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Summary

Segmented-flow microreactors have emerged as an attractive tool for fine chemical
synthesis and (bio)chemical analysis, owing to their high heat and mass transfer
rate, low axial dispersion, as well as rapid mixing. A key challenge for the use of
segmented-flow microreactors in large-scale processing is their low throughput. This
can be overcome by applying the concept of numbering-up in which several microre-
actors are placed and operated in parallel. A challenging aspect of this approach is to
distribute segmented flows over those parallel microreactors with a high uniformity in
the size and the speed of the fluid compartments. In this thesis, we propose to use a
bubble-splitting distributor where a single stream of fluid compartments is recursively
split into smaller ones via a series of T-junctions.

The design of the bubble-splitting distributor requires a thorough understanding of
and a mechanistic insight into the breakup phenomena. We used Computational Fluid
Dynamics (CFD) as a primary tool to study the breakup behavior, as it can provide
detailed temporally and spatially resolved information on the flow. To model the fluid
interface, we employed the Volume of Fluid (VOF) method, as implemented in the
open-source CFD package OpenFOAM-1.6. An extensive analysis of the accuracy
and efficiency of the employed VOF method, along with three test cases, validated by
experiments, form a rigorous set of benchmarks for the ability of the employed CFD
code to model segmented microflows. Based on this analysis, we propose optimal
numerical settings, allowing for the dynamical behavior of droplets to be predicted in
excellent agreement with experiments.

We then present a numerical study on the breakup of confined droplets in a T-junction,
using the validated VOF code. Our simulations revealed that there are two distinct
phases during the breakup process: (i) a quasi-steady deformation owing to the ex-
ternal flow, and (ii) a rapid pinching driven by surface tension. With stop-flow sim-
ulations, we found that once the droplet enters the rapid pinching phase, the breakup
is inevitable and will continue even if the external driving force is removed. Anal-
ogously to unconfined droplets, the autonomous pinching of confined droplets starts
when, in the channel mid-plane, the curvature at the neck is larger than the curvature
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everywhere else. The difference in the curvature along the droplet surface creates a
flow reversal towards the neck, which accelerates the pinching rate. The onset of the
rapid pinching depends strongly on the aspect ratio of the channel and slightly on the
capillary number and the viscosity ratio.

Being able to explain the mechanism of the droplet breakup leads us to another im-
portant question, i.e. whether the droplet breaks or not. In agreement with earlier
findings in literature, we observed numerically and experimentally that there exists
a critical capillary number below which the droplet does not break but, due to per-
turbations which result from asymmetries in the flow and geometry, drifts away into
one branch of the T-junction. The competition between two timescales, viz. those for
breaking and drifting, determines this critical condition. In this thesis, we presented
an extensive analysis of the dynamical behavior of the droplet approaching the critical
condition and the variation of these two timescales. In zero-perturbation simulations,
we found that the breakup time increases towards infinity as the capillary number de-
creases towards the critical value. For the drifting, we identified three phases during
the drifting: a first phase in which the displacement of the droplet grows exponen-
tially in time, a transition phase, and a phase in which the droplet moves with the bulk
liquid velocity. The drifting time is controlled mainly by the first phase and depends
linearly on the capillary number. Owing to the drifting, the critical capillary number
may increase by more than 10% compared to the critical capillary number obtained in
the zero-perturbation system. Moreover, we found that symmetric breakup can only
be obtained when the breakup time is at least approximately two times smaller than
the drifting time.

The last part of this thesis describes the design strategies for and characterization of
a bubble-splitting distributor based on our understanding of the fundamental physics
of the breakup behavior. We present theoretical and experimental analyses of the
uniformity of the distribution of bubbles/droplets using the proposed distributor for
different flow conditions. We identified three primary sources of the nonuniformity:
(i) nonuniformity in the size of bubbles fed to the distributor, (ii) the presence of non-
breaking bubbles, and (iii) asymmetric bubble breakup. We formulated two guidelines
to operate the bubble-splitting distributor: (i) the operating capillary number should be
well above its a critical value at all junctions to ensure that all bubbles break, and (ii)
the distance between the bubbles should be sufficiently large to ensure that all bubbles
break symmetrically. Furthermore, we found that a pressure equalizer applied between
two branches of the T-junction is beneficial, only when the fabrication tolerances of
the device are large.

The thesis ends with a discussion on how some of our main findings can be general-
ized: 1) surface-tension-driven pinching, 2) differences between 2D and 3D breakup,
3) the role of CFD in unraveling the breakup phenomena and 4) scale-up of segmented
flow microreactors. We then conclude the thesis by proposing some opportunities for
future research.



Samenvatting

“Segmented-flow” microreactors zijn uitgegroeid tot een aantrekkelijke methode voor
fijn-chemische synthese en (bio)chemische analyse. Dit is te te danken aan de hoge
warmte- en massatransportsnelheden, lage axiale dispersie en snelle menging. Een
belangrijke uitdaging voor het gebruik van de “segmented-flow” microreactors voor
processen op grote schaal is dat de productiesnelheid laag ligt. Dit kan opgevan-
gen worden via het concept van uitschalen, waarbij verschillende microreactoren pa-
rallel toegepast worden. In het uitschalen is het van groot belang om de vloeistof-
compartimenten met gelijke snelheid en grootte over alle parallele microreactoren te
verdelen. In dit proefschrift hebben we een verdeler toegepast die een enkele stroom
van vloeistof- en gascompartimenten in steeds kleinere compartimenten opsplitst door
middel van een serie T-splitsingen.

Het ontwerp van de verdeler vereist een gedetailleerd begrip van het mechanisme voor
het opbreken van de compartimenten. We hebben hoofdzakelijk “Computational Fluid
Dynamics” (CFD) gebruikt om het opbreekgedrag te bestuderen, omdat CFD een hoge
mate van detail geeft, zoveel ruimtelijk als in de tijd. Voor het modelleren van het
vloeistofoppervlak hebben we de “Volume of Fluid” (VOF) methode toegepast die
standaard beschikbaar is in het CFD-pakket OpenFOAM-1.6. Een uitgebreide analyse
van de nauwkeurigheid en efficiëntie van de gebruikte VOF methode, in combinatie
met drie testcases, allen gevalideerd met experimenten en experimenteel gevalideerde
modellen, vormen een betrouwbare set van ijkpunten voor het vermogen van de CFD
code om segmented microstromingen te modelleren. Op basis van deze analyse heb-
ben we de optimale numerieke instellingen geselecteerd en daarmee het dynamische
gedrag van de druppel voorspeld, in uitstekende overeenstemming met experimenten.

Vervolgens hebben we een numerieke studie van het opbreken van druppels in een
T-splitsing uitgevoerd met de gevalideerde VOF code. Onze simulaties tonen aan
dat er twee fasen te onderscheiden zijn in het opbreekproces: (i) een quasi-constante
vervorming door de externe stroming, en (ii) een snelle insnoering veroorzaakt door
de oppervlaktespanning. Met “stop-flow” simulaties hebben we uitgevonden dat zodra
de snelle insnoering begonnen is, het opbreken onvermijdelijk wordt en vóórtduurt
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zelfs nadat de externe drijvende kracht is weggenomen. Analoog met druppels in een
oneindig medium, begint het insnoeren van de druppels in een microkanaal zodra, in
het midden van het kanaal, de kromming van de nek groter wordt dan de kromming
op andere plaatsen. Het verschil in kroming over het druppeloppervlak zorgt voor een
omkering van de stroming in de richting van de nek, waardoor het insnoeren versnelt.
Het moment van de snelle insnoering hangt sterk af van de aspectratio van het kanaal
en is zwak afhankelijk van het capillairgetal en de viscositeitsratio.

Uit het begrip van het mechanisme voor het opbreken van druppels volgt een andere
belangrijke vraag, namelijk óf de druppel zal breken of niet. Experimenteel en nu-
meriek hebben we vastgesteld dat er een kritisch capillairgetal bestaat waaronder een
druppel niet opbreekt maar wegdrijft in één van de benen van de T-splitsing onder
invloed van stromingsperturbaties ten gevolge van asymmetrieën in de stroming en de
geometrie. De competitie tussen twee tijdschalen, opbreken en wegdrijven, bepaalt
de kritische conditie. In dit proefschrift presenteren we een uitgebreide analyse van
het dynamisch gedrag van de druppel en de variatie van de twee tijdschalen als de
druppel de kritische conditie nadert. Met verstoringsvrije simulaties vinden we dat de
opbreektijd naar oneindig gaat als het capillairgetal de kritische waarde nadert. Voor
het wegdrijven identificeren we drie fasen: een eerste fase waarin de verplaatsing van
de druppel exponentieel toe neemt in de tijd, een overgangsfase, en een fase waarin
de druppel beweegt met de snelheid van de bulkvloeistof. De wegdrijftijd wordt met
name bepaald door de eerste fase en hangt lineair van het capillairgetal af. Door
het wegdrijven neemt het kritische capillairgetal met meer dan 10% toe ten opzichte
van het kritische getal in systemen zonder verstoring. Bovendien vinden we dat het
symmetrisch opbreken van de druppel alleen mogelijk is als de opbreektijd minimaal
ongeveer twee keer kleiner is dan de wegdrijftijd.

Het laatste deel van dit proefschrift beschrijft een ontwerpstrategie voor en de ana-
lyse van een verdeler gebaseerd op ons begrip van de fundamentele fysica van het
opbreekgedrag. We presenteren theoretische en experimentele analyses van de ge-
lijkmatigheid van de verdeling van bellen/druppels in de voorgestelde verdeler bij
verschillende stromingscondities. We identificeren drie primaire oorzaken voor on-
gelijkmatigheid: (i) ongelijkmatigheid in het formaat van de druppels die de verdeler
ingevoerd worden, (ii) bellen die niet opbreken, en (iii) asymmetrisch opbreken van
bellen. We hebben twee aanbevelingen geformuleerd voor het gebruik van de verde-
ler: (i) het capillairgetal tijdens gebruik moet groter zijn dan de kritische waarde bij
alle splitsingen om verzekerd te zijn van opbreken, en (ii) de afstand tussen de bel-
len moet voldoende groot zijn om alle bellen symmetrisch op te laten breken. Verder
hebben we gevonden dat het toepassen van een passieve drukregeling tussen de twee
benen van de T-splitsing alleen nuttig is als de fabricagetoleranties van het apparaat
groot zijn.

Dit proefschrift eindigt met een discussie van de meer algemene toepasbaarheid van
onze belangrijkste bevindingen: 1) oppervlaktespanning gedreven insnoeren, 2) 3D
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versus 2D, 3) de rol van CFD in het bestuderen van de opbreekverschijnselen en 4)
het opschalen van “segmented flow"microreactoren. We sluiten het hoofdstuk af met
een voorstel voor toekomstig onderzoek.





1. Introduction
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1.1 Microfluidics

Microfluidics is the field of science and technology that deals with the control and
manipulation of fluids in channels with typical dimensions of tens to hundreds of
micrometers1,2. One of the ideas behind having such small length scales is to increase
the surface-area-to-volume ratio. As a consequence, high heat and mass transfer rates
can be achieved in microfluidic systems, leading to many applications in micro-reactor
technology3–5. Scaling down volumes and channel sizes also allows small sample
volumes, thus cost-effective and low-risk analysis that can provide high-throughput
screening in drug discovery6–8, biotechnology9,10 and chemical analysis11,12.

In a microfluidic device, such as the one depicted in figure 1.1(a), fluids typically
flow at low Reynolds number, Re, defined as the ratio between the inertial forces and
the viscous forces (Re=ρdU/µ, where ρ is the fluid density, d the dimension of the
channel, U the fluid velocity and µ the viscosity). Single-phase flow in this regime is
laminar and has a parabolic velocity profile with zero velocity at the walls. This leads
to some undesired effects. First, mixing is solely due to molecular diffusion, which is
a rather slow process12. Second, there is much dispersion along the channel, leading
to wide residence time distribution13.

1.2 Droplet microfluidics

A simple way to reduce axial dispersion and enhance mixing in microfluidic systems
is to introduce a second, immiscible fluid that compartmentalizes the flow14. The bub-
bles or droplets in such a segmented flow15 almost span the cross section of the mi-
crochannels as shown in figure 1.1(b). Consequently, reagents are confined inside the
compartments with limited or no exchange between the different compartments16,17.
Besides the reduction in axial dispersion, the presence of bubbles or droplets induces
a circular flow pattern both inside and outside the bubbles or droplets, resulting in
rapid mixing18,19. Due to these advantages, droplet microfluidics has appeared in sev-
eral applications, such as lab-on-a-chip20–22, chemical synthesis, and high-throughput
screening23–25.

A key remaining challenge for the use of segmented-flow microfluidic systems in
production of chemicals is to increase the production rate.
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(c)

(b)(a)

Figure 1.1 (a) Illustration of a microfluidic device. (b) Schematic of droplet microfluidics 11.
(c) Illustration of a bubble-splitting distributor and an enlarged view of the breakup process in
a single T-junction.

1.3 Context of PhD work: Droplet microfluidics in
commercial-scale processing

The research presented in this thesis is part of a project funded by the Dutch Tech-
nology Foundation (STW) and the Industrial Advisory Board (IROP) of the Nether-
lands Research School in Process Technology (OSPT) under the name: “Design of
Micro/Milli-Reactors for Large Scale Processing” - DeMiR. The project aims for the
development of a generic methodology to select and design the best scale of reac-
tor operation, either at the micro-scale or at the milli-scale, in case of G/L and L/L
catalytic reactions and multiphase food processing systems.

An important part in this project is to scale-up the production rate of multiphase mi-
cro/milli reactors. This can be achieved through the concept of numbering-up, in
which several production units are placed and operated in parallel. An important
advantage of this approach is that it avoids scale-up/scale-down issues, because the
characteristics of the designed system do not change when the production increases.

A challenging aspect of the DeMiR project is to develop a robust method to distribute
segmented flow over a network of parallel microchannels, with a high uniformity in
the size of the compartments to avoid differences in the reaction rate as well as heat and
mass transfer among production units. Previous attempts have been carried out to uni-



4 Chapter 1

formly and stably distribute bubbles/droplets over a network of microchannels26–31.
One approach is to produce droplets or bubbles in each individual channel26–28. This
approach requires an identical supply of each phase to all these channels and a min-
imum cross-talk between the channels. These requirements can be satisfied by using
resistive channels, which should roughly have a two orders of larger flow resistance
than the reaction channels26,27. This works out to long ultra-small channels and the
need of highly precise fabrication. An alternative approach studied in this thesis is
to feed segmented flow into a microfluidic device and recursively split the bubbles or
droplets into smaller ones29–31. Figure 1.1(c) shows an example of such a distributor.
To understand how to distribute the bubbles or droplets equally over the downstream
channels of such a distributor requires a deep understanding of the breakup of bubbles
and droplets in microfluidic devices.

1.4 Bubble/droplet breakup

In comparison with continuous single-phase flow microfluidics, the physical behavior
of droplet microfluidics is more complicated due to the presence of the fluid-fluid
interface. Interfacial forces, which are proportional to the surface tension coefficient γ
and the curvature κ of the interface, play an important role due to the small scale of the
system. Important dimensionless numbers are the Reynolds number Re, the capillary
number Ca =µU/γ (i.e. the ratio between capillary and viscous time scales), the
Weber numberWe=Re Ca=ρdU/γ (i.e. the ratio between capillary and inertial time
scales) and the Bond numberBo=ρgd2/γ (i.e. the ratio between inertial and capillary
time scales). The fluid flow in droplet microfluidics is characterized by low Reynolds,
capillary and Weber numbers. For example, in a channel with height 100µm, a flow of
oil-water system (µ∼1mPa s, γ∼10mN/m and ρ∼1000g/l) at a typical velocity of
1cm/s has a Reynolds number of unity, a capillary number of 10−3, a Weber number
of 10−3 and a Bond number of 10−2. Under such conditions, interfacial forces are
much larger than viscous, inertial and gravitational forces.

The breakup of bubbles/droplets can occur under unconfined and confined geometric
conditions, meaning that the fluid vessel is either large or comparable to the size of the
bubbles/droplets. In both cases, a droplet experiences an external flow that deforms
the droplet and finally breaks it apart. The fundamental difference between the two
is that the shape of the unconfined droplet is a function of the strength of the external
flow and its properties, while, besides the above factors, the shape of the confined
droplet also strongly depends on the channel geometry.

Pioneering work on unconfined breakup was done in the early 1930’s by Taylor 32 ,
who showed that a droplet under steady extensional flow is stretched through a se-
ries of steady shapes until reaching maximum steady deformation below which the
droplet deforms continuously until it breaks. There exists a critical capillary number
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Ca, which corresponds to the critical length of the droplet. This critical capillary num-
ber depends only on the viscosity contrast λ= µ̂/µ of the fluids inside and outside the
droplet. Stone et al. 33 experimentally reported a second critical droplet length, be-
yond which the droplets break autonomously, and below which droplets relax back to
their equilibrium shape. These major accomplishments of Taylor 32 and Stone et al. 33

have inspired several subsequent studies on the breakup of unconfined droplets both
numerically and experimentally34–38.

Literature on confined breakup starts quite later, in the early 2000’s, with the pioneer-
ing work by Link et al. 29 . They demonstrated that in confined breakup, there is also
a critical droplet length, corresponding to a critical capillary number Ca. In confined
flow, the channel geometries play an important role such that the boundary between
breaking and non-breaking regimes depends not only on λ and Ca but also on the
ratio between droplet length and channel width l/w. Link et al. 29 used stability argu-
ments to predict this transition. More in the spirit of Taylor’s analysis32, Leshansky
and Pismen 39 predicted the transition by calculating critical pseudo-steady droplet
shapes using a two-dimensional model in which the capillary instability is not oper-
ative. Their theory successfully predicts, up to an O(1) constant, whether droplets
break. Subsequent experiments40–42 have been carried out to construct the transition
line between breaking and non-breaking regimes (i.e. the critical capillary number as
a function of l/w), but none of them could provide a clear description on the mecha-
nisms governing the dynamics of the droplet during breakup process.

1.5 The role of computational fluid dynamics (CFD) in
the design process

Computational fluid dynamics is a branch of fluid mechanics that applies numerical
methods and algorithms to solve the equations of fluid dynamics on digital computers.
With the development of high performance computing, CFD has played an important
role in the design process of flow systems in e.g. aeronautical, automotive, and chem-
ical industries. With CFD, it is easy to vary the characteristics of the systems such as
fluid properties, channel geometries and flow conditions, thus allowing broad paramet-
ric variations. This is important in the design process as it can provide a cheap and fast
way to design and optimize the system. More importantly, CFD can provide detailed
temporal and spatial flow information that is crucial to gain insights into the nature and
underlying mechanisms of the flows. For droplet microfluidics, CFD allows to simul-
taneously extract both local and global information on three-dimensional shapes of the
fluid interface and the flow variation. Moreover, experiments such as stop-flow exper-
iments33 and perturbation-free experiments, which are useful for the understanding of
the flow behavior but difficult to perform physically in confined microfluidic systems,
can be numerically performed without much effort. Hence, a complete picture of the
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dynamical behavior of flows in microfluidic systems obtained with CFD simulations
is very useful in revealing the fundamental understanding of the flows.

Various numerical methods has been proposed and used to model flows in droplet mi-
crofluidic systems43–45, each having its own advantages and disadvantages. Therefore,
a careful selection of numerical methods to be applied is crucial. An optimized com-
putational setting can provide a big improvement, sometimes up to a hundred percent,
in accuracy and efficiency of the numerical simulations.

1.6 Research questions

In this thesis, we present our work on the breakup of bubbles/droplets in microflu-
idic systems. We first report our findings on the fundamental physics of the splitting
phenomena using three-dimensional CFD simulations. We then present the strategy
to design a bubble-splitting distributor and its performance under different operating
conditions.

1.6.1 Mechanistic insights of confined bubble/droplet breakup

The mechanism of the breakup of confined bubbles and droplets is currently debated in
literature. There are two fundamentally different hypotheses on how a droplet breaks
in a microchannel. The first one stated that the breakup of confined droplets is gov-
erned by a Rayleigh-Plateau-type instability29. In the second hypothesis, the droplet
deforms through a set of pseudo-steady shapes that result from a balance of viscous
and interfacial forces during the breakup process, and the Rayleigh-Plateau instability
does not happen due to the confinement39. This motivated us to address a question
“What is the driving mechanism of the breakup of confined bubbles and droplets?”.

Unraveling the mechanism of confined droplet breakup led us to another question
associated with the previous one “What is the relation between the breakup boundary
and the timescales for breakup and drifting?”. Available experiments showed that
close to the boundary between breaking and non-breaking regimes, a droplet can either
break or drift away under the same flow conditions29,40,41. Close to the this boundary,
asymmetric breakup is observed even in a symmetric T-junction42,46. Studying the
above question teaches us how, close to the breakup boundary, the time scale for
breakup and the time scale for drifting become comparable, leading to the transition
from breaking to non-breaking.



Introduction 7

1.6.2 Bubble-splitting distributor

The technical motivation of this thesis is to design a bubble/droplet distributor that
evenly distributes a segmented two-phase flow over a network of microreactors for
commercial-scale processing. This can be achieved by splitting a single stream of
bubbles/droplets repetitively in a cascade of such splitters that run into a large number
of channels. Literature on this approach is limited to the concept of how to design
this type of distributor29–31. Based on our understanding on the fundamental physics
of the breakup phenomenon, we resolve a question “How to uniformly distribute bub-
bles/droplets over a network of microchannels using the bubble-splitting distributor”
by studying the influence of important operational parameters on the uniformity of the
final bubble/droplet size.

