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Abstract

Increasing the capacity of offshore wind energy is a necessary step in the transition from
fossil fuels to renewable energy sources. In order to accelerate this process, the costs of wind
energy should be reduced to make it more competitive with traditional energy sources. Cost
reduction could be achieved by increasing the lifetime of an Offshore Wind Turbine (OWT).
The lifetime is directly affected by the amount of damping present in an OWT. Hence, it is
vital to have accurate estimates of the damping in order to predict the lifetime.
All Offshore Wind Turbines are equipped with a bidirectional accelerometer, resulting in
large amounts of data that can be used for identification purposes. Using Operational Modal
Analysis (OMA) it is possible to estimate the structural parameters of an OWT from output
measurement data. Due to technical limitations, however, the available measurement data
does not have a constant sampling frequency. Consequently, conventional OMA methods
based on discrete-time models cannot be applied directly.
The goal of this thesis is to investigate whether the damping of an OWT can be accurately
estimated using non-uniformly sampled measurement data. Two different identification ap-
proaches are taken to answer this problem. The first approach consists of resampling the
measurement data with a constant sampling frequency and subsequently applying OMAmeth-
ods. The second approach uses a continuous-time identification method, which can be applied
directly to non-uniformly sampled measurement data.
In this thesis, the Predictor-Based Subspace IDentification (PBSID) method is used for the
identification of measurement data. This method is based on a discrete-time state-space repre-
sentation of a system. Using Laguerre projections the PBSID algorithm can also be extended
to the continuous-time domain. The performance of both the discrete and continuous-time
PBSID algorithms is examined by applying them to a simulation example. It is observed that
both methods are able to provide damping estimates of similar accuracy.
Following the simulation example, both identification approaches are applied to wind turbine
simulation and measurement data, respectively. Furthermore, the results from these two
approaches are compared with the results obtained from uniformly sampled measurement
data taken from an experimental OWT. It is concluded that accurate damping estimates of
an OWT can be obtained from non-uniformly sampled measurement data.
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Chapter 1

Introduction

In this chapter the background and motivation for this thesis will be discussed. A brief
introduction on wind energy is first given in Section 1-1. Following this introduction, the
research problem is formulated in Section 1-2. Finally, the framework of this thesis will be
presented in Section 1-3.

1-1 Wind Energy

In 2015 the Dutch government signed the Paris agreement, of which the goal is to limit global
warming to less than two degrees Celsius compared to pre-industrial levels [5]. In order to
contribute to this goal, the Dutch government strives to generate 14% of its required energy
through renewable sources by 2020 [6]. However, as can be observed in Figure 1-1, by the
end of 2015 only 5.8% of the gross energy consumption in the Netherlands was produced by
renewable sources. This ranks the country among the lowest contributors of renewable energy
in Europe, showing the need for quick improvements over the coming years.
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Figure 1-1: Share of renewable energy in gross energy consumption in the Netherlands until 2015
[1].
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Estimates show that at the current rate of the energy transition, the 2020 target will not be
achieved. In order to speed up this process a number of companies, including Siemens Wind
Power (SWP), have allied in a Transition Coalition. The goal of this coalition is to motivate
the Dutch government to pass a climate law for the energy goals of 2020 [7]. It is expected
that such a law will help both government and industry to become more focused on reaching
the climate goals.
The role of the industry in the energy transition is to reduce the overall costs of offshore
wind energy. In recent years the costs of offshore wind energy have dropped significantly,
resulting in the development of two offshore wind farms near the Dutch coast at the low costs
of 5,45 cents per kWh [8]. However, a part of these costs is being subsidized by the Dutch
government. In order to make offshore wind energy independent of government support and
therefore truly competitive with fossil fuels, the costs should be reduced even further.
Currently, offshore wind turbines often have conservative designs in order to make sure they
are able to withstand the harsh conditions at sea. By optimizing the design of the support
structure, it might be possible to either reduce the mass or increase a turbine’s lifetime, and
hence reduce the overall costs. The lifetime of a turbine is influenced by the amount of fatigue
damage that occurs, which in turn is directly related to the amount of damping of an Offshore
Wind Turbine (OWT) [9]. When a turbine is in operation, it is well damped and the damping
is dominated by aerodynamic effects. When a turbine is idling, i.e., not generating any power,
it is assumed that aerodynamic damping effects cease to exist and the overall damping drops
to the structural damping level [10]. It is at times like these when there is limited damping,
that the most fatigue damage occurs. Thus, in order to accurately predict the lifetime, it is
vital to know the damping values of a turbine.
In order to get more insight in the dynamics of an OWT, the current generation of turbines
are all equipped with a bidirectional acceleration sensor. The huge amount of data that is
obtained through these sensors provides a significant opportunity to compare the design basis
values with the actual field values. A number of studies has been performed in recent years
using this measurement data [10, 11, 12, 13, 14]. In two of these studies a Subspace Model
Identification (SMI) method was used to obtain estimates of the structural parameters of an
idling OWT from measurement data. These identification results suggested that there might
be more damping than initially assumed. In order to find out more about this phenomenon,
additional research using measurement data is required.

1-2 Problem Formulation

The measurement data that was used for the identification of the structural parameters in
previous research by Kramers [14] consisted of uniformly sampled data sequences. However,
due to technical limitations, the majority of turbines are not equipped with sensors that are
able to deliver this consistent quality. These turbines are solely equipped with a bidirectional
accelerometer located in the nacelle, which only registers measurements when a significant
change is detected by the sensor. Therefore, the resulting measurements do not have a
constant sampling frequency. Unfortunately, conventional identification methods are not
directly compatible with this kind of data, making it difficult to identify the damping for the
majority of installed turbines. This leads to the problem formulation that will be addressed
in this thesis:
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"Identify the structural parameters of an idling Offshore Wind Turbine using non-uniformly
sampled measurement data."

There are two different approaches to solving above problem, therefore the problem formu-
lation is split into two subproblems. The first approach would be to resample the data, and
subsequently apply identification methods. However, the original uniformly sampled data
can never be exactly reconstructed from the non-uniformly sampled data. As a result, the
estimated structural parameters obtained using resampled data might not be as accurate.
The first subproblem can therefore be formulated as follows:

"Examine the effects of resampling non-uniformly sampled measurement data on the
estimated structural parameters of an Offshore Wind Turbine."

In some fields of research such as medicine or transport, but also engineering applications like
aircraft identification, it is often preferred to obtain a continuous-time model of a system.
Because of this, many studies have been performed in recent years to extend identification
methods from a discrete-time to a continuous-time framework. The nature of these methods
also allows for the use of non-uniformly sampled data and could therefore prove to be a useful
method for identifying the structural parameters of an OWT. The second subproblem that
will be investigated in this thesis will therefore be the following:

"Investigate continuous-time identification methods and subsequently evaluate the
performance when applied to non-uniformly sampled turbine measurement data."

In the next section it will be discussed how these problems are to be solved and where they
fit in the framework of this thesis.

1-3 Thesis Framework

The framework of this thesis consists of two parts. The first part investigates and discusses
the methodology of the identification methods that will be applied to the OWT measure-
ment data. The second part shows the application of the identification methods to turbine
measurement data and presents the overall conclusions and recommendations for future work.

• Part I: Identification Methodology
The first parts is divided into three chapters. Chapter 2 starts by presenting the OWT
that will be the subject of identification in this thesis. Furthermore, some basic concepts
for Offshore Wind Turbines are discussed. The chapter finishes with a brief literature
overview of damping identification methods that have been applied to wind turbines.
Following this literature research, two identification procedures are selected that will
be investigated further. The first of these methods is the discrete-time variant of the
Predictor-Based Subspace IDentification (PBSID) method and will be the topic of chap-
ter 3. The chapter starts with the introduction of the general framework that is required
for this algorithm. The algorithm itself is subsequently presented and applied to a sim-
ulation example to examine its performance. More specifically, the identification results
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that have been obtained using uniformly sampled data are compared to those obtained
with data that has been resampled from non-uniformly sampled data. In Chapter 4, the
transition is made to a continuous-representation of the PBSID algorithm. It is shown
that through a transformation of the measurement data, a continuous-time representa-
tion of the system can be estimated. The continuous-time algorithm is implemented in
an existing identification toolbox and is subsequently applied to non-uniformly sampled
data from the same simulation example as in Chapter 3. This allows a direct comparison
between the discrete-time and continuous-time variants of the PBSID algorithm.

• Part II: Application to Offshore Wind Turbines
In the second part of this thesis the identification methods from Part I will be applied
to turbine data. In order to assess whether the identification algorithms are able to
estimate the damping of in installed OWT, they are first applied to turbine simulation
data in Chapter 5. This simulation data is generated by a software package developed at
SWP, which is able to simulate the interaction of the turbine with wind, waves and soil.
If the identification methods are able to acquire satisfactory estimates of the turbine’s
damping, they can subsequently be applied to actual measurement data of an installed
OWT in Chapter 6. The damping estimates that are obtained using these methods
can then be compared to each other, but also to estimates that are obtained using
measurement data that was acquired using a fixed sampling frequency. All the findings
of this thesis are summarized once more in Chapter 7. Furthermore, recommendations
based on these conclusions will be provided for future work.
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Chapter 2

Offshore Wind Turbine

The significance of accurately identifying the structural parameters, especially the damping,
of an Offshore Wind Turbine (OWT) was briefly explained in Chapter 1. Using first principles
modeling or numerical tools such as the Finite Element Method (FEM), it is possible to get
estimates of the damping present in a system. However, this has proven to be a troublesome
process for complex structures such as wind turbines, as it relies on a lot of assumptions. In
order to verify the damping of existing turbine models or get more accurate estimates, the
response of a physical OWT has to be studied.

The aim of this chapter is to provide an introduction on Offshore Wind Turbines and give an
overview of the current state-of-the-art identification methods that are being used for wind
turbine identification. The 6-MW Siemens Offshore Wind Turbine is presented in Section 2-1
along with general information on wind turbines. This section also focuses on the damping
of an OWT and highlights the importance of accurately identifying the damping. Section 2-2
gives a brief overview of identification methods available in literature for damping estimation
from measurement data. Furthermore, the choice for the Predictor-Based Subspace IDentifi-
cation (PBSID) method will be discussed.

2-1 Presenting the Offshore Wind Turbine

This section will present the OWT that is studied in this thesis and will also provide general
information on wind turbines. The Offshore Wind Turbine under consideration is located
in

Master of Science Thesis CONFIDENTIAL D. C. van der Hoek



8 Offshore Wind Turbine

2-1-1 Design of an Offshore Wind Turbine

The Offshore Wind Turbine consists of several major components, which have been visualized
in Figure 2-2. A monopile foundation is used to embed the wind turbine in the seabed. A so
called transition piece is placed on top of the monopile in order to connect it to the tower.
The Rotor Nacelle Assembly (RNA) is subsequently mounted on the tower. The RNA is able
to rotate (yaw) in order to make sure that the rotor plane is directed towards the wind when
it is operational. However, when the turbine is not operational (idling) the turbine will not
follow the direction of the wind. Each blade of the turbine is able to rotate (pitch) as well.
By pitching, the turbine can control the amount of power that is generated at higher wind
speeds. During long periods of idling, e.g. when the wind speed is too low, the blades are
pitched out of the wind entirely in order to reduce the loads acting on the wind turbine.
Offshore Wind Turbines are continually subjected to combined wind and wave loads. By using
the knowledge of the wind and wave conditions at a particular site, it is possible to design a
turbine that is able to withstand these loads. More specifically, an OWT is designed to cope
with ultimate loads acting on the structure at a given time, as well as resisting different kinds
of loads over its entire lifetime. The latter type of loads are referred to as fatigue loads and
are an important factor to take into account when designing an OWT.
Fatigue damage is the result of cyclic loading of a structure, resulting in the development of
microscopic fractures in the material which propagate over time. The lifetime of a structure is
directly influenced by the amplitudes of these loads. In order to minimize fatigue loads, wind
turbines are classically designed to avoid coincidence of resonance between the first natural
frequencies and the dynamic forces acting on the turbine. Current practice is to make sure
that the eigenfrequencies of the first two tower bending modes are located between the 1P
and 3P frequency bands [2], as can be seen in Figure 2-1. These frequency bands are the
result of excitations caused by the wind, and correspond to the rotational frequency of the
rotor (1P) and the three times a blade passes the tower each rotation (3P). As Offshore Wind
Turbines keep growing in size, it is observed that the first natural frequency drops as well.
Dropping in frequency in itself is not a problem, were it not that the energy content of the
waves is also located close to this frequency. Decreasing the natural frequency of the turbine
too much will then result in wave induced structural resonances, leading to higher loads and
subsequent fatigue damage.
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Figure 2-1: Frequency design diagram for an Offshore Wind Turbine incorporating 1P, 3P and
wave spectra [2].
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Figure 2-2: Schematic overview of an Offshore Wind Turbine on monopile foundation.
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10 Offshore Wind Turbine

The described design practice does not solve the problem of fatigue damage altogether. Even
though there is no coincidence of resonance, the turbine is still excited by the combined
wind and wave loading. Through the concept of modal superposition, the total movement of
the turbine can be seen as a summation of the movements of all its different modes. From
all the natural modes of a turbine, the largest contribution in the movement of an OWT
comes from the principal bending modes. These modes are called the first Fore-Aft (FA)
and Side-Side (SS) modes and a graphical interpretation of them is provided in Figure 2-3.
Consequently, it is crucial that the damping of these modes can be accurately estimated, as the
amplitude of vibrations and therefore the amount of fatigue damage is inversely proportional
to the damping [9].

Figure 2-3: Graphical representation of the first Fore-Aft (left) and Side-Side (right) bending
modes of an Offshore Wind Turbine.

2-1-2 Damping in Offshore Wind Turbines

In the field of structural dynamics, damping is defined as the dissipation of energy from the
structure to the environment. In the case of an OWT, the overall damping can be seen as
a summation of several damping sources. The damping of an OWT consists of the following
elements [12]:

1. Structural damping: This type of damping is defined as the transformation of vibra-
tional energy from the structure into heat as a result of internal friction. The structural
damping ratio is typically assumed to be in the order of 0.5% critical damping for steel
structures.

2. Soil damping: Soil damping is defined as the effect of soil on the vibration decrement
of an oscillating pile. The monopile on which the wind turbine is mounted causes a cyclic
motion of the surrounding soil and this results in some damping. It is often assumed
that this kind of damping is of low importance compared to other kinds of damping
[12]. However, other studies claim that the order of magnitude of soil damping could in
fact be higher than it is often assumed [15].
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3. Hydrodynamic damping: Hydrodynamic damping consists of two elements: wave
radiation and viscous damping. Wave radiation is a damping effect resulting from
the creation of waves by vibrations of the structure. Viscous damping is the result of
hydrodynamic drag of the wind turbine support structure. The amount of damping
coming from hydrodynamic effects is small compared to other damping sources.

4. Aerodynamic damping: Vibrations that are present in the wind turbine also have
a direct interaction with the air that flows around it, resulting in the damping of the
vibrations. This damping effect is part of a physical phenomenon called aero-elasticity.
When the wind turbine is operational, the aerodynamic damping dominates the other
damping sources and therefore the OWT is relatively well damped. However, the aero-
dynamic damping drops if the rotor or wind speed drops, the blades are pitched out
or the wind turbine is yawed away from the dominating wind direction. It is often
assumed that aerodynamic damping can be neglected entirely when a turbine is idling
[12]. The estimation of fatigue damage that occurs when idling is then only based on the
other three damping sources, which comes down to a damping ratio of approximately
0.8−1.0% critical damping. Consequently, the amount of fatigue damage is many times
greater when a turbine is idling.

5. Mass damping: Apart from the previous damping sources, it is also possible to add
additional damping to the wind turbine in the form of a mass damper. This can be done
by installing an extra mass, with free movement up to a certain point, inside the tower
of the turbine. Some of the vibrations can then be dissipated from the wind turbine by
transferring them to the added mass. This technique has been introduced fairly recently
in wind turbines and therefore has not been applied on a large scale yet.

have not been installed
with any form of mass damping, and therefore this type of damping will not be taken
into account in this thesis.

It was stated that the amount of aerodynamic damping of an idling turbine is negligible.
However, recent studies have shown that the aerodynamic damping might be more complex
than expected [13, 14]. More research is required in order to give more accurate estimations
of the damping. For this purpose there is the possibility to use the vast database of turbine
measurements from Siemens Wind Power.

2-1-3 Turbine Measurement Data

The number of installed turbines has increased greatly over the past years. In order to
monitor the performance and condition of an OWT, each turbine is equipped with a number
of sensors. The increased capacity of offshore wind energy has thus resulted in a large amount
of measurement data. This data provides a significant opportunity to compare the design
model of a turbine with the actual field values.
Each OWT is equipped with a data acquisition system which is able to provide so called fastlog
data. This fastlog data is recorded on an event driven basis, meaning that it only records when
the current sample crosses a certain threshold. As a result, the turbine measurement data
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12 Offshore Wind Turbine

does not have a constant sampling rate. As was already mentioned in Chapter 1, conventional
identification methods cannot be directly applied to this kind of data.

The turbine under consideration is also equipped with an additional data acquisition system.
This system is used to monitor the internal forces of the turbine at several locations. For
this purpose, a great number of accelerometers and strain gauges has been installed on the
turbine. Furthermore, this system is able to record all these measurements with a fixed
sampling frequency of fs = 25 Hz. Since the turbine is equipped with two data acquisition
systems, it is possible to use both types of measurement data for identification purposes and
study the effect of non-uniform sampling on the damping estimates. The next section presents
several identification methods that can be used for this purpose.

2-2 Identification Methods

In this section an overview is given of of possible identification methods which can be applied
to offshore wind turbine measurement data. Most classical identification methods are based
on working with a Linear Time-Invariant (LTI) system. When a turbine is in operation, this
condition is obviously violated and these identification methods cannot be applied. In the
case of an idling wind turbine, the system is assumed to be linear and time invariant.

The majority of classical identification methods fall in the category of modal analysis [16]. In
modal analysis the vibrations of a structure can be modeled as a linear system. In the case
of an undamped system this leads to the following equation of motion:

Mq̈(t) + Kq(t) = f(t), (2-1)

where q is the displacement of the system, f is an external force acting on the system and M
and K are the symmetric mass and stiffness matrices respectively. By solving this equation
in the case that no external force is applied, the eigenfrequencies ωr and the eigenmodes φr of
the system can be obtained. Subsequently, it can be shown that the eigenmodes of the system
are orthogonal to each other. This fact can be used to decouple the equations of motion of
the system. This means that the dynamics of a multiple degrees of freedom system can be
described as multiple single degree of freedom systems, which is called modal superposition
[16]. In this way, each degree of freedom is represented as a function of the time-dependent
amplitude of the modal component ηr and the eigenmode of that particular degree of freedom.
The response of the entire system is then given by

q(t) '
k∑
r=1

ηr(t)φr, (2-2)

where k represents the number of dominant modes. The rest of the modes that are not
considered in this solution are assumed to have very small effects on the solution.

When damping is present in a system, modal superposition becomes more complicated. This
is due to the non-negative damping matrix, which does not allow a decoupling of the system
[16]. In order to still be able to apply modal analysis, it is assumed that the system is lightly
damped, i.e., the undamped and damped modal frequencies are approximately equal. In this
way, some of the damping coefficients in the damping matrix can be neglected and modal
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superposition can still be used. This will form the basis of the identification method that will
be discussed in this section.

