
Uncertainty Based Exploration in Reinforcement
Learning

Analyzing the Robustness of Bayesian Deep Q-Networks

Sagi Schwartz1
Supervisors: Neil Yorke-Smith1, Pascal van der Vaart1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
July 6, 2025

Name of the student: Sagi Schwartz
Final project course: CSE3000 Research Project
Thesis committee: Neil Yorke-Smith, Pascal van der Vaart, Matthijs Spaan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Bayesian Deep Q-Networks (BDQN) have demonstrated superior exploration ca-
pabilities and performance in complex environments such as Atari games, yet their
behavior in other simpler settings and their sensitivity to hyperparameters remain
understudied. This work evaluates BDQN in both contextual bandit and reinforcement
learning tasks, compares it against the standard ϵ-greedy exploration strategy and
analyzes its hyperparameter sensitivity. Our results indicate that BDQN outperforms
ϵ-greedy DQN in exploration-heavy environments, particularly Deep Sea with sparse
rewards, but performs comparably in simpler tasks where exploration is less critical. Sen-
sitivity analysis reveals that the forgetting factor (α) plays a central role in modulating
exploration, while other hyperparameters such as batch size also impact performance to
varying degrees. These findings suggest BDQN is a promising strategy for complex tasks
requiring persistent exploration, though it introduces additional tuning complexity.

1 Introduction
Reinforcement learning (RL) is a subfield of machine learning focused on learning optimal
policies that maximize rewards through agent-environment interactions. Although RL
approaches increasingly outperform humans in environments such as Atari games, they suffer
from a major limitation of poor sample efficiency. One of the sources of this problem is naive
exploration strategies, such as random exploration [16], which can lead to billions of steps
taken by an agent before reaching human-level capabilities. With random exploration, the
agent picks its next action randomly regardless of prior experience. This type of exploration
is incorporated into the ϵ-greedy strategy, which reduces exploration as more experience with
the environment is gained, using the decaying parameter ϵ. Due to its lack of efficiency and
simple exploration approach, ϵ-greedy often struggles in more complex environments.

Multiple exploration methods have been suggested as a remedy in recent years. One of the
approaches that has been shown to be successful in practice is the Bayesian deep Q-networks
(BDQN) [2]. This approach relies on double DQN (DDQN) [7] where the last linear regression
layer is replaced by Bayesian linear regression (BLR). The algorithm then applies Thompson
sampling on the approximated posteriors to balance the exploration-exploitation trade-off.

Azizzadenesheli and Anandkumar [2] compared the performance of BDQN in Atari 2600
games to several other algorithms such as DDQN, Bootstrap DQN [14] and NoisyNet [6],
which BDQN outperformed in most games. However, the success of the algorithm in Atari
games does not give a full picture of the algorithm’s performance and robustness in different
settings and other environments. Specifically, existing literature does not examine the
algorithm’s performance on simpler environments, such as contextual multi-armed bandits,
nor does it investigate its sensitivity to its hyperparameters.

This is interesting because, unlike high-dimensional environments such as Atari games,
contextual bandits provide a controlled setting that allows for a more precise evaluation of
the algorithm’s behavior and generalization properties. Understanding BDQN’s performance
in these environments helps to determine whether its advantages stem from its core innovations
or from specific characteristics of more complex domains. Moreover, contextual bandits are
widely used in real-world applications (e.g. recommender systems, clinical trial) [4] and
evaluating BDQN in these settings has practical relevance. Furthermore, hyperparameter
sensitivity is a known understudied challenge in deep RL. Analyzing BDQN sensitivity to its
hyperparameters is crucial to understanding its stability and the impact of small changes in

1

hyperparameters on its overall performance. A useful framework for doing so was suggested
by Adkins, Bowling, and White [1] and is explained in 2.6.

This paper aims to fill the described knowledge gap by answering the following questions:

1. Performance - How does BDQN’s exploration method perform in solving RL environ-
ments, compared to the ϵ-greedy exploration strategy?

2. Sensitivity - To which BLR hyperparameters is BDQN sensitive? What is the effect of
each BLR hyperparameter?

3. Transferability - Does BDQN performance transfer well across tasks? Do optimal
hyperparameter values remain stable or vary?

To address these questions, we implement and evaluate the BDQN algorithm in multiple
benchmark RL environments. We systematically compare its performance with the ϵ-greedy
exploration, perform a detailed sensitivity analysis of its Bayesian linear regression (BLR)
hyperparameters, and evaluate its generalization across tasks. Our findings offer insights on
the effectiveness and robustness of BDQN’s exploration strategy for deep RL.

2 Background
This work analyzes the performance of BDQN’s exploration-exploitation strategy under
different conditions. This section explains the inner workings of the algorithm and the
concepts related to it, the metrics used to measure hyperparameter sensitivity, and the
environments used in our research.

2.1 Markov Decision Processes (MDPs)
RL problems are typically formalized using the framework of Markov Decision Processes
(MDPs). An MDP is a mathematical framework for modeling decision-making in stochastic
environments. It is defined by the tuple (S,A, Pa, Ra), where S is the state space, A is the
action space, Pa(s, s

′) is the transition probability of moving from state s to s′ after taking
action a, and Ra(s, s

′) is the immediate reward for that transition. A policy π maps each
state to an action and its goal is to find a policy that maximizes the expected cumulative
reward

E

[∞∑
t=0

γtRat(st, st+1)

]
where actions are chosen according to the policy, γ ∈ [0, 1] is a discount factor, and t is the
time step in the environment.

2.2 Deep Q-Networks (DQN)
Before introducing any type of deep learning into RL, it is essential to cover Q-learning
[19], a fundamental approach to learning a policy whose principles are used in many of the
state-of-the-art algorithms. Q-learning is an off-policy algorithm which estimates the optimal
action values by updating

Q(st, at)← Q(st, at) + α
[
Rat

(st, st+1) + γmax
a′

Q(st+1, a
′)−Q(st, at)

]

2

where Q(st, at) is the estimated Q-value of taking action at in state st and α is the learning
rate. However, learning sequentially from consecutive agent experiences in the environment
could be unstable and inefficient. As a remedy, experience replay, introduced by Lin [10]
is often used. With experience replay, instead of learning from consecutive experiences,
which can be highly correlated and lead to inefficient updates, the agent stores its past
experiences - each consisting of the current state, action taken, reward received, next state,
and whether the episode ended - in a replay buffer. During training, the agent randomly
samples mini-batches of experiences from this buffer to update its policy or value function.
This random sampling breaks the temporal correlations between experiences and allows the
algorithm to reuse valuable past data multiple times, improving sample efficiency and overall
performance.

