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Abstract

The development of systems that allow unmanned aerial vehicles, known as UAVs, to perform
tasks autonomously is a current trend in aerospace research. The specific aim of this thesis
is to study and achieve vision-based automatic landing of a quadrotor UAV on a floating
platform, a known target that possesses oscillatory behavior. The research contributions to
be taken from this study can be divided into two perspectives, as described below.

From a theoretical point of view, a design solution is proposed which includes GPS navigation
to enable the quadrotor to find the target, and vision-based control to approach and land upon
it. From this design, several control-related issues must then be solved, mainly the develop-
ment of a controller for the autoland mission. To accomplish this control task, an incremental
backstepping control law is developed. Additionally, linear and standard backstepping con-
trollers are designed for comparison. The derived control laws require knowledge of the states
to close the feedback loops; therefore, state estimation algorithms are designed for complete
state reconstruction. The approach selected is modular, thus separating position/velocity
estimation from attitude determination. The former is performed using an extended Kalman
filter, and the latter using a complementary filter. Furthermore, an augmented Kalman filter
formulation is developed for estimation of the platform’s vertical motion. The combination
of control and state estimation algorithms is tested in a simulated environment using a simu-
lation tool developed in this study for Monte-Carlo analysis. This tool allows for evaluation
of the design not only for the nominal case, but also for random combinations of external
conditions. Results show that successful performance is obtained for the nonlinear controllers
since the desired criteria is met and the risk of crashing is demonstrated to be residual. Ad-
ditional tests show that incremental backstepping is, in general, more robust than standard
backstepping in the case of model mismatch, even in the presence of state estimation errors.

From a practical perspective, the findings are twofold. First, this thesis presents a procedure
to experimentally determine the moments of inertia of the quadrotor by using a two-axis
motion simulator and a six-component force/torque sensor. The inertia properties are also
determined analytically using two modeling approaches: point mass analysis and assumption
of simple geometric shapes. The results show that point mass analysis can lead to erroneous
inertia estimation (deviation of 20-30% from the real value), thus resulting in a significant
model mismatch. The experimental and simple shapes assumption methods render similar
results, which strongly indicates not only that the experimental method proposed is valid, but
also that the assumption of simple geometric shapes can be used as a reliable and cost-effective
method to determine moments of inertia of small UAVs. Second, in this thesis the system is
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vi Abstract

tested in real time using an actual quadrotor. Flight tests are performed for hovering above
a target with known characteristics, and to achieve this end, a vision system is developed
to obtain relative position measurements from images captured by an on-board camera. A
Kalman filter is implemented for real-time integration of vision with IMU data, and a linear
controller with reference command filters is used. Tuning procedures are then carried out
until satisfactory performance is achieved.
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Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft that is flown without a human crew on
board. It can either be piloted remotely or fly autonomously with the aid of preprogrammed
flight plans. UAVs are often used in military operations. However, this type of craft is also
used in civil applications, such as firefighting. In general, UAVs are preferred for missions
that are considered too dull, dirty or dangerous for manned aircraft.

There are a wide variety of UAV geometric configurations, means of control and general design
features. Rotorcraft UAVs, which function with rotating blades, have several advantages over
most fixed-wing aircraft. These primarily include their ability to take off and land vertically
and the capacity to hover over a specific fixed point. Furthermore, rotorcraft can operate in
the low airspeed range where most fixed-wing aircraft cannot.

One of the possible configurations for rotorcraft is the so-called quadrotor. A quadrotor, also
known as a quadrotor helicopter or quadrocopter, is a helicopter with four horizontal rotors
and no tail rotor. All rotors are placed in the same plane and control of the vehicle’s motion
can be achieved by varying the relative speed of each propeller.

1-1 Autoland project description

1-1-1 Mission overview

There are multiple advantages to having automated machines perform surveillance tasks at
sea. One example is the fact that certain types of such missions might be too dull to be
performed by humans. Researchers from the Micro Areal Vehicle Lab (MAVlab) at the Delft
University of Technology (DUT) are taking this problem into consideration and studying a
solution involving several platforms floating in the water with one quadrotor UAV operating
autonomously in the area. In this scenario, the helicopter would then be capable of navigating
within the zone covered by the buoys, and could return safely to one of the floating platforms
after completing a mission. A visual representation is shown in Figure 1-1.
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Figure 1-1: Visual representation of a quadrotor UAV returning to a buoy after performing a
surveillance mission (quadrotor and platforms are not to scale)

As part of this problem, it is clear that an autopilot system that will enable a quadrotor UAV
to land on a floating platform is needed. The main function of this system would be to track
a moving device that possesses its own dynamics, and allow the air vehicle to safely approach
and land upon it. To facilitate that function, several approaches can be considered for the
estimation of the quadrotor’s relative motion with respect to the floating platform. For this
thesis, a vision-based approach will be used in the form of a camera installed underneath the
UAV.

The project can then be summarized as follows:

There are several platforms floating in the sea and one quadrotor operating autonomously
in the area covered by these platforms. Starting from any initial position, the quadrotor
must be able to land on these buoys under given external conditions such as sea states and
wind profiles. After landing, the helicopter must dock with the platform in order to recharge
batteries and perform desired functionalities.

1-1-2 Development phase

The MAVlab at DUT makes it possible to put theory into practice with real flying UAVs.
Therefore, this project is developed at DUT during its investigation phase such that it may
be implemented later in real life. A test quadrotor (see Figure 1-2) is available and includes
equipment such as an Inertial Measurement Unit (IMU), a Global Positioning System (GPS)
receiver, a barometric altimeter and a camera that can be connected to the autopilot.

The real-time implementation of the control algorithms must be coded using Paparazzi, which
is a free and open-source project intended to create exceptionally powerful and versatile
autopilot systems by allowing and encouraging input from the community. Therefore, the
design solution for this automatic landing mission must be compatible with existing software
from this platform. Furthermore, it is expected that the design of the system can be easily
extrapolated and applied to other quadrotors. In other words, one particular rotorcraft is used

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



1-2 Problem statement 3

Figure 1-2: Test quadrotor

for this project, but the system should be easily transferable to another assembled helicopter
with different features.

A Caspa VL camera from Gumstix will be used as the vision sensor (see Figure 1-3). This
sensor is considered small, light and cheap, at the cost of $75.

Figure 1-3: Caspa VL from Gumstix

1-2 Problem statement

The goal of this thesis is to design a fully automated system for vision-based landing of a
quadrotor UAV on a floating platform.

Since this project includes a real-time implementation component, it is also a secondary goal
to analyze the feasibility of real-time implementation using cheap and light sensors.
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1-3 Research challenges

Quadrotors are inherently unstable platforms and require constant compensation to maintain
stable flight. Additionally, their highly nonlinear behavior makes the controller design tasks
more complex. Furthermore, the automatic landing control problem under consideration
brings the added challenge of a floating platform that possesses its own dynamics.

The set of sensors used to estimate the rotorcraft’s states is limited and the control task
becomes even more difficult when lower quality sensors are used. For this thesis, the use of
cheap and light sensors and, in particular, the camera used for the vision system, creates
challenges which are explained below.

• The update rate from the vision system is not sufficient for use in the control loop and
therefore this problem must be addressed.

• Feedback latency is also a crucial factor for vision-based helicopter control. Time de-
lays, mostly due to frame acquisition and image processing, significantly affect stability
properties.

• Attitude variations are expected during flight. One of the main drawbacks of using
a downward-looking camera fixed to the quadrotor is the fact that it is difficult to
distinguish between rotation and translation motions of the flying vehicle in images
under perspective projection.

It is also clear that sensor calibration and alignment is important for achieving high perfor-
mance (or even just stable flight). These tasks may be time-consuming, and it is sometimes
very difficult to obtain accurate measurements.

Another issue is that helicopters are dangerous due to their spinning rotor blades. Flight
tests cannot be performed without taking the necessary safety precautions.

The final goal is to implement the autoland system in an outdoor environment. However,
during its development phase, the system is tested indoors. This alters the nature of the
problem since indoor conditions are, in general, different from those outdoors. The tests must
be adapted to cope with the environment. One of the greatest challenges is the corruption of
magnetometer information indoors, which leads to false yaw measurements.

Furthermore, the model of the quadrotor changes during the development of the thesis work.
For example, different batteries with different shape and weight are used, rotor blades and
other components of the structure might bend, etc.

1-4 Literature review

The topic of vision-based automatic landing of a quadrotor UAV on a floating platform can
be addressed from multiple viewpoints. It is thus necessary to cover different aspects of the
problem that are considered pertinent to the research being carried out.

As a starting point, recent research on quadrotor UAVs performed at DUT was examined.
(Wierema, 2008) designed an indoor navigation system using Infrared (IR), and (Berkelaar
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& Oonk, 2009) later designed a system for altitude and attitude control using laser. For both
these theses, the authors tested their controllers with real quadrotors in order to validate
their algorithms in real-time implementations.

This study is then another step with respect to control research performed at DUT. What
follows is a summary of relevant topics that were researched for this thesis.

1-4-1 Quadrotor control

Control allocation

From (Wierema, 2008) and (Berkelaar & Oonk, 2009), it is possible to understand the basic
concept of how to control a quadrotor. A brief description of the control allocation follows.
In a regular helicopter configuration, the torque produced by the main rotor is counteracted
by the tail rotor. For a quadrotor configuration, there are four control inputs, which are the
inputs given to each of the four motors. The control forces and moments are then generated by
varying the relative speeds of the different rotors. For the most common layout of quadrotors,
the two pairs of rotors (1-2) and (3-4) spin in opposite directions as illustrated in Figure 1-4.
Control allocation is then performed as follows:

• increasing or decreasing the four rotors’ speed altogether generates changes in the total
lift produced, thus creating motion in the vertical direction (top left in Figure 1-4);

• changing the relative speed of propellers 1 and 2 will induce a pitch motion, causing a tilt
of the thrust vector and thus forward/backwards movements (down right in Figure 1-4);

• the same concept applies for propellers 3 and 4, but for roll motion, which results in
lateral translations (down left in Figure 1-4);

• yaw rotation is the result of the difference in the counter-torque between the two pairs
of rotors (top right in Figure 1-4).

Control techniques

Control of quadrotors is a challenging task due to the fact that these vehicles are underac-
tuated and present strongly nonlinear behavior. Different control design methods have been
investigated over the years to address this challenge. (Hua, 2009) presents a comprehensive
overview of such methods in the context of linear as well as nonlinear control systems. In
terms of linear systems, multiple references are given to Single Input Single Output (SISO)
Proportional Integral Derivative (PID) control as well as optimal control strategies such as
Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG) and H2 and H∞. The
author states that such approaches have limitations when applied to highly nonlinear systems,
and presents a survey on nonlinear control techniques that should, in principle, allow most
of these limitations to be overcome. These nonlinear control strategies encompass feedback
linearization, backstepping, model-based predictive control, sliding mode and neural-network-
based adaptive control.
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Figure 1-4: Quadrotor control concept

A special case of feedback linearization is the so-called Nonlinear Dynamic Inversion (NDI),
which suffers from the major drawback that performance is lost in the case of model mismatch.
At DUT, a so-called incremental nonlinear dynamic inversion technique has been studied in
which angular accelerations are fed back to the controller (Sieberling, 2009), (Wedershoven,
2010) and (Simplicio, 2011). In theory, this approach eliminates sensitivity to model mis-
match, thus increasing the robust performance of the system in comparison with conventional
nonlinear dynamic inversion. The problem of estimating angular acceleration has also been
addressed, and one proposed solution is a linear predictive filter (Sieberling, Chu, & Mulder,
2010).

There is no theoretical proof that the use of nonlinear dynamic inversion results in a stable
closed-loop system. Therefore, a new step in research has been taken in which incremental
backstepping techniques are investigated. Note that backstepping guarantees the stability
of the system during the design process. (Acquatella, 2011) applies this control strategy
to spacecraft control and suggests investigation of application to quadrotor control. These
studies on incremental-based control laws are examples of state-of-the-art research in the area
of generic robust flight control system design.
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1-4-2 Quadrotor modeling

A model of the quadrotor UAV is necessary to facilitate controller design tasks and allow
for validation of the design concepts through simulations. The topic of helicopter flight
dynamics has been extensively investigated by (Padfield, 2007). Additionally, a comprehensive
overview on helicopter aerodynamics has been presented by (Seddon & Newman, 1990) in
which an explanation of both the Momentum Theory and Blade Element Theory is provided.
(Leishman, 2002) also presents an overview on principles of helicopter aerodynamics.

In more recent years, further approaches to modeling such platforms have been investigated
and validated with real flight test data. (Fay, 2001) described the derivation of aerodynamic
forces used in the equations of motion for stability and control analysis of a rotorcraft (the
mesicopter). (McKerrow, 2004) gave a theoretical analysis of the dynamics of a four-rotor
helicopter (the Draganflyer) in order to develop a model of it. An interesting aspect of their
work was a method to determine the moments of inertia in which the authors assumed masses
with known geometric shapes attached to a center of rotation by thin rods. (Pounds, Mahony,
& Corke, 2006) developed the X-4 Flyer, a quadrotor robot, using custom-built chassis and
avionics with off-the-shelf motors and batteries. These researchers found the X-4 Flyer to be
a highly reliable experimental platform and they provided modeling techniques for controller
design. The work presented by (Hoffmann, Huang, Waslander, & Tomlin, 2007) sought to
address issues that arise when deviating significantly from the hover flight regime. Three
separate aerodynamic effects were investigated as they pertained to quadrotor flight, namely
total thrust produced, blade flapping and airflow disruption. They showed that these effects
caused moments that affected attitude control, and thrust variation that affected altitude
control.

Some of the most crucial effects to be modeled entail the dynamics of the motors. In (Franklin
& Emami-Naeini, 2006), a model of Direct Current (DC) motors is provided. From this
model two main aspects should be highlighted: first, the model is nonlinear, since it includes
a quadratic term; second, it includes a time constant parameter, meaning that there will be
a delay between input requested and actual rotor speed.

At DUT, (Wierema, 2008) and (Berkelaar & Oonk, 2009) used the model described by
(Bouabdallah, 2007). This model was quite comprehensive and was validated with flight
test data. From the research of the aforementioned authors, it becomes clear that the most
challenging components to be modeled are the aerodynamic effects and, more specifically for
controller design, the mapping between rotor input and force/torque produced.

Taking into account all prior research mentioned in this section, the following is a brief
summary of important aspects to consider when modeling a quadrotor:

• Rigid body dynamics (mass and inertia)

• Aerodynamic forces and moments of a rotor

• Structural friction

• Rotor gyro effect

• Motor dynamics
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• Blade flapping

• Ground effect

1-4-3 Landing on a floating platform

To investigate possible approaches to solving the automatic landing problem, a more expansive
literature survey was needed in order to include contributions that shed light on various
aspects of the issue, even if they did not directly pertain to automatic landing of a quadrotor
UAV on a floating platform. This section contains a summary of different contributions that
are considered relevant to this project.

Ship motion estimation

A floating platform can surge, sway and heave as well as roll, pitch and yaw, making it a six
degree of freedom moving target as shown in Figure 1-5.

surge

sway

heave

roll

pitch

yaw

x

y

z

Figure 1-5: Floating platform motion

One of the possible ways of looking at the problem is by investigating how manned operations
are executed for landing on the deck of a ship. In fact, this topic has been extensively studied
since for these types of operations pilots usually need the aid of automated systems. More
specifically, much research has been done regarding prediction of lull opportunities for landing.

Note that the work mentioned in this subsection concerns mostly design solutions for finding
calm opportunities for landing. However, for this thesis, these contributions are important
as they describe different ways of building models of a platform floating in the sea, and
therefore can be used to help obtain a better state estimation of the relative motion between
the quadrotor and the buoy.

One of the earliest papers on this topic was published in 1965, when Dalzell wrote a note on
carrier deck motion using a Wiener filter linear prediction technique (Dalzell, 1965). In 1969,
Kaplan proposed a Kalman filter as an alternative (Kaplan, 1969), tackling the implemen-
tation complexities of Dalzell’s Wiener filter. Throughout the 1970s and 1980s, many other
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studies were carried out in which researchers used Kalman filtering techniques to study the
ship motion estimation problem.

In 1977, Weiss and Devries designed a filter based on the state space modeling of ship mo-
tion dynamics (Weiss & DeVries, 1977). The authors claimed that the design of Kalman
filters which model ship motion spectra in order to measure linear and angular ship motion
parameters is superior to the design of Kalman filters which ignore this information. The
measurement system consisted of linear and angular accelerometers in a strapdown mode
(with a position reset at the time of interest), and bounding filter techniques were used to
minimize the effects of mismodeling.

In 1982, Triantafyllou and Bodson published their findings on predicting a vessel’s motion in
real time using Kalman filtering techniques, claiming that the prediction time was accurate
to between two and ten seconds (Triantafyllou & Bodson, 1982). In 1983 the same authors
studied the estimation of heave, pitch, roll, sway and yaw motion of a DD-963 destroyer for
application to the landing of Vertical Take-Off and Landing (VTOL) aircraft (Triantafyllou,
Bodson, & Athans, 1983). The governing equations for modeling purposes were obtained
from hydrodynamic considerations in the form of linear differential equations with frequency-
dependent coefficients.

In 1983 Sidar and Doolin also showed quantitatively that, based upon the power spectrum
data for pitch and heave measured for various ships and sea conditions, motion could be accu-
rately predicted for a duration of up to fifteen seconds (Sidar & Doolin, 1983). Furthermore,
the authors claimed that the zero crossover times for both pitch and heave motions could be
predicted with high accuracy. The predictor was also based on Kalman’s optimum filtering
theory.

Following these studies, (Lainiotis, Charalampous, Giannakopoulos, & Katsikas, 1992) pro-
posed a different approach. They claimed that since the designs of the Kalman filters were
based on the assumption of complete knowledge of the model describing the ship motion dy-
namics, there would be a degradation in the estimate quality in the case of mismatch between
the mathematical model used and the actual ship’s model. The authors addressed the estima-
tion problem as a nonlinear adaptive estimation problem for partially unknown, time-varying
linear systems with a non-Gaussian initial state vector. The filter used was designed based
on an adaptive Lainiotis partitioning approach.

In 1981, Yumori published his findings on predicting heave motions using Autoregressive
Moving Average (ARMA) Models (Yumori, 1981). This concept was later extended to include
pitch and roll motion predictions (Broome & Hall, 1998). (Yang, Pota, Garratt, & Ugrinovskii,
2008) studied a prediction method using an Autoregressive Exogenous (ARX) model, with
the aid of the Bayes Information Criterion to obtain the optimal system order. The model
coefficients identified from a Recursive Least Square (RLS) method were employed to predict
vertical motion of a floating vessel.

Other approaches have also been considered. (Lainiotis, Plataniotis, Penon, & Charalampous,
1993) explored the real time estimation of ship motion using a neural estimator based on a
dynamic recurrent neural network. (Fleischmann, 2000) proposed a forward-looking method
using radar as a range-measuring sensor to predict future motions. In this approach, the
measurements were subjected to Fast Fourier Transforms in order to determine periods of
quiescence. (Riola, Diaz, & Giron-Sierra, 2011) investigated the possibility of using wavelets
in the prediction of calm opportunities for landing a helicopter on a ship.
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Additional important factors to be taken into account in this type of research are the defi-
nitions of the envelope of operability and limits for the floating platform. (Ferrier, Bradley,
& Blackwell, 2001) defined these limits as 2 degrees in pitch, 6 degrees in roll (8 degrees at
night), 8 ft/s heave rate and 3 ft/s sway rate. Note that these limits were defined for manned
operations; however, they also serve as guidelines for automatic landing procedures.

Helicopter landing on a ship deck

It is now important to investigate what others have done regarding actual methods for landing
a helicopter on a ship deck, as well as examine the corresponding controller designs.

(McMuldroch, Stein, & Athans, 1979) proposed a control algorithm for landing a VTOL type
aircraft on a small ship in rough seas. The design included an aircraft-tracking-ship-motion
controller as well as a specification of the actual landing control algorithm.

(Bodson & Athans, 1985) contributed a solution for this problem by designing a controller
based on linear quadratic optimal theory. Among others, one of the most interesting aspects
of this design was the fact that the ship motion was estimated using a Kalman filter (with
ship sensor measurements), and a feedforward gain matrix was used to enhance performance.

(Storvik, 2003) proposed a guidance system for automatic approach and descent onto a wave-
excited ship. The author designed a way-point generator on the basis of the initial position,
course and minimum turning radius. In order to connect the different way points and generate
a tracking path, spline interpolation methods were used.

(Oh, Pathak, Agrawal, Pota, & Garratt, 2006) addressed the design of an autopilot for au-
tonomous landing of a helicopter on a ship. In their design, a tether is used for landing and
securing the helicopter to the deck of the ship in rough weather. The controller is based on
the time-scale separation between rotation and translation, and it was shown that the tether
tension could be used to alter the coupling between these two motions. Although this solution
showed promising results, it is clear that extra equipment would be necessary to perform the
autoland mission.

(Saghafi & Esmailifar, 2007) studied the problem of automatic helicopter landing on a four
degree of freedom platform. Later, (Esmailifar & Saghafi, 2009) extended this work to a six
degree of freedom platform. In the control system, the landing phase is divided into two
stages: approach and touchdown. In the first stage, the helicopter tries to attenuate the
initial position and direction errors, and in the next stage the platform’s attitude is tracked
for a safe touchdown. This is achieved by means of a State Dependent Riccati Equation
method, in which an objective function containing penalizing terms for states and inputs
is minimized in order to generate suboptimal control feedback. The state matrix of this
objective function is a state-dependent positive-definite square matrix, which is the same size
as the helicopter states. The strength of the states and their interactions can be tuned in
the objective function with the components of this gain matrix (for a higher effort to track
a state, the related component is increased). This solution is relevant for the problem since
both position and attitude are tracked for the touchdown moment.

(Ford & Boloye, 2010) proposed a combination of GPS and Inertial Navigation System (INS)
for the task of following a moving ship. The approach consisted of updating the Inertial
Navigation Unit (INU) by using data from the GPS receivers. Both aircraft and carrier
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would possess such systems, and the shipboard would transmit the INU and GPS data to the
aircraft. With the information gathered, the aircraft could then determine a vector to the
landing site.

Contributions on related problems

The previously mentioned work regards the landing of helicopters on ship decks, which is
a very similar problem to the one being considered for this thesis. However, the literature
survey would not be complete without looking into solutions presented in similar projects.
With this in mind, other related problems were investigated.

In (Saripalli, 2009), a downward-looking camera is used to track a target with known charac-
teristics. The motion of the target is also known. A template-matching algorithm is used for
acquiring the target in the images and is integrated with a trajectory controller for landing
the helicopter. The position of the target in the image is used as the input to a robust Kalman
filter. A linear controller based on a kinematic model of the helicopter is used to perform
trajectory following and landing.

(Wenzel, Masselli, & Zell, 2010) presented a system that would allow a UAV to land au-
tonomously on a carrier moving on the ground (in a horizontal plane only). The authors used
a Wii remote IR camera for tracking a known pattern of IR lights installed in the moving
carrier. PID control techniques were used to perform the landing mission, augmented by
second-order derivative terms (taking into account the acceleration of the aircraft).

At the University of Pennsylvania, a controller was designed for aggressive maneuvering of
a quadrotor (Mellinger, Michael, & Kumar, 2010) and (Mellinger, Shomin, & Kumar, 2010).
Among other possibilities, the helicopter could perch on a steady inclined surface. This
was achieved through a method that allowed the quadrotor to fly through any position in
space with reasonable velocity and pitching (3D trajectory control). This approach may be
useful, but a trajectory would have to be computed and validated on board for autoland on a
moving platform with unknown motion. In addition, the flight tests were performed indoors
in protected environments with expensive measurement systems.

(Dalamagkidis, Ioannou, Valavanis, & Stefanakos, 2006) discussed a mobile landing platform
for miniature VTOL vehicles. The system consisted of an unmanned ground vehicle with
a landing platform mounted on top. A gimbaled subsystem design was proposed and the
necessary equations were derived to level the platform regardless of the pose of the ground
vehicle. This idea was developed for operation on hard surfaces, but can be transferred to a
platform on the sea, as shown in (Ampelmann, 2009).

1-4-4 Vision in the loop

For autonomous landing, the aerial robot must be capable of performing navigation. This task
depends not only on the control strategy applied, but also on the set of sensors used (Castillo,
Lozano, & Dzul, 2005). The design of UAVs capable of performing navigation with precise
path tracking usually involves a trade-off between performance, price, weight and payload,
which is not easy to achieve. In general, UAV orientation measurement is achieved by using
an IMU (composed by gyros, accelerometers and magnetometers) while outdoor position and
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velocity measurements are usually obtained from GPS. The main drawback of the common
GPS receivers used in Micro Areal Vehicles (MAVs) is the fact that position measurements
may be inaccurate by up to a few meters. Therefore, the GPS solution for navigation is not
applicable for missions in which precision landing is required. Furthermore, the exact GPS
coordinates of a floating platform are not known due to the fact that the buoy tends to drift
within a certain radius.

One of the alternative ways to measure position and velocity for navigation purposes is based
on computer vision, which is the solution to be implemented in this thesis. It is therefore
necessary to analyze the implications of utilizing a vision sensor (a single camera) that ap-
pears in the control loop. Vision-based navigation techniques have been and continue to be
developed by various research teams. What follows is an overview of important issues related
to vision in the loop.

Using vision as a measuring system has multiple advantages over employing other sensors,
as shown in (Nordberg et al., 2002), (Saripalli, Montgomery, & Sukhatme, 2003) and (Wu,
Johnson, & Proctor, 2005). For example, cameras are passive (i.e., they do not emit external
signals) and in general are also light and cheap. Furthermore, they can be used for both
indoor and outdoor applications.

Visual servoing is the use of feedback from a camera or a set of cameras, and this approach
has been used in many applications for the development of control algorithms such as motion
control of mobile robots (Ma, Kosecka, & Sastry, 1997). (Lozano, 2010) presents an overview
on different visual servoing techniques, differentiating between two categories:

• direct visual servoing, in which the visual control is directly responsible for giving ac-
tuator commands to the robot, and

• indirect visual servoing, in which the visual control gives a control input to a lower level
control loop that computes actuator commands to the robot.

In this study, three types of strategies are also indicated according to the space of control
used:

• position-based, using 3D information from the scene expressed in a well-known Eu-
clidean reference;

• image-based, using 2D measurements extracted from the images;

• position-image based, a combination of the previous two.

Figure 1-6 depicts a simplified schematic representation of how a real target is projected in
the image plane of a camera. This method of modeling computer vision position estimates has
been widely used, for example in (Smith, Sridhar, & Hussien, 1992), (Hintze, 2004), (Wu et
al., 2005), (Xu, Qiu, Liu, Kong, & Ge, 2006), (Dobrokhodov, Kaminer, Jones, & Ghabcheloo,
2006), (Daquan & Hongyue, 2007) and (Kendoul, Nonami, Fantoni, & Lozano, 2009).

The basic equations for image projection are then given by

xp = x
f

z

yp = y
f

z

(1-1)
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Figure 1-6: Schematic representation of the image projection of a target in a camera frame

where f is the focal distance of the camera. Note that xp corresponds to the image projection
in the x-direction and yp in the y-direction. Note also that Eqs. (1-1) can only be applied if
the target is in the camera’s Field Of View (FOV).

Another important concept is that of optical flow, which is the time derivative of the image
projection, and can be expressed mathematically by (Smith et al., 1992):

ẋp =
(−fVxE + xpVzE)

z
+
xpyp
f

ωxE − f

(

1 +
x2p
f2

)

ωyE + ypωzE

ẏp =
(−fVyE + ypVzE)

z
− xpyp

f
ωyE + f

(

1 +
y2p
f2

)

ωxE − xpωzE

(1-2)

where {VxE , VyE , VzE} and {ωxE , ωyE , ωzE} are the camera’s translational and rotational ve-
locities expressed in the Earth reference frame. There are several algorithms for measuring
optical flow, including correlation-based techniques, features-based approaches, differential
techniques, etc., as shown in (Barron, Fleet, & Beauchemin, 1994).

From Eqs. (1-1), it is possible to observe that when the measurements of xp and yp are
known, there are only two equations available to estimate three variables (x, y and z), which
correspond to the 3D position of the camera with respect to the target. The estimation of
z (distance between camera and target plane) is a type of problem known as range finding.
Different contributions for solving this problem exist. For example, (Smith et al., 1992)
proposes a recursive method for estimating range using a Kalman filter with a monocular
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sequence of images, (Kendoul et al., 2009) uses a recursive least squares approach to estimate z
assuming that height remains approximately constant above a certain target, and (Dunbabin,
Corke, & Buskey, 2004) uses multiple cameras (stereo vision) to determine the distance to
the target plane. A survey on range-finding techniques can be found in (Jarvis, 1983).

The combination of vision with other sensor information has multiple advantages. (Lozano,
2010) combines the use of a camera with an IMU, which allows for full state estimation. In
this study, vision is used to obtain position, velocity and yaw measurements while IMU is
used to measure pitch and roll as well as angular rates. It is also possible to perform sensor
integration and combine vision with inertial measurements in a filter as shown by (J. Chen &
Pinz, 2004) and (Chroust & Vincze, 2004). Other approaches using different combinations of
sensors can also be found: (Chatterji, Menon, & Sridhar, 1997) combines vision with GPS,
(Wang et al., 2008) combines vision with INS and GPS and (Hubbard, Morse, Theodore,
Tischler, & McLain, 2007) uses camera, laser range and IMU as sensors for full navigation.

Finally, there are two additional concepts that should be mentioned. First, it is important to
stress that one of the key features of successful vision-based helicopter control is the frequency
at which camera images are sampled and processed. Helicopters can move quickly and it is
not guaranteed that the update rate of a vision system is high enough for control purposes.
According to (Amidi, 1996), on-board image processing must be performed at a frame rate of
30 Hz or higher for effective vision-based object tracking. Second, for cameras that are fixed
to the body-fixed reference frame, attitude compensation is required. This correction should
be made using information about the vehicle’s orientation (Amidi, 1996).

1-5 Research approach

After presenting the project and investigating pertinent literature, this section aims to de-
scribe the research approach for this thesis.

1-5-1 Detailed thesis objectives

The general intent of this thesis is as follows:

Design a vision-based system for automatic landing of a quadrotor UAV on a floating platform.
Evaluate feasibility of real-time implementation with cheap and light sensors.

Having performed a literature search, it is possible to break this goal down into more specific
sub-goals, and thus a more detailed set of objectives:

• Design the overall solution for the automatic landing mission. This will include all steps
from the initial position of the quadrotor until it lands and docks with the platform.
This solution must include an autonomous system based on computer vision using a
single camera for the last stage of the landing;

• Select the characteristics of the to-be-tracked target and design algorithms to process
camera images in order to measure relative motion between the quadrotor and the
target. Filters must to be designed in order to provide full state estimation for use in
the control laws;
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• Develop control laws in order to accomplish the end goal of the mission: the autonomous
landing. Regarding real-time implementation, as Paparazzi will be used, it is necessary
to develop the control algorithms in such a way that they will be compatible with
existing code. Furthermore, one of the most important goals is to design a system that
can be applied to any quadrotor platform and not just that of the test quadrotor.

1-5-2 Contributions

To achieve the end goal of this thesis and accomplish the objectives set out above, several
steps are taken as described in this section. These can be seen as contributions given in
different control-related fields.

Before solving specific design issues, an overview of the design solution for the autoland
mission is required. In short, the system will perform GPS-based navigation to approach the
area of the buoy, and will switch to camera vision once the platform is in sight. Vision-based
landing is then performed in multiple stages from initial correction of the lateral error to final
touchdown with desired sink rate. Several options for the docking system are considered and
explained in this thesis.

A detailed description of contributions corresponding to the steps taken is given below.

Modeling

A quadrotor model is needed to facilitate controller design tasks and to allow validation of
the design concepts.

• For this thesis, a Matlab/Simulink simulation tool is created, in which models built
by previous students at DUT are used. This simulation tool is extended to include
a Monte-Carlo scheme, thus allowing evaluation of the control laws not just for the
nominal case, but for a set of combinations of external conditions.

