
Delft Center for Systems and Control

Automating the Diagnosis
and Quantification of
Urinary Schistosomiasis

Satyajith Jujjavarapu

M
as

te
ro

fS
cie

nc
e

Th
es

is





Automating the Diagnosis
and Quantification of
Urinary Schistosomiasis

Master of Science Thesis

For the degree of Master of Science in Embedded Systems at Delft
University of Technology

Satyajith Jujjavarapu

February 27, 2020

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) · Delft
University of Technology



Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science (EEMCS) for acceptance

of the thesis entitled
Automating the Diagnosis

and Quantification of
Urinary Schistosomiasis

by
Satyajith Jujjavarapu

in partial fulfillment of the requirements for the degree of
Master of Science Embedded Systems

Dated: February 27, 2020

Supervisor(s):
prof. dr. G. Vdovine

ir. Temitope E. Agbana

Reader(s):
dr. ir. Diehl, J.C.

dr. C. Smith





Abstract

Schistosomiasis is a neglected tropical disease (NTD) that affects around a quarter-billion 
people worldwide. Most of the infected people live in tropical regions, especially in sub-Saharan 
Africa, where there is limited access to diagnostic and other relevant medical facil-ities. The 
current reference standard diagnostic procedure - conventional microscopy - is a relatively 
inexpensive procedure to use on a large scale, but it still requires trained operators and an 
initial financial investment which are hard to procure and maintain in remote areas with 
inadequate facilities. Moreover, the diagnostic sensitivity of the procedure is modest and varies 
over a wide range. In this work, we present the development of an inexpensive diagnostic 
instrument for urinary schistosomiasis that is automated to scan, analyse and di-agnose the 
disease, and quantify the level of infection. We explore the design of the device with an open-
source philosophy in mind, to enable makerspaces and other interested parties to reproduce the 
device locally. The device is manufacturable for as little as €200. It adheres to the standard 
sample preparation and diagnosis procedure established by the World Health Organisation 
(WHO), and images the relevant biomarkers to an adequate resolution for au-tomated 
detection, diagnosis, and quantification for epidemiological surveillance. We believe this device 
can be an essential means for point-of-care diagnosis in resource-limited settings.
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Chapter 1

Introduction

This work concerns schistosomiasis, also known by the names snail fever and bilharzia, which
is a disease that is caused by parasitic flatworms called Schistosomes, and their ova. It is
one of the most prominent helminth infections (a parasitic worm infection of a specific part
of the body) and is listed as a neglected tropical disease (NTD) [8]. Schistosomiasis actively
affected around 230 to 252 million people in 2015 [9, 10], which is a significant 23% drop from
2005 [10]. Nonetheless, the number of people infected by the disease is still very high, and
it results in many acute and chronic medical conditions which affect an individual’s physical
and cognitive capacities [9, 11, 1, 12, 13]. It reportedly results in deaths in the wide range
of 4.4 to 200 thousand per year [14]. It is estimated that around 600 to 700 million people,
living in 70 to 80 countries, are at risk of infection to the disease [11, 13]. Of the people who
are infected by it globally, 90% of them live in Africa [11]. It is majorly noticeable in poor
and rural communities, mainly agricultural and fishing populations [11] where people are in
frequent contact with infested water bodies. The prevalence of schistosomiasis is second only
to malaria in Africa [13].

The disease is currently treated by the periodic large-scale distribution of praziquantel, the
choice of medication, to affected communities [9, 11]. The medication is reported to be
effective and inexpensive, but less than 50% of the people who were infected received the
treatment in 2016 [15]. The mode of action of the drug is presently not known, and it
is reported to be effective only against adult schistosome worms and fares poorly against
immature schistosome larvae [9].

Schistosomiasis is of two principal forms: intestinal and urogenital [11]. There are around
twenty-five known species of schistosomes, of which five species have been observed to in-
fect humans [9, 11]. In this work, we focus on urogenital schistosomiasis, which is the most
prevalent form of schistosomiasis affecting humans [16]. The responsible schistosome is Schis-
tosoma haematobium (S. haematobium). Evidence suggests that the overall morbidity caused
by the infection is due to the schistosome ova, which in large numbers are not excreted and
get lodged in the urogenital system [9]. The current reference standard for the diagnosis and
for the collection of quantitative data for epidemiological surveillance, is manual microscopic
examination of the filtered urine sample for the presence of schistosome ova [9, 11, 1, 16, 17].
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2 Introduction

Taking into account that the disease is notably prevalent in low- and middle-income countries
(LMIC), to speed up the treatment, control and elimination schemes, the scalability of the
standard procedure for the examination should be re-evaluated for resource-limited settings.
Conventional microscopy, in general, requires hiring microscopists and technicians, is labour-
intensive and involves high initial and maintenance costs [18]. Moreover, the performance of
the examination procedure relies on the experience and technique of an individual analyst,
which can lead to significant discrepancies in parasite identification and quantification [19].
In the long term, these factors will make the performance worse, because localities with light
infections and low endemicity will require methods providing relatively higher diagnostic
sensitivity and specificity [9, 16, 20].

In the literature, we find reports on various innovations [21, 22, 23] and alternative [9, 16, 24]
diagnostic tests for urinary schistosomiasis. A notable factor which forms the basis for these
developments is that the production of schistosome ova in the host body begins 5-7 weeks after
infection, which eliminates the use of microscopy for early diagnosis or screening [9, 21, 25].
Despite this drawback, microscopy is still the choice of diagnostic method in resource-limited
settings, as it is a comparatively inexpensive procedure.

Automating the operation of standard microscopes or the use of digital microscopes can aid
in improving the diagnostic sensitivity, but such devices will be expensive. The development
of inexpensive and portable optical devices, while providing comparable image quality for
diagnosis, integrated with computer vision software, can mitigate the operational drawbacks
with conventional microscopy to a great extent. In the scientific literature, we note a rise in
research geared towards realizing mobile phone microscopes for diagnosing and quantifying
helminth infections [16, 26] and also other parasites, like malaria [27, 28]. Designing econom-
ical image acquisition devices integrated with sophisticated object detection models can pave
the way for smart diagnostic and mapping devices that are deployable in remote regions.
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1-1 Thesis objective

In this thesis, we investigate and design a proof-of-concept instrument to automate the di-
agnosis and quantify the intensity of infection, of urinary schistosomiasis. The first device
iteration is a mobile-phone microscope with a reverse-lens optical setup. The aim was to
image the biomarkers - the S. haematobium ova - in filtered urine samples, in a single field-
of-views (FoV). We programmed an application to analyse the images and classify detected
blobs - potentially ova - using a support vector machine (SVM).

Using the data, feedback and insights gained from testing the stated instrument with
schistosomiasis-positive urine samples, the development of a second device that adhered to
the standard diagnostic protocols ensued. We present the design choices and the resulting
device, which is presently capable of capturing images of the sample over several FoV by
manual operation. This system, when fully automated, can assist with the disease control
and elimination objectives.

1-2 Thesis structure

The organisation if this thesis document is as follows. Chapter 2 provides information on uri-
nary schistosomiasis, including the life cycle of the parasite, the available diagnostic methods,
and a brief study of the standard diagnosis procedure and its drawbacks. The chapter ends
with a few mentions, from scientific literature, of attempted methods and possible solutions
to simplify diagnosis, and with a summary of our own process. Chapter 3 demonstrates our
approach and design choices for the design of two instruments: a mobile-phone microscope
and an automated microscope using a Raspberry Pi computer. We also show the images
captured using both the devices and an algorithm for ova detection that is deployable on
multiple platforms. In Chapter 4, we present the experimental results from the evaluation
of the mobile-phone microscope using schistosomiasis-positive urine samples from the field in
Nigeria. Finally, in Chapter 5, we mention recommendations for future design approaches,
and in Chapter 6 we state the conclusions of this work.
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Chapter 2

Background and Thesis Motivation

2-1 Transmission of schistosomiasis infections

Understanding the transmission and effects of any disease is principal to realize a model for
its effective diagnosis, control and elimination. In this subsection, we briefly describe the life
cycle of the schistosomes. Using this information, in the following subsections, we examine
the basis of the modern diagnostic procedures for schistosomiasis.

