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Abstract—Deep learning-based object detectors, while offering
exceptional performance, are data-dependent and can suffer
from generalization issues. In this work, we investigated deep
neural networks for detecting people and medical instruments for
the vision-based workflow analysis system inside Catheterization
Laboratories (Cath Labs). The central problem explored in this
paper is the fact that the performance of the detector can degrade
drastically if it is trained and tested on data from different Cath
Labs. Our research aimed to investigate the underlying causes
of this specific performance degradation and find solutions to
mitigate this issue. We employed the YOLOVS object detector and
created datasets from clinical procedures recorded at Reinier de
Graaf Hospital (RAGG) and Philips Best Campus, supplemented
with publicly accessible images. Through a series of experiments
complemented by data visualization, we discovered that the
performance degradation primarily stems from data distribution
shifts in the feature space. Notably, the object detector trained
on non-sensitive online images can generalize to unseen Cath
Labs, outperforming the model trained on a procedure recording
from a different Cath Lab. The detector trained on the online
images achieved an mAP@0.5 of 0.517 on the RAGG dataset.
Furthermore, by switching to the most suitable camera for each
object in the Cath Lab, the multi-camera system can further
improve the detection performance significantly. An aggregated
1-camera mAP@0.5 of 0.679 is achieved for single-object classes
on the RAGG dataset.

Index Terms—Object Detection, Catheterization Laboratory,
Domain Shift, Clinical Workflow Analysis

I. INTRODUCTION

A Catheterization Laboratory (Cath Lab) is a specialized
procedural room in hospitals, equipped with medical imaging
instruments to visualize heart chambers and vessels [1]. It
is essential for the diagnosis and treatment of cardiovascular
diseases. For example, Diagnostic Cardiac Catheterization
requires a cardiologist to insert a catheter through an artery
and finally into the heart via the guidance of a medical imaging
instrument to find blockages or narrowings [2]. However,
various threats and risks for both medical personnel and
patients are associated with Cath Lab. For instance, Chronic
radiation exposure can pose health concerns for interventional
physicians, despite protective measures like lead aprons [3].

To provide insights for efficiency improvement and risk
minimization, a vision-based measurement system has been

designed in earlier works for workflow analysis. The system
has been deployed inside Reinier de Graaf Hospital in Delft
and the Philips Best Campus in Eindhoven. It consists of
multiple cameras surrounding the operating table to provide
a comprehensive view of the procedures. Variable of interest
can be measured by running video analysis algorithms, e.g. the
distance between medical personnel and the X-ray machine for
studying X-ray exposure risks. A deep learning-based object
detector plays a central role in video analysis by identifying
and locating medical staff and instruments within images.

Prior research has demonstrated the effectiveness of mea-
surement systems featuring multi-camera setups paired with
deep learning-based models for measuring the pose and loca-
tion of clinicians [4], [5]. For optimal performance, researchers
trained their machine learning model on data from the same
test environment. However, the reliance on deep learning
introduces challenges in generalizing to new environments.
Research on machine learning models suggests they tend to
provide erroneous predictions when encountering data that
follow different distributions than the training data [6]. When
we expand our measurement system to previously unseen Cath
Labs, the YOLOvVS8 object detector [7] fails to give reliable
results. The traditional solution is acquiring and annotating
data inside the new Cath Lab, followed by retraining and the
model. However, as access to sensitive medical data is highly
restricted, this practice makes deploying the measurement
system time-consuming and expensive.

Therefore, the primary aim of this study is to explore the
causes behind the performance degradation of the YOLOvS8
object detector in unseen Cath Labs and to identify strate-
gies to overcome this challenge. This investigation lays the
groundwork for creating vision-based measurement systems
that are robust for effective deployment in previously unseen
Cath Labs. Our main contributions are as follows:

1) We collected clinical data from two Cath Labs and
demonstrated that detection performance degradation oc-
curs when the object detector processes images from
unseen Cath Labs. Additionally, We further demonstrated
the performance drop stems from divergent data dis-
tributions in the feature space, which provides insights
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for further research on the generalization ability of the
measurement system.

2) We illustrated that leveraging publicly available online
images as alternative training data, coupled with utilizing
video data from multiple views, can improve the general-
ization ability of the detector to unseen Cath Labs. They
are crucial strategies for developing robust vision-based
measurement systems for clinical purposes.