• In general, calculation of the moments of inertia is performed assuming mass components
at a certain distance from the quadrotor’s center of mass. In this thesis, an experiment
to determine moments of inertia is designed and implemented. The general approach is
to make use of the relation between torque, angular acceleration and inertia. For this
purpose, a turn table is used as well as a force/torque sensor.

Computer vision

In terms of the vision measurement system, a blob-tracking approach is considered most
suitable. Since red is not a color that can be easily found in nature (specifically at sea), the
target is designed as a red blob. As this target has known characteristics, different sizes,
shapes and other features must be considered and analyzed. An image processing algorithm
will also be defined in order to obtain relative 3D position measurements. After evaluating
the different possibilities, one design solution will be selected which corresponds to a good
compromise/trade-off between computation time and measurement accuracy.
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Filtering

It is expected that position measurements will be accurate at the centimeter level. However,
the update rate is expected to be low. Therefore, a Kalman filter formulation is proposed
in which vision data is integrated with IMU data. In this thesis, a model of the floating
platform is assumed and incorporated into the filter for better state estimation. In particular,
the vertical motion of the wave-excited buoy is estimated using an augmented Kalman filter,
containing a frequency-dependent sea state parameter.

The complete state reconstruction is performed in a modular approach, in which the filter
to estimate position and velocity is separated from that which estimates attitude. Note,
however, that both filters use information from one another. This approach was chosen
taking into consideration the fact that if less complex algorithms are employed, substitution
or improvement of subsystems is easier.

Control

Development of the control laws is approached from two angles: on the one hand, advanced
control laws based on state-of-the-art research are considered from a theoretical point of view;
on the other hand, due to the time frame established for this thesis, practical solutions are
adopted for real-time implementation.

• At DUT, nonlinear control laws using information of angular accelerations have been
studied. In this thesis, an incremental backstepping design is analyzed in simulations.
The controller must cope with the requirements of the design solution.

• Regarding real-time implementation, it is necessary to study the control loops that are
already implemented in Paparazzi and design the new automatic landing control laws
in such a way that they are compatible with existing code. Since Paparazzi uses PID
for attitude control as the inner loop and PID for position control as the outer loop
using GPS measurements, the proposed design solution for real-time implementation is
to replace GPS with filtered vision position and velocity estimations. As it is a non-
model-based approach, this strategy avoids redesigning the entire control loop when
applying the controller to a different quadrotor; the only aspect that must be verified
is tuning the PID gains.

1-6 Thesis outline

The structure of this thesis is presented below. Each of the core chapters addresses a different
aspect of the research corresponding to a specific step towards the final goal.

• Chapter 2: Design solution. In this chapter, an overview of the design solution for
the automatic landing problem is presented. This includes the different phases of the
landing and design choices for safe approach and docking.
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• Chapter 3: Quadrotor and environment models. In this chapter, the quadrotor
is modeled to facilitate the controller design process. The environment model is also
given for simulation purposes.

• Chapter 4: Moments of inertia experiment. In this thesis, a new method to
determine the quadrotor’s moments of inertia is proposed and implemented. In this
chapter the concept of the experiment is explained and the results are shown.

• Chapter 5: Vision system. Camera images obtained on board are used to determine
a 3D position vector of the quadrotor with respect to the target. In this chapter, the
design choices for the vision system are presented and the corresponding algorithms are
explained.

• Chapter 6: State estimation. In this chapter, the filters used for full state recon-
struction are presented. Specifically, the augmented Kalman filter design for estimation
of the platform’s vertical motion is given and the sensor integration approach for esti-
mation of position and velocity (also based on Kalman filtering) is explained.

• Chapter 7: Controller design. In this chapter, the proposed controller designs
are presented. The backstepping design is first introduced, followed by incremental
backstepping. A linear controller is also included. Finally, an autoland controller mode
is designed to cope with the desired system requirements.

• Chapter 8: Monte-Carlo simulations. The overall system is simulated and the
results are presented in this chapter, including simulations in which perfect state knowl-
edge is assumed, as well as simulation performed with state estimation algorithms in
the loop. Tests are performed for both nominal and uncertain cases.

• Chapter 9: Real-time implementation. In this chapter, the equipment and soft-
ware used for flight tests are presented along with the results. Also included are the
different steps taken towards stabilization of the quadrotor over a target.

• Chapter 10: Conclusion. Conclusions are drawn and lessons learned are shared in
this final chapter. A list of recommendations for future work is also given.
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Chapter 2

Design solution

Following the project introduction and literature survey, an overview of the design solution
is now presented in this chapter. It is first assumed that the quadrotor can only operate
under certain conditions. A set of performance requirements is thus defined and will serve
as a guideline for portions of the remainder of this thesis, primarily with regard to controller
synthesis. The design proposed in this chapter is an overview of the entire system and sets
the stage for the implementation of subsystems required to accomplish the mission’s goal.

2-1 Assumptions

Several assumptions must be made before providing a design solution for this vision-based
automatic landing mission. First, it is assumed that the quadrotor cannot operate under
stormy conditions; therefore heavy rain, strong turbulence, gusty winds and extreme rough
sea states are considered unsuitable conditions for operation. To be consistent, the Beaufort
Wind Force Scale is used. The Beaufort Scale is an empirical measure that relates wind speed
to observed conditions at sea. The modern scale numbers range from zero to twelve, with
zero being calm conditions (less than 0.3 m/s wind speed and flat sea surface) and twelve
being hurricane force (wind speed greater than 32.7 m/s and wave height greater than 14 m).
For this thesis, conditions up to level four are considered; that is, wind speed up to 8 m/s
and wave height up to 2 m.

The floating platform must be anchored, otherwise it could drift away with sea currents.
Subsequently, the anchor’s GPS coordinates will be known and the buoy will always be located
within a certain radius at the water surface. Furthermore, it is assumed that the platform’s
motion is constrained. More specifically, it has negligible motion in the horizontal plane and
variations in pitch and roll angles are very small. This assumption is valid provided that the
platform is sufficiently large and possesses a mechanism to maintain the landing area leveled
with the horizon. As shown in the literature survey, such systems already exist with the
inverted six degrees of freedom motion simulator concept. However, even more cost-effective
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solutions could be implemented based on other maritime engineering applications, such as
anti-roll tanks.

The final assumption is that the vertical motion of the platform is similar to the motion
of a water particle at the sea surface. Therefore, high frequency motion due to the buoy’s
flotation is not present. Again, this approximation is valid for a large and well-stabilized
floating platform.

2-2 Performance requirements

Certain requirements must be defined to ensure proper performance. In order to accomplish
the mission, the vehicle must land smoothly on the buoy as opposed to crashing against it or
even landing in the water. The following performance requirements are thus defined:

• Pitch and roll angles should be zero at the landing moment; the desired values are then

– θdesTD = 0 deg φdesTD = 0 deg

• Touchdown (TD) point should be at the center of the designated landing area; the
desired values are then

– xdesTD = 0 m ydesTD = 0 m

• At TD, vertical velocity (sink rate) relative to the platform should be small; the desired
value is designed as

– żdesTD = 0.5 m/s

For all the above requirements, thresholds are defined to establish the limits of the safety
region of operation. For example, if the attitude angles are too large at TD, the quadrotor
could flip, and this cannot be allowed. Additionally, a time constraint exists due to the fact
that batteries run out after a certain period of flying time.

2-3 Step-by-step landing procedure

The general goal of the mission is to bring a quadrotor back to a platform after performing
a pre-specified task at sea. The vehicle might be in a random position between buoys and
must navigate to one of them and land upon it. As stated before in this chapter, the anchor’s
GPS coordinates are known. Therefore, the first controller mode is GPS navigation. Once
the platform is in sight, the system should then switch to vision-based control. Figure 2-1
shows a block diagram with the different controller modes required for the procedure. What
follows are detailed explanations of each of these modes.
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Figure 2-1: Block diagram of the autoland modes
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Search mode

When flying at a random position above the sea, the quadrotor can only rely on the GPS
coordinates of the platform’s anchor location. Therefore, the first mode must be GPS navi-
gation (Search mode) to return the quadrotor to the platform’s general vicinity. Because of
sea currents, the buoy is not expected to remain afloat above the anchor’s exact coordinates.
Nevertheless, since the platform’s motion is restrained by a tether, a maximum range can
be expected for the floating device’s location. Based on the camera’s FOV, the necessary
altitude above Mean Sea Level (MSL), hsearch, can then be estimated for this mode so that
when the quadrotor is at the desired GPS coordinates, the platform is in sight. This altitude
can be easily calculated as

hsearch =
Rp

tan (min{FOV }/2) (2-1)

where Rp is the radius within which the platform can be found. Note that the FOV may differ
in the horizontal and vertical directions. Therefore, the minimum value must be considered.
Eq. (2-1) is for the ideal case that GPS measurements are very accurate. However, with the
small and cheap receivers commonly used for these types of UAVs, the position measurement
may be off by a few meters. This error must be taken into account and an altitude increment
is necessary. Such an increment can be computed as

∆hsearch =
Pe

2 tan (min{FOV }/2) (2-2)

where Pe corresponds to the maximum window of position measurement error. For clarity,
a visual representation of the scenario under consideration is presented in Figure 2-2. As
an example, if min{FOV } = 60deg, Rp = 10 m and Pe = 2 m then hsearch = 17.3 m and
∆hsearch = 1.73 m, meaning that the quadrotor would have to search for the buoy at an
altitude of approximately 20 m.

Pe

Rp

Buoy

Anchor

Quadrotor

min{FOV }
2

hsearch

∆hsearch

Figure 2-2: Search mode schematic representation
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Note that the altitude obtained with Eqs. (2-1) and (2-2) could be too large to obtain clear
images. In that case, this mode must be executed at a lower altitude and once the anchor’s
GPS coordinates have been reached, a search algorithm must be performed to find the buoy.
As an example, the quadrotor could follow a predefined trajectory that would ensure complete
coverage of the area.

It is important to stress that the altitude pressure should be reset every time a mission begins.
Before releasing the quadrotor to perform a certain task, the pressure for that moment must
be measured and used as the reference for further altitude calculations.

The switch to vision-based control is only possible when the platform is in sight. However,
there is one key aspect to take into account: since the vision-based control requires state
estimation through filtering, it is necessary to wait until the vision filter has converged and
the estimations are reliable for use in the control loops. This allows for smooth transient
behavior after switching from GPS to camera.

Tracking mode

Once the platform is in the camera’s FOV and the vision-filter has converged, the Tracking
mode is initiated. In this mode, the quadrotor should align with the platform’s center (or
designated landing area) and descend to a desired altitude. At this point, this altitude should
be based on pressure (seen as inertial altitude) and should not yet be relative to the buoy.
When aligned at the desired altitude above MSL, the quadrotor should hold its position and
enter the Observation mode.

An algorithm to determine whether the platform has been lost is required in this mode. It is
not realistic to assume that the platform is lost as soon as it has disappeared from one image
frame. In fact, with rough weather conditions, it is expected that the target may disappear
several times in the tracking process. Therefore, the platform is considered lost only when
the target is not in sight after several consecutive frames (the exact number of frames should
be tuned based on real-time testing). As illustrated in Figure 2-1, the natural step would be
to return to Search mode and rely on GPS measurements to find the platform once again.

Observation mode

In the literature review, it was found that motion estimation of a moving target can be useful
when the intention is to land a flying vehicle upon it. This concept of motion estimation
is pursued in this thesis. A model of the floating platform must be constructed, and the
Observation mode aims at finding the parameters of such a model online. An algorithm
must also be developed to ensure that permission to land is only granted when all necessary
requirements are fulfilled, that is, when the floating platform’s motion estimation is producing
reliable estimates to be used in the control laws.

Note that the algorithm to determine whether the platform has been lost is also run for
this mode. Recalling the literature review, this solution poses an interesting alternative for
finding lull opportunities for landing. If the quadrotor can manage to stay aligned with the
platform during the Observation mode, then there is a high likelihood of landing upon it. If
the quadrotor cannot maintain alignment, then the procedure must restart until a quiescent
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opportunity for landing arrives. This mostly concerns the buoy’s horizontal motion, which
is assumed as negligible for this study. Therefore, this method for finding lull opportunities
would be more applicable in the case where lateral motion is not neglected.

Land mode

The Land mode is the final stage of the controller. This mode should ensure a TD sink rate
as specified in the requirements, and the quadrotor should land as close to the desired point
as possible.

Note that when the quadrotor is far from the buoy it is not necessary to control vertical
velocity with respect to the target. In fact, it makes more sense to control vertical descent in
the inertial frame, i.e., keeping MSL as the reference height. When the quadrotor is closer to
the platform, the sink rate should then be controlled with respect to the target.

The algorithm for determining if the platform as been lost was intentionally excluded for this
mode. When operating closer to the platform, there is a high probability of aborting the
mission too frequently. Note that the camera used has a narrow FOV and some turbulence
can be expected due to the platform’s proximity; this in turn could conflict with the time
constraint imposed by the battery levels. Nevertheless, such design choice can only be made
after testing with the real quadrotor.

For the Land mode as well as for the Tracking and Observation modes, it is clear that the
target cannot be the same size for when the quadrotor is far and when it is close to the
platform. Therefore, the target must be designed in such a way that different shapes, colors,
sizes or other features can be used depending on the quadrotor’s height. For example, the
buoy could have a circular shape forming a ring around its border and a square in the middle.
A different solution to this problem could be to use lights to illuminate different parts of the
platform as necessary. This solution would require minimal communication between the flying
machine and the floating platform, which is expected since the quadrotor must be secured
after TD and must also recharge batteries.

2-4 Required subsystems

From the strategy outlined to accomplish the autoland mission, a controller with several
modes must be designed. First, a position controller is required; given desired coordinates
(either from GPS or camera), the quadrotor must be able to navigate to a desired location
and hold its position. Then, a mode to control the vertical velocity is needed; this mode must
be adapted to ensure that the sink rate controlled can be relative to MSL or relative to the
platform. To summarize, the following controller stages are required:

• Inertial altitude hold. This stage is required for the Tracking and Observation modes.
The quadrotor should regulate its horizontal position to zero (with the target being the
reference) and hold its altitude in the navigation frame (with respect to MSL).

• Inertial descent. This stage is required for landing purposes, for the case in which
the quadrotor is not yet close to the buoy. Vertical velocity is then controlled, but with
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respect to MSL. The control objective is still to regulate horizontal position to zero, but
no vertical position is controlled.

• Relative descent. This stage is required for the final landing phase when the platform
is close. Since the objective is to control relative sink rate with respect to the target,
the inertial vertical velocity must be adjusted to cope with the buoy’s dynamics. As for
the previous stage, the vertical position is not controlled to zero and the objective is to
regulate the horizontal position to zero.

The quadrotor is equipped with an IMU, an altitude pressure sensor and a camera. With the
information gathered from this set of sensors, it is necessary to reconstruct all states required
for control purposes. Therefore, a state estimation block based on filtering techniques must
be implemented.

These two components - controller and state estimation blocks - are two major research topics
for this thesis, and set the stage for developing solutions to control-related issues.

2-5 Docking system

To start, the best approach to designing a docking system is to study previous solutions imple-
mented in projects from different fields. Perhaps the most state-of-the-art docking mechanism
is implemented in the Automated Transfer Vehicle (ATV) project from the European Space
Agency (ESA). The Integrated Cargo Carrier (ICC) is a spacecraft module that contains a
system for docking with the International Space Station (ISS), and from the ESA website the
following information can be found (http://www.esa.int/esaMI/ATV/index.html):

The front cone of the ICC accommodates the 235 kg Russian docking system
with its 80 cm-diameter hatch, its alignment mechanism and its one-metre-long
extendible probe. During rendezvous with ISS, the ATV is the active spacecraft
and is equipped with an arrow-shaped probe mechanism. The Space Station
has receiving-cone mechanisms at the docking ports which are routinely used
for Soyuz and Progress dockings. The Russian docking system, which has been
continuously refined since it was originally developed in the late 1960s for the
Salyut space station programme, remains the worldwide state-of-the-art in docking
mechanisms.

A similar concept can be used as a solution for this quadrotor landing project. By designing
the landing area with a receiving-cone-shaped geometry (see Figure 2-3), there is no demand
for extremely precise landing (which is unrealistic for the system under consideration). The
quadrotor could then slide to the middle of the platform where a docking mechanism would
be prepared to secure the vehicle.

It should also be stressed that the quadrotor should be equipped with landing mechanisms
to enhance TD safety. More specifically, the rotorcraft should possess legs in such a way that
the actual TD point is far from the quadrotor’s Center of Mass (CM). This will reduce the
probability of flipping after one of the legs has touched the landing area. Finally, it should
be mentioned that the height of these legs should permit landing even when the camera has
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Figure 2-3: Section of the buoy corresponding to the cone-shaped landing area

a certain distance from the target. This is mainly due to the fact that the camera’s FOV is
limited and the chance of loosing the target is high when the quadrotor is extremely close to
it.
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Chapter 3

Quadrotor and environment models

A model of the quadrotor is necessary in order to facilitate controller design tasks as well as
to validate the design concepts through simulations. In this thesis, the model used is based on
those described by (Wierema, 2008) and (Berkelaar & Oonk, 2009). The environment is also
modeled, including description of the atmosphere, wind profiles and motion of the floating
platform.

3-1 Assumptions

Several assumptions were made for this model:

• The quadrotor is a rigid structure, possessing a very stiff frame.

• The quadrotor is symmetrical, and therefore the cross products in the inertia matrix
are zero.

• Blade flapping effects of the rotor are neglected, as expected velocities are small.

• The thrust of the rotors is in the vertical direction of the quadrotor.

• The quadrotor has a constant mass.

• A flat, non-rotating Earth is also assumed, given that the flight times are short and
velocities are small.

3-2 Reference frames

As is common practice in the aerospace field, the modeling procedure begins with the defini-
tion of reference frames used to describe the motion of the craft in space:
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• The Earth-fixed reference frame N , a right-handed orthogonal axis-system with origin
at a pre-specified convenient point. This reference frame is fixed to the earth’s local
tangent plane and is considered as the inertial frame of reference under simplifying
conditions. Its x-axis points North, its y-axis points East and its z-axis points down,
making it a North East Down (NED) frame.

– Alternatively, the Earth-fixed reference frame E . This reference frame is similar
to that described above, except for the fact that its x-axis points East, its y-axis
points North and its z-axis points up, making it a East North Up (ENU) frame.

• The body-fixed reference frame B, a right-handed orthogonal axis-system with origin at
the quadrotor’s center of gravity. This reference frame is fixed to the quadrotor’s body.
Its x-axis points forward, y-axis points to the right and z-axis points down.

A schematic representation of the reference frames N and B is given in Figure 3-1.

xn

yn

zn

xb

yb

zb

CG

Figure 3-1: Representation of the inertial and body-fixed reference frames

The transformation between two reference frames is composed by

• translation of the origin from the first reference frame to the second, and

• a set of rotations that defines the difference in orientation of the two frames.

3-3 Attitude representation and rotations

In order to adequately build the quadrotor model, the angular attitude of the vehicle must
be defined. For this project, the Euler angles representation is used. This representation, as
implemented in this model, presents a singularity for the pitch angle at ±90 deg. However,
since no acrobatic maneuvers are desired (or expected) during the approach and touchdown
phases of the automatic landing procedure, this choice is suitable for modeling purposes.
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Furthermore, the Euler angles have the advantage of being intuitive to interpret. Nevertheless,
it is clear that the computational load using Euler angles is higher when compared to other
representations such as the quaternion of rotation, which presents an extra element to fully
describe the attitude, but is less nonlinear.

Now consider a right-handed orthogonal reference frame A and another denoted by B, also
right-handed and orthogonal. It is possible to rotate from A to B by performing three single-
axis rotations. Each of these rotations can be described by the rotation matrix R as presented
in Eqs. (3-1), (3-2) and (3-3), depending on the rotation axis.

For a rotation about the x-axis by ϕ1, the rotation matrix is given by

Rx(ϕ1) =





1 0 0
0 cosϕ1 sinϕ1

0 − sinϕ1 cosϕ1



 (3-1)

For a rotation about the y-axis by ϕ2, the rotation matrix is given by

Ry(ϕ2) =





cosϕ2 0 − sinϕ2

0 1 0
sinϕ2 0 cosϕ2



 (3-2)

And finally, for a rotation about the z-axis by ϕ3, the rotation matrix is given by

Rz(ϕ3) =





cosϕ3 sinϕ3 0
− sinϕ3 cosϕ3 0

0 0 1



 (3-3)

Note that these matrices are orthogonal, meaning that R(ϕ)−1 = R(ϕ)T . The full transfor-
mation between reference frames can be broken down into the multiplication of these three
basic matrices, which also results in an orthogonal matrix. It is possible to choose different
sequences, but in aerospace (and flight dynamics in particular), one of the most common
choices is to perform the so-called 3-2-1 sequence of rotation. For this rotation, the angles
are defined as [ϕ1, ϕ2, ϕ3] = [φ, θ, ψ] (roll, pitch and yaw, respectively) and the sequence is
described as follows:

• First, rotation about the z-axis by yaw angle (ψ);

• Second, rotation about the intermediate y-axis by pitch angle (θ);

• Third, rotation about the intermediate x-axis by roll angle (φ).

According to this formulation, the transformation TNB from the NED frame N to the body-
fixed frame B is given by:

TNB = Rx(φ)Ry(θ)Rx(ψ) =




cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ
cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ





(3-4)

The inverse transformation TBN = TNB−1
(from the body-fixed to the NED reference frame)

corresponds to TNB−1
= TNBT , following the orthogonality property of the rotation matrix

obtained.
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30 Quadrotor and environment models

3-4 Kinematic relations

The kinematic relations describe the motion of objects without considering the forces that
cause the motion. The time derivatives of the Euler angles as a function of the angular rates
expressed in the body-fixed reference frame are presented in this section. A sequence of three
rotations (first yaw, then pitch and finally roll) is applied as follows:





p
q
r



 =





φ̇
0
0



+Rx(φ)





0

θ̇
0



+Rx(φ)Ry(θ)





0
0

ψ̇



 (3-5)

which leads to the following relation





p
q
r



 =





1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ









φ̇

θ̇

ψ̇



 (3-6)

from which the Kinematic Differential Equations (expressed in terms of the Euler Angles)
can be obtained:





φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ









p
q
r



 (3-7)

3-5 Dynamic equations of motion

The equations of motion of the quadrotor UAV can be derived using Newton’s second law of
motion, which can be expressed in the inertial, Earth-fixed reference frame by the two vector
equations (J. A. Mulder, Staveren, Vaart, & Weerdt, 2006)

F =
d

dt
(mV )

∣

∣

∣

∣

E

(3-8)

M =
dH

dt

∣

∣

∣

∣

E

(3-9)

By expanding these two equations, it follows that





Fxext
Fyext
Fzext



 =





−mg sin θ
mg cos θ sinφ
mg cos θ cosφ



+





X
Y
Z



 =





m(u̇+ qw − rv)
m(v̇ + ru− pw)
m(ẇ + pv − qu)



 (3-10)





Mxext

Myext

Mzext



 =





L
M
N



 =





Ixxṗ+ (Izz − Iyy)qr
Iyy q̇ + (Ixx − Izz)rp
Izz ṙ + (Iyy − Ixx)pq



 (3-11)
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3-6 External forces and moments 31

where Fxext, Fyext and Fzext correspond to the external forces acting on the quadrotor (ex-
pressed in the body-fixed reference frame), and Mxext, Myext

and Mzext correspond to the
external moments acting on the quadrotor (also expressed in the body-fixed reference frame).

To construct an accurate model from Eqs (3-11) and (3-10), the mass and inertia properties
of the quadrotor must be known. The mass of the quadrotor can be accurately measured
using a scale, and it is expected that fluctuation in this parameter will be negligible (unless
changes are applied to the layout of the quadrotor). Determining the moments of inertia is
a slightly more complex task. In this thesis, a new method to determine Ixx, Iyy and Izz is
presented in Chapter 4. Note the assumption that the cross products of the inertia matrix J
can be neglected, due to the layout of the quadrotor.

J =





Ixx 0 0
0 Iyy 0
0 0 Izz



 (3-12)

External forces

The external forces applied to the quadrotor can be summarized as follows:

• along the xb-axis (X): hub forces and friction;

• along the yb-axis (Y ): hub forces and friction;

• along the zb-axis (Z): thrust and friction.

External moments

The external torques applied to the quadrotor can be summarized as follows:

• about xb (L): roll control action, rotor gyro effect, moment due to hub force and rolling
moment due to forward flight;

• about yb (M): pitch control action, rotor gyro effect, moment due to hub force and
moment due to forward flight;

• about zb (N): yaw control action, rotor gyro effect and hub force unbalance.

These forces and moments are explained in the next section.

3-6 External forces and moments

There are two types of aerodynamic effects considered for this model: those resulting from
the rotors (rotating blades) and those associated with friction in the whole frame when the
velocity of the quadrotor is non-zero. The external forces and moments generated by these
aerodynamic effects are explained in this section. Furthermore, since for landing purposes the
quadrotor will have to operate close to the platform, ground effect is also modeled. Finally,
the torques caused by the rotor gyro effect are also given.
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32 Quadrotor and environment models

3-6-1 Rotor aerodynamics

Blade element theory (Seddon & Newman, 1990) is used to model the aerodynamic forces
acting parallel and perpendicular to the rotor shaft, as well as the moments about the rotor
shaft and the hub.

Before introducing the forces and moments generated by the rotors, it is first necessary to
outline a few important concepts related to rotating blades.

• The rotor disc area is defined as
A = πR2 (3-13)

where R is the radius of the rotor.

• The rotor solidity is defined as the ratio between the total blade area and the rotor disc
area. For a rotor composed by N blades with an equivalent chord ce, this parameter is
given by

σ =
Nce
πR

(3-14)

• The inflow velocity, v1, of the rotor (in hovering mode) can be described by

v1 =

√

√

√

√−V
2

2
+

√

(

V 2

2

)2

+

(

W

2ρA

)2

(3-15)

where V =
√
u2 + v2 is defined as the lateral velocity, W is the weight of quadrotor and

ρ is the air density.

• The total inflow ratio is given by

λ =
v1 − ẇ

ΩR
(3-16)

where Ω is rotational speed of the rotor and ẇ is the vertical speed of the quadrotor (in
the z-body-axis).

• The advance ratio is

µ =
V

ΩR
(3-17)

• The lift coefficient varies linearly with the angle of attack

CL = aα (3-18)

where a is the lift slope.

• The twist of the rotor varies linearly with the radial position

θtwist = θ0 − θtw (r/R) (3-19)

where θ0 is the rotor pitch at the hub and θtw is the linear pitch constant of the rotor.

The different forces and moments are now introduced as functions of these parameters.
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Thrust force

The thrust force is the resultant force acting on all blade elements in the vertical direction.

F = CTρA (ΩR)2 (3-20)

CT
σa

=

(

1

6
+
µ2

4

)

θ0 −
(

1 + µ2
) θtw

8
− λ

4
(3-21)

Hub force

The hub force is the resultant force acting on all blade elements in the horizontal plane, as
represented by

H = CHρA (ΩR)2 (3-22)

CH
σa

=
µCd
4a

+
1

4
λµ

(

θ0 −
θtw
2

)

(3-23)

where Cd is the airfoil drag coefficient at the 70 % radial station.

Drag moment

The drag moment is the resulting moment from the drag force on the rotor.

MQ = CMQρA (ΩR)2R (3-24)

CMQ

σa
=

1

8a

(

1 + µ2
)

Cd + λ

(

θ0
6

− θtw
8

− λ

4

)

(3-25)

Rolling moment

The rolling moment depends on the lateral velocity of the quadrotor. The advancing blade
will produce more lift than the retracting blade, which will cause a moment.

MR = CMRρA (ΩR)2R (3-26)

CMR

σa
= µ

(

θ0
6

− θtw
8

− λ

8

)

(3-27)
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3-6-2 Ground effect

When the quadrotor is flying near the ground, the thrust produced by the rotors increases.
The distribution of airflow from the rotor is modified as a result of the cushion of air formed
under the rotorcraft due to the proximity of the ground. This in turn leads to an increase in
lift when compared to operation in Out of Ground Effect (OGE) conditions. This effect is
known as the ground effect, and should be included in this research project since the landing
procedure depends strongly upon it just before touchdown. In Ground Effect (IGE) conditions
are usually found within heights about 0.5 to 1.0 times the diameter of the rotor. The ground
effect is very difficult to model and it depends on many parameters such as the type of rotor,
the slope and nature of the ground and any prevailing winds.

The model used to describe the ground effect relates the IGE thrust with the OGE thrust as

FIGE
FOGE

=
1

1−
(

R
4Zag

)2 (3-28)

where Zag is the height above the ground (Cheeseman & Bennett, 1957).

Figure 3-2 shows the increase in thrust divided by the OGE thrust, as a function of height
above the ground.

land?

∆
F
/F

O
G
E

[-
]

Zag [m]
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0

0.5

1

1.5

Figure 3-2: Ratio between increased thrust over FOGE as a function of height above ground,
for a rotor radius R = 0.1 m

3-6-3 Structural friction

When the quadrotor is airborne, friction can be expected. This force is modeled according to

D = −1

2
CDADρ · Vb · |Vb| (3-29)

where CD denotes the aerodynamic dimensionless drag coefficient, AD is the aerodynamic
area and Vb is the velocity expressed in the axis under consideration.
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3-6-4 Rotor gyro effect

As the quadrotor has four rotating masses, a gyro effect is expected. This effect is not
present when all rotors rotate at the same speed. However, the Clockwise (CW) and Counter
Clockwise (CCW) rotors will rotate at different speeds for yaw angle changes. The moments
generated due to the gyro effect are given in Eq. (3-30) where Jr is the inertia of all four
rotors and Ωr is defined as the residual rotational rate of the rotors:





Mxge

Myge

Mzge



 = Jr





qΩr
−pΩr
Ω̇r



 (3-30)

with

Ωr = −Ω1 +Ω2 − Ω3 +Ω4 (3-31)

3-7 Gathering the equations of motion

The equations of motion presented in the previous sections are now collected. The vector
nomenclature is defined as presented below:

• inertial position: p = (x, y, z)T

• body velocity: V = (u, v, w)T

• attitude Euler angles: Θ = (φ, θ, ψ)T

• body angular rates: ω = (p, q, r)T

The differential equations describing the system are then given in vector form as:

• position loop:

ṗ = TBNV (3-32)

• velocity loop:

V̇ = −ω × V +m−1 (W + F + F d) (3-33)

• attitude loop:

Θ̇ = Nω (3-34)

• rate loop:

ω̇ = J−1(−ω × Jω +M +Md) (3-35)

In the above equations F contains the control forces, F d contains the disturbance forces,
W contains the gravity components, M contains the control moments and Md contains the
disturbance moments.
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By expanding the above equations, twelve scalar first-order differential equations are then
obtained:

ẋ =(cosψ cos θ)u+ (cosψ sin θ sinφ− sinψ cosφ)v

+ (cosψ sin θ cosφ+ sinψ sinφ)w

ẏ =(sinψ cos θ)u+ (sinψ sin θ sinφ+ cosψ cosφ)v

+ (sinψ sin θ cosφ− cosψ sinφ)w

ż =(− sin θ)u+ (cos θ sinφ)v + (cos θ cosφ)w

u̇ = rv − qw − g sin θ +
1

m
Fxd

v̇ = pw − ru+ g cos θ sinφ+
1

m
Fyd

ẇ = qu− pv + g cos θ cosφ− 1

m
Fz +

1

m
Fzd

φ̇ =p+ tan θ(q sinφ+ r cosφ)

θ̇ =q cosφ− r sinφ

ψ̇ =(q sinφ+ r cosφ)/ cos θ

ṗ =
1

Ixx
[(Iyy − Izz)qr +Mx +Mxd]

q̇ =
1

Iyy

[

(Izz − Ixx)rp+My +Myd

]

ṙ =
1

Izz
[(Ixx − Iyy)pq +Mz +Mzd]

(3-36)

Finally, to allow for testing of the controllers’ responses to disturbances, the following forces
and moments due to rotor gyro effect and structural drag are considered. Force disturbances
are modeled as

Fxd = −1

2
CDADρ · u · |u|

Fyd = −1

2
CDADρ · v · |v|

Fzd = −1

2
CDADρ · w · |w|

(3-37)

and the moment disturbances are modeled as

Mxd = JrqΩr

Myd
= −JrpΩr

Mzd = JrΩ̇r

(3-38)

Note that the hub forces, and consequently the corresponding moments, have been neglected,
as well as moments due to sideways velocities.
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3-8 Motor dynamics

For this model, DC motors are used. They are modeled using the known equations

Ω̇m = −1

τ
Ωm − d

ηr3Jt
Ω2
m +

1

kmτ
um (3-39)

1

τ
=

k2m
RmJt

(3-40)

where d is the drag factor, τ is the motor time constant, km is the motor torque constant,
Rm is the motor internal resistance, η is the motor efficiency, Jt is the total rotor inertia seen
by the motor, r is the reduction ratio and um is the motor input (Franklin & Emami-Naeini,
2006).