We now describe the life cycle of the schistosomes. Refer to Figure 2-1 for an illustration
to follow along with the text. The cycle begins with the discharge of ova of the relevant
schistosome (labelled 1 in the figure) from the definitive host, with urine (S. haematobium)
or faecal matter (S. mansoni or S. japonicum). Under suitable conditions, the ovum hatches
to release a miracidium, which survives for only seven days [25]. The miracidia swim and
penetrate an intermediate host, which in this case is a small tropical freshwater snail. For
S. haematobium, the primary intermediate hosts are molluscs of the genus Bulinus [29]. The
miracidia replicate in the snail to form sporocysts which shed free-swimming cercariae, the
form that penetrates and infects the definitive host [1, 25, 9], into the water. The cercariae
penetrate the skin of the human host and shed their tails to become parasitic organisms
called schistosomula. They then move, through venous circulation, to the lungs, followed
by the heart and then the liver, where they develop into mature worms. Male and female
worms move and reside in specific locations in the mesenteric venules, where they reproduce
[11, 1, 25]. For S. haematobium, this is in the vesicular and pelvic venous plexus of the
bladder. The female worms deposit ova which eventually reach the bladder in the case of S.
haematobium and the intestine for the other species [1]. The excretion of urine or faeces by
the host discharges the ova. When the ova enter water bodies, the cycle starts all over again.
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6 Background and Thesis Motivation

Figure 2-1: An illustration of the biological life cycle of, but not strictly restricted to, the S.
haematobium, S. mansoni and S. japonicum schistosomes. Source: Ceneters for Disease Control
and Prevention, U.S.A [1]

All statements henceforth are for urinary schistosomiasis. We assume the primary schistosome
to be S. haematobium. Most of the discussion will also apply to infections caused by the other
species. We mention relevant distinctions if and when necessary.

In the next section, we mention many of the available diagnostic tests, their contextual use
cases and discuss their performance in terms of the diagnostic sensitivity and specificity.
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2-2 Diagnostic tests for urinary schistosomiasis

The choice of a diagnostic test for use in a community depends on the control focus and the
diagnostic needs specific to that community [2].

Figure 2-2: An illustration presenting how falling endemicity levels influence control focus and
diagnostic needs. Source: R. Bergquist et al. (2009) [2]

Figure 2-2 presents the required control focus, goal and the relevant diagnostic preferences
for appropriate ranges of decreasing endemicity. The illustration is self-explanatory. For
example, for very high endemicity of an infection, the focus is morbidity control - controlling
the high incidence of disease in a community - for which highly sensitive diagnostic tests are
unnecessary due to higher costs and the complexity of large-scale screening. On the other
end of the scale, the point at which the disease/infection is at the verge of elimination, the
diagnostic sensitivity and specificity of the tests need to be very high. This requirement is
because the prevalence of the disease is so low that it becomes harder to acquire relevant
signals (visible parasites, antibodies, etc.) for diagnosis. With this model presented, we now
go through some of the available diagnostic tests.

The basis of the available diagnostic tests spans the domains of parasitology, immunology
and molecular biology [30]. The standard test for detecting active urinary schistosomiasis is
to check for the presence of the relevant eggs in the urine. As mentioned in the introduction,
examination of filtered urine using direct microscopy is the standard method for the diagnosis,
control and mapping of urinary schistosomiasis. However, an important fact to consider is
that the larvae need 5 − 7 weeks to mature and produce eggs, and during this time, there
will be no eggs in the urine [9]. For this reason and because of the limited sensitivity of
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urine examination, the search for infecting schistosomes and their effects within the host is
essential for early diagnosis in endemic zones. Various techniques are under development and
evaluation for this approach to diagnosis. Detection of specific DNA fragments in urine and
faecal specimens [31], detection of cercarial antigens [21], of relevant antibodies developed
in response to the introduction of schistosomal antigens and capturing PET scans for the
detection of the adult parasites, are some of the evaluated techniques [16, 22].

The molecular diagnostic tests - like antibody and DNA detection - tend to have a higher
reported sensitivity than microscopy and are hence recommended for use in the transmission,
surveillance and elimination stages of the control focus [2]. Nevertheless, they do not come
without limitations. For example, antibody detection tests cannot quantify the infection load
and hence is not applicable in re-examination scenarios. Whereas current DNA tests engender
a practical limitation for use in resource-limited settings because they require highly skilled
personnel and laboratory space. Due to various factors inclusive of the ones mentioned above,
the diagnostic cost per examination for these methods is very high in comparison to the
standard method [16].

The standard method, microscopic examination of filtered urine, is available at a fair cost per
examination and reportedly furnishes a high diagnostic specificity of 96 − 100%. However, it
lacks good diagnostic sensitivity - over a broad range of 24 − 100% - which makes it incom-
petent for the detection of low-intensity infections. Several techniques exist to increase the
sensitivity of this method, like repeated sampling, the collection of larger quantities of urine
and pooling of samples, at the expense of increased labour requirement and diagnosis time.
Nonetheless, the accessibility, reusability of most equipment and the overall cost-effectiveness
of the procedure enabled it to sustain and establish itself as the current reference standard
diagnostic method for urinary schistosomiasis [2, 16].

The factors hindering the possibility of raising the diagnostic sensitivity of direct microscopy
are avoidable by automating the process of sample observation and egg detection. Such a tool
will be precious in the short-term, in resource-limited settings, as it will require minimal oper-
ational resources while simultaneously raising the disease diagnosis and surveillance capacity.
These features are implementable in a potential portable device, while applying the standard
procedural protocols established by WHO and keeping it relatively inexpensive. This thesis
work focuses on the development of such a device.

The detection targets for the diagnosis by microscopy are the S. haematobium ova. To auto-
mate the detection of these biomarkers, we need to study the morphology and features of the
eggs, which are also essential determinants in the design of our optical system. In the next
section, we present this information.
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2-3 Morphology of the ova of S. haematobium

The ova of the schistosomes have an elongated oval-shaped structure that is narrower on
one end than the other. The primary feature that characterises S. haematobium ova is the
presence of a terminal spine at the narrow end [32]. This feature is essential for diagnosis
because it is what differentiates the urinary schistosomiasis infection from the others if they
are present. Co-infection by multiple schistosome species is possible [9].

Figure 2-3: (A) An S. haematobium ovum (centered in the image) observed using a ×40 objective
under a microscope. Note the terminal spine at the top left. (B) ova stained with Lugol iodine
visible over a standard filter membrane using a ×20 objective.

The earliest report on the measure of the ovum states about 150 µm × 60 µm [32]. Statistics
show that the ova measure in the range 110-170 µm × 40-70 µm [1]. Taking note of these
dimensions is essential for designing the optical system to resolve sufficiently and acquire
images of the ova for the diagnosis and quantification by a computer.

Fresh ova have a thick transparent body, usually showing a translucent miracidium with
distinctly noticeable structure. Calcified or dead ova are black with the miracidia structures
indistinct [33, 34]. The black ova are apparent in bright-field microscopic images, while
the fresh ova are not. To improve the visibility of the transparent ova during observation, a
minute amount of Lugol’s iodine solution (0.5%) is added to the filtered sample [17]. Counting
the number of all, fresh and calcified, ova is essential to precisely quantify the intensity of
infection.
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2-4 The standard diagnostic procedure

A primary characteristic of the infection is the presence of schistosome ova in the urine
excreted by the infected host. The traditional approach to quantifying the intensity of the
disease is the number of ova present in 10 ml of urine. The choice of the urine quantity, 10
ml, is due to a meticulous field study conducted in 1976 by P.A. Peters et al. [35], which is
a recommended read.