II. RELATED WORKS
A. Object Detection

Object detection stands as a cornerstone task in computer vi-
sion, critical for understanding images and videos [8]. Generic
object detection, the most prevalent form, involves identifying
and locating objects within an image from predefined cate-
gories [9]. Models accomplish this by assigning a bounding
box and confidence score to each detected object.

The introduction of Region-based Convolutional Neural
Networks (R-CNN) in 2014 marked a pivotal shift in object de-
tection research towards deep-learning-based methods, which
can be broadly divided into two directions, one-stage and two-
stage detectors [8]. The two-stage detectors, featuring R-CNN,
first propose regions of interest in the input image, and each
region is subsequently classified into one of the predefined
categories by a Convolutional Neural Network (CNN) [10].

One-stage object detectors operate in a more unified manner.
Those detectors treat object detection as a regression problem,
and predict bounding boxes and corresponding class proba-
bilities [11]. One-stage object detectors first extract feature
maps from the input image. Next, regression is performed on
each cell of the feature maps to predict bounding boxes and
their corresponding class probabilities. The design paradigm
of one-stage object detectors is established by You Only Look
Once (YOLO) [11]. One-stage object detectors tend to deliver
better speed and generalization ability than two-stage object
detectors, although their localization accuracy and detection
performance are suboptimal for small objects in the first-
generation YOLO. In later generations of YOLO, these issues
have been addressed. For instance, YOLOv3 improves the
detection performance of small-scale objects with a network
structure resembling the Feature Pyramid Network [12]. As of
this study, YOLOVS represents the latest advancement in the
YOLO series [7]. It utilizes a large combination of techniques
compared to its predecessor and has achieved an mAP@0.5-
0.95 of 0.539 on the 2017 COCO val dataset [7]. Therefore,
we chose YOLOVS as the object detector in this work.

B. Domain Shift

Domain shifts refer to the domain-related data distribution
difference, which can damage the performance of machine
learning methods [6]. A common assumption in machine
learning is that both training and testing data are sampled from
the same distribution, a condition that often does not reflect
reality [13]. In practical applications, training data from the
source domain and testing data from the target domain can
have distribution differences. Mathematically speaking, there

are different kinds of domain shifts: covariate shift, label shift,
and concept shift, among other more general data distribution
shifts [14].

A machine learning model leverages input features, de-
noted by X, to predict target variables, represented as Y.
This process can be achieved by estimating the conditional
probability P(Y|X). Different types of domain shifts can be
depicted by the change in decomposed components of the
joint distribution, expressed as P(X,Y) = P(X|Y)P(Y) =
P(Y|X)P(X).

1) Covariate shift assumes

Rrain(Y|X) = Resl(Y|X)

2) Label shift assumes Pyyin(Y) # Pest(Y), Puain(X]Y) =

Pe(X]Y)
3) Concept shift assumes Piin(Y]X)
Rrain(X) = Rest(X)

Our case fits the covariate shift assumption, where the object
appearances from different Cath Labs are only tiny subsets
of the entire spectrum of possible images, while the concept
of the object class (the relationship between the RGB image
and its object class) remains constant. Although P(Y|X) is
unchanged, covariate shift will make it difficult to estimate
P(Y|X) in regions where the training data points are sparse
or absent.

Domain shifts arise from a variety of factors and pose
serious threats to machine learning systems deployed in the
real world. Researchers have found its presence in images
taken by different types of cameras [15]. In the medical field,
different imaging devices can also impair the performance
of detection systems, e.g., polyp detection in the digestive
system [16]. The list of factors that cause domain shift can
be nearly unlimited. Most commonly, they are changes in
lighting, camera angles, or backgrounds [17]. The ubiqui-
tous nature of domain shift makes it difficult to avoid. This
issue is particularly critical in high-stakes domains such as
autonomous driving and healthcare, where the consequences of
errors can be lethal, thus research on domain shift has attracted
growing interest [18].

Ptrain(X) 7é Ptest(X)»

#  Pea(Y]X),

III. METHODS
A. Data Distribution Visualization

The literature on domain shifts highlights how shifts in data
distribution can lead to performance degradation in machine
learning models. This insight drives our investigation into
whether the images in our datasets follow distinct distributions
in the feature space. For this purpose, we have applied
visualization methods to show the feature distribution of the
images in our datasets. Similar visualization methods have
been applied in research regarding domain shift [19].