3-9 Sensor modeling

For on-board state estimation, Micro Electrical Mechanical Systems (MEMS) sensors are
used to measure accelerations, angular rates and magnetic fields. A list of different errors
associated with these types of sensors is given below.

• Constant bias
The bias is an offset of the sensor’s output from the true value. As the name indicates,
it possesses a constant value and can be estimated by calculating the mean of a large
sample of data. Note that this property is dependent upon external conditions such as
temperature, meaning that bias drifts (explained below) can be expected.

• Measurement noise

– white noise: the measurements are perturbed by a sequence of zero-mean random
values.

– flicker noise (bias drift): the bias of a sensor wanders over time due to flicker noise.
This type of noise is mostly noticeable at low frequencies. At higher frequencies
the white noise will, in general, be stronger than the flicker noise, thus explaining
why it can be seen as a bias drift.

– other types of noise such as correlated noise, quantization error and dither noise.

• Nonlinearities
Sensors present nonlinear behaviors. Such effects are difficult to model and thus it is
difficult to compensate for them. In short, the output of a sensor is nonlinear with
respect to the quantity it is sensing. However, since the nonlinear effects are small, they
can generally be neglected.

• Misalignments
Given that the sensors are mounted on the vehicle, misalignments can be expected
between the sensor’s sensing axes and the vehicle’s body axes. Furthermore, it is possible
that the sensor axes are not orthogonal with respect to each other.
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38 Quadrotor and environment models

• Scale factor error
The scale factor error is defined as a non-constant sensor gain that can result from aging
or manufacturing tolerances.

What follows are the mathematical descriptions of the sensors used. The values used for
simulation purposes are given in Appendix A.

Accelerometers

Accelerometers measure specific forces and it is assumed that the measurements have a con-
stant bias and a normally-distributed white noise. It is not always possible to place the
IMU at the Center of Gravity (CoG); therefore, a correction must be made. The distance
from the IMU to CoG is defined as Dx, Dy and Dz. The acceleration caused by a non-zero
displacement is given by Eq. (3-41)

AD = ω × (ω ×D) + ω̇ ×D (3-41)

By extending this equation it follows that





AxD
AyD
AzD



 =





q(pDy − qDx)− r(rDx − pDz) + q̇Dz − ṙDy

r(qDz − rDy)− p(pDy − qDx) + ṙDx − ṗDz

p(rDx − pDz)− q(qDz − rDy) + ṗDy − q̇Dx



 (3-42)

and the total to-be-sensed acceleration is given by





Ax
Ay
Az



 =





u̇+ qw − rv + g sin θ +AxD
v̇ + ru− pw − g cos θ sinφ+AyD
ẇ + pv − qu− g cos θ cosφ+AzD



 (3-43)

The measurement equations are then





Axm
Aym
Azm



 =





Ax + λAx + wAx
Ay + λAy + wAy
Az + λAz + wAz



 (3-44)

with




λ̇Ax
λ̇Ay
λ̇Az



 =





0
0
0



 (3-45)

where λi represent constant biases and wi are white noises.

Gyroscopes

Similarly, the gyroscopes’ measurements are modeled as





pm
qm
rm



 =





p+ λp + wp
q + λq + wq
r + λr + wr



 (3-46)
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with




λ̇p
λ̇q
λ̇r



 =





0
0
0



 (3-47)

where, again, λi represent constant biases and wi are white noises.

Magnetometer

Magnetometers measure magnetic fields. Specifically, for this thesis a model of a two-axis
magnetometer is used to measure the Earth’s magnetic field, which for a specific location
has a certain inclination and declination. It is assumed that the exact values of these two
properties are known.

The on-board IMU measures magnetic components in the body-fixed reference frame. There-
fore, the Earth’s magnetic field is sensed in the body axes, from which a measurement of the
ψ angle can be obtained. For details see (Wierema, 2008) and (Berkelaar & Oonk, 2009).

It is assumed that a yaw measurement is then available containing only white noise as

ψm = ψ + wψ (3-48)

Note that it is assumed that the measurements can be perfectly corrected for all sensor biases.

Barometric altimeter

It is assumed that the barometric altimeter provides a measurement of height, h = −z, based
on local static pressure measured. It is assumed that no bias exists and that the sensor’s
output is contaminated by zero-mean random noise as

hm = −z + wh (3-49)

Camera

Finally, the camera must be modeled. A detailed description of this sensor will be given in
Chapter 5. In the meantime, a short introduction is presented here for convenience. Initially,
the vision system measures the quadrotor’s position relative to the target. These measure-
ments are in the body-fixed reference frame and must be corrected using attitude estimation.
The final measurements are then given by





xm
ym
zm



 = TBN (φ, θ, ψ)





xcam
ycam
zcam



 (3-50)

where xcam, ycam and zcam represent the initial camera measurements expressed in the body-
fixed reference frame and are assumed as perfectly known (no bias and no white noise). The
rotation matrix TBN has been explained in Section 3-3.
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It should be stressed that the camera has a limited FOV; this means that when the target
does not appear in the image, it follows that no measurement is available. Note that the FOV
is different in the horizontal and vertical directions.

Furthermore, it is assumed not only that the update rate from this sensor is lower when
compared to the other sensors, but also that the measurements contain a significant time
delay.

3-10 Environment model

To simulate conditions at sea, a model of the environment is required. This includes the
atmosphere model, wind profiles and floating platform motion.

3-10-1 Atmosphere model

To describe the atmosphere, the International Standard Atmosphere (ISA) model is used.
In this model, the Earth’s atmosphere parameters are computed as a function of the height
above the MSL as follows:

ρ = ρ0

(

1 + λtrop
h

T0

)

(

− g

Rλtrop
−1

)

[

kg/m3
]

(3-51)

where

ρ0 = 1.225 kg/m3

λtrop = −0.0065 K/m

T0 = 288.15 K

R = 287.05m2/s2 K

(3-52)

The computation of the magnitude of gravity as a function of height is determined according
the following expression

g = 9.80665

(

Re
Re + h

)2

(3-53)

where Re is the average radius of the Earth (Re = 6367434m). Note that Eq. (3-51) is valid
for h ≤ 11km, which will always be the case for this specific automatic landing mission.

3-10-2 Wind profiles

The vertical distribution of the wind, or wind shear, over the water surface is an important
factor to consider for the simulation being performed. A power-law wind profile (Hsu, Meindl,
& Gilhousen, 1994) is employed to simulate the atmospheric surface boundary layer extending
to 100 m above the sea surface. This law states that

Vwind
Vwind,ref

=

(

h

hwind,ref

)P

(3-54)
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where Vwind is the wind speed at height h, Vwind,ref and hwind,ref are the wind speed and
height already known, respectively, at a reference height, and the exponent P is a function
of both the atmospheric stability in the layer over which P is determined to be valid and the
underlying surface characteristics. For the open sea, the exponent P is chosen as 0.10 (Hsu
et al., 1994). In Figure 3-3, a representation of the Earth boundary layer model is given for
hwind,ref = 100 m. Turbulence and wind gusts are not modeled in this study. However, it

Vwind/Vwind,ref [-]

h
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Figure 3-3: Earth boundary layer model for hwind,ref = 100 m

would be interesting to analyze the quadrotor’s response to atmospheric stochastic turbulence.
Models can be derived for this type of analysis, and this could be suggested as a topic for
further research.

3-10-3 Floating platform motion

The motion of a floating platform is similar to ship motion. Although accurate models
describing ship motion dynamics are widely available, developing a highly accurate model of
the floating platform is outside the scope of this thesis. A simple model is therefore developed
to allow for testing of the state estimation algorithms and control laws developed. Note that
the most important aspect to be modeled is the fact that a floating platform is a moving
target with vertical oscillatory behavior.

A common model of the vertical motion of a floating platform in high seas is given by (Marconi,
Isidori, & Serrani, 2002) and (Herisse, Hamel, Mahony, & Russotto, 2012)

zplat(t) =
n
∑

i=1

Ai cos (2π/Ti · t+ φi) (3-55)

where Ai, Ti and φi are unknown constants. As the platform is anchored, it is assumed that
it has no motion in the x and y directions. An example is shown in Figure 3-4.

3-11 Modeling uncertainties

No system can be described mathematically with absolute certainty. In this section, different
uncertainties are modeled in order to allow for evaluation of the control laws in the case of
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z p
la
t
[m

]

time [sec]

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Figure 3-4: Example of the vertical motion of a floating platform

model mismatches. Each uncertainty is introduced via a multiplicative term ε, meaning that
no uncertainty exists when ε = 1. As an example, if a parameter is modeled with a deviation
of 25% from its real value, it follows that ε = 1.25.

3-11-1 Mass and inertia uncertainties

The real mass m of the quadrotor is different from the modeled mass m0 by a multiplicative
term. This relation is expressed mathematically by

m = m0ε (3-56)

Similarly, the real inertia properties of the quadrotor, present in the matrix J , differ from
those modeled, J0, by an multiplicative term. This relation is given by

J = J0ε (3-57)

3-11-2 Actuator uncertainties

One of the greatest difficulties in quadrotor modeling is to accurately describe the complex
process in the motor/rotor that generates the aerodynamic forces and moments. The cor-
responding model uncertainties are simulated by introducing inaccuracies in the actuator
parameters using the formulas

km = km0ε (3-58)

and

τ = τ0ε (3-59)

The first corresponds to an uncertainty in the motor torque constant, and the second to an
uncertainty in the motor time constant.
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3-11-3 Rotor gyro effect uncertainty

The gyro effect produces extra moments in all three axes as a function of the residual rotational
rate of the motors. However, since these torques are not measured, nor are the rotors’
speeds, it is interesting to analyze the system’s response to increased gyro effect torques. The
uncertainty model is given as

Mge =Mge0
ε (3-60)

Note that this model change may be introduced, for instance, when replacing the rotor blades.
Furthermore, it should be stressed that although this uncertainty corresponds to a model
mismatch, it can be seen as an external disturbance torque that must be rejected by the
controller.

3-12 Matlab/Simulink implementation

The model described in this chapter is implemented in the Matlab/Simulink environment.
The simulation tool is designed in a modular form, which allows for easy changes in different
parts. The parameters chosen are identical to those used by (Wierema, 2008) and (Berkelaar
& Oonk, 2009); however, since certain parameters of the test quadrotor used for this thesis
are known (or relatively known), adjustments were made in order to build a more realistic
model.
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Chapter 4

Moments of inertia experiment

This chapter presents a procedure to experimentally determine the moments of inertia of a
small quadrotor, using a two-axis motion simulator with predefined rotational motion and
a six-component force/torque sensor. The inertia properties of the flying vehicle were also
determined analytically using two modeling approaches: point mass analysis and assumption
of simple geometric shapes.

4-1 Introduction

Calculation of a small quadrotor’s moments of inertia is often performed using point mass
analysis, as for instance in (Altuğ, Ostrowski, & Taylor, 2005) and (Pounds et al., 2006).
The heaviest components, the motors, are modeled as point masses lying at a fixed distance
from the quadrotor’s center of mass. Alternatively, the entire structure can be seen as an
assembly of various mass components with known geometric shapes (McKerrow, 2004). The
arms can be modeled as slender rods, the motors as cylinders and the battery as a rectangular
parallelepiped. These types of strategies can be improved when using computer-aided design
(CAD) software (Pegram & Anemaat, 2000).

Using experimental methods to calculate the inertia properties of flying vehicles is not a new
concept. In fact, in 1930, Miller published a technical note offering an apparatus and pro-
cedure based on pendulum theory to accurately determine moments of inertia of an airplane
(Miller, 1930). In recent years, many researchers have proposed and tested similar experi-
mental methods or variants to calculate moments of inertia not only of flying machines, but
also of different kinds of objects with unknown mass distribution (Da Lio, Doria, & Lot, 1999;
Storozhenko, 2003; Previati et al., 2004; Genta & Delprete, 1994; Podhorodeski & Sobejko,
2005; Bussamra, Vilchez, & Santos, 2009). These studies were mostly based on pendulum
theory using multifilar or torsional pendula, and used measurements of the oscillation period
of a suspended object. While the aforementioned techniques drew upon time-domain analysis,
some frequency-domain techniques have also been implemented based on the measurements
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of frequency response functions (Lamontia, 1982; Almeida, Urgueira, & Maia, 2007; Mucchi,
Fiorati, Di Gregorio, & Dalpiaz, 2011).

In this thesis, an innovative method is developed to determine the inertia properties exper-
imentally. A two-axis motion simulator is used to generate rotational motion and a six-
component sensor is used to measure forces and torques. A detailed description of the ex-
periment is presented, including explanations of the concept, test results and data analysis.
The research carried out is innovative in the sense that it takes a different approach from the
classical methods; rather than measurements of periodic oscillation, it utilizes measurements
of forces and torques directly.

4-2 Mathematical framework

4-2-1 Mathematical formulation for experimental inertia determination

The rotational dynamic equations of motion become linear when the coupling terms are
eliminated. For example, for the yaw motion, if the body rotational rates p and q are zero,
then

Izz ṙ =Mz (4-1)

where Izz is the inertia component around the vertical axis, r is the rotational rate around
the same axis and Mz is the external torque applied. This situation is difficult to achieve
in flight, but can be created using the predefined rotation motion of an Acutronic two-axis
motion simulator (see Figure 4-1).

x

y

z

p

qr

inner axis

outer axis

Figure 4-1: Schematic representations of the quadrotor and two-axis motion simulator

By placing a force/torque sensor between the two-axis motion simulator and the quadrotor,
it is possible to measure the forces and moments applied at the body frame’s center of mass,
which result from the rotation of the table. Note that it is assumed that it is possible to align
the quadrotor’s vertical axis that passes through its center of mass with the two-axis motion
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simulator’s vertical axis. Eq. (4-1) can be generalized for all three axes and is formulated for
this experiment as

Trot = Iϑ̈ (4-2)

where Trot denotes, for convenience, the rotational component of the torque to be measured,
I is the moment of inertia of the corresponding axis and ϑ̈ is the angular acceleration of the
table (specified as input). Note that Eq. (4-2) is valid for the quadrotor’s center of mass.

All torque sensor axes can be aligned in such a way that they are parallel to the body axes.
However, it is not possible to place the sensor at the center of mass of the quadrotor. The
z-axis of the sensor can be aligned with the z-axis of the body frame, but the same does not
hold for x and y. These two sensor axes are at a certain distance from the x and y axes of the
quadrotor. As represented in Figure 4-2, the sensor will thus measure a torque, Tdisp, due to
a vehicle weight component when the angle of rotation of the outer axis of the table (that is,
the horizontal axis) is non-zero. It follows that

Tdisp = d · (W +Wplate) sinϑ = d ·WT sinϑ (4-3)

where d is the distance from the sensor axes to body axes (distance to center of mass) and
WT =W +Wplate is the sum of the weights of the vehicle and the top mounting plate.

x

z

quadrotor

sensor

top plate

ϑ

WT

WT sinϑ

CM
d

Fmeas

Figure 4-2: Measured torque due to weight component in the horizontal direction of the sensor

Note that WT sinϑ can be obtained experimentally, Fmeas, since the sensor used can measure
forces in all three axes. The only unknown parameter is d. The total torque measured for
this case is then given by

Tmeas = Trot + Tdisp = Iϑ̈+ d · Fmeas (4-4)

Estimations of the quadrotor’s moments of inertia can then be obtained as follows:

• For the z-axis (Izz):

Iest =
Tmeas

ϑ̈
, for ϑ̈ 6= 0 (4-5)
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• For the x-axis (Ixx) and y-axis (Iyy):

Iest =
Tmeas − dest · Fmeas

ϑ̈
, for ϑ̈ 6= 0 (4-6)

These two equations summarize this paper, as they provide the basic concept for estimation
of the quadrotor’s moments of inertia Ixx, Iyy and Izz. Fmeas and Tmeas are measured forces
and torques, ϑ̈ is the known angular acceleration of the two-axis motion simulator and dest is
the to-be-estimated vertical distance between the sensor and the quadrotor’s center of mass.

4-2-2 Mathematical formulation for theoretical moment of inertia analysis

The moment of inertia of a body about an axis of rotation is defined by the following
equation(Török, 2000):

I =

∫

M

r2dM (4-7)

The elements of mass, dM , are located at a certain distance r from the axis of rotation, and
integration is performed over the entire mass of the body, M . For a body that can be broken
down into an assemblage of n bodies (parts), the total moment of inertia can be determined
by summing the inertia contributions of each part:

I =
n
∑

k=1

Ik (4-8)

There are multiple resources available which give the mass moments of inertia of simple body
shapes about their own centroid axes, I. To determine the inertia about the body axes, the
parallel axis theorem must be used as follows

Ik = Ik +Mkd
2
k (4-9)

where dk is the perpendicular distance from the centroidal axis of the part to the body rotation
axis.

Combining Eqs. (4-8) and (4-9) leads to:

I =

n
∑

k=1

(

Ik +Mkd
2
k

)

(4-10)

Assuming point masses

The heaviest parts of the quadrotor are the motors. With this method, the helicopter is
modeled as four point masses with massMmotor. The body frame’s center of mass is therefore
at the center of the four point masses, at the height corresponding to the middle point of the
motors. A point mass has no inertia around its center of mass. Thus, as each of the motors
is at a distance larm from the quadrotor’s center of mass, the inertia properties are given by

Ixx = Iyy = 2
(

Mmotor · l2arm
)

, Izz = 4
(

Mmotor · l2arm
)

(4-11)
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Assuming geometric shapes

Alternatively, the quadrotor can be seen as an assembly of three main groups of components,
namely: motors, arms and the core, which contains the autopilot board, sensors, cables and
other hardware. Note that the battery is excluded in this configuration. All components
can be modeled as simple geometric shapes with known inertia (Meriem & Kraige, 1998), as
shown in the schematic representation in Figure 4-1.

• The four motors are modeled as cylinders with mass Mcyl, radius rcyl and length lcyl.
The moments of inertia at the center of mass of each of these components are then given
as

Ic,c.a. =
1

2
Mcyl · l2cyl , Ic,c.d. =

1

4
Mcyl · r2cyl +

1

12
Mcyl · l2cyl (4-12)

respectively about the central axis and central diameter.

• The two arms are modeled as slender rods, each with mass Mrod and length lrod. The
moments of inertia at their centers of mass are then given by

Ir =
1

12
Mrod · l2rod (4-13)

about the axis that passes through the center, perpendicular to the length. The inertia
about the length axis is negligible.

• The core is modeled as a parallelepiped with mass Mcore, dimensions acore, bcore (for
the base) and hcore (height). The moments of inertia at the center of mass are then
given by

Ip =
1

12
Mcore

(

a2core + b2core
)

(4-14)

about the vertical axis. For the other axes, the same formula is used, but with different
length parameters.

The quadrotor’s center of mass is calculated assuming a geometric configuration. Due to the
body symmetry, xCM and yCM are at the center point of the body frame, while zCM is given
by

zCM =
4zcm,cyl ·Mcyl + 2zcm,rod ·Mrod + zcm,core ·Mcore

4Mcyl + 2Mrod +Mcore
(4-15)

With the estimation of the distance from each component’s center of mass to the center of
mass of the entire structure, Eq. (4-10) can be used to determine the quadrotor’s moments
of inertia.

The quadrotor parameters to perform the above calculations are given in Appendix A.

4-3 Materials and equipment

The materials and equipment used for this experiment are listed below:

• AC2266L two-axis motion simulator from Acutronic
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• ATI Force/Torque sensor: NANO 17

• Data acquisition device and connecting cables

• PCMCIA card

• Data storage device

• Top mounting metallic plate

• Bottom mounting metallic plate

• M2 bolts for mounting plates

• Bolts and blocks for clamping

4-4 Experiment measurement procedure

4-4-1 Mounting

The mounting procedure is explained in this section. First, the force/torque sensor is screwed
to the top and bottom plates. Then, the bottom plate is clamped to the surface of the two-
axis motion simulator. To conclude the mounting procedure, the quadrotor is screwed to the
top plate. Figure 4-3 illustrates the mounted setup of all components. Note that different
types of screws are used depending on their functionality (either countersunk or cheese head,
as illustrated).

Buo

two-axis motion simulator

quadrotor

top plate

bottom plate

clamping

mechanism

sensor

cheese head

countersunk

Figure 4-3: Scheme of mounting procedure

To obtain more reliable results, it is necessary to attempt full alignment of the z-axis of
the quadrotor with the inner (vertical) axis of the two-axis motion simulator and y-axis (or
x-axis) of the quadrotor with the outer (horizontal) axis of the two-axis motion simulator.
Furthermore, the body axes of the quadrotor must be parallel to the axes of the sensor. This
can be achieved by designing the holes in the top mounting plate in such a way that a perfect
match is obtained. Note also that since the two-axis motion simulator will rotate during the
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Figure 4-4: Quadrotor mounted on the turn table ready for testing

experiment, the sensor cable must be safely positioned within the mounting setup. The real
setup ready for testing is shown in Figure 4-4.

The sensor is connected to the data acquisition device, which sends data to a laptop through
a PCMCIA card. All logs are saved for post-data treatment as text files in the format of
comma-separated values.

4-4-2 Determining sensor properties

Measurements are performed while the system is not in motion. This allows sensor properties
such as biases and noise characteristics to be studied. Furthermore, it is possible to observe
whether the sensor has a drift; that is, a small change of the biases over a certain period
of time. The sensor has a resolution of 1/32 N mm for torques and 1/160 N for forces and
samples were obtained at a frequency of 1000 Hz. From Figure 4-5 it can be determined that
the sensor exhibits non-zero biases for all three directions. In addition, the measurements
resemble white noise signals. Table 4-1 presents mean values (biases) as well as standard
deviations of these signals. A drift in the biases is evident between the beginning and end of
the experiment (a duration of a few hours). This implies that the biases must be estimated
separately for each run.

4-4-3 Experiment runs

After mounting all components and testing the system with no motion, the experiment can
be run. The procedure is as follows.

• Measure torques in the z-axis. Input signals are first given for the inner axis of the
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Figure 4-5: Sensor measurements with no motion at the beginning of the experiment

Table 4-1: Biases and standard deviations of the measured signals when turn table has no motion;
‘beginning’ and ‘end’ indicate values from before and after the experiment was run

Mean (in N mm) Mean (in N)
Tx Ty Tz Fx Fy Fz

beginning -17.9243 23.1063 4.4001 -2.1093 -1.0748 -5.3857
end -18.5475 25.2510 6.5631 -1.9805 -1.1425 -5.4136

Std (in N mm) Std (in N)
Tx Ty Tz Fx Fy Fz

beginning 0.0033 0.0035 0.0005 2.14 · 10−5 2.36 · 10−5 5.85 · 10−5

end 0.0045 0.0071 0.0008 6.01 · 10−5 2.80 · 10−5 8.88 · 10−5

two-axis motion simulator, leading to a rotation over its vertical direction with a known
sinusoidal angular velocity.

• Measure torques in the y-axis. Input signals are then given for the outer axis of the
two-axis motion simulator, leading to a rotation over its horizontal direction with a
known sinusoidal angular velocity. A possible misalignment between the outer axis of
the motion simulator and the y-axis of the quadrotor (and consequently of the sensor
as well) results in a measured sinusoidal component on the x-axis. Therefore, it is
necessary to rotate the two-axis motion simulator over its vertical axis by small angle
increments and repeat the measurements until the sinusoidal component on the x-axis
has vanished and only noise is measured. Forces in the x-direction are also measured
for center of mass correction.

• Measure torques in the x-axis. Since the best alignment is encountered in the previous
step, it is only necessary to rotate the two-axis motion simulator 90 degrees over its
inner axis and perform measurements for the x-axis. Forces in the y-direction are also
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measured for center of mass correction.

• Remove quadrotor to measure moments of inertia of the top plate. The moments of
inertia measured in the previous runs include the inertia of the top mounting plate.
The testing procedure is then repeated, after removing the quadrotor. The experiment
is performed for both the vertical and horizontal axes. Note that since the plate is
circular, the inertia for x and y will be identical.

It is important to emphasize that data is only logged once the rotation is steady, which means
that no data is acquired while the two-axis motion simulator is not stable on the final desired
sinusoidal angular velocity profile.

4-4-4 Test signals

The rotation angle of the two-axis motion simulator is defined as

ϑ = ϑmax sin (2πf · t+ θ0) (4-16)

where ϑmax and f are the input parameters of the Acutronic two-axis motion simulator.
Taking the derivative of Eq. (4-16) with respect to time yields

ϑ̇ = ϑmax2πf cos (2πf · t+ θ0) (4-17)

and taking the second derivative

ϑ̈ = −ϑmax (2πf)2 sin (2πf · t+ θ0) (4-18)

From the previous equations, it is necessary to determine which combinations of ϑmax and f
will be suitable for the experiment. The maximum torque expected to be measured will be

|T |maxexpected = |ϑ̈|maxIub + dub ·WT | sinϑ|max (4-19)

where Iub and dub are the upper bounds of the moment of inertia along the desired axis and
distance to center of mass, respectively. These quantities can be predicted mathematically.
Note that for z-axis measurements, the last term of Eq. (4-19) does not appear. For sinusoidal
signals, the modulus becomes irrelevant since the maximum absolute values will be the same
for the positive and negative sides. Furthermore, the torque sensor has a maximum value
that it is capable of measuring, Tmaxsensor. Therefore, to avoid saturation or even damage to
the sensor, the parameters are chosen according to the criterion

Tmaxexpected
Tmaxsensor

=
ϑmax (2πf)

2 Iub + dub ·WT sinϑmax
Tmaxsensor

≤ fs (4-20)

for x-axis and y-axis measurements and

Tmaxexpected
Tmaxsensor

=
ϑmax (2πf)

2 Iub
Tmaxsensor

≤ fs (4-21)

for z-axis measurements. For these criteria, fs is a safety factor that corresponds to a safe
design ratio between maximum expected torque and maximum torque that can be measured
by the sensor. fs must be smaller than one. No saturation is expected in the measurements
of the force components since these measurements will correspond to fractions of the vehicle’s
weight along with that of the top plate. Following are the test signals selected.
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• Measurements for Z-axis

– Run 1: ϑmax = 45deg, f = 0.6Hz

– Run 2: ϑmax = 45deg, f = 0.5Hz

– Run 3: ϑmax = 30deg, f = 0.6Hz

• Measurements for Y-axis (and X-axis)

– Run 1: ϑmax = 30deg, f = 0.6Hz

– Run 2: ϑmax = 15deg, f = 0.9Hz

4-5 Data collection and analysis

4-5-1 Observations

The data collected is presented in this section in Figures 4-6, 4-7 and 4-8. Long runs of one
minute each were taken, but only five-second samples are shown.

The force and torque measurements used to calculate inertia of the top mounting plate pre-
sented sinusoidal signals with very low amplitude, even when the two-axis motion simulator
was excited with large values of maximum angle and frequency. This indicated that the plate’s
inertia was small. The calculations were performed and moments of inertia in the magnitude
of 10−6 were obtained. As will be shown later, these values have a negligible influence on the
previous measurements.

The data collected was analyzed in order to determine the moments of inertia. To eliminate
noise and other unwanted contents present in the measurements, signals were first filtered.
Subsequently, the necessary calculations were performed.

4-5-2 Filtering

From the observation of the plots shown, it is clear that unwanted effects such as motion-
induced vibrations and aeroelastic modes are perturbing the measurements. These effects
manifest as high-frequency contents that are added to the signals. All signals of interest
obtained during the course of the experiment should have a pure sinusoidal behavior and are
expressed mathematically as

F (p) = F (A, β0, µ) = A sin(2πf · t+ β0) + µ (4-22)

where the amplitude A, initial phase β0 and bias µ are the unknown parameters, grouped in
a vector p. Note that the frequency f is known since it is an input parameter of the two-axis
motion simulator. For each signal, the objective is to find the optimum set of parameters, p∗,
that minimizes the difference between the modeled and measured signals. This problem can
be formulated as an optimization problem

min
p

||F (p)− Fmeas||22 = min
p

||e(p)||22 = min
p

N
∑

i=1

e2i (p) (4-23)
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Figure 4-6: Measurements for the z-axis; rotation over the inner axis of the two-axis motion
simulator

Vision-based automatic landing of a quadrotor UAV on a floating platform A.S. Mendes



56 Moments of inertia experiment

 

 

z

y

x

time [sec]

F
[N

]
T

[N
m
m
]

Run 2

F
[N

]
T

[N
m
m
]

Run 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

−5

0

5

−100

0

100

200

−10

−5

0

5

−100

0

100

200

Figure 4-7: Measurements for the y-axis; rotation over the outer axis of the two-axis motion
simulator
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Figure 4-8: Measurements for the x-axis; rotation over the outer axis of the two-axis motion
simulator
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subjected to the following inequality constraints

A > 0

−π < β0 ≤ π
(4-24)

To obtain the optimum solution to this nonlinear least squares problem, the Matlab toolbox
‘Curve Fitting Tool’ was used in which a Trust-region algorithm was selected. All optimiza-
tion procedures converged and rendered optimal solutions with root-mean-square error in the
expected order of magnitude. In other words, the residual, e(p∗), contained only the un-
wanted high-frequency oscillations and noise. Plots of filtered measurements are presented in
Figures 4-9, 4-10 and 4-11.
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Figure 4-9: Filtered data versus non-filtered data for measurements in the z-axis

4-5-3 Determining height of the center of mass

Recall Eq. (4-15), from which a theoretical value of 0.021 m for the height of the center of
mass, zCM , was obtained. This parameter can be determined by calculating the moments of
inertia for the x- and y-axis for different values of d. Note that for these two axes, Eq. (4-6)
is used and can be rewritten as

Iest =
Trot + drealWT sinϑ− destWT sinϑ

ϑ̈
+ ε , ϑ̈ 6= 0 (4-25)

where the subscript est indicates estimate and real stands for the real value, and ε corresponds
to a very small estimation error. Eq (4-25) can be rearranged as follows:

Iest = Ireal + (dreal − dest)
WT sinϑ

ϑ̈
+ ε , ϑ̈ 6= 0 (4-26)

It becomes clear that if dest 6= dreal then the second term of the right hand side of this
equation will not disappear and the moment of inertia estimation will depend wrongly on the
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Figure 4-10: Filtered data versus non-filtered data for measurements in the y-axis
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Figure 4-11: Filtered data versus non-filtered data for measurements in the x-axis
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Table 4-2: Calculation of the moments of inertia for different values of d. The test signals
parameters are as follows. Run 1: ϑmax = 30deg, f = 0.6Hz. Run 2: ϑmax = 15deg, f =
0.9Hz

Ixx (in Kg ·m2) Iyy (in Kg ·m2)
Run Run

1 2 1 2

d = 0.021m 0.0060 0.0056 0.0062 0.0058
d = 0.022m 0.0055 0.0053 0.0057 0.0055
d = 0.023m 0.0050 0.0051 0.0052 0.0052
d = 0.024m 0.0045 0.0048 0.0047 0.0049
d = 0.025m 0.0040 0.0045 0.0042 0.0046

Table 4-3: Comparison of experimental with theoretical results

Ixx (in Kg ·m2) Iyy (in Kg ·m2) Izz (in Kg ·m2)
Run Run Run

1 2 1 2 1 2 3

Experimental 0.0050 0.0051 0.0052 0.0052 0.0096 0.0096 0.0096

Geometrical shapes 0.0050 0.0050 0.0095
Point masses 0.0036 0.0036 0.0071

two-axis motion simulator’s input parameters. Since the thickness of the top mounting plate
is known (hplate = 2 mm), it follows that zCM = d − hplate. Table 4-2 presents the inertia
obtained for different values of d (in increments of 1 mm). The results are most consistent
for d = 0.023 m and consequently zCM = 0.021 m, which is in accordance with the value
obtained theoretically.