A classical identification method is that of Experimental Modal Analysis (EMA) [17]. This
method consists of exciting the structure with a known input force and measuring its response
at different locations using, for instance, accelerometers. However, in the case of an OWT
this method is very impractical since wind and wave forces cannot be accurately measured.
This leaves only Operational Modal Analysis (OMA) to be used for the identification of an
OWT.

2-2-1 Operational Modal Analysis

When input forces cannot be measured but only output measurements are available, it is pos-
sible to use OMA methods. These methods only require output measurements from systems
under normal conditions to identify the structural parameters. An advantage of this method
is that the system is identified using realistic excitations. OMA methods also assume that
the system to be identified is an LTI system. Additionally, the excitations are assumed to be
given by an uncorrelated white noise sequence in the frequency band of interest and should
be distributed over the entire structure [18]. As stated before, these assumptions are violated
when a wind turbine is rotating and consequently regular OMA methods cannot be directly
applied.

In order not to violate the OMA assumptions, measurements are commonly taken from idling
wind turbines or from an overspeed stop test [10]. The latter means that the wind turbine
is sped up until it reaches its maximum operating speed, after which it is shut down. At the
moment of shut down, the blades are pitched out of the wind and the thrust force acting on
the rotor drops. This causes an excitation of the wind turbine in the fore-aft direction which
is damped out over time.

OMAmethods can be divided into two different categories, time domain and frequency domain
methods. Several of these methods will be discussed in the remainder of this section.

1. Time domain methods

• Commonly used time domain methods are those of the Natural Excitation Technique
(NExT) type [19]. These methods use the correlation function of a structure’s response
to estimate the modal parameters. This method can only provide accurate estimates for
the damping coefficients when there is a decay in the correlation function that consists
of one mode. In the case of an overspeed stop test, the use of correlation functions
is not necessary, since the exponential functions can be directly fitted to the decaying
measurement response. Both methods have been successfully applied on an OWT to
identify the damping [10]. However, these methods become inaccurate when several
modes are grouped close to each other.

• Another type of time domain techniques consists of Prediction Error Methods (PEM)
[20]. The PEM framework contains multiple algorithms that are able to estimate the
parameters of a system by minimizing the prediction errors. The prediction error meth-
ods all have different model parameterizations with each their own advantages and
disadvantages, which makes them applicable to a wide variety of systems. In general,

Master of Science Thesis CONFIDENTIAL D. C. van der Hoek



14 Offshore Wind Turbine

PEM are able to provide models with good asymptotic properties. However, PEM also
have some drawbacks. First of all, unlike other OMA methods, PEM always require an
explicit parametrization. Secondly, the numerical solution to the minimization problem
often proves to be very computationally intensive and leads to a search over multiple lo-
cal minima. Finally, the computation of the parameters requires accurate initial values
of the parameters, which can be hard to find when dealing with complex structures.

• The last category of time domain OMA methods that will be briefly discussed in this
section, is that of Stochastic Subspace Identification (SSI) methods. SSI methods are
based on a LTI state-space representation of a system. The advantage of SSI methods
is that they are numerically robust and are less computationally intensive than PEM.
Furthermore, they can be directly applied to Multiple-Input Multiple-Output (MIMO)
systems and they can be extended to a continuous-time framework in order to deal
with non-uniformly sampled data. Another advantage of SSI methods is that some
of them can also be employed in case of colored noise [21]. Within the class of SSI
there are different algorithms to be found. So called Multivariable Output-Error State-
sPace (MOESP) type algorithms [22] have been successfully applied to wind turbines in
the recent past [13, 14]. The state of the art in subspace identification is represented by
the PBSIDopt algorithm [23]. The difference between the two methods is that the former
directly estimates the state matrices from an extended observability matrix, while the
latter first computes a state sequence before determining the system matrices.

2. Frequency domain methods

• A frequently used OMA technique is the Frequency Domain Decomposition (FDD)
method [21]. The FDD method uses the spectral densities of the output signal to es-
timate the modal parameters. The first step in doing this, is to apply a Fast Fourier
Transform (FFT) to the output data in order to transform it to the frequency do-
main. Using the frequency domain output data, the covariance matrix, also called the
Power Spectral Density (PSD) matrix, can be computed. All the modal parameters
of interest are stored within the PSD matrix. In order to identify these parameters,
a Singular Value Decomposition (SVD) is used. The singular values can subsequently
be plotted over the frequency spectrum. By repeating this progress for a number of
discrete frequencies and averaging the results, the eigenfrequencies of the system can be
determined. The eigenfrequencies are located at the peaks of the frequency response.
The modes corresponding to the eigenfrequencies can be found in the singular vectors
from the SVD. By using this peak picking method over multiple frequency spectra, it is
possible to identify coupled modes that would otherwise have been dominated by other
modes.

• The FDD method can be extended in order to estimate damping values of a structure.
This results in the Enhanced Frequency Domain Decomposition (EFDD) method [24].
After the peaks in the frequency spectrum have been determined using the FDD, the
single degree of freedom PSD function is transformed back to the time domain using
the inverse FFT. The natural frequency is subsequently determined by counting the
number of zero-crossings of the decaying correlation function of the single degree of
freedom system over time. The damping can subsequently be estimated through a
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simple curve fit of the correlation function. Literature shows us that the EFDD method
is a fast and reliable method to determine the eigenfrequencies and modes, when the
modes are well separated and when light damping is assumed.

• Other types of frequency domain techniques use modal parameter estimators. Examples
of these methods are the least squares complex frequency domain estimators (polyMAX)
or polyreference maximum likelihood estimators (pLME) [25]. These methods estimate
the modal parameters by optimizing a cost function that consists of the frequency data
and a model parametrization. These methods consist of multiple iterations, where a
model is estimated in each iteration. This means that it is possible to determine the
poles of the system at each iteration. These poles can be plotted as a function of the
frequency to obtain the stabilization chart, which can be used to determine the physical
poles of the system. Both estimators have been applied to wind turbines measurements
and were shown to be able to estimate the damping of an OWT [12, 26].

The identification methods that have been presented in this section are summarized in Table 2-
1, where their performance is rated for some important criteria. It can be observed that there
are several methods which are capable of estimating the damping of an OWT. However,
only SSI methods can be extended to a continuous-time framework in order to be applied
to non-uniformly sampled data. Frequency domain techniques are generally computationally
faster. However, they rely on the FFT of time domain data, which is not available for non-
uniformly sampled data. This is the most important reason for using a subspace identification
algorithm for the identification of an OWT in this thesis. More specifically, the discrete-
time and continuous-time variants of the PBSIDopt algorithm will be applied to the turbine
measurement data, as it is the state of the art in subspace identification.

Table 2-1: Comparison of identification methods

Time domain Frequency domain
NExT PEM SSI FDD EFDD polyMAX/pLME

Damping estimation X X X 7 X X
Closely spaced modes 7 X X 7 7 X
Computationally fast ∼ 7 ∼ X X X
Non-uniformly sampled data 7 7 X 7 7 7

2-3 Conclusion

The goal of this chapter was to highlight the importance of damping for an OWT and to
select a suitable method for damping identification. The lifetime of a turbine is dependent
on the amount of fatigue damage, which in turn is inversely proportional to the damping.
The damping of a turbine is assumed to be at its lowest when it is idling, resulting in a
large amount of fatigue damage during this state. Therefore, it is important to have accurate
damping estimates for an idling OWT.
In order to find the right method for estimating the damping of an OWT, a brief overview of
identification methods found in literature was presented. The so called PBSIDopt algorithm
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was judged to be the most promising method for this purpose. This algorithm belongs to
the class of SSI methods that are based on discrete-time state-space models. However, these
methods can also be transformed to a continuous-time framework. This will allow the use of
non-uniformly sampled measurement data, such as fastlog data, for identification purposes.
The two following chapters will discuss the discrete and continuous-time PBSID algorithms,
respectively, in further detail.
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Chapter 3

Discrete-Time Predictor-Based
Subspace Identification

In this chapter Predictor-Based Subspace IDentification (PBSID) is presented as a damping
identification method for an Offshore Wind Turbine (OWT). More specifically, the PBSIDopt

algorithm as presented by Chiuso is discussed [27, 23]. This algorithm is able to provide
identification results with a lower variance compared to the standard PBSID algorithm . This
method combines the least-squares estimation of a Vector-Auto-Regressive with eXogenuous
input (VARX) model with typical subspace identification steps. These steps include the use of
Hankel-like matrix structures and numerical tools such as the Singular Value Decomposition
(SVD) and RQ-factorization in order to find estimates of the state sequence and system
matrices, respectively. The PBSIDopt method is suited for closed-loop system identification,
but can also be applied to an open-loop system such as an OWT.

The entire identification procedure incorporating the PBSIDopt algorithm has been visualized
in Figure 3-1, with each step of the procedure referring to a specific section in this chapter.
Section 3-1 will present a representation of the system that is uses for the PBSIDopt algo-
rithm, rewritten for the purpose of Operational Modal Analysis (OMA). In Section 3-2, the
theory behind PBSID is discussed and the algorithm is presented. The PBSIDopt algorithm
will subsequently be evaluated by applying it to a simulation example in Section 3-3. First,
uniformly sampled data sets will be taken from the simulation example to be used for identifi-
cation. Second, non-uniformly sampled data sets will be resampled and used for identification.
Comparing both cases allows for analysis of the effects of resampling on the estimation of the
modal parameters of an OWT. Conclusions on the algorithm and the simulation results are
provided in Section 3-4.
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Data Structuring
Section 3-2-1
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Section 3-2-3

System Order n
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Output Measurement
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Figure 3-1: Flowchart of the discrete-time PBSIDopt procedure.
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3-1 System Representation for Operational Modal Analysis

This section provides the state-space representation for the PBSIDopt algorithm in the case
of OMA. The application of Stochastic Subspace Identification (SSI) algorithms requires
assumptions regarding the system that is to be identified. It is assumed that the system
is a finite dimensional, Linear Time-Invariant (LTI) system subjected to both process and
measurement noise. Hence, it can be written in the discrete-time innovation state-space form
as

x(k + 1) = Ax(k) +Bu(k) +Ke(k), (3-1a)
y(k) = Cx(k) +Du(k) + e(k). (3-1b)

This state-space representation contains the system matrix A ∈ Rn×n, the input matrix
B ∈ Rn×m, the output matrix C ∈ R`×n, the direct feed-through term D ∈ R`×m and
the Kalman gain K ∈ Rn×`. Here the parameters n, m and ` denote the system order,
number of inputs and number of outputs respectively. The state sequence, input signal,
output signal and innovation signal are respectively represented by the vectors x(k) ∈ Rn,
u(k) ∈ Rm, y(k) ∈ R` and e(k) ∈ R`. It is assumed that the innovation signal e(k) is an
ergodic zero-mean white noise sequence with covariance matrix E{e(j)e(k)T } = Wδjk, with
W � 0 and δjk representing the Kronecker delta. Furthermore, it is assumed that the system is
a minimal realization of order n, by definition the pair (A,C) should therefore be observable
and (A,

[
B KW

1
2
]
) reachable. The matrices A and (A − KC) are assumed to be stable,

meaning that their eigenvalues are located within the unit circle. This last assumption allows
for the consistent estimation of the observer Markov parameters, as will be shown Section 3-2.

The state-space form given in Equation (3-1) is useful when the input vector u(k) is available
for identification purposes. However, as was explained in Chapter 2, the input which repre-
sents the wind and wave loads acting on the OWT is not known. As a result, we are left to
use SSI methods, which are based on the state-space representation given by

x(k + 1) = Ax(k) +Ke(k), (3-2a)
y(k) = Cx(k) + e(k). (3-2b)

Here it is assumed that no deterministic input is acting on the system, but that it is solely
excited by a stochastic input signal e(k) [28]. Since the forces resulting from wind and
waves can be described as (coloured) noise signals, it is possible to use the expression from
Equation (3-2) to model the dynamics of an OWT.

By rewriting Equation (3-2b) to obtain an expression for the innovation signal e(k) and
subsequently inserting this into Equation (3-2a), the one-step-ahead predictor state-space
representation is obtained as

x(k + 1) = Ãx(k) +Ky(k), (3-3a)
y(k) = Cx(k) + e(k), (3-3b)

where Ã = A−KC. This expression forms the basis for the PBSIDopt algorithm which will
be introduced in the next section.
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20 Discrete-Time Predictor-Based Subspace Identification

3-2 PBSIDopt Algorithm

Now that a suitable state-space representation for OMA has been provided, the PBSIDopt

algorithm will be presented in this section as it was formulated by Van der Veen et al. [29].
First, Section 3-2-1 introduces new notations which are required for deriving the algorithm.
Next, the data equation which is related to the Auto-Regressive with eXogenuous input (ARX)
model is constructed in Section 3-2-2. In Section 3-2-3, it is shown how the state-space
matrices can be estimated by solving a series of least-squares problems. Section 3-2-4 gives
additional information on the selection of the past and future window parameters. Finally,
Section 3-2-5 presents a hierarchical clustering method that is used to automatically classify
all the estimated poles.

3-2-1 Preliminaries

Before it is possible to derive the PBSIDopt algorithm, additional notations are required. First,
the stacked sample z(k) = y(k) is introduced. When input measurement data is available,
the stacked sample contains the input and output vectors at time instance k. However, in
the case of SSI it only contains the output vector. The stacked sample can be extended with
multiple time instances to obtain the stacked vector

z(p)(k) =
[
z(k − p)T z(k − p+ 1)T · · · z(k − 1)T

]T
,

where p represents the so called past window. Second, a block Hankel matrix is constructed
from a data sequence in the following way

Zi,s,N =


z(i) z(i+ 1) · · · z(i+N − 1)

z(i+ 1) z(i+ 2) · · · z(i+N)
...

... . . . ...
z(i+ s− 1) z(i+ s) · · · z(i+N + s− 2)

 .
Third, the use of block-row matrices is required. These matrices are denoted by Zi,N , and
are essentially Hankel matrices with a block size of s = 1. Finally, the reversed extended
controllability matrix K̃(p) is given by

K̃(p) =
[
Ãp−1K Ãp−2K · · · K

]
.

3-2-2 Data Equation

Using the new notation given in Section 3-2-1, a data equation for the one-step-ahead predictor
state-space representation can be derived. If an initial state x(k) is assumed, this state can
be propagated forward in time by the past window p as

x(k + p) = Ãpx(k) + K̃(p)z(p)(k + p). (3-4)

The output at time instant k + p can consequently be formulated as

y(k + p) = CÃpx(k) + CK̃(p)z(p)(k + p) + e(k + p). (3-5)
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3-2 PBSIDopt Algorithm 21

Recall from Section 3-1 that the matrix Ã = A −KC is assumed to be stable and therefore
has all the eigenvalues located within the unit circle. In this way, by choosing a sufficiently
large value for p, it is possible to neglect the term Ãp, i.e. ‖Ãp‖2 ' 0. Hence, the output
equation can be simplified to

y(k + p) ' CK̃(p)z(p)(k + p) + e(k + p). (3-6)

The next step is to extend this output relation from time instant p up to N − 1 and use the
shifted data sequences to obtain a data equation consisting of block-row and Hankel matrices.
This data equation can be written as

Xp,Np ' K̃(p)Z0,p,Np (3-7a)
Yp,Np ' CK̃(p)Z0,p,Np + Ep,Np . (3-7b)

whereNp = N−p and the matrices Yp,Np , Z0,p,Np and Ep,Np are matrices containing the output
signals, stacked samples and innovation signals respectively. The matrix CK̃(p) contains the
predictor Markov parameters, which are related to an ARX model. Such a system model is
given by the following equation

A(q)y(k) = B(q)u(k) + e(k), (3-8)

where q−1 represents the unit backward shift operator and

A(q) = I − a1q
−1 − · · · − apq−p,

B(q) = b0 + b1q
−1 + · · ·+ bpq

−p.

Assuming that p is chosen sufficiently large and the predictor form is used, it can be observed
that the ARX model is fully equivalent to the predictor model. Then the parameters ai and
bi can be given as the predictor Markov parameters

ai = CÃi−1K, for i = 1 . . . p, (3-9a)
bi = CÃi−1B̃, for i = 1 . . . p, (3-9b)
b0 = D. (3-9c)

In the case of OMA, this comes down to finding the parameters ai for i = 1 . . . p, which will
be demonstrated next.

3-2-3 Parameter Estimation in a Least-Squares Sense

Starting from the data equation given by Equation (3-7), the predictor Markov parameters,
state sequence and system matrices can be estimated by solving several least-squares prob-
lems. By assuming that the innovation signal e(k) is a noise sequence, it is possible to estimate
the predictor Markov parameters by solving

min
CK̃(p)

=
∥∥∥Yp,Np − CK̃(p)Z0,p,Np

∥∥∥2

F
. (3-10)

This problem can be efficiently solved by performing an RQ-factorization of the data matrices,
such that [

Z0,p,Np
Yp,Np

]
=
[
R11 0
R21 R22

] [
Q1
Q2

]
. (3-11)
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22 Discrete-Time Predictor-Based Subspace Identification

The estimate of the matrix CK̃(p) can subsequently be found by solving

R21 = CK̃(p)R11. (3-12)

In order to ensure uniqueness of the parameter estimates it is required that the matrix Z0,p,Np
is of full rank. Using the estimated Markov parameters it is possible to come up with an
estimate of the state sequence. Looking back at Equation (3-4) and exploiting ‖Ãp‖ ' 0, the
extended state sequence can be formulated as

Xp,Np = K̃(p)Z0,p,Np . (3-13)

The next step is to construct the extended observability-times-controllability matrix Γ̃(f)K̃(p).
With the help of the future window f the predictor model extended observability matrix is
given by

Γ̃(f) =


C

CÃ
...

CÃf−1

 . (3-14)

The extended observability-times-controllability matrix then has the structure

Γ̃(f)K̃(p) =


CÃp−1K CÃp−2K · · · CK

CÃpK CÃp−1K · · · CÃK
...

... . . . ...
CÃp+f−2K CÃp+f−3K · · · CÃf−1K

 . (3-15)

Using once more the assumption that ‖Ãp‖ ' 0, this matrix can be simplified to

Γ(f)K̃(p) '


CÃp−1K CÃp−2K · · · CK

0 CÃp−1K · · · CÃK
...

... . . . ...
0 0 · · · CÃf−1K

 . (3-16)

Looking at the first block row of this matrix, it can be seen that it is possible to compute
it using the estimate of CK̃(p) which was obtained by solving the least squares problem of
Equation (3-10). Furthermore, the remaining block rows can be found by shifting the estimate
of CK̃(p) to the right.

The next step is to pre-multiply Equation (3-13) with the matrix Γ, in order to find an
estimate of the state sequence. Subsequently, by computing the SVD of

Γ̃(f)Xp,Np = Γ̃(f)K̃(p)Z0,p,Np = UnΣnV
T
n , (3-17)

the state sequence can be extracted up to a similarity transformation by

X̂p,Np = Σ
1
2
nV

T
n . (3-18)

In this last step one should also define the order of the state sequence and therefore the order
of the state-space system. One way to get an estimate of the right system order, is to look
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3-2 PBSIDopt Algorithm 23

at the singular values of Σn. This is often indicated by a large gap between two consecutive
singular values in the singular value plot.