Mnih et al. [11] coupled Q-learning and experience replay with a convolutional deep neural
network to learn control policies from raw pixel input. In the paper, the authors refer to the
resulting algorithm as Deep Q-Networks (DQN).

Despite its advances, the Q-learning algorithm introduced by Watkins [19] and employed
by Mnih et al. [11] suffers from an overly optimistic approximation of Q-values. This
overestimation can adversly affect performance, as demonstrated by Hasselt, Guez, and
Silver [7], who proposed the Double DQN (DDQN) algorithm to mitigate this issue. DDQN
reduces overestimation bias by decoupling action selection and action evaluation. Specifically,
the online network (which is continuously updated) is used to select the action with the
highest estimated Q-value, while the target network (a more stable copy of the online
network) is used to evaluate it. The target value is calculated as y = Rat

(st, st+1) +
γQtarget(st+1, argmaxa′ Qonline(st+1, a

′)), and the algorithm updates the online network by
minimizing the loss L(Qonline, Qtarget) = E

[
(Qonline(st, at)− y)

2
]
. Periodically, the target

network is synchronized with the online network to maintain stability.

2.3 Bayesian Linear Regression
Bayesian linear regression is a probabilistic approach to modeling the relationship between a
set of input variables and a target variable. Unlike classical linear regression, which estimates
a single set of parameters by minimizing a loss function, the Bayesian framework treats
the model parameters as random variables with prior distributions. Given a linear model
y = Xβ + ϵ, where noise ϵ ∼ N (0, σ2I), we impose a prior distribution on the coefficients β,
typically a multivariate normal distribution N (0, τ2I). In our case, σ2 is the noise variance,
τ2 is the prior’s variance, and I is the identity matrix. Upon observing data, Bayes’ theorem
is used to update the prior into a posterior distribution over the parameters, combining prior
beliefs with the likelihood of the observed data.

The posterior distribution for the parameters β remains Gaussian due to the conjugacy of the
normal prior and likelihood. Specifically, the posterior mean and covariance can be derived
analytically, leading to closed-form expressions for inference. This posterior not only provides
point estimates, but also quantifies uncertainty in the predictions. This makes Bayesian
linear regression valuable in applications where understanding the confidence in a prediction
is crucial. The exact mathematical formulation relevant to this paper is given in Section 2.5.

3

2.4 Thompson Sampling
Thomson Sampling [17, 18] is a heuristic that manages the exploration-exploitation trade-off
in problems such as multi-armed bandit. The key idea is to maintain a probability distribution
(usually Bayesian) over the parameters of each possible action’s reward. At each step, the
algorithm samples a value from each action’s distribution and selects the action with the
highest sampled value. This naturally balances exploration and exploitation, since actions
with uncertain but potentially high rewards are more likely to be sampled early on. Over
time, as more data are collected, the distributions become more accurate and the algorithm
increasingly favors the best-performing actions.

2.5 Bayesian Deep Q-Network (BDQN)
Bayesian deep Q-networks (BDQN) which was purposed by Azizzadenesheli and Anandkumar
[2] is an extension of Double DQN (DDQN) [7] that incorporates efficient, uncertainty-driven
exploration using Bayesian linear regression (BLR) and Thompson sampling. The key
innovation is to introduce Bayesian modeling only at the last layer of the Q-network, which
allows for efficient posterior updates and exploration, while keeping the rest of the network
as in standard DDQN.

As described in the original paper [2], let ϕ(s, a) denote the feature representation from the
penultimate layer of the neural network. The Q-values are modeled as Q(s, a) = ϕ(s, a)⊤wa

where w is the weight vector for the output layer. In BDQN, w is modeled using Guassian
BLR instead of plain linear regression, resulting in an approximate posterior distribution for
w and for Q(x, a). This last layer provides uncertainty over the Q-value estimates and is
coupled with Thompson sampling for an efficient exploration-exploitation method.

Given an experience replay buffer D = {sτ , aτ , yτ}Dτ=1, we isolate a dataset Da for each
action a, where aτ = a. From this subset, we form the matrix Φθ

a ∈ Rd×|Da|, which is the
concatenation of the feature vectors {ϕθ(si)}|Da|

i=1 , and the vector ya ∈ R|Da|, which stacks
the corresponding target values.

We estimate the posterior distribution of the weight vector wa using the following equations:

wa :=
1

σ2
ϵ

CovaΦ
θ
aya (1)

Cova :=

(
1

σ2
ϵ

Φθ
aΦ

θ
a

⊤
+

1

σ2
I

)−1

(2)

which results in posterior samples wa ∼ N (wa,Cova). This formulation corresponds to the
standard Bayesian linear regression (BLR) setup, assuming a zero-mean prior and standard
deviations of σ and σϵ for the prior and likelihood, respectively.

Furthermore, the implementation of BDQN accumulates Φθ
aΦ

θ
a
⊤ and Φθ

aya every update
of the posterior. To that end, a forgetting factor α (a constant between 0 and 1) is
introduced as a coefficient for both of these terms, such that at each update t, Φθ

aΦ
θ
a
⊤
(t)←

(1−α) ·Φθ
aΦ

θ
a
⊤
(t−1)+Φθ

aΦ
θ
a
⊤
(t) and Φθ

aya(t)← (1−α) ·Φθ
aya(t−1)+Φθ

aya(t). This reduces
the impact of previously sampled data and gives more importance to recently sampled data.