Alternatively, the calculation of zCM could have been performed independently by measuring
forces and torques for when the two-axis motion simulator is not in motion, but has a certain
angle about its horizontal axis. The sensor was no longer available after the experiment, so
it was not possible to perform such measurements. Nevertheless, the method used rendered
highly accurate results.

4-5-4 Experiment results and discussion

The results of the moments inertia calculations are presented in Table 4-3 for each experiment
run. For comparison, the theoretical predictions are presented as well for both the point
masses assumption and the geometric shapes assumption.

It is clear that when only the motors are assumed as point masses, the inertia will be under-
estimated as part of the mass of the quadrotor is not taken into account. Upon analyzing the
results of the other two methods it becomes clear that the theoretical results are in accordance
with the experimental values. This indicates that the experimental method proposed is valid
for determining moments of inertia.

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



4-6 Final remarks 61

4-6 Final remarks

The experimental method proposed in this chapter is more expensive and time-consuming
than a more mathematical and theoretical approach, where only a scale and a ruler are
needed. In this study, the same results are also obtained. Nevertheless, the results presented
serve as empirical proof that the concept of the experiment conducted is valid and can be
applied to multiple platforms where the analytical method is not feasible; for example, when
it is not possible to disassemble the system, or when the shapes of the objects are not entirely
known or do not have known inertia formulas. Moreover, this experimental method is useful
when extremely precise knowledge of the inertia properties is required.

The quadrotor’s moments of inertia were also calculated using the commonly used point mass
analysis, in which the vehicle was modeled as four point masses (corresponding to the four
motors) lying at a certain distance from the body’s center of mass. Such calculations lead
to erroneous inertia estimation (deviation of 20-30% from the real value) thus resulting in a
significant model mismatch.

Further details were considered in order to enhance the accuracy of the results. However,
they were considered irrelevant. For example, for measured torques with and without the
quadrotor, the mean values without motion were different, indicating that the center of mass
is not exactly located in the center of the vehicle. The order of magnitude of the observed
difference was around 10 N mm, which leads to a shift of the center of mass of about 1 mm.
Such correction has a negligible influence on the final results, meaning that the axes alignment
assumption made previously was valid.

The errors resulting from the analytical calculations are due to the assumptions of simpli-
fied geometry of the quadrotor’s components. From the experimental side, the error sources
include noise and biases of the sensor, misalignments between motion simulator, sensor and
quadrotor axes, vibrations and aeroelastic modes. It should be noted that accurate measure-
ments were nonetheless obtained, and these sources of error did not hinder the final results.
In fact, with the proposed filtering procedure, the influence of these effects was minimized
using a mathematical optimal approach based on physical knowledge.

To conclude, the results are summarized in Table 4-4. The experimental results were averaged
in order to obtain the final values of the moments of inertia.

Table 4-4: Summary of the results

Ixx (in Kg ·m2) Iyy (in Kg ·m2) Izz (in Kg ·m2) zCM (in m)

theoretical 0.0050 0.0050 0.0095 0.021
experimental 0.0050 0.0052 0.0096 0.021
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Chapter 5

Vision System

An on-board downward-looking single camera is used in this project as a means to deter-
mine position of the quadrotor relative to a target with known characteristics. This chapter
presents an overview of the vision-based tracking algorithm developed for autonomous flight.
The vision system proposed in this thesis computes 3D position measurements from images
captured by a camera.

5-1 Tracking algorithm

5-1-1 Characteristics of the target

The characteristics of a target can be multiple and varied. The design of the geometry and
other features of the target should take into account the fact that such characteristics will
influence the choice of the image processing algorithms. For this project, different options
have been considered. The target can be composed of either one or several solid shapes, and
for each of those shapes the following three characteristics must be selected:

• Geometric shape. Simple shapes such as circles or squares are preferred, as they possess
known properties that can be used by the visual odometer.

• Dimensions. On the one hand, it is clear that the target must be small enough to appear
completely in the image when the quadrotor is in the vicinity of the landing platform;
on the other hand, if the target is too small, it will not fill enough pixels in the image
at higher altitudes, resulting in less robust measurements.

• Color. A color that does not exist abundantly in nature is preferable. Specifically for
application at sea, red is a reasonable choice. Furthermore, if a Red Green Blue (RGB)
color mode is used, it is possible to evaluate the intensity of the first component in
comparison to the other two to determine if a particular pixel has the desired color.

Vision-based automatic landing of a quadrotor UAV on a floating platform A.S. Mendes



64 Vision System

5-1-2 Image processing

From the aforementioned target characteristics it is clear that the target will be composed
of one or more red blobs. The image processing algorithm to detect these blobs and extract
their properties is therefore designed accordingly. During the development phase, the design is
performed off-line using the ‘Image Processing’ toolbox from Matlab. Afterward, the system
is implemented on board for real-time applications. The steps used for this algorithm are
listed below.

1. Red pixels search

2. Conversion to a binary image

3. Extraction of blob properties

Red pixels search

The detection of the blob can be performed by scanning all pixels from a grabbed image.
When using the RGB color mode, every pixel is described as a vector with three parameters
(R - red,G - green,B - blue), each assuming a value ranging from 0 to 255. Pure red exists
when the values of the pixels are [R,G,B]=[255,0,0], but finding such a combination cannot be
expected in real applications. A certain tolerance should be added and red-like combinations
should be accepted. Several methods are thus possible for determining whether or not a pixel
is accepted as red. Among other options, the ‘red condition’ can be selected as follows:

• Condition 1: D =
√

(R− 255)2 + (G− 0)2 + (B − 0)2 < threshold1

• Condition 2: R > threshold2 ·G & R > threshold2 ·B

• Condition 3: R > threshold3 · (G+B)

Similar results were obtained for all approaches tested during the off-line design process,
and it became evident that the most important factor was a proper choice of the threshold,
regardless of the method.

Alternative techniques can also be applied, including using a Hue Saturation Lightness (HSL)
or Hue Saturation Value (HSV) color mode scheme, fuzzy logic image segmentation, etc.

Conversion to a binary image

A value of one is attributed to all pixels for which the ‘red condition’ is satisfied; otherwise,
a value of zero is given. With this technique, a binary image can be constructed. A blob
is then defined as the solid shape formed by clustering all adjacent black pixels. For clarity,
Figure 5-1 presents the result of the image processing algorithm up to this step.
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W

Figure 5-1: Image grabbed by the camera (left) and corresponding output after searching for red
pixels and converting to a binary image (right). These images were obtained during design phase.
For the binary image, condition 2 was used and the threshold parameter was not optimized.

Extraction of blob properties

The next step consists of extracting information from the binary image obtained. First, it
is important to be aware that multiple blobs can be expected. In Figure 5-1, the threshold
from the ‘red condition’ was purposely selected as not optimal in order to show that false
blobs that do not correspond to the target might appear. An integrity monitor, explained in
Section 5-3, is employed to filter such blobs and avoid erroneous measurements (among other
functions).

Given that the correct blobs are detected, the extraction of properties is then performed.
For each blob, the following parameters can be obtained: area, perimeter, minimum and
maximum in the horizontal and vertical direction and centroid. Note that in this step all
properties are given in pixels (or pixels squared).

5-1-3 Computation of relative position

The known equations for projection of a target in the camera frame are given by

xproj = f
x

z

yproj = f
y

z

(5-1)

Note, however, that to be usable by the vision system with desirable units, these equations
must be adapted to the image coordinate frame as

xp =
sxf

z
x+ xo

yp =
syf

z
y + yo

(5-2)

where sx and sy are scaling factors that take into account pixel size, and xo and yo represent
the origin of the image frame coordinate system. This origin is selected as the center point
of the image frame, corresponding to half of the camera frame length in each direction.
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Range finding

The first parameter to be estimated is the distance between the camera and the target. It is
assumed that all points of the target’s solid shapes are at the same distance from the camera.
If the real distance between two points of the target is known, z can be estimated as follows:

xp2 − xp1 =
sxf

z
x2 + xo −

(

sxf

z
x1 + xo

)

=
sxf

z
(x2 − x1)

(5-3)

In these equations z must be positive, as the camera will always be above the target. There-
fore, by taking the modulus

|xp2 − xp1| =
sxf

z
|x2 − x1| (5-4)

the equation can be rearranged to obtain

z =
sxf |x2 − x1|
|xp2 − xp1|

(5-5)

where |x2 − x1| is a known real distance characteristic of the target and |xp2 − xp1| is the
corresponding distance in the projected image along the x-direction. The same derivation
holds for the y-direction.

If the real distance known appears in the projection image with components in both the x-
and y-directions, the projected length would be expressed by

dp =

√

(

xp2 − xp1
)2

+
(

yp2 − yp1
)2

(5-6)

and given that the scaling factors, defined as sc, are equal for x and y, it follows that

z =
scfdreal
dp

(5-7)

where dreal is the real distance. Note that for this case, the orientation of the image must be
known. For example, if a square is used with known diagonal length, the image processing
algorithm must find the points in the image corresponding to the opposite corners of the
square.

Horizontal position

Once the height is calculated, the lateral position can be computed from Eqs. (5-2) as follows

x =
z (xp − xo)

scf

y =
z (yp − yo)

scf

(5-8)

where xp and yp are the image frame coordinates of the target’s center. It should be noted
that these coordinates are in the body-fixed reference frame.
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5-2 Algorithm selection for real-time implementation

From the generic algorithm sketched in the previous section, a more specific implementation
is chosen for real-time testing. It was observed that the time delays due to image acquisition
and processing were quite large. Therefore, the algorithm was selected based on the fact that
the position measurement update rate should be as high as possible.

A single red circle with diameter of 10 cm was chosen as the target. This length parameter
was consistent with the desired starting height for testing as will be seen in Section 5-5. Note
that the image projection of the circle will always be the same, independent of the camera’s
orientation (provided that the image frame is parallel to the target). This feature facilitates
the extraction of the circle’s diameter under projection that can be compared to the real
known diameter as follows

diameter = 2

√

Area

π
(5-9)

or simply
diameter = max(blobx)−min(blobx) (5-10)

where blobx is the representation of the blob in the x-direction. The same can be applied in
any other direction.

The center of the target is then given by

targetcenter = (min(blob) +max(blob)) /2 (5-11)

It should be pointed out that by using only one solid shape in the target, measurement accu-
racy and robustness will suffer. The selection of the tracking algorithm is then a compromise
between accuracy/robustness and speed; in general, a more complex algorithm results in more
accurate and robust measurements, but with larger time delays.

5-3 Integrity monitor

The blobs detected in an image frame are not always reliable for position calculations. An
integrity monitor is therefore developed to avoid erroneous measurements as follows:

• The area of the largest blob should be larger than a certain threshold thA. This avoids
misidentification of a blob that does not correspond to the red circle.

• A roundness score of the blob is computed as (Berkelaar & Oonk, 2009)

Roundness score = |perimeter
2π

− diameter

2
| (5-12)

To consider the blob reliable, this score should be below a threshold thR.

If one of the two tests fails, then no measurement is available. Otherwise, position measure-
ment calculations are performed. For every two consecutive samples, finite differences are
computed. If the absolute value of the calculated speed is higher than the maximum speed at
which the airframe can fly, then no measurement is available; if it is lower, then the a relative
position measurement is obtained. Figure 5-2 clarifies the integrity monitor.
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Figure 5-2: Integrity monitor scheme

5-4 Attitude compensation

Tracking the quadrotor’s translational motion with respect to the target is essential for achiev-
ing autonomous stable position control. However, tracking helicopter translation alone is
complicated since image displacements also occur with helicopter rotation. As the camera
is fixed to the rotorcraft, it will rotate with the body-fixed reference frame. It is therefore
extremely difficult to distinguish between rotation and translation of the vehicle when merely
analyzing a sequence of images under perspective projection. Rolling motion will appear very
similar to sideways translation, and pitching motion to forward/backward movements. The
aforementioned effects of rotation must be eliminated from the measured image displacements
in order to determine the rotorcraft’s position with respect to the target. This can be achieved
by accurately measuring the attitude of the helicopter (and consequently of the camera as
well) and performing the necessary corrections. This compensation is only valid provided
that the attitude data is precisely synchronized with the camera information (Amidi, 1996).

First, since the camera-fixed reference frame has its own orientation (φcam, θcam, ψcam) with
respect to the body-fixed reference frame, a rotation between these two frames is necessary.
This rotation is described by the rotation matrix RCB(φcam, θcam, ψcam) . Then, the rotation
from the body-fixed reference frame to the inertial NED reference frame can be obtained with
the attitude of the quadrotor (φ, θ, ψ). This rotation is described by RBN (φ, θ, ψ) . The two
rotation matrices are obtained as explained in Section 3-3, and the full rotation from camera
to inertial frame is performed as follows:

RCN = RBN ·RCB (5-13)
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Figure 5-3: Caspa VL from Gumstix

5-5 Real-time implementation

5-5-1 Overview of the camera properties

The camera used in this project is a CASPA VL from Gumstix, for which the main features
are listed below:

• 1/3-Inch wide-VGA CMOS digital image sensor

• Active pixels: 752 horizontal × 640 vertical

• Pixel size: 6.0µm × 6.0µm

• Frame rate: 60 fps at full resolution

• 3.6mm fixed focal length lens with IR cut filter (receives only visible spectrum light)

This camera requires a Gumstix OVERO COM for computation, and connection to the
OVERO board is possible with an 80mm 27-pin flex ribbon cable. The camera is mounted in
a downwards-facing position on the quadrotor’s frame.

5-5-2 Validation with real camera data

To test whether the vision system is working properly, a validation procedure is required. For
this purpose, the vision measuring system output data was logged and compared to expected
values (note that the experiments were carried out in a laboratory, where conditions are
known).

Motionless tests

For each height above the target, two measurements were performed with lateral displacement.

From Table 5-1, it is clear that this size of target (circle with 10 cm of diameter) is suitable
for when the camera is in the near vicinity of the target (less than 1 m). At a height of
approximately 2 m, the measurements are off by several centimeters. This could easily be
corrected by using a larger circle for the target.
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Table 5-1: No motion tests for camera validation

Vision measurements (in cm)
Test 1 Test 2 Test 3

horiz. vertical horiz. vertical horiz. vertical
∆x 1st 2nd ∆y 1st 2nd ∆x 1st 2nd

measured 10.34 28.70 31.58 21.99 81.47 81.72 140.30 261.66 284.38
expected 11 30 20 82 100 200

Note that the measurements for heights of 30 and 82 centimeters were still not perfect. This
is not only caused by indoor light conditions that affect the colors seen by the camera, but
also due to the fact that the camera’s vertical axis is not perfectly aligned with the inertial
vertical direction.

In-flight tests

To conclude these tests, the system was validated in flight with manual control. The maneu-
ver performed resembles a situation that might occur in an autonomous landing procedure.
Starting in a grounded position directly on top of the target, the helicopter first climbs to 1
m and navigates around the target for a few seconds. During this stage, the pilot purposely
loses the target to test the integrity monitor. The results are shown in Figure 5-4.

From an hardware/software perspective, it was not possible to synchronize vision data with
attitude information. Since the update rate of the vision system is asynchronous (i.e., mea-
surements do not have a fixed time step), finding the correct attitude for the delayed vision
measurements is quite challenging. One possible solution would be to introduce a delay in
the attitude estimation, but for that, the vision system would need to produce synchronous
measurements with a known time delay.

5-5-3 Noise properties

Determining the noise properties of this vision measuring system is a very difficult task. For
accelerometers and gyros, a fairly reasonable estimation of the noise characteristics can be
obtained by performing a statistical analysis of the IMU measurements for when the quadrotor
is motionless. This noise can be approximated to a zero-mean white noise. The same does
not hold for the camera, however; in a no-motion state with perfect external conditions, it
is expected that the output of the vision system will not vary around a specific value. The
noise thus appears from vibration of the camera due to the rotating blades and other external
conditions such as shadows.
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Figure 5-4: Vision measurements from manual test flight
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Chapter 6

State estimation

Perfect sensor measurements are an unrealistic concept in the engineering world. In fact,
measurements are contaminated by noise and biases, and in some instances may even be
unavailable. It is therefore necessary to use state estimation. For this mission, there are two
main stages to be considered in terms of state estimation; when the landing spot is visible
from the camera perspective, and when it is not. When the quadrotor is several meters
away from the landing platform, it is expected that the camera will not be able to obtain
an image of the landing spot. For this phase, the autopilot must rely on GPS measurements
to determine its position with respect to the platform (which has its own GPS coordinates).
GPS measurements, however, are not reliable in the critical phase of landing. Therefore, the
camera images must be used to determine the relative position of the camera with respect
to the platform. This chapter covers the Kalman filter state estimation algorithms for such
vision-based approach and landing. One of the main research contributions to be taken from
this study is a new approach for estimating the vertical motion of a floating platform.

6-1 Kalman filtering

6-1-1 Theory of the Kalman filter

The widely known Kalman filter was named after Rudolph Emil Kálmán, who in 1960 pub-
lished his famous paper describing a recursive solution to the discrete-data linear filtering
problem (Kalman, 1960). This filter is a tool in the form of a set of equations that provides
an efficient computational method to optimally estimate the variables of a wide range of pro-
cesses. In mathematical terms, it can be said that a Kalman filter estimates the states of a
linear system by theoretically minimizing the estimation error.

After its introduction, the Kalman filter has been subjected to extensive research. Currently,
many variations of this filter can be found, including continuous and discrete-time implemen-
tations as well as linear and nonlinear variants. The different versions of the Kalman filter
have been widely applied in many technological fields, particularly in the area of navigation.
In this thesis, this tool will be used for the quadrotor’s state estimation and sensor integration.
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6-1-2 The discrete Kalman filter

Consider the general linear, time-varying state-variable model given by

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t), x(t0) = x0 (6-1)

and output (measurements) model given by

z(t) = H(t)x(t) +D(t)u(t) + v(t), t = ti, i = 1, 2, ... (6-2)

where the variables are defined as

x(t) State vector (dimension n)
x0 Initial condition of the state
u(t) Control input vector (dimension l)
w(t) System/process noise vector (dimension m)
z(t) Measurement vector (dimension p)
v(t) Measurement noise vector (dimension p)
F (t) System matrix (dimension n× n)
B(t) Input matrix (dimension n× l)
G(t) System/process noise matrix (dimension n×m)
H(t) Observation matrix (dimension p× n)
D(t) Feedforward matrix (dimension p× l)

Note that w(t) is a continuous-time white noise process and v(ti) is a discrete-time white
noise sequence (the sensors’ output is discrete). Furthermore, w(t) and v(ti) are mutually
uncorrelated for all t = ti, i = 1, 2, .... Therefore, the following holds:

E{w(t)} = 0

E{w(t)wT (τ)} = Q(t)δ(t− τ)
(6-3)

E{v(ti)} = 0

E{v(ti)vT (tj)} = R(ti)δij
(6-4)

E{w(t)vT (ti)} = 0, for t = ti, i = 1, 2, ... (6-5)

where Q(t) and R(ti) are the system and measurement noise covariance matrices, respectively.
The symbol δ(·) denotes the Dirac delta function and the symbol δij denotes the Kronecker
delta function.

After discretization of the linear system given by Eqs. (6-1) and (6-2), one obtains the discrete-
time model given by

x(k + 1) = Φ(k)x(k) + Ψ(k)u(k) + wd(k) (6-6)

and

z(k + 1) = H(k + 1)x(k + 1) +D(k + 1)u(k + 1) + v(k + 1) (6-7)

where
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Φ(k) System transition matrix (dimension n× n)
Ψ(k) Input distribution matrix (dimension n× l)

Similar to the continuous-time case, the system and measurement noises have the following
characteristics:

E{wd(i)} = 0

E{wd(i)wTd (j)} = Qd(i)δ(kj)
(6-8)

E{v(i)} = 0

E{v(i)vT (j)} = R(i)δij
(6-9)

E{wd(i)vT (j)} = 0 (6-10)

One way of deriving the Kalman filter mathematical equations can be found in (Chu, 2009).
The formulation of the estimation problem starts by defining a mean vector x̂(k + 1|k) and
the associated error covariance matrix of the state P (k + 1|k) as follows:

x̂(k + 1|k) = E {x(k + 1)} (6-11)

P (k + 1|k) = E
{

[x(k + 1)− x̂(k + 1|k)] [x(k + 1)− x̂(k + 1|k)]T
}

(6-12)

The filter is then derived by minimizing a quadratic value function defined as:

J =
1

2
[x(k + 1)− x̂(k + 1|k)]T P−1(k + 1|k) [x(k + 1)− x̂(k + 1|k)]

+
1

2
[z(k + 1)−H(k + 1)x(k + 1)]T R−1 [z(k + 1)−H(k + 1)x(k + 1)]

(6-13)

The Kalman filter can be summarized into five standard steps for each iteration as follows.
Note that the notation k + 1|k describes a prediction estimate.

• Time Update (Prediction)

1. One step ahead state prediction (time propagation)

x̂(k + 1|k) = Φ(k)x(k|k) + Ψ(k)u(k) (6-14)

2. Prediction of the covariance matrix of the state error vector

P (k + 1|k) = Φ(k)P (k|k)ΦT (k) +Qd(k) (6-15)

• Measurement Update (Correction)

3. Computation of the Kalman gain

K(k+1) = P (k+1|k)HT (k+1)
[

H(k + 1)P (k + 1|k)HT (k + 1) +R(k + 1)
]−1

(6-16)

4. Measurement update step

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1) [z(k + 1)−H(k + 1)x̂(k + 1|k)] (6-17)

5. Update of the error covariance matrix

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k) [I −K(k + 1)H(k + 1)]T

+K(k + 1)R(k + 1)KT (k + 1)
(6-18)
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Note that the filter must be initialized by assigning values to x̂(0|0) and P (0|0). Qd, the
discrete covariance matrix of the process noise, will be discussed later.

Tuning parameters

To implement a Kalman filter, knowledge of the noise statistical information for both the
process and measurements is required. Such information is introduced in the Kalman filter
in the matrices Q and R (Chu, 2009), which should be properly tuned to improve the filter’s
performance. The measurement noise can be determined by taking offline samples from the
sensors used in order to determine the variance of the noise. This approach is valid for most
cases, but it should be stressed that for some sensors, it may not work. For instance, the noise
characteristics of the vision system developed in this thesis are very difficult to determine.
Therefore, an initial guess can be made for R, but it will most likely be necessary to change
its values after flight testing. The other tuning parameter is the matrix Q, which is the
covariance matrix related to the process noise and, as expected, is more challenging to define.
If the model is accurate, then lower values can be selected for Q. However, this scenario may
not always be realistic; higher values can be chosen for Q, thus introducing uncertainty in
the model.

Discretization issues

The Kalman filter presented is in a discrete-time form. For the cases in which the system
dynamics are represented in continuous time, continuous-to-discrete transformations are re-
quired to obtain the system transition Φ(k) and input distribution Ψ(k) matrices. These are
computed as follows:

Φ(k) = eF (tk)∆t (6-19)

Ψ(k) =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ (6-20)

Furthermore, the matrix Qd is given by (Lopes, 2011)

Qd(k) =

∫ tk+1

tk

Φ(tk+1,τ )G(τ)Q(τ)GT (τ)ΦT (tk+1, τ)dτ (6-21)

and an approximation can be obtained with the following equation

Qd(k) ≈
1

2

[

Φ(k)G(tk)Q(tk)G
T (tk)Φ

T (k) +G(tk+1)Q(tk+1)G
T (tk+1)

]

∆t (6-22)

6-1-3 Extension to nonlinear systems

The Kalman filter algorithm shown in the previous section has been designed for linear sys-
tems. However, system and measurement equations are nonlinear most of the time, particu-
larly in aerospace applications. Therefore, the Extended Kalman Filter (EKF) can be used
to estimate the state vector when nonlinearities are present. As the name indicates, the EKF
is an extension of the basic Kalman filter to nonlinear dynamical systems.
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Consider the general nonlinear state space model given by

ẋ(t) = f [x(t), u(t), t] +G [x(t), t]w(t), x(0) = x0

zn(t) = h [x(t), u(t), t]

z(tk) = zn(tk) + v(tk), k = 1, 2, ...

(6-23)

where f [·] is the nonlinear system equation and h [·] is the nonlinear observer equation that
relates the states to the measurements. It is assumed that both these functions are continuous
and continuously differentiable with respect to all elements of x and u. The noise properties
are the same as those given for the linear case.

The five standard steps from Section 6-1-2 remain, but with some additional changes such as
the linearization (based on the Taylor series expansion) of the nonlinear state and observation
equations about the nominal values of x(t) and u(t), which are denoted as x∗(t) and u∗(t),
respectively. These steps are as follows:

• Time Update (Prediction)

1. One step ahead state prediction (time propagation): for nonlinear systems this can
be performed by integration of Eq. (6-23)

x̂(k + 1|k) = x̂(k|k) +
∫ tk+1

tk

f (x(t|tk), u∗(t), t) dt (6-24)

2. Prediction of the covariance matrix of the state error vector: the calculation is exe-
cuted in the same way as for the linear Kalman filter, but first the following linearization
must be performed

Fx(tk) =
∂f (x(t), u(t), t)

∂x(t)
|x(t)=x∗(tk),u(t)=u∗(tk),t=tk (6-25)

where x∗(tk) = x̂(k|k). Subsequently, the discretization is performed to obtain the
discrete-time linearized system dynamics matrix Φ(k) and the discrete-time system
noise covariance matrix Qd. The error covariance matrix prediction is then obatined as

P (k + 1|k) = Φ(k)P (k|k)ΦT (k) +Qd(k) (6-26)

• Measurement Update (Correction)

3. Computation of the Kalman gain: a new linearization is performed, now for the
observation equation, as

Hx(k + 1) =
∂h (x(t), u(t), t)

∂x
|x(t)=x∗(tk+1),u(t)=u∗(tk+1),t=tk+1

(6-27)

where x∗(tk+1) = x̂(k + 1|k). Then, the calculation is carried out as before

K(k+1) = P (k+1|k)HT (k+1)
[

H(k + 1)P (k + 1|k)HT (k + 1) +R(k + 1)
]−1

(6-28)
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4. Measurement update step: using the nonlinear observation equation

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1) [z(k + 1)− h (x̂(k + 1|k), u∗(k + 1))] (6-29)

5. Update of the error covariance matrix: using the linearized observation equation

P (k + 1|k + 1) = [I −K(k + 1)Hx(k + 1)]P (k + 1|k) [I −K(k + 1)Hx(k + 1)]T

+K(k + 1)R(k + 1)KT (k + 1)

(6-30)

Once again, the filter must be initialized by assigning values to x̂(0|0) and P (0|0). Qd is the
discrete covariance matrix of the process noise.

The aforementioned steps are described as used in this thesis, although different versions are
also possible.

Iterated extended Kalman filter

The nonlinear Kalman filter outlined in this section can be further extended. When the
observation model presents high nonlinearities, the Iterated Extended Kalman Filter (IEKF)
can be used to improve the convergence of the EKF. In the IEKF formulation, local iterations
are used in the measurement update steps; the procedure is explained below (Chu, 2009).

The stage ahead prediction step is the same as in the EKF formulation. However, the nominal
state vector is defined as an iterator:

η
i
= x∗(k + 1) (6-31)

The idea now is to update the nominal states using the current measurement and relinearize
the system using the improved nominal states. As expected, the iterator starts with the first
state prediction and the measurement update equation becomes

η
i+1

=x̂(k + 1|k)+

K(k + 1)
{

z(k + 1)− h
[

η
i
, u∗(k + 1)

]

−Hx(k + 1)
[

x̂(k + 1|k)− η
i

]}

for i = 1, . . . , l

(6-32)

Iterations are performed until
∥

∥

∥
η
l
− η

l−1

∥

∥

∥

∥

∥

∥
η
l−1

∥

∥

∥

≤ ε (6-33)

where ε is a design threshold. The subsequent steps are the same as for the regular EKF,
but now using the last state vector obtained after l iterations. Note that when the iterator
is updated, matrices related to it must be updated as well. These matrices are the Jacobean
matrix Hx and the Kalman gain matrix. The nonlinear predicted observation function should
also be updated.

The use of this iterated algorithm brings the main advantage of improved convergence. How-
ever, due to the necessary local iterations, the computational load increases as well.
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6-1-4 Reliability tests

Verifying whether or not a Kalman filter is operating correctly is key. While in simulations
the true state values are known, the same does not hold true for real flights. Therefore, for
the former, the estimated states can be compared directly with the true states; for the latter,
however, it is more difficult to verify if the estimations are reliable due to the fact that the
real states are not available.

One way to test the Kalman filter is to perform a statistical analysis of the innovations. The
innovation ν is defined as the difference between the actual observation and the predicted
observation:

ν(k + 1) = z(k + 1)−H(k + 1)x̂(k + 1|k) (6-34)

While the Kalman filter is running, it is possible to compute the mean and covariance of
the innovation; if the innovation sequence has a zero-mean white noise characteristic with
covariance given by Eq. (6-35), then the Kalman filter is working properly (Lopes, 2011).

σν(k + 1) = H(k + 1)P (k + 1|k)HT (k + 1) +R(k + 1) (6-35)

If the innovation sequence presents a colored-noise behavior, nonzero mean value, or has an
incorrect covariance, then something is functioning improperly in the filter. The error might
be due to incorrect modeling or incorrect assumption of noise statistics.

6-2 Platform vertical motion estimation

One of the main contributions of this thesis is the design of a vertical motion estimator for an
oscillatory platform. To land a quadrotor on a floating platform, knowledge of the platform’s
motion is beneficial in the sense that such information might be helpful in the control laws.
The sea spectrum usually contains one peak for a given frequency. A common model used to
describe the vertical motion of a wave-excited floating platform is written as

zplat(t) =
n
∑

i=1

Ai cos

(

2π

Ti
· t+ φi

)

(6-36)

where Ai, Ti and φi are unknown constants. By using a sum of sinusoids, the oscillatory
motion is still obtained, but presents a more stochastic behavior in which periods of quiescence
may occur. Note that to ensure one peak in the spectrum, the different period constants Ti
must be close to one another.

A measurement of zplat can be obtained by subtracting the quadrotor’s vertical inertial motion
from the relative motion (between the rotorcraft and the floating platform). The quadrotor’s
inertial motion can be measured using GPS or altitude pressure information. Using current
GPS receivers has the problem that the measurements may be off by several meters. Altitude
pressure is then the best choice, especially when combined with inertial measurements such as
accelerometers, as explained in Section 6-3. The relative motion can be accurately determined
using the vision system explained in Chapter 5.

It should be stressed that the approach selected for obtaining a measurement of zplat may
be subjected to criticism, specifically since it may not be possible to obtain reliable altitude
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measurements from a barometric altimeter. As will be seen, the filter’s performance was very
satisfactory even when tested in the lab with real vision data and large artificial measurement
noise. However, this issue can only be properly addressed when testing the actual system in
the real sea environment. Nevertheless, sensor quality is constantly improving and if the
sensors of today are not adequate, the future will bring better measuring equipment.

The zplat measurements will be contaminated by noise. Three main options are then available
for obtaining time derivatives of such measurements: differentiation techniques, low-pass
filtering and Kalman optimal filtering. The first choice will lead to amplification of noise
while the second will introduce delay. Kalman filtering is then chosen, and the internal model
used for the prediction step is given below.

The vertical motion of a floating platform can be approximated locally by linear non-damped
oscillatory behavior, which can be described mathematically by

z̈plat = −ωplatzplat (6-37)

where ωplat is a frequency-related parameter corresponding to the location of the two imagi-
nary poles that describe the system. The solution to Eq. (6-37) is given by

zplat = Aplat sin (2π/Tplat · t+ φplat) (6-38)

which, when differentiated twice with respect to time, yields

z̈plat = −Aplat
(

2π

Tplat

)2

sin (2π/Tplat · t+ φplat) (6-39)

This means that the frequency-related parameter ωplat is obtained as a function of the main
platform’s period Tplat as

ωplat =

(

2π

Tplat

)2

(6-40)

An EKF is then formulated from the above equations.