Now that an estimate of the state sequence is available, it is possible to compute the estimates
of the remaining state space matrices. First the matrix C can be estimated by solving the
least-squares problem

min
C

=
∥∥Yp,Np − CXp,Np

∥∥2
F
. (3-19)

Next, the residual of the previous least-squares problem is used to estimate the innovation
data matrix

Ep,Np = Yp,Np − CXp,Np . (3-20)

Finally, the matrices A and K are estimated by solving another least squares problem

min
A,K

=
∥∥∥∥∥Xp+1,Np−1 −

[
A K

] [Xp,Np−1
Ep,Np−1

]∥∥∥∥∥
2

F

. (3-21)

It has to be noted that the matrices A, C and K can only be estimated up to similarity
transformation T , meaning that the estimated matrices are given by T−1AT , CT and T−1K.

The performance of the PBSIDopt algorithm as presented in this section is heavily dependent
on the amount of output measurement data that is available. Both the accuracy and variance
of the identification results improve when longer datasets are used. When identifying a
system from measurement data, the length of a single measurement dataset is often limited.
However, by combining multiple shorter datasets for a single identification, it is possible to
improve the identification results. There are two ways to combine multiple datasets for a
single identification, which will both be briefly explained next.

The first method uses the properties of the RQ-factorization of Equation (3-11) to update
the R-matrix with multiple datasets. The concept of RQ-factorization is also extended to
Equations (3-19) and (3-21), in order to update the estimates of the A, C and K matrices.

The second method extends the matrices of all the least-squares problems seen in this section
to incorporate multiple datasets. For the least-squares problem of Equation (3-10) this results
in the following matrices when j different datasets are available:

Yp,Np =
[
Yp,Np,1 Yp,Np,2 · · · Yp,Np,j

]
, (3-22a)

Z0,p,Np =
[
Z0,p,Np,1 Z0,p,Np,2 · · · Z0,p,Np,j

]
. (3-22b)

The matrices Xp,Np and Ep,Np are extended in the same manner and subsequently improved
estimates of the state-space matrices are obtained.

The identification procedures that are done in the remainder of this thesis will be performed
with the help of the PBSID-toolbox [30], which has been developed at the Delft Center for
Systems and Control (DCSC). Within this toolbox the discrete-time PBSIDopt algorithm as
presented in this section has been implemented for use in MATLAB. However, the toolbox
did not support the use of multiple data batches for a single identification as explained above.
Both these methods were therefore added to the existing toolbox, and it was found that they
provide similar results, though the former method is computationally less intensive since it
uses smaller data matrices.
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24 Discrete-Time Predictor-Based Subspace Identification

The PBSIDopt algorithm presented in this section can subsequently be applied to any uni-
formly sampled output measurement dataset. Apart from the length of the measurement
data, the performance of the identification is also dependent on the choice of the past and
future window sizes. The selection of these parameters will be highlighted in the next section.

3-2-4 Past and Future Windows

This section contains additional information on the choice of the parameters p and f . The
most important reason for the size of the past window p, is to make sure that the term
Ãp is small enough to be removed from the data equation. However, the term Ãp can only
be computed afterwards, meaning that the identification might require multiple iterations.
Furthermore, by increasing the size of p, one also increases the number of parameters that
are estimated in the least-squares problem of Equation (3-10). The amount of parameters
that are estimated in this step is given by p`2 in the case of SSI, indicating that it grows
linearly with p. Therefore, increasing the size of p too much can result in over-fitting and an
unnecessary increase in computation time.
In order to find a suitable p, order selection tools like the Akaike Information Criterion (AIC)
are frequently used [31]. The standard form of the AIC is given by

AIC = -2 log(L(θ̂|y)) + 2K, (3-23)

where L(θ̂|y) is the maximum log-likelihood of an estimated parameter θ, given the data
y. The maximum likelihood indicates the probability that a parameter θ results in a data
sequence y. The term K represents the number of estimated parameters in the model. It
can be observed that the criterion is aiming for the right balance between the accuracy of the
prediction error and the complexity of the model. By minimizing this criterion it is possible
to obtain a range of suitable values for the function parameters.
The AIC as given in Equation (3-23) cannot be directly applied to the PBSIDopt algorithm.
An alternate expression of the AIC exists for the least-squares case [32]. It is suggested to
apply this expression of the AIC to the residual obtained in the VARX step of Equation (3-10)
[29]. The AIC for the PBSIDopt algorithm is given by

AIC = Np · log
∑Np

k=p(Yp,Np − CK̃(p)Z0,p,Np)2

Np

+ 2K (3-24)

In this case, K represents the size of the matrix CK̃(p). It should be noted however, that the
optimal past window found using the AIC does not necessarily result in the most accurate
identification of the system, and should therefore serve more as an initial indication. The
optimal value of p can subsequently be found with additional tuning of the results.
The size of the future window f is only constrained by the relation f ≥ n. For simplicity
reasons, a common choice for f is given by p = f . However, it is important to note that the
size of f also affects the variance of the estimated system matrices [33].

3-2-5 Clustering of Identification Results

In order to analyse the accuracy and precision of the identification procedure, it is necessary
to apply the PBSIDopt algorithm to multiple data sequences. Doing this results in a large
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amount of estimated poles that are unsorted. If a statistical evaluation of the results has to
be performed, it is required to group all the poles belonging to a particular mode. It would
be very time consuming if this were to be done by hand, therefore a hierarchical clustering
algorithm is presented to sort all the poles automatically [34].
Hierarchical clustering methods can be visualized by a hierarchical tree-like structure. Ini-
tially, all the poles belong to a main branch, i.e. a single cluster. Subsequently, by analysing
the similarity between all the poles, the main branch can be split into multiple branches where
each branch represents a cluster. These new branches can be split even further depending
on the amount of clusters that is desired. A common procedure to evaluate the similarity
between estimated poles is to compute the Euclidean distance. However, this might not
be enough to discern between closely grouped poles. A possible solution for this is to also
evaluate the mode shape belonging to each pole. For the PBSIDopt procedure, the following
distance measure is used

di,j = α
|fi − fj |
fj

+ β (1−MACi,j) . (3-25)

Here, the first term represents the distance between different frequency components and the
second term uses the Modal Assurance Criterion (MAC) to compare the mode shapes of
different estimates [35]. The MAC value is in turn given by

MACi,j = |ψHi ψj |2
ψHi ψjψ

H
j ψi

, (3-26)

where ψ is an eigenvector of the estimated system and ψH refers to the transposed conjugate
(Hermitian). It has to be noted however, that the MAC value becomes less accurate if
the number of sensors used for the identification is limited. Since only two acceleration
measurement channels will be used for the identification of the OWT, the MAC value should
be treated with care.
The idea behind this distance measure is that if the distance between two poles is small, their
natural frequency and mode shape are similar. This indicates that they are likely representing
the same physical mode and should belong to the same cluster. If required, it is also possible
to tune the weights α and β to give more importance to either frequency or mode shape.
The entire identification procedure for the PBSIDopt algorithm has now been presented. In
the following section the working principles of the algorithm will be demonstrated by applying
it to a simulation example.

3-3 Simulation Example for the PBSIDopt Algorithm

Looking at Figure 3-1, all that remains is to supply the PBSIDopt algorithm with output
measurement data and subsequently perform a statistical evaluation. In order to demonstrate
the PBSIDopt algorithm in the output only case, it is applied to simulation data from a
Multi-Degree-of-Freedom (MDoF) system. The system that is used for the identification is
presented in Section 3-3-1 and in Section 3-3-2 the simulation conditions are discussed. The
identification results with the original simulation data are presented in Section 3-3-3. Finally,
samples from the simulation data are removed after which the data is resampled. Section 3-3-4
presents the identification results obtained using this resampled data.
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26 Discrete-Time Predictor-Based Subspace Identification

3-3-1 9-DoF Simulation Model

The MDoF system that is used for the identification is given in Figure 3-2. This system
consists of two subsystems which are coupled through two rigid bars, resulting in a 9-DoF
system. The equation of motion belonging to this system is given by

Mq̈(t) +Dq̇(t) +Kq(t) = f(t), (3-27)

where the parameters M , D and K represent the mass, damping and stiffness matrices re-
spectively and f is the external force acting on the masses. The vectors q(t) and its first and
second derivatives give the positions, velocities and accelerations of the masses respectively.

Subsystem A Interface Subsystem B
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uA1
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Figure 3-2: 9-DoF system used for testing the PBSIDopt algorithm [3].

Since an OWT is considered a lightly damped structure, the 9-DoF system will also be
modeled with low damping characteristics. This can be done by describing the damping
using a Rayleigh damping matrix D, which is defined as

D = αM + βK. (3-28)

In this way, a damping matrix is obtained from a linear combination of the mass and stiffness
matrices. The eigenfrequencies (f) and damping ratios (ζ) of the 9-DoF system that was used
for the identification procedure are given in Table 3-1.

Table 3-1: Modal parameters of the lightly damped 9-DoF simulation model.

Mode 1 2 3 4 5 6 7 8 9
f [Hz] 0.665 1.478 2.471 2.628 3.143 3.996 4.600 4.935 6.311
ζ [%] 0.269 0.491 0.792 0.841 1.000 1.265 1.454 1.558 1.989

The equation of motion given by Equation (3-27) can be rewritten into a state-space repre-
sentation to allow for easy simulation of the system. For this purpose the state vector of the
system is first introduced as

x(t) =
[
q̇(t)
q(t)

]
.

Furthermore, a matrix F = I[9×9] is designed that determines which of the masses of the sys-
tem are excited by an external force. The following state-space representation is subsequently
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obtained by deriving the derivative of the state vector x(t)

ẋ(t) =
[
−M−1D −M−1K

I 0

]
︸ ︷︷ ︸

A

x(t) +
[
M−1F

0

]
︸ ︷︷ ︸

B

u(t), (3-29a)

y(t) =
[
−M−1D −M−1K

]
︸ ︷︷ ︸

C

x(t) +
[
M−1F

]
︸ ︷︷ ︸

D

u(t). (3-29b)

It should be noted that the C and D matrices in Equation (3-29b) are chosen in such a way
that the accelerations of the masses are obtained as output. This is done to resemble the
identification of the OWT later on, which uses acceleration data as input for the PBSIDopt

algorithm. For this reason, only two output channels from the simulation results are used for
the identification of the 9-DoF system. As a consequence, the identification results presented
in this section are likely to be less accurate than when all output channels would have been
used. Furthermore, this increases the difficulty of detecting all the modes of the system.

3-3-2 Simulation of the 9-DoF Model

First, the 9-Degree of Freedom (DoF) system is discretized using the Zero-Order Hold (ZOH)
method so that it can be simulated by applying white Gaussian noise as input on every Degree-
of-Freedom. The input can be applied on every DoF by choosing the matrix F = I[9×9]. The
sampling frequency is initially chosen at fs = 100 Hz, and the simulation ran for 100 seconds.
This results in N = 104 data points for each output channel. The output data is then
collected and white Gaussian noise is added in order to simulate measurement noise. The
noise is chosen in such a way that a signal-to-noise ratio of σ2

e/σ
2
y = 0.1 is obtained. A small

sequence of input and output data taken from the first channels is shown in Figure 3-3.
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Figure 3-3: Input signal consisting of white Gaussian noise sampled at fs = 100 Hz (left)
and acceleration data contaminated with white Gaussian noise sampled at fs = 100 Hz and
signal-to-noise ratio σ2

e/σ
2
y = 0.1 (right).

The next step is to pick two channels of the output data to use for the identification. These two
channels are selected by looking at the frequency content of each output channel. It was found
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28 Discrete-Time Predictor-Based Subspace Identification

that the two optimal channels were located at the first and ninth degrees-of-freedom. The
combined power spectrum in the frequency domain of these two channels is given in Figure 3-
4. It can be seen that from these two channels every mode of the system can be observed to
a certain degree, as is indicated by the peaks at the locations of the eigenfrequencies.
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Figure 3-4: Frequency power spectrum of the first and ninth output channels of the 9-DoF
system, fs = 100 Hz, N = 104, σ2

e/σ
2
y = 0.1

Now that two output data channels have been selected, the simulation data can be generated
for the identification. The PBSIDopt algorithm will subsequently be analysed by performing
a Monte-Carlo simulation. In a Monte-Carlo simulation the 9-DoF system will be simulated
multiple times with a different input sequence each time. As a result, each output measure-
ment dataset is different and consequently leads to different results. Using the Monte-Carlo
simulation it is then possible to perform a statistical evaluation of the identification proce-
dure. The following two sections present the results from the PBSIDopt algorithm for multiple
operating conditions.

3-3-3 Identification with Original Simulation Data

In this section the results of the PBSIDopt algorithm applied to the original simulation data
are presented. The results are obtained by applying the identification procedure given in
Figure 3-1. First, a Monte-Carlo simulation consisting of 400 runs is performed to generate
the simulation data. Next, the PBSIDopt algorithm is applied to each of these data sequences
using the PBSID-toolbox [30]. All of the estimated poles are then grouped using the clustering
algorithm. Finally, the average and standard deviation of each cluster can be computed.

When the PBSIDopt algorithm is applied it is required to pick a past and future window.
The AIC from Equation (3-24) is used by simulating the system ten times for a range of
past windows, and computing the average AIC. The results of this procedure are shown in
Figure 3-5, where the AIC is given as a function of p. It is observed that the balance between
the residual from the VARX step and the amount of estimated parameters is optimal for a
past window around p = 100. However, it was found that the results using this past window
size were not optimal. For this reason p = 300 was taken, which gave improved results while
still maintaining an allowable computation time.
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Figure 3-5: Akaike Information Criterion as a function of the past window size p for the 9-DoF
system, fs = 100 Hz, N = 104

For this simulation example the future window f is selected to be the same as p. As a result,
the variance of the estimated modal parameters might not be optimal. However, for the sake
of demonstrating the identification algorithm, tuning of the future window is not required.
The frequency and damping values obtained from the Monte-Carlo simulations are presented
in Figure 3-6a. A statistical evaluation of the results is performed by computing the mean
(µ), standard deviation (σ) and relative error to the analytical solution (ε) of each cluster.
The results of this evaluation are presented in Table 3-2. Looking at the relative errors ε,
it can be observed that the eigenfrequency of each mode could be accurately estimated for
every identification procedure. The results for damping are less accurate, as can be observed
by the values of ε and the variance of the damping ratios for some modes.
Figure 3-6c presents the singular value plots of the original system and the average of all
the estimated systems. The singular value plot can be seen as a bode magnitude plot for
Multiple-Input Multiple-Output (MIMO) systems, combining all the input-output relations
into a single figure. By comparing the singular value plots, the overall behavior of the true
and estimated systems is seen to be similar. A boxplot of the identified damping values
is presented in Figure 3-6e. The horizontal line in each box represents the median of the
identified damping. The box itself indicates the location of 50% of the data and the outliers
are given by the red circles.
In order to improve the identification results it is possible to provide the PBSIDopt algorithm
with longer datasets. This is demonstrated by simulating the 9-DoF system for 500 seconds,
which results in N = 5 · 104 data points for each output channel. Another Monte-Carlo
simulation was performed for this data length, of which the results are presented in Figure 3-
6b. From this figure and Table 3-2 it is observed that the increase of data significantly
improves the results of the estimation in terms of accuracy as well as precision.
The 9-DoF system has previously been simulated using a sampling frequency of fs = 100
Hz. This sampling frequency was chosen because the smallest sampling period in the turbine
fastlog data is Ts = 0.01s. However, this sampling frequency is not necessarily the best for
the 9-DoF model. A rule of thumb is to select the sampling frequency to be ten times the
bandwidth of the system [22]. In order to examine the effect of sampling frequency on the
results, the system is also sampled at fs = 50 Hz. It is observed in Figure 3-7 that taking a
lower sampling frequency improves the identification results for the 9-DoF system.
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Figure 3-6: Identification results using the discrete-time PBSIDopt algorithm from 400 Monte-
Carlo simulations, sampled at fs = 100 Hz, σ2

e/σ
2
y = 0.1 and p, f = 300.
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Figure 3-7: Identification results using the discrete-time PBSIDopt algorithm from 400 Monte-
Carlo simulations, sampled at fs = 50 Hz, σ2

e/σ
2
y = 0.1 and p, f = 300.
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Table 3-2: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the discrete-time PBSIDopt algorithm, fs = 100 Hz, σ2

e/σ
2
y = 0.1, p, f = 300,

N = 104 (left) and N = 5 · 104 (right).

N = 104 N = 5 · 104

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.666 ± 0.003 0.03 0.591 ± 0.524 119.91 370 0.665 ± 0.001 0.00 0.337 ± 0.149 24.41 395
2 1.478 ± 0.004 0.02 0.610 ± 0.304 24.24 400 1.477 ± 0.002 0.01 0.494 ± 0.106 0.59 400
3 2.472 ± 0.017 0.03 1.911 ± 1.106 141.19 357 2.469 ± 0.005 -0.10 1.237 ± 0.218 56.05 400
4 2.629 ± 0.011 0.03 1.128 ± 0.426 34.17 399 2.630 ± 0.003 0.09 0.926 ± 0.137 10.12 400
5 3.146 ± 0.009 0.08 1.153 ± 0.321 15.31 400 3.143 ± 0.004 -0.02 1.003 ± 0.126 0.33 400
6 4.001 ± 0.016 0.12 1.653 ± 0.564 30.61 396 3.995 ± 0.006 -0.01 1.298 ± 0.148 2.60 400
7 4.605 ± 0.013 0.09 1.548 ± 0.302 6.50 400 4.601 ± 0.005 0.02 1.452 ± 0.117 -0.10 400
8 4.945 ± 0.032 0.26 1.864 ± 0.501 19.64 396 4.937 ± 0.007 0.05 1.607 ± 0.149 3.12 400
9 6.335 ± 0.039 0.39 2.311 ± 0.629 16.18 393 6.312 ± 0.012 0.02 2.059 ± 0.176 3.52 400

Table 3-3: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the discrete-time PBSIDopt algorithm, fs = 50 Hz, σ2

e/σ
2
y = 0.1, p, f = 300,

N = 104 (left) and N = 5 · 104 (right).

N = 104 N = 5 · 104

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.665 ± 0.002 0.00 0.439 ± 0.285 63.44 397 0.665 ± 0.000 0.00 0.295 ± 0.089 9.76 400
2 1.478 ± 0.003 0.02 0.577 ± 0.205 17.56 400 1.477 ± 0.001 0.01 0.502 ± 0.074 2.28 400
3 2.471 ± 0.008 -0.02 1.063 ± 0.424 34.13 398 2.471 ± 0.003 0.00 0.843 ± 0.119 6.33 400
4 2.630 ± 0.007 0.06 0.961 ± 0.285 14.30 400 2.628 ± 0.002 0.01 0.858 ± 0.094 2.10 400
5 3.146 ± 0.007 0.08 1.078 ± 0.215 7.75 400 3.144 ± 0.003 0.02 1.020 ± 0.082 1.99 400
6 3.996 ± 0.012 0.00 1.421 ± 0.283 12.31 400 3.996 ± 0.004 0.01 1.284 ± 0.099 1.47 400
7 4.604 ± 0.009 0.07 1.495 ± 0.197 2.80 400 4.601 ± 0.004 0.02 1.461 ± 0.081 0.46 400
8 4.938 ± 0.013 0.07 1.672 ± 0.282 7.29 400 4.935 ± 0.005 0.00 1.570 ± 0.097 0.76 400
9 6.318 ± 0.025 0.12 2.168 ± 0.372 9.02 400 6.311 ± 0.008 0.01 2.022 ± 0.120 1.64 400
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3-3-4 Identification with Resampled Simulation Data

In the previous section it was shown using the original uniformly sampled output data, that
the modal parameters of the 9-DoF system could be accurately identified. When only non-
uniformly sampled measurement data is available, one option is to resample the data with
a constant sampling frequency. In order to see what kind of effect resampling has on the
identification results, the previous identification experiment is repeated using resampled data
sequences.

