedied by including higher
frequency content at the inflow.

To further illustrate the differences between the various inflows, their Reynolds stresses at
a specific downstream extraction plane are also plotted. The plane location chosen was at
x/δ0 = 16, corresponding to the inflection point in skin-friction coefficient evolution of the
random inflow. In figure 6.2, this corresponds to the point at Reθ = 630. The Reynolds stresses
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can be seen in figures 6.7 to 6.10.

Figure 6.7: u′2
+

Reynolds stresses, at x/δ0 =
16

Figure 6.8: v′2
+

Reynolds stresses, at x/δ0 =
16

Figure 6.9: w′2
+

Reynolds stresses, at x/δ0 =
16

Figure 6.10: uv′2
+

Reynolds stresses, at
x/δ0 = 16

The Reynolds stress plots concur with what was illustrated in the shape factor and skin-
friction evolution plots, as well as the qualitative streamwise extraction planes, namely the
quality of the precursor-like simulation, and the effect of the forcing planes on the random-inflow
solution. Indeed, the Reynolds stress of the precursor method shows to be similar to that of the
recycling type of inflows, albeit very slightly underpredicted. In contrast, the Reynolds stresses
of the random inflow appear to be largely underpredicted, although showing the correct trend.
However, the effect of the forcing method by Spille-Kohoff and Kaltenbach is clearly visible on
the Reynolds stresses, as they are much closer to the reference solution. Is is important to notice
that the best Reynolds stress match by the random inflow method with forcing is obtained for

the uv′
+

stresses, which is consistent with the implementation of the forcing method, as it is

based on a correction term calculated using the difference of the computed uv′
+

with a target
stress.

The Reynolds stresses of an extraction plane further downstream located at x/δ0 = 32, are
shown in figures 6.11 to 6.14, to illustrate the streamwise evolutions of the different inflows.
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Figure 6.11: u′2
+

Reynolds stresses, at x/δ0 =
32

Figure 6.12: v′2
+

Reynolds stresses, at x/δ0 =
32

Figure 6.13: w′2
+

Reynolds stresses, at x/δ0 =
32

Figure 6.14: uv′2
+

Reynolds stresses, at
x/δ0 = 32

From those plots can be seen that the Reynolds stresses of the recycled type inflows, the
precursor method and the random inflow with forcing planes are now very similar. It is also
encouraging to note that the random inflow solution is converging towards the baseline solution
from the inflow by Lund et al., which confirms the convergence that was suspected by the shape
factor and skin friction evolution plots.

6.2.2 Practical Remarks on the Forcing Method by Spille-Kohoff and
Kaltenbach (2001)

There are a few points worth mentioning when applying the forcing method by Spille-Kohoff and
Kaltenbach to a flow problem.

First of all, it should be realised that the force term added to the Navier-Stokes equation
does not have the correct physical units. By setting β = 0 in equation (4.21), the force term can

be determined to have dimensions m3

s3 , whereas, in incompressible flows, the force term should
have dimensions m

s2 . This illustrates that the relations relating the error in Reynolds stress to
the forcing term are purely empirical, and can perhaps be improved by trying to link the forcing
terms to more physical quantities from the flow.

Another major deficiency of the original method by Spille-Kohoff and Kaltenbach is that
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when determining the amplitude of the forcing term

r (y, t) = αe (y, t) + β

∫ t

0

e (y, t′) dt′,

the integral multiplied by the β coefficient is supposed to act as a form of “memory” and filter,
avoiding high frequency changes between time steps. However, such an approach implies that
the error term e (y, t) also becomes negative, to avoid an error accumulation through the integral
term. In the current study, the integral term only increased over time, leading to an unbounded
amplitude for the forcing term, and subsequent solution divergence. So ideally, a new type of
filter should be implemented to avoid high frequency changes in the forcing terms.

Yet another disadvantage of the forcing method is that the α and β coefficients have to be
adjusted by trial and error until a reasonable solution is obtained, which is unpractical. Similarly,
the number of forcing planes, and their location, is also test-case dependant, and also has to be
adjusted by trial and error.

Nonetheless, the current forcing method shows very promising results with a very simple

implementation based on the uv′
+

Reynolds stresses, applying forcing terms in the wall-normal
direction. It could probably be made more effective by including comparisons with other Reynolds
stress components. A preliminary study by the current author showed that including forcing in
streamwise direction, with the current determination of the forcing terms, also proved effective.

6.2.3 Comparison Conclusions

The results shown in the previous section confirm that both the recycling procedure by Lund
et al. (1998) and that by Spalart et al. (2006) performed well in the context of equilibrium
turbulent flows. The boundary-layer flows obtained from those two recycling methods both
showed a correct shape factor and friction coefficient evolution, within 5% of DNS results.