6-2-1 Process model

The state vector is defined as:

x =
[

zplat żplat ωplat
]T

(6-41)

The process model is given by

f(x) =





żplat
−ωplatzplat

0



 G(x) =





1 0 0
0 1 0
0 0 1



 (6-42)

and the process noise is

w =
[

wzplat wżplat wωplat
]T

(6-43)

From Eq. (6-42) it follows that

Fx =





0 1 0
−ωplat 0 −zplat

0 0 0



 (6-44)
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6-2-2 Measurement model

The measurement equation is given as

h(x) = zplat (6-45)

from which it holds that
Hx =

[

1 0 0
]

(6-46)

6-2-3 Augmented Kalman filtering and observability issues

Note that the formulation proposed for this estimation procedure is an augmented form of
the regular Kalman filter since it estimates not only the system states, but also a system
parameter. For that reason, this filter is denoted an augmented Kalman filter.

One of the main issues that must be addressed when designing an observer is the observability
(see Appendix B). Specifically for this filter, determining whether or not the system parameter
ωplat is observable or not is key. To analyze this problem, a test was performed, which showed
that the observability matrix has full rank provided that sufficient excitation is given to the
buoy; i.e., if the wave amplitude is zero, then it is not possible to estimate the frequency-
related parameter. It is clear that this result will have no affect on the final results.

6-2-4 Initial condition through frequency-domain analysis

It was observed that the Kalman filter proposed for estimation of the platform’s vertical
motion performs significantly better when the frequency of the oscillatory buoy is relatively
known. In fact, in reality, the sea spectrum contains a range of frequencies. However, this
range is narrow and there is one peak for non-stormy conditions, corresponding to the fre-
quency for which the signal has the most power. A frequency analysis, using Fourier trans-
forms, can then be performed to determine such peak using a buffered time history of the
platform’s motion.

The theoretical concepts gathered for this analysis were obtained from (M. Mulder, 2007).

A Continuous-Time Fourier Transform (CTFT) of a continuous-time signal x(t) is given as

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt (6-47)

with ω defined as the circular frequency.

Let x[n] be a discrete-time sequence of x(t) such as

x[n] = x(n∆t) (6-48)

where ∆t is the sampling time.

The Discrete-Time Fourier Transform (DTFT) of x[n] is given as

X(Ω) =

∞
∑

n=−∞

x[n]e−jΩn (6-49)
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where Ω is the discrete-time frequency.

This Fourier transform is of great interest from a theoretical perspective. For practical appli-
cations, a Discrete Fourier Transform (DFT) can be used.

Assume now that the signal x(t) is sampled with a sampling frequency 1/∆t, resulting in a
discrete signal with N samples. Then, the DFT is defined as

X[k] =
N−1
∑

n=0

x[n]e−jk
2π
N
n (6-50)

or, by considering W = ej
2π
N , written simply as

X[k] =
N−1
∑

n=0

x[n]W−kn (6-51)

Note that the DFT and DTFT are different.

Finally, the Fast Fourier Transform (FFT), which is a very efficient algorithm to compute
DFTs, can be used to perform all the necessary calculations.

6-2-5 Improvement of the estimation algorithm

Several improvements are considered when taking into account real implementation issues.
Note that the second-order system (6-37) describes oscillations around zero. It is expected
that an offset between vision height and pressure altitude exists, which would hinder the
filter’s results. Removing such an offset can be accomplished by adding an extra state to
the filter. However, simpler solutions can be applied such as computing the mean between
the difference of the two measurements from a buffered signal. Since the expected signal is
approximately sinusoidal, the expected mean value should be approximately zero.

Furthermore, the sea spectrum frequency range is known, as is maximum wave height. It
is thus possible to add state saturations including maximum wave amplitude and maximum
rate expected, as well as minimum and maximum wave frequency.

6-2-6 Examples

Frequency-domain analysis example with simulated data

As an example, consider a platform’s vertical motion described by a sum of five sinusoids as
in the following equation:

hplat =0.4 sin(
2π

5
t) + 0.25 sin(

2π

5.4
t+ 1) + 0.25 sin(

2π

4.6
t− 0.2)

+ 0.1 sin(
2π

5.8
t− 2.5) + 0.1 sin(

2π

3.8
t+ 1.5)

(6-52)

Note that this signal contains frequencies f around 0.2 Hz (corresponding to a period Tplat
of 5 seconds), and the peak in the spectrum lies at exactly 0.2 Hz. The phases of each
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sinusoid are assigned randomly. White noise with standard deviation equal to 0.01 m is then
introduced to simulate measurement errors. A sample of the simulated measurement signal
along with a spectral analysis is presented in Figure 6-1, from which a maximum is observed
for f = 0.1953 Hz (meaning that Tplat = 5.12 sec). Such a result can be directly used in the
Kalman filter as an initial condition.
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Figure 6-1: 60-second sample of simulated platform height measurement and single-sided am-
plitude spectrum of hplat

Augmented Kalman filter example with simulated data

An example of simulated measurements is now presented. Consider a to-be-estimated wave-
excited motion with peak frequency corresponding to a period of 20 seconds. The filter’s initial
condition was selected after performing the frequency-domain analysis as demonstrated above.
Figure 6-2 shows the true versus estimated states, while Figure 6-3 presents the frequency-
related parameter estimation. Finally, a reliability test is carried out to check whether the
innovations present a zero-mean white noise behavior. The results are shown in Figure 6-4,
from which it is possible to conclude that the estimation procedure was successful.
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Figure 6-2: Augmented Kalman filter simulation example: true versus estimated states
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Figure 6-3: Augmented Kalman filter simulation example: frequency parameter estimation; the
red lines correspond to minimum and maximum expected wave periods
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Figure 6-4: Augmented Kalman filter simulation example: innovation sequence (mean = −2.9 ·
10−5 m and std = 0.0135m); the red lines correspond to the standard deviation of the innovation
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Augmented Kalman filter example with real vision data

The estimation algorithm was then tested with real data. For that purpose, camera images
were captured while introducing an oscillatory motion to the target. Note that pure sinusoidal
behavior cannot be achieved for such tests, meaning that the results obtained here are useful
to validate the system considering a more realistic case in which the target’s motion presents
more stochastic characteristics.

Two examples are considered:

• Example 1: low-noise case, for which the platform’s motion contains mostly one low
frequency component;

• Example 2: high-noise case, for which the platform’s motion contains not only a low
frequency component, but also a higher frequency to simulate noise and other effects.

The single-sided amplitude spectra of the signals are presented in Figure 6-5. The stars
indicate the frequencies for which the maximum values occurred. Note that for Example
2, although not visible, a second peak was observed for a higher frequency. However, as
expected, the magnitude of this peak is lower than the one shown. The results gathered from
this frequency analysis are used for the state’s initial condition.
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Figure 6-5: Single-sided amplitude spectra of the test signals for Example 1 and Example 2; the
stars indicate the frequencies for which the maximum values occurred

Table 6-1 presents the mean values and standard deviations of the innovation sequences for
both examples. Furthermore, Figures 6-6 and 6-7 show the measured versus estimated signals,
as well as innovation sequences and wave period estimations. Note that for Example 1, the
filter was capable of propagating its states correctly even when the target disappeared from the
camera image (time period marked with the vertical lines). The results shown clearly indicate
that, given certain conditions, the proposed method can be used for such applications.
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Figure 6-6: Augmented Kalman filter with real vision data for Example 1: estimation results for
wave height and period
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Figure 6-7: Augmented Kalman filter with real vision data for Example 2: estimation results for
wave height and period
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Table 6-1: Statistical data of the innovation sequences for the Augmented Kalman filter tests
with real vision data

Innovations for Mean (m) Std. deviation (m)

Example 1 -4.35·10−5 0.0445
Example 2 6.93·10−4 0.0445

6-3 Position and velocity estimation

The update rate from the camera system is low, and by itself does not produce velocity
measurements. Therefore, there are multiple advantages to integrating vision with IMU data,
which can be achieved using the Kalman filter theory explained in this chapter. The sensor
integration concept is first explained, followed by the process and observation (measurement)
models used for position/velocity estimation.

6-3-1 Sensor integration principle

Recall that the Kalman filter steps are divided into two main phases: prediction and correc-
tion. The prediction phase propagates the state using the process model, while the correction
phase updates the filter’s states using measurements. Note that there is no requirement to
execute these two phases one after the other. In fact, it is possible to implement the filter in
such a way that the prediction and correction steps are performed asynchronously.

Moreover, the Kalman filter equations can be constructed such that the process model uses
IMU information as input (more specifically, accelerations obtained from accelerometer mea-
surements). The filter then runs with different frequencies. The main filter’s frequency rep-
resents the prediction steps using IMU data; meanwhile, correction steps are taken whenever
a new vision measurement becomes available.

Note that the same principle can be used for GPS, barometric altimeters or other position
measurements.

6-3-2 Process model

The objective of this filter is to estimate position and velocity. However, as will be seen, the
accelerometer biases are also estimated in the process and are therefore considered as states.
The final state vector is then given by:

x =
[

x y z u v w λAx λAy λAz
]T

(6-53)
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Let TBN
ij be the element corresponding to the ith row and jth column of TBN . Then, the

system equations are given as:

ẋ = TBN
11 u+ TBN

12 v + TBN
13 w

ẏ = TBN
21 u+ TBN

22 v + TBN
23 w

ż = TBN
31 u+ TBN

32 v + TBN
33 w

u̇ = Ax − g sin θ − qw + rv

v̇ = Ay + g cos θ sinφ− ru+ pw

ẇ = Az + g cos θ cosφ− pv + qu

(6-54)

The three accelerations Ax, Ay and Az are measured by the accelerometers. A model of this
measurement was given in Eq. (3-44), from which it follows that:

Ax = Axm − λAx − wAx

Ay = Aym − λAy − wAy

Az = Azm − λAz − wAz

(6-55)

By substituting Eqs. (6-55) into Eqs. (6-54), the following is obtained

ẋ = TBN
11 u+ TBN

12 v + TBN
13 w

ẏ = TBN
21 u+ TBN

22 v + TBN
23 w

ż = TBN
31 u+ TBN

32 v + TBN
33 w

u̇ = Axm − λAx − g sin θ − qw + rv − wAx

v̇ = Aym − λAy + g cos θ sinφ− ru+ pw − wAy

ẇ = Azm − λAz + g cos θ cosφ− pv + qu− wAz

(6-56)

and given that the biases are assumed as constants

λ̇Ax = 0

λ̇Ay = 0

λ̇Az = 0

(6-57)

The above equations can be used to formulate the process model using the Kalman filter
formalism. By writing the process model equations as in Eq. (6-23), it follows that

f [x(t), u(t)] =





























TBN
11 u+ TBN

12 v + TBN
13 w

TBN
21 u+ TBN

22 v + TBN
23 w

TBN
31 u+ TBN

32 v + TBN
33 w

Axm − λAx − g sin θ − qw + rv
Aym − λAy + g cos θ sinφ− ru+ pw
Azm − λAz + g cos θ cosφ− pv + qu

0
0
0





























G =





























0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0





























(6-58)

with
w =

[

wAx wAy wAz
]T

(6-59)
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and finally

Fx =

















0 0 0 TBN
11 TBN

12 TBN
13 0 0 0

0 0 0 TBN
21 TBN

22 TBN
23 0 0 0

0 0 0 TBN
31 TBN

32 TBN
33 0 0 0

0 0 0 0 r −q −1 0 0
0 0 0 −r 0 p 0 −1 0
0 0 0 q −p 0 0 0 −1

















(6-60)

Note that these equations require attitude and angular rate information, which are obtained
with different estimation procedures. Attitude estimations are determined with a comple-
mentary filter (see Appendix C), while angular rates are gathered from gyro measurements.

6-3-3 Measurement model

The horizontal inertial position can be obtained from vision measurements corrected for at-
titude, while the vertical position can be obtained from altitude pressure. The measurement
equation is then given as:

h(x) =
[

x y z
]T

(6-61)

Hx(x) =





1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0



 (6-62)

The Kalman filter results for both inertial position and body velocity states are presented
in Figure 6-8. The mean values and standard deviations of the differences between real and
estimated states are given below.

Table 6-2: Means and standard deviations of the differences between real and estimated states

state Mean Std. deviation

x [m] -0.0205 0.0045
y [m] -0.0127 0.0090
z [m] 0.0010 0.0513

u [m/s] -0.0020 0.0392
v [m/s] -0.0011 0.1135
w [m/s] 0.0034 1.7935
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Figure 6-8: Kalman filter results for position/velocity estimation
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Chapter 7

Controller design

Quadrotors are dynamically unstable systems, meaning that feedback control is necessary to
control such vehicles. Furthermore, these types of rotorcraft are underactuated, making the
controller design task very challenging. In this chapter, the controller designs developed for
this thesis are presented. The backstepping basics are first introduced to allow for the design
of a backstepping controller for the position tracking problem. The necessary fundamentals
for incremental-based control design are then given, followed by the controller adaptation
to obtain the incremental backstepping control law. The classical (linear) approach is also
explained and used for tuning the control gains of all obtained controllers. Then, an autoland
mode is developed in accordance with the requirements listed in Chapter 2. The topic of
control allocation is covered in the end, and a preliminary simulation of the controllers is
shown.

7-1 Backstepping

Backstepping is a Lyapunov-based method to design controllers for nonlinear systems
(Kokotović & Arcak, 2001). Lyapunov theory and stability concepts are first outlined here,
followed by a trajectory backstepping control design.

7-1-1 Lyapunov stability concepts

First, several important definitions must be introduced for the controller design. Since this
aspect of the research pertains to new theoretical developments in the field of control, rigorous
mathematical definitions must first be formally presented.

Consider the nonlinear dynamical system described by:

ẋ = f (x(t), t) , x(t0) = x0 (7-1)

where x(t) ∈ R
n and f : Rn × R

+ 7→ R
n is locally Lipschitz in x and piecewise constant in t.
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Definition 7.1 (Lipschitz condition)
A function f(x, t) satisfies a Lipschitz condition on D with Lipschitz constant L if

∣

∣f(x, t)− f(y, t)
∣

∣ ≤ L
∣

∣x− y
∣

∣

for all points (x, t) and (y, t) in D.

Note that the Lipschitz continuity is a stronger condition than continuity. For example, the
function f(x) =

√
x is continuous on D = [0,∞), but it is not Lipschitz continuous on D

since its slope approaches infinity as x approaches zero.

An equilibrium point xe ∈ R
n of (7-1) is such that f(xe) = 0, ∀t ≥ 0. For simplicity, suppose

that xe is the origin of Rn. This assumption does not result in any loss of generality since
any equilibrium point can be shifted to the origin by simple coordinate transformation. For
example, if xe 6= 0 the change of variables y = x − xe would place the equilibrium point at
the origin.

Contrary to linear systems, nonlinear systems can have multiple equilibrium points. There-
fore, it does not make sense to refer to system stability, but instead to the stability of each
equilibrium point. What follows is a definition concerning stability of an equilibrium point
at the origin.

Definition 7.2 (Stability in the sense of Lyapunov)
The equilibrium point xe = 0 of system (7-1) is considered

• stable if, for each ε > 0 and t0 ≤ 0, there is δ(ε, t0) > 0 such that

|x(t0)| < δ(ε, t0) ⇒ |x(t)| < ε, ∀t ≥ t0;

• unstable if it is not stable

• attractive if, for each ε > 0 and t0 ≤ 0, there is both δ(t0) > 0 and T (ε, t0) such that

|x(t0)| < δ(t0) ⇒ |x(t)| < ε, ∀t ≥ t0 + T ;

• uniformly stable if, for each ε > 0 and t0 ≤ 0, there is δ(ε) > 0 such that

|x(t0)| < δ(ε) ⇒ |x(t)| < ε, ∀t ≥ t0;

• asymptotically stable if it is stable, and for any t0 > 0, there exists a δ(t0) > 0
such that

|x(t0)| < δ(t0) ⇒ lim
t→∞

x(t) = 0;

• uniformly asymptotically stable if it is uniformly stable, and there exists a δ > 0
for all t0 ≥ 0 such that

|x(t0)| < δ ⇒ lim
t→∞

x(t) = 0;

• exponentially stable if, for ε > 0, there exists a pair δ(ε) > 0 and λ > 0 that satisfies

|x(t0)| < δ(ε) → |x(t)| < εe−λ(t−t0), ∀t ≥ t0 ≥ 0.
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In this definition, |·| denotes any p-norm. Note that the stability properties of the equilibrium
point do not depend on the type of norm used in the definition (Vukić, Kuljača, Donlagić, &
Tešnjak, 2003).

In the sense of Lyapunov, stability means that all state trajectories starting close enough
to the origin (equilibrium point) will remain in the vicinity of that equilibrium state. The
main difference between stability and uniform stability is that in the latter case, the stability
condition is independent of the initial time t0. Asymptotic stability is a more strict property
as it requires solutions to converge to the origin, while exponential stability requires the
converge rate to be exponential.

In some cases, it may not be possible to prove stability of xe = 0, but it may still be possible
to prove boundedness of the solution using Lyapunov analysis (Khalil, 2002).

Definition 7.3 (Boundedness)
An equilibrium state xe = 0 of system (7-1) is

• uniformly ultimately bounded if there exist positive constants R, T (R) and b such
that |x(t0)| ≤ R implies that

|x(t)| < b, ∀t > t0 + T

• globally uniformly ultimately bounded if it is uniformly ultimately bounded and
R = ∞.

The constant b is referred to as the ultimate bound.

7-1-2 Lyapunov’s direct method

The stability properties of the equilibrium point of the system (7-1) can be studied by using
the so-called Lyapunov’s direct method (also known as Lyapunov’s second method) (Khalil,
2002). This method allows for the study of stability properties without explicitly solving
Eq. (7-1). This method is a generalization of the idea that if there is some measure of energy
in a system, then stability analysis can be performed by studying the rate of change of such
energy.

Consider a ball R(r) of radius r around the origin, B(r) = {x ∈ R
n : |x| < r}.

Definition 7.4
A continuous function V (x) is

• positive definite on B(r) if V (x) > 0 and V (0) = 0, ∀x ∈ B(r) such that x 6= 0;

• positive semi-definite on B(r) if V (x) ≥ 0 and V (0) = 0, ∀x ∈ B(r) such that
x 6= 0;

• negative (semi-)definite on B(r) if −V (x) is positive (semi-)definite;

• radially unbounded if V (0) = 0, V (x) > 0 on R
n {0}, and V (x) → ∞ as |x| → ∞

A continuous function V (x, t) is
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• positive definite on R×B(r) if there exists a positive definite function α(x) on B(r)
such that

V (0, t) = 0, ∀t ≥ 0 and V (x, t) ≥ α(x), ∀t ≥ 0, x ∈ B(r);

• radially unbounded if there exists a radially unbounded function α(x) such that

V (0, t) = 0, ∀t ≥ 0 and V (x, t) ≥ α(x), ∀t ≥ 0, x ∈ R
n;

• decrescent on R×B(r) if there exists a positive definite function α(x) on B(r) such
that

V (x, t) ≤ α(x), ∀t ≤ 0, x ∈ B(r).

The above defined properties are said to be global if they hold true for the entire state space,
i.e., r → ∞ ⇒ x ∈ R

n.

Based on these definitions, the following theorem can be used to determine stability of a system
by studying an appropriate function V (x, t) (a Lyapunov function) and its time derivative
along the trajectories of (7-1), given by

V̇ (x, t)|ẋ=f(x,t) =
∂V

∂t
+
∂V

∂x
f(x, t) (7-2)

Theorem 7.5 (Lyapunov’s Direct Method)
Let V (x, t) : D × R

+ 7→ R
+ be a continuously differentiable and positive definite function,

where D is an open region containing the origin. The equilibrium point xe = 0 is

• stable if V̇ (x, t)|ẋ=f(x,t) is negative semi-definite for x ∈ D;

• uniformly stable if V (x, t) is decrescent and V̇ (x, t)|ẋ=f(x,t) is negative semi-definite
for x ∈ D;

• asymptotically stable if V̇ (x, t)|ẋ=f(x,t) is negative definite for x ∈ D;

• uniformly asymptotically stable if V (x, t) is decrescent and V̇ (x, t)|ẋ=f(x,t) is neg-
ative definite for x ∈ D;

• exponentially stable if there exist constants c1, c2 and c3 such that

c1|x|2 ≤ V (x, t) ≤ c2|x|2 and V̇ (x, t)|ẋ=f(x,t) ≤ −c3|x|2, ∀t ≥ 0, x ∈ D.

Proof: the proof for this theorem can be found in Chapter 4 of (Khalil, 2002).

The requirement for negative definiteness of the derivative of the Lyapunov function V̇ (x, t) to
guarantee asymptotic stability is quite stringent. It is possible to prove asymptotic stability
with negative semi-definiteness alone by using LaSalle’s invariance theorem (Khalil, 2002).
However, this theorem only applies to time-invariant systems. For time-varying systems,
Barbalat’s lemma can be used (Krstič, Kanellakopoulos, & Kokotović, 1995).

Lemma 7.6 (Barbalat’s Lemma)
Let φ : R

+ 7→ R be a uniformly continuous function on [0,∞). Assuming that

limt→∞

∫ t

0
φ(τ)dτ exists and is finite, then

lim
t→∞

φ(t) = 0

Proof: the proof for this lemma can be found both in Chapter 8 of (Khalil, 2002) and in
Appendix A of (Krstič et al., 1995).
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Combining this lemma with Lyapunov’s direct method leads to the powerful theorem by
LaSalle and Yoshizawa.

Theorem 7.7 (LaSalle-Yoshizawa)
Let xe = 0 be an equilibrium point of (7-1) and assume that f(x, t) is locally Lipschitz in
x uniformly in t. Let V : Rn 7→ R

+ be a continuously differentiable, positive definite and
radially unbounded function V (x) such that

• γ1(x) ≤ V (x, t) ≤ γ2(x)

• V̇ (x) = ∂V
∂x

(x)f(x, t) ≤ −W (x) ≤ 0

∀t ≥ 0, ∀x ∈ R
n, where γ1 and γ2 are continuous positive definite functions and where W

is a continuous function. Then, all solutions of (7-1) are globally uniformly bounded and
satisfy

lim
t→∞

W (x(t)) = 0

Additionally, if W (x) is positive definite, then the equilibrium xe = 0 is globally uniformly
asymptotically stable.

Proof: the proof for this theorem can be found in Appendix A of (Krstič et al., 1995).

This theorem is very useful because it can be applied without the explicit solution of (7-
1), which can be extremely difficult (or impossible) to obtain analytically. However, the
determination of an appropriate function V (x, t) is not prescribed by this theorem. Hence, it
is still necessary to find a convenient Lyapunov function to perform the analysis.

7-1-3 Lyapunov-based control design

The tools presented so far in this chapter are meant for performing stability analysis. What
follows is an extension of such concepts to obtain control laws that yield closed-loop systems
with desired stability properties. Consider now the nonlinear time-invariant system

ẋ = f(x, u), x ∈ R
n, u ∈ R, f(0, 0) = 0 (7-3)

where u is the control input to the system. The objective is to design a feedback control law
α(x) for u such that the equilibrium xe = 0 for the closed-loop system

ẋ = f(x, α(x)) (7-4)

is globally asymptotically stable. To obtain stability, a function V (x) is needed as a Lyapunov
candidate, and its derivative along the solutions of (7-4) must satisfy V̇ (x) ≤ −W (x), where
W (x) is a positive semi-definite function. The straightforward approach is to select a positive
definite, radially unbounded function V (x) and, subsequently, choose α(x) such that

∂V

∂x
(x)f(x, α(x)) ≤ −W (x) ∀x ∈ R

n (7-5)

Careful selection of V (x) and W (x) is required. For a certain stabilizing control law, it is
possible that the condition (7-5) is not satisfied. This problem motivated the definition of the
Control Lyapunov Function (CLF).
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Definition 7.8 (Control Lyapunov Function)
A smooth positive definite and radially unbounded function V (x) : Rn 7→ R

+ is called a
CLF for (7-3) if:

inf
u∈R

{

∂V

∂x
(x)f(x, u)

}

< 0, ∀x 6= 0

Note that given a CLF for a system, a globally stabilizing control law can thus be found. In
fact, the existence of a CLF proves global asymptotic stability, as shown in (Artstein, 1983),
since it is sufficient condition for the existence of a feedback law that satisfies (7-5).

Various examples showing application of this control theory to simple nonlinear systems can
be found in (Sonneveldt, 2010), (Trigo, 2011), and (Acquatella, 2011).

7-1-4 Generic backstepping controller design

The generic backstepping design method is now presented. This method treats the design in
a recursive manner using CLFs.

Integrator backstepping

Consider the nonlinear system

ẋ1 = f(x1) + g(x1)x2 (7-6)

ẋ2 = u (7-7)

where (x1, x2) ∈ R
2 are the states, u ∈ R and g(x1) 6= 0. The control objective is to make

x1 track a smooth reference signal yr, for which all derivatives are known and bounded. This
tracking problem can be converted into a regulation problem by defining the tracking error

z1 = x1 − yr (7-8)

and writing the dynamics of the new coordinate z1 as

ż1 = f(x1) + g(x1)x2 − ẏr (7-9)

To steer this subsystem, x2 can be regarded as its virtual input. By proper selection x2,
the z1-subsystem can be made globally asymptotically stable. Take the desired value of x2
as xdes2

.
= α. A CLF must be found such that the stabilizing virtual control law renders its

time-derivative along the solutions of (7-9) negative (semi-)definite, i.e.,

V̇1 =
∂V1
∂z1

[f(x1) + g(x1)α− ẏr] ≤W1(z1) (7-10)

where z1 is positive definite. V1 can be selected, for example, as a quadratic function of z1
such as

V1 =
1

2
z21 (7-11)

yielding
V̇1 = z1ż1 = z1[f(x1) + g(x1)α− ẏr] (7-12)
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from which desired virtual control input laws can be derived, for example

α =
1

g(x1)
[−c1z1 − f(x1) + ẏr], c1 > 0 (7-13)

The subsequent step is to define a second error variable z2 using the signal xdes2 as

z2 = x2 − xdes2
.
= x2 − α (7-14)

The complete error dynamics are then written as

ż1 = f(x1) + g(x1)x2 − ẏr (7-15)

ż2 = u− α̇ (7-16)

where α can be computed analytically from (7-13) and depends not only on the state x1, but
also on ẏr and ÿr.

The regulation of the error z2 is achieved by way of a second CLF. One possibility is to
augment V1 with a quadratic term that penalizes this tracking error as

V2 = V1 +
1

2
z22 (7-17)

The time derivative of this CLF is given by

V̇2 = V̇1 + z2ż2

=
∂V1
∂z1

(f(x1) + g(x1)x2 − ẏr) + z2(u− α̇)

=
∂V1
∂z1

[f(x1) + g(x1)(z2 − α)− ẏr] + z2(u− α̇)

=
∂V1
∂z1

[f(x1) + g(x1)α− ẏr] + z2

(

∂V1
∂z1

g(x1) + u− α̇

)

≤ −W1(z1) + z2

(

∂V1
∂z1

g(x1) + u− α̇

)

(7-18)

from which the control input u can be designed as

u = −c2z2 −
∂V1
∂z1

g(x1) + α̇, c2 > 0 (7-19)

yielding

V̇2 ≤ −W1(z1)− c2z
2
2 = −W2(z1, z2) (7-20)

Hence, according to the LaSalle-Yoshizawa theorem, the equilibrium (z1, z2) = 0 is globally
asymptotically stable. Furthermore, the tracking problem is solved since limt→∞ x1 → yr.
Note that selecting the CLFs with quadratic forms is usually the most straightforward ap-
proach. However, it should be stressed that other choices are also possible, and in some
cases may even result in a more efficient control law; for example, avoiding the cancellation
of stabilizing nonlinearities.

Vision-based automatic landing of a quadrotor UAV on a floating platform A.S. Mendes



100 Controller design

Extension to higher order systems

The backstepping procedure outlined for second-order systems can be extended to higher-
order systems. The main difference is that there are more virtual states to ‘backstep’ through.
Starting from the state that is furthest from the actual control input, each step of the back-
stepping technique can be divided into three parts (Sonneveldt, 2010):

1. introduce a virtual control and an error state, and rewrite the current state equation in
terms of these;

2. choose a CLF for the system, treating it as a final stage;

3. choose a stabilizing feedback term for the virtual control that makes the CLF stabiliz-
able.

The CLF is augmented at subsequent steps to reflect the presence of new virtual states, but
the same three stages are followed at each step.

Consider a nonlinear system of nth order

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3
...

ẋi = fi(x1, x2, . . . , xi) + gi(x1, x2, . . . , xi)xi+1

...

ẋn−1 = fn−1(x1, x2, . . . , xn−1) + gn−1(x1, x2, . . . , xn−1)xn

ẋn = fn(x1, x2, . . . , xn−1, xn) + gn(x1, x2, . . . , xn−1, xn)u

(7-21)

with xi ∈ R, u ∈ R and gi 6= 0, ∀i ∈ {1, 2, . . . , n}.
The objective is to make x1 track a smooth signal yr whose first n derivatives are known and
bounded. The procedure starts by defining the tracking error as

zi = xi − αi−1, i = 1, 2, . . . , n (7-22)

where α0
.
= yr. With the change of coordinates, it is possible to build CLFs recursively for

each design step as

Vi(z1, z2, . . . , zi−1, zi) = Vi−1(z1, z2, . . . , zi−1) +
1

2
z2i (7-23)

The time derivative of (7-23) is given by

V̇i(z1, z2, . . . , zi−1, zi) = V̇i−1(z1, z2, . . . , zi−1) + ziżi (7-24)

where the dynamics of the error coordinates are

żi = ẋi − α̇i−1 = fi + gizi+1 + giαi − α̇i−1 (7-25)
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with xn+1
.
= u. The virtual control inputs αj and control input u are then given, for example,

by

α1 =
1

g1
(−c1z1 − f1 + ẏr)

αj =
1

gj
(−cjzj − fj − gj−1zj−1 + α̇j−1), j = 2, 3, . . . , n− 1

u =
1

gn
(−cnzn − fn − gn−1zn−1 + α̇n−1)

(7-26)

where ci > 0.

Asymptotic tracking of yr by x1 is then achieved since the derivative of the nth CLF is

V̇n = −
n
∑

i=1

ciz
2
i (7-27)

which is negative definite for zi 6= 0. This means that global asymptotic stability of the
equilibrium z1 = 0 is guaranteed, resulting in

lim
t→∞

x1 = yr (7-28)

Command filtering backstepping

Finally, the command filtering approach is introduced. The backstepping design extended
to higher order systems presented previously permits the designing of control laws for strict-
feedback systems of any order. However, as a system’s order becomes greater, there is an
increase in complexity for the analytical computation of the virtual control laws’ time deriva-
tives (α̇i). An alternative method involving command filters is then used to simplify the
problem (Farrell, Polycarpou, Sharma, & Dong, 2009). This command filtering approach not
only reduces the derivation load, but also allows for the inclusion of magnitude and rate limits
for the each state and control input (Farrell, Polycarpou, & Sharma, 2004).

Consider a second-order system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)u
(7-29)

where g1 6= 0 and g2 6= 0, ∀(x1, x2, u) ∈ R
3. Once again, the control objective is to make x1

track a smooth reference signal yr. The error coordinates are defined as

z1 = x1 − yr

z2 = x2 − x2,c
(7-30)

where x2,c will be defined later in the design. Consider the virtual control input obtained via
the regular backstepping procedure

α1 =
1

g1
(−f1 − c1z1 + ẏr), c1 > 0 (7-31)
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Instead of applying this feedback law directly, this signal is corrected

x02,c = α1 − χ2 (7-32)

where χ2 will be defined later in this section. The signal x02,c is fed to the command filter
which gives x2,c and ẋ2,c as outputs.