1.6.3 Optimization of numerical settings and validations

Modeling of bubbles/droplets flowing in microfluidic channels with the Volume of
Fluid (VOF) method is well-known for its advantages in handling topological changes,
conserving mass and rendering reasonably sharp interfaces44,45. However, there
are important fine-tuning issues, that are crucial to set right for a successful sim-
ulation, when applying the VOF method to bubble/droplet flow in microchannels.
They include (1) parasitic currents, (2) resolving the thin film that separates the bub-
bles/droplets from the channel walls and (3) the breakup of liquid threads. Validations
of the VOF method, as implemented in the currently used CFD code OpenFOAM, on
bubble/droplet flow are also limited in literature.

In this thesis, we address the question “Can the VOF method accurately and efficiently
model the dynamical behavior of bubble/droplet interfaces in microfluidic flows and
what are the necessary measures to be taken in order to achieve this goal?”. We
resolve this question by presenting well-characterized benchmark cases that allows us
to find optimal computational settings to apply the VOF method for the modeling of
bubble/droplet breakup in microfluidic channels.

1.7 Outline

This thesis comprises a collection of papers. Each chapter is therefore self-contained,
and addresses one of the research questions discussed in the previous section. In
chapter 2, we report detailed information and validations of the employed CFD code
(OpenFOAM-1.6). With the validated code, addressing the research question formu-
lated in section 1.6.1, we present the mechanistic insights on the pinching of droplets
at a T-junction in chapter 3. Chapter 4 is a study on the timescales for breakup and
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drifting and how they vary close to the critical condition. This answers the research
question from section 1.6.1 on the relation between the breakup boundary and these
two timescales. The understanding on the droplet breakup presented in chapter 3 and
4 facilitates us to address the research question formulated in section 1.6.2 and to de-
sign a bubble-splitting distributor in chapter 5. We experimentally characterized the
designed distributor, and show that uniform flow distribution is obtained for different
flow conditions. The last part of this thesis, chapter 6, is a discussion of some of our
main findings and their implications in a broader perspective.
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2. Benchmark numerical sim-
ulations of segmented two-
phase flows in microchannels
using the Volume of Fluid
method§

We present an extensive analysis of the performance of the Volume of Fluid (VOF) method,
as implemented in OpenFOAM, in modeling the flow of confined bubbles and droplets (“seg-
mented flows”) in microfluidics. A criterion for having a sufficient grid solution to capture the
thin lubricating film surrounding non-wetting bubbles or droplets, and the precise moment of
breakup or coalescence is provided. We analyze and propose optimal computational settings to
obtain a sharp fluid interface and small parasitic currents. To show the usability of our compu-
tational rules, numerical simulations are presented for three benchmark cases, viz. the steady
motion of bubbles in a straight two-dimensional channel, the formation of bubbles in two- and
three-dimensional T-junctions, and the breakup of droplets in three-dimensional T-junctions.
An error analysis on the accuracy of the computations is presented to probe the efficacy of
the VOF method. The results are in good agreement with published experimental data and
experimentally-validated analytical solutions.
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numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method.
Computers & Fluids, 2013, doi: 10.1016/j.compfluid.2013.06.024.
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2.1 Introduction

This chapter presents benchmark simulations for the analysis of segmented flows.
Such flows are ubiquitous in so-called “digital microfluidics”, where streams of dis-
crete droplets and bubbles at small capillary number are convected through microchan-
nel networks1,2. Numerical simulations, here as always, will have to resolve the most
important flow features, which in this field are (1) resolving the thin film that separates
the bubbles and droplets from the confining walls, relevant for most transport pro-
cesses3 and (2) the breakup of liquid threads and the associated topological changes
that occur in such networks4,5.

One of the key questions in segmented flow simulations is how to model the dynamic
interface between two immiscible fluids. Numerical techniques for fluid interfaces6,7

can be divided into two categories: Lagrangian and Eulerian. Lagrangian methods
such as moving-mesh8–11 or front-tracking12–14 accurately resolve the shape of the
interface and are for instance ideally suited to capture the thin lubricating film around
steadily moving bubbles or droplets (figure 2.1(a)). It is, however, complicated to ap-
ply Lagrangian methods to problems with large interface movement and topological
changes. Such problems are typically modeled by Eulerian methods, which naturally
handle complex topological changes. Examples of Eulerian methods include the dif-
fuse interface method15,16, the Level Set (LS) method17,18, the Volume of Fluid (VOF)
method19–21, and the Lattice-Boltzmann method22. Its robustness and ease of imple-
mentation and parallelization together with the ability to conserve mass and render
reasonably sharp interfaces explains why VOF is implemented in many well-known
commerical and open source CFD packages, such as Fluent23, CFX24, CFD-ACE+25

and OpenFOAM26.

Despite the popularity of the VOF method, there are issues when applying this method
to surface-tension-dominated flows in microchannels. VOF does not resolve the in-
terface location with sub-grid resolution. As a consequence, the thin lubricating films
can only be resolved at significant numerical cost, and the fine details close to the ex-
act moment of breakup and coalescence cannot be resolved directly. A second issue of
the VOF method is the presence of parasitic currents, which originate from errors in
calculating the curvature of the interface and from an imbalance between the discrete
surface tension force and the pressure-gradient terms6,27–29. These errors propagate
dramatically into the velocity field at small capillary numbers. Parasitic currents can
be reduced by using a different, additional field variable (e.g. a level set function30 or
height function31,32) used only to calculate the curvature. Allowing this function to be
smooth one can accurately calculate curvature, but only at the expense of significant
numerical cost and difficult parallelization. A less complicated approach to reduce
the parasitic currents is applying a smoother to the VOF function in the interfacial
region33–35. Smoothing leads to a less steep gradient of the VOF function, and hence
improves the accuracy in the calculation of the curvature. As a consequence, parasitic
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Figure 2.1 (a) Steady motion of 2D bubbles in a straight channel. (b) The formation of bubbles
in a 3D T-junction. (c) The breakup of droplets in a 3D T-junction.

currents decrease significantly without much increase in computational time.

In this chapter, we present well-characterized benchmark cases that allowed us to find
optimal approaches to using the VOF method for segmented flows. The three bench-
mark cases are shown in figure 2.1: the steady motion of 2D bubbles in a straight
channel, the formation of bubbles in 3D T-junctions and the breakup of droplets in
2D and 3D T-junctions. All these cases have been extensively studied theoretically
and experimentally, so in all cases we can compare to known expected values. The
paper is organized as follows. A short description of the VOF method as implemented
in the interFoam solver in OpenFOAM-1.636, including details of the sharpening and
smoothing method, is followed by a standard stationary bubble test and a simple 2D
breakup test to find the optimal parameters for the method. We then use these optimal
parameters in the benchmark cases. In each of these cases, we compare to time-
resolved experimental data of the fluid interface, and provide a detailed quantification
of small remaining errors in the calculations. As we show below, our numerical sim-
ulations show a good agreement with experimental data and experimentally-validated
analytical models.
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2.2 Numerical method

2.2.1 Governing equations

In the VOF method, the transport equation for the VOF function, α, of each phase is
solved simultaneously with a single set of continuity and Navier-Stokes equations for
the whole flow field. Considering the two fluids as Newtonian, incompressible, and
immiscible, the governing equations can be written as:

∇ · U=0 (2.1)
∂ρbU
∂t

+∇ · (ρbUU)=−∇p+∇ ·µb(∇U+∇UT )+ρbf+Fs (2.2)

∂α

∂t
+∇ · (αU)=0 (2.3)

where U is the fluid velocity, p the pressure, f the gravitational force, and Fs volumet-
ric representation of the surface tension force. The bulk density ρb and viscosity µb
are computed as the averages over the two phases, weighted with the VOF function α:

ρb=ρα+ ρ̂(1−α) (2.4)
µb=µα+ µ̂(1−α) (2.5)

where ρ, ρ̂, µ and µ̂ are the densities and the viscosities of the two phases. In the VOF
method, α is advected by the fluids. For incompressible flows, this is equivalent to
a conservation law for the VOF function, and therefore ensures the conservation of
mass.

The surface tension force, Fs, is modeled as a volumetric force by the Continuum
Surface Force (CSF) method37. It is only active in the interfacial region and formu-
lated as Fs=γκ(∇α), where γ is the interfacial tension and κ=∇ · (∇α/ |∇α|) is
the curvature of the interface.

2.2.2 Interface sharpening

In OpenFOAM, the fluid interface is sharpened by introducing the artificial compres-
sion term −∇ · (α(1−α)Ur) into Eq. 2.3. Thus, the VOF equation (Eq. 2.3) be-
comes:

∂α

∂t
+∇ · (αU)−∇ · (α(1−α)Ur)=0 (2.6)

The artificial compression velocity Ur is given by:

Ur=nfmin
[
Cγ
|φ|
|Sf |

,max
(
|φ|
|Sf |

)]
(2.7)
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where nf is the normal vector of the cell surface, φ is the mass flux, Sf is the cell
surface area, andCγ is an adjustable coefficient, the value of which can be set between
0 and 4. Physically, we can interpret Ur as a relative velocity between the two fluids,
which arises from the density and viscosity change across the fluid interface. By
taking the divergence of the compression velocity Ur, the conservation of the VOF
function is guaranteed38. The term α(1−α) ensures that this artifact is only active in
the interfacial area where 0<α<1. The level of compression depends on the value of
Cγ : there is no compression with Cγ =0, a moderate compression with Cγ≤1, and
an enhanced compression with 1<Cγ≤439,40.

2.2.3 VOF smoothing

In the VOF method, the fluid interface is implicitly represented by the VOF function,
the value of which sharply changes over a thin region. This abrupt change of the
VOF function creates errors in calculating the normal vectors and the curvature of
the interface, which are used to evaluate the interfacial forces. These errors induce
non-physical parasitic currents in the interfacial region6. An easy way to suppress
these artefacts is to compute the interface curvature κ from a smoothed VOF function
α̃, which is calculated from the VOF function α by smoothing it over a finite region
around the fluid interface6,34. Thus, the curvature of the fluid interface is:

κ=∇ ·
(
∇α̃
|∇α̃|

)
(2.8)

whereas in all other equations, the non-smoothed VOF function α is used.

In this thesis, we applied the smoother proposed by Lafaurie et al. 33 , namely a Lapla-
cian filter that transforms the VOF function α into a smoother function α̃:

α̃P =

∑n
f=1 αfSf∑n
f=1 Sf

(2.9)

where the subscript P denotes the cell index and f denotes the face index. The in-
terpolated value αf at the face centre is calculated using linear interpolation. The
application of this filter can be repeated m times to get a smoothed field. It should
be stressed that smoothing tends to level out high curvature regions and should there-
fore be applied only up to the level that is strictly necessary to sufficiently suppress
parasitic currents.

2.2.4 Numerical setup and discretization

Our numerical simulations were performed with the finite-volume-based code Open-
FOAM36 on co-located grids. The PISO (pressure-implicit with splitting of operators)
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scheme is applied for pressure-velocity coupling41. The transient terms are discretized
using a first order implicit Euler scheme, controlling the time step by setting the max-
imum Courant number to 0.3. Higher Courant numbers were found to lead to a distor-
tion of the interface due to increased parasitic currents. We also examined the perfor-
mance of a second order implicit backward time integration scheme for one of the test
cases on droplet breakup described in section 2.3.3. Since the difference in breakup
time was less than 1%, we used first order Euler schemes throughout this work. For
spatial discretization, a second order TVD scheme with van Leer limiter was used. To
ensure the boundedness of the VOF function, we used a special discretization scheme
developed by OpenCFD Ltd., interfaceCompression, with the MULES (Multidimen-
sional Universal Limiter with Explicit Solution) explicit solver26.

The flow domains were meshed with hexahedral cells using Blockmesh, an internal
mesh generator of OpenFOAM. At the channel walls, no-slip and zero contact angle
boundary conditions were specified. This contact angle boundary condition is used to
correct the surface normal vector, and therefore adjusts the curvature of the interface
in the vicinity of the wall. A uniform velocity and zero-gradient for pressure and
VOF function α were applied at the inlet. At the outlet, we imposed a fixed-valued
(atmospheric) pressure boundary condition and zero-gradient for velocity and VOF
function α.

2.3 Optimization of Computational Settings

2.3.1 Interface sharpening

To evaluate the influence of the interface sharpening coefficient Cγ , we simulated
the relaxation of a 2D, stationary, circular droplet from a square initial shape, in the
absence of the gravity. The fluid properties are similar to those considered by Brackbill
et al. 37 : background density ρ=1000g/L, viscosity µ=1mPas, density ratio ρ/ρ̂=2,
viscosity ratio µ/µ̂=0.4 and surface tension γ=23.6mN/m. Differently from the test
case in Brackbill et al. 37 , the diameter of the relaxed droplet was set to 2R=300µm,
which appropriately represents the typical dimension of microfluidic systems. The
domain size was 4R×4R. The grid cell size is ∆=0.04R, corresponding to 100×100
cells.

Without interface compression (Cγ = 0), the dynamics of the relaxation process is
shown in figure 2.2a (top). On the capillary time-scale γ/µR, the droplet obtains its
final circular shape at tγ/µR∼ 350. The corresponding thickness of the interface,
which is approximately 6 grid cells, is shown in 2.2b (top). Parasitic currents were
characterized based on the magnitude of the maximum velocity, max(|U|), which we
normalized by the capillary velocity γ/µ. The maximum velocity decreases during
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Figure 2.2 (a) Snapshots of the interface shape and the flow field during the relaxation of a
bubble from its initially square shape without (top) and with (bottom) interface compression.
Velocities are scaled with the capillary velocity γ/µ. The arrow indicates the reference velocity.
(b) Snapshots of the fluid interface without (top) and with (bottom) interface compression.

the relaxation, and levels off at a non-zero value due to the parasitic currents when the
droplet reaches its final shape as shown in figure 2.3.

Compressing the interface leads to a thinner interface of approximately 4 grid cells
and increased parasitic currents, as qualitatively shown from the comparison between
Cγ=1 and Cγ=0 in figures 2.2 and 2.3. While the bubble stays in the center without
compression, compressing the interface leads to an increase in the parasitic currents.
As a consequence of the large parasitic currents, the bubble drifts away from the initial
position. Due to the “random nature” of the parasitic currents, the particular direction
of the drift has no physical meaning, and a long simulation in a large domain would
lead to a “random walk” for the bubble. More quantitatively, we compare the relative
thickness εδ of the fluid interface, and the relative maximum time-averaged parasitic
currents εpc for different values of Cγ , normalized with the values obtained for Cγ=0
according to:

εδ=
δ

(δ)Cγ=0
(2.10)

εpc=

∫
t

max(|U|)dt
(
∫
t

max(|U|)dt)Cγ=0
(2.11)

The time integral in Eq. 2.11 is taken over a relatively long time interval (∆tγ/µR≈
2000), starting at the moment that the droplet has relaxed to its final circular shape at
tγ/µR≈350. Table 2.1 shows that increasing Cγ leads to a decrease of the interface
thickness δ, and to an increase of the parasitic currents. With Cγ =1, the thickness of
the fluid interface decreases by a factor 1.79 compared to the case with Cγ=0, and the
time-averaged parasitic currents increase by a factor 1.87. Further increasing Cγ from
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Figure 2.3 Evolution of the maximum velocity during relaxation without (Cγ = 0) and with
(Cγ =1) interface compression.

1 to 4 only reduces the interface thickness by a factor 1.31 while the time-averaged
parasitic current increases by a factor 2.56. Thus, we used Cγ =1 for all remaining
simulations to get a sharp interface while keeping the parasitic currents small. An
increase of parasitic currents due to the use of Cγ =1 can be suppressed by applying
the smoother as described in the next section.

2.3.2 VOF smoothing

To study the effect of smoothing the VOF function, we performed simulations with the
same test case as described in the previous section. Figure 2.4a shows two snapshots
of the parasitic currents after the droplet has relaxed to its steady shape for m=0 (no
smoother) and m=2 (applying the smoother twice). The corresponding time traces of
the maximum magnitude of the parasitic currents are shown in figure 2.4b. Comparing
the magnitude of the parasitic currents at large t shows that the currents are reduced by
one order of magnitude when twice applying the smoother. Moreover, the magnitude
of the parasitic currents monotonically decreases with the smoother, while it goes

Table 2.1 The influence of Cγ on the interface thickness and the time-averaged parasitic cur-
rents.

Cγ 0 1 2 3 4

εδ 1 0.56 0.51 0.44 0.43
εpc 1 1.87 2.99 4.05 4.79
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Figure 2.4 (a) Snapshots of the parasitic currents, scaled with γ/µ, at the moment the bubble
has relaxed to its final steady shape (tγ/µR=350), for simulations without and with the Lafau-
rie smoother. The arrow indicates the reference velocity. (b) Corresponding time traces of the
dimensionless maximum magnitude of parasitic currents. (All evaluated at interface compres-
sion Cγ =1.)

through a minimum without the smoother.

We studied the influence of the number of repeatsm of the smoother on the magnitude
of the parasitic currents and compared the relative maximum time-averaged parasitic
currents after the droplet has relaxed to its circular shape using:

εpc=

∫
t

max(|U|)dt
(
∫
t

max(|U|)dt)m=0
(2.12)

where again the time integral in Eq. 2.12 is again taken over a long time interval,
starting at the moment that the droplet has fully relaxed to its final circular shape.
Table 2.2 shows that the magnitude of parasitic currents decreases sevenfold from
m= 0 (no smoothing) to m= 1, and a further nearly twofold from m= 1 to m= 2.
For m>2, only a slight further decrease was observed. Therefore, m=2 is used in all
remaining simulations.
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We also tested the performance of the smoother with other grid resolutions, ∆/R=
0.2, 0.066, 0.028, 0.02, corresponding to mesh sizes 20×20, 60×60, 140×140, 200×
200. Comparing simulations with (m=2) and without (m=0) smoother on the same
grid, we found that εpc∼0.2 for low grid resolutions (∆/R=0.2, 0.066) and εpc∼0.08
for the higher grid resolutions. Furthermore, we found that parasitic currents increase
with decreasing grid cell size, as reported previously34.

2.3.3 Criterion for the breakup of the fluid interface

It is well-known that in the VOF method, breakup or coalescence of bubbles and
droplets is unavoidable when the distance between two interfaces is on the order of
a few grid cells. Therefore, it is difficult to determine whether such events are phys-
ical or due to this numerical artefact. We demonstrate how to determine the error in
breakup time for the breakup of a 2D droplet in a T-junction. The droplet has an ini-
tial length l0 and moves through the w=30µm wide channels of the T-junction at a
speed U , as shown in the inset of figure 2.5. We use an initial droplet length l0 =5.7w
and velocity of U=4cm/s and chose the fluid properties such that they mimic those
of droplet flows typically encountered in lab-on-a-chip devices, i.e. aqueous droplets
(µ̂= 1mPas, ρ̂= 1000g/L) dispersed in a more viscous carrier fluid (µ= 8mPas,
ρ= 770g/L) with an interfacial tension γ= 5mN/m. The resulting Capillary and
Reynolds numbers are Ca=µU/γ=6.4×10−3 and Re=ρUw/µ=1×10−2.

To study the influence of grid size on the breakup time, we performed simulations
with five different uniform grid cell sizes ∆/w=1/30, 1/60, 1/80, 1/120 and 1/200.
The temporal evolution of the shortest distance d between two interfaces, rescaled
with the grid cell size ∆, is shown in figure 2.5. For all grid cell sizes, the breakup
happens numerically at d∼K∆, withK≈6. As a result, the numerical breakup time tb
increases with grid refinement in a way that is not related to the order of the numerical
scheme, but rather to the shape of the d∼t curve. In most situations, one has a scaling
of self-similar interface shapes close to breakup of the form d∼ tβ or 1−d∼ tβ , such
that the exponent β is known from theory (for an overview of the most common cases,
see Eggers and Villermaux 42 ) or from the simulations themselves. For this particular
2D T-junction problem, self-similarity leads to d/w∼1− (Ut/w)β , with β=3/7 as
derived by Leshansky et al. 5 , shown in the inset of figure 2.5. Because the numerical

Table 2.2 The influence of the number of repeats m of the smoother on the magnitude of the
parasitic currents. (All evaluated at interface compression Cγ =1)

m 0 1 2 3 4

εpc 1 0.14 0.078 0.072 0.07
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Figure 2.5 Dynamics of droplet interface in 2D breakup with different grid cell sizes ∆/w. The
inset shows that d/w evolves similarly for different ∆/w.

breakup happens at d=K∆, we use the known scaling to find the error in breakup
time as

tb,∆
tb,∆→0

=

(
1−K∆

w

)1/β

(2.13)

For K∆/w�1, we expand to find for the relative error, up to O[(K∆/w)2],

εt=
tb,∆→0− tb,∆

tb,∆→0
=
K

β

∆

w
. (2.14)

So the error in the predicted breakup time is linear in ∆/w, and only depends on the
value of β. From linear extrapolation of the d/w curve on our finest mesh, we estimate
(Utb/w)∆→0 to be 6.12. With this value, we compute the error of the breakup time
for different ∆/w. Table 2.3 shows that indeed the error εt varies linearly with ∆/w
for small ∆/w, and that the proportionality constant is close to K/β.