Lastly, since Q(x, a) | Da is a linear transformation of Gaussian wa, we have:

4

Q(s, a) | Da ∼ N
(

1

σ2
ϵ

ϕ(s)⊤CovaΦaya, ϕ(s)
⊤Covaϕ(s)

)
(3)

In this equation, we call the variance term the uncertainty over the Q-values. As shown in the
above formulation, this uncertainty depends on σ, σϵ, α, batch size D and the frequency of
the posterior updates. Specifically, higher values of σ and σϵ and α lead to greater uncertainty,
and higher values of D and more frequent posterior updates lead to lower uncertainty.

2.6 Hyperparameter Sensitivity
RL algorithms are known to be brittle and highly sensitive to their hyperparameters and
the environments they run in. Adkins, Bowling, and White [1] suggest a framework for
evaluating this hyperparameter sensitivity. The framework requires computing the expected
performance of an algorithm ω ∈ Ω, which is defined as p̂(ω, e, h)

.
= 1

|K|
∑

κ∈K p(ω, e, h, κ)

where K ⊂ N is the set seeds of random number generator, e ∈ E is an environment, and
h ∈ Hω is a hyperparameter setting.

After conducting a large number of runs across different algorithms, environments and
hyperparameter settings, we find for each environment e, the 5th percentile p5(e) and the
95th percentile p95(e) of the distribution of observed performance for environment e. Then,
the normalized environment score Γ is given by

Γ(ω, e, h)
.
=

p̂(ω, e, h)− p5(e)

p95(e)− p5(e)
(4)

Finally, the hyperparameter sensitivity score of algorithm ω is defined as

Φ(ω)
.
=

1

|E|
∑
e∈E

max
h∈Hω

Γ(ω, e, h)− max
h∈Hω

1

|E|
∑
e∈E

Γ(ω, e, h) (5)

where the first term of the equation is called the per-environment tuned score and the second
term is called the cross-environment tuned score.

In addition to the method by Adkins, Bowling, and White [1], several other papers provide
useful perspectives on hyperparameter robustness. Obando-Ceron et al. [12] introduce a
tuning hyperparameter consistency (THC) score to assess the transferability and consistency
of hyperparameters across training regimes using a ranking algorithm, while Patterson et al.
[15] use a four step procedure to choose a single best hyperparameter setting that is used
for re-evaluation of the algorithm with a large number of environments. We decided to use
Adkins, Bowling, and White [1] framework for its clear and simple scalar sensitivity measure.

2.7 Benchmark Environments
Multiple frameworks have been suggested to analyze the performance and efficiency of RL
algorithms. Osband et al. [13] and Brockman et al. [5] provide a collection of scalable
experiments that examine the capabilities of RL algorithms and highlight issues in their
design – such as issues in generalization and exploration capabilities.

The environments provided include Cart Pole, a classic benchmark in RL that is based on
the problem described in Barto, Sutton, and Anderson [3]. In this environment, the agent

5

is tasked with stabilizing an upright pole mounted on a cart by applying discrete forces to
shift the cart left or right. The environment is considered solved when the agent can keep
the pole balanced for a predefined number of time steps without the pole falling or the cart
moving out of bounds. Each time step in which the pole remains upright yields a reward
that encourages the agent to maximize the duration of balance. The Cart Pole environment
focuses on control and decision-making under constraints, making it an effective testbed for
evaluating RL algorithms. As the agent must make only small adjustments to keep the pole
upright, attempts at exploration often lead to failure, and are thus penalized.

In contrast to Cart Pole, Deep Sea [13] is a problem aimed at assessing the exploration
capabilities of RL algorithms. In this problem, we consider an environment structured as a
grid N ×N , where a block consistently starts in the upper left corner. At each time step,
the agent may move the block either "left" or "right." Moving "right" incurs a small cost
of −0.01/N , while moving "left" is cost-free. A significant reward of +1 is granted only if
the agent selects "right" for exactly N consecutive steps, thereby reaching the bottom-right
corner. This constitutes the sole rewarding trajectory; all other action sequences yield zero or
negative returns. As such, the environment poses a challenging exploration problem due to
the sparse and deceptive reward structure. The difficulty of this task becomes evident when
considering that the probability of reaching the reward using uniformly random actions is
2−N . For a grid size of 10× 10, even naive random exploration is expected to quickly succeed.
However, larger environments, such as 20× 20 or more, require more efficient exploration
strategies to find the reward.

Besides the classic RL environments, RL algorithms may also be assessed within the framework
of a contextual bandits, an extension of the multi-armed bandit (MAB) problem. The MAB
framework represents a scenario where an agent repeatedly selects an action from a set of
available actions ("arms"), each yielding a reward from an unknown probability distribution.
The main objective is to maximize cumulative rewards over time by strategically balancing
exploration and exploitation. In the contextual bandit setting, the agent receives an additional
context vector, which provides relevant information about the current situation. Using these
contextual data alongside previous experience, the agent selects actions aimed at optimizing
its overall reward. Contextual bandits provide a simple setting in which we can apply RL
exploration strategies to better understand their behavior.

The MNIST environment [13, 9] can be framed as a contextual bandit problem, where each
image from the MNIST dataset represents a context, and the agent must select an action
corresponding to one of the ten-digit classes (0 through 9). Upon taking an action, the
agent receives a binary reward: a reward of 1 if the chosen action matches the true label
of the digit, and -1 otherwise. Unlike traditional RL tasks, there is no state transition or
temporal component; each decision is made independently based on the observed context.
This setup evaluates an agent’s ability to learn from high-dimensional observations and map
them effectively to optimal actions in a one-step decision-making framework.

3 Methodology
To investigate the performance, hyperparameter sensitivity, and transferability of BDQN, we
designed a series of experiments using both contextual bandit environments and traditional
RL benchmarks. This section details the implementation of BDQN, the environments used,
the baselines for comparison, and the design of our sensitivity and transferability analyses.

6

We implemented the BDQN algorithm based on the specifications outlined by Azizzadenesheli
and Anandkumar [2]. The implementation builds upon the CleanRL DQN implementation
in JAX [8], with the adjustment of using DDQN and replacing the final linear layer of the
Q-network with a BLR layer. Furthermore, the original implementation of the paper uses
the notation of σ and σϵ in the calculation of Cova rather than σ2 and σ2

ϵ , while multiplying
Cova by σ. This appears to deviate from the expression given by Equation (2). In our
implementation, we stick to the terms given by the equation.