One-stage object detectors, including YOLOVS, first extract
features from the image and then perform regression to obtain
predictions from the feature maps. Our visualization method
aims to show that the data distribution shifts occur in the
feature maps, which is highly problematic for the following
regression task. For simplicity, in this project, we chose the
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deepest layer preceding the detection head in YOLOVS to
obtain the feature maps. As the feature maps have high
dimensionality (512 x 20 x 12), we need to further reduce
them to a 2-dimensional vector for visualization.

The first step is calculating feature channel statistics as
a feature vector. The feature channel statistics capture the
activation patterns of the neural networks. We calculate the
mean and variance of each layer of the feature maps as the
feature channel statistics. The mean provides a measure of
the average intensity of the activations, and variance measures
how much the activations vary across the feature map.

In addition to calculating the feature vector of the whole
image, we also calculate the feature vector on the object
level. We can read the position of an object instance from
the annotation, and discretize it to get the responsible cell in
the feature maps. The receptive field of the head of YOLOvVS
is 5 x 5. Therefore, we can calculate this 5 X 5 region around
the cell, rather than the whole feature maps, to get the feature
vector on the object level.

The second step is reducing the feature vector to 2 di-
mensions. It is achieved by applying dimensionality reduction
methods on the feature vector, whose size is originally 1024.
We have experimented with Principal Component Analysis
(PCA) [20], T-distributed Stochastic Neighbor Embedding (T-
SNE) [21], and Uniform Manifold Approximation and Pro-
jection (UMAP) [22]. We chose UMAP as the dimensionality
reduction method, as it can preserve both local and global data
structures [22]. After obtaining the reduced feature vector of
each image (or object), we plotted each of them as a point to
demonstrate the distribution of our datasets.

B. Multi-camera System Evaluation for Camera Switching

Multi-camera system evaluation can illustrate their effec-
tiveness in improving detection performance by addressing
challenges associated with viewpoint changes and occlusions.
Objects seen from a significantly different viewpoint than in
the training data or highly occluded are difficult to detect
and tend to have low detection confidence. For this issue,
the redundancy offered by a multi-camera system can be
leveraged. Camera switching is performed on every single-
object class for simplicity. For each object and in every frame,
we select top-/N camera views with the highest detection
confidence score, where IV can be 1 or 2. For tasks that require
only the state of the object, a single camera is sufficient. An
example of such tasks is fall detection [23]. Conversely, tasks
demanding 3D information about an object, such as 3D pose
estimation, require at least two cameras [4]. For evaluation
purposes, we generate an aggregated version of the object
detection metrics, based on this camera switching strategy.

Commonly used metrics for the object detection task,
such as Average Precision (AP) and mean Average Precision
(mAP), are derived from precision and recall [24]:

TP TP

TP+ FP _ All detections’

™ TP
TP +FN  All ground truths’

Precision =

(D

Recall =

2

where TP, FN, and FP are the True Positive, False Negative,
and False Positive, respectively.

Aggregated metrics are evaluated per multi-view frame. For
each frame, an object is examined if it is detectable, detected,
and correctly detected. ‘Detectable’ suggests the object is
visible in at least N camera views. ‘Detected’ means in the
N selected camera views, the detection confidence is higher
than the confidence threshold. We consider an object *correctly
detected’, if both the detection confidence and Intersection
over Union (IoU) are higher than the thresholds in the N
selected camera views. We count those frames for calculating
aggregated metrics.

After substituting the corresponding elements in precision
and recall, aggregated precision and aggregated recall are
obtained. Aggregated AP are derived from them.

N, correctl
.. y detected
Precision,ggregaed = N 3)
detected
Ncorrectl
y detected
Recauaggregated T @)

N, detectable

where Ngetectable> Vaetected» and IV, correctly detected I the number
of multi-view frames that fit our evaluation definition.

IV. EXPERIMENT AND RESULT

A. Datasets

g .
Online images

Fig. 1: Example images of our datasets.
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In this project, we have clinical procedure datasets collected
inside Cath Labs and an online image dataset collected from
online search engines as alternative training data. The object
classes for detection are doctor, patient, operating table, instru-
ment table, control panel display, control panel button, x-ray
detector, x-ray source, and display.