A guide for the determination of a sufficiently fine grid to correctly capture the breakup
time can be given based on Eq. 2.14. Even without knowing a theoretical value for

Table 2.3 Relative errors of the breakup time for different grid resolutions.

∆/w 1/30 1/60 1/80 1/120 1/200

εt 0.48 0.3 0.23 0.15 0.085
εt(∆/w)−1 14.4 18 18.4 18.8 17



22 Chapter 2

the exponent β in the pinching rate, we can estimate it from fitting the time evolution
of the neck thickness in a coarse-grid simulation. We then use this value to predict the
grid cell size needed to reach a given error in the breakup time. Using this strategy,
concluding that β≈ 0.38 from the interface evolution obtained at ∆/w= 1/30 and
assuming K=6, we predict that a relative error of 0.085 can be obtained with a grid
cell size ∆/w= 1/165. This prediction is in close agreement with our simulations.
It should be noted that the proposed criterion does not take any acceleration of the
pinch-off by intermolecular forces into account. Such acceleration is well known in
thin-film rupture where, as also here in 2D, capillary action does not destabilize the
interface. Such effects become prominent typically at length scales much smaller than
the present grid size43, such that their impact on our criterion is small.

2.4 Benchmark cases

2.4.1 Motion of bubbles in a straight two-dimensional channel

The first benchmark case we consider is the steady motion of a non-wetting air bubble
through a straight two-dimensional channel. The thickness of the lubricating film,
b, separating the bubble from the channel walls is typically two orders of magnitude
smaller than the channel width; hence, capturing this film and resolving the flow inside
it is a computationally demanding task.

We simulated the motion of a droplet of length l0 = 200µm in a fixed straight 2D
microchannel of width w=100µm and length 800µm as shown in figure 2.1(a). We
use air (ρ̂=1g/L, µ̂=18µPas) and ethanol (ρ=789g/L, µ=1.2mPas) as the working
fluids, with an interfacial tension of γ=20mN/m. The bubble is initialized as a
rectangle with its rear positioned 20µm downstream from the inlet. Before we switch
on the flow, we first let the bubble relax to its static equilibrium shape. We then
continuously inject the continuous phase at a velocityU , such that the bubble is pushed
through the channel. Well before reaching the exit, the bubble adopts its new steady-
state shape and keeps this shape for several thousand time steps in all simulations.
Typical wall-clock times for these simulation were 12 hours on a single processor.

Grid dependency of the film thickness was performed for a fixed inlet velocity U =
1.67cm/s, corresponding to Ca =µU/γ= 10−3 and Re =ρUw/µ= 0.32. We used
uniform grids with grid cell sizes ∆/w ranging from 1/75 to 1/400 and measured
the dimensionless film thickness b/w as the scaled distance between the iso-surface
α=0.5 and the channel wall at the middle of the bubble. For the two coarsest meshes
(∆/w=1/75, 1/100), the lubricating film is not resolved as shown in figure 2.6a. For
∆/w≤1/300, we obtained mesh independent film-thicknesses that were within 1%
of our finest mesh solution. Moreover, these film thicknesses were within 3% of the
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Figure 2.6 (a) Grid dependence of the lubricating film thickness for a bubble flowing in a
straight channel at Ca=10−3. Uniform meshes with grid size ∆ (circles), and locally refined
meshes with base grid size ∆ (squares). Also shown is the theoretically predicted film thickness
by Bretherton 44 (dashed line). (b) Bubble shape and flow pattern for the finest locally refined
mesh, qualitatively agreed with numerical simulations by Afkhami et al. 32 . The streaklines are
plotted in the frame of reference of the bubble.

theoretical prediction (b/w=0.0134 for Ca=10−3) by Bretherton 44 . This means that
roughly 2 grid cells are needed to properly capture the lubricating film.

The requirement to successfully capture the lubricating film leads to very large num-
bers of grid cells when uniform meshes are used. For our 2D case, 0.8 million grid
points were needed to reach a converged solution. In 3 dimensions, the required num-
ber of grid cells is prohibitively large. We therefore studied the possibility to apply
relatively coarse uniform grids in the core of the domain, in combination with local
grid refinement in the lubricating film near the wall. On a coarse base grid with uni-
form grid cell size ∆, we recursively divided the cell closest to the walls into four
smaller cells in the direction perpendicular to the wall. The size of the smallest cell is
then ∆/8, as shown in the inset of figure figure 2.6(a). With this method, we obtained
accurate results for the film thickness on a base grid with ∆/w=1/125, i.e. less than
one base grid cell within the lubricating film. Figure 2.6(b) shows that the resulting
droplet shape, together with the streaklines in the frame of reference of the bubble,
qualitatively agrees with simulations by Afkhami et al. 32 . We do note that velocities
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Figure 2.7 A comparison of the film thickness (a) and bubble velocity (b) between numeri-
cal simulations and experimentally-validated analytical model of Ref. 45 at different capillary
numbers.

and pressures were not accurately resolved on too coarse base meshes (∆/w>1/50)
(data not shown). These results indicate that 3D simulations can be performed with
∼10× less cells when locally refined meshes are used instead of uniform ones.

We further validate the above test case by extending the range of film thicknesses
(0.0073<b/w< 0.1326), which is done by varying the capillary numbers between
4×10−4 and 6×10−2. In all cases, the Reynolds number is less than 20. We used
four different meshes: uniform meshes with ∆/w=1/75, 1/100, 1/150 and a locally
refined grid with a uniform base grid cell size ∆/w=1/150, locally refined near the
wall to 1/1200. In figure 2.7(a) we compare the scaled film thickness b/w, to the
experimentally validated theoretical value due to Aussillous and Quere 45 ,

2b/w=
0.643(3Ca)2/3

1+0.643 · 2.50 · (3Ca)2/3
(2.15)

which is a slight improvement on the “classical” Landau-Levich-Bretherton result
(2b/w=0.643(3Ca)2/3) that takes the effect of finite film thickness on the nose cur-
vature into account. Note that the constant 2.50 was obtained by fitting to an exten-
sive experimental data set. To validate the dimensionless bubble velocity Û/U (fig-
ure 2.7(b)), we adapted the Bretherton’s law for a case of a 2D bubble in a Poiseuille
flow between two plates:

Û/U=1/(1−2b/w) (2.16)

Focusing first on the larger values of Ca, we find that all used grids accurately capture
the film thickness and bubble velocity as shown in figure 2.7(a-b). This agrees with
our finding that two grid cells suffice to capture the film. For Ca< 5× 10−3, the
resulting film thickness drops below b/w<0.02 such that this requirement is no longer
satisfied. Indeed, the uniform grids are unable to resolve the lubricating film and
consequently lead to inaccurate predictions of the bubble velocity. Clearly, a locally
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Figure 2.8 Grid dependency study on the dimensionless bubble volume generated in a T-
junction at a fixed ratio of flow rates q̂/q= 2. The bubble volumes obtained with grid cell
sizes ∆/w<1/80 agree with predictions from the experimentally-validated analytical model
(dashed line) by van Steijn et al. 46 within 4%. The inset shows bubble volumes for ∆/w=1/80
as a function of q̂/q, again in good agreement with model by van Steijn et al. 46 (solid line).

refined grid is needed for these small values of the capillary number. Using such a
mesh, the error between our numerical simulations and the theoretical predictions for
b/w was 3% on average and never larger than 5.5% in the entire range of tested Ca.
This is an excellent agreement, considering that only 2 grid cells fall within the film
thickness b for the smallest capillary numbers studied. Further improved accuracy
may be obtained through further grid refinement, as shown in figure 2.6. For Û/U ,
the error between our numerical simulations and the theoretical predictions was even
better, viz. 0.2% on average and never larger than 1.1% in the entire range of tested
Ca.

2.4.2 Bubble formation in a three-dimensional T-junction

Establishing that our approach is suited for simulating two-dimensional problems in
which no large topological changes occur, we now further validate our approach with
a more complicated three-dimensional problem, involving the breakup of a fluid in-
terface. We simulated the formation of bubbles in a microfluidic T-junction as shown
in figure 2.1(b). Air is introduced from the 100µm wide and 33µm deep side chan-
nel at a flow rate q̂, and water is introduced from the 100µm wide and 33µm deep
main channel at a flow rate q=4.95µl/h. The surface tension is set to γ=70mN/m.
In all cases, we consider surface-tension dominated flows at low Reynolds number
(Ca=µq/hwγ∼O(10−3), Re=ρq/wµ∼O(10−2)).
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Table 2.4 Convergence rates and relative errors of the bubble volumes for different grid resolu-
tions.

∆/w 1/20 1/30 1/40 1/50 1/60 1/70 1/80 1/90

p 0.58 1.78 1.70 1.62 1.85 1.96
εV 0.345 0.203 0.121 0.081 0.058 0.043 0.033 0.026

Grid dependency of the simulated bubble volume was tested on uniform grids for
a bubble generated at the T-junction for q̂/q= 2. Typical wall clock times for the
simulation of one bubble formation period were 200 hours for the finest meshes
using 8 processors in parallel on a Beowulf Linux cluster. A comparison between
the dimensionless bubble volume, V/hw2, computed for grid cell sizes in the range
1/90<∆/w<1/20 shows how the solution converges (Figure 2.8). We computed the
convergence rate p from:

(∆l+1)p−(∆l)
p

(∆l)p−(∆l−1)p
=
Vl+1−Vl
Vl−Vl−1

(2.17)

where l is the level of grid refinement. As expected for a second order discretization
scheme, this convergence rate approaches a value of two for the finest meshes as
shown in table 2.4. The relative error of the simulated bubble volumes is computed
as:

εV =
Vl−V∆→0

V∆→0
(2.18)

with (V/hw2)∆→0 computed based on Richardson extrapolation47. For the finest
meshes (∆/w≤1/60), the bubble volume is within 6% of (V/hw2)∆→0 =4.282 as
shown in table 2.4.

Validation was done by comparing the simulated bubble volumes with the
experimentally-validated analytical model developed in our group46. Good agree-
ment was found, with deviation from the theoretical value of V/hw2 =4.273 within
5% for a cell size of ∆/w= 1/70, within 4% for ∆/w= 1/80, and within 3% for
the finest mesh (∆/w=1/90). Moreover, the agreement of the extrapolated bubble
volume (V/hw2)∆→0 =4.282 is excellent and within 0.2%. Also for flow rate ratios
beyond q̂/q=2 simulations and model agree within 4% as shown in the inset of figure
2.8.

Further validation was done by studying the dynamics of the fluid interface during
bubble formation and pinch-off. We recorded the temporal evolution of the neck
thickness 2r/w of the bubble in formation, and compared our simulation with the
experimentally-validated model by van Steijn et al. 48 . Both the dynamic evolution of
the interface and the critical radius at which the neck rapidly collapses are successfully
captured, as shown in figure 2.9.
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Figure 2.9 Comparison of the evolution of the neck thickness between simulations (dots), and
the analytical model by van Steijn et al. 48 for the interface evolution (solid line) and critical
neck thickness (dashed line): ∆/w=80; Conditions: q̂/q=2.

An interesting observation is that, in the above simulations, we found that resolving
the lubricating film was not needed to accurately predict the bubble volume and the
dynamics of the fluid interface. This is a clear deviation from what we found in the
2D test case described earlier. In a 2D case, and as a matter of fact also in the case of
3D circular or elliptic channels in which the continuous fluid can only flow around the
bubbles through the thin lubricating film49, not resolving the lubricating film means
that no continuous liquid can flow past the bubble. In a 3D case with rectangular
channels, however, so-called gutters are formed in the corners of the channels. Most
of the fluid passing the bubble flows through the gutters, rather than through the lubri-
cating film4. Accurate predictions of bubble volume and interface dynamics therefore
primarily requires that the gutters are accurately represented. These gutters are much
wider than the lubricating film, and can be resolved on much coarser meshes. Our
mesh dependency study suggests that the gutters are well resolved for grid cell sizes
∆/w<1/60. According to Wong et al. 50 , the radius Rg/w of the gutter can be com-
puted as:

Rg
w

=
h

2w+2h
(2.19)

For our geometry (h/w=0.33), this leads to Rg/w is 0.12. Combined with the ob-
servation that grid cell sizes ∆/w<1/60 are needed to obtained accurate results, we
may conclude that the gutters are adequately resolved when there are at least 7 grid
cells along the edge of the gutter.
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Figure 2.10 A comparison of the 2D breakup phase diagram shows an excellent agreement
between our simulations (squares) and published numerical data (circles) 32. Open symbols
represent non-breaking droplets and closed symbols represent breaking droplets. The solid line
is included to guide the eye and indicates the transition from the non-breaking to the breaking
regime.

2.4.3 Bubble/Droplet breakup in three-dimensional T-junctions

This section presents a benchmark case of the breakup of bubbles/droplets in 3D sym-
metric T-junctions as depicted in figure 2.1(c). A bubble/droplet of length l0 flowing
into a symmetric T-juntion of height h and width w with a velocity U can either break
into two equally sized droplets, or move into one of the branches of the T-junction.
Whether or not the bubble/droplet breaks, depends on it scaled length l0/w and the
capillary number Ca. Many computational and experimental studies report breakup
phase diagrams expressed in these two parameters16,32,51,52. Here we examine the per-
formance of our VOF approach, applying the rules for the computational settings from
earlier sections, in predicting the breakup behavior.

First, we validated our VOF method by comparing the phase diagram for a 2D T-
junction obtained in this study with the phase diagram reported by Afkhami et al. 32 .
We performed simulations for capillary numbers 0.01≤Ca≤0.08 and droplet lengths
1.5<l0/w<3.2 using the same channel geometry and fluid properties as reported in
section 2.3.3, which closely resemble those used by Afkhami et al. 32 . For the smallest
capillary number Ca=0.01, the thickness of the lubricating film is b/w=0.031. As
discussed previously, it is necessary to have at least 2 grid cells inside the lubricating
film to correctly capture its thickness, which is essential in 2D simulations. Thus, we
used a uniform base mesh with ∆/w=1/45, which was refined twice near the walls
to get a local grid size ∆/w=1/90. With these settings, we found that the transition
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Figure 2.11 A comparison of the evolution of the neck thickness shows a good agreement be-
tween numerical data (open symbols) and experimental data (closed symbols) 53 for two cases:
(l0/w=4.13,Ca=9.8×10−4, squares) and (l0/w=3.39,Ca=1.2×10−3, circles).

between breaking and non-breaking droplets predicted by our simulations agrees well
with the simulations byAfkhami et al. 32 , as shown in figure 2.10.

Then, we studied the dynamics of a bubble breakup, by recording the dimensionless
neck thickness d/w in 3D simulations as a function of the dimensionless time for
two cases (l0/w= 4.13,Ca = 9.8×10−4) and (l0/w= 3.39,Ca = 1.2×10−3). The
channel geometry and the fluid properties were chosen such that they match with
those used in an experimental study by Fu et al. 53 : h=w=400µm, the bubble phase is
nitrogen gas with viscosity of 17.8µPas and density of 1.25g/L; the continuous phase
is 0.1wt%SDS in water with viscosity of 0.92mPas and density of 1000g/L and the
surface tension is 39mN/m. In section 2.4.2, we showed that, in 3D simulations, it is
sufficient to accurately capture the gutters in the corners of the channels, rather than
the lubricating films at the walls. With Eq. 2.19 and h/w=1, ∆/w=1/40 gives 10
grid cells along the edge of the gutter, which, according to what was shown in section
2.4.2, is sufficient to adequately resolve the flow in the gutter. Using this grid cell
size, we successfully captured the dynamics of the droplet breakup for both cases.
As shown in figure 2.11, the differences between our simulations on a ∆/w=1/40
mesh and experimental data are less than 8% for all time instances. Although this is
probably already within the experimental error, further improvement of the accuracy
of the simulations can be expected on finer meshes, as shown in section 2.4.2.
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2.5 Conclusions

We have shown that the movement, formation and breakup of confined bubbles and
droplets in microfluidic systems can be predicted in very good agreement with ex-
perimental data and theory using VOF simulations. The test cases we used, all fully
documented and accompanied by extensive experimental validation, form a rigorous
set of benchmarks for the ability of a numerical fluid simulation to handle large in-
terfacial tension, topological changes and large separation of characteristic length and
time scales.

The lubricating film between a bubble/droplet and the channel wall, which is orders
of magnitude smaller than the channel diameter, was predicted within 5% of the the-
oretical value, provided that, through local grid refinement, the film spans at least two
grid cells. With this grid-requirement fulfilled, the bubble velocity is also predicted
within 5% of theoretical values.

The volume of bubbles created in a three-dimensional T-junction agreed within 3%
with experimental and theoretical predictions, for which it was necessary and suffi-
cient to resolve the gutters in the corners of the channels by at least 7 grid points.

The dynamics of the breakup of a bubble in a three-dimensional T-junction was pre-
dicted in excellent agreement with experiments, for which it was also necessary and
sufficient to resolve the gutters in the corners of the channels; with 10 grid points
along the edge of the gutters, the difference between experiments and simulations was
always less than 8%. The prediction of breakup time is first order accurate in grid cell
size and independent of the numerical order of the underlining spatial discretization.
We present a simple method to calculated the error in the breakup time.

We provide a detailed account of balancing interface sharpness and parasitic currents
by using a Laplacian smoother and interface compression, and provide guidelines
for the choice of their tunable parameters. The simulations were performed with the
interFoam solver in OpenFOAM-1.6, and we show that with the proper choice of
parameters VOF is an efficient method to obtain accurate simulations of segmented
flows in microchannels. Since the VOF method implemented in OpenFOAM is a
very standard finite volume VOF implementation, we believe that the guidelines and
benchmark cases proposed in this study are valid also for other finite volume VOF
implementations.
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[39] E. Berberovic, N. P. van Hinsberg, S. Jakirlić, I. V. Roisman, and C. Tropea. Drop impact onto a
liquid layer of finite thickness: Dynamics of the cavity evolution. Phys. Rev. E, 79(3):036306, 2009.

[40] S. S. Deshpande, L. Anumolu, and M. F. Trujillo. Evaluating the performance of the two-phase flow
solver interFoam. Comput. Sci. Disc., 5(1):014016, 2012.

[41] H. Rusche. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions.
PhD thesis, Imperial College of Science, Technology and Medicine, 2002.

[42] J. Eggers and E. Villermaux. Physics of liquid jets. Rep. Prog. Phys., 71(3):036601, 2008.

[43] A. Vrij. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday
Soc., 42:23–33, 1966.

[44] F. P. Bretherton. The motion of long bubbles in tubes. J. Fluid Mech., 10(02):166–188, 1961.

[45] P. Aussillous and D. Quere. Quick deposition of a fluid on the wall of a tube. Phys. Fluids, 12(10):
2367–2371, 2000.

[46] V. van Steijn, C. R. Kleijn, and M. T. Kreutzer. Predictive model for the size of bubbles and droplets
created in microfluidic T-junctions. Lab Chip, 10:2513–2518, 2010.



Numerical methods and validations 33

[47] P.J. Roache. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech.,
29:123–160, 1997.

[48] V. van Steijn, C. R. Kleijn, and M. T. Kreutzer. Flows around confined bubbles and their importance
in triggering pinch-off. Phys. Rev. Lett., 103:214501, Nov 2009.

[49] V. S. Ajaev and G.M. Homsy. Modeling shapes and dynamics of confined bubbles. Annu. Rev. Fluid
Mech., 38(1):277–307, 2006.

[50] H. Wong, C. J. Radke, and S. Morris. The motion of long bubbles in polygonal capillaries. Part 1.
Thin films. J. Fluid Mech., 292:71–94, 1995.

[51] D. Link, S. Anna, D. Weitz, and H. Stone. Geometrically mediated breakup of drops in microfluidic
devices. Phys. Rev. Lett., 92(5), 2004.

[52] M. C. Jullien, M. J. Tsang Mui Ching, C. Cohen, L. Menetrier, and P. Tabeling. Droplet breakup in
microfluidic T-junctions at small capillary numbers. Phys. Fluids, 21(7):072001, 2009.

[53] T. Fu, M. Youguang, D. Funfschilling, and H. Z. Li. Dynamics of bubble breakup in a microfluidic
T-junction divergence. Chem. Eng. Sci., 66:4184ï£¡4195, 2011.





3. Dynamics of droplet breakup
in a T-junction§

The breakup of droplets due to creeping motion in a confined microchannel geometry is studied
using 3D numerical simulations. Analogously to unconfined droplets, there exist two distinct
breakup phases: (i) a quasi-steady droplet deformation driven by the externally applied flow
and (ii) a surface-tension-driven three-dimensional rapid pinching that is independent of the
externally applied flow. In the first phase, the droplet relaxes back to its original shape if the
externally applied flow stops; if the second phase is reached, the droplet will always break. Also
analogously to unconfined droplets, there exist two distinct critical conditions: (i) a condition
that determines whether the droplet reaches the second phase and breaks, or it reaches a steady
shape and does not break, and (ii) a condition that determines when the rapid autonomous
pinching starts. We analyze the second phase using stop-flow simulations, which reveal that the
mechanism responsible for the autonomous breakup is similar to the end-pinching mechanism
for unconfined droplets reported in the literature: the rapid pinching starts when, in the channel
mid-plane, the curvature at the neck becomes larger than the curvature everywhere else. This
same critical condition is observed in simulations in which we do not stop the flow: the breakup
dynamics and the neck thickness corresponding to the crossover of curvatures are similar in both
cases. This critical neck thickness depends strongly on the aspect ratio, and, unlike unconfined
flows, depends only weakly on the capillary number and the viscosity contrast between the
fluids inside and outside the droplet.