To gain a thorough understanding of the performance of BDQN across different tasks, we
use the environments outlined in Section 2.7, each designed to test a different aspect of the
algorithm. The Deep Sea environment [13] is used at two difficulty levels, 10×10 and 20×20,
to evaluate the algorithm in exploration-heavy settings. This environment is particularly
well-suited for isolating the effect of exploration strategies, as it is possible to increase the
complexity of exploration required without altering other environmental factors. Additionally,
the Cart Pole [5] environment is used to evaluate BDQN’s performance on tasks that do not
typically require extensive exploration, helping to identify whether the algorithm is able to
limit exploration when needed. Finally, MNIST [13] is framed as a contextual bandit problem
to assess BDQN in a setting with no state transitions. In this setting, the reward is observed
immediately, and prolonged exploration is effectively penalized, making it an environment
well suited to examine how effectively BDQN exploits when sufficient experience is available.

We compare BDQN with a baseline DQN with ϵ-greedy exploration. To ensure a fair
comparison, both models share the same architecture (excluding the BLR layer). Most
hyperparameters (e.g., learning rate, replay buffer size, target update frequency) are kept
constant across models, except for hyperparameters directly related to the BLR layer or
exploration. The BLR hyperparameters are the forgetting factor (α), the batch size for the
posterior update (batch size), the frequency of the posterior update (update frequency), the
frequency of weight sampling (weight sampling frequency), the standard deviation of the
prior (σ), the standard deviation of the noise (σϵ) - six hyperparameters in total. For the
exploration hyperparameters of ϵ-greedy, we consider the starting ϵ for exploration (start ϵ),
the ending ϵ for exploration (end ϵ) and the fraction of total time steps it takes to get from
start ϵ to end ϵ (exploration fraction) - three hyperparameters in total.

The primary evaluation metric that we use to compare different algorithms and hyperparame-
ter settings is the average cumulative reward, which we call score in this paper. Additionally,
we monitor the average Q-values of sampled experiences (from replay buffer) and the Q-values
of the chosen actions. To better understand the behavior of BDQN beyond the raw episodic
rewards, we also track the number of exploration steps taken, defined as the steps where the
selected action is different from the action that would have been selected using the expected
Q-values instead of the sampled Q-values. We monitor the uncertainty over Q-values as
defined by the variance in Equation (3). To complement that, we compute the difference
between the expected Q-values and the sampled Q-values, since uncertainty can be difficult
to interpret when ϕ(x) is not normalized. We call this metric the Q-difference.

To measure the impact of BLR-specific hyperparameters on the performance and exploration
of BDQN we perform hyperparameter sweeps, as described in Section 4. We also adopt
the framework proposed by Adkins, Bowling, and White [1] to compare hyperparameter
sensitivity of BDQN to the ϵ-greedy baseline.

All code, hyperparameter settings, and random seeds used and discussed in the following

7

Section 4 publicly available on github1. All experiments were executed in a WSL2 environment
with Ubuntu 22.04.5 LTS on Windows 11 system, with AMD Ryzen 7 5800U CPU and 16GB
RAM.

4 Experiments and Results
For the purpose of analyzing the exploration strategy and performance of BDQN we tested
it on the three types of environments outlined in Section 2.7 and 3. For both algorithms,
BDQN and ϵ-greedy, we started by running a hyperparameter sweep for all the exploration-
relevant hyperparameters specified in Section 3, to identify sound hyperparameter values
using Bayesian optimization with 20 iterations.

Then, we perform one-at-a-time hyperparameter tuning for BDQN’s BLR hyperparameters
to identify their impact on exploration. For each of the six hyperparameters, we used
three different values, based on our findings in the initial sweep and the values reported by
Azizzadenesheli and Anandkumar [2]. For each hyperparameter setting, five RNG seeds were
used – all hyperparameter values are given in Appendix A. MNIST and Cart Pole were run
for 500K steps, while Deep Sea environments were run for 1M steps. The results are given
by environment.

4.1 MNIST
To ensure comparability between environments, we opted for a fully connected neural network
rather than a convolutional neural network architecture, which is typically more suitable for
MNIST [9]. In this setup, each input image of size 28× 28 was flattened to a one-dimensional
vector. This allowed us to match the architecture used in the other two environments.

When configured with a small forgetting factor (α = 0.01), BDQN successfully "classified"
50.19% of the MNIST images in the last 10,000 steps, significantly exceeding the 10% success
rate expected from random guessing and close to the 52.25% average achieved by the top five
DQN agents identified by Bayesian optimization. However, despite running a considerably
larger number of BDQN agents, the best agent found used ϵ-greedy DQN.

Importantly, only the smallest value of α led to a clear trend of decreasing uncertainty and
Q-difference. In contrast, higher values of α (0.5 and 0.9) resulted in higher uncertainty,
more exploration, and poorer performance. In particular, the number of exploration steps
for the higher α values was on average 50.89% of the total number of steps.

Additionally, we observed a consistent trend when varying the batch size. Larger batch sizes
generally produced lower uncertainty, fewer exploration steps and higher scores. The largest
batch size (5000) yielded the highest average score and the fewest exploration steps (7.69%
of the total number of steps). To a lesser extent, we observed that, similarly to batch size,
more frequent updates to the posterior (500 steps per update) also reduced uncertainty,
curbed exploration, and achieved higher rewards. At the same time, no consistent trend was
observed by tuning the frequencies of weight sampling.

Adjusting the prior standard deviation σ, we found that a lower value (σ = 0.1) reduced
uncertainty and exploration – an effect usually linked to improved performance in this
environment – yet, in this instance, it resulted in lower scores. Regarding the noise parameter

1https://github.com/sagisch/RP-BDQN

8

Figure 1: Scores of all BDQN and DQN runs as a function of exploration steps in MNIST.
High values of α and the lowest values of σ are result in outliers which are highlighted in the
plot.

σϵ, lower values consistently resulted in less uncertainty, reduced exploration, and improved
overall scores.

Figure 2: Average learned Q-values
of sampled experiences from replay
buffer of BDQN and DQN in Cart
Pole with 95% CI.