This section describes the WHO-approved procedure for diagnosis and quantification that is
used today in the field. The required materials, reagents and instruments are listed below,
and then the detailed procedure follows. The following procedure is from the WHO manual
for a health lab [17] and from the observation of a microscope operator using the standard
procedure.

(A) Microscope slides

(B) Coverslips

(C) Filter holder, 13 mm diameter

(D) Membrane filter, 12 − 20 µm diameter

(E) Plastic syringe, 10 ml

(F) Forceps

(G) Containers for urine collection

(H) Lugol iodine, 0.5% solution

(I) Formaldehyde, 37% solution

(J) 1% hypochlorite solution

(K) Microscope

(L) ×4, ×10 and ×40 objectives

Figure 2-4: (A) Filter holders for a filter of diameter 13 mm, and (B) a polycarbonate track etch
(PCTE) membrane filter of diameter 13 mm and pore size 12 µm. The membrane is hydrophilic.
We purchased both the materials from Sterlitech Corporation, USA.
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The filtration procedure

1. Collect at least 10 ml of urine from the patient between 10:00 and 14:00 hours.

2. Preserve the ova if it is not possible to analyse the urine within an hour. For this, add
1 ml of 37% formaldehyde solution to every 100 ml of urine. Else, follow with step 3.

3. Place a membrane filter in the filter holder.

4. Gently agitate the urine sample, draw 10 ml using an unused syringe and attach the
syringe to the filter holder.

5. Discharge the urine through the filter over a sink or a bucket.

6. Disconnect the syringe from the filter holder, draw air, reattach the syringe and expel
the air through the filter.

7. Disconnect the syringe from the filter holder and open the filter holder. Carefully remove
the membrane filter using a forceps and place it face-up on a microscope slide.

8. Add a drop of freshly prepared Lugol iodine solution to the membrane to raise the
visibility of the ova that are not calcified.

9. Examine the entire filter over a larger area using a ×4 or ×10 objective under a mi-
croscope for the ova. Use a ×40 objective to confirm whether the species is that of S.
haematobium by looking for the presence of a terminal spine.

10. Record the results as the number of ova present in 10 ml of urine. Qualitative results
are recorded as, having a light or heavy infection for eggs in the range of 1 − 49 and
> 50 respectively.

11. Plastic filters can be reused. Soak the filter overnight in a 1% hypochlorite solution.
Wash it thoroughly with a detergent solution, rinse it with clean water and check under
the microscope if it is free of parasites.

The procedure is very comprehensive and involves many steps that require careful execution.
Steps 3 to 8 in the process are for sample preparation alone. Step 9 and 10 are for the
examination and recording the results. The average time for processing a sample, inclusive
of sample preparation, as reported in literature, is between 1 − 2 minutes [35]. However, from
our observation of a well trained operator in a lab, the average time is close to 2 minutes and
30 seconds.
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Figure 2-5: Samples prepared for observation.

2-5 The need to automate the standard procedure

There are many reasons, from different perspectives, to automate the diagnosis procedure
and potentially embed the technology into a portable device.

From the available resources point-of-view, there are countries which lack a sufficient number
of trained and experienced microscope operators, and the essential lab equipment, that will
need to arrive at the field. Standard microscopes are an expensive initial investment and will
require trained personnel to operate and maintain. Moreover, many communities that require
mass screening are remote areas that have limited or challenging transportation routes. In
this case, the lack of microscope operators implies that urine samples require transportation
to a city or town with an adequately equipped laboratory for analysis and the results sent
back to the field at a later time.

When considering the diagnosis performance, take note that the current sensitivity is modest
and is over a wide range [16]. Several of the factors that cause this shortcoming cannot
be changed, like the variation in egg count in the urine over the day or week. However,
these can be corrected for by techniques like repeated-sampling and collecting more quantity
of urine, as mentioned in Section 2-2. Moreover, the sensitivity of the procedure, or any
manual microscopy procedure, is not consistent or standardised because the human factor
plays a significant role. Preparing and analysing around a hundred samples a day for many
days rapidly changes into a dull task. The strenuousness of the procedure can affect the
operational performance of even the most competent microscope operator.
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2-6 Available solutions in literature

Some of the proposed and tested methods that are available in the literature are listed below.

2-6-1 On-chip imaging of S. haematobium eggs in urine

In the work of Linder E. et al [3], the authors obtained inexpensive webcams and removed
the optical elements. With an appropriate container mounted around the camera sensor, and
the proximal electronics protected using silicon or acrylate polymer, they pour infected urine
and let it settle on the CMOS sensor chip. For some experiments, they used two different
mobile phones and replaced the protective glass of the camera with a coverslip. They then
illuminated and imaged the samples.

Figure 2-6: (A) The exposed webcam sensor. (B) The proximal electronics protected using a
relevant resin, and (C) a tube mounted to form a sedimentation chamber around the sensor.
Source: Linder E. et al (2013) [3]

The webcam system demonstrated an optical resolution of 12 µm, identified using the USAF
1951 resolution chart, which is more than sufficient to image the eggs which are 110−170 µm
long and 40−70 µm wide. The primary advantage of this method is the availability of a large
field-of-view of 10 mm2, which is the sensor area, relative to a conventional microscope or the
use of a ball lens. However, the absence of optics can introduce diffraction artefacts in the
images, which will require additional reconstruction algorithms for improving image quality.
The cameras are models from the year the paper was published, 2013. Modern-day webcams
may have larger sensor areas and smaller pixel sizes, but the use of a single camera for a
single or a few samples is not economical in the long term. The use of a coverslip to protect
the sensor and applying partially coherent in-line holography methods seem promising.

For egg detection, the authors trained a forty-five stage cascade classifier based on Haar-
features using 500 cropped images of the eggs with data augmentation. The model demon-
strated a diagnostic sensitivity of 71% and a specificity of 79% on a set of seventy-five test
image pairs.
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2-6-2 Mobile microscopy

Hand-held and mobile-phone microscopy are growing fields [16] and show much promise for
the diagnosis of many infections. Positive results from the evaluation of these devices for
helminth infections [26], detection of filarial parasites [36] and the detection of tiny parasites
for the diagnosis of malaria [27], put these devices in the spotlight.

For standard microscopy, the expensive parts tend to be the optical components. Microscope
objectives contain many large lenses to improve image quality by compensating for various
optical aberrations that are generally inherent in the system. However, for the identification of
relatively large biomarkers, like the ova of S. haematobium, we can design small and straight-
forward optical systems that obtain good images. We factor this in the design of mobile
microscopes, which are usually the standalone mobile-phones with an additional inexpensive
optical element to modify the system for the observation of small objects.

Figure 2-7: (A) An illustration of the reverse-lens setup, and (B) the reverse-lens setup behind
our mobile-phone microscope prototype.

One such setup of relevance is the reverse-lens mobile-phone microscope, as demonstrated by
Switz N. et al [37]. The setup consists of a mobile-phone and a spare lens of the camera of
the same phone or another, positioned in reverse. Assume the reverse-lens is similar to that
of the phone camera, and we position the sample at the focus of the reverse-lens. This setup
supplies a microscope with a magnification (M) of ×1 and a field-of-view equal to the area
of the camera sensor. Modern mobile-phone camera lenses have f-numbers (f) in the range
of 3.0 − 2.0, which computes to a numerical aperture (NA) in the range of 0.17 − 0.25. This
range for the NA, which translates to the light-gathering capability of the system, is standard
for most available microscope objectives.