§Published as: D. A. .Hoang, L. M. Portela, C. R. Kleijn, M. T. Kreutzer and V. van Steijn. Dynamics of
droplet breakup in a T-junction Journal of Fluid Mechanics, 717, R4, 2013, doi: 10.1017/jfm.2013.18.
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3.1 Introduction

The breakup of droplets in confined geometries, such as found in microfluidic devices
with branching networks and in two-fluid flows in porous media, is markedly different
from the breakup of droplets in unconfined extensional or straining flows. Relevant
questions are the strength of the flow needed to cause breakup and the mechanism by
which this occurs.

Literature on unconfined breakup in Stokes flow dates back to pioneering work by
Taylor 1 , who showed that under steady extensional flow, there exists a critical strain
rate G below which a droplet of radius a is extended and assumes a steady elon-
gated shape with a length l, and above which the droplet deforms continuously until it
breaks. Expressed as a capillary number Ca=µGa/γ, where γ is the interfacial ten-
sion between the fluids, this critical strain rate, to which corresponds a critical droplet
length, depends only on the viscosity contrast λ= µ̂/µ of the fluids inside and out-
side the droplet. The fate of droplets that are extended at supercritical strain rates was
studied in great detail2,3 by stretching droplets and suddenly stopping the flow in a
computer-controlled four-roll mill. These experiments revealed that there exists a sec-
ond critical droplet length, beyond which the droplets break even without an external
driving flow, and below which droplets relax back to a sphere. This second critical
length, again, depends only on the viscosity contrast λ. In fact, Stone’s stop-flow
experiments revealed many of the relevant and interesting flow features of breaking
droplets, such as capillary instabilities similar to the pinching of a cylindrical jet, end-
pinching, the formation of satellite droplets, etc., that go far beyond (pseudo-)steady
analysis of the maximum strain rate that a droplet can withstand.

A confined geometry that resembles the extensional flows is a T-junction with equal
arms into which a long droplet is driven and pushed into both arms. Droplets in the
junction then either break up or reach a steady shape; this steady shape might be un-
stable, in which case the droplet eventually escapes into one of the arms. Link et al. 4

demonstrated that here too, a critical droplet length exists, corresponding to a critical
capillary number expressed as Ca=µU/γ, with U the mean velocity flowing into the
T-junction. In this confined flow, already on dimensional grounds, the ratio of droplet
length to channel width ε=(l/w) is relevant, and experiments indeed reveal that the
boundary between breakup and non-breakup regimes has the form Ca=f(ε, λ). Link
et al. 4 used instability arguments similar to jet-breakup to predict this transition. More
in the spirit of Taylor’s analysis, Leshansky and Pismen 5 predicted the transition by
calculating pseudo-steady droplet shapes using a two-dimensional model in which the
capillary instability is not operative. Even though their model cannot possibly capture
the complex three-dimensional shape of long confined droplets, their theory success-
fully predicts, up to an O(1) constant, whether droplets break. However, the mecha-
nisms that govern the dynamics beyond the critical capillary number, i.e. for breaking
droplets, have remained unclear. Jullien et al. 6 observed that breaking droplets sud-
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Figure 3.1 Geometry of the problem and top-view of the deforming droplet.

denly pinch, which suggests that confined droplets also exhibit a critical shape beyond
which breakup is autonomous. Even though, as we will show here, this second criti-
cal shape is not generally the same as the critical shape associated with the question
whether a droplet breaks, these shapes are used interchangably in current literature
e.g.6,7. Similarly to unconfined flows, we use stop-flow numerical experiments to
clarify this confusion between steady-state features of confined droplets and the 3D
surface-tension-driven mechanisms of rapid pinching.

This chapter explores numerically the fate of droplets in a T-junction, exposed to flow
rates above the critical value for breakup. We restrict ourselves to the Stokes flow
regime; inviscid breakup dynamics are very different see e.g.8. We shall see that the
breakup dynamics of these confined droplets in many ways resembles their unconfined
equivalent. Of course, the shape of the confining channels is now a relevant parameter,
in addition to the viscosity contrast and initial droplet size. In simulations, the stop-
flow experiments are feasible with little effort, and reveal many interesting aspects that
are difficult if not impossible to observe in physical experiments. Similarly in spirit
to Stone’s (1986) analysis, we seek to find critical features of the droplet shape that
determine when a droplet will breakup autonomously even when the flow is stopped
abruptly.

3.2 Problem formulation

Consider the droplet of viscosity µ̂ and density ρ̂ in figure 3.1 that flows from a channel
of width w and height h into a T-junction with two equal arms of same width w
and height h. The droplet is too large to remain spherical inside the channel and
has a length l0>w. It is surrounded by an outer fluid of viscosity µ and density ρ,
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which flows through the feed branch of the T-junction with mean velocity U . We
use the fluid properties reported by Link et al. 4 and Jullien et al. 6 as a set of base
parameters: for the outer fluid µ=8mPas and ρ=770g/L, for the droplet µ̂=1mPas
and ρ̂= 1000g/L and γ= 5mN/m. Velocities in the feed channel of cross-section
30×30µm2 were varied in the range U =0.5−17.5mm/s. We varied the viscosity
contrast by changing the droplet viscosity, 10−3<λ<10, and the channel aspect ratio
by changing h, 1/3<h/w<1. Droplet sizes l0/w= 2.80, 5.56, 11.1 and ∞ were
considered, where l0=∞ was simulated by filling both branches with the droplet fluid
at the start. Resulting Reynolds numbers Re=ρUw/µ and capillary numbers were in
the range 10−3<Re<10−1 and 10−4<Ca<10−2, respectively.

Simulations are performed using the finite-volume-based code OpenFOAM-1.69, in
which the fluid interface is represented by the volume-of-fluid (VOF) method. We
use hexahedral meshes and refine recursively four times the cells adjacent to the wall
to resolve the thin lubrication films surrounding the droplet. At the two exits, we
prescribe a reference pressure and zero gradient of the volume fraction. At the walls,
we apply the no-slip boundary condition and use an equilibrium contact angle θe=0◦.
We initialize the simulation with a rectangular droplet, more than 10w upstream of
the T-junction,and let the droplet relax to an equilibrium shape. We then start the
flow in the feed channel and run until the two daughter droplets start to leave the
computational domain, which happens well after the breakup is complete. Details on
the numerical methods employed and the validation can be found in chapter 2.

All published experimental data cited above are only available as the evolution of
droplet shapes measured from top-view micrographs and as derived parameters, like
the thickness of the neck d and the in-plane radius of curvatureR, both shown in figure
1. We further detail the process with time and space-resolved velocity and pressure
fields, which are difficult to obtain experimentally.

3.3 The mechanism of droplet pinching

3.3.1 Breakup of droplets in T-junctions

We begin by describing the subsequent stages of droplet deformation and flow when a
droplet flows into the T-junction. In all cases, the capillary number was well above the
critical value for breakup, Ca=6×10−3 for l0/w=2.80, Ca=2×10−4 for l0/w=5.56,
similar to l0/w≈0.98Ca−0.21 from Leshansky and Pismen 5 . We set Ut/w=0 at the
moment when the droplet has entirely departed from the feed channel. From this mo-
ment on, the driving fluid deforms the droplet in the center of the T-junction resulting
in a dumbbel-like droplet shape as shown in figure 3.1. The neck connects two half-
droplets, which adopt the shape of a semi-infinite droplet in a rectangular channel
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Figure 3.2 Pressure and velocity distribution during the breakup. Ca=6.25×10−3, Re=0.01,
l0/w=5.65, λ=0.125, h/w=1.

as described by Wong et al. 10 , with a near-flat film surrounding the droplet, except
near the corners of the channel where the half-droplets are separated from the wall
by a meniscus of radius r−1∼2(w−1 +h−1). Flow of the continuous phase around
the droplet predominantly occurs through these corner regions, which we call gutters.
Early in the breakup, the neck takes the shape of a circular arc with radius R at the
mid-plane of the channel (z/h= 0.5) as shown in figure 3.2 for Ut/w= 0.53. The
apparent macroscopic contact angle follows the theory of the hydrodynamics of wet-
ting11 as proposed by Leshansky et al. 12 . Once the neck detaches from the top and
bottom wall as shown in the z/h=0.1 plane at Ut/w=1.12, the interface no longer
assumes a circular arc shape at z/h=0.5. At Ut/w=1.33, the local radius of cur-
vature at the neck further decreases until the droplet breaks into two equal daughter
drops. Simulations for different droplet sizes show that the flow features are essen-
tially identical in the center of the T-junction, regardless of the droplet size.

To further our understanding, we turn our attention to the pressure and velocity fields
around the neck region as shown in figure 3.2. At first, fluid from the feed channel
spreads out to the gutters and pushes the interface inwards to form a necking region.
At Ut/w=0.53, the droplet still touches the top and bottom walls in the middle via
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a thin lubricating film. At Ut/w=0.67 (not shown in figure 3.2), the driving liquid
has sufficiently pushed the neck inwards to detach the droplet from the top and bottom
walls. From this moment onwards, the fluid also flows through the opening that forms
near the top and bottom walls into the gutters opposite of the feed channel, as shown
for Ut/w=1.12; however, the flow in these opposite gutters does not continue to the
droplet ends, as can be seen by the stagnation point on the droplet surface. Later, at
Ut/w≈1.2, flow to the gutters adjacent to the feed channel ceases. Pressure builds
up where the gutters meet the necking region and liquid starts to flow back to the
neck, where the pressure is lower. Still later, at Ut/w= 1.33, a flow to the middle
of the T-junction is observed from the entrance of all eight gutters, where the total
flow in the gutters adjacent to the inlet is 66 times larger than that in the opposite
gutters. A stagnation line is found on the droplet surface in the |y|≈1.2w plane in
both branches. A result of this flow reversal is that the constriction is accelerated,
because the incoming fluid can no longer escape.

3.3.2 Three-dimensional effects

A topic of recurring interest has been whether a two-dimensional description of the
breakup captures the relevant phenomena. In a two-dimensional analysis, the shape
of the lubricating film between the far ends of the breaking droplet and the neck is
amenable to a self-similarity analysis, as is the flow through it. Recall that 2D-based
predictions of whether the droplet breaks up compared favorably with experiments5,6.
As the 2D lubricating film is thin, flow through it is minimal, and the droplet obstructs
flow to the branches. Leshansky et al. 12 used this all but complete obstruction to
develop a self-similar description for the breakup dynamics based on the notion that,
absent leakage through the film, the depression volume Vd of outer fluid near the neck
increases linearly with time. In this analysis, (1−d/w)∼ (Ut/w)3/7, leading to a
collapse in a finite time.

We performed two-dimensional simulations, equivalent to the full three-dimensional
simulations of breakup described above. Figure 3.3(a) shows the evolution of neck
thickness for both the 2D and 3D simulations. In agreement with Leshansky et al. 12 ,
we find that in 2D the thickness of the neck decreases monotonically until a grid-
dependent collapse a consequence of the VOF method, see also13. The 3/7 scaling
describes the data well, as shown in the inset. The 3D evolution follows the 2D data
very closely until d/w≈0.5. In fact, in 3D, d/w≈1−0.58(0.25/3Ca)−1/7(Ut/w)3/7,
as in 2D. This agreement teaches that in the early stages of breakup, flow past the semi-
obstructing ends is similar in 2D and 3D, with negligible influence of the Laplace
pressure due to the out-of-plane curvature, p∼ γ/d, on the droplet surface at the
neck. This, and the small influence of the flow through the gutters, explains why
the two-dimensional theory to predict whether a droplet breaks works well in three
dimensions: as is the case for unconfined flows, the maximum steady-state droplet
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Figure 3.3 (a) Evolution of the neck thickness in 3D (red-open symbols) and 2D (black-closed
symbols) for different grid resolutions ∆ (h/w=1, λ=0.125, l0/w=5.56 and Ca =6.25×
10−3). Inset: the same data as log(1−d/w) vs. log(Ut/w). (b) Pressure and velocity field of
3-D and 2-D simulations just before pinch-off.

deformation is moderate, with, in fact, d/w≈0.5 as the maximum deformation5.

Three-dimensional capillary effects do significantly influence the breakup dynamics
for d/w<0.5. In 3D, the grid-independent accelerated pinch-off happens well before
the 2D breakup. The neck starts to collapse at d/w≈0.5, initiating a very fast sec-
ond phase, resulting in a break-up at Ut/w=1.37, much faster than the 2D value at
Ut/w= 3.54(0.25/3Ca)1/3 = 8.3912. As a result, the depression volume Vd∼ t re-
mains small and the range of droplet lengths for which a “tunnel” opens during the
breakup (the “non-obstructed” regime) is smaller than predicted for 2D. The evolu-
tion of d/w with tunnel opening (l0/w= 2.80) was identical to that without tunnel
opening (l0/w=5.56). More importantly, the smaller break-up time can be compared
to the time it takes a droplet to move, partially or entirely, into either branch because
of slight imperfections of the symmetry of T-junctions in experiments. The shorter
breakup time in 3D results, for a given device, in less asymmetry in the volume of the
daughter droplets than would be predicted on 2D theory14.

Figure 3.3(b) shows when the 2D and 3D dynamics diverge prior to pinch-off. In
3D, the effect of curvature on the pressure field leads to back flow, whereas in the 2D
simulation flow towards the two exits of the T-junction persists until breakup, even
if that flow is small. For the case considered here with h/w=1, the critical value of
the neck thickness at the onset of the rapid collapse agrees well with the critical value
d/w= 1

2 for a continuous steady-state deformation as calculated by Leshansky and
Pismen 5 . As we will discuss below, this result is not generic. In fact, as in unconfined
flow2 Figure 12, there exist two different critical values: (i) a value that determines
whether the droplet deforms continuously, eventually leading to breakup, and (ii) a
value that determines the onset of the rapid collapse. Before we discuss features of
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eters as in figure 3.3(a).)

this second critical neck thickness, we first show how it can be determined from stop-
flow simulations.

3.3.3 Stop-flow simulations

We now seek to find the critical features of the droplet shape that determine whether a
droplet will breakup autonomously when the flow is stopped abruptly. As it turns out,
the corresponding neck thickness is the same as the critical neck thickness at the onset
of rapid collapse. Our starting point is a continuous simulation on droplet breakup
(black line in figure 3.4(a)). In the stop-flow simulations, we extract the shape of the
continuous simulation at different instances and then set the velocity everywhere in
the domain equal to zero, keeping the pressure at the outlet constant throughout. We
then restart the simulation, which now describes the flow driven by capillary effects
alone.

In a first simulation, stopped at Ut/w=1.07, the droplet relaxes back to the original
shape (circles, blue line in figure 3.4(a) and the droplet shapes (a)-(c) in figure 3.4(b)).
Absent the driving fluid coming into the T-junction, this process is dominated by the
slow flow through the gutters and the droplet reaches its relaxed shape only at t�1.
The situation is markedly different for a second simulation, stopped at Ut/w=1.17
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(triangles, red line, shapes (d)-(f)), where the neck first increases slightly, followed by
a gradual decrease and a rapid collapse. In a third simulation, stopped at Ut/w=1.23,
this initial increase is absent (squares, light blue line, shapes (g)-(i)), but the final rate
∂d/∂t of the rapid collapse is similar and equals the rate of the final collapse in case
the flow is not stopped. The neck scales with (U(tc−t)/w)α, where tc is the pinch-off
time, with an exponent α which changes from α≈ 1

3 at d/w=0.3 to α≈1 at d/w=0.1,
which was smallest neck size that we could resolve our grid, indicating that a (inertial-
) viscous-capillary balance is operative in the final stages8. Figure 3.4(d) shows that
stagnation lines on the interface immediately appear for the two stop-flow simulations
that lead to breakup, in contrast to the simulation that relaxes back to a single droplet.
This highlights the importance of the flow of the outer fluid for the rapid pinch in
the center. The three stop-flow simulations, taken together, show that once the neck
thins beyond a critical value (here, d∗/w=0.53 at Ut/w=1.1), droplet breakup is in-
evitable. This transition between relaxation and breakup coincides with the start of the
rapid collapse for the simulation in which the flow persists, as marked by the point of
departure from the line (1−d/w)∼(Ut/w)3/7 in the inset of figure 3.3(a). Similarly
to droplets that break without further external strain in unconfined flows2, confined
droplets break due to a surface-tension-driven mechanism. Following Stone’s analy-
sis on the droplet shape after stopping the flow, we note that droplets relax when, in
the channel mid-plane, the local curvature at the neck, κ1, is smaller than the curva-
ture everywhere else, such that the surrounding liquid flows away from the neck. By
contrast, droplets break when the curvature at the neck is larger than the curvature
everywhere else. The comparison between κ1 and the curvature κ2 at the entrance of
the gutter shows that, indeed, κ1−κ2 reverses sign at the transition between breaking
and non-breaking drops (Figure 3.4c). The only difference between Stone’s analysis
and our analysis is that the location of the maximum curvature is off-center for uncon-
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fined droplets, such that they break into at least three fragments. In fact, the confining
geometry prevents the formation of the large bulbous ends, and the inflow at the cen-
ter forces the pinch in the middle. Despite this slight difference, our work clearly
shows that it is the shape of the droplet alone that drives the pinching: the breakup
mechanism is similar to the end-pinching mechanism proposed by Stone et al. 2 for
unconfined droplets.

3.4 Critical shape for autonomous pinching

We now explore how the critical shape for autonomous breakup d∗, which coincides
with the point of departure from 2D-like behavior, depends on the confining geom-
etry. Simulations (continuous and stop-flow) in channels with height-to-width ratios
between 1/3 and 1 show the dependence of d∗/w on h/w as evident from a compari-
son of the evolution of the neck thickness in figure 3.5(a). A reduction in h/w reduces
d∗/w, postponing the onset of the rapid collapse Ut∗/w. We note that both d∗/w and
d(t)/w are rather insensitive to droplet length. More quantitatively, we found that all
data (0.33<h/w<1 and l0/w≥2.80) follows the simple relation

d∗

w
=

h

h+w
(3.1)

as shown in figure 3.5(b). This relation was previously developed for the rapid collapse
of the neck of droplets forming in T-junctions15 suggesting that similar mechanisms
are at play.

Unlike unconfined droplets, the shape of the droplet at t= t∗ is almost independent
of the viscosity contrast and the capillary number. Consequently, we expect d∗/w to
be insensitive to both these parameters. Indeed, a comparison of the neck evolution
in channels with h/w=1 shows that d∗/w only slightly depends on Ca (inset of fig-
ure 3.6(a)), with a decrease in d∗/w of 15% over the two orders of magnitude increase
of Ca (9×10−4<Ca<2.8×10−2). These results are in line with the experimental
observations by Jullien et al. 6 and Fu et al. 7 . To study the influence of the viscosity
contrast, we varied the viscosity of the droplet µ̂ while keeping the viscosity of the
surrounding fluid µ constant. Figure 3.6(b) shows that the onset of rapid pinching
does not change with λ. The rate of the pinching decreases with increasing λ, and the
exponent in d/w∼(U(tc−t)/w)α tends to α=1. One would expect asymmetry in the
pinching for two viscous fluids8, but for the neck sizes that we could resolve we did
not observe that8,16. Due to the higher droplet viscosity, the pinching time increases,
by a factor 1.4 going from λ=0.001 to λ=1 and by a factor 2.4 by going from λ=1
to λ=10.

We now return to the discussion on the two critical shapes in the breakup of confined
droplets. By calculating steady-state shapes without regarding dynamics, Leshansky
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and Pismen 5 showed that the first critical droplet shape, which determines whether
a droplet breaks, has a neck thickness d/w= 0.5. Even though the second critical
droplet shape, beyond which the droplets break autonomously at supercritical veloc-
ities, roughly coincides with the first at h/w=1, this result is certainly not general.
Our simulations show that the second critical drop shape, though insensitive to Ca and
λ, strongly depends on the aspect ratio of the channel h/w.

3.5 Concluding remarks

We have presented a numerical study on the breakup of droplets confined in a T-
junction using full simulations and stop-flow simulations. While stop-flow experi-
ments are notoriously difficult to perform in microfluidic devices, numerical experi-
ments are easily done. Our simulations reveal that the breakup mechanism shows sim-
ilarities with the breakup of unconfined droplets. The breakup process comprises two
distinct phases: in the first phase the droplet goes through a quasi-steady deformation,
driven by the externally applied flow, while in the second phase a surface-tension-
driven three-dimensional rapid autonomous pinching occurs that is independent of the
externally applied flow. The rapid autonomous pinching starts when, in the channel
mid-plane, the curvature at the neck rises above the curvature everywhere else. The
onset of this pinching depends strongly on the aspect ratio of the confining channel,
however, unlike unconfined droplets, it depends only slightly on Ca and λ. This can
be understood from the fact that the rapid autonomous pinching is solely driven by the
shape of the droplet, which strongly depends on the aspect ratio of the channel, but,
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contrary to unconfined flows, hardly depends on Ca and λ.