Figure 1 compares the scores of both BDQN and DQN
as a function of exploration steps. As shown in the
graph, both BDQN and DQN achieved higher scores
when less exploration steps were taken. The fitted
lines highlight that, in our experiments, the decrease
in score with increasing exploration steps follows a lin-
ear trend. Additionally, the graph shows that higher
values of α in BDQN lead to more exploration. As
discussed, although σ does not appear to affect ex-
ploration, it has a negative impact on performance.
All BDQN data points that are not highlighted with
a circle have the default α = 0.01 and σ = 0.5, 1.
The fact that these instances achieved the best scores
supports the observation that lower α and higher σ
were preferred in this environment.

4.2 Cart Pole
Overall, trends similar to those observed in MNIST
were also identified in the Cart Pole environment. In
particular, Cart Pole benefits from minimal explo-
ration. The best run of BDQN outperformed the best
run of ϵ-greedy DQN, however, given that most of our
hyperparameter tuning effort was focused on BDQN, this result is not surprising. Figure 2
shows that despite the best run of BDQN outperforming the best run in DQN, the Q-values
learned by DQN were generally slightly higher, which may suggest that the ϵ-greedy strategy

9

may still be advantageous in the Cart Pole setting. Nevertheless, we did not find a significant
difference in the average performance between the two algorithms (similar plots of the learned
Q-values in other environments can be found in Appendix C).

Figure 3: Exploration as a function of uncertainty of all runs in tested environment. Different
values of α are highlighted, along with runs with an above average score which are filled with
a dark dot.

During the hyperparameter tuning of BDQN, we observed that lower values of α led to
reduced uncertainty, decreased exploration, and improved scores. While the influence of α on
uncertainty and exploration was less pronounced than in the MNIST environment, its impact
on performance was still the most significant among all tested hyperparameters. Figure 3
shows that although higher values of α reduced uncertainty and encouraged exploration
in Cart Pole, the change was not as dramatic as in MNIST. Similarly to α, increasing the
batch size also reduced uncertainty and exploration, resulting in better scores. The posterior
update frequency had a comparable effect, though to a lesser extent. In contrast, weight
sampling frequency did not show a clear impact on uncertainty, exploration, or performance
– although the most frequent sampling setting did yield a slightly higher score.

The effect of σ on uncertainty, exploration, and reward was not consistent, but the highest
value of σ did achieve a slightly better score. On the other hand, σϵ had a clearer influence:
larger values increased uncertainty and exploration. Interestingly, it was the intermediate

10

value of σϵ that resulted in the highest score.

4.3 Deep Sea
Expectedly, the performance of the algorithms varied substantially between Deep Sea grid
size 10× 10 and 20× 20.

Figure 4: Comparison of BDQN and
DQN exploration in Deep Sea envi-
ronments with 95% CI.

Deep Sea 10 × 10 was solved successfully by both
BDQN and ϵ-greedy DQN. However, under the hy-
perparameter settings used, BDQN appeared to have
an advantage over DQN. The best runs of BDQN
achieved over a 10% improvement in score compared
to DQN.

Similarly to the other environments we covered, in
Deep Sea 10× 10 environment, a lower value of α led
to reduced uncertainty, less exploration, and higher
scores as well. Figure 3 shows that Deep Sea 10× 10
does in fact benefit from less exploration, having all
of its runs that achieve an above average score concen-
trated at the bottom of the plot, with a lower number
of exploration steps. Additional plots demonstrating
this trend can be found in Appendix B. Besides α,
larger batch sizes also reduced uncertainty; however,
their relationship with exploration and rewards was not monotonic. Interestingly, an inter-
mediate batch size resulted in the least exploration and the highest score. The frequency
of posterior updates and weight sampling did not show a consistent trend with respect
to uncertainty, exploration, or rewards. Again, the intermediate setting yielded the best
performance, with the lowest level of exploration and the highest score.

Figure 5: BDQN state cov-
erage in Deep Sea of size
20× 20.

Contrary to what the uncertainty formula might suggest, we
did not observe a clear relationship between σ and uncertainty
(the intermediate value of σ once more resulted in the least
exploration and highest score). In contrast, σϵ behaved more
predictably – lower values led to reduced uncertainty and
smaller Q-value differences. The lowest σϵ also resulted in the
least exploration steps and the highest score.

In Deep Sea 20 × 20 the results were considerably different.
In the larger Deep Sea environment, ϵ-greedy DQN fails com-
pletely. In fact, it did not reach the reward at position (19, 19)
even once, while BDQN with the best hyperparameter setting
found reached it 16.4 times on average (over all seeds). Figure 4
shows that the number of exploration steps taken by BDQN
dramatically exceeds the one taken by DQN, but at the same
time it explores even less than DQN in a simpler environment
as Deep Sea 10× 10. Additionally, Figures 5 and 6 show heatmaps representing the state
coverage of both algorithms, which clearly demonstrate how ϵ-greedy DQN under-explores
the state space.

Although a small α (i.e., 0.01) resulted in significantly lower uncertainty and smaller Q-

11

differences, as in the other environments, it came at the cost of exploration – crucial for the
larger environment. In this environment, the highest value of α (0.9) produced the greatest
uncertainty, led to the most exploration, and resulted in rewards being reached significantly
more often than with lower α values. We observed a monotonic relationship: as α increased,
so did uncertainty, exploration steps and scores. Figure 3 shows that Deep Sea 20× 20 does
benefit from more exploration steps, as most of its best performing runs are concentrated in
the upper-right corner of the plot (runs which performed the most exploration).

Figure 6: DQN state cov-
erage in Deep Sea of size
20× 20.

While larger batch sizes also reduced uncertainty, the use of
a low default α likely limited the agents’ ability to discover
rewards, potentially masking their full effect. Variations in
posterior update frequency and weight sampling frequency did
not show any noticeable impact on uncertainty, exploration,
or reward. However, this lack of effect may be due to the low
default α used in these experiments.

Additionally, although increasing σ did not substantially raise
uncertainty over time as would be expected, it did lead to
a higher average number of rewards reached. Finally, higher
values of σϵ increased uncertainty and resulted in a slight
improvement in reward, with the highest value (σϵ = 1.2)
leading to an average of one reward reached.