Some of the other evaluated mobile-microscopes are a ball-lens based microscope [38, 27], an
origami-based paper microscope that costs USD 1.00 called the Foldscope [39], and devices
with the microscope objectives mounted to the phones [40, 41]. The Foldscope, reversed-
lens Cellscope and the Newton Nm1 microscope with a cellphone attached showed diagnostic
sensitivities of 55, 67 and 81%, and specificities of 93, 100 and 97% for S. haematobium.
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Besides the advantages of the reasonable performance and the low-cost of the optical systems
of these devices, they provide several benefits from an operational point-of-view. The devices
tend to be very portable and are not affected by the intermittent power service in remote
locations. They can perform automated diagnosis using computer vision methods and can
upload diagnostic data for aiding burden estimation and disease surveillance [26].

2-6-3 Open-source microscopes

Many open-source microscope designs are available [42, 4, 43, 5]. Their prevalence is due to
the presence of convenient manufacturing methods like 3D printing and laser-cutting and the
availability of affordable, high-quality components like cameras and optical elements.

We do not evaluate these designs in detail, but we mention some of the advantages and
disadvantages. At least one design provides sub-micron stage positioning accuracy [42]. There
is a design which costs as little as € 100 which imaged the S. haematobium ova [4] to an
adequate level of resolution. Similar to the open-source philosophy of the manufacturing
designs, the hardware and software also use accessible open-source technologies. A Raspberry
Pi computer [44] along with a standard Raspberry Pi camera [7] augmented with additional
optical elements is in use with today’s open-source projects.

Figure 2-8: (A) The €100 Lab microscope built using 3D-printed parts and relevant electronics
(2017) [4]. (B) A low-cost Fourier Ptychographic microscope that costs USD 150 (2018) [5].
Both the devices use a Raspberry Pi as their computer.

A standalone microscope will still need an operator to control it, which limits their use in a
labour-limited setting. This drawback is avoidable by automating the imaging and detection
stages. However, automating the microscope stage requires the use of reliable stepper motors
with precise positioning, which are usually expensive and bring the total cost of the system
to that of a standard microscope or beyond.
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2-7 A summary of our approach

Using all the information presented up to this point, the potential design directions and
consequently the objective of this thesis work are outlined below.

Molecular methods seem to be the most straightforward diagnostics in terms of the ease of use
and speed of diagnosis. These methods, however, can be deployed on a large scale only after
significantly reducing the cost per diagnosis and simplifying the use of the devices. Until then,
standard microscopy will hold steady for the diagnosis of urinary schistosomiasis. Operating
the microscopes will be difficult in scenarios with limited access to experts, and hence device
automation is necessary. So, we work towards designing an automated microscope that is
also very cost-effective, specifically for diagnosing urinary schistosomiasis.

Sample preparation is still required and is a hectic task, but it is a skill that is quickly
learnable by relevant members of local healthcare centres. It may be possible to automate
this process as well, but we do not focus on this aspect as it will require a different research
direction. Methods of diagnosis without the need for sample preparation, like the research
work presented in Section 2-6-1 [3], are a potential solution. Lensless imaging methods,
like in-line holography, seem to show promising performance. Lensless imaging methods are
currently under active research and development at the smart optics for diagnostics group at
the faculty of Mechanical, Maritime and Materials Engineering (3mE), TU Delft.

We approach the design of structural components and the embodiment with a focus on re-
producibility by relevant potential local producers in the endemic countries like, for example,
makerspaces. Local production will assure local availability as well as local support for main-
tenance and repair. The two main focus areas for distributed production are 3D printing
and laser-cutting machines since they are currently widely available in Africa, for example in
Nairobi, Kenya and Lagos, Nigeria. At the faculty of Industrial Design Engineering (IDE),
TU Delft, there is ongoing field-research in sub-Saharan Africa to identify the specific needs
and device features for automated diagnostic devices. This research is in collaboration with
local makerspaces in Nigeria and Kenya.

Concerning the device technology, to automate the stage, we use inexpensive stepper motors
with sliders and propose an approach using scene-recognition to increase their operating
reliability. For the optical system, we use the Raspberry Pi camera augmented with a reverse-
lens. This configuration will provide a magnification of ×1. Conventional microscope designs
enable the use of objective lenses that provide higher magnifications (×4, ×10, ×20 and
more). However, such systems will tend to be larger because they require a mechanical tube
length in the range of 160 − 200 mm. Whereas using the reverse-lens configuration, the ideal
tube length is null, and hence we can maintain a compact system design. We show that the
magnification of ×1 is adequate to image the S. haematobium ova while using the Raspberry
Pi camera.
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Chapter 3

Method

In this chapter, we describe the development of the mentioned device. The description con-
tains three sections: the choices and development of the hardware (Section 3-1), the acquired
images (Section 3-2) and our ova detection method (Section 3-3).

Before the development of the automated microscope, we designed, prototyped and evaluated
a mobile-phone-based reverse-lens microscope. For this reason, the experimental procedure
and evaluation will also contain details regarding this device. The development of the auto-
mated microscope ensued because of specific issues faced when evaluating the mobile-phone
microscope, which are elaborated in Section 4-1.

Figure 3-1: (A) Our mobile-phone-based reverse-lens microscope design, and (B) our current
iteration of the low-cost reverse-lens automated microscope.
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3-1 Hardware

The hardware constitutes all the fundamental elements required to at least manually control
and image the target sample for analysis. We discuss the choice of the optical and imaging
hardware for the instrument, the computer to control the device, the utilised mechanical
components for moving the camera/sample and focusing the urine sample, and the design of
the embodiment.

In the last section (3-1-5), we proposed a basic model for a component needed to re-calibrate
the device. This model can potentially replace the calibration switches that are generally a
part of automated microscopes, thereby minimising the use of mechanical components and
hence lowering the chances of mechanical fault.

3-1-1 The optical hardware

Mobile-phone-based microscope

For the evaluated mobile-phone microscope, we used the Moto X Style 2015 smartphone. The
relevant technical specifications of the phone camera are listed below.

Feature Value

Price of device US$ 150

Sensor resolution 5344 × 4016 pixels

Sensor image area 5.985 × 4.497 mm

Pixel size 1.12 µm

Spatial resolution (theoretical) 2.24 µm

Focal length 4.6 mm

f -number 2.0

Table 3-1: Relevant technical specifications of the camera module (SONY IMX230) on the Moto
X Style 2015 smartphone.

The experimental setup consists of the mobile-phone augmented with a spare lens as the
reverse-lens over the rear camera. We built a sheet-metal housing around the device to house
a sample holder with the diffuser. The intended goal of this device is to analyse and diagnose
urinary schistosomiasis in a single FoV, rather than over multiple FoVs using the standard
filter. The optical apparatus of this device cannot image the entire standard filter without
moving the sample along the X and Y axes. We use cloth with a pore size of 18 − 36µm to
filter the urine.
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Figure 3-2: Images of the cultured ova captured using the mobile-phone microscope.

The computer for this device is the mobile-phone itself. Refer to Figure 3-1A for a quick view
of the entire device.

Automated microscope using a Raspberry Pi

With the open-source philosophy in mind, we utilise an easily accessible and community-
supported camera module for the automated microscope - the Raspberry Pi Camera V2.
Some relevant technical specifications of the camera are listed below.

Feature Value

Price US$ 25

Sensor resolution 3280 × 2464 pixels

Sensor image area 3.68 × 2.76 mm

Pixel size 1.12 µm

Spatial resolution (theoretical) 2.24 µm

Focal length 3.04 mm

f -number 2.0

Table 3-2: Technical specifications of the Raspberry Pi V2 camera (SONY IMX219) module [7].