It is important to note that all droplets studied in this chapter break in case we do not
stop the flow, i.e., we study the dynamics of droplets at supercritical velocities both
in the “obstructed” and“non-obstructed” regime. The critical shape characterized by
d∗ corresponds to the onset of the rapid collapse, it does not correspond to the critical
shape associated with the question of whether the droplets break, as addressed by Link
et al. 4 and Leshansky and Pismen 5 . Our work reveals that the two critical values for
the neck thickness only closely match in channels with an aspect ratio h/w=1 and it
clarifies why these two should not be used interchangeably for h/w 6=1.
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4. Critical behavior of droplet
breakup in T-junction mi-
crochannel

The critical behavior of droplet breakup in T-junction mirochannels is studied using three-
dimensional numerical simulations. Two scenarios can happen when a droplet flows into a
T-junction: (i) if the flow is strong enough, it breaks into two daughter droplets and (ii) oth-
erwise, it drifts away into one branch of the T-junction owing to flow perturbations. Whether
a droplet breaks or not is determined by the ratio between two timescales: breakup time and
drifting time. Symmetric-boundary-condition simulations allow us to study the breakup time
without any flow perturbations, thus to accurately compute the critical capillary number be-
low which the droplet does not break. We study the drifting using full-T-junction simulations,
identifying three phases in drifting process: (i) an exponential drifting, (ii) a transition phase
and (iii) a linear drifting. Combining the understanding of the breakup and drifting behavior,
we found that the critical capillary number below which the droplet drifts away increases more
than 10% with respect to the one obtained in free-perturbation flow systems.

49
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4.1 Introduction

Microdroplets have emerged as a controlled way to transport fluid samples in mi-
crofluidic networks for lab-on-a-chip applications1–3. The presence of these droplets
enhances the mixing4 and heat and mass transfer5, as well as reduces the axial dis-
persion6. The size of droplets is relevant as it directly relates to the concentration of
the sample they contain. In addition, the size plays an important role in the trans-
portation of droplets in microfluidic systems, as it determines the resistance-to-flow.
Several basic “unit operations” have been proposed and tested for the precise control
and manipulation of the droplet size.

One of the basic “unit operations” in droplet microfluidics is droplet breakup in a T-
junction in which droplets of controllable sizes are generated by breaking a big droplet
into smaller droplets whose sizes depends on the ratio between the lengths of two
branches of the T-junction. Depending on the capillary number (Ca =µU/γ with µ
the viscosity, U the mean flow velocity and γ the interfacial tension), the ratio between
the droplet length and the channel width l/w and the viscosity ratio λ= µ̂/µ (µ̂ is the
viscosity of the droplet phase), two scenarios can happens: (i) under a super-critical
flow, the droplet breaks into two daughter droplets and (ii) under a sub-critical flow,
the droplet does not break and might drift away into one branch of the T-junction.

Several attempts have been made to predict the critical breakup condition at which
the behavior changes from breaking to non-breaking7–11. Leshansky and Pismen 7 de-
veloped a two-dimensional steady-state model to predict the critical capillary number
using lubrication analysis in a narrow gap between droplets and channel walls where
the interfacial tension force balances with the viscous force. According to their model,
there exists a steady state for a droplet under the sub-critical flow. Available experi-
ments demonstrated that the model by Leshansky and Pismen 7 sucessfully predicts,
up to an O(1) constant, whether droplets break9–11. However, in these experiments,
non-breaking droplets do not reach the steady state but drift away into one branch of
the T-junction owing to random perturbation in the system8–11. Zhang and Wang 11

also showed that, close to the transition line, an asymmetric breakup can happen in a
symmetric T-junction due to the drifting. A comprehensive picture of the dynamics
of the droplets approaching the critical breakup condition is important to reveal the
mechanism of the drifting and the asymmetric breakup observed in physical experi-
ments. Understanding the critical behavior of droplet breakup close to the transition
line also helps to unravel the relation between the breakup condition and the ratio of
the timescales for breaking and drifting.

The aim of this chapter is to numerically study the critical breakup condition by
comparing the two timescales: breakup time and drifting time. We first analyze the
timescale for breaking and the steady shape of droplets for different capillary num-
bers. In this set of simulations, we enforced the same flow conditions in two branches
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Figure 4.1 Geometries of the problems: (a) A half of a T-junction with a symmetric plane at
y=0 (b) An entire T-junction.

of a T-junction by applying symmetric boundary condition to suppress flow asymme-
try. This allows us to reveal accurate critical capillary numbers of the breakup and
the sub-critical steady shape of droplets that are difficult to obtain in physical experi-
ments. We then explore the timescale for drifting in the sub-critical conditions with a
full T-junction. Different from the symmetric-boundary-condition simulations, a drift-
ing can happen due to a flow difference between two branches of the T-junction arising
from numerical perturbation. We also investigate the influence of a prescribed pres-
sure difference between two outlets on the drifting behavior of the droplet. Combining
the understanding of the breakup and drifting behavior, we are able to determine the
critical condition for droplet breakup. Furthermore, it teaches us how close to the tran-
sition regime, the timescales of the breakup and drifting become comparable, leading
to an asymmetric breakup.

4.2 Numerical setup

We investigated the dynamical behavior of droplets of viscosity µ̂, density ρ̂ and length
l0 that is enclosed by an outer fluid of viscosity µ and density ρ. Two droplet lengths
l0 =59µm and 84µm were considered. Fluid properties were selected such that they
represent the case often encountered in lab-on-a-chip devices: for the outer fluid µ=
8mPas and ρ=770g/L, for the droplet µ̂=1mPas and ρ̂=1000g/L and γ=5mN/m.
We explored the breakup in two types of computational domains, as shown in figure
4.1. A half of a T-junction with a symmetric plane at y=0 (figure 4.1(a)) allows us
to accurately compute a breakup time and the steady droplet shape without any flow
perturbations, while an entire T-junction (figure 4.1(b)) was used to study the drifting
behavior. Both geometries have the same dimensions: width w= 30µm and height
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(b)

(a)

Figure 4.2 Snapshots of droplet shapes in half-T-junction simulations: (a) breaking regime and
(b) non-breaking regime.

h=30µm. Velocities in the main channel were varied in the range U=0.5−30mm/s.
The corresponding Reynolds numbers Re=ρUw/µ and capillary numbers were in the
range 10−3<Re<10−1 and 8×10−3<Ca<8×10−2. The initial time Ut/w=0 of
the breakup and drifting process is set to the moment when the droplet has entirely
exited the feed channel.

The finite-volume-based open-source CFD code OpenFOAM-dev1.612 with the Vol-
ume of Fluid method (VOF) was used to perform three-dimensional, dynamic simu-
lations. Details on the employed numerical methods and the validation can be found
in chapter 2. In all of our simulations, no-slip and zero contact angle boundary con-
ditions were specified at the channel walls. A uniform velocity was applied at the
inlet and an atmospheric pressure boundary condition and zero-gradient for the VOF
function were applied at the outlets. In symmetric-boundary-condition simulations, a
symmetric-plane boundary condition was applied at the plane y=0. The simulations
ran in parallel on 8 to 16 processors on a Beowulf Linux cluster. The typical wall-
clock computational time is approximately 150 hours for one simulation. Local grid
refinement was used to resolve the thin lubrication film surrounding the non-wetting
bubbles13. We have checked that the volume of the droplet phase is conserved during
the entire simulations.

4.3 Breakup behavior approaching critical condition

We first study the critical breakup conditions and the timescale for breaking using a
half of a T-junction, as shown in figure 4.1(a). In this set of simulations, we applied
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a symmetric boundary condition (BC) at the plane y= 0. This eliminates any flow
asymmetries appearing in the system and thus allows us to accurately seek the breakup
time and the critical capillary numbers. Preventing the flow asymmetry also allows the
computation of the steady shape of the droplets in non-breaking regime, as described
by Leshansky and Pismen 7 . Consider a droplet flowing in a junction, figure 4.2 shows
two scenarios that can happen in the system: (i) in breaking regime, a droplet enters
the branch of the T-junction and is squeezed by the external flow until breakup and
(ii) in non-breaking regime, a droplet enters the branch of the T-junction and is also
squeezed by the external flow until reaching its steady-state shape. In the second
scenario, the external flow entirely passes over the droplet towards the branches of the
T-junction - which we will refer as passing flow from now on - and the droplet can
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keep its steady shape indefinitely.

To seek the critical condition for the breakup, we performed simulations with a wide
range of the capillary numbers (2×10−3<Ca<8×10−2). We varied the capillary
number by changing the mean flow velocity U , focusing on the transition regime
to accurately compute critical capillary numbers. Figure 4.3 shows the evolution of
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the dimensionless neck thickness d/w versus the dimensionless time Ut/w for two
droplet lengths l0/w=2.8 and 2.0. The critical capillary numbers of these two droplet
lengths are 5.45×10−3±0.02×10−3 and 2.13×10−2±0.01×10−2, respectively.

In non-breaking regime (dashed lines in figure 4.3), the droplet enters the branch of
the T-junction; it is squeezed shortly until reaching the steady shape. Since there is
no flow asymmetry in the system, this steady shape is preserved and the droplet stays
at the center of the T-junction. A measurement of the passing flow rate, rescaled
with the flow rate at the inlet Uhw/2, in time shows that the ratio between the in-
jected flow rate and the passing flow rate reaches unity when the droplet reaches its
steady shape (dashed lines in figure 4.4). Our results also show that the steady neck
thicknesses at the capillary number just below the critical value are 0.74±0.025 for
l0/w=2.8 and 0.72±0.025 for l0/w=2. These values are different than the prediction
by Leshansky and Pismen 7 ((ds/w)crit=0.5). The difference might come from the
three-dimensional effects that were not taken into account in their model.

Figure 4.5 shows the convergence rate to the steady state of the neck thickness for
different capillary numbers for l0/w=2.8. Our results show that for lower capillary
number, the droplet reaches its steady shape faster. The convergence time at which
(d−dsteady)/w=10−3 is linearly proportional to the capillary numbers. In the initial
stage, the neck thickness seems to converge exponentially in time towards the steady
state.
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Further increase of the capillary number leads to the transition between non-breaking
and breaking regimes. The solid lines in figure 4.3 and 4.4 show the behavior of
the dimensionless neck thickness and passing flow rate during the breakup process.
As described in chapter 3, the droplet goes through two phases, squeezing and rapid-
pinching, during the breakup. The timescale for breaking is determined by the squeez-
ing rate and the onset of the rapid-pinching.

The squeezing rate is controlled by the amount of fluid passing over the droplet. For
the relatively short droplet considered in this chapter, the external fluid pass over the
droplet via both the lubrication film between the droplet and the channel walls and
the gutters - the corners of the channel that are not filled by the droplet phase. We
noticed that the flow via the gutters is approximately ten times larger than the flow
via the lubrication film. Hence, the passing flow rate depends primarily on the length
of the gutters. During the squeezing phase, the droplet is squeezed by the external
flow at its center, resulting in a decrease in the gutter length. Figure 4.4 shows that
the passing flow rate increases in the initial stage of the squeezing phase owing to
the decreased gutter length. It goes through a maximum and slightly decreases until
the rapid pinching kicks in. Our results show that the maximum passing flow rate
increases with decreasing capillary number. We found that this flow rate varies with
the capillary number in the form: (qpass/Uhw)max∼Ca−α, where α=1.95 and 1.1
for l0/w=2.8 and l0/w=2.0, respectively. We observed that the ratio between the
passing flow rate and the injected flow rate approaches unity when the flow approaches
the critical condition. For (Ca<6×10−3;l0/w= 2.8) and (Ca<0.023;l0/w= 2.0),
more than 90% of the injected flow escapes via the gutter. A consequence of the
increased passing flow is a decrease of the squeezing rate, leading to an increase of
the breakup time.

The onset of the rapid pinching is marked by an accelerated decrease of the neck
thickness, as shown in figure 4.3. In chapter 3, we showed that this rapid pinching is
governed by interfacial tension forces. At the onset of the rapid pinching, there is by
a flow reversal from the entrance of the gutters - the corners of the channel that are
not filled by the droplet phase - to the center of the droplet (see figure 3.2). Due to
this flow reversal, no fluid can escape via the gutter. Figure 4.4 shows that indeed the
onset of the rapid-pinching coincides with the moment that the gutter flow rate starts
decreasing rapidly. To quantify the dependence of the onset of the rapid-pinching
on the capillary number, we measured the critical neck thicknesses dcrit/w at which
the rapid-pinching starts. Figure 4.6 shows a plot of these critical neck thicknesses
together with the neck thicknesses at the steady state as a function of the capillary
numbers. For l0/w= 2.8, the critical neck thickness is 0.5± 0.03 in super-critical
flows ((Ca−Cacrit)/Cacrit>1.1), in agreement with the prediction of the critical
neck thickness for square channel in chapter 3. As the capillary number approach the
critical value (0< (Ca−Cacrit)/Cacrit<1.1), the critical neck thickness increases
from 0.53 to 0.72. For l0/w=2.0, similar behavior of the critical neck thickness was
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Figure 4.8 Snapshots of droplet shapes in full-T-junction simulations: (a) symmetric breakup,
(b) asymmetric breakup and (c) drifting.

observed except for high capillary numbers. Our results show that the critical neck
thickness starts deviating from the predicted value of 0.5 at (Ca−Cacrit)/Cacrit=1,
corresponding to Ca = 0.041. It could be that at such high capillary numbers, the
viscous forces become more relevant and the breakup is not fully governed by the
interfacial tension forces, leading to a deviation from our analytical prediction.

To further our understanding on the timescale for breaking, we recorded the breakup
times and plotted them against the capillary numbers, as shown in figure 4.7. The
breakup time increases towards infinity as the capillary approaches the critical value.
We found that the breakup time Utb/w scales with (Ca/Cacrit−1)

−1/3 for both
droplet lengths. We do not have an explanation for this scaling law yet. This scaling
seems to be invalid for the capillary number far from the critical value. For (Ca−
Cacrit)/Cacrit>2, the breakup time starts deviating from this scaling law. Our result
suggests an universal law of the variation of the breakup time. However, it is difficult
to draw a firm conclusion with only two droplet lengths considered in this chapter.
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4.4 Drifting behavior approaching critical condition

We now turn the discussion to the drifting behavior of droplets when the capillary
number approaches the critical value. Due to flow asymmetries, the droplet position is
not stable and the droplet will drift away into one branch of the T-junction. This flow
asymmetries can be caused by the fabrication tolerance of the devices or the pressure
fluctuations in the system14. To simulate the drifting behavior, we performed simu-
lations with a full T-junction, as shown in figure 4.1(b). Here, the flow asymmetry
comes from numerical perturbations, which can be caused by round-off in resolving
the Navier-Stokes equations or an asymmetry in the computational mesh. We also
mimicked the fabrication tolerance in physical experiments by imposing a small pres-
sure difference between two outlets and investigated the drifting behavior in such a
situation.

4.4.1 Drifting process

Consider a droplet entering a symmetric T-junction as in figure 4.8, three scenarios
can happens in the system: (a) symmetric breakup, (b) asymmetric breakup and (c)
drifting. In the symmetric breakup scenario (super-critical conditions), the droplet
enters the T-junction; it is compressed by the external flow and finally breaks into
two identical droplets. The breakup behavior of the droplet in this scenario is similar
to that in half-T-junction simulations, as described in section 4.3. Approaching the
critical condition, we observed an asymmetric breakup even with the used symmetric
T-junction. In this scenario, the droplet drifts away from the center of the T-junction
while the breakup is happening, leading to the observed asymmetric breakup. In the
drifting scenario (sub-critical conditions), the droplet enters the T-junction; it reaches
the steady shape for a short time and drifts away to one of the branches.

In this section, we focus our discussion on the drifting behavior of droplets in near-
critical and sub-critical regimes. Figure 4.9 and 4.10 show the displacement yc/w
of the center of mass (CoM) during the drifting, for two droplet lengths, l0/w=2.8
and 2.0. We recorded the movement of the center of mass from the moment when
the droplet entirely departs from the feed channel (Ut/w=0) until the moment when
it moves far away from the center of the T-junction. The drifting process comprises
three phases: (i) initially, the droplet drifts exponentially out of the center of the T-
junction owing to flow perturbation, followed by (ii) a transition phase and (iii) when
the droplet fully enters one branch of the T-junction, it moves linearly.

Figure 4.9(b) shows snapshots of the droplet shape during the drifting process for
l0/w=2.8 and Ca=4.3×10−3. At Ut/w=0, the droplet fully enters the branch of the
T-junction. The droplet stays at the center of the T-junction, corresponding to yc/w≈
0, until Ut/w=0.73. The moment when the droplet starts moving out of the center
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Figure 4.9 (a) Displacement of the center of mass (CoM) during a drifting process for l0/w=
2.8 for different capillary numbers. The inset shows the plots of the displacement of the CoM
in log-lin scale. (b) Snapshots of droplet shapes for Ca=4.3×10−3. (c) Snapshots of droplet
shapes for Ca=7.1×10−4.
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Figure 4.10 (a) Displacement of the center of mass (CoM) during a drifting process for l0/w=
2.0 for different capillary numbers. The inset shows the plots of the displacement of the CoM
in log-lin scale.(b) Snapshots of droplet shapes for Ca=1.91×10−2. (c) Snapshots of droplet
shapes for Ca=1.73×10−3.

depends on the ratio between the force exerted by the external flow on the droplet
and the flow perturbation. For lower capillary numbers (smaller external forces), the
droplet moves out of the center earlier. Once the droplet starts drifting, it moves
exponentially in time: yc/w∼eλ1Ut/w (see the inset of figure 4.9(a)). In this phase,
the drifting of the droplet can be primarily caused by the flow perturbations in the
system. These perturbations grow exponentially in time, resulting in the exponential
drifting as observed in our simulations. We also observed that while the droplet drifts
away (Ut/w=2.91), the gap between the droplet and the channel wall on one branch
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of the channel increases and a large part of the flow goes into that branch. This is
similar to the experimental observation shown in figure 11 of Fu et al. 10 . At Ut/w≈4
(not shown in figure 4.9(b)), the droplet almost gets into one branch of the T-junction,
at which the transition phase starts. Our results show that the duration of the transition
phase is longer for smaller capillary numbers. At Ut/w=5.1, the droplet fully enters
one branch of the T-junction. From that moment on, the droplet speed is driven only
by the strength of the external flow in the branch of the T-junction. Thus, the position
of the center of mass linearly depends on the convective timescale: yc/w∼λ2Ut/w.

For the capillary numbers that are much smaller than the critical value, there is a
change in the drifting behavior. Figure 4.9(c) shows snapshots of the droplet shape
for l0/w=2.8 and Ca=7.1×10−4. In the initial stage of the drifting, the droplet also
moves exponentially out of the center of the T-junction. However, in the transition
phase (Ut/w=2), part of the droplet bumps back into the feed channel, resulting in
a high flow resistance in one branch of the T-junction. Therefore, all injected fluid
flows into another branch. As a consequence, the droplet is stuck at the corner of the
T-junction and cannot go further downstream. For Ca<10−3, our results show that
the center of mass keeps constant for a long time and probably the droplet will stay
indefinitely in the transition regime.

The drifting behavior of the droplet of length l0/w=2.0 and 2.8 shares many similar-
ities, as shown in figure 4.10. There are also three phases during the drifting: (i) an
exponential drifting, (ii) a transition phase and (iii) a linear drifting. For this droplet
length, we did not observed the situation in which the droplet is stuck at the corner of
the T-junction even though for the lowest capillary number (Ca=1.73×10−3), part of
the droplet also bumps back into the feed channel. At this capillary number, the dura-
tion of the transition phase is relatively longer than that at higher capillary numbers.
It might be that for a much lower capillary number, we will also observe the sticking
behavior.

To further our understanding on the drifting behavior, we measured the variation of the
exponent λ1 and the coefficient λ2 for different capillary numbers for two considered
droplet lengths. For l0/w=2.8, the exponent λ1 varies from 2.29 to 1.33 for 4.2×
10−4<Ca<5.5×10−3. For l0/w=2.0, the coefficient λ1 varies from 3.15 to 1.58
for 1.7×10−3<Ca<2.3×10−2. We do not have any explanations for the observed
values of λ1 yet. For λ2, we found that it varies from 0.37 to 0.46 for both droplet
lengths. The value of λ2 depends on the ratio between the pressure drops over two
branches of the T-junction: λ2 = 1/ (1+∆pdrop/∆pnodrop). ∆pdrop and ∆pnodrop
are the pressure drops over one branch of the T-junction with and without the presence
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of the droplet. They can be computed as:

(∆pw/γ)nodrop=
12µL/w

1−0.63
h

w

w2

h2
Ca (4.1)

(∆pw/γ)drop=
12(µ(L− l0)/w+ µ̂l0/w)

1−0.63
h

w

w2

h2
Ca+4.77

(
1+

w

h

)
(3Ca)

2/3(4.2)

where L=6w is the length of one branch of the used T-junction. For l0/w=2.8, the
predicted values of λ2 are 0.34 for Ca=4.2×10−4 and 0.45 for Ca=5.5×10−3. Our
prediction shows a good agreement with the simulated value of λ2.