Another observation that was made in BDQN across all en-
vironments is that the function of exploration steps against
the total number of steps in the environment tends to be linear, or piecewise linear, as
demonstrated in Figure 4. This means that BDQN has an approximately constant probability
of exploring in these regions. In the most challenging environment we tried (Deep Sea 20×20),
that probability was around 1/2, meaning that around half of the steps were exploration steps.
Again, we refer to Figure 3 which shows the number of exploration steps of BDQN across all
environments, as a function of uncertainty. As shown, in all environments, exploration appear
to be capped at approximately 50% of the total steps (Cart Pole is the only environment
which does not reach that). Furthermore, the figure makes it clear that most environments,
except for Deep Sea 20 × 20, benefit from less exploration, which is achieved by smaller
values of α. To clearify, the dark dots inside the data points represent runs with an above
average score. As shown, they are typically concentrated in the bottom-left corner where
uncertainty is low and exploration is minimal – a trend that is reversed in Deep Sea 20× 20.

Furthermore, we computed hyperparameter sensitivity scores for BDQN and ϵ-greedy DQN.
BDQN achieved a sensitivity score of 0.2810 (with a per-environment tuned score of 1.14),
while DQN scored 0. This result is not unexpected. Because we used Bayesian optimization to
tune DQN, each environment ended up being tested with a different set of hyperparameters.
Out of the 33 = 27 possible hyperparameter settings of DQN, only a two were shared
across all environments. Although the lack of common hyperparameter configurations across
environments is itself an indicator of high sensitivity, it also means we were unable to compute
a reliable sensitivity score for DQN.

Lastly, we include the optimal hyperparameter settings we found in all environments in Table 1.
This table consists of the preferable hyperparameter values, when all other hyperparameters
are kept constant in their default values. This should not be interpreted as the best
hyperparameter combinations.

12

Environment α Posterior Updates Batch Size Weight Sampling σ σϵ

Deep Sea 20× 20 0.9 2000 2000 100 1 1.2
Deep Sea 10× 10 0.01 1000 2000 100 0.5 0.8
Cart Pole 0.01 500 5000 50 1 1
MNIST 0.01 500 5000 500 1 0.8

Table 1: Best BDQN hyperparameter values in different environments.

5 Discussion
Our experiments demonstrate that BDQN’s effectiveness is environment-dependent. It pro-
vides substantial improvements over ϵ-greedy DQN in exploration-heavy tasks like Deep Sea
at larger grid sizes, but offers only marginal or no improvements in simpler environments like
MNIST and Cart Pole. This suggests that BDQN is particularly well-suited for environments
with sparse or deceptive reward structures. It is also important to note that although BDQN
achieved better performance than ϵ-greedy DQN in Deep Sea 20×20, BDQN success was still
very limited to reaching the final reward only a relatively few times with one million steps
and the learned Q-values did not converge to the appropriate values (shown in Appedix C).

Among the BLR hyperparameters, the forgetting factor α emerged as the most influential
in all environments. A lower value of α (i.e., 0.01) typically suppressed exploration and
improved performance in simpler tasks. In contrast, higher α values (i.e., 0.5 and 0.9)
increased exploration and in Deep Sea 20 × 20, where more exploration was necessary, it
resulted in better performance. Other hyperparameters, such as batch size and σϵ, generally
behaved as expected: larger batches and lower noise variances reduced uncertainty and
exploration, often leading to improved performance in simpler environments. However, some
effects were too weak or inconsistent across environments to support definitive conclusions.
This aligns with the optimal hyperparameter values summarized in Table 1, which show that
optimal α values correspond to the complexity of the environment, and that larger batch
sizes generally outperform smaller ones. In contrast, the effects of other hyperparameters
appear less predictable.

Another notable observation is that BDQN’s exploration tends to persist throughout training,
with a relatively constant probability of exploration over exploitation, even as uncertainty
decreases. In none of our experiments did exploration cease entirely. This behavior may
be advantageous in environments where rewards are sparse and continued exploration is
essential throughout training. However, it may be less beneficial in tasks where the optimal
policy is discovered early, as BDQN continues to explore suboptimal transitions that hurt
overall performance.

6 Limitations and Future Work
This study presents several limitations that should be acknowledged. First, the experimental
evaluation was restricted to three environments – MNIST, Cart Pole, and Deep Sea – which,
while covering a range of complexity and exploration demands, are not sufficient to generalize
the findings across the broader landscape of RL problems. A more comprehensive evaluation
across diverse environments would be necessary to confirm the robustness and generalizability
of the results. Second, hyperparameter tuning efforts were primarily focused on BDQN,

13

whereas the ϵ-greedy DQN baseline received comparatively less attention. As a result, the
performance gap observed between the two methods may partially reflect differences in
tuning rather than intrinsic algorithmic benefits. Lastly, the hyperparameter sensitivity
analysis employed a relatively new framework proposed by Adkins, Bowling, and White
[1] which has not yet seen widespread use in practice. Consequently, the sensitivity scores
reported in this work should be interpreted with caution. More importantly, we believe
that the hyperparameter tuning in our experiments was not sufficiently extensive to yield
reliable sensitivity scores. In contrast, the original paper conducted 200 runs for each of five
environments across 625 hyperparameter configurations, far exceeding the relatively modest
number of runs we used in our study (a figure comparing BDQN’s computed hyperparameter
sensitivity score to the algorithms tested by Adkins, Bowling, and White [1] can be found in
Appendix D).

Future research should aim to evaluate BDQN across a broader range of environments and
real-world contextual bandit applications. This would help assess the generalizability of
the findings beyond the three environments explored in this work. Additionally, a more
extensive hyperparameter sensitivity analysis involving a larger number of hyperparameter
settings and runs could yield deeper insights into the algorithm’s behavior and the effect of its
hyperparameters, particularly for hyperparameters that did not exhibit consistent patterns
in our results. Finally, it may be valuable to explore hybrid approaches that combine BDQN
with adaptive ϵ-scheduling or policy-switching mechanisms to reduce persistant exploration in
simpler environments while retaining BDQN’s strengths in complex, sparse-reward settings.