Let the compensated error coordinates now be defined as

z1 = z1 − χ1

z2 = z2 − χ2
(7-33)

and the control input signal be

u0 =
1

g2
(−f2 − c2z2 − g1z1 + ẋ2,c), c2 > 0 (7-34)

The signals χ1 and χ2 can now be defined as

χ̇1 = −c1χ1 + g1(x2,c − x02,c)

χ̇2 = −c2χ2 + g2(u− u0)
(7-35)

Let a CLF be given by

V =
1

2
z21 +

1

2
z22 (7-36)

Its derivative is then

V̇ = z1(f1 + g1x2 − ẏr − χ̇1) + z2(f2 + g2u− ẋ2,c − χ̇2)

= z1[f1 + g1z2 + g1(x2,c − x02,c) + g1(α1 − χ2)− ẏr − χ̇1]

+ z2[f2 + g2(u− u0) + g2u
0 − ẋ2,c − χ̇2]

= z1[−c1z1 + g1z2 + c1χ1] + z2[−c2z2 − g1z1 + c2χ2]

= −c1z21 −−c2z22 ≤ 0

(7-37)

meaning that the origin of the compensated error coordinates is globally asymptotically stable.
Furthermore, if the signals χ1 and χ2 are small, by proper selection of the command filter
parameters, it then follows that the error coordinates have an attractive origin. The complete
stability proof, which uses singular perturbation theory, can be found in (Farrell et al., 2009).

Further designs

The backstepping control design can be further extended in order to allow the controller to
deal with model uncertainties. A so-called robust backstepping controller can be obtained
by adding nonlinear damping terms. Alternatively, it is possible to explore the concept of
adaptability to cope with model mismatches and design adaptive backstepping controllers.
These designs, however, are beyond the scope of this research. For reference, the interested
reader can find studies on these topics in (Sonneveldt, 2010), (Trigo, 2011), and (Acquatella,
2011).
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7-1-5 Backstepping position controller design

The theoretical framework for designing backstepping-based control laws given in the previous
sections can now be applied to the quadrotor model described in Chapter 3. The control
objective is to track a desired reference trajectory. More specifically, the goal is to regulate
the horizontal position to zero and track an altitude set point. In this backstepping controller
design, force and torque disturbances are not considered. Recall the quadrotor model, given
here again for convenience:

ṗ = TBNV (7-38)

V̇ = m−1 (F +W )− ω × V (7-39)

Θ̇ = Nω (7-40)

ω̇ = J−1(−ω × Jω +M) (7-41)

The backstepping controller is then designed using a cascaded four-loop scheme as depicted
in Figure 7-1. The complete derivation of the backstepping control laws for position tracking
is given below.

ref
position velocity attitude rate

controlcontrolcontrolcontrol

state feedback

cascaded controller

quadrotor

Figure 7-1: Generic representation of the cascaded control structure

Position control

The design process starts by defining the error

zp = p− pdes (7-42)

from which it follows

żp = ṗ− ṗdes (7-43)

A CLF can then be constructed as

Vp = V1 =
1

2
zTp zp (7-44)
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and by differentiating with respect to time it yields

V̇p = zTp żp

= zTp (ṗ− ṗdes)

= zTp (T
BNV − ṗdes)

(7-45)

One possibility to make this derivative negative is to ensure

TBNV − ṗdes = −Kpzp (7-46)

where Kp is a diagonal matrix such that Kp > 0.

The desired velocity vector can then be derived as

V des = TNB(−Kpzp + ṗdes) (7-47)

Velocity control

With the desired velocity command computed in the previous step, the velocity control loop
design begins with the definition of the error

zV = V − V des (7-48)

followed by

żV = V̇ − V̇
des

(7-49)

The first CLF is then extended to penalize this new error as

V2 =V1 + VV

=V1 +
1

2
zTV zV

(7-50)

The time derivative of V2 yields

V̇2 =V̇1 + zTV żV

=zTp (T
BNV − ṗdes) + zTV (V̇ − V̇

des
)

=zTp

(

TBN (zV + V des)− ṗdes
)

+ zTV (V̇ − V̇
des

)

=zTp

(

TBNV des − ṗdes
)

+ zTV (V̇ − V̇
des

+ (TBN )T zp)

(7-51)

where the relation V = zV + V des has been used.

From the position control step, it follows that the term zTp
(

TBNV des − ṗdes
)

is already neg-

ative. Therefore, the desired commands can be obtained from

V̇ − V̇
des

+ (TBN )T zp = −KV zV (7-52)

with KV being a diagonal matrix such that KV > 0.
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By expanding Eq. (7-52), the following is obtained





−g sin θ + rv − qw
g cos θ sinφ+ pw − ru

−Fz/m+ g cos θ cosφ+ qu− pv



− V̇
des

+ (TBN )T zp = −KV zV (7-53)

and, as is known, control of the body longitudinal velocity u is achieved through θ and lateral
velocity v through φ. Therefore, the desired attitude Euler angle equations for pitch and roll
are given as

θdes = arcsin

{

−1

g

[

−Kuzu + u̇des + qw − rv −
(

(TBN )T zp

)

1

]

}

φdes = arcsin

{

1

g cos θ

[

−Kvzv + v̇des + ru− pw −
(

(TBN )T zp

)

2

]

} (7-54)

where
(

(TBN )T zp

)

1
and

(

(TBN )T zp

)

2
are the first and second elements of

(

(TBN )T zp

)

,

respectively. The yaw angle can also be controlled as desired with ψdes.

Moreover, the desired thrust command is given by

Fz = −m
[

−Kwzw + ẇdes − g cos θ cosφ+ pv − qu−
(

(TBN )T zp

)

3

]

(7-55)

where
(

(TBN )T zp

)

3
is the third element of

(

(TBN )T zp

)

.

Attitude control

Again, the attitude error is defined as

zΘ = Θ−Θdes (7-56)

and
żΘ = Θ̇− Θ̇

des
(7-57)

V2 is now extended to penalize the attitude error as

V3 = V2 + VΘ

= V2 +
1

2
zTΘzΘ

(7-58)

with time derivative

V̇3 = V̇2 + V̇Θ

= zTp

(

TBNV des − ṗdes
)

+ zTV (V̇ − V̇
des

+ (TBN )T zp) + zTΘżΘ

≤ zTV (V̇ − V̇
des

+ (TBN )T zp) + zTΘżΘ

(7-59)

Note, again, that the term zTp
(

TBNV des − ṗdes
)

is already negative from the position control

step. Furthermore, the V̇ -equation is not linear in the attitude parameters, meaning that the
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procedure followed for the previous step cannot be directly used. Assuming small attitude
angles, the velocity equations are then approximated as

u̇ = −g sin θ + rv − qw ≈ −g · θ + rv − qw

v̇ = g cos θ sinφ+ pw − ru ≈ g cos θ · φ+ pw − ru
(7-60)

and the following equation is constructed

V̇ = f
V
+GVΘ (7-61)

with

GV =





0 −g 0
g cos θ 0 0

0 0 0



 (7-62)

and fV containing all the remaining terms.

With this approximation it follows that

V̇3 ≤ zTV

(

f
V
+GVΘ− V̇

des
+ (TBN )T zp

)

+ zTΘżΘ

= zTV

[

f
V
+GV (zΘ +Θdes)− V̇

des
+ (TBN )T zp

]

+ zTΘ(Nω − Θ̇
des

)

= zTV

(

f
V
+GVΘ

des − V̇
des

+ (TBN )T zp

)

+ zTΘ(Nω − Θ̇
des

+GTV zV )

≤ zTΘ(Nω − Θ̇
des

+GTV zV )

(7-63)

Note that the last inequality can be guaranteed by the velocity control step.

A stabilizing control law can be computed from

Nω − Θ̇
des

+GTV zV = −KΘzΘ (7-64)

with KΘ once again being a diagonal control matrix such that KΘ > 0.

The desired angular rate is then calculated as

ωdes = N−1(−KΘzΘ + Θ̇
des −GTV zV ) (7-65)

where N−1 is the transformation from Euler angle rates to body rates given in Eq. (3-6).

Rate control

Finally, the angular rate error is defined as

zω = ω − ωdes (7-66)

meaning that
żω = ω̇ − ω̇des (7-67)

The CLF is augmented one last time to penalize the angular rate errors as

V4 = V3 + Vω

= V3 +
1

2
zTωzω

(7-68)
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with time derivative

V̇4 = V̇3 + zTω żω

≤ zTΘ(Nω − Θ̇
des

+GTV zV ) + zTω (ω̇ − ω̇des)

= zTΘ

[

N(zω + ωdes)− Θ̇
des

+GTV zV

]

+ zTω (J
−1(−ω × Jω +M)− ω̇des)

= zTΘ(Nω
des − Θ̇

des
+GTV zV ) + zTω (J

−1(−ω × Jω +M)− ω̇des +NT zΘ)

(7-69)

Note that the term zTΘ(Nω
des − Θ̇

des
+ GTV zV ) is already negative from the attitude control

step. Therefore, a stabilizing control law is obtained from the following equation

J−1(−ω × Jω +M)− ω̇des +NT zΘ = −Kωzω (7-70)

as

M = J(−Kωzω + ω̇des −NT zΘ) + ω × Jω (7-71)

Control law simplification

The desired signals (virtual inputs) and actual actuator inputs are then summarized as follows:

V des = TNB(−Kpzp + ṗdes)

θdes = arcsin

{

−1

g

[

−Kuzu + u̇des + qw − rv
]

}

φdes = arcsin

{

1

g cos θ

[

−Kvzv + v̇des + ru− pw
]

}

Fz = −m
[

−Kwzw + ẇdes − g cos θ cosφ+ pv − qu
]

ωdes = N−1(−KΘzΘ + Θ̇
des

)

M = J(−Kωzω + ω̇des −NT zΘ) + ω × Jω

(7-72)

Note that some terms have been removed. This is explained as follows. The design starts
by solving the attitude tracking problem. By selecting a CLF as VΘ = 1

2Θ
TΘ, a control law

is obtained for ωdes as shown. Subsequently, the controller for the rate loop is obtained by
expanding the given CLF to penalize the rate error.

The outer loops are obtained with regular state feedback. However, terms for canceling the
nonlinearities and the stabilizing terms corresponding to the derivatives of the desired signals
are added.

This modification not only permits reduction of the controller’s complexity, but also facilitates
the gain tuning procedure, which is less straightforward in backstepping designs. This is all
achieved while maintaining stability properties as will be seen in Chapter 8. With classical
control theory, pole-placement analysis is then used to select the controller gains as shown in
Section 7-3. Note that by proper selection of these gains, and more specifically, by proper pole
placement, the position/velocity outer loops will have slower dynamics than the attitude/rate
loops.
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7-2 Incremental backstepping

7-2-1 Time-scale separation

Time-scale separation exists in many nonlinear dynamical systems and can be used in flight
dynamics problems to simplify complexity by separating the fast from the slow dynamics.
A comprehensive survey on time scales in guidance and control of aerospace systems can
be found in (Naidu & Calise, 2001), in which singular perturbation theory is used for the
analysis. A brief overview of this concept is presented below.

Consider the nonlinear system

ẋs = fs(xs, xf , u, ε)

εẋf = ff (xs, xf , u, ε)
(7-73)

where xs and xf are the system’s states, u is the control input, fs and ff are the nonlinear
system equations and ε (small value) is known as singular perturbation. Note that when the
perturbation is suppressed (ε = 0), it results in a reduction of the system’s order. In this
case, the fast dynamics are so rapid that the fast state xf reaches a quasi-steady situation in
the slow time scale. The system is then described by the slow dynamics of xs only, subjected
to ff (xs, xf , u, 0) = 0. Thus, singular perturbation theory allows for simplification of the
mathematical model representation via order reduction. The analysis can even be extended
to systems with multiple time scales, treating each loop individually.

The time scale separation principle can be also be applied to control systems design. Fast
dynamics are then associated with variables with a higher control effectiveness, while slow
dynamics correspond to the states that are more weakly affected by the control inputs. Specif-
ically in aerospace control applications, the time-scale separation analysis is used in both atti-
tude and trajectory control problems. For example, in attitude control problems, the attitude
parameters are the slow states, while the angular velocities are the fast states.

7-2-2 Incremental form of the system dynamics

Incremental-based control laws are of interest due to their robustness properties. Specifically
applied to NDI, it can be shown that a pure linearization cannot be achieved in the presence
of model uncertainties and inaccuracies (Sieberling et al., 2010). A more robust version can be
obtained with the incremental version of the same controller (Incremental Nonlinear Dynamic
Inversion (INDI)). As stated in the literature review, although the advantages of using INDI
are clear, it is still not possible to prove closed-loop stability. Therefore, the next step in
research is to introduce backstepping.

The concept of incremental backstepping is based on the incremental form of the system
dynamics (H. Chen & Zhang, 2008). Instead of computing the complete control input vector,
it is possible to calculate only the required variation from the previous input. What follows
is an explanation of how to determine such a control input increment. Consider the system

ẋ = f(x) +G(x)u (7-74)
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Consider now the Taylor series expansion of Eq. (7-74) to obtain a first-order approximation
of ẋ around the system’s current solution (x0, u0)

ẋ ≈ ẋ0 +
∂

∂x
[f(x) +G(x)u]x0,u0(x− x0) +

∂

∂u
[f(x) +G(x)u]x0,u0(u− u0) =

= ẋ0 +
∂

∂x
[f(x) +G(x)u]x0,u0(x− x0) +G(x0)(u− u0)

(7-75)

Eq. (7-75) can be further simplified since the variation x−x0 can be neglected for very small
time increments, yielding

ẋ ≈ ẋ0 +G(x0)(u− u0) (7-76)

This simplification is explained as follows. Let Eq. (7-75) be a representation of the rotational
dynamics, meaning that x = ω. A change in the control input results in a change in moment,
which directly affects the angular accelerations. In turn, angular rates change only after
integrating the angular accelerations, hence integrating the control input component. This
makes the term x−x0 (specifically to this example, change in angular rates ω−ω0) negligible
for small time increments. Note that for this assumption, fast actuators are required.

Finally, the system dynamics can be rewritten as a function of the input increment as

ẋ = ẋ0 +G(x0)du (7-77)

in which the total control input is given by

u = u0 + du (7-78)

Eq. (7-77) can then be utilized in the backstepping analysis for determination of a stabilizing
control law. Note, however, that only the input increment can be determined and the complete
input is obtained with Eq. (7-78).

7-2-3 Control adaptation to incremental form

To obtain the incremental backstepping control law, the angular rates equation is first ex-
pressed in the incremental form as

ω̇ = ω̇0 + J−1dM (7-79)

and the vertical velocity equation as

ẇ = ẇ0 −
1

m
dFz (7-80)

The angular rate backstepping loop is adapted to render the incremental control law. Recall
the time derivative of the CLF V4 given in (7-69), from which the following relationship was
selected to obtain a stabilizing control law:

ω̇ − ω̇des +NT zΘ = −Kωzω (7-81)

By expressing the rate dynamics in the incremental form, it follows that

ω̇0 + J−1dM − ω̇des +NT zΘ = −Kωzω (7-82)
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and consequently, the torque commands are given as increments computed from

dM = J(−ω̇0 −Kωzω + ω̇des −NT zΘ) (7-83)

The final controller command is then given by

M =M0 + dM (7-84)

where M0 is a vector containing the previous torque inputs given to the system.

The vertical velocity backstepping loop is adapted in a similar way. By treating the CLF for
velocity control as a final stage, the following equation was selected to obtain a stabilizing
control law:

ẇ − ẇdes = −Kwzw (7-85)

Again, by expressing the dynamics in the incremental form, it follows that

ẇ0 −
1

m
dFz − ẇdes = −Kwzw (7-86)

meaning that the thrust increment input commands are computed as

dFz = −m(−ẇ0 −Kwzw + ẇdes) (7-87)

and the total input is given by
Fz = Fz0 + dFz (7-88)

where Fz0 is the previous thrust input given to the system.

Several considerations are examined when taking a closer look into the control laws obtained.
First, one of the main advantages of using incremental backstepping is already clear; as this
controller relies less on the model and more on measurements (or estimations), it should in
principle be more robust to model mismatches when compared to the standard backstepping
controller. However, note that estimation of both angular accelerations and vertical kinematic
acceleration is required (these estimations are carefully analyzed below). Furthermore, the
inputsM0 and Fz0 cannot be measured in this quadrotor control problem. Thus, an actuator
model must be used to estimate such inputs.

Angular accelerations

Incremental forms of control require information about the angular accelerations of the vehicle.
In the previously-derived incremental backstepping control law, it was assumed that angular
accelerations can be accurately measured. However, the issue of estimating such physical
quantities must be carefully addressed. Despite the fact that angular acceleration sensors
exist, they are still not commonly used in practice. In previous research at DUT, this problem
has been studied and several methods have been proposed to derive angular accelerations from
IMU measurements. A brief summary is presented here.

One of the most intuitive methods is to use simple finite differences (Simplicio, 2011). In
this case, information about angular velocities is used to derive angular accelerations. More
specifically, two consecutive samples of angular velocities are used to perform the necessary
calculations. (Sieberling et al., 2010) presents a predictive filter that uses the decoupling

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



7-3 Classical control 111

properties of an INDI closed-loop. Also in (Sieberling et al., 2010), a five-point scheme is
presented. The latter is based on a numerical scheme that makes use of five samples of
angular velocities.

In this study, a different method is used; the gyro measurements are filtered with a low-pass
first-order filter and the time-derivative of the smoothed signals are obtained as explained in
Appendix D. It should be stressed that the filters’ time constants should be very small to
avoid introducing significant time delays.

Vertical kinematic acceleration

The linear acceleration required to compute the thrust command increment can be obtained
as follows

ẇ = Az + g cos θ cosφ+ qu− pv (7-89)

where Az is obtained from accelerometer measurements, the local gravity g is assumed as
constant with known magnitude, p and q are obtained from gyro measurements and the
states θ, φ, u and v are estimated.

A simpler version is also possible as

ẇ = Az + g cos θ cosφ (7-90)

by neglecting the last two nonlinear terms of (7-89). Note that this approximation should
be valid for non-aggressive maneuvers and has the advantage of not introducing estimation
errors of u and v into the estimation of ẇ.

7-3 Classical control

7-3-1 Basic principle

In classical control theory, PID controllers are used as feedback mechanisms to control a sys-
tem. By adjusting the process control inputs, this type of controller attempts to minimize
an error value calculated as the difference between a measured process variable and a desired
setpoint. The PID controller is composed of three components: proportional, derivative and
integral actions. Proportional action provides the basic state feedback and mostly influences
the speed of the closed-loop system, derivative action adds damping to the closed-loop re-
sponse and integral action is responsible for removing the steady-state errors. The generic
control law is then given by

u = Kpe(t) +Kdė(t) +Ki

∫

e(t)dt (7-91)

where e(t) represents the to-be-controlled error. Note that some applications may require the
use of only one or two actions.
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Tuning

When a mathematical model is available, the control design and tuning can be achieved via
linearization. The process starts by defining an equilibrium point xe around which the model
is linearized. Consider a generic nonlinear model of the form

ẋ = f(x, u) (7-92)

where the function f(x, u) is continuously differentiable in a domain that contains the equi-
librium point xe. The linearization around this point gives

ẋ = Ax+Bu (7-93)

with

A =
∂f(x, u)

∂x

∣

∣

∣

∣

x=xe,u=ue

, B =
∂f(x, u)

∂u

∣

∣

∣

∣

x=xe,u=ue

(7-94)

where ue is the trim control input. If there is a controller that can stabilize the linearized
system (7-93), then it can be proven that it also stabilizes the nonlinear system (7-92) in the
vicinity of the equilibrium point.

The system described in Chapter 3 is linearized as follows.

ṗ =Mp/Ixx
q̇ =Mq/Iyy
ṙ =Mr/Izz

φ̇ = p

θ̇ = q

ψ̇ = r

u̇ = −gθ
v̇ = gφ
ẇ = −Fz/m+ g

ẋ = u
ẏ = v
ż = w

(7-95)

With pure proportional action all SISO loops can be controlled, leading to first-order closed
loop systems. The dynamics of a first-order system are described by the known generic
equation

τ ẏ + y = Ku (7-96)

meaning that the proportional gain for each control loop can be selected to obtain the desired
closed-loop time constant τ .

Integral action is then added to remove undesired possible steady-state errors, with integral
gains that are initially very small and are increased progressively until unstability is observed.
Finally, these integral gains are reduced to render the desired closed-loop performance.

7-3-2 Cascaded linear trajectory controller design

The controller developed here is based on classical control theory. A cascaded system is
designed for which time-scale separation between outer and inner loops is used. The controller
structure is the same as depicted in Figure 7-1. All variables are controlled using a SISO
scheme as given below. For tuning purposes the design now starts with the fastest loops.

• Angular rate control

Mp = Kpp
(pref − p) +Kpi

∫

(pref − p)dt

Mq = Kqp
(qref − q) +Kqi

∫

(qref − q)dt

Mr = Krp(rref − r) +Kri

∫

(rref − r)dt

(7-97)
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• Attitude control

pref = Kφp
(φref − φ) +Kφi

∫

(φref − φ)dt

qref = Kθp(θref − θ) +Kθi

∫

(θref − θ)dt

rref = Kψp
(ψref − ψ) +Kψi

∫

(ψref − ψ)dt

(7-98)

• Velocity control

φref = Kvp(vref − v) +Kvi

∫

(vref − v)dt

θref = Kup(uref − u) +Kui

∫

(uref − u)dt

Fz = Kwp(wref − w) +Kwi

∫

(wref − w)dt+mg

(7-99)

• Position control

uref = Kxp(xref − x) +Kxi

∫

(xref − x)dt

vref = Kyp
(yref − y) +Kyi

∫

(yref − y)dt

wref = Kzp(zref − z) +Kzi

∫

(zref − z)dt

(7-100)

The integral terms are neglected initially for the tuning procedure. By inserting the above
equations into (7-95) and rearranging to obtain all final equations in the form of (7-96), the
proportional gains are selected as a function of the desired closed-loop time constants as
follows:

Kpp
= Ixx

τp

Kqp
=

Iyy
τq

Krp =
Izz
τr

Kφp
= 1

τφ

Kθp =
1
τθ

Kψp
= 1

τψ

Kup = − 1
gτu

Kvp =
1
gτv

Kwp = − m
τw

Kxp =
1
τx

Kyp
= 1

τy

Kzp =
1
τz

(7-101)

The time constants and corresponding gains used for simulation purposes are given in Ap-
pendix E.

7-4 Autoland controller mode

The autoland controller mode implemented for simulation purposes is designed according to
Chapter 2 (see Figure 2-1 for details). This mode is only valid once the target has been found.
To accomplish the mission successfully, three main controller stages are required as shown in
Section 2-4: inertial altitude hold, inertial descent and relative descent. What follows is an
explanation of how these stages are represented in terms of controller design.
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• Inertial altitude hold. The quadrotor should regulate its horizontal position to zero
(with the target being the reference), and hold its altitude in the navigation frame (with
respect to MSL). Then

pdes = (0, 0,−hdes)T (7-102)

and

ṗdes = (0, 0, 0)T (7-103)

• Inertial descent. This stage is required for landing purposes in cases where the quadro-
tor is not yet close to the buoy. Vertical velocity is then controlled, but with respect to
MSL. No vertical position is controlled, meaning that

Kz = 0 i.e., Kp =





Kx 0 0
0 Ky 0
0 0 0



 (7-104)

Furthermore, the objective is still to regulate the horizontal position to zero, and

ṗdes = (0, 0, żdes)T (7-105)

• Relative descent. This stage is required for the final landing phase, when the platform
is close. Since the objective is to control relative sink rate with respect to the target,
the inertial vertical velocity must be adjusted to cope with the buoy’s dynamics. As
in the previous stage, the vertical position gain is set to zero and the objective is to
regulate the horizontal position to zero. Moreover, since the relative motion between
the quadrotor and the platform is given by

żrel = żquad − żplat (7-106)

the following command derivative is designed to obtain the desired relative TD sink
rate:

ṗdes = (0, 0, żdesTD + żplat)
T (7-107)

From this equation, it follows that an estimation of the platform’s vertical motion is
required. For that reason, an augmented Kalman filter has been developed in this thesis
and is explained in Section 6-2.

7-5 Control allocation

To generate the desired control forces and moments, the necessary actuator inputs must
be computed. There are two main options to perform such calculations: nonlinear control
allocation or linear control allocation around a trim operation point. For this section, the
rotors are numbered as follows: rotors 1 and 2 are attached to the front and back motors,
respectively, and rotors 3 and 4 are attached to the left and right motors, respectively.
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7-5-1 Nonlinear

From Eqs. (3-20) and (3-24), the control forces and moments produced by each rotor can be
approximated by

F ≈ bΩ2 , M ≈ dΩ2 (7-108)

where b and d are thrust and moment factors for the hovering condition. Therefore, assuming
a distance l from each rotor to the quadrotor’s center of mass, the following relation holds
true:
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By inverting Eq. (7-109), the desired squared blade rotational speeds can be obtained as:
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Finally, the required actuator inputs can be computed using the steady-state values of Eq. (3-
39). For Ω̇m = 0, the control input is then computed as

um = km

(

Ωm +
dτ

ηr3Jt
Ω2
m

)

(7-111)

where Ω2
m is obtained directly from Eq. (7-110), and subsequently Ωm =

√

Ω2
m.

7-5-2 Linear

Linear control allocation starts by defining an operating point Ω0 for each rotor velocity. The
sum of all forces produced by the motors is

Fz = 4bΩ2
m (7-112)

Therefore, to counteract the weight of the vehicle W the trim point for each rotor is given as

Ω0 =

√

W

4b
(7-113)

Note that the trim input moments are all zero. The total velocity is then given by

Ωm = Ω0 +Ωc (7-114)

where Ωc is the linear control velocity assumed as a small disturbance for design purposes.
The product of two small disturbances is negligible, meaning that the approximation

Ω2
m = (Ω0 +Ωc)

2 = Ω2
0 + 2Ω0Ωc +Ω2

c ≈ Ω2
0 + 2Ω0Ωc (7-115)
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can be used. Thus, Eq. (7-109) in the linear form becomes
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and can be written simply as

um = TlcaΩc + u0 (7-117)

which, when inverted, leads to

Ωc = T−1
lca (um − u0) = T−1

lca uc (7-118)

The linear dynamics of the actuators can be obtained by linearizing Eq. (3-39) around the
operating point Ω0. The necessary input u0 that yields Ω0 is obtained using Eq. (7-111):

u0 = km

(

Ω0 +
dτ

ηr3Jt
Ω2
0

)

(7-119)

The actuator input becomes

um = u0 + uc (7-120)

where uc is the linear control input, assumed also as a small disturbance for design purposes.
Substituting Eq. (7-120) and (7-114) into (3-39) yields

(

Ω̇0 + Ω̇c

)

= −1

τ
(Ω0 +Ωc)−

d

ηr3Jt
(Ω0 +Ωc)

2 +
1

kmτ
(u0 + uc) (7-121)

Note that since Ω0 is a constant, it holds that Ω̇0 = 0. Expanding Eq. (7-121) results then in
the first-order linear actuator dynamics described by

Ω̇c =

(

−1

τ
− 2dΩ0

ηr3Jt

)

Ωc +
1

kmτ
uc (7-122)

with the linear time constant

τact,linear =

(

−1

τ
− 2dΩ0

ηr3Jt

)−1

(7-123)

from which the following steady-state relation is obtained

uc = km

(

1 +
2Ω0dτ

ηr3Jt

)

Ωc (7-124)

where Ωc is obtained from Eq. (7-118).

By inserting Eq. 7-124 into Eq. 7-120, the final desired command inputs can be determined
as a function of the desired command forces and moments.
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7-6 Preliminary controller simulations

In this section, the designs of the controllers outlined previously in this chapter are tested.
Three types of controllers were presented/derived (linear cascaded, backstepping and incre-
mental backstepping), and a simulation will now be shown for one scenario under nominal
conditions. The rotorcraft has an initial condition and must regulate both longitudinal and
lateral position to zero while climbing to a reference altitude. After, it should continue to
hover before starting to descend with constant velocity. The results of this simulation are
presented in Figure 7-2. For convenience, the reference signals are shown with dashed lines.
It is possible to observe that for the nominal condition and under the assumption that the
model is well-known, all controllers led to a similar result. Note that although the position
loop was designed to render first-order closed-loop behavior, a small overshoot is observed.
This is due to the fact that to obtain a faster response, the difference between loop time
constants was reduced. The result is nonetheless a well-damped response with higher speed
and therefore better overall performance.
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Figure 7-2: Preliminary controllers test; F1, F2, F3 and F4 denote the control forces for each
motor
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Chapter 8

Monte-Carlo simulations

In order to evaluate the performance of the control laws and state estimation algorithms
developed in this thesis, a simulation tool is designed. The problem being studied is the
automatic landing of a quadrotor UAV on a floating platform. A model of the environment
has been given in Chapter 3, including a description of the floating platform motion and the
wind profiles above the sea surface. A range of possible external variables are then combined
in a Monte-Carlo scheme for conditions up to the upper bound of level 4 in the Beaufort scale.
Simulations are performed not only for the case in which the rotorcraft model is known, but
also for uncertain cases. Finally, a comparative analysis of the different controllers developed
in this thesis is presented.

8-1 Monte-Carlo scheme

The following parameters are varied with a uniform distribution (see Appendix F) in the
Monte-Carlo scheme:

• Initial position

– Longitudinal deviation from platform’s center
(min: -2.5 m, max: 2.5 m)

– Lateral deviation from platform’s center
(min: -2.5 m, max: 2.5 m)

– Initial altitude above MSL
(min: 30 m, max: 31 m)

• Platform motion (sum of three sinusoids)

– Wave height components
(min: 0 m, max: 1 m)
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– Wave period components
(min: 5 sec, max: 15 sec)

– Wave initial phase components
(min: 0 deg, max: 360 deg)

• Wind conditions

– Wind speed at reference altitude
(min: 0 m/s, max: 8 m/s)

– Wind direction
(min: 0 deg, max: 360 deg)

• Temperature at MSL
(min: 0 Celsius, max: 30 Celsius)

8-2 Performance assessment criteria

The following parameters are used as assessment criteria:

• PHITD (in degrees): defined as the roll angle at touchdown;

• TTATD (in degrees): defined as the pitch angle at touchdown;

• XTD (in meters): defined as the longitudinal touchdown position in the NED reference
frame centered at the buoy’s midpoint;

• YTD (in meters): defined as the lateral touchdown position in the NED reference frame
centered at the buoy’s midpoint;

• ZDTD (in meters per second): defined as the relative touchdown velocity (sink rate)
between the quadrotor and the floating platform expressed in the NED reference frame
fixed with the buoy.

The attitude angles should be as close to zero as possible at the touchdown moment. In
fact, a crash landing can be expected if the vehicle has a non-zero attitude angle larger
than a certain threshold when it touches the platform. Therefore, the statistical distribution
obtained for PHITD and TTATD should be similar to a zero-mean normal distribution with
low standard deviation. A risk analysis should prove that the probability of landing with
more than a certain designed threshold angle (in absolute value) would be residual. Note
that the touchdown yaw angle is irrelevant.

For touchdown position, it is important to always land very close to the center of the buoy.
XTD and YTD should then present a statistical distribution that can be approximated by
a zero-mean normal distribution with low standard deviation. As for the angles, it should
be possible to prove that the probability of landing outside the designated landing area is
residual.

Finally, the relative touchdown velocity ZDTD should not cross a certain design maximum
value. Note that if touchdown sink rate is too high, then a crash landing could occur resulting
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in structural damage or other unwanted consequences. An approximately non-zero-mean
normal distribution should be obtained with low touchdown sink rate dispersion. Recall that
the design value for touchdown sink rate was 0.5 m/s.

Three controllers have been developed in this thesis based on linear control theory (LIN),
backstepping (BKS) and incremental backstepping (IBKS). All three have been tested for the
Monte-Carlo simulations.

Two main sets of simulations were performed, corresponding to simulations

• with perfect state knowledge, and

• with state estimator in the loop.

What follows are the results obtained.

8-3 Simulations with perfect state knowledge

Preliminary results of the controller performances have already been shown in Chapter 7.
However, such results were obtained for a simple maneuver under nominal conditions. A
200-sample Monte-Carlo simulation was performed to analyze the response of the controllers
for a set of combinations of external conditions for the complete mission. The results are
shown in Table 8-1 and Figure 8-1. Note that no large disturbances are introduced and it
is assumed that the model is completely known. It is observed that the autoland mission is
always successfully executed. Both roll and pitch angles at TD always have mean values that
are very close to zero and present very low dispersion (low standard deviations). The same
holds true for the longitudinal and lateral positions at TD. In terms of relative sink rate,
mean values of approximately 0.5 m/s (the design value) are always obtained and a very low
sink rate TD dispersion is also observed.
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Perfect state knowledge: no uncertainties

Table 8-1: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge
and no uncertainties

PHITD TTATD XTD YTD ZDTD
mean x

LIN -0.0324 -0.0219 -0.0012 0.0021 0.5070
BKS -0.0296 -0.0201 -0.0012 0.0020 0.5063
IBKS -0.0347 -0.0213 -0.0013 0.0025 0.5105

std σ
LIN 0.7822 0.7087 0.0483 0.0527 0.0841
BKS 0.7847 0.7090 0.0457 0.0502 0.0839
IBKS 0.8336 0.7529 0.0498 0.0547 0.0851
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Figure 8-1: Boxplots for 200-sample Monte-Carlo simulation assuming perfect state knowledge
and no uncertainties

Figures 8-2 and 8-3 show the complete mission and final landing phase, respectively, for one
case scenario.