4.4.2 Influence of the prescribed pressure difference on the drift-
ing

In physical experiments, there always exists a geometrical difference between two
branches of the T-junction owing to the fabrication tolerance. This difference can
cause a flow asymmetry in the system. To investigate the influence of the flow asym-
metry on the drifting process, we performed simulations in which a small pressure dif-
ference ∆p between two outlets of the T-junction was imposed. Figure 4.11 shows the
drifting behavior of the droplet of length l0/w=2.8 at Ca=5.5×10−3 for six different
values of rescaled pressure difference: ∆Pw/γ= 0; 0.003; 0.015; 0.03; 0.045; 0.06.
Figure 4.11(a) shows that the droplet drifts with the same rate during the first phase
of the drifting. The only change we observed is the initial displacement yc0/w. Fig-
ure 4.11(b) shows that the initial displacement linearly depends on the prescribed pres-
sure difference. Similar behavior was observed for l0/w=2.0 (see figure 4.12). For
this droplet length, we also studied the influence of the capillary numbers on the initial
displacement with the prescribed pressure difference. Figure 4.12(b) shows that the
initial displacement increases with decreasing capillary numbers.

The dependence of the initial displacement on the prescribed pressure difference ∆p
between two outlets of the T-junction can be expressed as:

l0/2+yc0
l0/2+yc0

=
pc+∆p/2

pc−∆p/2
(4.3)

where pc∼f(Ca) is the pressure of the external phase at the center of the junction.
With a small manipulation of Eq. 4.3, the initial displacement can be expressed as
yc0 =∆pl0/4pc. This simple model teaches us that the initial displacement is linearly
proportional to the pressure difference ∆p for a fixed droplet length and capillary
number, as shown in figure 4.11(b) and 4.12(b). Also based on this model, the slope
of the line yc0(∆p) increases with decreasing capillary number and increasing droplet
length, qualitatively in agreement with our numerical simulations.
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Figure 4.11 (a) Displacement of the center of mass for (l0/w=2.8; Ca=5.5×10−3) for various
prescribed pressure differences between two outlets. (b) Initial displacement of droplets versus
prescribed pressure differences between two outlets.
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Figure 4.12 (a) Displacement of the center of mass for (l0/w= 2.0; Ca = 9.17× 10−3) for
various prescibed pressure differences between two outlets. (b) Initial displacement of droplets
versus prescribed pressure differences between two outlets.

4.5 Critical breakup conditions

In previous section, we investigated the behavior of droplet during the breakup and
drifting process. We now combine our understanding on the two timescales, breakup
time and drifting time, to determine the critical condition for the breakup.

Figure 4.13(a) shows a comparison of the breakup time and the drifting time for
l0/w= 2.8. The solid line shows the breakup time for different capillary numbers
obtained with symmetric-BC simulations. The square symbols show the drifting time
for different capillary numbers obtained with full-T-junction simulations. From sec-
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Figure 4.14 The difference in the volume of two daughter droplets ∆V/V0 as a function of
the ratio between the drifting time and the breakup time td/tb. The inset plots these volume
differences against the capillary number.

tion 4.4, we noticed that the droplets will not break once the displacement of the
center of mass is larger than 0.5w. Therefore, the drifting time presented here is de-
termined at the moment when yc/w=0.5. Figure 4.13(a) shows three types of droplet
behavior: (i) droplet breaks in both the symmetric-BC and full-T-junction simula-
tions for Ca>6×10−3,(ii) droplet breaks in the symmetric-BC simulations but does
not break in the full-T-junction simulations for 5.45×10−3<Ca<6×10−3 and (iii)
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droplet does not break in both the symmetric-BC and full-T-junction simulations for
Ca<5.45×10−3. In regime (i), the breakup time is smaller than the drifting time
such that the droplet will break into two daughters. The size of these two daughter
droplets depends on the ratio between two timescales, as discussed below. There is
no difference in the breakup time in symmetric-BC and full-T-junction simulations.
In regime (ii), the breakup time increases rapidly and is much larger than the drifting
time. Thus, in the full-T-junction simulations, the droplet does not have enough time
to break as it does in the symmetric-BC simulations but drifts away into one branch
of the junction. In regime (iii), the droplet does not break in the symmetric-BC sim-
ulations and certainly drifts away in the full-T-junction simulations owing to the flow
perturbations. Our results show that the critical capillary numbers for the breakup of
droplet are 5.45×10−3 and 6×10−3 for the symmetric-BC and full-T-junction simula-
tions, respectively. Owing to the drifting, the “critical” capillary number below which
the droplet drifts away in the full-T-junction simulations increases 10% with respect
to the “real” critical capillary number obtained in the symmetric-BC simulations.

Similar analysis for l0/w=2.0 was shown in figure 4.13(b). We observed the same
behavior in the competition of the two timescales. For this droplet length, we extend
our analysis to the situations in which there is a small pressure difference between two
outlets of the T-junction. We plotted the drifting time of the droplet for three different
values of the prescribed pressure difference: ∆pw/γ=0; 0.03; 0.06. We found that
an increase of the prescribe pressure difference leads to an increase of the critical
capillary number below which the droplet drifts away. The same effect is expected for
the droplet length of l0/w=2.8. The “real” critical capillary number for breakup in
the symmetric-BC simulations is 2.13×10−2 while the “critical” capillary numbers
for breakup in the full-T-junction simulations are 2.4×10−2, 2.65×10−2, 2.8×10−2

for ∆pw/γ=0; 0.03; 0.06. The differences between the two critical capillary numbers
are 12%, 24% and 31% for ∆pw/γ=0; 0.03; 0.06, respectively.

The existence of the drifting not only influences the critical capillary number for
the breakup but also leads to an asymmetric breakup in the full-T-junction simula-
tions. Figure 4.14 shows the variation of the difference in the volume of two daughter
droplets as a function of the ratio between the two timescales, breakup time and drift-
ing time. The drifting time presented in figure 4.14 was obtained for ∆pw/γ=0. In
drifting regime (td/tb<1), breakup does not happen and the droplet entirely moves
into one branch of the T-junction; thus ∆V/V0 = 1. Close to the critical condition
for breakup, the two timescales become comparable (td/tb∼1). In this situation, the
droplet drifts away during the breakup. As a result, the droplet breaks asymmetri-
cally. In this asymmetric breakup regime, the droplet always stays in the first phase of
drifting process. Knowing the breakup time, one can compute the level of asymmetry
based on the drifting speed of the droplet. Far from the critical condition (td/tb>2),
the droplet just stays at the center of the T-junction during the breakup process, result-
ing in a symmetric breakup (∆V/V0 =0).
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4.6 Conclusion

We have shown that the critical capillary number for breakup is controlled by the ra-
tio between the timescale for breaking and the timescale for drifting. To separately
study the behavior of these two timescales, we performed two types of simulations,
symmetric-boundary-condition and full-T-junction simulations. The symmetric-BC
simulation provide a free-perturbation flow system, thus allow us to compute the
breakup time for different capillary number and to accurately identify the critical
capillary number. When the capillary number approaches the critical value, the
breakup time increases towards infinity. We found that the breakup time scales with
(Ca/Cacrit−1)−1/3 for both two considered droplet lengths. The drifting behavior
was studied with the full-T-junction simulations. Three phases was identified during
the drifting process: (i) an exponential drifting, (ii) a transition phase and (iii) a linear
drifting. Our result shows that the exponential drifting phase controls the behavior of
the drifting time. We found that the drifting time linearly depends on the capillary
number.

Understanding the behavior of the two timescales, we can determine the critical cap-
illary number below which the droplet drifts away into one branch of the T-junction.
Owing to the drifting, the critical capillary number for breakup increases with respect
to the one obtained in free-perturbation flow systems. The ratio between the timescale
for drifting td and the timescale for breaking tb determines how asymmetrically the
breakup is. Our work reveals that symmetric breakup is obtained when the ratio td/tb
is larger than 2, corresponding to (Ca−Cacrit)/Cacrit≈0.5 for the considered droplet
lengths.
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5. Design and characterization
of bubble-splitting distributor
for scaled-out multiphase mi-
croreactors§

This chapter reports an analysis of the parallelized production of bubbles in a microreactor based
on the repeated break-up of bubbles at T-junctions linked in series. We address the question
how to design and operate such a multi-junction device for the even distribution of bubbles
over the exit channels. We study the influence of the three primary sources leading to the
uneven distribution of bubbles: (1) nonuniformity in the size of bubbles fed to the distributor,
(2) lack of bubble break-up, and (3) asymmetric bubble breakup caused by asymmetries in
flow due to fabrication tolerances. Based on our theoretical and experimental analysis, we
formulate two guidelines to operate the multi-junction bubble distributor. The device should be
operated such that: (i) the capillary number exceeds a critical value at all junctions, Ca>Cacrit,
to ensure that all bubbles break, and (ii) the parameter (ls/w) · Ca1/3 is sufficiently large, with
ls/w the distance between the bubbles normalized by the channel width. More quantitatively,
(ls/w) · Ca1/3>2 for fabrication tolerances below 2%, which are typical for devices made by
soft lithography. Furthermore, we address the question whether including a bypass channel
around the T-junctions reduces flow asymmetries and corresponding nonuniformities in bubble
size. While bubble nonuniformities in devices with and without bypass channels are comparable
for fabrication tolerances of a few percent, we find that incorporating a bypass channels does
have a beneficial effect for larger fabrication tolerances. The results presented in this chapter
facilitate the scale-out of bubble-based microreactors.

§Published as: D. A. Hoang, C. Haringa, L. M. Portela, M. T. Kreutzer, C. R. Kleijn and V. van Steijn. De-
sign and characterization of bubble-splitting distributor for scaled-out multiphase microreactors. Chemical
Engineering Journal, In press, 2013, doi: 10.1016/j.cej.2013.08.066.
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5.1 Introduction

Multiphase microreactors have emerged as an attractive class of reactors for the pro-
duction of fine chemicals and pharmaceuticals1,2, for the synthesis of micro- and
nanoparticles3–7, and for high-throughput screening applications8–11. Besides excel-
lent heat and mass transfer characteristics in microreactors, continuous flow chemistry
based on the confinement of reactions in picoliter to nanoliter bubbles or droplets (a)
enhances mixing, (b) reduces axial dispersion, and (c) prevents precipitation at walls
and clogging of channels such that higher yields and selectivities are obtained10,12.

Despite the conceptually simple idea of numbering-up as a strategy to increase
throughput, parallelization of segmented flows remains a challenge in practice13. One
basic approach to increase throughput of segmented flow microreactors is to pro-
duce droplets or bubbles in each individual channel14–24. With a few notable ex-
ceptions25–27, this approach requires that the supply of the fluids to all these channels
is identical, as differences in flow lead to corresponding differences in the volume,
frequency, and speed of the bubbles or droplets. Integrating resistive channels up-
stream of the segmented flow channels minimizes cross-talk between the channels
and ensures a constant supply of fluids, which is not affected by the dynamic pres-
sure fluctuations in the segmented flow channels17,28. de Mas et al. 17 showed that
the pressure drop over the resistive channels should be two orders of magnitude larger
than the pressure drop over the segmented flow channels. Fulfilling this requirement is
particularly challenging for gas-liquid flows, because the low viscosity of gas requires
resistive gas channels that are roughly two orders of magnitude smaller in width than
the segmented flow channels. These channels should be fabricated with high preci-
sion, as small difference in their hydrodynamic resistance lead to differences in the
features of the segmented flows running in parallel.

An alternative approach that does not require on-chip integration of resistive feed
channels is to feed a segmented flow to the chip, and split the bubbles or droplets
at a series of successive junctions29–33. To obtain segmented flows with an identical
bubble volume and bubble spacing in all channels downstream the bubble distributor,
two key questions need to be addressed: 1) how to ensure breakup at all junctions, 2)
how to minimize asymmetries in flow. The first question can be addressed based on
the understanding of breakup of bubbles or droplets at single T-junctions. Whether a
droplet breaks primarily depends on its length relative to the channel width, l/w, and
on the capillary number, Ca34–39. Of secondary importance is the viscosity contrast
between the two phases40,41. The second question can be addressed by considering
the differences in hydrodynamic resistances of the channels due to fabrication inac-
curacies. As well known for single T-junctions, a difference in velocity in the two
exiting arms leads to the asymmetric breakup of bubbles34,42–45. Consequently, the
size of the bubbles and their distance apart is different in the two exiting arms. For
a multi-junction device, Adamson et al. 29 identified a second cause for unequal flow
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distribution: if bubbles enter downstream T-junctions at times that are not precisely
coordinated, the backpressure generated when the bubbles split causes an imbalance
in the pressure drops across the two exiting arms of the upstream T-junctions. This
also leads to asymmetries in segmented flows. They showed that this source of varia-
tion is reduced by designing the system such that the magnitude of the pressure pulses
is negligible with respect to the total pressure drop over the branches. Another clever
trick to reduce the influence of pressure pulses at downstream T-junctions is to reduce
the coupling between the successive T-junctions by incorporating a pressure-equalizer
at the T-junctions in the form of a bypass-like structure32. Although this concept has
been demonstrated, no quantative data is available on the influence on this bypass.

Summarizing the work done on multi-junction bubble and droplet distributors, we
conclude that – although there are some pointers on how to design and operate these
devices – there is no systematic study how key operating conditions influence the
performance, and to what extend polydispersity is reduced by incorporating a pressure
equalizer.

In this chapter, we start with a discussion on the different design strategies and ex-
plain why a design that fixes the relative length of the bubbles or droplets is favorable
over other types of design. We then identify three primary sources leading to the
uneven distribution of bubbles and systematically study their influence on the unifor-
mity of the size of bubbles in the downstream channels of a multi-junction device.
Additionally, we quantify to what extend flow asymmetries are reduced with the use
of a pressure equalizer. In short, this chapter teaches how to design and operate a
multi-junction bubble distributor.

5.2 Theory on the design and operation of a multi-
junction bubble distributor

5.2.1 Design

Non-breaking bubbles are one of the main sources of polydispersity. A straightfor-
ward approach to ensure breakup at all successive junctions is to design the network
such that l/w and Ca are kept the same at all junctions. Operating the device above
the transition line (Cacrit = f(l/w)) at the first junction then ensures breakup at all
successive junctions. But, in the planar networks that are commonly used in the field
of microfluidics Ca and l/w cannot be fixed at the same time. This is easily seen from
the fact that the flow rate entering a junction hwivi equals twice the flow rate in the
two exiting channels hwi+1vi+1 that lead to the next junctions, with h the channel
height, w the channel width, v the bubble velocity, and i the index of the junction.
Hence, vi+1 = 1

2
wi
wi+1

vi. Defining the capillary number based on the bubble velocity,
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Figure 5.1 Examples of three design strategies in which the channel width (a), relative bubble
length (b), and capillary number (c) is fixed for a bubble splitter comprising two generations
of T-junctions. (d) Sketch of a breakup map (Ca, l/w); the gray area below the transition line
(Cacrit = f(l/w)) indicates the region in which bubbles do not break. For a desired relative
bubble length and bubble velocity in the exit channels (indicated by the green star), the length
and Ca needed in the channels leading to the first (i) and second (ii) generation are shown for
the three design strategies.

the viscosity of the compartments between the bubbles, µ, and the interfacial tension,
γ, according to Ca=µv/γ, we hence find that the capillary number decreases at suc-
cessive junctions according to Cai+1 = 1

2
wi
wi+1

Cai. Similarly, the volume of a bubble
flowing into a junction ∼hwili equals twice the volume of the daughter droples leav-
ing the junction ∼hwi+1li+1. Hence, li+1 = 1

2
wi
wi+1

li such that the relative length

decreases at successive junctions according to li+1/wi+1 = 1
2
w2
i

w2
i+1
li/wi. This simple

analysis shows that fixing Ca requires a reduction in width by a factor 2 in successive
junctions, whereas a 21/2 reduction is needed to fix the relative length l/w 29. Fixed
l/w-designs29 and fixed Ca-designs30 have both been demonstrated, as well as design
in which the width of the channels is fixed such that both Ca and l/w decrease at
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successive junctions34. These three design strategies are illustrated in Fig. 5.1a-c for
a network in which segmented flow is distributed over four channels by breaking the
incoming stream of bubbles at two successive generations of T-junctions. Of course,
other choices are possible for wi/wi+1=2β , but for the sake of simplicity we limit the
discusson to designs with a fixed w (β=0, Fig. 5.1a), a fixed l/w (β=0.5, Fig. 5.1b),
and a fixed Ca (β=1, Fig. 5.1c).

To compare these different designs, we calculate the values of Ca and l/w required in
the feed channel (i) and in the channels downstream of the first junction (ii) to obtain
a desired Ca and l/w in the output channels (iii). This desired point is indicated by
a star in the (l/w,Ca) map sketched in Fig. 5.1d and lies above the transition line.
Below this line (shaded area), breakup does not occur. As shown for the fixed width
device (β=0), relatively long bubbles or droplets need to be fed to the first junction
at relatively high Ca. Both these requirements pose a problem, because long droplets
or droplets might spontaneously breakup29, while operating at high Ca leads to the
formation of satellites during breakup30. By contrast, the fixed Ca-design (β= 1)
requires a feed of short bubbles or droplets to the first junction, which are exceedingly
difficult to break. For the example discussed here, the bubble length in channels (i)
and (ii) is below the required length for breakup. Compared to the fixed-width and
fixed-Ca designs, the fixed l/w-design (β= 0.5) can be operated at relatively low
values of Ca and l/w, while ensuring that breakup occurs at all successive junctions.
We therefore focus on the fixed relative length-design in this chapter.

We conclude this section on the design by illustrating the design methodology for
the fixed relative length-design based on a practical example. Suppose one aims to
produce a gas-liquid segmented flow in 8 parallel channels that each have a height
and width of 50µm, with bubbles having a length of 200µm. One then uses a cas-
cade with three generations. For a desired bubble velocity of in these exit channels of
10cm/s, the corresponding capillary number can be calculated using the flow proper-
ties. Taking, for example, a viscosity of 1mPas and an interfacial tension of 5mN/m,
Ca =2 · 10−2. Knowing the relative length and capillary number in the 8 exit chan-
nels, one calculates the relatively length and capillary number in the channels leading
to the T-junctions of the last generation and finds l/w= 4, Ca = 2.8 · 10−2. To en-
sure that bubbles break at all junctions of the device, it is sufficient to check whether
the capillary number in the channels leading to the last generation of T-junctions is
larger than the critical capillary number for the desired relative length l/w= 4. As
explained later in section 5.4.4, the critical capillary number can be calculated using
Cacrit =0.98(l/w)−3.60. After confirming that Ca>Cacrit, the only thing left to do is
to calculate the relative length and velocity of the bubbles that need to be fed to the
multi-junction device.
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5.2.2 Operation

Throughout this chapter, we quantify the nonuniformity in bubble size based on the
coefficient of variation CV . Unless stated otherwise, we use the following definition

CV =
σ(l)

l̄
(5.1)

with l̄ and σ(l) the average bubble length and the standard deviation in bubble length.

Influence of non-breaking bubbles on size uniformity

We now quantify the influence of non-breaking bubbles on the size uniformity. For a
single T-junction, it is straightforward to calculate how the polydispersity is influenced
in case m out of n incoming bubbles do not break. The coefficient of variation, CVout,
of the bubbles leaving the two arms of the T-junction depends on the coefficient of
variation, CV in, of the incoming bubbles, and on the breakup fraction defined as η=
(n−m)/n according to

CV2
out +1

CV2
in +1

=
η (1−η)

2
+1 (5.2)

To demonstrate the sensitivity of CVout on the break-up fraction, we calculate CVout
for several values of η for the case CV in=0. This shows that 1% non-breaking bubbles
(η= 0.99) already leads to a polydisperse size distribution with a value of CVout =
0.07. For 5% and 10% non-breaking bubbles, the coefficients of variation are 0.15
and 0.21 respectively. This simple analysis hence shows the importance to ensure that
all bubbles break.