7 Conclusions
This work investigated the effectiveness of Bayesian Deep Q-Networks (BDQN) in environ-
ments with varying exploration complexity and addressed three core research questions:
performance, sensitivity, and transferability. First, we systematically compared BDQN
to ϵ-greedy DQN across both sparse-reward and dense-reward tasks, finding that BDQN
outperforms standard DQN in exploration-heavy settings such as Deep Sea 20× 20 while
having no consistent advantage over DQN in simpler environments, thus answering the
performance question. Second, we identified the forgetting factor (α) as the most influential
exploration-related hyperparameter, revealing that BDQN is highly sensitive to α, while
other BLR hyperparameters had more moderate effects. We also detailed the effects of
each hyperparameter, providing insight into how they shape BDQN’s exploratory behavior
– thereby addressing the sensitivity question. Third, we showed that BDQN performance
is highly task-dependent and requires careful hyperparameter tuning. Using BDQN across
different types of tasks may not be trivial, as the optimal hyperparameter values can vary
significantly, especially between exploration-heavy and simpler tasks, answering the transfer-
ability question. These findings deepen our understanding of BDQN’s exploration strategy
and offer practical guidance for its use in reinforcement learning.

8 Responsible Research
This work adheres to the principles of the Netherlands Code of Conduct for Research Integrity:
honesty, scrupulousness, transparency, independence, and responsibility.

Honesty has been upheld throughout this research by reporting experimental procedures

14

and results accurately, avoiding overstated claims, and presenting both the strengths and
limitations of the algorithms studied. We have not attempted to exaggerate the findings or
selectively report favorable results.

Scrupulousness was ensured by designing and executing our experiments with methodological
rigor. All algorithms were evaluated using consistent experiments, including multiple random
seeds to account for randomness and measure the variability in the results. Performance
metrics were selected to reliably capture algorithm behavior, and confidence intervals are
reported where appropriate.

Transparency is supported by the full disclosure of our experimental setup. Every step of the
research process is documented in detail to enable replication. This includes hyperparameter
values, random seeds and type of machine used to run the code. The source code and data
used to generate all the figures and results are publicly available in a dedicated GitHub
repository, enabling full verification and reuse by other researchers.

Independence was maintained by focusing purely on the properties and empirical behavior of
the reinforcement learning exploration strategies studied, without influence from commercial
or political stakeholders.

Responsibility has been considered by ensuring that the research remains relevant to the
scientific community. Furthermore, we recognize that reinforcement learning can have broader
societal implications. In this research, we focus solely on algorithmic evaluation, rather than
application domains, to develop general scientific understanding in a responsible and neutral
manner.

Together, these measures address reproducibility and integrity challenges in a responsible,
rigorous and ethical way.

References
[1] Jacob Adkins, Michael Bowling, and Adam White. A Method for Evaluating Hyperpa-

rameter Sensitivity in Reinforcement Learning. arXiv:2412.07165 [cs]. Feb. 2025. doi:
10.48550/arXiv.2412.07165. url: http://arxiv.org/abs/2412.07165 (visited on
05/02/2025).

[2] Kamyar Azizzadenesheli and Animashree Anandkumar. Efficient Exploration through
Bayesian Deep Q-Networks. arXiv:1802.04412 [cs]. Sept. 2019. doi: 10.48550/arXiv.
1802.04412. url: http://arxiv.org/abs/1802.04412 (visited on 04/21/2025).

[3] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neuronlike adaptive
elements that can solve difficult learning control problems”. In: IEEE Transactions on
Systems, Man, and Cybernetics SMC-13.5 (1983), pp. 834–846. doi: 10.1109/TSMC.
1983.6313077.

[4] Djallel Bouneffouf and Irina Rish. A Survey on Practical Applications of Multi-Armed
and Contextual Bandits. arXiv:1904.10040 [cs]. Apr. 2019. doi: 10.48550/arXiv.1904.
10040. url: http://arxiv.org/abs/1904.10040 (visited on 05/02/2025).

[5] Greg Brockman et al. OpenAI Gym. arXiv:1606.01540 [cs]. June 2016. doi: 10 .
48550/arXiv.1606.01540. url: http://arxiv.org/abs/1606.01540 (visited
on 06/02/2025).

15

https://doi.org/10.48550/arXiv.2412.07165
http://arxiv.org/abs/2412.07165
https://doi.org/10.48550/arXiv.1802.04412
https://doi.org/10.48550/arXiv.1802.04412
http://arxiv.org/abs/1802.04412
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.48550/arXiv.1904.10040
https://doi.org/10.48550/arXiv.1904.10040
http://arxiv.org/abs/1904.10040
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
http://arxiv.org/abs/1606.01540

[6] Meire Fortunato et al. Noisy Networks for Exploration. arXiv:1706.10295 [cs]. July
2019. doi: 10.48550/arXiv.1706.10295. url: http://arxiv.org/abs/1706.10295
(visited on 05/02/2025).

[7] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with
Double Q-learning. arXiv:1509.06461 [cs]. Dec. 2015. doi: 10.48550/arXiv.1509.
06461. url: http://arxiv.org/abs/1509.06461 (visited on 04/29/2025).

[8] Shengyi Huang et al. CleanRL: High-quality Single-file Implementations of Deep Rein-
forcement Learning Algorithms. arXiv:2111.08819 [cs]. Nov. 2021. doi: 10.48550/arXiv.
2111.08819. url: http://arxiv.org/abs/2111.08819 (visited on 07/06/2025).

[9] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324. issn: 00189219. doi: 10.
1109/5.726791. url: http://ieeexplore.ieee.org/document/726791/ (visited on
06/02/2025).

[10] Long-Ji Lin. “Reinforcement learning for robots using neural networks”. UMI Order
No. GAX93-22750. PhD thesis. USA: Carnegie Mellon University, 1992.

[11] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602
[cs]. Dec. 2013. doi: 10.48550/arXiv.1312.5602. url: http://arxiv.org/abs/
1312.5602 (visited on 04/27/2025).