From the Nyquist-Shannon sampling theorem, the theoretical spatial resolution for the imag-
ing system is twice the pixel size (1.12 µm). Hence, this value for the camera is 2.24 µm.
Taking note again, the size of the ova are within the bounds 110 − 170 × 40 − 70 µm, which
makes the sensor more than sufficient to image them. However, the spatial resolution can
also be affected by the optical components in the system. In practice, we calculate the spatial
resolution by the ability of the system to distinguish closely spaced lines in an image. One of
the most commonly used target for this is the 1951 USAF Resolution Test Chart. We image
this test chart using our device, after augmenting the reverse-lens and mounting the camera,
to ensure that it is stable before sensing any images. Refer to Figure 3-10 for the result.
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For the proof-of-concept, we obtain the reverse-lens by removing the lens of a spare Raspberry
Pi camera. A prime necessity for the reverse-lens microscope construction is to minimise the
distance between the lenses as much as possible - ideally null. Not doing so will result in
images with decreasing intensity as one moves away from the axis.

Figure 3-3: (A) The same rays emerging for an off-axis target with (i) the lenses placed as close
as possible and (ii) the lenses separated by a longer distance. The cone of light incident on the
first lens is the same in both cases. The ray that is coloured blue does not contribute to image
formation in the second case. (B) An image of a blood smear captured using our device with the
lenses separated by a small distance (∼ 3 mm). Note the intensity drop away from the centre.

To mount the reverse-lens on the Raspberry Pi Camera, we tested three different iterations
using 3D printing and laser-cutting before settling with a 3D printed design with the possi-
bility of quickly accessing the lens for maintenance. Refer to the figure below for a quick view
of the three iterations. More images are available at the end of this subsection.

Figure 3-4: (A) The first iteration of the reverse-lens mount which tightly fits around the camera
module. Accessing the reverse-lens is harder, since the cap is a tight fit. (B) A laser-cut design
using acrylic sheet. The reverse-lens can be removed by disassembling the unit, but the procedure
is cumbersome. (C) The final iteration, using 3D printing, that we settled with for this work. The
reverse-lens is mounted with a plastic cap that can be screwed to the camera mount.

The selected camera imposes a problem. The sensor plane is not parallel to the surface
of the circuit board, because the on-board camera (SONY IMX219) comes attached to the
board using a double-sided sticker, which results in a tilt. We can compensate for the tilt by
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tilting the reverse-lens in the opposite direction, using an appropriately designed mount, but
this design will not translate with all the camera modules since the sticker placement is not
predictable. Tightly mounting the revers-lens with the designed plastic cap reduces the tilt
to an extent. We propose focusing the sample in different areas of the field-of-view, which
will make the system more robust from the software end. Future research focus can include
finding the optimal camera and integrating it along with the focusing software for improved
reliability.

Figure 3-5: The tilt of the Raspberry Pi camera module relative to its circuit board. The bottom
red line drawn on the surface of the circuit board and the upper red line drawn on the camera
illustrate the tilt.

We now discuss the sample illumination procedure. Refer to Figure 3-6 for the illustration.
The inverted cone, with half-angle α representing the aperture, represents the limit of light
that can enter the objective.

Figure 3-6: Numerical Aperture for microscope objectives and condensers [6]
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In a conventional microscope without a condenser, a collimated beam is incident on the sample
under observation (Figure 3-6a). Increasing the effective aperture translates to an increase
in the resolving power of the microscope. To achieve this, a condenser is added (Figure 3-
6b), which generates a ray cone on the illumination side of the specimen. This setup allows
the objective to collect light that is a result of larger diffraction angles, which increases the
resolution of the system. We achieve maximum resolution when the objective aperture angle
matches the condenser aperture angle [6].
In our system, we use an opaque white acrylic sheet of 3 mm thickness that is simultaneously
a diffuser and the sample holder. We use this setup to limit the use of expensive components
and to maintain a low physical profile. However, the illumination setup may require some
tuning to improve the resolution of the optical system. The entire sample platform - the
diffuser and sample holder - remains stationary along the X and Y axes, and the focusing
mechanism is the same as that of a conventional microscope, where the sample can move
along the Z-axis.

Figure 3-7: (A) The sample holder and the acryclic diffuser with a glass slide of thin blood smear
mounted. (B) The sectional view of the diffuser and sample holder setup. We state the purpose
of the cover plate - black material in (A) and illustrated in (B) - in Section 3-1-5.

The figure below shows regions with ova captured using the described experimental setup.

Figure 3-8: Sample images of the ova, from samples cultured at LUMC, Leiden, captured using
our experimental setup.
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The final setup has the camera mounted on top of an XY-stage consisting of two inexpensive
stepper-motors. One motor is fixed and it translates a second motor which moves the camera.
We discuss the technical specifications of the motors in Section 3-1-3.

Figure 3-9: (A) The mount for the camera with the XY motors. (B) The camera mounted on
top of the XY stage.

The description of the optical setup is complete. Figure 3-10 shows the result of imaging the
USAF 1951 resolution test chart. The device resolves line pairs of element 1 in group 8. This
result corresponds to 256 line pairs per mm or a line of width 1.95 µm.

Figure 3-10: The system resolves group 8 element 1 (G8E1).

Master of Science Thesis Satyajith Jujjavarapu



24 Method

Figure 3-11: (A) Bottom and (B) top views of the Raspberry Pi camera reverse-lens mount.

Figure 3-12: (A) The utilised USAF resolution test slide, and (B) the resolution test slide placed
on top of the sample holder in our device.

Figure 3-13: The experimental setup with the USAF resolution test slide mounted.
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3-1-2 The Raspberry Pi computer

The Raspberry Pi is a low-cost, credit-card sized computer that runs a variant Linux distro
called Raspbian, which is in use by many communities ranging from individual and group
hobbyists to academic researchers. The computer abstracts away many of the low-level im-
plementation details by providing an accessible high-level interface for the prototyping and
testing of embedded systems.

Figure 3-14: (A) The Raspberry Pi 4 computer used in our device. (B) The computer connected
to a custom printed circuit board (PCB) and the camera cable (in white with blue text).

The computer provides a high-bandwidth interface to connect and use various camera mod-
ules, including the Raspberry Pi camera, and sufficient general-purpose input-output (GPIO)
pins to communicate with sensors and drive electronic components. The current high-end
version of the computer, the Raspberry Pi 4B (4 GB), is adequate to image targets and
drive the XYZ motors, as already demonstrated using the older Raspberry Pi versions by the
open-source microscope projects cited in Section 2-6-3. This fact implies that the device is
assured to work at least to the level of automatically scanning the target sample, with the
use of appropriate auto-focus software.

The final aspect that we need to address is whether the computing power is sufficient to detect
ova in the images sensed by the device. We show that it is possible to run image processing and
simple image classifiers using pattern recognition models for ovum detection. What remains
is to evaluate whether state-of-the-art computer vision models, especially image classification
and object detection models based on deep learning, are deployable on this computer. Many
online communities (hobbyists and organisations) benchmarked deep learning model inference
on the Raspberry Pi 4, showing that there exists at least one model that can serve our purpose
[45, 46].
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3-1-3 Mechanical components

For the proof-of-concept, the essential mechanical components are only the three low-cost
stepper-motors, two of which move the camera along the XY-axes and the other drives the
sample stage along the Z-axis for focusing. Both categories of motors are two-phase four-wire
stepper-motors.

Figure 3-15: (A) An XY-axis motor which comes with a slider and two support shafts, and (B)
The Z-axis stepper-motor with an M4 thread shaft.

We drive each of the three motors using an L293D integrated circuit (IC), which are high-
current quadruple half-H bridge circuits. The technical specifications for the motors are listed
below.