Resampled simulation data is obtained by first simulating the 9-DoF system using a sampling
frequency of fs = 200 Hz for a duration of 100 seconds, resulting in a data set of length
N = 2 · 104. Subsequently, half of the samples are randomly removed from this dataset so
that a non-uniformly sampled signal with an average sampling frequency of fs,avg = 100 Hz is
obtained. This signal is then resampled at a constant sampling frequency of fs,res = 100 Hz
through linear interpolation in combination with an anti-aliasing low pass filter. In this way,
the resampled simulation data has the same sampling frequency and length as in the previous
section. It has to be noted that by increasing the sampling frequency of the initial simulation,
a different input signal is used than in the previous section. The response resulting from this
input signal is therefore also different. The results obtained using this simulation data are
also influenced by this fact.

The resampling procedure as described above is repeated in order to also obtain data resam-
pled at fs,res = 50 Hz. The results of the Monte-Carlo simulations, using only datasets of
length N = 5 · 104, are presented in Figure 3-8 and Table 3-4. By comparing these results to
those in Figures 3-6 and 3-7, it can be concluded that using resampled data for the identifi-
cation procedure can decrease the accuracy and precision of the estimated eigenfrequencies
and damping ratios. The data resampled at fs,res = 100 Hz results in a higher variance and
furthermore it can be seen that a large bias is introduced in the identified damping ratios for
all modes. The results obtained with data resampled at fs,res = 50 show smaller variance.
However, a bias in the damping estimates can still be observed for several modes.
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Figure 3-8: Identification results using the discrete-time PBSIDopt algorithm from 400 Monte-
Carlo simulations, σ2

e/σ
2
y = 0.1, p, f = 300 and N = 5 · 104.

Table 3-4: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the discrete-time PBSIDopt algorithm, σ2

e/σ
2
y = 0.1, p, f = 300, N = 5 · 104,

resampled at fs,res = 100 Hz (left) and fs,res = 50 Hz (right).

fs,res = 100 Hz fs,res = 50 Hz
Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.667 ± 0.001 0.19 0.738 ± 0.298 174.55 400 0.666 ± 0.001 0.10 0.446 ± 0.148 66.03 400
2 1.482 ± 0.002 0.31 0.735 ± 0.175 49.56 400 1.481 ± 0.001 0.21 0.648 ± 0.104 31.93 400
3 2.481 ± 0.012 0.40 3.167 ± 1.441 299.68 398 2.473 ± 0.003 0.09 1.053 ± 0.235 32.82 400
4 2.643 ± 0.008 0.59 1.743 ± 0.472 107.38 400 2.639 ± 0.003 0.41 1.004 ± 0.143 19.46 400
5 3.128 ± 0.006 -0.51 1.916 ± 0.306 91.61 400 3.138 ± 0.003 -0.17 1.652 ± 0.161 65.15 400
6 4.023 ± 0.007 0.69 1.841 ± 0.261 45.49 400 4.016 ± 0.005 0.50 1.436 ± 0.137 13.52 400
7 4.568 ± 0.007 -0.69 2.684 ± 0.270 84.59 400 4.586 ± 0.004 -0.32 2.387 ± 0.161 64.15 400
8 4.910 ± 0.008 -0.50 2.817 ± 0.306 80.76 400 4.926 ± 0.005 -0.18 2.453 ± 0.182 57.44 400
9 6.227 ± 0.017 -1.32 2.157 ± 0.277 8.45 400 6.240 ± 0.011 -1.12 2.500 ± 0.215 25.18 400
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3-4 Conclusion

The goal of this chapter was to present the identification procedure incorporating the discrete-
time PBSIDopt algorithm as visualized in Figure 3-1. Starting from a discrete-time state-space
representation, the PBSIDopt algorithm was derived step by step. Additionally, it was shown
how the PBSIDopt algorithm can be extended to allow the use of multiple batches of data.
This procedure has the same effect as using longer datasets, thus improving the results of
the identification procedure. Special attention was given to the choice of the past window
parameter p, of which an initial estimate can be obtained using the AIC. By combining the
PBSIDopt algorithm with a hierarchical clustering method, the identification procedure can
be automated in obtaining a statistical analysis of the results.

In order to examine the performance of the PBSIDopt algorithm, the identification procedure
was applied to a simulation example based on a 9-DoF system. First, the original simulation
data with fixed sampling frequency was used. It was observed that accurate estimates of
the frequency and damping could be obtained when long datasets were used. The choice
of sampling frequency was also shown to have an effect on the identification results. In the
case of the 9-DoF model, improved damping estimates were obtained using data sampled at
a frequency of fs = 50 Hz.

The performance of the PBSIDopt algorithm was also tested for non-uniformly sampled data
which had been resampled. It was observed that the damping estimates were less accurate
compared to the results obtained with the original simulation data. More specifically, a bias
was introduced in the estimated damping of multiple modes. Therefore, it can be concluded
that using non-uniformly sampled data which has been resampled can have a negative influ-
ence on the accuracy and precision of the estimated damping.
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Chapter 4

Continuous-Time Predictor-Based
Subspace Identification

In this chapter the continuous-time version of the Predictor-Based Subspace IDentifica-
tion (PBSID) algorithm will be presented. Furthermore, it will be examined whether this
identification method can be used to estimate the structural parameters of a system. The
results obtained using non-uniformly sampled data are particularly of interest, since this is
the same type of data as is taken from an Offshore Wind Turbine (OWT).
Obtaining a continuous-time model of a system can have several advantages over a discrete-
time model. For instance, in engineering fields such as aircraft and rotorcraft identification
the direct estimation of continuous-time parameters is important [4]. However, the physical
meaning of these parameters is lost in a discrete-time representation. Another advantage of
continuous-time methods is related to the sampling of the input-output data. In areas such
as medicine and transport, the measuring instant can not be controlled, resulting in non-
uniformly sampled data. A discrete-time model can not be used in this case, since it is based
on a constant sampling frequency. This argument also applies to the model of the OWT in
this thesis, for which only non-uniformly sampled measurement data is available.
There are multiple continuous-time identification methods to be found in literature, of which
the Laguerre filtering and Laguerre projections approaches have been the topic of most studies.
The former approach consists of a filtering operation on the measurement data using Laguerre
filters. This approach was first presented in combination with Multivariable Output-Error
State-sPace (MOESP) class algorithms by Haverkamp et al. [36, 37, 38, 39]. The Laguerre
projection approach on the other hand is used to obtain a discrete-time equivalent system.
Both approaches were first combined with the PBSID method by Bergamasco [4]. The perfor-
mance of both methods was compared and it was found that the Laguerre projection approach
in combination with the PBSIDopt algorithm provided the best results in terms of accuracy
and precision. This method will therefore be the focus of this chapter.
The entire continuous-time identification procedure that will be discussed in this chapter has
been visualized in Figure 4-1, with each step referring to the corresponding section. In Sec-
tion 4-1 the continuous-time state-space system on which the identification method is based
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is presented. Next, it is shown in Section 4-2 how the original measurement data can be
transformed using the Laguerre projections to obtain a Laguerre domain state-space descrip-
tion. Starting from this state-space description, the continuous-time variant of the PBSIDopt

algorithm is subsequently presented in Section 4-3. After this, some general implementation
issues concerning this method are discussed in Section 4-4, as well as some additional issues
that were experienced during the writing of this thesis. In order to test the performance of
the new algorithm, it is applied to the 9-Degree of Freedom (DoF) system from Section 3-
3-1. The results from these simulation experiments are presented in Section 4-5. Finally, in
Section 4-6 conclusions are drawn concerning the performance the continuous-time PBSID al-
gorithm compared to the performance of its discrete-time counterpart, thus examining which
of the two PBSID algorithms is better equipped for the identification of an OWT.

Laguerre
Projections
Section 4-2

Data
Structuring
Section 4-3-1

CT PBSIDo

Section 4-3-2

Domain
Transforma-

tion
Section 4-2-4

Clustering
Procedure

Statistical
Evaluation

(Simulation Example)
Section 4-5

Parameters
p, f and a

Output
Measurement

Data

Implementation
Issues

Section 4-4

System Order n

Figure 4-1: Flowchart of the continuous-time PBSIDo procedure.
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4-1 System Representation for Continuous-Time PBSID

This section will provide the basis for all continuous-time identification methods based on
state-space systems. The continuous-time state-space representation is written as

dx(t) = Ax(t)dt+Bu(t)dt+ dw(t), (4-1a)
y(t)dt = Cx(t)dt+Du(t)dt+ dv(t). (4-1b)

Here the state sequence, input signal, output signal, the process noise and the measurement
noise are respectively represented by the vectors x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ R`, w(t) ∈ Rn
and v(t) ∈ R`. In the continuous-time domain the process and measurement noise are modeled
as Wiener processes [40], which is due to the fact that it is not possible to model a continuous-
time white noise signal with finite variance [39]. The covariance matrix is given by

E
{[
dw(t)
dv(t)

] [
dw(t) dv(t)

]}
=
[
Q S
ST R

]
dt. (4-2)

The system matrices A, B, C and D are assumed to be of appropriate dimensions, such that
(A,C) is observable and (A,

[
B Q

1
2
]
) is controllable. Under these assumptions, the state-

space representation for the continuous-time system in innovation form can be written as

dx(t) = Ax(t)dt+Bu(t)dt+Kde(t), (4-3a)
y(t)dt = Cx(t)dt+Du(t)dt+ de(t), (4-3b)

where the innovation signal e(t) ∈ R` is a Wiener process and the matrix K is the Kalman
gain. Again, since Operational Modal Analysis (OMA) methods will be used, the innovation
state-space system is reduced to

dx(t) = Ax(t)dt+Kde(t), (4-4a)
y(t)dt = Cx(t)dt+ de(t). (4-4b)

In the case that a dataset {y(ti)}, for i = [1, . . . , N ], of possibly non-uniformly sampled
measurement data is available, the goal is to find accurate estimates of the state space matrices
A, C, and K up to a similarity transformation. However, if Subspace Model Identification
(SMI) methods are applied directly, false results will be obtained. This is due to the fact
that measurement data which is stored into Hankel matrix structures will return a discrete-
time system when subspace identification algorithms are applied. In order to obtain Hankel
matrices which will preserve the continuous-time properties of the data, some transformations
will have to be applied to the measurement data beforehand. A possible solution would be to
compute higher-order derivatives of the input-output data. However, this is not feasible for
large data sets since it is very computationally intensive.

Literature offers some alternative methods for the transformation of the measurement data for
subspace identification purposes. In the last two decades there has been an increased interest
in this topic and a range of methods has been proposed. Two of these methods are the
topic of most of the research concerning continuous-time identification. Both these methods
use Laguerre filters to transform the original measurement data. Comparative analysis on a
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simulation model showed that the method using Laguerre projections provided results with
better accuracy [4]. Therefore, only the Laguerre projection approach will be discussed in
this thesis.

Using Laguerre projections, the measurement data can be transformed and subsequently the
PBSIDopt algorithm discussed in Chapter 3 can be extended to the continuous-time domain.
The next section will present the working principles of the Laguerre projections, and shows
how an alternative discrete-time equivalent state-space system can be obtained.

4-2 Data Transformation Using Laguerre Projections

In this section it is shown how a discrete-time equivalent model is obtained starting from
a continuous-time model. This transition is the result of a transformation of the input-
output data based on the lifting technique [41]. With the help of Laguerre filters the lifting
technique could be extended to obtain the so called Laguerre projections. This method
was first presented by Ohta [42, 43, 44], where it was used in combination with MOESP
class algorithms to test its performance. Next, the PBSIDopt algorithm was extended to the
continuous-time domain in combination with Laguerre projections by Bergamasco [45].

The lifting technique which forms the basis for the Laguerre projections is first discussed
in Section 4-2-1. Next, the Laguerre filters that are used to compute the projections are
introduced in Section 4-2-2. Finally, the Laguerre projections and the resulting discrete-time
equivalent system are presented in Section 4-2-3.

4-2-1 Lifting Technique

The lifting technique can be seen as a method that represents a continuous-time system
by an equivalent discrete-time system. This equivalent discrete-time system is obtained by
decomposing the input and output space using the inner function φ(s) = e−sh, commonly
known as the delay function. A function φ(s) is called an inner function if φT (jω)φ(jω) = 1
on the imaginary axis. The lifting technique is explained by Bergamasco [4] using the following
state-space system

ẋ(t) = Ax(t) +Bu(t), (4-5a)
y(t) = Cx(t) +Du(t). (4-5b)

It is assumed that this system is stable and provides the input-output mapping u 7→ y.

Instead of considering the state x(t) only at sampling instants, a function piece θ is introduced
during the sampling period as the state. The idea behind the lifting technique is then to see
a signal x(t) defined in a certain space, as a sequence of projections onto the basis of that
space, such as is shown in Figure 4-2. The sequence of projections {xk(θ)}∞k=1 can be defined
as a discrete-time state transition rule given by

xk(θ) = x((k − 1)h+ θ), θ ∈ (0, h]. (4-6)

D. C. van der Hoek CONFIDENTIAL Master of Science Thesis



4-2 Data Transformation Using Laguerre Projections 41

Figure 4-2: Projections of a signal x(t) using the inner function φ(s) = e−sh [4].

It can subsequently be shown that a new state-space system is obtained that has the same
input-output correspondence as the system from Equation (4-5). According to Bergamasco
[4], this system can be written as

xk+1 = Fxk +Guk+1, (4-7a)
yk = Hxk +Muk. (4-7b)

The matrices of this state-space model represent the following operations

F : x(θ) 7→ eAθx(h),

G : u(θ) 7→
∫ θ

0
eA(θ−τ)Bu(τ)dτ,

H : x(θ) 7→ Cx(θ),
M : u(θ) 7→ Du(θ).

Note that on the right side of Equation (4-7a) the input term is given by uk+1 and not uk.
By introducing a new state variable

ξk = xk −Guk,

the state trajectory and output can be rewritten as

ξk+1 = Fξk + FGuk, (4-8a)
yk = Hξk + (HG+M)uk. (4-8b)

The lifted system of Equation (4-5) is hence given as

ξk+1 = Adξk +Bduk, (4-9a)
yk = Cdξk +Dduk, (4-9b)

where
Ad : ξ 7→ eAhξ,

Bd : uk 7→
∫ 0

−h
e−AτBuk(h+ τ)dτ,

Cd : ξ 7→ CeAθξ, θ ∈ [0, h),

Dd : uk 7→ Duk(θ) + C

∫ t

0
eA(θ−τ)Buk(τ)dτ.
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In other words, the lifted system from Equation (4-9) describes the transition between one
projection of the original signal to another projection. By repeating this step for every
projection, the original signal can be obtained once again. Instead of looking at the data on
fixed time intervals, the lifted system uses a part of the trajectory. Therefore, the available
signals do not have to be equidistantly sampled in order to obtain a lifted system. This
principle formed the inspiration for continuous-time identification using Laguerre projections.
In later research it was shown that the idea of a lifted system is valid using any inner function
[43]. Consequently, this allows the use of Laguerre filters to transform the input-output data
and hence obtain a transformed system. These Laguerre filters are introduced in the next
section.

4-2-2 Laguerre Filter

Laguerre filters are widely used in the field of system identification due to their orthonormal
properties. The Laguerre filter is closely related to the first order all-pass filter, which is given
by

w(s) = s− a
s+ a

. (4-10)

Laguerre filters can be viewed as a single low-pass filter combined with a bank of all-pass
filters. The transfer function of the i-th order Laguerre filter is given by

Li(s) =
√

2a (s− a)i
(s+ a)i+1 . (4-11)

Choosing a > 0 results in a stable filter, while for a < 0 an unstable filter is obtained. In this
thesis, `i(t) represents the impulse response function of the i-th order Laguerre filter. The
impulse responses of the Laguerre filter are visualized in Figure 4-3 for multiple orders using
a constant filter pole a.
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Figure 4-3: Impulse response of the Laguerre filter for multiple orders with Laguerre filter pole
a = 10
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4-2 Data Transformation Using Laguerre Projections 43

It can be shown that the zero-th order Laguerre filter can be written as a function of the
all-pass filter, such that

L0(s) =
√

2a
s+ a

= (1− w(s))√
2a

. (4-12)

For notational simplicity, the modified Laguerre filter Li(s) is introduced with the following
equation

Li = 2a (s− a)i
(s+ a)i+1 = (1− w(s))w(s)i. (4-13)

This filter is the same as the original Laguerre filter up to a constant factor
√

2a. Since the
orthogonality property of the filter is not lost using the modified Laguerre filter, Li(s) will
from here one be referred to as the Laguerre filter. The impulse response function `i(t) will
consequently correspond to Li(s). In the next section it is shown how the Laguerre filters can
be used to transform the system signals and obtain the corresponding transformed system.

4-2-3 Laguerre Projections

As stated before, it is possible to use any inner function in order to obtain a lifted system.
Ohta showed that using the first order all-pass operator as inner function, a signal can be
projected onto the k-th element of the orthonormal Laguerre basis [43]. As a result, a system
is obtained with a state-space description in the Laguerre domain. In the case of output-only
identification, the original system is described by Equation (4-4). The projections of the
output and innovation signals are then given by

ỹ(k) =
∫ ∞

0
Λkw`0(t)y(t)dt, (4-14a)

ẽ(k) =
∫ ∞

0
Λkw`0(t)de(t), (4-14b)

where Λkw`0(t) is the impulse response of the k-th Laguerre filter, meaning Λkw`0(t) = `k(t).
Using the projections from Equation (4-14), the continuous-time system can be transformed
to obtain the following state-space representation

ξ(k + 1) = Aoξ(k) +Koẽ(k), with ξ(0) = 0, (4-15a)
ỹ(k) = Coξ(k) + ẽ(k). (4-15b)

These state-space matrices are related to the original continuous-time matrices from Equa-
tion (4-4) by

Ao = (A− aI)−1(A+ aI), (4-16a)
Co = −

√
2aC(A− aI)−1, (4-16b)

Ko =
√

2a(A− aI)−1K. (4-16c)

With the help of the Laguerre projections an equivalent discrete-time system has now been
derived. This new system description allows the use of conventional subspace identification
methods, by using the transformed measurement signals as input for the identification algo-
rithms. In the next section, the PBSIDopt algorithm from Chapter 3 will be reformulated for
the Laguerre domain state-space description of Equation (4-15).

Master of Science Thesis CONFIDENTIAL D. C. van der Hoek



44 Continuous-Time Predictor-Based Subspace Identification

4-3 PBSIDo Algorithm

The continuous-time PBSID algorithm proposed by Bergamasco [45] is commonly referred
to as the PBSIDo algorithm and will be presented in this section. First, the projections of
the signals and the resulting state-space system are presented in Section 4-3-1. Here, the
data equation that is used for the identification algorithm will also be derived. Second, the
PBSIDo algorithm is formulated in Section 4-3-2. The continuous-time algorithm has the
same procedure as its discrete-time counterpart, it only differs in the matrices that make up
the data equation.