[12] Johan Obando-Ceron et al. On the consistency of hyper-parameter selection in value-
based deep reinforcement learning. arXiv:2406.17523 [cs]. Nov. 2024. doi: 10.48550/
arXiv.2406.17523. url: http://arxiv.org/abs/2406.17523 (visited on 07/06/2025).

[13] Ian Osband et al. Behaviour Suite for Reinforcement Learning. arXiv:1908.03568 [cs].
Feb. 2020. doi: 10.48550/arXiv.1908.03568. url: http://arxiv.org/abs/1908.
03568 (visited on 06/02/2025).

[14] Ian Osband et al. Deep Exploration via Bootstrapped DQN. arXiv:1602.04621 [cs]. July
2016. doi: 10.48550/arXiv.1602.04621. url: http://arxiv.org/abs/1602.04621
(visited on 04/27/2025).

[15] Andrew Patterson et al. The Cross-environment Hyperparameter Setting Benchmark
for Reinforcement Learning. arXiv:2407.18840 [cs]. July 2024. doi: 10.48550/arXiv.
2407.18840. url: http://arxiv.org/abs/2407.18840 (visited on 07/06/2025).

[16] Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. eng.
Second edition. Adaptive computation and machine learning. Cambridge, Massachusetts
London, England: The MIT Press, 2020. isbn: 978-0-262-03924-6.

[17] William R. Thompson. “On the Likelihood that One Unknown Probability Exceeds
Another in View of the Evidence of Two Samples”. In: Biometrika 25.3/4 (Dec. 1933),
p. 285. issn: 00063444. doi: 10.2307/2332286. url: https://www.jstor.org/
stable/2332286?origin=crossref (visited on 06/09/2025).

[18] William R. Thompson. “On the Theory of Apportionment”. In: American Journal
of Mathematics 57.2 (Apr. 1935), p. 450. issn: 00029327. doi: 10.2307/2371219.
url: https://www.jstor.org/stable/2371219?origin=crossref (visited on
06/09/2025).

[19] Christopher Watkins. “Learning From Delayed Rewards”. PhD thesis. King’s College,
1989.

16

https://doi.org/10.48550/arXiv.1706.10295
http://arxiv.org/abs/1706.10295
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
http://arxiv.org/abs/1509.06461
https://doi.org/10.48550/arXiv.2111.08819
https://doi.org/10.48550/arXiv.2111.08819
http://arxiv.org/abs/2111.08819
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
https://doi.org/10.48550/arXiv.1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.48550/arXiv.2406.17523
https://doi.org/10.48550/arXiv.2406.17523
http://arxiv.org/abs/2406.17523
https://doi.org/10.48550/arXiv.1908.03568
http://arxiv.org/abs/1908.03568
http://arxiv.org/abs/1908.03568
https://doi.org/10.48550/arXiv.1602.04621
http://arxiv.org/abs/1602.04621
https://doi.org/10.48550/arXiv.2407.18840
https://doi.org/10.48550/arXiv.2407.18840
http://arxiv.org/abs/2407.18840
https://doi.org/10.2307/2332286
https://www.jstor.org/stable/2332286?origin=crossref
https://www.jstor.org/stable/2332286?origin=crossref
https://doi.org/10.2307/2371219
https://www.jstor.org/stable/2371219?origin=crossref

A Hyperparameter Tuning
The tables below summarize the hyperparameter values used for hyperparameter tuning.
For BDQN, each of the hyperparameters was changed at a time, while keeping the others
fixed at a default value. The values are given in Table 2. Each setting was run with five
different random seeds. For DQN, Bayesian optimization was used to identify the best set of
hyperparameters from the values given in Table 3.

Hyperparameter Default Value Search Space

α (forgetting factor) 0.01 0.01, 0.5, 1.0
Posterior Update 1000 500, 1000, 2000
Batch Size 2000 1000, 2000, 5000
Weight Sampling 100 50, 100, 500
σ (prior std) 0.5 0.1, 0.5, 1.0
σϵ (noise std) 0.8 0.8, 1.0, 1.2

Table 2: BDQN hyperparameter values used in tuning.

Hyperparameter Search Space

Start ϵ 0.5, 0.75, 1.0
End ϵ 0.01, 0.25, 0.5
Exploration Fraction 0.1, 0.25, 0.5

Table 3: DQN hyperparameter values used in Bayesian optimization.

B Exploration and Rewards in Deep Sea

Figure 7: Exploration and Rewards of BDQN in Deep Sea 10× 10, showing the environment
benefits from little exploration.

17

Figure 8: Exploration and Rewards of BDQN in Deep Sea 20× 20, showing the environment
benefits from additional exploration.

(a) BDQN (b) DQN

Figure 9: Comparison of BDQN and DQN state coverage in Deep Sea of size 10× 10

18

C Q-Values Learning in BDQN and DQN

Figure 10: Average learned Q-values of sampled experiences from replay buffer of BDQN
and DQN in MNIST with 95% CI.

Figure 11: Average learned Q-values of sampled experiences from replay buffer of BDQN
and DQN in Deep Sea 10× 10 with 95% CI.

19

Figure 12: Average learned Q-values of sampled experiences from replay buffer of BDQN
and DQN in Deep Sea 10× 10 with 95% CI. This plot shows that neither of the algorithms
converge to the appropriate Q-values, however BDQN manages to reach the reward a few
times due to vast exploration.

20

D Hyperparameter Sensitivity

Figure 13: BDQN hyperparameter sensitivity embedded in the original figure published in
Adkins, Bowling, and White [1].

21

	Introduction
	Background
	Markov Decision Processes (MDPs)
	Deep Q-Networks (DQN)
	Bayesian Linear Regression
	Thompson Sampling
	Bayesian Deep Q-Network (BDQN)
	Hyperparameter Sensitivity
	Benchmark Environments

	Methodology
	Experiments and Results
	MNIST
	Cart Pole
	Deep Sea

	Discussion
	Limitations and Future Work
	Conclusions
	Responsible Research
	Hyperparameter Tuning
	Exploration and Rewards in Deep Sea
	Q-Values Learning in BDQN and DQN
	Hyperparameter Sensitivity