Procedure datasets include a dataset collected at the Reinier
de Graaf Hospital, alongside two datasets from Philips Best
Campus. The RdGG dataset comprises images from a real
procedure, recorded by a 5-camera system operating at a frame
rate of 25 Frames Per Second (FPS), totaling 3100 images.
Conversely, the Philips Best 1 and 2 datasets contain 492
and 792 images respectively, and are collected from mock
procedures. These were recorded using a similar 6-camera
system at 25 FPS. In all three clinical datasets, images are
extracted at 5-second intervals from the video recordings.
Since the images from each clinical dataset are captured inside
a specific Cath Lab, the images have limited variability in the
objects and background across the dataset (intra-variability).
However, the objects and backgrounds from different Cath
Labs vary substantially (inter-variability).

The online image dataset, sourced from Google and Bing
using the keyword ‘Catheterization Laboratory’, has a wide
variety of objects and background appearances. It contains 800
images of different Cath Labs. However, most of the images
are captured for commercial purposes with a highly limited
viewpoint variety and few occlusions.

B. Experiment Design

Our experiments are designed to show the relation between
the performance gap and data distribution shifts, along with
the effectiveness of the mitigating solutions.

The first experiment aims to show the performance gap
and its related distribution shifts. We chose Philips Best 1
as the testing set. Philips Best 2 dataset, RAGG dataset, and
the online image dataset were chosen as the training set re-
spectively. These three combinations simulate three scenarios:
Training and testing in the same Cath Lab, training and testing
in different Cath Labs, and the detector trained on public-
available data. To gain insights in the experimental results, we
performed data visualization.

The second experiment is designed to investigate the de-
tector’s generalization ability when it is only trained on
publicly available data. We chose the online images dataset
as the training data, and the three clinical datasets as the test
set respectively. Additionally, we visualized the object-level
data distribution of the best-performing class and the worst-
performing class. It visualizes whether the object detection
performance of each class is related to the object-level data
distribution.

The third experiment is designed to assess the multi-
camera system. We adapt the camera switching strategies
while keeping the same training set and test set as in the second
experiment. Aggregated metrics of multi-camera detection are
used for evaluation and compared to object detection metrics
for single-camera detection.

C. Results and Analysis

TABLE I: Evaluation results (AP@0.5) of the YOLOVS object
detector on the Philips Best 1 dataset, when the detector is
trained on different datasets.

Class Philips Best 2 RdGG  Online images
Doctor 0.942 0.778 0.831
Patient 0.928 0.118 0.516
Operating table 0.929 0.404 0.581
Instrument table 0.830 0.240 0.670
Control panel display  0.849 0.183 0.214
Control panel button 0.930 0.059 0.054
X-ray detector 0.976 0.012 0.766
X-ray source 0.853 0.047 0.630
Display 1.000 0.775 1.000
Mean 0.915 0.291 0.585

Dimension 2

Best1_FishSmall

Best1_Mobile

Bestl_WallArc

Best1_WallControlDoor

Best1_WallControlWindow

Best1_WallSupply

Best2_FishSmall

Best2_Mobile

Best2_WallArc

# Best2_WallControlDoor

< Best2_WallControlWindow
Best2_WallSupply
RAGG_CornerNW
RAGG_CornerSE

% RdGG_Cornersw

o RdGG_Walls

RAGG_WallwW

Online images

+tA*PHO

u

Fig. 2: UMAP data distribution visualization of our datasets.
(Markers denote camera view, purple represents the RAGG
dataset, blue and green represent the Philips Best 1 and 2
datasets respectively, and red represents the online image
dataset.)

Table I presents the results of the first experiment. Results
from the first two columns suggest that training the detector
in the same Cath Lab significantly outperforms training it in
a different Cath Lab. The performance of the model trained
on online images falls in between, achieving an mAP@0.5 of
0.585. Data visualization shown in Fig. 2 provides an expla-
nation for this performance gap. Images from the same Cath
Labs have relatively close data distributions, while images
from different Cath Labs have divergent data distributions.
The online images, compared to clinical procedure recordings,
have a wider data distribution, covering more testing data than
images in the RAGG dataset.
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Fig. 3: UMAP object-level data visualization of the best and worst performing class when the model is trained on the online
image dataset and tested on the RAGG dataset. (Purple represents the RAGG dataset, and red represents the online image

dataset.)