4-3-1 Data Equation

In the case that output measurement data is available for time instants ti, with i = [1, . . . , N ],
the following transformations on the output y(ti) and innovation signal e(ti) can be applied

ỹi(k) =
∫ ∞

0
Λkw`0(τ)y(ti + τ)dτ, (4-17a)

ẽi(k) =
∫ ∞

0
Λkw`0(τ)de(ti + τ). (4-17b)

With these transformed signals the state-space representation in innovation form is given by

ξi(k + 1) = Aoξi(k) +Koẽi(k), ξi(0) = x(ti), (4-18a)
ỹi(k) = Coξi(k) + ẽi(k). (4-18b)

Equivalent to the discrete-time case, this state-space system can be written in the predictor
form

ξi(k + 1) = Ãoξi(k) +Koỹi(k), ξi(0) = x(ti), (4-19a)
ỹi(k) = Coξi(k) + ẽi(k), (4-19b)

where Ão = Ao −KoCo.

In order to apply the PBSIDopt algorithm, the data equation of the transformed system has
to be constructed first. For this purpose the stacked sample z̃i(k) = ỹi(k) is introduced once
more. The next step is to iterate the state update operation from Equation (4-19a) p − 1
times. The state equation is then obtained as

ξi(k + p) = Ãpoξi(k) +K(p)Z0,p−1
i , (4-20)

where the extended controllability matrix is given by

K(p) =
[
Ãp−1
o Ko Ãp−2

o Ko · · · Ko

]
, (4-21)

and the stacked data vector is written as

Z0,p−1
i =

 z̃i(k)
...

z̃i(k + p− 1)

 . (4-22)
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Equivalent to the discrete-time case, it is assumed that the matrix Ão has all its eigenvalues
inside the unit circle and as a result the term Ãpoξi(k) can be neglected if p is chosen sufficiently
large. Subsequently, the state equation can be reduced to

ξi(k + p) ' K(p)Z0,p−1
i , (4-23)

and the following output equation is obtained

ỹi(k + p) ' CoK(p)Z0,p−1
i + ẽi(k + p). (4-24)

By iterating this output equation another f times, where f denotes the future window, the
system can be written in matrix notation. For this purpose, the following matrices are
introduced

Y p,f
i =

[
ỹi(k + p) · · · ỹi(k + p+ f)

]
, (4-25a)

Ep,fi =
[
ẽi(k + p) · · · ẽi(k + p+ f)

]
, (4-25b)

Ξp,fi =
[
ξi(k + p) · · · ξi(k + p+ f)

]
, (4-25c)

Z̄p,fi =
[
Z0,p−1
i · · · Zf,p+f−1

i

]
. (4-25d)

The state space system in matrix form is then given by

Ξp,fi ' K(p)Z̄p,fi , (4-26a)
Y p,f
i ' CoK(p)Z̄p,fi + Ep,fi . (4-26b)

The final step is to form the Hankel-like matrices of the state, output and innovation signals.
This can be done by transforming the entire dataset for i = [1, . . . , N ] and for k = [p, . . . , p+f ].
In the case of the output signal y this results in the matrix

Y p,f =
[
ỹ1(k + p) · · · ỹN (k + p) · · · ỹ1(k + p+ f) · · · ỹN (k + p+ f)

]
. (4-27)

The matrices Ep,f , Ξp,f and Z̄p,f will have the same structure as Y p,f . Using these matrices,
the data equation can be written as

Ξp,f ' KpZ̄p,f , (4-28a)
Y p,f ' CoKpZ̄p,f + Ep,f . (4-28b)

It is observed that this data equation is very similar to the one from Equation (3-9), and can
therefore be used as the basis for the continuous-time PBSIDo algorithm. However, there a
difference in the parameters p and f for the discrete-time and continuous-time cases. In the
continuous-time case, p and f indicate the number of Laguerre filters that are used for the
projections of the original signals.

4-3-2 PBSIDo Algorithm

Now that a data equation for the transformed system has been derived, the PBSIDopt algo-
rithm can be applied using the equations that were presented in Chapter 3. For simplicity
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reasons the past and future windows are again taken as p = f . First, the matrix CoK(p) is
estimated by solving the least-squares problem from Equation (3-10). Next, the extended
observability-times-controllability matrix is formed using the estimates of CoK(p), resulting
in

ΓpK(p) '


CoÃ

p−1
o B̄o CoÃ

p−2
o B̄o · · · CoB̄o

0 CoÃ
p−1
o B̄o · · · CoÃoB̄o

...
... . . . ...

0 0 · · · CoÃ
p−1
o B̄o

 . (4-29)

Subsequently, the relation
ΓpΞp,p ' ΓpK(p)Z̄p,p (4-30)

is used to find an estimate of the state sequence Ξp,p with the help of a singular value de-
composition. Following this step, the matrix Co can be estimated by solving a least-squares
problem similar to Equation (3-19). With Co available, an estimation of the innovation data
matrix Ep,p can be made. The final step of the identification algorithm involves the least-
squares problem from Equation (3-21), in which the matrices Ao and Ko are obtained. The
continuous-time system matrices A, C and K are subsequently computed using the relations
given in Equation (4-16).

Starting from the continuous-time data equation, the steps of the PBSIDo algorithm are
basically the same as it discrete-time counterpart. Hence, for the most part it should be
possible to apply this part of the algorithm without any issues. However, the computation
of the Laguerre projections is not so straightforward and several issues can be experienced
during this step. The next section will present some of the difficulties that are faced when
computing the Laguerre projections of a measurement signal.

4-4 Implementation Issues of the PBSIDo Algorithm

When computing the Laguerre projections of a signal there are several issues that can be
experienced in the process. First, as will be explained in Section 4-4-1, it is not possible to
directly compute the Laguerre projections using the equations presented Section 4-3. Second,
in the case of non-uniformly sampled measurement data, the computation of the Laguerre
projections is even more troublesome. A solution for this problem is presented in Section 4-
4-2. Finally, Section 4-4-3 discusses numerical problems that might be experienced in some
cases using the PBSIDo algorithm.

4-4-1 General Implementation Issues

One of the problems that is experienced when computing the Laguerre projections, is that
the convolution integral from Equation (4-17) has an infinite horizon. Obviously, it is not
possible to perform this convolution integral, since only a finite amount of data is available
from measurements. In order to solve this problem, an alternative transformation is presented
that approximates the infinity integral [45]. This alternative implementation uses a sliding
window with size equal to half of the dataset to approximate the infinity integral and can be
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written as
ỹi(k) =

∫ ∞
0

Λkw`0(τ)y(ti + τ)dτ =
∫ ∞
ti

Λkw`0(τ − ti)y(τ)dτ =

'
∫ tN/2+ti

ti

Λkw`0(τ − ti)y(τ)dτ.
(4-31)

Unfortunately, this approximation does introduce an error which is a function of the impulse
response of the Laguerre basis and the length of the dataset. It was found that increasing
the length of the dataset, decreasing the maximum Laguerre filter order, or increasing the
Laguerre filter pole a resulted in reducing this error [4]. An efficient implementation of the
convolution from Equation (4-31) is given by Bergamasco as

ỹi(k) =
∫ tN−ti

0
Λkw`0((tN − ti)− η)m(η)dη, (4-32)

where m(t) = y(tN − t), η = tN − τ and dη = −dτ . This can be viewed as the convolution
between the k-th order Laguerre filter and a signal y(t) that has been flipped in time. Equiv-
alent to Equation (4-31), only the part of the convolution integral computed with at least
half of the data length, meaning with i = [1, . . . , N2 ], is retained.
Another issue that is encountered with the computation of Laguerre projections, is that
the signals are assumed to be continuous-time. However, when dealing with real systems,
only information on sampled instants is obtained and so it is necessary to discretize the
Laguerre filters as well. A similar issue is seen in the case of continuous-time identification in
combination with Laguerre filtering.
A detailed study on the effects of Laguerre filter discretization for the Laguerre filtering
approach was performed by Haverkamp [39]. It was found that a Tustin transformation could
be applied to provide a discrete-time equivalent of the Laguerre filters. However, it was also
shown that discretization of the filters leads to a perturbation of the estimated column space
of the extended observability matrix. This perturbation subsequently leads to a bias in the
estimates of the system matrices. The resulting bias is related to the sampling interval as well
as the system under study itself. Using a higher sampling frequency will lead to a smaller
bias. Unfortunately, a detailed study on the effects of filter discretization using Laguerre
projections is not available in literature. However, it is expected that the results will be
similar to those obtained using the Laguerre filtering approach.
Finally, a comment is provided on the choice of the past and future window sizes. Apart from
the necessary conditions that were given in Section 3-2-4, another constraint can be placed on
the maximum size of the past window p. By looking at the impulse responses of the Laguerre
filters in Figure 4-3, it can be observed that the settling time is a function of the filter order.
By increasing the filter order k, the settling time of its impulse response is also increased. The
computation of the Laguerre projections requires the convolution of these impulse responses
with a dataset of finite length. This means that the settling time of the impulse responses is
bounded by the length of the dataset. Considering the filter

Lk(s) =
√

2a (s− a)k
(s+ a)k+1 , (4-33)

the settling time can be approximated by ts = (5 + 2k)/a = (5 + 4p)/a for k = 2p. Hence, a
rough guideline for the choice of p is given by

p ≤ (aT/2− 5)/4 ' (1/8)(T/τ − 1), (4-34)
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where T denotes the duration of a dataset and τ = 1/a [45].

4-4-2 Laguerre Projections of Non-Uniformly Sampled Data

In the previous section it was stated that an efficient computation of the Laguerre projections
could be performed using Equation (4-32). Indeed, this convolution integral can easily be
computed in MATLAB, e.g. using the function lsim. This operation can be explained using
an arbitrary system H(s), as seen in Figure 4-4, which maps an input u(s) to an output y(s).
In the time-domain, the output of this system is given by the convolution

y(t) =
∫ t

0
h(t− τ)u(τ)dτ, (4-35)

where h(t) represents the impulse response function of transfer function matrix H(s). Simi-
larly the time response of the system can be computed using a state-space representation of
H(s). The transfer function matrix is related to the state-space form by

H(s) = C(sI −A)−1B +D. (4-36)

Consequently, the convolution from Equation (4-35), can be computed by simulating H(s) as
a state-space system. In order to compute the Laguerre projections using Equation (4-32),
the Laguerre filters are rewritten to their state-space form and subsequently simulated using
the original measurement signal as input. Prior to the simulation the state-space form of
the Laguerre filters needs to be discretized, since the measurement data is not a continuous
signal.

H(s)
u(s) y(s)

Figure 4-4: Input-output relation of an arbitrary plant H(s).

The method for computing the Laguerre projections that was described just now is straight-
forward when a uniformly sampled data set is available. This is because the Laguerre filters
can be discretized for the sampling interval of the dataset. However, when the dataset which
is to be transformed has non-uniform sampling intervals, this approach is not directly pos-
sible. Although literature on continuous-time identification often refers to the possibilities
of identification using non-uniformly sampled data, a straightforward method for computing
the Laguerre projections of such data is not provided. Therefore, an approximation of the
Laguerre projections using non-uniformly sampled data is presented in this thesis.

In order to compute the Laguerre projections for non-uniformly sampled data, a variable
step size simulation algorithm is devised. This simulation algorithm uses state-space matrices
discretized for every sampling interval present in the data. The discretization is done in
MATLAB using the Tustin/Bilinear transformation, which has the following relations between
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the continuous-time and discrete-time state-space matrices

Ad = (I + h

2A)(I − h

2A)−1, (4-37a)

Bd = h · (I − h

2A)−1B, (4-37b)

Cd = C(I − h

2A)−1, (4-37c)

Dd = h

2 · C(I − h

2A)−1B +D. (4-37d)

In this case h represents the current sampling interval and the subscript d refers to the
discrete-time domain. The variable step size simulation algorithm is given in Table 4-1.

Table 4-1: Simulation of a system using non-uniformly sampled data

Algorithm simulation with non-uniformly sampled signals

1. Read out all sampling intervals hi of a non-uniformly
sampled signal {u(ti)}Ni=1.

2. Discretize the continuous-time state-space matrices for
every sampling interval using Equation (4-37).

3. For i = 1 . . . N , compute the discrete states

x(ti) = Ahid x(ti−1) +Bhi
d u(ti), x(t0) = 0.

4. Use the discrete states to compute the output at time
ti for i = 1 . . . N .

y(ti) = Chid x(ti) +Dhi
d u(ti).

By supplying discretized Laguerre filters along with a non-uniformly sampled data sequence
to the new simulation algorithm, an approximation of the real Laguerre projections can be
obtained. In order to demonstrate the algorithm, a sinusoidal input signal sampled at fs =
1000 Hz is supplied to the variable step simulation algorithm. First, the 0-th order Laguerre
filter L0(s) is simulated using the uniformly-sampled input signal. Next, random samples
are removed from the input signal such that a non-uniformly sampled signal containing 75%
of the original data is obtained. The output is subsequently computed using the simulation
algorithm. Finally, random samples are removed once more to obtain a non-uniformly sampled
signal containing approximately 50% of the original data. The input signal and the resulting
output signals are presented in Figure 4-5. It can be observed that even though a large part
of the original signal is removed, a reasonable approximation of the uniformly sampled output
can still be obtained. Still, this approximation introduces an error in the computation of the
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Laguerre projections, which will undoubtedly have an effect on the identification results from
the PBSIDo algorithm.

Delft Center for Systems and Control

0 0.2 0.4 0.6 0.8 1

−1

0

1

Time [s]

A
m

pl
itu

de

Input signal

Delft Center for Systems and Control

0 0.2 0.4 0.6 0.8 1−1

0

1

Time [s]
A

m
pl

itu
de

Variable step simulation

100%
75%
50%

Figure 4-5: Sinusoidal input signal sampled at fs = 1000 Hz (left) and output of the system L0
using uniformly and non-uniformly sampled data as input (right).

In the previous example a relatively high sampling frequency was used. It is expected that
the error of the variable step simulation output will decrease when even higher sampling
frequencies are used. This is because for higher sampling frequencies the sampled input
signal is approximating the real continuous-time signal. However, when a lower sampling
frequency is used to obtain a signal, the output computed with a non-uniformly sampled
input signal will probably contain larger errors as a result of discretization errors. In order
to test if this is indeed the case, the same input signal as in the previous example is now
sampled at fs = 200 Hz. The variable step simulation algorithm is then applied in the same
manner as before, resulting in the outputs given in Figure 4-6.
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Figure 4-6: Sinusoidal input signal sampled at fs = 200 Hz (left) and output of the system L0
using uniformly and non-uniformly sampled data as input.

Indeed it can be seen that the outputs of the system simulated using non-uniformly sampled
signals deviate more from the uniformly sampled output than in the case of with sampling
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frequency of fs = 1000 Hz. By increasing the amount of data that is removed these errors
grow even larger. Therefore, it seems that the computation of the Laguerre projections
becomes less accurate for lower sampling frequencies and when large gaps in a non-uniformly
sampled signal are present. Consequently, it is expected that applying the continuous-time
PBSIDo algorithm to a non-uniformly sampled dataset with a relatively low average sampling
frequency, will have a negative effect on the accuracy of the estimated state-space system.
The results obtained in this section together together with the comments given in Section 4-4-
1, show us that the performance of the continuous-time PBSIDo algorithm is very dependent
on the sampling intervals of the measurement data. While discretization errors resulting from
large sampling intervals lead to a bias in the estimated state-space matrices, this effect is
amplified even more when non-uniformly sampled data is used. In order to have clear view
on these effects, the PBSIDo will be applied to a simulation example further on in this chapter.

4-4-3 Computational Issues

Apart from all the implementation issues that were discussed in the previous two sections,
it is also possible to run into a different kind of problem using the PBSIDo algorithm. In
general, SMI methods require a large amount of data in order to provide an accurate estimate
of a system model. As a result, this can sometimes lead to long computation times. In the
case of continuous-time identification, computation time is increased even more.
The computation time of the PBSIDo algorithm is related to the length of the original dataset
and to the past and future windows. For continuous-time identification, the parameters p and
f indicate the amount of Laguerre projections that are to be computed. This means that filters
up to an order of s = p+ f + 1 are used to perform the data transformations. Subsequently,
all these projections are stored in a Hankel-like matrix such as in Equation (4-27). Comparing
this to the discrete-time PBSIDopt algorithm, it is seen that the Hankel matrices are many
times larger in the continuous-time domain.
In this thesis, the identification using the PBSIDo algorithm is done offline and therefore
longer computation times are not directly an issue. However, there is a limit to the computing
power and the maximum amount of data available in MATLAB. Thus, it can occur that the
continuous-time identification algorithm breaks down when a complex system is estimated,
which requires a long dataset and a large amount of projections.

4-5 Simulation Example for the PBSIDo Algorithm

The previous sections discussed a number of implementation issues for the computation of
the Laguerre projections. In order to overcome some of these problems it is necessary to
make compromises. The result is that the continuous-time identification procedure introduces
errors that are absent in the discrete-time counterpart. The effects of these errors on the
identification results will be assessed in this section.
In order to demonstrate the PBSIDo algorithm, it is applied to both uniformly and non-
uniformly sampled data. This data is obtained from simulations of the 9-DoF system in
Chapter 3. The system has been simulated multiple times using different sampling frequen-
cies so that the effect of the sampling period on the perturbation of the estimated system
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matrices may be observed. The identification procedure is first applied to uniformly sampled
measurement data in Section 4-5-1. Next, samples are removed from the uniformly sampled
datasets in Section 4-5-2, after which the identification procedure is repeated. It is then pos-
sible to compare the identification results using uniformly and non-uniformly sampled data.
Furthermore, it is possible to compare the performance of the continuous-time identification
algorithm with that of the discrete-time variant. Especially the performance using resam-
pled data is of interest, since this is the alternative to continuous-time identification using
non-uniformly sampled data.

4-5-1 Identification with Uniformly Sampled Data

In this section the identification results using the continuous-time PBSIDo algorithm, applied
to the original simulation data, are presented. Equivalent to Chapter 3, a Monte-Carlo
simulation consisting of 400 runs is performed to generate the simulation data. Next, the
PBSIDo algorithm is applied to each of these data sequences. For this purpose, several new
functions were included to the PBSID-toolbox [30]. The estimated poles are subsequently
grouped using the clustering algorithm. In doing so, the average and standard deviation of
each cluster can be computed.

The Monte-Carlo simulations were performed using N = 5 · 104 samples for three different
sampling frequencies, i.e. fs = 200, 100 and 50 Hz. After the simulation of the system, white
Gaussian noise was added to the output signals such that a signal-to-noise ratio of σ2

e/σ
2
y = 0.1

was obtained. The frequency and damping values obtained from the Monte-Carlo simulations
are presented in Figure 4-7 and Tables 4-2 to 4-4.

Using a sampling frequency of fs = 200 Hz results in a large variance in the estimated
damping. It can be observed as well that the PBSIDo algorithm was unable to identify the
third mode of the 9-DoF system. Recalling the results from Section 3-3, it was already difficult
to identify this mode properly in the discrete-time domain.