Moreover, the forcing method by Spille-Kohoff and Kaltenbach (2001) proved to be a useful
tool to improve upon the quality of random inflows. The change in shape factor and friction
coefficient as a function of Reynolds number compared to the original random inflow was shown
to be significant. The boundary-layer properties of the random inflow with forcing planes are
acceptable, and could be improved further by tweaking the method by Spille-Kohoff and Kal-
tenbach. Therefore, the random inflow with forcing planes might be considered a valid inflow
alternative when more challenging flow conditions render the rescaling procedure by impractical
to apply.

The precursor method was found to under predict the boundary layer shape factor and over
predict its skin friction coefficient, although doing so with approximately the correct rate of
change. In light of the effectiveness of the forcing method by Spille-Kohoff and Kaltenbach, it
might be useful to combine forcing planes with the channel flow precursor method to improve on
its deficiencies. Similarly the random inflow with forcing planes, it could also be used to simulate
more challenging flow conditions, albeit at the increased cost of having to run a secondary
channel-flow simulation.
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CHAPTER 7

Conclusions and Recommendations

7.1 Conclusions

The goal of the current master thesis is to provide an objective comparison of recent inflow mod-
eling techniques applicable to the simulation of flow control devices in turbulent, wall-bounded
flows, in a coarse Large-Eddy Simulation framework. Of particular interest is the effectiveness of
general techniques such as random inflow an precursor simulation relative to recycling methods,
which are known to be reliable. Five type of inflow conditions were tested: the recycling and
rescaling method by Lund et al., the simplified recycling method by Spalart et al., a precursor-
like method using the method by Lund et al. to rescale data extracted from a channel-flow
simulation, a random inflow method without forcing planes and a random inflow augmented
with the forcing plane method by Spille-Kohoff and Kaltenbach.

These were applied to the simulation of the canonical zero-pressure gradient turbulent bound-
ary layer, and compared to the highest quality existing low Reynolds-number DNS data.

The most consistent results were obtained using the recycling type of inflow by Lund et al.
(1998) and by Spalart et al. (2006), which showed to have an adaptation length of x/δ0 = 18
and x/δ0 = 22 respectively. These suffered from slow convergence of the shape factor as the flow
evolved downstream.

However, this work was also oriented towards the testing of inflow methods which are inde-
pendent of the flow conditions within the domain, as these can also be applied to the simulation of
more demanding types of flows, where no equilibrium turbulence region exists. The precursor-like
method showed a very promising adaptation length of x/δ0 = 18, albeit with an underprediction
of the shape factor and an over prediction of the skin friction evolution.

The random inflow method with forcing planes was also shown to be competitive, although
this was poorly reflected by the long adaptation length of x/δ0 = 30, which was also due to a slow
convergence of the shape factor evolution. In contrast, the skin friction adaptation was similar
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to that of the recycling methods, albeit slightly shifted downwards. The random inflow has the
added advantage over the precursor method to be easily usable in coupling with a RANS solver,
as it can use the Reynolds stresses from the RANS turbulence model as input for the inflow.

As expected, the random inflow without forcing planes was found to be uncompetitive, as its
shape factor and skin friction evolution did not approach that of DNS with the current domain
size tested.

Using the recycling inflow method of Lund et al. (1998) as baseline result, it was also shown
that the solution within the computational domain was subtly influenced by the top artificial
boundary condition, which appeared not to be physical enough to ensure a proper wall-normal
mean was achieved in the domain. This indicates that specialised treatments are also required
for this artificial boundary.

7.2 Recommendations

The random inflow method combined with the forcing method by Spille-Kohoff and Kaltenbach
(2001) showed very promising results when applied to the computation of a zero pressure-gradient
turbulent boundary layer. However, as highlighted in section 6.2.2, the method by Spille-Kohoff
and Kaltenbach suffered from a few drawbacks which should be further investigated. Similarly, a
better definition of the “memory” term used in the amplitude determination should be developed,
to avoid possible high frequency temporal oscillations.

Nonetheless, the promising results obtained by using only a wall-normal forcing term based

on the uv′
+

stress give good hopes that further developing the method, to include a streamwise
component for the forcing term and perhaps a correction term based on other components of
the Reynolds stress, would yield even better results. The effect of allowing a higher frequency
content in the random inflow signal should be investigated, to determine if it could improve the
random inflow effectiveness by decreasing its adaptation length. This should be investigated in
a follow-up study.

In light of its effect on the random inflow, the forcing method by Spille-Kohoff and Kalten-
bach (2001) could also be applied to the precursor method, to investigate whether it would be
effective in decreasing its adaptation length. In addition, if more research was to be done in the
framework of zero pressure gradient flat-plate boundary layers, a better definition of the upper
artificial boundary condition would have to be developed, to ensure the correct wall-normal mean
velocity evolution is simulated.