TABLE II: Evaluation results (AP@0.5) of the YOLOvV8 object
detector on different clinical procedure datasets, when the
detector is trained only on the online image dataset.

Class Philips Best I ~ Philips Best 2 RdGG
Doctor 0.831 0.870 0.856
Patient 0.516 0.485 0.274
Operating table 0.581 0.649 0.704
Instrument table 0.670 0.616 0.266
Control panel display  0.214 0.152 0.738
Control panel button 0.054 0.115 0.311
X-ray detector 0.766 0.684 0.709
X-ray source 0.630 0.681 0.071
Display 1.000 0.974 0.727
Mean 0.585 0.581 0.517

According to the results presented in Table II, the object
detector trained purely on online images can generalize to
previously unseen Cath Labs with a moderately good perfor-
mance. However, most object classes have inconsistent detec-
tion performance across different Cath Labs. Fig. 3 shows the
object-level data distribution of the best and worst performing
class when the model is trained on online images and tested
on the RAGG dataset. The doctors can be reliably detected in
the different datasets. We noticed that the data distributions
for doctors in the training and test sets are similar. Therefore,
good generalization across different datasets can indeed be
expected. However, the X-ray source class has very distinct
data distribution in the training set and test set, which may
explain the poor detection results.

Table III shows the aggregated average precision when we

apply the camera switching strategy. Compared to the results
in Table II, the multi-camera system can better detect objects
by switching to the most confident (mostly with the least
occlusion and viewpoint changes) camera view.

D. Discussion

Our results demonstrated the weakness in the generalization
ability of the vision-based measurement system, which is
the object detector of the system delivering poor detection
performance in unseen Cath Labs, achieving an mAP@0.5 of
0.291 in our experiments. However, the issue can be mitigated
by introducing publicly available images for training data
diversity and incorporating multiple camera views. These two
strategies lay a promising foundation for developing robust,
vision-based measurement systems for deployment in unseen
Cath Labs.

However, the results also highlight concerns regarding
varying detection performance in unseen Cath Labs, which
calls for more safety measures for system deployment. Data
visualization shows images from different Cath Labs following
distinct data distributions. Deploying the object detector in
an unseen Cath Lab introduces uncertainty in data distri-
bution compared to our training data, potentially leading to
poor detection performance. On the bright side, we have
illustrated divergent data distribution causing object detection
performance degradation in unseen Cath Lab. It motivates
for incorporation of an Out-of-Distribution (OoD) detector
inside the measurement system to alert for potential detection
inaccuracies when encountering unfamiliar objects. In the
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TABLE III: Aggregated AP@0.5 of the YOLOVS object detector trained on the online image dataset and evaluated on different
clinical procedure datasets when using the most confident 1 or 2 camera(s).

Aggregated 1-camera AP@0.5 Aggregated 2-camera AP@0.5
Philips Best 1 ~ Philips Best 2 RdGG | Philips Best 1  Philips Best 2 RdGG
Patient 0.947 0.832 0.505 0.570 0.459 0.053
Operating table 0.884 0.934 0.958 0.764 0.827 0.803
Instrument table 0.896 0.793 0.585 0.809 0.496 0.076
Control panel display  0.440 0.334 0.897 0.105 0.031 0.596
Control panel button 0.041 0.211 0.635 0.012 0.026 0.227
X-ray detector 0.956 0.986 0.798 0.918 0.946 0.605
X-ray source 1.000 1.000 0.053 0.908 0.790 0
Display 1.000 1.000 1.000 1.000 1.000 1.000
Mean 0.771 0.761 0.679 0.636 0.572 0.420

medical field, OoD detection has drawn increasing interest as
both benchmarks and OoD detectors have been proposed by
researchers [25], [26].

V. CONCLUSION

Our study demonstrates how diverse training data and multi-
camera systems significantly enhance the detection of medical
personnel and instruments in previously unseen Cath Labs. For
this purpose, we employed the YOLOvVS8 object detector and
created datasets from clinical procedures recorded at Reinier
de Graaf Hospital and Philips Best Campus, supplemented
with publicly accessible images. Through a series of exper-
iments complemented by data visualization, we discovered
that the performance degradation primarily stems from data
distribution shifts in the feature space. By collecting diverse
training data and adapting a camera switching strategy for
the multi-camera system, we can alleviate the distribution
difference in the training and inference data to achieve a more
robust object detection performance in unseen Cath Labs.
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