By observing Figures 4-7c and 4-7e, it can be concluded that lowering the sampling frequency
has a positive effect on the variance of the damping estimates. However, it can also be
observed that the frequencies of the higher modes show an increased bias as the sampling
frequency is lowered. This effect was explained Section 4-4-1 and is a result of discretization
errors of the Laguerre filters.

Overall it can be concluded that the identification of the 9-DoF system using uniformly
sampled data provides the best results when the discrete-time PBSIDopt algorithm is used.
By comparing the results from this section with those from Section 3-3-3, it is seen that the
discrete-time algorithm provides lower variance of the estimated damping and gives unbiased
frequency estimates at lower sampling frequencies. In order to see if the PBSIDopt method
also provides better results when the data is resampled, its results are compared to those
obtained using the PBSIDo algorithm to non-uniformly sampled data. The identification
results using non-uniformly sampled data are presented in the next section.
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Figure 4-7: Identification results using the continuous-time PBSIDo algorithm from 400 Monte-
Carlo simulation, σ2

e/σ
2
y = 0.1, p, f = 30, a = 30 and N = 5 · 104.
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Table 4-2: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, fs = 200 Hz, σ2

e/σ
2
y = 0.1, p, f = 30,

a = 30 and N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.666 ± 0.003 0.09 0.662 ± 0.516 146.01 391
2 1.477 ± 0.004 -0.01 0.602 ± 0.284 22.64 400
3 - - - - -
4 2.601 ± 0.012 -1.02 1.194 ± 0.245 41.98 400
5 3.148 ± 0.009 0.16 1.268 ± 0.312 26.81 400
6 4.000 ± 0.014 0.03 1.662 ± 0.423 31.37 400
7 4.607 ± 0.014 0.15 1.632 ± 0.404 12.27 400
8 4.938 ± 0.020 0.07 1.878 ± 0.811 20.51 399
9 6.329 ± 0.034 0.29 2.521 ± 0.733 26.76 400

Table 4-3: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, fs = 100 Hz, σ2

e/σ
2
y = 0.1, p, f = 30,

a = 30 and N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.666 ± 0.001 0.03 0.601 ± 0.352 123.64 400
2 1.478 ± 0.002 0.04 0.554 ± 0.174 12.89 400
3 - - - - -
4 2.607 ± 0.008 -0.80 1.195 ± 0.176 42.18 400
5 3.157 ± 0.006 0.45 1.232 ± 0.233 23.18 400
6 4.010 ± 0.009 0.35 1.652 ± 0.288 30.59 400
7 4.631 ± 0.009 0.67 1.602 ± 0.203 10.21 400
8 4.963 ± 0.012 0.58 1.726 ± 0.358 10.77 400
9 6.392 ± 0.022 1.29 2.421 ± 0.352 21.72 399

Table 4-4: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, fs = 50 Hz, σ2

e/σ
2
y = 0.1, p, f = 30,

a = 30 and N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.666 ± 0.001 0.05 0.636 ± 0.266 136.66 400
2 1.482 ± 0.002 0.27 0.545 ± 0.116 11.50 400
3 - - - - -
4 2.626 ± 0.006 -0.09 1.308 ± 0.153 55.57 400
5 3.191 ± 0.004 1.51 1.256 ± 0.161 25.56 400
6 4.079 ± 0.014 2.07 1.823 ± 0.260 44.10 400
7 4.731 ± 0.006 2.85 1.711 ± 0.147 17.71 400
8 5.096 ± 0.018 3.26 2.257 ± 0.807 44.85 400
9 6.599 ± 0.053 4.57 3.234 ± 1.341 62.59 399
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4-5 Simulation Example for the PBSIDo Algorithm 55

4-5-2 Identification with Non-Uniformly Sampled Data

In this section the performance of the continuous-time PBSIDo algorithm is tested using non-
uniformly sampled datasets. These datasets are obtained by randomly removing half of the
samples from a uniformly sampled data sequence. The uniformly sampled data that was used
for this operation is the same as in the previous section. The distribution of the non-uniformly
sampled data is visualized in Figure 4-8. These datasets were created in such a way that the
average sampling intervals are equal to those used in Section 4-5-1. For comparative reasons,
the same parameters p, f and a were used for the PBSIDo algorithm.
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Figure 4-8: Distribution of the sampling intervals from a non-uniformly sampled dataset where
half of the original samples has been removed at random.

The identification results of the Monte-Carlo simulation are presented in Figure 4-9 and
Tables 4-5 to 4-7. It can be observed that using an average sampling frequency of fs = 200
Hz, the PBSIDo algorithm is able to accurately estimate the systems eigenfrequencies from
non-uniformly sampled measurements. However, the variance of the estimated damping values
is higher than in the case of uniformly sampled data.

Next, it can be seen that lowering the average sampling has a positive effect on the variance of
the damping estimates. As expected though, a bias can be observed as well in the estimated
eigenfrequencies of the higher modes. This phenomenon was seen in the previous section
as well and is explained in Section 4-4-1. In the case of non-uniformly sampled data, the
perturbation in the state-space matrices resulting from discretization errors is seen to be even
larger. This can be explained by looking at the sampling interval distribution from Figure 4-8,
where the biggest sampling interval is seen to be many times higher than the average sampling
frequency. These higher sampling periods are causing the bias in the estimated frequencies
to be even larger than before.
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Figure 4-9: Identification results using the continuous-time PBSIDo algorithm from 400 Monte-
Carlo simulations, σ2

e/σ
2
y = 0.1, p, f = 30, a = 30 and N = 5 · 104.
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Table 4-5: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, average fs = 200 Hz, σ2

e/σ
2
y = 0.1,

p, f = 30, a = 30, N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.665 ± 0.003 -0.09 1.188 ± 0.863 341.92 400
2 1.478 ± 0.004 0.04 0.613 ± 0.283 24.83 400
3 - - - - -
4 2.603 ± 0.013 -0.96 1.290 ± 0.291 53.49 400
5 3.158 ± 0.009 0.46 1.320 ± 0.344 31.93 400
6 4.007 ± 0.013 0.29 1.774 ± 0.430 40.24 400
7 4.626 ± 0.012 0.57 1.636 ± 0.284 12.49 400
8 4.955 ± 0.015 0.41 1.654 ± 0.468 6.109 400
9 6.361 ± 0.051 0.80 2.926 ± 1.050 47.11 399

Table 4-6: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, average fs = 100 Hz, σ2

e/σ
2
y = 0.1,

p, f = 30, a = 30, N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.665 ± 0.002 -0.02 1.054 ± 0.601 292.11 400
2 1.481 ± 0.003 0.20 0.582 ± 0.190 18.50 400
3 - - - - -
4 2.619 ± 0.009 -0.33 1.283 ± 0.201 52.62 400
5 3.182 ± 0.006 1.23 1.328 ± 0.223 32.81 400
6 4.052 ± 0.009 1.41 1.731 ± 0.281 36.82 400
7 4.700 ± 0.010 2.18 1.738 ± 0.224 19.55 400
8 5.049 ± 0.014 2.32 1.868 ± 0.340 19.88 400
9 6.537 ± 0.034 3.59 2.923 ± 0.614 46.99 397

Table 4-7: Means and standard deviations of the identification results from 400 Monte-Carlo
simulations using the continuous-time PBSIDo algorithm, average fs = 50 Hz, σ2

e/σ
2
y = 0.1,

p, f = 30, a = 30, N = 5 · 104.

Mode µf ± σf [Hz] εf [%] µζ ± σζ [%] εζ [%] poles
1 0.666 ± 0.002 0.03 1.838 ± 0.688 583.85 400
2 1.491 ± 0.002 0.89 0.670 ± 0.144 36.32 400
3 - - - - -
4 2.672 ± 0.006 1.67 1.510 ± 0.178 79.61 400
5 3.278 ± 0.006 4.33 1.647 ± 0.203 64.71 400
6 4.223 ± 0.012 5.68 2.418 ± 0.265 91.09 400
7 4.969 ± 0.011 8.02 2.680 ± 0.240 84.36 400
8 5.384 ± 0.016 9.10 2.460 ± 0.236 57.80 400
9 7.049 ± 0.091 11.70 7.470 ± 1.0881 275.58 271
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58 Continuous-Time Predictor-Based Subspace Identification

4-6 Conclusion

In this chapter the continuous-time PBSIDo algorithm was presented. This was done by first
introducing the continuous-time framework upon which the method is based. Next, it was
explained how the continuous-time state-space model could be transformed to a discrete-
time equivalent system using Laguerre projections. Once the discrete-time equivalent system
was obtained, the PBSID method could be implemented. However, the implementation of
the Laguerre projections was not straightforward. The largest issue that was encountered
was the computation of the Laguerre projections for non-uniformly sampled data, which was
solved by developing a varying sampling time simulation algorithm.

The PBSIDo algorithm as presented in this chapter was implemented in MATLAB as an
extension of the existing PBSID-toolbox. In order to test the performance of the identification
method, it was applied to the same simulation example as in Chapter 3. It was observed that
the accuracy of the damping estimates was on par with the estimates obtained from the
resampled data. However, the estimates of both frequency and damping will get biased when
the sampling frequency is taken too low. This effect has also been described in literature and
is the result of the discretization of the Laguerre filters.
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Chapter 5

Identification of a Wind Turbine
Simulation Model

In Chapters 3 and 4 the discrete-time and continuous-time variants of the Predictor-Based
Subspace IDentification (PBSID) algorithm were presented. Furthermore, the performance
of both algorithms was evaluated by applying it to a simulation example. It was observed
that, depending on the conditions of the simulation data, both algorithms were able to obtain
reasonable estimates of the eigenfrequencies and damping of the simulation example. In order
to find out if the identification algorithms are able to accurately estimate the eigenfrequencies
and damping of an Offshore Wind Turbine (OWT), both methods will be applied to wind
turbine simulation data in this chapter.

In Section 5-1 the OWT simulation model is presented along with the simulation data which
is used for the identification. The setup of the identification algorithm and choice of the
identification parameters is subsequently highlighted in Section 5-2. Next, both PBSID algo-
rithms are applied to different sets of simulation data in Section 5-3. In particular, the goal
is to estimate the first two tower modes of the OWT, as these have the most influence on the
fatigue damage. Finally, in Section 5-4 the results of the different identification methods are
compared to each other.

5-1 BHawC Simulation Data

The wind turbine simulation data that will be used in this chapter is generated by the BONUS
Horizontal axis wind turbine Code (BHawC). This software package consists of aeroelastic
code incorporating a fully non-linear Finite Element Method (FEM) model of a wind turbine,
making it possible to simulate the dynamics of an OWT subjected to specific wind, wave and
soil conditions.

The turbine simulations are obtained by supplying BHawC with input data. This input data
consists of the desired turbine design, the foundation, wave and wind forces acting on the
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62 Identification of a Wind Turbine Simulation Model

structure and a specific load case. The load case can, for instance, refer to the production
state of the turbine, extreme events or yaw misalignment between the wind and turbine.
The simulations that are performed for the identification in this chapter use the model of
a 6-MW wind turbine on a monopile foundation. The load case is set to an idling turbine
with the blades pitched out to 88 degrees. The wind speed in the simulations ranges from
U = 1− 32 m/s, using different turbulence intensities and multiple directions.
The measurement data that will be used for identification consists of two acceleration signals
taken from a bidirectional accelerometer. This accelerometer is mounted inside the nacelle of
the turbine and measures the accelerations in accordance with the yaw direction of the turbine.
Therefore, the x and y directions of the accelerations always refer to the Side-Side (SS) and
Fore-Aft (FA) directions visualized in Figure 5-1.

y

x

Figure 5-1: Coordinate system for Offshore Wind Turbine acceleration data (top view).

In order to examine the effects of the natural conditions on the damping of the turbine four
different load cases are simulated. These load cases are visualized in Figure 5-2, where it
can be seen that each load case refers to a specific wind or wave misalignment. Only the
identification results of the first load case will be presented in this chapter. The results of the
remaining three load cases can be found in Appendix B.

Load Case 1

Load Case 3

Load Case 2

Load Case 4

Wind Waves

Wind

Wind

Wind

Waves

Waves

Waves

Figure 5-2: The four load cases as simulated in BHawC.
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5-1 BHawC Simulation Data 63

An estimate of the damping of the first FA and SS modes can also be extracted from BHawC
by applying an exponential decay fit to the turbine’s response resulting from a so called pull-
out test. In this case, the top of the turbine receives an initial displacement. The tower
top movement as a result of this displacement is subsequently damped out over time. The
logarithmic decrement belonging to the first FA and SS tower modes can be estimated by
curve fitting the exponential decay of the turbine’s damped response. The frequencies and
damping belonging to these modes are given in Table 5-1.

Table 5-1: Frequency and damping estimates of the first FA and SS modes obtained from a
BHawC exponential decay simulation with wind speed U = 4 m/s.

Frequency [Hz] Damping δ [%]
Fore-Aft
Side-Side

Using the simulation inputs and load cases mentioned earlier, the BHawC model is simulated
at a frequency of fs = 100 Hz such that multiple data sets with a length of five minutes are
obtained. This sampling frequency is chosen in order to emulate the non-uniformly sampled
accelerations of the real OWT, which have a minimum sampling period of Ts = 0.01s. An
example of two BHawC simulations at different wind speeds for the first load case is given
in Figure 5-3, where the accelerations are plotted against time, as well as against each other.
The latter figure shows the cyclic motion of the turbine over time resulting from the excitation
of the first two tower modes. It can be observed that the movement of the turbine is dominant
in the FA direction and that there is hardly any movement in the SS direction at low wind
speeds.
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Figure 5-3: Accelerations of the wind turbine’s nacelle from BHawC simulations at different wind
speeds.

Now that a large amount of simulations is available for identification, the PBSIDopt algorithm
can be applied. However, some pre-processing of the data is required along with the selection
of the identification parameters. This will be treated in the next section.
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64 Identification of a Wind Turbine Simulation Model

5-2 BHawC Identification Setup

Before the the discrete and continuous-time identification procedures visualized in Figures 3-1
and 4-1 can be applied to the simulation data, several pre-processing steps need to be applied
to the raw acceleration data. Furthermore, it is necessary to select the input parameters for
both algorithms. These parameters consist of the past and future window length and the
system order. In the case of continuous-time PBSID, the Laguerre filter pole also has to be
selected. In this section the pre-processing steps are explained and the choice of identification
parameters is justified.

With the simulation examples from Chapters 3 and 4 it was possible to automatically cluster
the identification results using Equation (3-25). However, first FA and SS frequencies of the
OWT under consideration are in close proximity to each other. This makes it impossible
to cluster these modes based on frequency data. As a result, only the Modal Assurance
Criterion (MAC) is used to cluster the first two modes. It can be observed in Figure 5-3
that the accelerations in the Side-Side direction of the turbine are a lot smaller than in the
Fore-Aft direction. It was found that, using the unprocessed acceleration data, the estimated
mode shapes could not be discerned from each other. Therefore, it is impossible to cluster the
estimated poles into two groups. This problem can be solved by rescaling the accelerations
prior to application of the PBSIDopt algorithm, such that both signals have unit variance.

In order to reproduce the conditions of the real turbine measurement data as well as possible,
signal noise is added to the BHawC simulation data to mimic sensor noise. From OWT sensor
specifications it was found that the amount of sensor noise results in a signal-to-noise ratio
of approximately σ2

e/σ
2
y = 0.1. Following the addition of the noise, a second order low-pass

Butterworth filter is applied to the simulation data in order to eliminate any noise in the
higher frequency region.

Looking back at the 9-Degree of Freedom (DoF) model from Chapters 3 and 4, the selection of
the model order n was trivial since the model was known. However, for the BHawC model, as
well as the real turbine, the model order is unknown beforehand. As mentioned in Chapter 3,
the order of a system can be estimated by examining a singular value plot. Unfortunately
this does not provide a clear answer, as can be observed in Figure 5-4. Additional insight into
the model order can be provided by creating a so called stability plot.
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A stability plot shows the eigenfrequencies and damping of the estimated system over a range
of system orders. This is useful when identifying the physical poles of a system and casting
aside the poles that are a result of noise. The idea behind this is that physical poles will
remain at the same location over the different system orders and will therefore have stable
frequency and damping values. Creating a stability plot makes it possible to check whether
the estimated frequencies coincide with the analytical frequencies, and also gives a range of
possible system orders.

A stability plot created from BHawC simulations is given in Figure 5-5, showing that several
stable modes have been identified. By considering only the poles around a frequency of
f = 0.2 Hz, two physical modes can be observed at approximately the same location as the
frequencies in Table 5-1. Furthermore, it is seen that these modes are similar for n ranging
between 20 and 80. Several system orders within this range were used for the identification
of the damping. Selecting a model order of n = 40 was found to give the most stable results.
This model order will therefore be used in all the following identification runs.
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Figure 5-5: Stability plot created from 6 BHawC simulation datasets, p, f = 250.

For the identification of the simulation data, only the poles within the frequency band of
interest are kept after each identification. Furthermore, identified poles with negative damping
ratios or damping ratios greater than ζ = 0.1 are discarded. Ideally, each identification of a
simulation dataset will then result in the estimation of two modes, a Fore-Aft and Side-Side
mode. Unfortunately, it was observed that the hierarchical clustering method introduced in
Section 3-2-5 did not always have a high success rate. In order to cluster the poles with a
higher success rate, the modes are separated after each identification by computing the MAC
values between the estimated modes and the analytical modes. Using this approach it was
found that two clusters of approximately the same size are obtained.

The next step is to select the past and future window sizes required for the PBSID algorithm.
This is done by trying to fit the damping estimates from the PBSID algorithm to the damping
values given in Table 5-1 that were found with the pull-out test. The results of this fit will be
presented in the next section, along with the identification results for different wind speeds.
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5-3 Identification Results from BHawC Simulations

In this section the results of the various identification procedures will be presented. For every
wind speed there are 72 different simulations available for identification. In order to have
a larger group for the identification procedure to draw from, the simulations are grouped
into segments of two consecutive wind speeds, resulting in 144 simulation datasets for each
identification cycle. Here it is assumed that the change in aerodynamic damping will not be
significant when the wind speed increases with 1 m/s.

As mentioned in Section 2-1, there are two types of measurement which can be used for
the identification of an OWT. The first type of data consists of measurements which are
uniformly sampled at fs = 25 Hz. With these datasets it is possible to directly apply the
PBSIDopt algorithm in order to estimate the damping. The second type of data consists of
measurements that are non-uniformly sampled. For this kind of data there are two options
for estimating the damping. The first option is to resample the measurements to a uniformly
sampled dataset and subsequently apply the PBSIDopt algorithm. The second option is to
directly apply the continuous-time PBSIDo algorithm on the non-uniformly sampled data.
The goal of this section is to find out which of these three options provides the best results.

In order to find out which identification approach provides the best results, the BHawC
simulations are adjusted such that they emulate the turbine measurement data as best as
possible. First, the BHawC simulation data is downsampled to fs = 25 Hz to obtain a uni-
formly sampled dataset. Second, samples are randomly removed from the BHawC simulation
data sampled at fs = 100 Hz, such that a non-uniformly sampled dataset is obtained which
has an average sampling frequency of fs = 25 Hz. With these two different types of datasets
the following three identification procedures can be applied.

1. Identification of the damping by directly applying the discrete-time PBSIDopt algorithm
on the uniformly sampled datasets.