No difference between the controllers is observed for the perfect state knowledge case with no
uncertainties. Robustness tests are then performed to assess the performance in the case of
model mismatches.
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Figure 8-2: Simulation of the complete mission; F1, F2, F3 and F4 denote the control forces for
each motor
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8-3-1 Robustness to uncertainties

Perfect state knowledge: mass uncertainties

Table 8-2: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge;
25% uncertainty in mass (ε = 1.25)

PHITD TTATD XTD YTD ZDTD
mean x

LIN 0.0315 0.0626 0.0042 -0.0021 1.0126
BKS 0.0323 0.0628 0.0042 -0.0021 1.0102
IBKS 0.0201 0.0310 0.0023 -0.0012 0.5153

std σ
LIN 1.3992 1.2279 0.0834 0.0948 0.1323
BKS 1.3832 1.2199 0.0814 0.0920 0.1322
IBKS 0.9162 0.8159 0.0536 0.0603 0.0916
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Figure 8-4: Boxplots for 200 sample Monte-Carlo simulation assuming perfect state knowledge;
uncertainty in mass (ε = 1.25)

The desired mean sink rate value is obtained for incremental backstepping, while for linear
control and backstepping a steady-state error occurs due to incorrect mass assumption. After
analyzing Figure 8-5, the effects of this uncertainty become clear. Note that the initial seconds
of the mission are sufficient to understand robustness issues.
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Figure 8-5: Controller performances for uncertainty in mass (ε = 1.25); F1, F2, F3 and F4

denote the control forces for each motor
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Perfect state knowledge: inertia uncertainties

Table 8-3: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge;
30% uncertainty in inertia (ε = 1.3)

PHITD TTATD XTD YTD ZDTD
mean x

LIN 0.0723 0.0416 0.0027 -0.0048 0.5072
BKS 0.0728 0.0417 0.0027 -0.0047 0.5063
IBKS 0.0766 0.0454 0.0031 -0.0050 0.5106

std σ
LIN 0.8610 0.7601 0.0514 0.0586 0.0685
BKS 0.8596 0.7588 0.0490 0.0550 0.0690
IBKS 0.9172 0.8040 0.0530 0.0602 0.0686
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Figure 8-6: Boxplot for 200-sample Monte Carlo simulation assuming perfect state knowledge;
uncertainty in inertia (ε = 1.3)

The differences between the controllers are negligible for this uncertainty. For that reason, a
larger mismatch is introduced by selecting ε = 4. The results are presented in Figure 8-7.
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Figure 8-7: Controller performances for extreme case of uncertainty in inertia (ε = 4); F1, F2,
F3 and F4 denote the control forces for each motor
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Perfect state knowledge: motor constant uncertainties

Table 8-4: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge;
20% uncertainty in motor torque constant (ε = 1.2)

PHITD TTATD XTD YTD ZDTD
mean x

LIN 0.0959 -0.0170 -0.0014 -0.0072 1.1285
BKS 0.0947 -0.0194 -0.0016 -0.0066 1.1257
IBKS 0.0677 -0.0179 -0.0011 -0.0044 0.5211

std σ
LIN 1.3978 1.4272 0.0970 0.0943 0.1147
BKS 1.3813 1.4146 0.0957 0.0932 0.1154
IBKS 0.8913 0.9171 0.0602 0.0584 0.0801
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Figure 8-8: Boxplot for 200-sample Monte Carlo simulation assuming perfect state knowledge;
uncertainty in motor torque constant (ε = 1.2)

A steady-state error is again observed for linear control and backstepping regarding vertical
velocity tracking. The same does not hold true for incremental backstepping. Figure 8-9
shows the time histories of states and control action for this uncertainty scenario.
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Figure 8-9: Controller performances for uncertainty in motor constant (ε = 1.2); F1, F2, F3 and
F4 denote the control forces for each motor
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Perfect state knowledge: motor time constant uncertainties

Table 8-5: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge;
30% uncertainty in actuator time constant (ε = 1.3)

PHITD TTATD XTD YTD ZDTD
mean x

LIN -0.1074 0.1344 0.0082 0.0074 0.8332
BKS -0.1076 0.1335 0.0084 0.0070 0.8311
IBKS -0.0954 0.0949 0.0062 0.0062 0.5021

std σ
LIN 1.2008 1.2704 0.0840 0.0804 0.1190
BKS 1.1869 1.2553 0.0811 0.0771 0.1189
IBKS 0.9015 0.9592 0.0630 0.0592 0.0924
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Figure 8-10: Boxplot for 200-sample Monte Carlo simulation assuming perfect state knowledge;
uncertainty in motor time constant (ε = 1.3)

To clearly show the negative effects of mismatches in modeled actuator delays, Figure 8-11
shows time histories of the states and control action for an uncertainty in the motor time
constant for ε = 2.
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Figure 8-11: Controller performances for uncertainty in motor time constant (ε = 2); F1, F2,
F3 and F4 denote the control forces for each motor
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Perfect state knowledge: rotor gyro effect uncertainties

Table 8-6: Monte-Carlo simulation results for 200 samples assuming perfect state knowledge;
uncertainty in rotor gyro effect (ε = 100)

PHITD TTATD XTD YTD ZDTD
mean x

LIN 0.0137 -0.0232 -0.0017 -0.0008 0.5134
BKS 0.0144 -0.0204 -0.0011 -0.0008 0.5123
IBKS 0.0185 -0.0242 -0.0015 -0.0012 0.5170

std σ
LIN 0.9474 0.8544 0.0575 0.0635 0.0847
BKS 0.9421 0.8526 0.0547 0.0599 0.0847
IBKS 1.0052 0.9078 0.0597 0.0657 0.0848
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Figure 8-12: Boxplot for 200-sample Monte Carlo simulation assuming perfect state knowledge;
uncertainty in rotor gyro effect (ε = 100)

No difference between the control laws is observed. Therefore, an exaggerated uncertainty
with ε = 6500 is introduced and the results are presented in Figure 8-13. The effects of this
last uncertainty, seen as a disturbance, will be explained later.
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Figure 8-13: Controller performances for extreme case of uncertainty in rotor gyro effect (ε =
6500); F1, F2, F3 and F4 denote the control forces for each motor
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8-4 Simulations with state estimator in the loop

With state estimator in the loop: no uncertainties

Table 8-7: Monte-Carlo simulation results for 1000 samples using state estimator in the loop;
no uncertainties

PHITD TTATD XTD YTD ZDTD
mean x

BKS -0.1409 -0.0950 0.0409 -0.0443 0.7705
IBKS -0.1660 0.0085 0.0064 -0.0849 0.7009

std σ
BKS 2.0923 1.8025 0.0550 0.0847 0.2563
IBKS 1.9672 1.8131 0.0579 0.0914 0.2493
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Figure 8-14: Boxplot for 1000-sample Monte-Carlo simulation using state estimator in the loop;
no uncertainties

The complete mission is shown in Figure 8-15 and the landing phase is presented in Figure 8-
16. The robustness tests carried out were identical to the perfect state knowledge case, with
the exception of the rotor gyro effect.
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ż
[m

/s
]

h
[m

]

y
[m

]
x
[m

]

0 10 20 30 400 10 20 30 40

0 10 20 30 400 10 20 30 40

0 10 20 30 400 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

−20

0

20

−20

0

20

0

2

4

0

2

4

0

5

0

5

−1

0

1

2

0

10

20

30

−1

0

1

−1

0

1

Figure 8-15: Simulation of the complete mission; F1, F2, F3 and F4 denote the control forces
for each motor
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8-4-1 Robustness to uncertainties

With state estimator in the loop: mass uncertainties

Table 8-8: Monte-Carlo simulation results for 200 samples using state estimator in the loop;
uncertainty in mass (ε = 1.25)

PHITD TTATD XTD YTD ZDTD
mean x

BKS -0.1375 -0.0802 0.0285 -0.0257 1.2299
IBKS -0.2608 -0.0397 0.0062 -0.0571 0.7607

std σ
BKS 1.8089 1.6634 0.0694 0.0946 0.2867
IBKS 2.0074 1.8449 0.0548 0.0931 0.2492
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Figure 8-17: Boxplots for 200-sample Monte-Carlo simulation using state estimator in the loop;
uncertainty in mass (ε = 1.25)
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With state estimator in the loop: inertia uncertainties

Table 8-9: Monte-Carlo simulation results for 200 samples using state estimator in the; 30%
uncertainty in inertia (ε = 1.3)

PHITD TTATD XTD YTD ZDTD
mean x

BKS -0.3128 0.0387 0.0455 -0.0475 0.7847
IBKS -0.2308 0.0780 0.0056 -0.0652 0.7200

std σ
BKS 2.0144 1.5930 0.0521 0.0774 0.2525
IBKS 2.0607 2.1296 0.0547 0.0845 0.2255
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Figure 8-19: Boxplots for 200-sample Monte-Carlo simulation using state estimation; uncertainty
in inertia (ε = 1.3)
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With state estimator in the loop: motor constant uncertainties

Table 8-10: Monte-Carlo simulation results for 200 samples using state estimator in the loop;
uncertainty in motor torque constant (ε = 1.2)

PHITD TTATD XTD YTD ZDTD
mean x

BKS -0.1583 -0.0878 0.0278 -0.0317 1.3110
IBKS 0.0376 -0.3397 0.0074 -0.0593 0.7432

std σ
BKS 1.6255 1.5991 0.0677 0.0934 0.2642
IBKS 2.4437 2.2761 0.0519 0.1012 0.2459
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Figure 8-21: Boxplots for 200-sample Monte-Carlo simulation using state estimator in the loop;
uncertainty in motor torque constant (ε = 1.2)
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With state estimator in the loop: motor time constant uncertainties

Table 8-11: Monte-Carlo simulation results for 200 samples using state estimator in the loop;
uncertainty in motor time constant (ε = 1.3)

PHITD TTATD XTD YTD ZDTD
mean x

BKS 0.0731 -0.1861 0.0426 -0.0731 1.0459
IBKS -0.1015 -0.1196 0.0011 -0.0702 0.7949

std σ
BKS 1.9261 1.7071 0.0566 0.0992 0.3102
IBKS 2.1829 2.0336 0.0577 0.0946 0.2893
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Figure 8-23: Boxplots for 200-sample Monte-Carlo simulation using state estimation; uncertainty
in motor time constant (ε = 1.3)

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



8-4 Simulations with state estimator in the loop 145

 

 

IBKSBKS

θ
[d
eg
]

φ
[d
eg
]

time [sec]

F
4
[N

]

time [sec]

F
3
[N

]

F
2
[N

]

F
1
[N

]

ż
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With state estimator in the loop: rotor gyro effect uncertainties

Table 8-12: Monte-Carlo simulation results for 200 samples using state estimator in the loop;
uncertainty in rotor gyro effect (ε = 100)

PHITD TTATD XTD YTD ZDTD
mean x

BKS -0.1266 0.0360 0.0407 -0.0538 0.7278
IBKS 0.0651 -0.1104 0.0313 -0.1068 0.7064

std σ
BKS 1.9969 1.7259 0.0538 0.0870 0.2451
IBKS 1.8667 1.6247 0.0554 0.0923 0.2374
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Figure 8-25: Boxplots for 200-sample Monte-Carlo simulation using state estimator in the loop;
uncertainty in rotor gyro effect (ε = 100)
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Figure 8-26: Controller performances for extreme case of uncertainty in rotor gyro effect (ε =
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8-5 Discussion

Two sets of simulations were performed: one without any state estimator in the loop (per-
fect state knowledge) and another with the state estimator in the loop. For each set, the
controllers were tested for the case in which the model is completely known and also for
model mismatch cases. For the latter, five robustness tests were performed for uncertainties
in mass, inertia, motor torque and time constants and gyro effect. The results obtained are
now critically analyzed and a discussion is given separately for perfect state knowledge and
with the estimator in the loop.

8-5-1 Critical analysis of results with perfect state knowledge

200-sample sets of external conditions were used to test the controllers for the case in which
perfect state knowledge is assumed. Note that this assumption is unrealistic, but it is im-
portant to evaluate the control laws without estimation errors in order to allow for a fair
comparison between them. For instance, incremental backstepping uses feedback signals of
angular accelerations, while the linear controller and standard backstepping do not. An erro-
neous estimation of such quantities may lead to poorer performance of the incremental-based
control law when, in fact, the estimation block may be the possible cause of worse perfor-
mance. The control laws are then first examined without the inclusion of the estimator to
allow for the evaluation of the control law alone.

The first simulation shown concerns the best case scenario: no uncertainties with perfect
state knowledge. All controllers allowed the quadrotor to successfully land on the buoy. From
Figure 8-3, note that when further away from the target, the helicopter descends without
taking into consideration the platform’s motion; however, when closer to it, the vertical
control is adjusted to cope with the buoy’s dynamics. It is clear that the differences between
the results obtained for the different controllers are very small. This shows that for such
optimal conditions, no major conclusions can be drawn. The robustness tests, however,
present conclusive results. The new findings are explained below.

For a mass uncertainty of 25%, a steady-state error is observed in sink rate for the linear
and backstepping controllers. This result was expected, since no integral action was added.
However, even without integral gains the incremental backstepping controller was capable of
following the command signals, and the desired mean value of approximately 0.5 m/s was
achieved. Furthermore, an improvement is observed for the incremental-based control law
regarding the dispersions of all assessment criteria parameters, which are lower compared to
those of the linear and backstepping controllers.

As for a 30% deviation in inertia, no noticeable differences between controllers are observed.
In fact, the results are very similar to those obtained for no uncertainties. An exaggerated
and unrealistic mismatch is tested considering ε = 4. Note that while for the linear and
backstepping controllers satisfactory performance is still observed, the same cannot be said
for incremental backstepping, for which large oscillations in attitude angles are observed. This
is due to an increase in the control activity. This last case is unrealistic and should never be
expected in controller design; however, it is included to demonstrate the mentioned control
law properties.

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



8-5 Discussion 149

The performance for an uncertainty in motor torque constant was also tested. The sta-
tistical data shows that the effects of this uncertainty are very similar to the effects of mass
uncertainty (see above for details). However, one important conclusion can be drawn. Recall
that incremental-based control laws require the system’s current input. Since the actual ac-
tuator output cannot be measured, it could be expected that the performance for incremental
backstepping would suffer when dealing with actuator modeling uncertainties. However, a
motor torque constant deviation of 20% did not hinder the controller performance, showing
that incremental backstepping is somehow robust to actuator gain uncertainities.

The next test is a continuation of the previous. Actuators have gain factors as well as time
delays; therefore, a motor time constant uncertainty is introduced. The statistical data
analysis is identical to that explained for the mass and motor time constant uncertainties.
The effects of incorrect assumption of the actuator time delay are explained as follows. When
computing the system’s current input, if the real actuator time delay is larger, then the
control law will compute the wrong input. This may in turn affect stability properties. It is
observed, however, that incremental backstepping is somehow robust for a deviation of 30%
in this parameter. A larger deviation is also shown for ε = 2 for which oscillations in the
attitude angles are observed for the incremental-based control law.

The rotor gyro effect uncertainty was introduced to test how the controllers would reject
disturbance torques. Since the moments generated by this effect are not measured (or esti-
mated), and therefore are not taken into account in the controller design process, they are seen
as disturbances. For the case in which the gyro effect is 100 times stronger, the differences
are not significant. However, to show the advantage of using incremental backstepping, an
extreme case is tested assuming an uncertainty factor of 6500 in gyro effect. The closed-loop
response with the incremental-based controller was similar to the nominal response, while
the system became unstable for the linear and backstepping cases. Note that when using
incremental backstepping, the information from this disturbance is contained in the angular
accelerations that are fed back to the controller. It should be stressed that this extreme case is
unrealistic, but the order of magnitude of such disturbance could be the result of other effects
in a realistic simulation. The main conclusion to be drawn is that incremental backstepping
possesses better large torque disturbance rejection properties.

Overall, it can then be concluded that incremental backstepping is more robust to model
uncertainties. One of its main advantages is its integral-like action without the drawbacks
of using integrators. Additionally, although the incremental-based control law requires an
actuator model in the controller, it is robust to realistic actuator uncertainties. Furthermore,
it was observed that this control law possesses very powerful rejection capabilities for strong
disturbance torques.

8-5-2 Critical analysis of results with state estimator in the loop

More realistic simulations were performed by including the state estimator in the loop. It
was already shown in Chapter 6 that although it is possible to reconstruct the states with the
sensors used, the estimation was not perfect. It is then interesting to evaluate the performance
of the different controllers in the presence of state estimation errors.

First, when testing the linear controller with the state estimator in the loop, very poor
performance was observed (note that low-quality sensors are used). In fact, without any ad-
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justments, the controller could not follow the target and divergent responses were obtained.
The controller was then subjected to further tuning until satisfactory performance was ob-
served. Although it could then successfully land on the buoy for the nominal case, crashes
were still frequent in Monte-Carlo analyses. Further improvement of the linear controller was
considered irrelevant for the research being carried out, as the main focus lies on incremental
backstepping. Nevertheless, one main conclusion can already be drawn. Recall that the first
controller to be tuned was the linear controller, and the exact same gains were used for back-
stepping and incremental backstepping. Furthermore, the backstepping-based control laws
presented stable behavior without any adjustments, while the controller based on linear the-
ory required further tuning to enhance performance. From these findings, it can be concluded
that the stabilizing terms obtained in the backstepping designs are helpful when estimation
errors are present.

The first simulation shown for the estimator in the loop is in fact the main simulation:
no uncertainities and state estimation block in the loop. As it pertains to the case that
determines whether the control laws serve their purpose, 1000 samples were used for the
Monte-Carlo analysis. The results show that both backstepping and incremental backstepping
are suitable control laws for the mission under consideration (to validate this statement even
further, a risk analysis is carried out as presented in Section 8-6). An increase in parameter
dispersion is observed compared to the perfect state knowledge case and is naturally due to
state estimation errors. Furthermore, it is observed that no major differences exist between
the controllers when analyzing the statistical data. Incremental backstepping, however, shows
a slight improvement with respect to TD sink rate characteristics. Taking a closer look into
the final landing phase for one case scenario (see Figure 8-16), it is possible to observe that
the desired vertical velocity command is tracked. This means that the controllers are working
properly in combination with the augmented Kalman filter proposed for estimation of the
platform’s vertical motion. Note that the peak frequency of the sea spectrum was obtained
on board (from a buffered signal) with the frequency analysis method explained in Section 6-
2-4.

For the robustness tests, 200 samples were used for each uncertainty.

For a 25% mass uncertainity, vertical velocity control was not properly achieved for backstep-
ping; this was expected after analyzing the perfect state knowledge case. Furthermore, the
dispersion for this parameter is larger when compared to that of incremental backstepping.
The results observed present very similar trends to those obtained for the mass uncertainity
with perfect state knowledge.

A test with inertia uncertainty has also been presented, showing that no major differences
were observed for the two control laws. The presence of state estimation errors produced
similar effects for both controllers; nevertheless, a larger deviation of the pitch angle at TD
is observed for incremental backstepping. Furthermore, a slight improvement is observed for
the incremental-based control law for sink rate characteristics at TD. Oscillations in attitude
are also observed for incremental backstepping in the case of large inertia mismatch.

The trends observed for actuator uncertainties (motor torque constant and motor time
constant) were identical to those observed for the case in which perfect state knowledge was
assumed. Note, however, that incremental backstepping now presents larger deviations for
the attitude angles at TD. For a larger time constant deviation, attitude oscillations are again
observed for incremental backstepping.
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When introducing the rotor gyro effect uncertainty with ε = 100, no major differences
between the two control laws were observed. However, the same cannot be said for a larger
uncertainty regarding this effect. Recall the factor used (ε = 6500) for the perfect state
knowledge case, for which incremental backstepping showed significantly better robustness
properties. When using the state estimator for ε = 650, the incremental-based control law did
not render stability while the backstepping control law did. This means that the incremental
backstepping disturbance rejection properties are strongly affected by angular acceleration
estimations.

It is concluded that although incremental backstepping presents better robustness properties
overall, even with the state estimator in the loop, the performance sometimes deteriorates
because of estimation errors. Specifically, the estimation of angular accelerations is key for
the problem analysis.

8-6 Risk analysis

A risk analysis, (Looye, 2007), can be performed by calculating the probability of crashing.
It only makes sense to do so for the case in which state estimation algorithms are used in the
loop, as this situation is closer to reality.

First, since the design of the landing platform is open in this phase of the project, the radius
of the landing area can be designed by using the Monte-Carlo data for the worst case scenario.
Figure 8-27 shows the risk (probability) of a failed landing as a function of the to-be-designed
landing area radius. It is clear that for small radius values, the probability is unacceptably
high. By selecting a risk threshold of 10−6, a radius of 0.52 m is obtained. This means that
the designated area allowed for landing would have a diameter of approximately 1 m.
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Figure 8-27: Risk (probability) of failed landing as a function of the landing area radius

The parameter thresholds for risk analysis demonstrations are defined as follows:

• |PHITD| > 10 deg

• |TTATD| > 10 deg
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• |XTD| > 0.52 m

• |Y TD| > 0.52 m

• ZDTD > 2 m/s

It should then be proven that the probabilities of the above conditions are residual.

Table 8-13 shows the results of the risk analysis, from which it is possible to conclude that
the probability of crashing is, in fact, residual.

Table 8-13: Risk analysis from Monte-Carlo simulation: 1000 samples, state estimator in the
loop and no uncertainties

PHITD TTATD XTD YTD ZDTD
risk

BKS 1.8534 · 10−6 3.0203 · 10−8 1.0101 · 10−24 9.7684 · 10−9 8.0484 · 10−7

IBKS 4.0663 · 10−7 3.4808 · 10−8 4.8824 · 10−20 9.5568 · 10−7 9.3917 · 10−8
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Chapter 9

Real-time implementation

For this study, a single test quadrotor with an on-board camera is used. In this chapter, an
overview of the real-time platform is presented from both a hardware and software perspective.
Implementation of the algorithms was tested in the MAVlab, using a safe setup which included
ropes to restrain the helicopter’s movement. A description of the real-time implementation of
the Kalman filter for estimation of position and velocity is given, as well as of the controller
as implemented on board. The various steps taken in order to achieve stable flight are also
described, and the results observed are discussed.

9-1 Hardware overview

The quadrotor possesses a cross-shaped frame. Self-designed base plates are the core of the
assembly and include a clamping system for the beams. These hold the engines and propellers
at their outer ends. All cables run through the beams (instead of outside of them). In the
center, the autopilot is attached to the rest of the quadrotor through four pins which damp
vibrations. Finally, the battery is placed below the core of the assembly and the camera is
positioned close to the CM, pointing downwards.

The base plates and beams together weigh 187 grams while each motor weights 61 grams.
The total weight of the vehicle without battery is 589 grams, meaning that the remaining
components together weigh 244 grams. Depending on the battery used, the total weight of
the quadrotor is then between 700 grams and 1 kg.

A short list of the most important components used for real-time implementation is given
below.

• Frame: Glass fiber base plates hold aluminum beams, that are hollow square tubes with
outside dimensions 10x10x180 mm, and 1 mm thickness.

• Motors: Robbe Roxxy 2827-34 brushless engines.
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• Rotor: 12 cm radius propellers.

• Autopilot board: Lisa/L. Lost Illusions Serendipitous Autopilot (Lisa) is a new range
of autopilots based on STM32 microcontrollers designed to run Paparazzi (software
introduced in the next section). Lisa/L is a dual processor board autopilot designed to
allow Linux to be used for Paparazzi airborne code.

• Battery: Lithium polymer with capacity of 3300 mAh (another one of 1800 mAh is also
available). With these types of batteries, the quadrotor has a flying time endurance of
approximately 10 minutes.

• Camera: CASPA VL from Gumstix (all details are given in Section 5-5).

All components mentioned are available at the MAVlab facilities.

9-2 Software overview

The software used for real-time implementation and testing is from the free and open-source
project Paparazzi. This software suite contains everything needed for an unmanned airborne
system to fly reliably. Highly effective stability and navigation code is also included; all algo-
rithms implemented for this thesis were then additions or modifications to existing software.

The Paparazzi Center (see Figure 9-1) is a graphical user interface that can be used for real-
time testing and includes: a section containing a set of configurations boxes, a section for
building the program and uploading code to the quadrotor and a section for execution.

Figure 9-1: Paparazzi center

A set of tools is also available to facilitate real-time testing tasks. What follows is a list and
short description of the most commonly used tools. As an example, a simulated flight of a
microjet is shown for altitude change maneuvers.

• Ground Control Station (GCS), Figure 9-2, which allows the operator to monitor im-
portant flight information such as battery level, datalink status, modes available, etc.
A settings tab is available that permits the operator to change variable values during
flight, including controller parameters and desired set points.

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



9-2 Software overview 155

sensor

Figure 9-2: Paparazzi GCS

• Messages, which allows for visualization of the variables being sent in the telemetry.
With this tool, the operator has access to the measurements’ numerical values.

• Real-time plotter, which is a tool to plot real-time data broadcast on the Paparazzi
network bus. The main features are: drag and drop from the messages window, plot
multiple curves in single window including constant lines and scale variables.

Figure 9-3 shows an example of how the microjet maneuver can be monitored in real time
with this tool. The real-time plots show the pitch angle and altitude of the aircraft.
At any time, new messages can be dragged to the window for visualization of other
variables.

• Log plotter, which is a tool to plot data recorded in a log file. After a flight test, all
values can be exported in Comma-Separated Values (CSV) format to a text file using
this tool. The main features are similar to those of the real-time plotter.

For the example shown, it could be useful to perform a close analysis of the pitch
response with respect to the desired value commanded by the controller. This situation
is illustrated in Figure 9-4.
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ailable

Figure 9-3: Paparazzi messages and real-time plotter

plate

Figure 9-4: Paparazzi log plotter

9-3 Testing setup

Helicopters are dangerous due to their spinning rotor blades. Furthermore, in the event of a
crash, repair of the quadrotor could take up to several weeks. Therefore, to avoid accidents a
test setup was prepared in order to achieve maximum safety. Four ropes were attached to the
end of each arm and one rope was attached to the quadrotor’s core. The first four were tied
to heavy objects on the floor, and the other core stabilizing rope was secured to the ceiling.
By allowing these ropes to remain loose, a volume of operation is created. The movements’
limits of operation are reached when one or more ropes are pulled taut.

Note that it is important to ensure that these ropes are not caught in the blades. For this
reason, a new feature was introduced to avoid such a situation. Stiff components were added
to the portions of rope nearest to the rotors, positioned to point away from the blades as
much as possible. A schematic representation is presented in Figure 9-5, followed by the real
lab setup ready for testing in Figure 9-6.
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Figure 9-5: Test setup

Figure 9-6: Quadrotor ready for testing

9-4 System overview

The real-time system overview is presented in Figure 9-7. What follows is an explanation of
the different system blocks.

• Quadrotor. This block describes the helicopter’s behavior and includes actuators and
sensors.

• State estimation. Some states are directly available as measurements and can be used
readily in the controller. However, some other states must be estimated. In this study,
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Figure 9-7: Real-time system overview as implemented in Paparazzi

a Kalman filter for integration of IMU with vision data was implemented in real time
(presented in Section 9-5). An Attitude Heading Reference System (AHRS) was already
implemented in Paparazzi for attitude estimation and was used without any modifica-
tion.

• Controller. The control algorithm was divided into

– horizontal loop, concerning the vehicle’s longitudinal and lateral inertial position
variables (x and y);

– vertical loop, concerning the vehicle’s vertical inertial position variable (z).

These control loops are explained in detail in Section 9-6.

• Supervision. This block is equivalent to the linear control allocation explained in Sec-
tion 7-5-2. However, since the actuator model is not known, a simpler version is imple-
mented as explained next. The controller produces three torque commands (cmdroll,
cmdpitch and cmdyaw) and one thrust command (cmdthrust). Therefore, a transition
matrix is applied to obtain the required input Ui for each motor as follows
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(9-1)

The input is then saturated by the minimum and maximum allowed values, before a
command is given to the actuators.

Note that since the control allocation is done without physical knowledge of the motor
characteristics, it is necessary to tune the controller accordingly, i.e., manual tuning is
required.

9-5 Kalman filter implementation

The filter implemented in real time is a linearized version of the Kalman filter developed
in Section 6-3 and, for convenience, is briefly explained here. Kinematic acceleration is the
second-time derivative of position

ẍ = ax (9-2)
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Let x1 = x and x2 = ẋ and consider a measurement of acceleration given by

am = a+ λa + wa (9-3)

where λa is a bias and wa is measurement noise. Furthermore, let x3 = λa and assume that
the bias is constant such that

ẋ3 = λ̇a = 0 (9-4)

Assume now that a measurement of position is available and is described by the following
equation

xm = x+ vx (9-5)

The following state space description is then obtained
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(9-6)

which is in the same format as the system (6-1), meaning that the discrete linear Kalman
filter algorithm can be applied.

Acceleration measurements are available from accelerometers and position measurements are
available from the vision system. Therefore, the formulation described above can be used for
estimation of the quadrotor’s position and velocity. Note, however, that to obtain kinematic
acceleration the accelerometer measurements must be compensated for gravity. Furthermore,
both accelerometers and the camera measurements are expressed in the body-fixed reference
frame; this means that rotations to the navigation frame are required, based on the estimated
vehicle’s attitude. It should be stressed that since no synchronization between IMU and vision
data was achieved, rotation of camera measurements was not implemented.

The position/velocity filter for integration of vision with IMU data was implemented in the
autopilot board, and the filter output was then used for control purposes. Accordingly, the
objective of the first tests conducted was to tune the Kalman filter parameters. Recall the
Kalman filter formulation explained in Chapter 6, from which it follows that the tuning pa-
rameters are: the initial state conditions, the initial state covariance matrix and the covariance
matrices of the process noise (Qd) and measurement noise (R). In Section 6-1, an explanation
is given on how to select the values for these parameters. However, when dealing with the
actual system, manual tuning is required based on the filter’s observed behavior.

What follows is an example concerning the aspect that is most relevant to achieving satis-
factory flight results. The camera measurements are expressed in the body-fixed reference
frame and no attitude correction is made in order to rotate these to the navigation frame.
The consequences of using non-compensated measurements are explained in Section 9-8. To
tackle this issue, it is possible to tune the Kalman filter to rely more on twice-integrated
accelerometer measurements. By increasing the value of R, artificial measurement noise is
introduced in the filter making the camera measurements less reliable. To illustrate this tun-
ing procedure, Kalman filter results for R = 0.1 and R = 8 are shown in Figures 9-8 and 9-9,
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respectively. Note that for a greater R value, the filtered output follows the camera measure-
ments less strictly. With this strategy, the vision system is then mostly used for accelerometer
bias estimation. It should be stressed that while this solution is far from ideal, it certainly is
functional. Nevertheless, camera measurements are still more accurate, meaning that better
performance is expected when attitude compensation is performed.
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Figure 9-8: Kalman filter example for the y coordinate; R = 0.1

After the tuning procedure, reliability tests were performed to check the correctness of the
Kalman filter implemented on board, while functioning in real time. An example is presented
in Figure 9-10. Table 9-1 presents mean values and standard deviations of the innovation
sequences shown.

Table 9-1: Statistical data of the innovation sequences for the Kalman filter operating in real
time

Innov. sequence Mean (m) Std. deviation (m)

x -0.0020 0.0357
y 0.0053 0.0273
z -0.0020 0.0115
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Figure 9-9: Kalman filter example for the y coordinate; R = 8

9-6 Real-time controller

One of the contributions of this study was a complete description the multi-rotor controller
as implemented in Paparazzi. Since Paparazzi is an open-source project, all control loops are
available online from http://paparazzi.enac.fr/wiki/Control Loops (Multi-rotor section).