Influence of flow asymmetries due to fabrication errors on size uniformity

Ensuring that all bubbles break is a necessary but not sufficient condition to ensure
a narrow size distribution. We now focus on the question how asymmetries in flow
that are caused by fabrication errors influence the polydispersity. This analysis also
reveals how polydispersity in bubble size at the exit of the parallel channels is in-
fluenced by the size uniformity of the bubbles fed to the bubble distributor. For
the sake of simplicity, we start the analysis by considering a single T-junction. We
hereby consider fabrications errors only in the height of the channels. For microchan-
nels fabricated using soft lithography, this assumption is justified by the fact that
tolerances in channel width or length are typically much smaller than tolerances in
channel height. We assume that the height of one of the exit channels is h−u(h),
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while the height of the second exit channel is h+u(h). The difference in height
leads a difference velocities, v−u(v) and v+u(v). Consequently, the lengths of
the two daughter droplets follow from (v+u(v))/(l+u(l))=(v−u(v))/(l−u(l))34.
Similarly, the length of the compartments (slugs) between the bubbles or droplets
after split-up follows from (v+ u(v))/(ls + u(ls)) = (v− u(v))/(ls− u(ls)). For
channels of equal length, the number of bubbles and compartments is n−u(n) and
n+u(n) in the channels with higher and lower velocity respectively, according to
(v+u(v))/(v−u(v))=(n−u(n))/(n+u(n)). To understand how the relative flow
asymmetry, u(v)/v, depends on the relative error in channel height u(h)/h, the cap-
illary number, the height-to-width ratio of the channel, h/w, and the dimensionless
length of the compartment between bubbles, we equate the pressure drop over the two
exiting channels. To predict the pressure drop over a channel of width w and height
h<w through which n bubbles of length l and n slugs of length ls flow at a velocity
v, we use a similar expression as in Fuerstman et al. 46 , van Steijn et al. 47 , Parthibana
and Khan 48

∆p=n
12µls

1−0.63 hw

1

h2
v+nCγ

(
2

w
+

2

h

)
(3Ca)

2/3 (5.3)

with µ the viscosity of the compartments between the bubbles, γ the interfacial tension
and C an order one constant46,49,50. We hereby neglect the viscous pressure drop
over the gas bubbles, and define the capillary number as Ca =µv/γ. Substituting
the expressions for the lengths of the bubbles and liquid compartments, the bubble
velocity, the number of compartments, and the channel height, we find expressions for
the two pressure drops over the two exiting channels. Equating these pressure drops
and solving for u(v)/v under the assumption u(v)/v<<1 yields

u(v)

v
=

(C3−C1) lswCa1/3 +(C4−C2)

(C1 +C3) lswCa1/3−(C2 +C4)/3
(5.4)

with

C1 =
12

1−0.63 hw

[
1+ u(h)

h

] w2

h2

[
1+

u(h)

h

]−2

C2 =2C

(
1+

w

h

[
1+

u(h)

h

]−1
)

32/3

C3 =
12

1−0.63 hw

[
1− u(h)

h

] w2

h2

[
1− u(h)

h

]−2

C4 =2C

(
1+

w

h

[
1− u(h)

h

]−1
)

32/3
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As expected for the single phase limit (long slugs, high velocity) and small fabrication
errors, this reduces to u(v)

v ≈
(

2+
0.63 hw

1−0.63 hw

)
u(h)
h . This simple model teaches how a

small difference in channel height leads to asymmetries in flow for a single T-junction.

We now extend the analysis to a multi-junction device. For a cascade device with k
generations, it is straightforward to show that the coefficient of variation for the bub-
bles collected at the 2k exiting channels, CVout, depends on the coefficient of variation
of the bubbles fed to the device, CV in, and the asymmetries in flow at the different gen-
erations, (u(v)/v)i, according to

CV2
out +1

CV2
in +1

=
k∏
i=1

(
1+

(
u(v)

v

)2

i

)
(5.5)

We hereby used the simplifying assumption that the flow asymmetries at the junctions
in the same generation are identical. For the fixed relative length design considered
in this study, with narrowing channels immediately after the T-junctions, the flow
asymmetries can be written as

(
u(v)

v

)
i

=
(C3−C1)αi

(
ls
w

)
0

Ca1/3
0 +(C4−C2)

(C1 +C3)αi
(
ls
w

)
0

Ca1/3
0 −(C2 +C4)/3

(5.6)

with αi = 2−i/6,
(
ls
w

)
0

the dimensionless length of the compartments between the
bubbles fed to the multi-junction device, and Ca0 the capillary number based on the
velocity in the feed channel. In the three-generation network used in this work, we do
not narrow the channel in the third generation, such that α1 =2−1/6, α2 =2−2/6, and
α3=2−5/3. For this design, Fig. 5.2a shows how the uniformity of size of the bubbles
leaving the 8 exit channels depends on (ls0/w0)Ca1/3

0 for three values of u(h)/h.
For large (ls0/w0)Ca1/3

0 , the uniformity of the bubble size is nearly constant and
approaches flow uniformities for single phase flow. For (ls0/w0)Ca1/3

0 approaching
zero, the nonuniformity sharply increases. The contribution of each generation to the
nonuniformitiy in the size of bubbles leaving the device is shown in Fig. 5.2b. This
figure shows that flow asymmetries in the final generation of T-junctions are the main
cause of nonuniformities in bubble size for the design used in this work.

In summary, the model (Eqns. (5.5) and (5.6)) developed in this section enables one to
predict the nonuniformity in bubble size at the exit of a multi-junction device caused
by (i) nonuniformity in the size of bubbles fed to the distributor, and (ii) difference
in channel height due to fabrication errors. We note that this model is different from
the model proposed by Adamson et al. 29 , who identified pressure pulses caused by
bubbles entering downstream channels as the main source of flow asymmetries. Since
we consider flows at higher values of the capillary number (Ca>0.01) in this chapter,
the magnitude of such pressure pulses (γ/w)47, is negligible compared to the pressure
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Figure 5.2 (a) Theoretical prediction (Eqns. (5.5) and (5.6)) of nonuniformities in the size
of bubbles flowing through the 8 exit channels of a three generation bubble splitter used in
this work for three values of u(h)/h. (b) (CV2

out +1)(CV2
in +1) depends on the contributions

1 + (u(v)/v)2 of the three generations (gen 1, gen 2, gen 3) according to Eqn. (5.5). This
graph shows that nonuniformities in bubble size are mainly caused by flow asymmetries in the
T-junctions in the last generation (u(h)/h=0.02).
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V
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RbRl Rr
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Figure 5.3 A bypass channel around the T-junction significantly reduces asymmetries in flow.
This can be understood from an analysis of the hydrodynamic resistances in analogy with the
electrical circuit on the right.

drop over a channel (Eqn. (5.3)). We can hence ignore pressure pulses generated by
breaking bubbles or bubbles entering the narrowing channel segments.

Influence of the bypass

Including a bypass around the T-junction can reduce flow asymmetries considerably.
This is easily seen from an analysis based on hydrodynamic resistances as shown
in Fig. 5.3. The asymmetry in relative velocity can be expressed in terms of the
flow rates, qbr and qbl, in the two branches between the T-junction and the exits of
the bypass, as u(v)/v=(qbr−qbl)/(qbr+qbl). It is straightforward to show that the
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asymmetry in velocity depends on the hydrodynamic resistances of the bypass, the
two branches between the T-junction and the exit of the bypass, and the two channels
leading to the exit of the device according to

u(v)

v
=
Rbr−Rbl+(Rl−Rr) Rb

Rb+Rl+Rr

Rbr+Rbl+(Rl+Rr)
Rb

Rb+Rl+Rr

(5.7)

For a bypass with a low resistance (Rb→0), the flow assymmetry hence only depends
on the difference in hydrodynamic resistance of the two short branches of the bypass
u(v)/v=(Rbr−Rbl)/(Rbr+Rbl). In case no bubbles are present in the short branches
except the breaking bubble, flow asymmetries in a bypass device can be approximated
by the single phase limit u(v)

v ≈
(

2+
0.63 hw

1−0.63 hw

)
u(h)
h derived before. For distances

between the bubbles exceeding the distance between the T-junction and the exit of
the bypass (ls> lbp), we hence expect that the coefficient of variation depends on
the fabrication inaccuracy and is independent of the conditions as long as the device
is operated above the critical capillary number. It is important to note that for slugs
shorter than the length of the bypass (ls<lbp), bubbles preceeding the breaking bubble
likely block the exit of the bypass. With the bypass shut off under these conditions,
devices with and without a bypass obviously yield the same coefficient of variation.

5.3 Experimental

We fabricated our devices in PDMS using standard soft lithography techniques51.
Channels are sealed against PDMS coated glass slides using an air plasma. The de-
vices consist of a T-junction bubble maker, an additional liquid inlet, and three genera-
tions of T-junctions as shown in Fig. 5.4a-b. While the size of the bubbles is controlled
by the flow rate of gas qG and liquid qL injected at the bubble maker, the velocity or
distance between the bubbles is controlled using a second liquid stream qL2 injected
from the side channel shown in Fig. 5.4a. We used a fixed relative length design to
study the distribution of bubbles over the eight parallel exit channels. The width of the
feed channel is w0 =100µm. To fix the relative length of the droplets, we narrowed
the channels leading to the second and third generation of T-junctions to w1 =71µm
and w2=50µm, respectively. The fabrication inaccuracy in the widths of the channels
is below 1µm. To quantify the effect of pressure equalizers, we studied the distribu-
tion of bubbles in devices without and with bypass channels around the T-junctions
(Fig. 5.4c). The height of the channels in the devices with and without bypass were
h=41±1µm and h=43±1µm respectively. We complemented the experiments in
the multi-junction devices with experiments performed in single T-junctions to reveal
the influence of the height-to-width ratio of the channels on the transition line between
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Figure 5.4 (a) A steady stream of bubbles is produced at a T-junction from a stream of gas
and liquid injected at flow rates qG and qL. The additional liquid stream injected from the side
channel at a rate qL2 enables the independent control of the size and speed of the bubbles and
their distance apart. Once spaced out, the bubbles are distributed over 8 parallel channels by
splitting them at three successive junctions, without (b) and with (c) a bypass channel. Scale
bars: 500µm.

breakup and non-breakup. We used three single T-junction splitters with aspect ratios
of h/w = 0.27, 0.59 and 0.94.

We used HFE-7500 (3M, µ= 1.2mPas, γ= 16.2mN/m) and air as working fluids,
without the addition of surfactants. The liquid flow rates were controlled using two
individual syringe pumps (Harvard pico plus 11). The flow rates were in the range
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3<qL<20µm/min and 4<qL2<100µm/min. A steady air flow was supplied from
a fixed pressure source and controlled using a reducing valve in the range between
2 and 6bar. Air was injected into the microfluidic device through a 4−7m long
capillary tube with internal diameter of 25µm. The pressure drop over this tube is
much larger than the pressure drop over the chip. This ensures a steady air flow rate,
which is independent of (temporal) events in the chip such as bubble breakup. We
confirm that for the range of gas and liquid flow rates used in this work, we did not
observe fluctuations in the speed of bubbles caused by pressure fluctuations arising
from the gas pressure source or the mechanics of the syringe pump. To image the
flow, we used a high speed camera (Phantom V9.1, Vision Research) attached to an
inverted microscope (Axiovert 200M, Zeiss). We extracted the length of the bubbles,
their distance apart, and their velocity from the images. We used a magnification and
frame rate such that the inaccuracy in the length and velocity measurements is below
2%.

5.4 Results

5.4.1 Influence of non-breaking bubbles on size uniformity

In a first set of experiments, we studied the influence of non-breaking bubbles on size
uniformity. To study this influence separately from the influence of flow asymmetries
caused by fabrication inaccuracies, we operated the device at sufficiently large values
of (ls/w)0 · Ca1/3

0 such that the contribution of flow asymmetries to the coefficient
of variation is negligible. For typical fabrication inaccuracies in this work (u(h)/h<

0.02), this requires that we operated the device beyond (ls/w)0 · Ca1/3
0 >1.75 as can

be seen from Fig. 5.2b.

Based on the model in section 5.2.2, we expect that the coefficient of variation is
small in case all bubbles break (η=1). This, in turn, is expected when the device is
operated such that the capillary number is beyond the critical capillary number at all
T-junctions. For the fixed relative length design used in this study, the capillary num-
ber, Ca2, at the final generation of T-junctions is the smallest. We hence expect small
coefficients of variation for Ca2>Cacrit. By contrast, CVout is expected to sharply
increase for decreasing η. We tested these hypotheses by measuring CVout as a func-
tion of Ca. To this end, we recorded movies at the eight exit channels and measured
the length of all bubbles flowing through each exit channel for a given time window.
We adjusted Ca such that the length of the bubbles in the feed stream is comparable
in all experiments (3.1<l0/w0<3.8). We used the average bubble lengths measured
upstream of the last junctions to calculate the critical value of the capillary number
for each experiment based on Leshansky’s relation Cacrit =a(l/w)b, where we used
a=0.98 and b=−3.60 as explained later in section 5.4.4.
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Figure 5.5 (a) Snapshot of the 8 exiting channels for a multi-junction device operated at Ca2 =
Ca0/2=4.9 · 10−3<Cacrit=1.4 · 10−2 such that a fraction of bubbles, η=0.62, breaks. Bubble
and slug lengths: (l0/w0, ls0/w0) = (3.2, 8.8). (b) Snapshot for Ca2 = Ca0/2=1.3 · 10−2>
Cacrit =1.1 · 10−2 with all bubbles breaking (η=1). Bubble and slug lengths: (l0/w0, ls0/w0)
= (3.3, 16).(c) Corresponding histograms of the relative bubble length l/w measured in the eight
exit channels.

For capillary numbers below the critical capillary number, we indeed find that a sig-
nificant fraction of bubbles fed to the distributor does not breakup as illustrated in the
snapshot of the eight exit channels in Fig. 5.5a. By contrast, all bubbles break (η=1)
when operating the device beyond the critical capillary number (Fig. 5.5b). The cor-
responding histograms of the bubble length measured at the eight exit channels show
a large spread in bubble length for the case Ca<Cacrit, while a narrow size distribu-
tion is obtained for Ca>Cacrit as shown in Fig. 5.5c. For these two examples, the
corresponding values of the coefficient of variation based on all bubbles leaving the
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Figure 5.6 Influence of non-breaking bubbles on the coefficient of variation CVout of bubbles
leaving a multi-junction device with (red circles) and without (blue squares) bypass. For Ca2>
Cacrit, all bubbles break resulting small CVout. For Ca2<Cacrit, CVout sharply increases with
decreasing Ca2.

device are CVout =0.21 and CVout =0.05, respectively.

In addition to the two examples shown in Fig. 5.5a, we further illustrate the influence
of Ca on CVout for a wider range of Ca/Cacrit. For Ca2/Cacrit>1, we find that the
coefficient of variation is small and independent of Ca2 (Fig. 5.6). For Ca2/Cacrit<
1, CVout sharply increases with decreasing Ca2. We observe the same behavior for
devices with and without bypass channels around the T-junctions. Without further
elaborating on the influence of the bypass, which will be done in a separate section
(5.4.3), we conclude that this set of experiments clearly stresses the importance of
operating the device beyond the critical value of the capillary number such that break
up is ensured at all T-junctions.

5.4.2 Influence of flow asymmetries on size uniformity

We now turn our attention to bubble size uniformities caused by asymmetries in flow
due to fabrication inaccuracies. To distinguish between this source of variation and
the influence of non-breakup, we performed a second set of experiments in which we
ensured that all bubbles broke, i.e. η=1.

For devices without a bypass, we expect that the coefficient of variation depends on
(ls/w)0 · Ca1/3

0 according to Eqns. 5.5 and 5.6. To test our model, we varied this
parameter in the range 1.2 -18. As shown in Fig. 5.7, the coefficient of variation
found experimentally (blue squares) quantitatively agrees with our theoretical model;
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Figure 5.7 Influence of flow asymmetries due to fabrication inaccuracies on the coefficient of
variation CVout of bubbles leaving a multi-junction device with (red circles) and without (blue
squares) bypass. Good agreement is found between the experimental results and the theoretical
model (Eqns. (5.5) and (5.6)), where we used C=3.58 and a measured value of the fabrication
inaccuracies of u(h)/h=0.02.

CVout is nearly constant for larger values of (ls/w)0 · Ca1/3
0 and steeply increases with

decreasing (ls/w)0 · Ca1/3
0 for values below 2.

For the device with the bypass, we expect that the value at large (ls/w)0 · Ca1/3
0 is

nearly the same as in the device without a bypass, given the fabrication error is small.
This is indeed what we find experimentally. Moreover, we find that the data for the
devices with and without bypass collapses on the same curve over the entire range of
(ls/w)0 · Ca1/3

0 . The reason the data also collapse for small (ls/w)0 · Ca1/3
0 is that

the distance between the bubbles becomes smaller than the distance between the T-
junction and the exit of the bypass (lbp, see Fig. 5.3). Consequently, the bypass is
blocked by the bubble that precedes the bubble arriving at the T-junction. Obviously,
this closes the bypass such that for short slugs (ls<lbp), flow asymmetries propa-
gate the same in devices with and without a bypass. In the next section, we further
investigate the influence of the bypass.

Finally, we evaluate how the coefficient of variation grows from generation to gen-
eration. For the present design, the leading contribution to CVout is the asymmetric
breakup at the final generation as shown in Fig. 5.2b. To verify this prediction, we
measured the coefficient of variation of the bubbles entering the first, second, and third
generation as well as the CV of the bubbles leaving the third generation. As expected,
the primary increase in CV occurs in the final generation. This effect becomes more
pronounced with decreasing (ls/w)0 · Ca1/3

0 as shown in Table 5.1.
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Figure 5.8 Histograms of 1000 successive bubbles measured at the eight individual exits of
devices with (red) and without (blue) bypass. Normalization was done by dividing the number
of counts by 1000. To demonstrate that incorporating a bypass has an advantage for large
fabrication tolerances, we designed these devices such that exit channels 1, 3, 5, and 7 were
20% wider than exit channels 2, 4, 6, and 8. Conditions: l0/w=4.3; Ca0=0.028; (ls/w)0=25
and 36 for the devices with and without the bypass respectively.

5.4.3 Influence of the bypass

For the devices used in this study with fabrication tolerances below 2%, we have
shown experimentally and theoretically that incorporating a bypass has a negligible
advantage. For larger fabrication tolerances, we do expect that the bypass significantly
reduces flow asymmetries. To test this hypothesis, we fabricated devices with and
without a bypass and introduced a large fabrication error by design: in these devices,
we increased the width of the straight channels leading to exits 1, 3, 5, and 7 (see
Fig. 5.4) by 20%. For the device without the bypass, we expect that the volume
of the bubbles is about 20% larger in the wider channels leading to a coefficient of
variation of CVout∼0.1. For the device with bypass, we expect that the splitting ratio
of bubbles is not affected by the difference in width downstream of the T-junction.

Table 5.1 Increase in CV from generation to generation for bubbles breaking in a three-
generation bubble splitter with bypass.

(ls/w)0 · Ca1/3
0 Ca0 l/w CV in CV1 CV2 CVout

3.8 0.014 3.6 0.03 0.02 0.03 0.05
2.1 0.011 4.8 0.03 0.03 0.04 0.09
1.6 0.020 3.8 0.03 0.02 0.03 0.24
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We measured the length of 1000 successive bubbles in each exit channel and used it to
calculate the bubble volume using the simple approximation V =hwl. The bubble size
in each exit channel shows a Gaussian distribution. We plot these Gaussian shapes for
the devices with and without the bypass in Fig. 5.8. For the device without bypass,
we indeed find that the mean bubble volumes in exit channels 1, 3, 5, and 7 deviate
roughly 25% from the mean bubble volumes in the even channels. This translates
into a coefficient of varation of all bubbles leaving the device of CVout = 0.13. As
expected, the deviations between the mean bubble volume in the exit channels of the
bypass channels is much smaller (CVout=0.06). We hence conclude that incorporating
a bypass reduces nonuniformities in bubbles size caused by fabrication errors, but only
when fabrication tolerances are significant.

5.4.4 Influence of heigh-to-width ratio on critical capillary num-
ber for a single T-junction

In the previous set of experiments, we estimated the critical capillary number using
the relations available in literature and have verified that indeed all bubbles break. A
question particularly relevant to planar multi-junction device in which the width of the
successive junctions decreases is whether the critical value of the capillary number
depends on the height-to-width ratio of the channel. We studied the influence in a
single T-junction device for aspect ratios in the range of those encounted in the multi-
junction device. The breakup maps are shown in 5.9a-c. We fitted the transition
between non-breaking bubbles (open symbols) and breaking bubbles (closed symbols)
using the function Cacrit =a(l/w)b as proposed by Leshansky and Pismen 35 . This
resulted in a=0.98±0.23 and b=−3.60±0.27 for h/w=0.94, a=0.41±0.04 and b=
−2.79±0.12 for h/w=0.59, and a=0.26±0.06 and b=−2.66±0.22 for h/w=0.28.
The intervals hereby indicate the 95% confidence interval of the fits. A comparison
of the three fits (Fig. 5.9d) reveals that the critical capillary number not only depends
on the bubble length, but also on the height-to-width ratio of the T-junction. This fact
is particularly relevant for planar multi-junction devices in which the height-to-width
ratio is different for all successive junctions.