2. Resampling the non-uniformly sampled datasets to obtain datasets that are uniformly
sampled at fs = 25 Hz. Subsequently, the discrete-time PBSIDopt algorithm is applied
to these datasets.

3. Identification of the damping by directly applying the continuous-time PBSIDo algo-
rithm to the non-uniformly sampled datasets.

The three identification procedures mentioned above each consist of multiple estimations
of the system’s structural parameters. For a single identification, multiple simulations are
randomly selected from the group of available simulations. This process is then repeated
until 100 identifications have been performed. This allows for the gathering of statistical
information on the identification results. In this case, each identification uses six different
simulations, which comes down to a total data length of approximately N = 45000 samples.
The results for each identification procedure are presented in the following sections.
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5-3-1 PBSIDopt on BHawC Simulation Data

The discrete-time PBSIDopt algorithm is first applied to simulation data which has been
uniformly sampled at fs = 25 Hz. In order to find the past and future windows that provide
good results, a range of values for p and f were used. The best fit for the PBSIDopt algorithm
was obtained using p = f = 125, of which the results are presented in Figure 5-6. The figure
clearly shows that two different modes have been identified at frequencies that coincide with
the pull-out test in BHawC. Furthermore, according to the box-plot on the right the damping
estimate of the FA mode has been accurately estimated. In case of the SS mode it seems that
damping obtained with the PBSIDopt algorithm has been slightly underestimated compared
to the pull-out test. A possible explanation for this is that the excitation of the wind turbine
in the SS direction is almost nonexistent.
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Figure 5-6: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on BHawC simulation data with Uw = 3−4 m/s: 6 data batches for each identification,
fs = 25 Hz, σ2

e/σ
2
y = 0.1, p, f = 125.

The next step is to apply the identification algorithm to the remaining simulation data at
different wind speeds. This is done using the same values for p and f for all wind speeds.
The identification results for all the wind speed segments are presented in Table 5-2 and
Figure 5-7. The table provides statistical information on the results consisting of the mean
and standard deviation of the estimated frequency and damping, as well as the success rate
of the identification procedure. The figure shows the box plots of the estimated frequencies
and damping over all wind speeds.

It has to be noted that the tuning of the past and future windows was done based on ac-
celeration data at wind speeds of Uw = 3 − 4 m/s. However, these values for p and f do
not necessarily result in accurate damping estimates using simulation data at different wind
speeds. During tuning it was found that the estimated damping is very sensitive to changes
in the past and future window sizes.

Looking at the results of the identification procedure, it can be observed that the estimates
of the eigenfrequencies are very stable over the entire range of wind speeds and that they
agree with the estimates from the pull-out test. At very high wind speeds however, a strange
phenomenon is occurring where the frequencies of the FA and SS modes switch location.
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Physically speaking this does not make sense, as the OWT has lower inertia in the SS direction
due to the free movement of the rotor. As a result the frequency belonging to this mode should
be lower than that of the FA mode. This is also thought to be the result of using past and
future windows that were not tuned for high wind speeds.

The damping estimates that were obtained show an upward trend for increasing wind speeds
in both principal directions. A small increase in damping could be expected beforehand, as
the damping resulting from drag is a function of velocity. The largest increase in damping
is seen in the SS direction. This could be explained by the pitch of the blades, which causes
almost the entire area of the blades to be moving in this direction. This results in a large
amount of air being displaced, which in turn leads to increased aerodynamic damping [46].

Table 5-2: Identification results of the first FA and SS modes obtained from BHawC simulation
data: 6 databatches for each identification, fs = 25 Hz, σ2

e/σ
2
y = 0.1 and p, f = 125.

FA SS
Uwind [m/s] µf ± σf [Hz] µδ ± σδ [%] Success [%] µf ± σf [Hz] µδ ± σδ [%] Success [%]

1-2 100 100
3-4 100 100
5-6 100 100
7-8 100 100
9-10 100 100
11-12 100 100
13-14 100 100
15-16 100 100
17-18 100 100
19-20 100 100
21-22 100 100
23-24 100 100
25-26 99 99
27-28 100 100
29-30 100 100
31-32 100 100
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Figure 5-7: Estimated frequency and damping of the first FA and SS modes over a range of
wind speeds obtained from BHawC simulation data using the discrete-time PBSIDopt algorithm:
6 data batches for each identification, fs = 25 Hz, σ2

e/σ
2
y = 0.1 and p, f = 125.
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5-3-2 PBSIDopt on Resampled BHawC Simulation Data

For the next identification procedure, non-uniformly sampled simulation data is resampled at a
constant frequency of fs,res = 25 Hz and subsequently supplied to the discrete-time PBSIDopt

algorithm. The non-uniformly sampled data was infected with signal noise beforehand, and
should therefore be filtered after resampling. Concerning the choice of resampling method,
some conclusions can be drawn by looking at Figure 5-8, which shows the performance of
three different resampling methods expressed by the Variance-Accounted-For (VAF). It can
be seen that both the linear and pchip methods show similar results with high VAF values.
For this identification procedure the linear resampling method was selected.
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Figure 5-8: Comparing the accuracy of resampling methods in terms of Variance-Accounted-For.

The same values of p and f as in the previous identification procedure were initially used
for the identification of the resampled data. However, the results that were obtained using
these values were significantly worse than those obtained with the original simulation data.
Therefore, the past and future windows were tuned once more for this identification procedure.
The best fit in terms of damping estimates was obtained using p = f = 200, of which the
results can be observed in Figure 5-9. However, even the best fit results in an overestimation
of the damping in the FA mode and an underestimation in the SS direction. Hence, it can be
concluded that using data which has been resampled from non-uniformly sampled data has
a negative effect on the accuracy of the estimated damping for an OWT simulation model.

The identification procedure was subsequently repeated for simulation data over the entire
range of wind speeds. The identification results are presented in Table 5-3 and Figure 5-10.
From these results it can be concluded that resampling has little effect on the estimated
eigenfrequencies. The frequency of the FA mode remains constant for all wind speeds and
matches the estimated frequency from the exponential decay fit. The frequencies of the SS
mode show a small increase for higher wind speeds and more importantly, they do not drop
below the frequencies of the FA mode.
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Figure 5-9: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on resampled BHawC simulation data with Uw = 3− 4 m/s: 6 data batches for each
identification, fs,res = 25 Hz, σ2

e/σ
2
y = 0.1 and p, f = 200.

Looking at the estimated damping in the SS direction, a similar upward trend is observed as
in the case with the original simulation data. The damping estimates found with both types
of simulation data are almost the same for this mode, except for the very high wind speed
region, where the damping is lower for resampled simulation data. In the FA direction, a big
difference is observed compared to the results of the previous section. Although the estimated
damping is too high for low wind speeds, it remains relatively constant over the entire range of
wind speeds. Furthermore, the variance of the damping estimates is also smaller than before.

Table 5-3: Identification results of the first FA and SS modes obtained from resampled BHawC
simulation data: 6 databatches for each identification, fs,res = 25 Hz, σ2

e/σ
2
y = 0.1 and p, f =

200.

FA SS
Uwind [m/s] µf ± σf [Hz] µδ ± σδ [%] Success [%] µf ± σf [Hz] µδ ± σδ [%] Success [%]

1-2 100 100
3-4 100 100
5-6 100 100
7-8 100 100
9-10 100 100
11-12 100 100
13-14 100 100
15-16 100 100
17-18 100 100
19-20 100 100
21-22 100 100
23-24 100 100
25-26 100 100
27-28 100 100
29-30 100 100
31-32 100 100
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Figure 5-10: Estimated frequency and damping of the first FA and SS modes over a range of
wind speeds obtained from resampled BHawC simulation data using the discrete-time PBSIDopt

algorithm: 6 data batches for each identification, fs,res = 25 Hz, σ2
e/σ

2
y = 0.1 and p, f = 200.
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5-3-3 PBSIDo on Non-Uniformly Sampled BHawC Simulation Data

The final identification procedure consists of applying the continuous-time PBSIDo algorithm
to non-uniformly sampled simulation data. Since the definitions of the past and future win-
dows differ for the discrete-time and continuous-time PBSID algorithms, tuning of these pa-
rameters has to be done once more for this identification procedure. Furthermore, a suitable
value for the Laguerre filter pole has to be selected.
In contrast to identification procedures using the discrete-time PBSIDopt algorithm, the non-
uniformly sampled simulation data is not pre-filtered using a separate low-pass filter. This
is because the Laguerre filters used for the projections of the data have their own low-pass
filtering properties. In this case the best fit for the damping was obtained using parameters
p, f = 35 and a = 5. The identification results using these parameters are presented in
Figure 5-11. The damping estimates obtained with the continuous-time PBSIDo algorithm
are seen to be accurate for the FA mode. However, the damping in the SS direction seems to
be greatly underestimated.
Besides the fact that the fastlog measurement data which will be used in Chapter 6 is non-
uniformly sampled, the sampling instants of the two acceleration channels differ as well.
Consequently, the Laguerre projections of the measurement data cannot be directly supplied
to the continuous-time PBSIDo algorithm. In order to solve this problem, the updating
property of the RQ-factorization presented in Chapter 3 is exploited. This is done by splitting
a single acceleration dataset y = [yss yfa]T into two parts such that

y1 =
[
yss(t1) yss(t2) · · · yss(tN )

0 0 · · · 0

]
, y2 =

[
0 0 · · · 0

yfa(t1) yfa(t2) · · · yfa(tN )

]
. (5-1)

In this way, the identification is first based on the accelerations in the SS direction, and the
system estimate is subsequently updated using the accelerations in the FA direction. However,
this solution does result in twice the amount of data that has to be processed by the PBSIDo

algorithm. For this continuous-time identification procedure, different samples of the two
acceleration signals are randomly removed and the data is split into two batches in order to
mimic the properties of the fastlog measurement data.
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Figure 5-11: Identification results of the first FA and SS modes using the continuous-time
PBSIDo algorithm on non-uniformly sampled BHawC simulation data with Uw = 3 − 4 m/s: 6
data batches for each identification: fs,avg = 25 Hz, σ2

e/σ
2
y = 0.1, p, f = 35 and a = 5.
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Looking at the results presented in Table 5-4 and Figure 5-12, it can be seen that the iden-
tification results of the continuous-time PBSIDo algorithm are very similar to the results
obtained using the discrete-time variant. The success rate of this identification procedure is
a little lower than that of the previous two. It is observed that the estimated frequencies
remain relatively constant over the entire range of wind speeds. Furthermore, the frequencies
are more or less the same as the frequencies obtained with the pull-out test.

The damping of the SS mode again shows the upward trend for increasing wind speeds, similar
to the previous two identification procedures. Apart from the estimates at wind speeds under
Uw = 4 m/s, the damping values for this mode agree with the damping estimates found with
the discrete-time PBSIDopt algorithm. The damping estimates of the FA only show a small
increase in damping for higher wind speeds, similar to the case of resampled simulation data.

Table 5-4: Identification results of the first FA and SS modes obtained from non-uniformly
sampled BHawC simulation data: 6 databatches for each identification, fs,avg = 25 Hz, σ2

e/σ
2
y =

0.1, p, f = 35 and a = 5.

FA SS
Uwind [m/s] µf ± σf [Hz] µδ ± σδ [%] Success [%] µf ± σf [Hz] µδ ± σδ [%] Success [%]

1-2 100 98
3-4 99 98
5-6 97 97
7-8 97 97
9-10 99 99
11-12 98 98
13-14 100 100
15-16 99 99
17-18 93 93
19-20 99 99
21-22 98 98
23-24 97 96
25-26 100 100
27-28 96 95
29-30 99 99
31-32 95 95
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Figure 5-12: Estimated frequency and damping of the first FA and SS modes over a range of
wind speeds obtained from BHawC simulation data using the continuous-time PBSIDo algorithm:
6 data batches for each identification, fs,avg = 25 Hz, σ2

e/σ
2
y = 0.1, p, f = 35 and a = 5.

Master of Science Thesis CONFIDENTIAL D. C. van der Hoek



76 Identification of a Wind Turbine Simulation Model

Three different identification procedures have now been applied to wind turbine simulation
data in this section. It was observed that each identification procedure was able to obtain
accurate estimates of the wind turbine model its eigenfrequencies. The estimated damping
values showed a larger variation between the three identification procedures for certain wind
speeds. The average estimated damping values have been plotted against each other in
Figure 5-13 to allow for better comparison.

The damping values in the FA direction provided by the second and third identification
procedures are shown to be very similar and relatively stable over the entire range of wind
speeds. However, the damping estimated using resampled data in the low wind speed region
did not match the estimate of the exponential decay fit. This is thought to be the result of
both the resampling process and the level of accelerations in the SS direction, which are almost
nonexistent. Despite the low level of accelerations at low wind speeds, the first identification
procedure was able to obtain a similar damping estimate as in the case of the pull-out test.
However, the damping estimated with this procedure for higher wind speeds did not match
the behavior of the other two identification procedures. This is likely to be the result of the
tuning parameter p and f , which were selected for identification at lower wind speeds and
may therefore not be optimal for higher wind speeds.

The damping estimates in the SS direction show similar behavior over the entire range of wind
speeds for all three identification procedures. As mentioned before, the increased damping at
higher wind speeds can be explained by the large amount of air which is being displaced in
the SS direction by the pitched out blades.
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Figure 5-13: Comparison of the estimated damping using the three different identification pro-
cedures.
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5-4 Conclusion

In this chapter the discrete and continuous-time PBSID algorithms were applied to simulation
data generated by an OWT simulation model. The identification was performed by three dif-
ferent procedures. The first procedure used the original BHawC accelerations in combination
with the PBSIDopt algorithm. The second procedure used resampled simulation data with the
PBSIDopt algorithm. The final procedure consisted of applying the continuous-time PBSIDo

algorithm to non-uniformly sampled data.

It was observed that each identification procedure was able to estimate two clusters represent-
ing the FA and SS modes. The frequencies of these clusters agreed with the values that were
estimated using a exponential decay fit in BHawC. The damping estimates of the FA mode
were different depending on the identification procedure. The first identification procedure
showed increased damping for higher wind speeds, while the other two procedures resulted in
more stable damping estimates. The different results obtained with the first procedure are
thought to be the result of the past and future windows, which were selected for identification
at low wind speeds.

All three identification procedures showed that the damping of an idling OWT is dominant
in the SS direction. An upward trend was observed in the damping of the SS mode for
increasing wind speeds. This behavior can be explained by the fact that the blades are
pitched out. Large amounts of air are subsequently displaced in the SS direction, leading to
increased aerodynamic damping.
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Chapter 6

Identification of an Offshore Wind
Turbine

In this chapter the discrete-time and continuous-time PBSID algorithms will be applied to
measurement data taken from an idling Offshore Wind Turbine (OWT), in order to obtain
damping estimates belonging to the first Fore-Aft (FA) and Side-Side (SS) modes. The
identification algorithms will be applied to two types of measurement data, namely Power
Load Measurement (PLM) data and fastlog data. The PLM data consists of measurements
taken at a constant sampling frequency, while the fastlog data contains non-uniformly sampled
measurements.

Three identification procedures were previously applied to wind turbine simulation data that
was representable for real measurement data in Chapter 5. It was observed that the two modes
could be accurately identified in terms of their frequencies. Damping proved to be harder to
estimate, as the different identification procedures did not alway result in the same damping
values. Nevertheless, all identification procedures showed an upward trend for damping in
the SS direction for increasing wind speeds, whereas the damping in the FA direction only
showed a small increase. Hence, the results that were obtained using simulation data are
encouraging enough to apply the identification algorithms to turbine measurement data.

The PLM data is first introduced in Section 6-1, after which the discrete-time PBSIDopt

algorithm is applied to estimate the damping. In Section 6-2, the fastlog measurement data
is presented. This data is subsequently used twice to estimate the damping. First, it is
resampled and supplied to the discrete-time PBSIDopt algorithm. Second, the continuous-
time PBSIDo algorithms is directly applied to the raw acceleration data. Conclusions on
the damping estimates obtained with these two types of measurement data are presented in
Section 6-3.
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6-1 Identification with PLM Measurement Data

In this section the discrete-time PBSIDopt algorithm will be applied to PLM measurement
data taken from an idling OWT at both low and high wind speeds. The selection methods and
acquired PLM data will be discussed in Section 6-1-1. Using the PBSIDopt algorithm on this
data, an attempt is made to identify the first FA and SS modes of the turbine and quantify
the amount of damping that is present at these frequencies. The results of the identification
are presented in Section 6-1-2.

6-1-1 PLM Measurement Data

The properties of the PLM data were already briefly discussed in Section 5-2. The PLM
turbine is equipped with a great number of sensors that measure the response of the OWT
caused by wind and wave loading. Furthermore, some of the internal states of the turbine are
measured as well, such as the generated power and pitch of the blades. All these measurement
are taken at a constant sampling frequency of fs = 25 Hz. From all these measurements,
only the accelerations of the nacelle in the FA and SS direction are directly used for the
identification.
In order to find measurement data that is suitable for identification purposes, it is necessary
to look at the operational state of the wind turbine and the pitch position of the blades.
The accelerations required for identification are only taken when the turbine is idling and the
blades are pitched out. Idling means that no power is generated and the turbine is rotating
at less than 0.25 revolutions per minute. This scenario can be encountered in two instances.
The first scenario is when there is a long period of below cut-in wind speeds. The second
scenario is only rarely encountered and occurs when the wind speeds are above cut-out level.
The PLM data unfortunately does not provide any information about the current operational
state of the turbine. In order to find suitable measurements, the fastlog data is analyzed first
since this data does contain information about the operational state. Using the fastlog data,
multiple moments in time are identified which contain idling data. The next step is to check
whether the blades are pitched out sufficiently during these time instants. The minimum
pitch level that is allowed is chosen to be at 75◦. This pitch level is lower than seen in the
previous chapter, but is necessary in order to obtain a sufficient amount of data. Using this
selection procedure, the entire measurement database is searched for suitable acceleration
data. After processing all of the available data, the suitable measurements are cut into
segments of 10 minutes of idling data. This is done to increase the size of the pool containing
the measurements that will be used for identification.
A segment of such a dataset is presented in Figure 6-1, where the accelerations are given
over time and the movement of the nacelle is visualized. By comparing these accelerations
with those of the BHawC simulation in Figure 5-3, it can be observed that the amplitudes of
accelerations at low wind speeds in the SS direction are actually many times larger in reality.
This is primarily due the wave misalignment of the OWT, meaning that the movement of the
waves is not purely in the SS direction. Furthermore, it should be noted that as a result of
idling there is yaw misalignment regarding the wind direction as well. However, it is expected
that this has little effect on the damping estimates for low wind speeds, since the excitation
of the OWT is wave driven.
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Figure 6-1: Accelerations taken from PLM data at an average wind speed of Uw = 1.5 m/s.
The accelerations are plotted against time (left) and against each other (right).