A modified version of the hover loop was utilized for the flight tests and, for convenience,
is presented here. As mentioned previously, the controller is divided into two main loops:
horizontal and vertical. These are now explained. It should be mentioned that all errors can
be bounded before being multiplied by their respective gains. Furthermore, the command
filters presented are second-order filters as described in Appendix D. Finally, the subscript
dd stands for double-derivative.

9-6-1 Horizontal loop

Horizontal hover

The control laws for horizontal hovering are described according to the following equations

xc = Kxp(x− xsp) +Kxd(ẋ) +Kxi

∫

(x− xsp)dt

yc = Kyp
(y − ysp) +Kyd

(ẏ) +Kyi

∫

(y − ysp)dt

(9-7)
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and the rotation to body is given as

φsp = − sinψxc + cosψyc

θsp = −(cosψxc + sinψyc)
(9-8)

Attitude (inner) loops

The attitude loops as implemented in the real-time platform are described according to the
following equations

cmdroll = Kφp
(φ− φc) +Kφd

(p− φ̇c) +Kφi

∫

(φ− φc)dt+Kφdd
φ̈c

cmdpitch = Kθp(θ − θc) +Kθd(p− θ̇c) +Kθi

∫

(θ − θc)dt+Kθddθ̈c

cmdyaw = Kψp
(ψ − ψc) +Kψd

(p− ψ̇c) +Kψi

∫

(ψ − ψc)dt+Kψdd
ψ̈c

(9-9)

9-6-2 Vertical loop

hover

command
filter

(order 2)

zsp
vertical

cmdthrust

Figure 9-12: Vertical loop
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Vertical hover

The vertical hover control loop is described by

cmdthrust = Kzp(z − zc) +Kzd(ż − żc) +Kzi

∫

(z − zc)dt+Kzddz̈c + trim (9-10)

9-7 Towards stable flight

Since no model of the motors was available, it was not possible to select the controllers gains
offline. Furthermore, as the control loops are coded in Paparazzi using fixed point arithmetic
(integer representation) to improve speed, it is difficult to assign a physical meaning to the
controller gains. Consequently, these gains were thus tuned manually. The key is making sure
to tune the gains in the correct order.

9-7-1 Inner loop

The gains were first tuned to allow for manual control in the attitude mode (inner loop).
When holding the quadrotor with the motors spinning, the rotors can be felt pushing the
helicopter in a certain direction. By tilting the quadrotor at a certain angle to either side, the
proportional gain should cause the quadrotor to attempt to regain zero-angle position and
restore the trim condition. Also, the derivative gain should lead to damping of the velocity
during transient periods. To tune this last gain, it is necessary to introduce fast rotation
motions and see whether the controller is able to attenuate angular velocity. The integral
gain is added in the end and increased by small increments until oscillations are observed.
Then it is reduced to permit proper flying qualities.

The previous tuning should permit disturbance rejection. However, to follow reference orders
commanded by an outer loop (either a human or an autopilot), two more parts of the controller
must be tuned; first the reference commands, and then the double derivative gain. For the
first, is it necessary to ensure high speed with large damping of the attitude mode. To achieve
such performance the natural frequency is selected as a large value and the damping coefficient
between 0.7 and 1. Finally, the double derivative gain is increased until fast response to
attitude commands is reached.

9-7-2 Outer loop

The algorithms implemented for autonomous flight were tested with low gains in a first flight,
in which several real-time implementation issues became evident. Namely, the corruption of
magnetometer information indoors, which lead to false yaw measurements, caused problems
not only for yaw stabilization but also for calculation of rotation matrices. This issue was
tackled by faking magnetometer measurements (ψ ≈ 0). Note that it is irrelevant whether the
nose of the vehicle points to North or any other direction. Nevertheless, it is still important
to ensure damping of the yaw motion, which is obtained using gyro information. All rotations
after this step did not take into account the ψ angle.
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Horizontal damping

To achieve stable flight, one of the most important steps is to obtain damping. The setup
with the ropes was ideal for tuning this parameter, since it was possible to let the quadrotor
hang on the rope attached to the ceiling.

The rope hanging from the ceiling worked as a sort of proportional gain for the horizontal
motion. By letting the quadrotor swing from an initial position, it was observed that with no
controller, the top rope would make the quadrotor swing around the equilibrium point with
very little to low damping. When the autopilot was activated, the motion was damped by the
derivative action of the horizontal outer loop. As an example, Figure 9-13 shows a damped
oscillation observed during the tuning phase. The gain was increased until high frequency
oscillations were observed. These oscillations were caused due to the fact that no attitude
corrections were made for the visions measurements.
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Figure 9-13: Damped horizontal motion; result obtain during tuning procedure

Vertical control

After achieving the highest damping possible for the vehicle’s translational horizontal motion,
it was necessary to tune the vertical loop. First the derivative gain was increased, and to
test whether the corresponding action was effective, fast vertical motions were introduced by
hand. When pushing the quadrotor down, all motors’ power should increase; contrarily, when
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pulling the quadrotor up, all motors’ power should decrease. Since this was only tested with
derivative gain, changes were only observed during the transient periods.

Proportional gain was then added to ensure not only velocity but also vertical position control.
This new action could be tested by changing the desired altitude set point and observing
whether the quadrotor would try to climb up or descend as desired. Finally, a very low
integral gain (compared to proportional and derivative of this mode) was included. The effects
of this gain are only visible by analyzing whether the actual desired altitude is achieved or if
a steady-state error is present.

Figure 9-14 shows an example of vertical motion control with all three actions implemented.
The quadrotor starts at a resting altitude of 70 cm and a desired altitude of 95 cm is com-
manded from the GCS. Note that to climb, a negative peak in vertical velocity (upwards
direction in the NED frame) is observed. Furthermore, the velocity while hovering is always
close to zero.
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Figure 9-14: Vertical control in real time

9-7-3 Full free flight

With the control loops tuned as explained previously, a complete free flight can be performed.
For this case, the ropes are made loose to allow more freedom of movement for the quadrotor.
Contrary to the previous steps, at this point the safe testing setup is only used for extreme
cases in which the vehicle could crash.
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For these tests, the quadrotor starts at a resting position and an altitude change is commanded
from the GCS. Since the system already possesses damped behavior for lateral motion, the
quadrotor can hover above the target at the desired altitude. Results from one of these flight
tests were logged and are shown in Figure 9-15. It is possible to observe that the quadrotor
is not exactly aligned with the target; this was expected since no proportional and integral
actions were added for the horizontal translational motion.
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Figure 9-15: Position and velocity plots for free flight in real time

9-8 Discussion

Following the tuning procedure and flight tests, a critical analysis is now given of the results
obtained for the real-time implementation. First, it should be stressed that although all
concepts designed and tested in simulated flights are valid, some adjustments are required
when implementing the algorithms on board a real quadrotor. The challenges predicted in
Section 1-3, associated with this component of the project, were encountered during the
implementation phase. Furthermore, other unforeseen difficulties arose during testing.
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One of the first issues that should be discussed is the fact that delayed measurements, ag-
gravated by other lags such as actuator delays, affect the closed-loop stability. Specifically,
the vision system output has a delay of about 0.06 to 0.2 seconds. A simple analysis in the
frequency domain is performed to explain this issue. Since the quadrotor’s exact model is
not available, a simple system is used to clarify this stability problem. Assume that the roll
angle is already stabilized with an inner loop such that second-order linear dynamics are ob-
tained between a reference command and the actual Euler angle (for the example, a natural
frequency of 3 rad/s and a damping coefficient of 0.7 are considered to describe this inner
loop). To control lateral velocity, an outer loop is designed with a single negative feedback
proportional gain (for the example, the gain is taken as -0.2 rad(m/s)−1). A bode plot of the
open-loop system is shown in Figure 9-16 to analyze the closed-loop stability margins. From
this plot, it is possible to determine that the stability delay margin is of 0.338 seconds. This
example does not match exactly with reality, but serves as a perfect example to show how
the camera delays affect stability properties. Note that velocity feedback is obtained through
vision measurements.
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Figure 9-16: Bode plot for stability margins analysis

The position measurements obtained from the vision system are expressed in the body-fixed
reference frame. To obtain the corresponding position expressed in the navigation frame,
a coordinate-transformation method was proposed and validated offline. For this method,
attitude measurements extracted from IMU data were used. As mentioned before, synchro-
nization of camera with IMU is then required to perform the necessary rotations. The delayed
vision measurements are obtained at an asynchronous update rate, which adds an extra chal-
lenge to the task. For this reason, the attitude compensation was not implemented in this
study and the consequences are explained as follows. Consider as an example a rolling motion
with no translation. If the quadrotor tilts to the right, the target will shift to the right side
of the camera’s image. Furthermore, if this motion is perceived as a translational motion
(the apparent movement would be a translation to the left), then the control system would
command a roll angle to the right. This will cause the quadrotor to rotate even more to the
right, thus aggravating the stability condition. The strategy adopted to solve this issue was
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to tune the Kalman filter so that it would rely less upon camera information by increasing
the R matrix as illustrated in Section 9-5. Despite the fact that better results were obtained
after this modification, it should be noted that this attitude compensation is a major issue
compromising the controller’s performance.

The magnetometer measurement was another issue that posed some difficulties. Since the
tests were run indoors, yaw measurements were corrupted by the local magnetic field. The
main implications of this issue can be viewed from two perspectives. First, yaw attitude
estimation is required for yaw motion control. In fact, for this specific application, it does
not matter if the quadrotor is pointing in a certain direction or not. However, it was ob-
served that yaw control is necessary to achieve an overall stable flight. Second, yaw-angle
estimation is necessary for coordinate transformations. Note that the accelerations measured
in the body-fixed reference frame must be rotated to the navigation frame. Thus, if the es-
timation is incorrect, integrations of the accelerations will then be performed in the wrong
directions. Moreover, if the yaw measurements possess too much noise, this noise will affect
position/velocity estimations when rotations are performed.

One of the major unforeseen issues in simulation was the convergence of the states correspond-
ing to the accelerometer biases. The real biases change over time, therefore it is necessary
to estimate these parameters for each flight test. Once the filter is activated along with the
large initial state covariance matrices, the states converge very quickly. This situation rep-
resents when the quadrotor is not yet in flight, meaning that the attitude angles may differ
from those when hovering, and consequently the bias estimations may be incorrect. After a
certain period of time, the state covariance values decrease, meaning that once the quadrotor
begins to fly the convergence of the biases is slower. A resetting procedure was implemented
to guarantee fast convergence when required. This procedure was based on a re-initialization
of the covariances to their initial large values (Lombaerts, 2010).

The accelerometer bias estimation affected not only position/velocity estimations, but also
attitude estimation. In addition, the Euler angles determination had a strong effect on the
overall stability and performance observed. In fact, it was noted that these parameters could
not be estimated properly. A human pilot can adapt the control strategy to deal with large
attitude offsets and fly the rotorcraft manually, but the same does not hold for the automated
system unless necessary adjustments are performed.

The aforementioned issues were addressed to discuss the real-time implementation results
obtained. It should be stressed that other minor issues were also encountered. To finalize
this discussion, the use of the selected cheap and light sensors makes the control task more
challenging. However, one of the main conclusions to be drawn from this study is that with
proper software and hardware solutions, stable flight with satisfactory performance is possible
as shown by the results obtained.
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Chapter 10

Conclusion

A design solution for a vision-based automatic landing problem has been proposed in this
thesis. Specifically, contributions have been made regarding modeling, nonlinear robust con-
trol, computer vision and state estimation. This chapter is a conclusion to the study, where
final remarks are made including a critical analysis of the design choices and results obtained,
a list of lessons learned and recommendations for future work.

10-1 Critical analysis of design choices and results obtained

10-1-1 Modeling

Modeling the highly nonlinear dynamics of a four-rotor helicopter is a challenge that has
been faced by many research teams in the recent past. In this thesis a new contribution is
given regarding calculation of moments of inertia, as an innovative experimental procedure
was proposed and implemented. For the experiment, a two-axis motion simulator and a six-
component force/torque sensor were used. For comparison, the inertia properties were also
determined using two modeling techniques: point mass analysis and simple geometric shapes
assumption. The results show that the experimental method is valid, as identical results were
obtained when using the simple shapes assumption technique. Since the theoretical method is
more cost-effective and less time-consuming, it can be concluded that modeling components
as known geometric shapes is a reliable strategy for determining the moments of inertia of
small UAVs. Furthermore, one of the most important conclusions is the fact that point mass
analysis can result in erroneous calculations (deviation of 20-30% from the real value) leading
to a significant model mismatch.

10-1-2 Computer vision

Computer vision has a been a topic of increasing interest among UAV-related research. This
thesis continues the trend by proposing a vision-based algorithm for position estimation. The
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general idea was to use a target with known characteristics to calculate relative position
between the quadrotor and the target. The target was designed as one or multiple red circles
and the vision algorithm was tested with a Gumstix camera operating on board of a quadrotor.
The results of this approach showed accurate position estimation.

10-1-3 Control and state estimation

This thesis proposes a design solution for vision-based automatic landing of a quadrotor UAV
on a floating platform. The proposed solution includes GPS navigation to find the buoy and
vision-based control for autonomous landing. In this study, the platform’s motion was used
in the control laws to enhance performance. What follows are conclusions drawn regarding
control and state estimation.

Recent studies at DUT have shown that so-called incremental-based control laws present
better robustness properties. In this thesis, a new contribution towards advanced certifiable
nonlinear controllers is given. The technique used is based on incremental backstepping
applied to quadrotor position (or velocity) control. The simulation results show that this
control law is more robust to external disturbances and model uncertainties when compared
to linear or even conventional backstepping controllers. Such robustness properties were
demonstrated for modeling mismatches in mass and inertia properties, actuator dynamics
and rotor gyro effect (seen as an external disturbance).

A modular approach for state estimation was also adopted. An AHRS algorithm based on
complementary filtering was implemented for attitude estimation using IMU measurements,
and a Kalman filter was developed for position/velocity estimation, providing integration
of IMU with vision data. Additionally, a new contribution was given with an augmented
Kalman filter formulation for estimation of a floating platform’s vertical motion. Despite
the fact that sensor noises were high and the camera had a low update rate, the algorithms
allowed for proper state reconstruction. It is concluded that the modular approach adopted
is a reasonable approach for the state estimation problem being studied.

One of the main conclusions to be drawn is the fact that the backstepping’s stabilization
properties are advantageous when using the controller in combination with the proposed
state estimation algorithms. In fact, with the simplest form of linear control (SISO loops
controlled by simple proportional gains), the closed loop was stable for the case of perfect
state knowledge, but was unstable when using the state estimation algorithms. The same did
not happen for the backstepping or incremental backstepping control laws; stable responses
were obtained for both, regardless of whether full state knowledge was assumed or state
estimation was used. It should be stressed that, in principle, the linear controller should work
with state estimation. To achieve satisfactory performance, the linear controller would have
to be further tuned. However, this step was considered irrelevant for this study.

Monte-Carlo simulation analysis was used to test the system for the autoland mission. Statis-
tically, the results show that backstepping and incremental backstepping are suitable control
laws to accomplish the goal with desired performance, and a risk analysis shows that the prob-
ability of crashing is residual. Furthermore, it is concluded that incremental backstepping
presents better robustness properties overall.
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10-1-4 Real-time implementation

Real-time implementation was performed to test the algorithms proposed, with the goal of
investigating the feasibility of implementation using cheap and light sensors. In fact, the
challenges faced posed major difficulties in the process of real-time implementation. While
stability in velocity for hovering over a red blob was achieved, this final step was only possible
after several modifications of the initial implementation. The main contributions given were:
an explanation of the existing control loops already implemented in Paparazzi, adaptation of
these to the hovering task and implementation of a Kalman filter for real-time integration
of vision with IMU data. No modifications were made to the AHRS already implemented
in Paparazzi, which presented erroneous pitch and roll estimations due to the accelerometer
biases. Furthermore, since the tests were performed indoors, the yaw angle estimation was
corrupted by the local magnetic field. The most important conclusion to draw from this study
is the fact that unwanted effects and modeling details that are not easily predictable create
a gap between simulated a real flight. Nevertheless, such issues sometimes require creative
solutions, and stability can be achieved in the end.

10-2 Next steps in the development phase

The study presented in this dissertation is the initial step toward achieving the final objective
of the autoland project stated in Section 1-1. During the development phase of this project
at DUT, and specifically at the MAVlab, several steps are still required to meet the end goal.
These are outlined below.

The real system should be tested outdoors in order to evaluate the controller and state esti-
mation algorithms for external environment conditions. Note that magnetometer information
should then be included in the loop.

The controller implemented in real-time is capable of hovering at a desired altitude. However,
this was achieved only with velocity control, i.e., without horizontal position control. Adding
this last component is then a step that must be taken. When the system is capable of
performing longitudinal and lateral control, then flight tests should be performed to analyze
whether the quadrotor can follow a moving target.

Finally, test landings are required to assess the design. Such tests should eventually be per-
formed with a target excited with vertical oscillatory motion. When this step is accomplished,
then the final goal is met, since the quadrotor could then perform vision-based automatic
landing on a floating platform.

It should be stressed that these steps may require adaptations of the current algorithms
implemented on board.

10-3 Lessons learned

Several useful lessons were learned during the course of this study. Some could be considered
too obvious, but these points can easily be forgotten when performing research. A short list
of lessons learned is shared below:
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• Literature research should always be well-organized and structured from the beginning.

• Experimental procedures should be well-prepared. Nevertheless, the testing engineer
should also be prepared to repeat measurements. When analyzing data, small errors in
the experimental procedure can often be found.

• In simulation, it is not so difficult to achieve desired performance for the nominal case.
The most challenging task is designing a controller that is robust for various combina-
tions of external conditions. Such analysis should be carried out for the nominal model
as for model uncertainties.

• Control and state estimation algorithms may work well independently; however, there
is no guarantee that they work well together.

• Real-time implementation should be done step-by-step. Simple tests should always be
performed before attempting to implement complex algorithms.

10-4 Recommendations for future work

A list of recommendations for future work is given below:

• Regarding the inertia experiment, it is possible to use the same concept to determine
the inertia cross-coupling terms and experimentally obtain complete knowledge of the
entire inertia matrix. Note that in this thesis, single axis rotations were used as they
render linear relationships between torques and angular accelerations. However, this
concept can be expanded since the motion simulator can rotate over both its axes at
the same time. A wobbling motion would then permit estimation of the other inertia
parameters. It would be interesting to analyze whether the assumption that the inertia
matrix is diagonal is, in fact, valid.

• Modeling of the attitude representation was based on a Euler-angle parametrization.
Alternatively, Quaternions, Rodriguez Parameters or Modified Rodriguez Parameters
representation of the rotational kinematics could be tested. On a similar note, the
overall model could also be improved. Specifically, the rotor dynamics were assumed
and do not correspond to the real dynamics of the actuators used for real-time testing.
Modeling the real dynamics would be useful for tuning the controller and enhancing
performance, particularly for implementation of incremental-based control laws. Ex-
perimental procedures could thus be implemented to build an accurate model.

• Regarding computer vision, different algorithms can be investigated for relative position
estimation. These include not only target features recognition, but also techniques based
on optical flow.

• Low-pass filtering was used in this thesis for estimation of angular accelerations from
gyro measurements. Despite the fact that satisfactory results were obtained, it is recom-
mended that more efficient methods be explored. These might include Kalman filtering,
predictive filters or even the introduction of angular acceleration sensors. This estima-
tion problem must first be investigated independently; however, as was learned in this
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study, the estimation method can only be accepted when the controller works well in
its presence.

• The controller gains were designed using pole placement. As a recommendation, multi-
objective optimization could be applied to obtain optimal gains as shown in (Looye,
2007). With this alternative approach, the Monte-Carlo results regarding assessment
criteria could be improved.

• An AHRS could be designed for accurate attitude estimation in real time. Attitude
is crucial not only for control purposes, but also for coordinate transformations. On a
similar note, a method for IMU/camera synchronization could be developed. This would
improve the controller performance significantly provided that the attitude estimation
was accurate.

• On the one hand, for this thesis, detailed descriptions of the Paparazzi control loops
were given from the designer perspective (as opposed to that of the user). On the
other hand, following other research contributions from DUT, it was shown once again
that incremental-based control laws are, in principle, more robust. With the real-time
platform ready for testing with code explanations, the perfect conditions are gathered
for testing incremental-based control laws in real time.
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Appendix A

Quadrotor parameters

The quadrotor parameters used in this thesis are listed below. This appendix includes quadro-
tor model constants, actuator parameters and sensor characteristics used for simulation pur-
poses, as well as values used for the theoretical moment of inertia calculations from Chapter 4.

A-1 Simulation parameters

The simulation parameters are given below. These parameters correspond to the model
constants introduced in Chapter 3. Note that some of the variables mentioned in the chapter
are not included in this appendix, as they are not needed for simulation purposes.

Table A-1: Quadrotor parameters used in the simulation model

parameter symbol value

mass (kg) m 0.5
roll moment of inertia (kg ·m2) Ixx 0.0050
pitch moment of inertia (kg ·m2) Iyy 0.0050
yaw moment of inertia (kg ·m2) Izz 0.0095
product moment of inertia (kg ·m2) Ixy 0.0000
product moment of inertia (kg ·m2) Ixz 0.0000
product moment of inertia (kg ·m2) Iyz 0.0000
inertia of all four rotors (kg ·m2) Jr 6·10−7

aerodynamic dimensionless drag coefficient (-) CD 0.5
aerodynamic area (m2) AD 0.0025
dimensionless thrust coefficient (-) CT 0.08
dimensionless moment coefficient (-) CMQ 0.02
propeller radius (m) R 0.1
arm length (from CM to center of the rotor) (m) l 0.15
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Table A-2: Actuator parameters used for the simulation model

parameter symbol value

drag factor (N ·m · s2) d 7.7·10−7

motor time constant (sec) τ 0.12
torque constant (N ·m/A) km 7.2·10−4

motor internal resistance (Ω) Rm 0.1
motor efficiency (-) η 1
total rotor inertia (kg ·m2) Jt 6·10−7

reduction ratio (-) r 4

The sensor characteristics are assumed as:

• accelerometers

– IMU distance to CM [m]: Dx = 0, Dy = 0, Dz = 0

– biases [m/s2]: λAx = 0.01, λAy = 0.01, λAz = 0.01

– noise standard deviations [m/s2]: σAx = 0.025, σAy = 0.025, σAz = 0.025

– update rate: 100 Hz

• gyroscopes

– biases [deg/s]: λp = 0.001, λq = 0.001, λr = 0.001

– noise standard deviations [deg/s]: σp = 0.5, σq = 0.5, σr = 0.5

– update rate: 100 Hz

• magnetometer

– bias of ψm [deg/s]: λψ = 0

– noise standard deviation of ψm [deg/s]: σψ = 0.1

– update rate: 100 Hz

• barometric altimeter

– bias of hm [m]: λh = 0

– noise standard deviation of hm [m]: σh = 0.01

– update rate: 100 Hz

• vision system

– biases [m]: λxcam = 0, λycam = 0, λzcam = 0

– noise standard deviations [m]: σxcam = 0, σycam = 0, σzcam = 0

– field of view [deg]: FOVx = 60, FOVy = 80

– update rate: 10 Hz

– camera time delay: 0.1 seconds
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A-2 Parameters for theoretical moment of inertia determination

Given below are the values measured (or assumed) for the moments of inertia analytical
calculations. For clarity, the geometric shapes assumed are shown in Figure A-1.

x

y

z

Figure A-1: Schematic representation of the quadrotor modeled with simple geometric shapes

For the point mass analysis, the following was assumed:

• Mmotor = 0.061 Kg

• larm = 0.171 m

For simple geometric shape analysis, the following was assumed:

• Motors: four cylinders

– Mcyl = 0.061 Kg

– zcm,cyl = 0.0275 m

– lcyl = 0.035 m

– rcyl = 0.014 m

• Arms: two slender rods

– Mrod = 0.0935 Kg

– zcm,rod = 0.005 m

– lrod = 0.342 m

• Core: one parallelepiped

– Mcore = 0.158 Kg

– zcm,core = 0.03 m

– acore = 0.09 m

– bcore = 0.05 m

– hcore = 0.04u m
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Appendix B

Controllability and observability

Controllability and observability are two fundamental concepts in mathematical system the-
ory, as they play an essential role in the design and control of systems. The theory presented
here has been obtained from (Olsder & Woude, 2005).

Consider a Linear Time-Invariant (LTI) state-space model given in the form

ẋ = Ax+Bu

y = Cx+Du
(B-1)

with x ∈ R
n, x ∈ R

m and y ∈ R
l. The matrices A, B, C and D are constant and have the

appropriate dimensions. Note that a nonlinear system can generally be represented by its
linearized form around an operating point. For brevity, system (B-1) is referred to as system
(A,B,C,D).

Definition B.1
The system (A,B,C,D) is called controllable if for any two states x0, x1 ∈ R

n, a finite time
t1 > 0 and an admissible input function u exist such that x(t1, x0, u) = x1.

Hence, a system is controllable if an arbitrary state x1 ∈ R
n can be reached starting from an

arbitrary state x0 ∈ R
n, in finite time t1, by means of the application of a suitable admissible

input function u.

Controllability is characterized in terms of the matrices A and B. Let the so-called control-
lability matrix be defined as

R =
[

A AB A2B · · ·An−1B
]

(B-2)

which is an n × nm matrix. Furthermore, im{R} denotes the controllable subspace. The
following lemma is useful in the development of conditions for the controllability of a system:

Lemma B.2
im{AkB} ⊂ im{R}, for all k ≥ 0

Theorem B.3
The following statements are equivalent:
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• The system (A,B,C,D) is controllable.

• R has full rank.

• im{R} = R
n.

The observability concept is now presented.

Definition B.4
The system (A,B,C,D) is observable if a finite time t1 > 0 exists such that for each admis-
sible input function u, it follows from y(t, x0, u) = y(t, x1, u) for all t ∈ [0, t1], that x0 = x1.

A system is then called observable if the initial state x0 can be constructed from the knowledge
of u and y on the interval [0, t1] for some finite time t1 > 0.

Observability can be completely characterized by the matrices A and C. Let the np × n
matrix W , called the observability matrix, be defined as

W =











C
CA
...

CAn−1











(B-3)

Lemma B.5
Let the vector x ∈ R

n be such that Cx = CAx = · · · = CAn−1x = 0. Then CAkx = 0 for
all k ≥ 0.

Let the subspace ker{W} be called the non-observable subspace.

Theorem B.6
The following statements are equivalent.

• System (A,B,C,D) is observable.

• W has rank n.

• ker{W} = 0.

All proofs for the lemmas and theorems enunciated are given in Chapter 4 of (Olsder &
Woude, 2005).
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Appendix C

Attitude complementary filter

Attitude determination is done by means of a complementary filter. The estimations of pitch
and roll angles are then obtained using an algorithm as depicted in Figure C-1.

sin (a/g)
-1

+

quadrotor

accelerometer

rate gyro

estimated angle

high-pass

low-pass

Figure C-1: Complementary filter for attitude angles (pitch and roll) estimation

This approach permits combining the low-frequency components of angle calculation through
accelerometer measurements and high-frequency components of integrated rate gyro data.
Note that due to noise contents and especially sensor biases, pure integration of angular rate
measurements is not possible. The optimal approach would be to use a Kalman filter for
estimation of the gyro biases. However, this complementary filter approach was selected for
this thesis. The complementary filter is simpler since it involves less computations (Higgins,
1975).

The integrated gyro measurements are filtered by the low-pass filter

Gl(s) =
1

τcfs+ 1
(C-1)
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and the data obtained from accelerometers is filtered by the high-pass filter

Gh(s) = 1−Gl(s) = 1− 1

τcfs+ 1
=

τcfs

τcfs+ 1
(C-2)

The yaw angle is estimated in a similar way. For the high-frequency path, integration of gyro
measurements is performed. However, note that instead of using accelerometer information,
the signal for the low-frequency path is obtained from magnetometer measurements.

The result of this combination of high with low frequency contents is then an estimation of
the Euler angles φ, θ and ψ. This information can then be readily used in other estimation
blocks where these parameters are required.
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Command filters

The filters used in the control laws as reference command generators are presented in this
appendix. The first-order filter was also used for estimation of the angular accelerations
required for the incremental form of backstepping.

D-1 First order

The transfer function of a first-order low pass filter is given by the following equation

Xc(s)

X0
c (s)

=
1

τs+ 1
(D-1)

which, in the time domain, can be represented as

ẋ =
1

τ
(x0c − xc) (D-2)

The implementation of this filter is depicted in Figure D-1. Note that magnitude and rate
limiters can be introduced as shown.

+

-

x0c xc

ẋc

1
s

1
τ

Magnitude limiter Rate limiter

Figure D-1: First-order low pass filter with magnitude and rate limiters
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D-2 Second order

The transfer function of a first-order low pass filter is given by the following equation

Xc(s)

X0
c (s)

=
ω2
n

s2 + 2ζωns+ ω2
n

(D-3)

which, in the time domain, can be represented as

ẍ = −2ζωnẋ+ ω2
n(x

0
c − xc) (D-4)

The implementation of this filter is depicted in Figure D-2. Note that magnitude and rate
limiters can be introduced as shown.

+ +

- -

z

x0c xc

ẋc

ẍc

1
s

1
s

ω2
n

2ζωn
2ζωn

Magnitude limiter Rate limiter

Figure D-2: Second-order low pass filter with magnitude and rate limiters
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Controller gains used for simulations

The controller gains used for simulation purposes are given in Table E-1 (all controllers used
the same gains). As explained in Chapter 7, these gains were obtained using a pole-placement
technique by selecting adequate closed-loop time constants, which are given as well.

Table E-1: Controller gains used for the simulation model

control variable loop time constant τ [sec] gain Kp gain Ki

rate loops

p 0.05 0.1 0
q 0.05 0.1 0
r 0.5 0.019 0

attitude loops

φ 0.2 5 0
θ 0.2 5 0
ψ 4 0.25 0

velocity loops

u 0.5 -0.2039 0
v 0.5 0.2039 0
w 0.2 -2.5 0

position loops

x 1 1 0
y 1 1 0
z 1 1 0
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Appendix F

Additional statistical data from
Monte-Carlo simulations

Additional statistical data from the Monte-Carlo simulations performed in Chapter 8 is pre-
sented on the following pages. Specifically, examples of histograms of external conditions
are shown, as well as empirical cumulative distribution functions of the assessment criteria
parameters with fitted normal probability density functions.

The fitted lines show how well the empirical distributions can be approximated by normal
distributions. As expected, a better fit is obtained when using a larger sample size.

The distributions are only shown for the cases in which no model uncertainties are considered,
for both perfect state knowledge and state estimator in the loop. For the former, 200-sample
Monte-Carlo simulations were performed, while for the latter, 1000 were used.
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Figure F-1: Histograms of external conditions for 200 samples
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Figure F-2: Statistical distribution of assessment criteria parameters for linear controller with
perfect state knowledge (200 samples)
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Figure F-3: Statistical distribution of assessment criteria parameters for backstepping controller
with perfect state knowledge (200 samples)

A.S. Mendes Vision-based automatic landing of a quadrotor UAV on a floating platform



193

 

 

fit

data

D
en
si
ty

ZDTD [m/s]

D
en

si
ty

YTD [m]

D
en

si
ty

XTD [m]

D
en
si
ty

TTATD [deg]

D
en
si
ty

PHITD [deg]

0 0.5 1 1.5

−0.2 −0.1 0 0.1 0.2−0.2 −0.1 0 0.1 0.2

−4 −2 0 2 4−4 −2 0 2 4

0

5

10

0

10

20

0

10

20

0

0.5

1

0

0.5

1

Figure F-4: Statistical distribution of assessment criteria parameters for incremental backstepping
controller with perfect state knowledge (200 samples)
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Figure F-5: Histograms of external conditions for 1000 samples
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Figure F-6: Statistical distribution of assessment criteria parameters for backstepping controller
with state estimator in the loop (1000 samples)
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Figure F-7: Statistical distribution of assessment criteria parameters for incremental backstepping
controller with state estimator in the loop (1000 samples)
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