Parameter XY motor Z motor

Product ID N/A GA12BY15-M455

Price e10 e10

Type 2-phase 4-wire 2-phase 4-wire

Drive voltage 4 − 6V 5V

Max current 500 mA 300 mA/phase

Shaft 3 mm pitch M4 screw thread

Effective stroke 57.6 mm 55 mm

Step angle (θ) 18 deg 18 deg

Gear ratio (gr) 1 : 1 1 : 100

Linear actuation (full-step) 150 µm 0.35 µm

Table 3-3: Some relevant specifications of the motors.
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The step angle for both motors is 18 degrees/step. Both the shaft threads are single-start with
a pitch (p) of 3 mm and 0.7 mm (M4 thread pitch) for the XY and Z motors respectively.
Using these specifications, the linear actuation distance per step (d), for these motors, is
computable using Equation 3-1

d = p (in mm)
Total angle per revolution

θ

× gr mm/step = p
360
18

× gr mm/step (3-1)

The actuation distances per step for the XY and the Z motors are 150 µm and 0.35 µm
respectively. The linear actuation distance and the effective stroke (refer to Table 3-3) are
more than sufficient to move across in small steps over the standard filter (diameter 13 mm)
and to focus the ova.

Figure 3-16: The sample holder mounted to the Z-motor shaft using an M4 threaded insert.
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3-1-4 The embodiment

The final and optimal design of the embodiment is of limited relevance to this thesis work
and should be the focus of experienced design engineers. We explored two models for this
proof-of-concept: one using 3D printing and the other with laser-cutting. We started using 3D
printing but switched to laser-cutting because of the long printing time for changing design
iterations. For demonstrating the device, the laser-cutting approach allowed for quick and
iterative prototyping.

Figure 3-17: Our first 3D printed embodiment design (with outdated interior components).

3D printed components are durable and provide better structural support than laser-cut
acrylic sheets, but it takes too long to print them. This downside made it a poor choice for
quick iteration. All the plastic components that are part of our outdated design in Figure
3-17 took around 40 hours in total to print, while the laser-cut model in Figure 3-18 took
about 6 minutes to cut and 5 − 10 minutes to assemble.
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Figure 3-18: Our laser-cut embodiment design.

Figure 3-19: (A) A slot to insert and place the sample over the sample holder. (B) The sample
placed on the holder with the reverse-lens camera positioned on top.
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3-1-5 An alternative to calibration switches

Automated instruments like 3D printers, microscopes and camera stages require accurately
positioned switches to re-calibrate or signal to home after every task. This design is necessary
because the stepper-motors operate in open-loop and the computer is unaware of any slipping
that occurs during operation. Generally, engineers integrate highly-reliable stepper motors
which eliminate the problem to a significant extent. Since we use low-cost stepper motors that
are not as reliable, these switches are an absolute requirement. We drop the use of switches,
to minimise the use of mechanical components, and use the image data for calibration. We
propose the design of a cover-plate with slots in a specific pattern. Detecting these slots using
the microscope camera enables defining a start- and end-position for the scanning procedure.

Figure 3-20: (A) A computer designed model of the cover-plate for the sample holder with holes
on the sides. (B) A laser-cut cover plate (in black) of 1 mm thickness on top of the diffuser.

The thickness of the cover-plate is 1 mm, which is the same as the glass slide on which the
filtered sample rests. The idea is to use recognisable markers to move the camera back to
a reference point after every scan. In the case of the 3D model shown in Figure 3-20A, the
camera moves to one side and records the arrival at home along the X-axis when circles
are in the FoV. The camera then moves up until no more holes enter the FoV, and records
home along the Y-axis. Next, we lower the sample stage by a few millimetres to ease sample
removal and insertion. After the insertion of a new sample, the scanning process begins by
first focusing on the holes. This step assures that the camera is focusing on a proximal plane
to the urine filtrate since the cover plate with the markers is as thick as the glass slide. The
camera then moves left and down attempting to find the curvature of the filter and then
scans the entire filter as a grid of images (multiple FoVs), and this process repeats for the
next sample.

This procedure can potentially help in running the whole system in closed-loop by keeping
track of the area explored by the camera for each filtered sample. Determining stepper-motor
slipping will require comparing the previously captured image with the latest one after sending
the command to step along the X or Y axis.
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The design of the cover-plate requires more consideration — specifically, the choice of the
pattern for detection. In Figure 3-20, we show two examples: one with holes and the other
with slots. Both of them are laser-cut acrylic sheets. Truly, we may only need a thin and
long slit.

Figure 3-21: The above images are for the cover-plate shown in Figure 3-20. (A) The out-of-
focus image of the slots. (B) The image with the slots in the focal plane of the optical system.

One minor concern we ran into when testing this method is, on moving the sample closer to
the camera after focusing, the inner-layers of the acrylic sheet start to come into focus. Refer
to Figure 3-22 for images of this result.

Figure 3-22: The inner-layers of the acrylic sheet in focus.

The above result does not pose any issues for the automation of the device. Robust detection
software can overcome this event. However, to minimise the software complexity that deploys
on the Raspberry Pi, it is wise to optimise the model on the physical device to a considerable
extent. One possible approach to overcome this concern is to make the slots taper outward
in the direction of the inner layers. This method will require 3D printing instead of laser-
cutting. For example, instead of circular holes resulting in the removal of cylindrical volumes,
the cover-plate will have frustum cavities.
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3-2 Acquired images

3-2-1 Using the mobile-phone microscope

For the microscope using the mobile-phone, a single image constitutes the entire sample. With
the setup described in Section 3-1-1, we captured the images, with dimensions 4016 × 5344
pixels, shown in Figure 3-23. The cropped regions in Figure 3-24 are 2048 × 2048 pixels.

Figure 3-23: Images captured in 2018 using the mobile-phone reverse-lens microscope.

Figure 3-24: Cropped regions of the FoVs in Figure 3-23 used for developing detection algorithms.
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3-2-2 Using the automated microscope with a Raspberry Pi camera

For this microscope to cover the entire standard filter of diameter 13 mm, a grid of images is
required. Each image in the grid is one FoV. The expected grid size is 5 × 5, or 6 × 6 in the
worst-case if some overlap is necessary for stitching the images and reconstructing the image
of the entire filter. Each FoV, like the image in Figure 3-25, is of dimensions 3280 × 2464
pixels.

Figure 3-25: An FoV of the standard urine filter.

Improving the image quality is possible, by choosing a thinner diffuser sheet - currently 3
mm, lower thickness may yield better results - to let enough light to pass through, or by
controlling the camera settings like the exposure, ISO, dynamic range and many others. The
design of a low-cost alternative to a microscope condenser setup may improve the resolution
of the system to an extent.

An essential requirement for the system is the detection of the starting point to image the
standard filter with the filtrate. For this to work, in the automation phase, the system needs
to identify the top or bottom end and either the left or right ends of the circular filter to
begin the imaging process. Figure 3-26 shows the boundary at the right-side of the circular
filter.
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Figure 3-26: An FoV of the standard urine filter showing the curvature of the filter.
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3-3 Detecting the S. haematobium ova

We developed the detection software only for the mobile-phone microscope, and the develope-
ment of the detection model and software for the automated microscope should be the focus
of future research as there was limited time remaining for this thesis work. The automated
microscope was a direct result of our critical evaluation of the mobile-microscope, which we
discuss in Chapter 5.

3-3-1 Detecting ova using the mobile-phone microscope

Our goal is to model a detector using a few images, as shown in Figure 3-23 or 3-24, and eval-
uate the model on new pictures captured using the mobile-phone. We break the algorithm
into two simple steps: localising the potential ova and classifying the potential candidates
using a trained image classifier. We execute this implemented algorithm on a desktop/note-
book computer, the phone and a Raspberry Pi 3B+ computer to evaluate and compare the
performance.

Localising potential ova

For the description of the algorithm, we use the first cropped image in Figure 3-24 as the
starting point. The original size of the image is 2048×2048. We scale it down to 1240×1240,
which reduces the resolution but preserves sufficient features for analysis.
There are some ova among all the dark blobs in the image, and hence we aim to localise all
the blobs. One can achieve this step using simple morphological operations, but the filter
mesh in the background hinders this approach. So the first step is to explore methods to filter
out the mesh. The mesh has a periodic structure of relatively high frequency in all directions,
and hence we can eliminate the mesh using a low-pass filter (LPF) in the spectral domain,
which is equivalent to a blur in the spatial domain [47].