5.5 Conclusions

In this chapter, we presented a theoretical and experimental study on the design and
operation of a bubble distributor, which can be used for the scale-out of segmented
flow microreactors. We systematically studied how the uniformity of bubble size in the
exit channels depends on the operating conditions. We identified three main sources
leading to nonuniformities: nonuniformity in the size of bubbles fed to the distrib-
utor, nonuniformities caused by non-breaking bubbles, and nonuniformities caused
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Figure 5.9 Breakup map obtained in single T-junctions with different height-to-width ratios: (a)
h/w=0.94, (b) h/w=0.59, (c) h/w=0.28. Breaking and non-breaking bubbles are indicated
by closed and open symbols respectively. The solid lines are fits of the functional form proposed
by Leshansky and Pismen 35 Cacrit =a(l/w)b. (d) Overview clearly reveals the height-to-width
ratio dependence on the critical capillary number of the channels Cacrit =f(ls/w, h/w). Ge-
ometries: (h,w)=(81, 300), (94, 160), (85, 90)µm.

by asymmetries in flow due to fabrication inaccuracies. We showed both theoreti-
cally and experimentally that even a small fraction of non-breaking bubbles leads to
bubble populations with large polydispersities. The device should hence be designed
and operated such that non-breaking events are avoided; for planar devices, we have
argued that a design that keeps the relative bubble length constant in all generations
is favourable over other types of designs. Operating the device such that the capil-
lary number corresponding to the bubble velocity at the last generation of T-junctions
is larger than the critical capillary number ensures that all bubbles break. Our ex-
periments confirm that this critical capillary number depends on the length of the
incoming bubbles, and reveal that it also depends on the height-to-width ratio of the
T-junction. This finding is particularly relevant for planar multi-junction distributors,
because h/w is different at all successive junctions.
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Ensuring that all bubbles break (Ca>Cacrit) is a necessary but not sufficient condition
to ensure a uniform bubble size in all parallel channels. We also quantified the nonuni-
formities caused by asymmetries in flow due to fabrication inaccuracies. Our theoret-
ical analysis shows that nonuniformities caused by fabrication inaccuracies mainly
depend on (ls/w)0 · Ca1/3

0 . This analysis shows that large nonuniformities are ex-
pected for (ls/w)0 · Ca1/3

0 <2 for fabrication tolerances of 2%. Good agreement was
found between this prediction and our experiments, leading to the second operating
guideline that (ls/w)0 · Ca1/3

0 >2. We have furthermore clarified whether including
bypass channels around the T-junctions reduces flow asymmetries and corresponding
nonuniformities in bubble size. While bubble nonuniformities in devices with and
without bypass channels are comparable for fabrication tolerances of a few percent,
we conclude that incorporating a bypass channels does have an beneficial effect for
larger fabrication tolerances.
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6. Epilogue

The purpose of this chapter is to highlight some of our main findings and discuss them in a
broader perspective. The chapter starts with a discussion on the generality of those findings: 1)
surface-tension-driven pinching, 2) 3D versus 2D, 3) the role of CFD in unraveling the breakup
phenomena and 4) scale-up of segmented flow microreactors. We then conclude the chapter by
proposing some opportunities for future research.
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6.1 General conclusions

This thesis comprises computational and experimental studies of the breakup of bub-
bles and droplets in confined microfluidic systems. The main contribution of the thesis
is to reveal the breakup mechanism. The understanding of the breakup mechanism al-
lowed us to successfully design and characterize a droplet-splitting distributor. We
now spend a few words to discuss some of our main findings in a broader perspective.

Surface-tension-driven pinching The breakup of confined droplets comprises two
phases: (i) a squeezing phase in which the droplet interface is continuously com-
pressed by an external flow and (ii) a rapid-pinching phase in which the neck of the
thread collapses at an accelerated rate. The rapid pinching is a consequence of a
surface-tension-driven flow associated with the curvature variation along the surface
of the droplet. The onset of this rapid pinching begins when the curvature at the center
of the neck becomes larger than the curvature everywhere else. We also observed that
the neck of the thread deforms locally during the rapid pinching. We now argue that
similar mechanism is expected to drive the breakup of the liquid thread in other con-
figurations, viz. the formation of bubbles in a T-junction1,2 or flow-focusing device3,4

or the breakup of droplets in Y-junction5.

The breakup of the liquid thread in the above flow configurations shares many similar-
ities with the breakup process described in this thesis. It also comprises two distinct
phases: squeezing and rapid-pinching phases. A local constriction of the liquid thread
around the pinching point was observed in all flow configurations. van Steijn et al. 2

experimentally observed a flow reversal towards the center of the thread that acceler-
ates the pinching rate for the formation of bubbles in T-junctions. We therefore can
expect that the rapid pinching reported in these flow configurations is also driven by
the difference of the curvature along the droplet. A measurement of the flow velocity
and three-dimensional shape of the droplet is useful to validate the applicability of our
finding in addition to stop-flow simulations.

3D versus 2D In chapter 3, we have shown that in the squeezing phase, the behavior
of droplets in 2D simulations is similar to that in 3D simulations. However, the rapid-
pinching stage was only observed in 3D simulations. This leads to a much longer
breakup time in 2D simulations. Chapter 4 shows that whether the droplet breaks or
not in physical experiments or full-T-junction simulations is controlled by the ratio be-
tween the breakup time and the drifting time. Hence, the overestimation of the breakup
time in 2D simulations leads to an overestimation of the critical capillary number. We
indeed observed that with the same fluid properties and channel geometries, the crit-
ical capillary number in 2D simulations is approximately three times larger than that
in 3D simulations (square channel) for a droplet of length l/w=2.8. These findings
clearly illustrate the limitations of 2D simulations.

We now discuss the relevance of this finding in another phenomena, the formation
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of bubbles/droplets in microfluidic systems. In the formation process, the size of
the generated bubbles/droplets is proportional to the timescale of the breakup of the
liquid thread. A longer breakup time will lead to a bigger bubble/droplet. Therefore,
numerical studies of the formation of bubbles and droplets in microfluidics have to be
conducted with 3D simulations to capture the correct physics and to obtain accurate
bubble/droplet volumes.

The role of CFD in unraveling the breakup phenomena In this thesis, CFD has
been used extensively to unravel the physics behind droplet breakup. CFD provides a
powerful tool to verify some of our hypotheses. For instance, in chapter 3, we found
that the rapid pinching is driven by capillary effects alone. This hypothesis was veri-
fied using stop-flow simulations in which we extracted the shape of the droplet from
the full simulation at different instances, set the velocity in the internal and exter-
nal fluid to zero, and then restarted the computation. These simulations allowed us
to eliminate the influence of other forces than capillary effects on the rapid pinching.
Another example illustrating the power of CFD is the perturbation-free simulation pre-
sented in chapter 4. To obtain accurate critical capillary numbers for the breakup and
to eliminate perturbations in the system, we utilized symmetric-boundary-condition
simulations. With these simulations, we successfully simulated the steady state of
non-breaking droplets and computed the critical capillary number with an accuracy of
within 0.5%.

The simulations presented in this thesis were performed with the Volume of Fluid
(VOF) method. In chapter 2, we have shown that with appropriate computational
settings, this method can provide sufficiently accurate results which allow us to inves-
tigate the fundamental physics behind the breakup phenomena. Even though we have
improved the performance of the implemented VOF method with a smoother, its well-
known issue, the parasitic current, still exists. An analysis of the magnitude of the par-
asitic current showed that it increases with a decreasing capillary number6. In most of
our simulations, the capillary number varies from 10−3 to 10−1. This can lead to the
parasitic currents with a magnitude of approximately a hundred times larger than the
mean flow velocity at low capillary numbers. Due to the parasitic currents, the com-
putational time step in our simulations is limited to approximately 1µs. For low cap-
illary number cases (Ca<10−3), this leads to a very high computational cost. In such
cases, approaches such as CLSVOF (Coupled Level Set/Volume-of-Fluid) method7

or MMIT (Moving Mesh Interface Tracking) method8,9 might be better choices. For
high capillary number flows (Ca>10−3), the VOF is still a reasonably good choice
due to its capability of handling topological changes and the ease of implementation.

Scale-up of segmented flow microreactors One of the goals of this thesis project was
to design a bubble-splitting distributor, which can be used to evenly distribute a stream
of bubbles or droplets over a network of microchannels. This was achieved by splitting
these bubbles and droplets with a series of successive splitters. We have studied three
strategies to a design planar bubble-splitting distributor based on either a fixed channel
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width, a fixed capillary number, or a fixed relative bubble length. We have identified
the most suitable design strategy to ensure the breakup in all generations for a device
with three generations (8 exits). We now shortly address the question whether we can
use this strategy for further scale-out.

A limitation of the current planar type of distributor is the difficulty to indefinitely
number up the splitting generations. The further we scale up, the higher flow velocity
we have to feed to the system to ensure 100% breakup. Suo and Griffith 10 showed that
at Ca>0.35, segmented flow is transformed to bubbly slug flow. Thus, this imposed
an upper range on the operating condition and the number of splitting generations for
a planar device. For example, with the fixed relative length device, to get the final
droplet length l/w=3 (which leads to Cacrit=1.1×10−2 for air-HFE7500 system),
the maximum number of splitting generations is 6 (64 outlets) to ensure segmented
flow in the whole device. This limitation can be eased by using a design in which the
capillary number and relative droplet length are kept constant. This is possible in non-
planar devices and can for instance be achieved by keeping the width of the channel
constant while reducing the height of the channel with a factor 2 after each generation.
Even with such a device, the limitation in the number of splitting generations still
exists. For example, with a feed channel of size 1000x1024µm2, after 10 generations
(1024 outlets), the size of the channel will be 1000x1µm2. Fabrication of such a high
aspect ratio channel with acceptable accuracy will be extremely difficult.

6.2 Research opportunities

We conclude this thesis by highlighting some opportunities for future research.

Debate on the transition line between breakup and non-breakup regime It has
been shown in literature that the transition line between the breaking and the non-
breaking regime depends on the capillary number Ca, the ratio between the initial
droplet length and the channel width l/w, the viscosity ratio λ= µ̂/µ, and the aspect
ratio of the T-junction (this thesis).

Link et al. 11 used a Rayleigh-Plateau argument to develop a semi-analytical model to
predict the transition line between the breakup and the non-breakup regime according
to: Cacrit∼ ε(1/ε2/3−1)2 where ε= l/πw. According to their model, droplets that
are longer than their circumference always break. Their model was confirmed by
their experimental data. However, their experiments were performed for relatively
large Ca (Ca>5×10−2). For smaller Ca (10−4<Ca<10−2), later experiments by
Jullien et al. 12 and Fu et al. 13 showed that the model significantly deviates for low
Ca. Additionally, these experiments falsified Link’s hypothesis that droplets that are
longer than their circumference always break. Their experiments suggested another
upper limit of the droplet length beyond which a droplet will also always break, as
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Figure 6.1 (a) Breakup phase diagram of droplets in a T-junction of h=w= 300µm. The
symbols show our preliminary experimental data (red symbols are breaking droplet and blue
symbols are non-breaking droplets). The dash-dot line shows the model by Link et al. 11 . The
red solid line shows the model by Leshansky and Pismen 14 . The dashed line shows a fitted line
l0/w∼Ca−0.9

crit to our experimental data for l0/w>6. (b) Snapshot of droplet shape and the
flow passing via the corners of the channel.

discussed below.

An alternative model was proposed by Leshansky and Pismen 14 . They used a 2D
model where the Rayleigh-Plateau instability is not operative. Their predicted tran-
sition line between breakup and non-breakup takes the form Cacrit =a(l/w)b, with
b=−1/0.21. Even though their model cannot fully capture three-dimensional char-
acteristics of the breakup process, it shows good agreement with our experimental
data (see figure 6.1(a)) and those by others12,13 for moderate and high capillary num-
bers (10−4<Ca< 10−2). Jullien et al. 12 argued that two breakup regimes can be
distinguished: (a) the “non-obstructed” regime for relatively large Ca corresponding
to short droplets (l/w<3.5), and (b) “obstructed” regime for small Ca. The distinc-
tion between these two regimes is based on the presence of a visible gap between the
droplet and the channel walls during the breakup process. For the “non-obstructed”
regime, they find good agreement between Leshansky’s model and their experimental
data, but they claim that Leshansky’s model does not hold for the “obstructed” regime.
More precisely, Jullien et al. 12 argued based on a 2D topview image that long droplets
that seem to fully obstruct the channel always break as the continuous fluid cannot
flow around the droplet. This sharply contrast with the model by Leshansky, which
predicts a critical Ca for all values of l/w. To support their hypothesis, Jullien et al. 12

performed experiments with two sets of working fluids. Although their result seems
to support their claim, there is still no clear evidence that Leshansky’s model does not
work and the “obstructed” droplets always break. The distinction between the “non-
obstructed” and the “obstructed” regime is also questionable, because it is well-known
that non-wetting droplets can never fully obstruct the channel with a polygonal cross
section15,16.
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Finally, the validity of Leshansky’s model at low Ca is questionable, because the 2D
model by Leshansky ignores the fact that the continuous flow is able to flow around the
droplet through the gutters along the corners of the channel as shown in figure 6.1(b).
As shown in chapter 4, the flow through the gutters increases with decreasing Ca. It
is hence to be expected that the 2D model by Leshansky and Pismen 14 , which does
not take into account the gutter flow, can not be applied for the breakup of droplets
at low Ca. Indeed, our preliminary data shown in the phase map in figure 6.1(a)
show a significant deviation from the scaling exponent of b=−1/0.21 for Ca<10−4.
Extending Leshansky’s model to this new regime or developing a new model is hence
an interesting extension of the work presented in this thesis. Care should be taken
to incorporate the effect of the viscosity ratio and the aspect ratio of the T-junction
to obtain a fully predictive model without fitting constants. Such a model would be
highly useful for the flow in porous media, which is typically governed by very low
values of Ca.

Breakup of droplets in high-aspect-ratio junctions In this thesis, we focussed on
droplet breakup in microchannels with an aspect ratio h/w smaller than 1. This choice
is motivated by the fact that almost all microchannels used in experimental work have
an aspect ratio below unity. Breakup in channels with larger aspect ratios is largely
unexplored. Extending the analysis to larger aspect ratios will for instance facilitate
a further scale-up of the current bubble-splitting distributor, because scale-up may
require the use of junctions with h/w>1. Our preliminary simulation on the breakup
of droplets in a T-junction with h/w= 2 shows a change in the breakup behavior.
We observed that instead of being squeezed in the direction of the flow as shown in
chapters 3 and 4, the droplet interface is squeezed in the direction perpendicular to the
flow (see figure 6.2(a)). This behavior can be explained by considering the pressure
distribution around a droplet which has just fully departed from the feed channel. The
pressure drops across the interface along the direction of the flow and perpendicular
to the flow are pd−pout1 = 2γ/h and pd−pout2 = 2γ/w, respectively, where pd is
the pressure inside the droplet and pout1 and pout2 are pressure at the points depicted
in figure 6.2(b). The pressure difference pout1−pout2 will be 2γ(1/w−1/h). For
h/w>1, pout1 is larger than pout2 such that the the injected flow will go through the
side channels and stretches the droplet in the direction of the side channels.

Figure 6.2(c) shows the evolution of the two neck thicknesses d/w and dh/h in time
for h/w= 2 and 0.5. The evolution of dh/h for h/w= 2 is qualitatively similar to
that of d/w for h/w=0.5 in the sense that two phases are observed during breakup:
squeezing and rapid pinching. This suggests that the mechanism of droplet breakup
in channels with h/w>1 might be similar to that in channel with h/w<1. Stop-flow
simulations, as presented in chapter 3, will be useful to validate this speculation. It is
also interesting to address the question why the curves do not collapse and why a larger
breakup time is observed in the channels with the largest aspect ratio. Investigating the
influence of the high aspect ratio on the breakup phase diagram is another interesting
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Figure 6.2 (a) Snapshots of droplet shape during the breakup in channel with aspect ration of
h/w=2. (b) Schematic shape of the droplet fully departed from the feed channel. (c) Plots of
d/w and dh/h versus the breakup time Ut/w for h/w=2 (solid line) and 0.5 (dashed line).

question to be resolved.

Self-similar breakup: scaling exponents Eggers and Villermaux 17 reported that the
variation of the neck thickness d/w of a droplet in time t in the final stage of the
breakup has the form d/w∼ (tbreak− t)α. The exponent α is said to depend on the
viscosity ratio λ. For small λ, the exponent α is said to have a value of 1/2 and the
thread is symmetric around the pinching point. For large λ, the exponent α is said to
have a value of 1 and the thread is highly asymmetric. In our simulations, however,
we have observed that the exponent α tends to 1, and the shape of the thread remains
symmetric for all considered viscosity ratios (0.001<λ<10). The smallest neck sizes
that we can resolve with the VOF method are still relatively large such that we might
not observe the change of α as well as the final shape of the thread as λ changes.
It would be interesting to perform simulations with interface tracking methods such
as MMIT to be able to accurately resolve the neck change in the final stage of the
breakup. Such results can validate the observation in this thesis and provide a more
solid conclusion on the exponent of the pinching rate.
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Appendices

A-1 Derivation of Eqn. 5.2

Consider a stream of n bubbles fed to a single T-junction. These incoming bubbles
have a length li. The average, standard deviation, and coefficient of variation are
calculate according to

l̄in =
1

n

n∑
i=1

li (A-1)

σin =

√√√√ 1

n

n∑
i=1

(
li− l̄in

)2
(A-2)

CV in =
σin

l̄in
(A-3)

Suppose that n−m bubbles break symmetrically and m bubbles do not break. We
now calculate the average, l̄out, for the 2(n−m)+m bubbles leaving the two exits of
the T-junction.

l̄out =
1

2(n−m)+m

[
n−m∑
i=1

li/2+
n−m∑
i=1

li/2+
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[
n∑
i=1
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m∑
i=1

li+
m∑
i=1

li

]
=

n

2(n−m)+m
l̄in (A-4)

To simplify the writing and the later analysis, we now calculate the square of the

97
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standard deviation, σ2
out, rather than the standard deviation itself

σ2
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Straightforward manipulation of the math gives

σ2
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with l̄m=(1/m)
∑m
i=1 li and σm=

√
(1/m)

∑m
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(
li− l̄m

)2
. Form sufficiently large,

l̄m = l̄in and σm=σin. We then find
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(A-7)

Using the definition of the breakup fraction η=(n−m)/n and the coefficient of vari-
ation of the bubbles leaving the two exits further simplification of Eqn. (A-7) yields
Eqn. 5.2.

A-2 Derivation of Eqn. 5.4

In the exit arm of height h−u(h), bubbles flow with a velocity v−u(v), have a length
lb−u(lb), while their distance apart is ls−u(ls). This arm contains n+u(n) bubbles
and slugs. Using Eqn. 5.3, we find for the pressure drop over this arm
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Similarly, we find for the pressure drop over the arm of height h+u(h)

∆p= (n−u(n))
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(A-9)
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Equating the two pressure drops gives(
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The first and second arm respectively contain n+u(n) and n−u(n) bubble and slugs.
Since both arms are of equal length, we find

(n+u(n)) (lb−u(lb)+ ls−u(ls))=(n−u(n)) (lb+u(lb)+ ls+u(ls)) (A-11)

We furthermore use that the bubbles and slugs split according to (v+u(v))/(v−
u(v))=(lb+u(lb))/(lb−u(lb))=(ls+u(ls))/(ls−u(ls)). Using these relations to-
gether with Eqn. (A-4), we find the following relation between the inaccuracies
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Using these relations to eliminate u(n) and u(ls) from Eqn. (A-3) yields
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This equation can be further simplified by linearizing the equation under the assump-
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tion that u(v)/v�1 and introducing the following constant
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Solving for u(v)/v finally yields Eqn. 5.4.

A-3 Derivation of Eqn. 5.5

We first consider a single T-junction to which n bubbles are fed. These incoming
bubbles have a length li. The average, standard deviation, and coefficient of variation
are calculate according to Eqn. (A-1 - A-3).

Suppose that all bubbles break asymmetrically in two daughter droplets, one of length
(1−x)li/2 and the other of length (1+x)li/2, with x=u(v)/v the relative velocity
difference between the two arms. The average, l̄out, of the outgoing 2n bubbles of
course equals
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[
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(A-15)

To simplify the writing and the later analysis, we now calculate the square of the
standard deviation, σ2

out, rather than the standard deviation itself
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Using the standard rule 1
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We hence find for the coefficient of variation of the outcoming stream of bubbles
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Rearranging this expression finally yields for a single T-junction

CV2
out +1

CV2
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=1+x2 (A-19)

For a two-generation device, with a relative velocity difference, x1, at the first T-
junction, and a relative velocity difference, x2, at the two T-junctions in the second
generation, extension of the above analysis is straightforward. For such a device, the
coefficient of variation of the bubbles leaving the four exit arms equals
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1

) (
1+x2

2

)
(A-20)

Extending this analysis to a k-generation device yields Eqn. 5.5.
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A-4 Derivation of constant in Eqn. 5.6

For a fixed-relative width design, the width of the channels decreases with a factor
of 21/2 after each subsequent junction. While ls/w is the same at each junction,
the corresponding capillary number decreases according to Cai+1 =Caiwi/2wi+1 =

2−1/2Cai. Hence (ls1/w1)Ca1/3
1 =(ls0/w0)Ca1/3

0 2−1/6. Similarly (ls2/w2)Ca1/3
2 =

(ls1/w1)Ca1/3
1 2−1/6=(ls0/w0)Ca1/3

0 2−2/3. The last generation in our devices forms
an exception to this rule, as we did not decrease the width of the exit channels (w3 =
w2). For the last generation, ls3 = ls2w3/2w2 such that ls3/w3 = ls2/2w2 = ls0/2w0.
Similarly we find for the capillary number Ca3 = Ca2w3/2w2 = Ca2/2 = Ca0/4.
Hence, (ls3/w3)Ca1/3

3 = Cai2−5/6. This simple analysis shows how we derived the
values for α1, α2, and α3 that go into Eqn. 5.6.

A-5 Derivation of Eqn. 5.7

Using Kirchhoff’s and refering to Fig. 5.3, the following eight relations can be derived
V2 =qlRl, V3 =qrRr, V2−V3 =qbRb, V1−V2 =qblRbl, V1−V3 =qbrRbr, q=qr+ql,
q=qbl+qbr, and qbl=qb+ql. Solving this set of equations yields

qbr
qbl

=
Rbl+Rr

Rb
Rb+Rl+Rr

Rbr+Rl
Rb

Rb+Rl+Rr

(A-21)

Using this relation together with the expression for the relative velocity difference
u(v)/v=(qbr−qbl)/(qbr+qbl) yields Eqn. 5.7.
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