6-1-2 Identification using PLM Data

The identification procedure from Figure 3-1 can be applied almost directly to the PLM data.
First however, the measurement data is pre-filtered with a second order low-pass Butterworth
filter, with cut-off frequency ωc = 10 rad/s, in order to remove the influence of noise at higher
frequencies. Next, the accelerations are rescaled to obtain data with unit variance. Finally,
the accelerations are downsampled to a frequency of fs = 15 Hz. This is done in order to get
a better comparison between the different identification procedures, as will become clear in
the next section. Once the pre-processing is done, the discrete-time PBSIDopt algorithm can
be applied to the measurement data. The same identification parameters will be used as in
Section 5-3.
The identification results obtained using PLM data at low wind speeds are presented in
Table 6-1 and Figure 6-2. It can be observed that two clusters have been identified at nearby
frequencies and that these frequencies are higher than estimated using the BHawC simulation
data. The estimated damping of the FA mode seems to agree with the estimates of the BHawC
data, indicating that the damping is at the structural damping level and hence aerodynamic
damping effects are negligible at low wind speeds. The damping in the SS direction on the
other hand, is almost twice as large as estimated using the BHawC data. This can partly be
explained by the load case that was used for the BHawC simulation data, which as it turned
out is not entirely representable for real idling behavior at low wind speeds. Furthermore, it
might also be the case that the BHawC model itself is unable to accurately simulate an idling
OWT at low wind speeds or that false assumptions were taken regarding the other sources of
damping, i.e., structural, soil and hydrodynamic damping.

Table 6-1: Frequency and damping estimates of the first FA and SS modes obtained using the
PBSIDopt algorithm on PLM data for wind speeds under Uw = 4 m/s.

µf ± σf [Hz] µδ ± σδ [%] Success [%]

Fore-Aft 100
Side-Side 100
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Figure 6-2: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on PLM data for wind speeds below Uw = 4 m/s; fs = 15 Hz, p, f = 125 and n = 40.

The identification procedure is applied to high wind speed measurement data as well. The
results obtained using this data are presented in Table 6-2 and Figure 6-3. It can be observed
that a smaller amount of identification cycles is used. This is because idling due to high
wind speeds does not occur often and therefore only a small amount of data is available.
The identified damping using high wind speed data shows a better match with the damping
estimates from Chapter 5. A small increase in damping is seen in the FA direction and large
increase in the SS direction. In the next section fastlog will be used for identification.

Table 6-2: Frequency and damping estimates of the first FA and SS modes obtained using the
PBSIDopt algorithm on PLM data for average wind speeds of Uw,avg = 21 m/s.

µf ± σf [Hz] µδ ± σδ [%] Success [%]

Fore-Aft 100
Side-Side 100
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Figure 6-3: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on PLM data for average wind speeds of Uw,avg = 21; fs = 15 Hz, p, f = 125, n = 40.
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of the PLM data. The results of this identification procedure are presented in Figure 6-5 and
Table 6-3.

The results obtained using the resampled fastlog data are very similar to those found with
the PLM data. It can be observed that the estimated frequencies are identical, while the
damping values differ only slightly. This small difference in estimated damping could either
be the result of the resampling process, or because the datasets used for this identification are
not exactly the same as the PLM datasets. However, from these results it can be concluded
that estimating the damping using resampled fastlog measurement data provides results that
are of similar accuracy as when PLM data is used. A side note with this remark is that only
the first FA and SS modes have been identified at this time. If higher frequency modes are
to be estimated, resampling can lead to biased damping estimates as was seen in Chapter 3.
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Figure 6-5: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on resampled fastlog measurement data for wind speeds below Uw = 4 m/s; resampled
at fs,res = 15 Hz, p, f = 125 and n = 40.

For the second identification procedure, the non-uniformly sampled measurement data is sup-
plied directly to the continuous-time PBSIDo algorithm after rescaling. The same identifica-
tion parameters are selected as in Section 5-2. The results of the continuous-time identification
procedure are presented in Figure 6-6 and Table 6-3.

It can be observed that the continuous-time PBSIDo algorithm is able to identify the first FA
and SS modes. Looking at the results it seems the estimated frequencies are slightly higher
compared to the values found with discrete-time identification. It is possible that this is the
result of discretization errors as was explained in Section 4-4-1. The estimated damping is also
similar to the discrete-time case. It can be observed that the FA damping is slightly higher
and the SS damping is slightly lower than for the other two identification procedures. Hence,
it can be concluded that the damping of the first FA and SS modes can also be estimated
using the continuous-time PBSIDo algorithm in combination with fastlog data. However, in
this case it is also important to note that this might not be the case when higher frequency
modes are to be identified. Judging from the results of the simulation example in Section 4-
5, it is expected that a bias will occur in the estimated frequency and damping which will
increase for higher frequencies.
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Figure 6-6: Identification results of the first FA and SS modes using the continuous-time PBSIDo

algorithm on non-uniformly sampled fastlog data for wind speeds below Uw = 4 m/s; p, f = 35,
a = 5 and n = 40.

Table 6-3: Frequency and damping estimates of the first FA and SS modes obtained using the
discrete-time PBSIDopt and continuous-time PBSIDo algorithms on fastlog measurement data for
wind speeds below Uw = 4 m/s.

DT PBSIDopt CT PBSIDo

µf ± σf [Hz] µδ ± σδ [%] Success [%] µf ± σf [Hz] µδ ± σδ [%] Success [%]
Fore-Aft 100 99
Side-Side 100 99

Both identification procedures were applied to fastlog acceleration data at high wind speeds
as well. The results of these identifications are presented in Figures 6-7 and 6-8 and Table 6-
4. The damping estimates obtained using the resampled fastlog data are similar to those
obtained with the PLM and the BHawC simulation data. However, the continuous-time
PBSIDopt algorithm is not able to give a reliable estimate of the SS damping, as visualized
by the large spread in the damping estimates of this mode. A possible explanation for this
is that the continuous-time PBSIDo algorithm was not properly tuned for high wind speed
data.

Table 6-4: Frequency and damping estimates of the first FA and SS modes obtained using the
discrete-time PBSIDopt and continuous-time PBSIDo algorithms on fastlog measurement data for
average wind speeds of Uw,avg = 21.

DT PBSIDopt CT PBSIDo

µf ± σf [Hz] µδ ± σδ [%] Success [%] µf ± σf [Hz] µδ ± σδ [%] Success [%]
Fore-Aft 100 94
Side-Side 100 94
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Figure 6-7: Identification results of the first FA and SS modes using the discrete-time PBSIDopt

algorithm on resampled fastlog measurement data for average wind speeds of Uw,avg = 21;
resampled at fs,res = 15 Hz, p, f = 125 and n = 40.
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Figure 6-8: Identification results of the first FA and SS modes using the continuous-time
PBSIDo algorithm on non-uniformly sampled fastlog measurement data for average wind speeds
of Uw,avg = 21; p, f = 35, a = 5 and n = 40.

6-3 Conclusion

The goal of this chapter was to identify the damping of an OWT using measurement data.
The damping of the first FA and SS modes was estimated using two types of data, namely
PLM and fastlog data. This measurement data was processed beforehand to only contain
accelerations from idling turbines with pitched out blades.

The PBSIDopt algorithm was first applied to the uniformly sampled PLM data at low wind
speeds. The estimated damping in the FA direction agreed with the values found in Chapter 5.
However, the damping in the SS direction was higher than expected. The difference in
estimated damping could be explained by the fact that the BHawC load case was not entirely
representable for a real idling OWT. Another possible explanation is that the BHawC model
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is not entirely accurate or uses false assumptions for the turbine’s other damping sources.
The results obtained using PLM data for high wind speeds were in better agreement with the
BHawC simulation results, showing increased damping in both FA an SS direction.

Next, the fastlog data was used to estimate the damping. The data was first resampled and
supplied to the PBSIDopt algorithm. For the final identification procedure, the non-uniformly
sampled fastlog data was directly supplied to the PBSIDo algorithm. The results obtained
with both methods for low wind speeds are very similar to each other, and to the results of
the PLM data as well. Hence, it can be concluded that the damping of the first FA and SS
modes can indeed be estimated from fastlog data.
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Chapter 7

Conclusions and Recommendations

This chapter will present the conclusions on the research problems presented in Chapter 1.
Furthermore, recommendations for future work or research are provided based on these con-
clusions.

7-1 Conclusions

In order to reduce the cost of energy for offshore wind energy, the design of an Offshore Wind
Turbine (OWT) should be further optimized. An important factor in the design is represented
by the damping, which is inversely proportional to the amount of fatigue damage that occurs
in an OWT. The largest contribution to the fatigue damage is given when the OWT is idling,
since it is assumed that the aerodynamic damping is negligible in this state. Therefore, it is
vital to have accurate damping estimates of an idling OWT, especially the damping of the
first Fore-Aft (FA) and Side-Side (SS) modes.
For the damping identification of an OWT, a large amount of non-uniformly sampled mea-
surement data is available. The goal of this thesis is formulated by the following research
problem:

"Identify the structural parameters of an idling Offshore Wind Turbine using non-uniformly
sampled measurement data."

The non-uniformly sampled measurement data cannot be used directly for identification of
the damping using conventional Operational Modal Analysis (OMA) methods. There are two
possible approaches for the use of this kind of data for identification purposes. Therefore,
the problem formulation given above is split into two subproblems. The first approach con-
sists of resampling the non-uniformly sampled data with a constant sampling frequency and
subsequently applying OMA techniques. Hence, the first subproblem is given by:

"Examine the effects of resampling non-uniformly sampled measurement data on the
estimated structural parameters of an Offshore Wind Turbine."
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For the second identification approach, literature offers a solution in the form of continuous-
time identification methods. These methods can be applied directly to non-uniformly sampled
data. The second subproblem is subsequently given by:

"Investigate continuous-time identification methods and subsequently evaluate the
performance when applied to non-uniformly sampled turbine measurement data."

For the identification of the damping parameters, the Predictor-Based Subspace IDentification
(PBSID) method was selected. The PBSIDopt algorithm is based on a discrete-time state-
space representation of a system. However, this method can also be extended to obtain a
continuous-time representation of the system. In the first part of this thesis the discrete and
continuous-time PBSID algorithms were presented and subsequently applied to a simulation
example. The second part consisted of applying both methods to wind turbine simulation
and measurement data, respectively. Furthermore, the results obtained using non-uniformly
sampled measurement data were compared with the results obtained through measurement
data with a constant sampling frequency.
In order to answer the research problems of this thesis, conclusions are presented on the
following subjects:

1. Discrete-Time PBSIDopt Algorithm

• The discrete-time PBSIDopt algorithm is able to accurately estimate the eigenfre-
quencies and damping ratios of a 9-Degree of Freedom (DoF) model. By increasing
the amount of data, it was seen that the accuracy and precision of the damping
estimates increases as well. Furthermore, the sampling frequency of the simulation
data can affect the accuracy of the identification results.
• The effects on the identification results of resampling non-uniformly sampled data
were examined using the 9-DoF simulation example. It was observed that resam-
pling of non-uniformly sampled measurement data can have a negative effect on
the estimation of the damping.
• It was observed that batch wise identification was not correctly implemented within
the PBSID-toolbox developed at the Delft Center for Systems and Control (DCSC).
The toolbox was subsequently extended with this functionality, using the possi-
bility of updating the RQ-factorization in the PBSIDopt algorithm. With these
modifications the same effect as increasing the length of a measurement is achieved.

2. Continuous-Time PBSIDo Algorithm

• The continuous-time identification algorithm has been applied to the 9-DoF simula-
tion model and the results were compared to those obtained with the discrete-time
identification algorithm. It was observed that the accuracy of the damping esti-
mates was on par with the estimates obtained from the resampled data. However,
the estimates of both frequency and damping will get biased when the sampling
frequency is taken too low. This effect has also been described in literature and is
the result of the discretization of the Laguerre filters.
• Compared to its discrete-time counterpart, the PBSIDo algorithm requires a lot
more computational power. This results in longer computation times and might
prove troublesome when large past and future windows are required.
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3. Identification of Turbine Simulation Data

• Using the PBSIDopt algorithm on uniformly sampled BHawC simulation data, it
was possible to estimate the frequency and damping of the first FA and SS modes.
Furthermore, the damping estimates agreed with those found with help of a so
called pull-out test.
• The damping estimates obtained using resampled simulation data in combination
with the discrete-time PBSIDopt algorithm were less accurate. This could either
be the result of the resampling process or the fact that the wind turbine is barely
excited in the SS direction at low wind speeds.
• The damping in the FA direction at low wind speeds could be accurately estimated
using the continuous-time PBSIDo algorithm applied to non-uniformly sampled
simulation data. The same could not be said about the SS mode, which was
underestimated at low wind speeds. This is also thought to be the effect of the low
excitation of the OWT in the SS direction.
• The three different identification procedures were applied to data over a wide
range of wind speeds. All of them provided similar results in terms of the esti-
mated frequencies, which remained relatively constant at higher wind speeds. For
the damping in the FA direction a small increase in damping was observed using
resampled and non-uniformly sampled data. The PBSIDopt algorithm applied to
the original simulation data showed a larger increase in damping at higher wind
speeds, but this is thought to be caused by the choice of past and future window
size. All three identification procedures show very similar damping estimates for
the SS direction, which show a large increase as function of wind speed. The in-
creased damping can be explained by the fact that the turbine blades are pitched
out. Hence, a large amount of air is displaced when the OWT moves in the SS
direction, resulting in increased aerodynamic damping.

4. Identification of Turbine Measurement Data

• Using uniformly sampled measurement data at low wind speeds, the damping in
the FA direction could be accurately identified. As expected the damping at low
wind speeds was close to the structural damping. The estimated damping in the
SS direction was higher than expected from the BHawC simulation results. The
difference in estimated damping can have multiple causes. First, the load case
that was used for the BHawC simulations is not representable for a real idling
turbine. Second, the BHawC model might not be entirely accurate for simulation
of an idling OWT at low wind speeds. Third, false assumptions regarding the
structural, soil and hydrodynamic damping might have been used.
• Identification results using measurement data at high wind speeds showed a small
increase in damping in the FA mode and a large increase in the SS mode. The re-
sults obtained with this data are similar to those obtained using BHawC simulation
data.
• The fastlog data was used in two different ways in order to estimate the damping.
Both the resampled and non-uniformly sampled measurement data provided similar
results to those obtained with the PLM data.
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With the help of these conclusions, it can thus be said that it is possible to use non-uniformly
sampled measurement data for the identification of the structural parameters of the first
FA and SS modes of an OWT. Furthermore, the accuracy of these results is similar to the
accuracy obtained using uniformly sampled measurement data.

7-2 Recommendations

Based on the conclusions given in the previous section, recommendations for future work are
presented in this section.

• For the current identification procedures only measurement data of pure idling wind
turbines was considered. In order to increase the amount of available measurement
data, other non-operational states should be considered as well. This can, for instance,
refer to wind turbines under maintenance or idling when the blades are not pitched out.

• For this thesis, measurement data was taken from only one OWT. The identification
can be extended to multiple turbines in the same wind farm in order to obtain site
specific damping estimates.

• For the estimation of fatigue damage in an OWT, the damping of the first FA and SS
modes are the most important factors. However, in order to validate the entire BHawC
simulation model, higher modes need to be identified as well. Hence, it should exam-
ined if higher modes can be accurately identified and whether non-uniformly sampled
measurement data is still suitable for this purpose.

• The selection of suitable measurement data is currently a time intensive process and not
entirely waterproof. Further optimization and automation of the data selection process
is therefore required if large amounts of measurement data are to be processed.

• The continuous-time PBSIDo algorithm that was used in this thesis is very computa-
tionally intensive, resulting in longer computation times compared to the discrete-time
PBSIDopt algorithm. In order to make it competitive with its discrete-time counterpart,
the implementation of the PBSIDo algorithm should be further optimized.

• The non-uniformly sampled measurement data that was used in this thesis only con-
tained two acceleration channels that were useful for identification. Increasing the
amount of acceleration channels generally improves the accuracy of the identification
results. Therefore, it might be worthwhile to install additional accelerometers along the
tower of the OWT.

• From the results obtained with fastlog measurement data, it can be concluded that
the structural parameters of the first FA and SS modes can still be estimated using
resampled data. This also allows the use of other OMA methods. In order to find out if
the PBSIDopt algorithm is the optimal identification method, several of the algorithms
discussed in Chapter 2 should be applied to resampled measurement data as well.
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Appendix A

Extracting Structural Parameters from
a State-Space Model

In this appendix it is shown how the structural parameters of a system can be extracted from
the state-space matrices. Only the system matrix A and the output matrix C are used in
determining the structural parameters of the estimated system. By performing an eigenvalue
decomposition of the A matrix, the eigenvalues and eigenvectors of the system are obtained.
The eigenvalues, λi = σi ± jωi, are composed of a real and imaginary part and can be used
to determine the natural frequencies ωni and damping ratios ζi in the following way:

ωni =
√
σ2
i + ω2

i , (A-1)

ζi = − σi
ωni

. (A-2)

The damping of a system can also be expressed as the logarithmic decrement δi, which has
the following relation to the damping ratio:

δi = 2πζi√
1− ζ2

i

. (A-3)

In order to separate natural frequencies that are located close to each other it is necessary to
know their mode shapes. The mode shape of each natural frequency can be determined using
an eigenvector ψi and the output matrix C, such that a modeshape φi is obtained by

φi = Cψi. (A-4)
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Appendix B

Identification Results from BHawC
Simulations

This appendix presents the identification results of the three remaining load cases illustrated
in Figure 5-2. For all loadcases the frequencies could be accurately estimated and were seen
to be consistent over the entire range of wind speeds. Therefore, the estimated frequencies
are not visualized in this appendix.

The estimated damping for all three load cases is presented in terms of the average value in
Figures B-1 to B-3. For the discrete-time PBSIDopt algorithm, past and future windows of
p, f = 200 were used. For the continuous-time PBSIDo algorithm p, f = 35 and a = 5 were
selected as identification parameters.

In all three load cases it is observed that the estimated damping in the SS direction shows a
similar upward trend for increasing wind speeds. Furthermore, these damping estimates are
similar to those from the first load case as well. For the load cases where the wind is coming
in the SS direction, it can be observed that the damping in the FA direction remains constant
over the range of wind speeds. In the fourth load case the wind is coming in the FA direction,
resulting in an increased damping of the FA mode.
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Figure B-1: Estimated damping values obtained through three different identification procedures
over a range of wind speeds for load case 2.
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Figure B-2: Estimated damping values obtained through three different identification procedures
over a range of wind speeds for load case 3.
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Figure B-3: Estimated damping values obtained through three different identification procedures
over a range of wind speeds for load case 4.
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List of Acronyms

AIC Akaike Information Criterion

ARX Auto-Regressive with eXogenuous input

BHawC BONUS Horizontal axis wind turbine Code

DCSC Delft Center for Systems and Control

DoF Degree of Freedom

EFDD Enhanced Frequency Domain Decomposition

EMA Experimental Modal Analysis

FEM Finite Element Method

FFT Fast Fourier Transform

FA Fore-Aft

FDD Frequency Domain Decomposition

LTI Linear Time-Invariant

OMA Operational Modal Analysis

OWT Offshore Wind Turbine

MAC Modal Assurance Criterion

MIMO Multiple-Input Multiple-Output

MDoF Multi-Degree-of-Freedom

MOESP Multivariable Output-Error State-sPace

NExT Natural Excitation Technique
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PEM Prediction Error Methods

PLM Power Load Measurement

PSD Power Spectral Density

PBSID Predictor-Based Subspace IDentification

RNA Rotor Nacelle Assembly

SS Side-Side

SMI Subspace Model Identification

SSI Stochastic Subspace Identification

SVD Singular Value Decomposition

SWP Siemens Wind Power

VAF Variance-Accounted-For

VARX Vector-Auto-Regressive with eXogenuous input

ZOH Zero-Order Hold
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