Figure 3-27: (A) The magnitude and (B) phase of the discrete Fourier Transform for the image
under consideration.
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Given a digital image f(x, y), of size M × N, its 2-D discrete Fourier transform (DFT), F(u, v)
- where u and v are the coordinates in the spectral domain - is given by [47]:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y) e−j2π(ux/M+vy/N) (3-2)

Refer to Figure 3-27 for the resulting magnitude and phase images. We apply an ideal low-
pass filter (ILPF) on the spectral data. Figure 3-28 shows the mask image representing the
ILPF and the magnitude of the result of multiplying it with the spectral data.

Figure 3-28: (A) The binary mask for the ILPF and (B) the magnitude plot of the masked DFT.

Using the resulting spectral data, we compute the inverse-DFT (IDFT) to obtain the filtered
image in the spatial-domain, which we binarise using a threshold operation to separate the
blobs from the background. The results are in the figure below.

Figure 3-29: (A) The filtered image and (B) the resulting binary image.
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From the binary image, we compute the contours and their respective bounding boxes for all
the detected blobs and map this data to the original image.

Figure 3-30: (A) The contours mapped to the original image and (B) the computed bounding
boxes of all the detected blobs in the threshold image.

Using the bounding box data, we estimate the coordinate of the centre for each blob. We
crop regions of size 64 × 64 using the obtained centres. The final step for detection uses the
cropped regions as inputs to an image-classifier.

Figure 3-31: (A) The IDFT of the ILPF mask image shown in Figure 3-28A. The result is a sinc
function. (B) The result of convolving the original sample image using (A) as the kernel. Note
that the result is the same as in Figure 3-29A, obtained by frequency-domain filtering.

Before describing the classification step, we quickly mention the equivalent operation in the
spatial domain, for the frequency domain filtering, which is a convolution with a relevant
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kernel. However, the precise kernel matrix is directly dependent upon the periodicity of the
mesh, the pore size etc. which we analyse in the spectral domain. A general solution is to
use the most conservative blur that preserves details of the ova (the blobs), irrespective of
the pore size. The kernel for blurring by convolution in the spatial domain is the IDFT of the
ILPF mask image shown in Figure 3-28A, which is the sinc function. Refer to Figure 3-31
for the results of this procedure. There is no significant difference in performance (execution
time) between the two approaches, for the utilised image sizes.

Classifying the potential ova

We train and utilise a binary classifier to segregate the regions of interest into two classes -
ovum and not ovum. For training we built a dataset by cropping 120 regions for each class
from two images of urine samples, each of dimensions 1240 × 1240, which were annotated
with the help of an expert. The image considered for the current description of the analysis
did not contribute to the training data. Figure 3-32 represents nine sample points from each
class. Each data point is a 2D matrix - grayscale - of dimensions 64 × 64.

The original images registered using the mobile are colour images. Due to the lack of colours
from observation, we convert them to grayscale images before processing. We augmented the
dataset to inflate it artificially, using label-preserving transformations [48]. Specifically, we
used rotations - by 90°, 180° and 270° - and the transpose of each of the four orientations.
This step increased the dataset size to eight times the original size, from 120 images to 960
images in each class.

For the classifier we use a Support Vector Machine (SVM), precisely the C -Support Vector
Classification (C -SVC) model [49, 50], with a linear kernel. The data is first normalised
to the range [0, 1]. We shuffle the entire dataset and split it into a training and test set
containing 70% (672 images per class) and 30% (288 images per class) of the original data
respectively. The normalised pixel data - 4096 pixels for the 64 × 64 images - are the features
for the classification model. The used training functionality for the SVM classifier is from
the scikit-learn [51] machine learning library. On a desktop machine with an Intel i7 7700HQ
(@ 2.80 GHz) processor and 16 GB of memory, the average training time is 4.5 seconds. The
trained model demonstrated an accuracy of 96%.

Figure 3-32: Data points representing (Left) the ovum class and (Right) the not ovum class.
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In the detection pipeline, after obtaining the coordinates of the potential ova from the local-
isation step, the procedure is programmed to vectorise - 64 × 64 matrices are transformed to
a 4096 × 1 vector by concatenating the rows - and feed the normalised images to the SVM
classification model. The output of the classifier is either a zero (0) or a one (1), representing
the classes ovum and not ovum respectively.

Figure 3-33: (A) Bounding boxes for the potential ova, and (B) the result of classification.

The purpose of the discussed SVM classifier was to demonstrate a simple classification model
for the system. One can use other competent models, like a classifier based on convolutional
neural networks (CNN). It is also possible to replace the entire detection pipeline with a
deep-learning-based object detector at the cost of increased computation time.
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Implementation and performance

To prototype the algorithm, we used the OpenCV library [52] for the image-processing steps,
in the Python programming language. We evaluated the procedure on three different plat-
forms: a desktop/notebook computer, the Moto X Style mobile-phone and the Raspberry Pi
3B+ computer. We used the Raspberry Pi 3B+ instead of the newer 4B model because this
experiment predates the release of the newer version. We wrote the relevant software ports
for the different platforms and measured the average execution time. Refer to Appendix A
for the source code. The summary is tabulated below.

Computer Language Execution time

Intel i7 7700HQ @ 2.8 GHz C++ 0.24 s

(Fedora 29 - Linux)

Moto X Style (2015) Java for Android 5.0 s

(ARMv8-A) 64-bit @ 1.8 GHz

Raspberry Pi 3B+ C++ 6.2 s

(ARMv8) 64-bit @ 1.4 GHz

Table 3-4: Performance of the described algorithm on the three mentioned platforms.

The measurements in Table 3-4 are independent of the available system to image the ova.
That is, we measure the execution time, assuming the images for analysis are already available.
Diagnosis time, on the other hand, will also account for the time to prepare and scan the
filtered sample. We note that the execution time is adequate to analyse the sample quickly
using the phone, although by filtering urine over a smaller area.

Let us discuss some limitations of the current procedure.

1. Note that all the ova in the images from the phone are dark black. This colour may be
due to the cultured sample being old at the time of the experiment, but this fact requires
definite confirmation from experts and the literature. Because of the dark ova being
present, we ignored staining the sample using Lugol’s Iodine. We also ignored many
other steps from the standard protocol. In practice, most of the ova are translucent.

2. The development of the algorithm, for the proof-of-concept, focused on simplicity and
reducing the computational load for portable computers. Intermediate steps will be
necessary to make the procedure more robust. For example, in the blob detection step,
two or more ovum can overlap in the scene. This event will result in either the truncation
of the big blob or detection of one ovum in the region of interest. The addition of a
relevant segmentation procedure can help overcome this possibility.
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3. The resulting image shown in Figure 3-33B contains a few false-positives (targets that
are not ova but identified as ova) and false-negatives (targets that are ova but not
identified) to question the overall reliability of the procedure for automated medical
diagnosis. Validation is possible only with the analysis of many more samples, preferably
using schistosomiasis-positive urine samples from the field.

3-3-2 Detecting ova using the automated microscope

The development of a detection model for analysing the images captured using the automated
microscope is a primary goal for the next phase of the project. The focus should be on
developing and optimising a computer vision model, for ova detection, for deployment on a
low-powered computing device like the Raspberry Pi 4B. To begin the development of this
model, a dataset collected using this device is required.
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Chapter 4

Experimental Results

To publish results on the classifier’s performance, and the diagnostic sensitivity and specificity,
testing with a large number of samples is necessary. The few samples analysed using the
mobile-phone microscope were cultured samples of S. haematobium ova obtained from the
parasitology research lab at LUMC, Leiden. The acquired images were insufficient to compute
metrics of significance. We captured four images with observable eggs, and built a training
set for the SVM classifier from two of these images. We used the other two images for testing
the classifier. Refer to Figure 4-1 for the detection results on the test images.