And finally, although not mentioned in the text, the use of OpenFOAM for carrying out this
research proved to be a major impediment. The modifications required to carry out this work
placed the author in a position where there was limited support available from mentors of the
Aerodynamics group. In addition, many behaviours observed during the current study remain
unexplained, even by lead developers of OpenFOAM. It is strongly recommended that contin-
ued use of OpenFOAM within the faculty be accompanied by a significant allocation of staff
and resources to its support and development, so that students are not drawn into detailed
implementation problems which have little connection with the research topic at hand.
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CHAPTER 8

OpenFOAM Settings

8.1 Domain Used

A domain size of 60 δ0 × 4 δ0 × 8 δ0 was used, in streamwise, wall-normal and spanwise direction
respectively, as illustrated in figure 8.1. The domain was meshed with a uniform grid, with
320 × 64 × 64 cells, resulting in very low aspect ratio cells, of relative size 3 × 1 × 2.

8.2 Numerical Setup

A free stream velocity of U∞ = 20 m/s was chosen, together with a viscosity of ν = 0.001937 m2/s
and an inflow boundary layer thickness δ0 = 0.5 m. The recycling plane of the recycled methods
was placed at 48 δ0 from the inflow.

The incompressible, unsteady, turbulent PISO solver was used, with 4 PISO corrector steps,
and with a time step of 0.0008 seconds yielding a maximum Courant number of 0.3. The homo-
geneousDynSmagorinsky turbulent model was used, corresponding to the dynamic Smagorinsky
model with domain averaging of Cs values, together with the cubeRootVol filter.

A central discretization scheme (Gauss linear) was chosen for the computation of the gradient
and divergence terms, except for the turbulent quantities which were discretized with a limited
central discretization scheme (Gauss linearLimited 1). The time marching was done using a
second-order implicit backward Euler scheme (backward in OpenFOAM). The Geometric Alge-
braic MultiGrid (GAMG) linear solver with Gauss-Sidel smoothing was used to solve the pressure
equation, to a tolerance of 10−8, and with a relative tolerance (relTol) between iterations of 0.
The Preconditioned Bi-Conjugate Gradient (PBiCG) linear solver with Diagonal Incomplete LU
(DILU) preconditioner was used for the other equations, to a tolerance of 10−7, and once more
with a relative tolerance (relTol) between iterations of 0.
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60 δ0

48 δ0

8 δ0

4 δ0

Inflow

Recycling
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Figure 8.1: Domain used for inflow comparison

Table 8.1: Flow settings

Settings

U∞ 20 [m/s]
ν 0.001937 [m2/s]
δ0 0.5 [m]

Table 8.2: Solver Settings

Settings

Turbulent Solver Piso
Corrector Steps 4
nonOrthogonalCorrectors 0
Time Step 0.0008 [s]
Max Courant 0.3

8.3 Validation

To validate the different SGS models implemented in OpenFOAM, a channel flow simulation was
run on a 6 × 2 × 4 domain, with a 643 grid resolution. A short summary of the results will be
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Table 8.3: SGS Model Settings

Settings

SGS model homogeneousDynSmagorinsky
∆ cubeRootVol
filter simple

Table 8.4: Linear Solvers Settings

Settings

variable p, pFinal
solver GAMG
smoother GaussSidel
tolerance 10−8

relTol 0

variable U, k, B
solver PBiCG
preconditionner DILU
tolerance 10−7

relTol 0

made here after. The plots of the mean velocity, u′2
+
, v′2

+
and w′2

+
Reynolds stress can be

found in figures 8.2 to 8.5.
As can be seen from figures 8.2 to 8.5, the domain averaged Smagorinsky (homogeneous-

DynSmagorinsky) model performs best, followed by the local dynamic one equation model (loc-
DynOneEq) and the domain averaged one equation model (homogeneousDynOneEq). Strangely,
the local dynamic model seems to overpredict the mean velocity.

The effect of grid stretching was also investigated with the channel flow, using a uniform 1003

grid, and a stretched 1003 grid, where the smallest cell next to the wall was 10 times smaller than

the largest cell in the middle. The results can be seen here-after. The v′2
+

and w′2
+

Reynolds

stresses were not found to display an other trend than the u′2
+
, so were left out.

As can be seen from figures 8.6 and 8.7, grid stretching tends to slightly overpredict the mean
velocity, while not significantly increasing the Reynolds stress accuracy.
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Figure 8.2: Channel-flow mean capture, for various SGS models

Figure 8.3: Channel-flow u′2
+

capture, for various SGS models
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Figure 8.4: Channel-flow v′2
+

capture, for various SGS models

Figure 8.5: Channel-flow w′2
+

capture, for various SGS models
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Figure 8.6: Channel-flow mean capture, uniform and stretched 1003 grid

Figure 8.7: Channel-flow u′2
+

capture, uniform and stretched 1003 grid

F.T. Pronk 76 MSc. Thesis