Figure 4-1: Detection results on the two test images.

To evaluate the design choices of the mobile-phone microscope and compute the relevant
statistics representing the performance of the device in the field, we organised a visit to the
ANDI Centre of Excellence for Malaria Diagnosis at the College of Medicine, University of
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Lagos, Nigeria. The objective was to filter schistosomiasis-positive urine samples, instead of
lab cultured ones, and capture images of the residue for each sample. Using infected urine
samples simulates sample testing conditions in the field, and enables to observe how the cloth
filters perform in the presence of the ova and other contents in the urine - cells, proteins,
white blood cells, blood, bacteria etc.

4-1 Testing with schistosomiasis-positive urine samples

An expert microscope operator at Lagos, Nigeria, trained specifically for schistosomiasis in-
fections, executed tests with schistosomiasis-positive urine using our small and inexpensive
cloth filters. To ease the filtering of urine using a syringe, the design engineers collaborating
with us developed reusable plastic caps for mounting the mesh and placing the cap on top of
a sample holder, as shown in Figure 4-2A. For comparison and documentation of the process,
the operator filtered the same samples using the standard protocol as well. The employed
devices were our mobile-phone microscope for the cloth filters and a conventional microscope
for the standard filters with a 13 mm diameter. The execution of the standard procedure
progressed very efficiently. For the research work encompassing smart diagnostics for schis-
tosomiasis, observing this procedure helped in documenting and understanding the benefits
and pitfalls. A few of these insights are mentioned in Chapter 2 of this thesis.
With the mobile-phone microscope, the expert was able to identify an egg or two by manual
inspection. The overall performance of the instrument was subpar. The current design for
filtering the urine using a syringe requires pressing the syringe tip directly on top of the
working area of the cloth, which rendered the filtering procedure hard. Figure 4-2B shows a
user attempting to filter the urine sample using the mentioned caps. On passing about 2 − 4
ml of a sample, urine sediments covered the cloth making further filtering difficult, and the
application of more pressure lead to its deformation.

Figure 4-2: (A) Custom designed filter caps that can be mounted on a sample tube. (B) A user
attempting to filter a urine sample through the filter cloth using a syringe.
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The results demonstrate the inadequacy of the filters with a small area for filtering the
standard amount of urine sample, which if you recall is 10 ml. In fact, the area due to the
thickness of the syringe outlet covered a significant portion of the filter cloth, making all of
this area unworkable. As a result, the urine sediments were clumped in the middle, which is
evident from the images shown below in Figure 4-3.

Figure 4-3: Nine images of sediments from partially filtered - less than 10 ml - urine samples.

The detection model described in Section 3-3 did not detect the ova - shown in Figure 4-4B
- that were manually identified by the operator. Recall that the procedure first converts the
captured images to grayscale before processing, because our experiments using cultured sam-
ples furnished images with dark black ova. However, the ova shown in 4-4B were translucent
to begin with, and developed an orange-brown tint when stained using Lugol’s Iodine solu-
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tion. The ovum at the top in the image also displays some opacity, and for this reason it is
understandable for the trained classifier to classify the ovum as a negative. Further analysis
is required to diagnose why the model did not detect the second ovum at the bottom of the
image.

Figure 4-4: (A) Schistosomiasis-positive urine samples lined up for assessment in the lab at
ANDI Centre of Excellence for Malaria Diagnosis, Lagos, Nigeria. (B) The image with the two
ova detected by the microscope operator using our mobile-phone microscope.
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Discussion

5-1 Recommendations for the mobile-phone microscope

As reported in Chapter 4 - concerning the experimental results - the designed mobile-phone
microscope system did not provide the expected results, primarily because of issues in the
design of the urine filtering components. The results do not indicate any drawbacks with the
optical system in this device. Therefore, with research dedicated towards the development of
an improved and practical filtering kit, the mobile-phone microscope is still promising for use
in point-of-care diagnosis.

Recall that the filtering of the urine sample by placing the syringe directly on top of the cloth
resulted in rapid clogging by urine sediments, in the centre of the filtering area. This event
rendered a significant area of the filter ineffective. An improved design allowing filtration with
the syringe positioned away from the cloth by a small distance may provide better results.
It is also possible to circumvent the issue of clogging by filtering the 10 ml of urine through
many small cloth filters and analysing them individually, at the cost of increased workload.

Using the same mobile-phone, increasing the diameter of the fabric for filtering will not yield
better results because the limited area of the camera sensor cannot image the entire FoV in a
single-shot. Translating the filtered sample will be necessary. A possible solution is to increase
the size of the cloth filter to have its radius equal in length to the diagonal of the camera
sensor and spin the filter about its centre, similar to the mechanism of an optical storage drive.
Refer to Figure 5-1 for an illustration of the proposal. If this solution is worth exploring, it
may prove useful to use the standard filter membranes - with a diameter of 13 mm - and use
a mobile-phone whose camera sensor has a diagonal length of at least the radius of the filter
membrane. Coincidentally, the mobile-phone we used - the Moto X Style 2015 - has a sensor
size of 5.985 × 4.497 mm, which corresponds to a diagonal of length 7.48 mm! Recently, we
evaluated another mobile-phone - the Redmi Note 7 - which has the same pixel size of 1.12
µm, but a sensor of diagonal length 8 mm. Recent advances in sensor technology led to the
development of sensors like the SONY IMX686, which has a pixel size of 0.8 µm and a sensor
of diagonal length 9.3 mm. The last two sensors can certainly image the entire standard filter

Master of Science Thesis Satyajith Jujjavarapu



48 Discussion

membrane with the described concept. Stitching the acquired images is not straightforward
because it is necessary to account for lens distortions and pixel overlap. However, stitching
is not required to diagnose and quantify the infection.

Figure 5-1: (A) The current mobile-phone microscope concept. In this case, the filter is the low-
cost fabric material small enough to fit within the area of the camera sensor. (B) The suggested
concept uses the standard filter membrane (diameter 13 mm) and a camera sensor whose diagonal
length is at least as long as the radius of the filter. Spinning the filter about its centre enables
recording its entire surface.

5-2 The automated microscope design

The primary motive for developing this microscope is to deploy, in the short-term, an instru-
ment that is inexpensive and automates the recognised diagnosis and quantification method
set forth by WHO. There are higher chances for the medical community to adopt such a
device than one that replaces the sample preparation procedure. The current technological
state of the device is, it allows manually capturing images of the filtered sample over the filter
with a diameter of 13 mm.

Field reports and the WHO manuals for a health lab also mention a filter of diameter 25
mm. The only changes needed in the device to incorporate these filters are in the design of
the sample holder, which moves along the Z-axis. The camera, which operates along the X
and Y axis, is already capable of traversing the entire area of the larger filter. The design
details and choice of components - including the motors, camera and on-board computer -
are not final. It is crucial to determine the availability of the relevant components, and if not,
replace the parts with ones that are accessible in the context of deployment. With the open-
source philosophy in mind, for the proof-of-concept, the design incorporates open-source and
community-supported hardware - the Raspberry Pi computer and the Raspberry Pi camera.
The primary motivation for this choice is the presence of a large community of engineers
backing development and online support for this platform, which makes it simple to modify
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or extend the system for a relevant context.
The optical system described in Section 3-1-1 consists of the Raspberry Pi camera as a whole
unit, and a lens of the Raspberry Pi camera positioned in reverse to produce a microscope
of magnification ×1. The images captured with this system show the ova with an adequate
resolution to identify them. However, a thorough evaluation by expert parasitologists is
necessary to establish this fact. The terminal spine, which is the characteristic feature a
microscope operator looks for, is visible only for few of the ova in our images. Our current
suggestion is, the optical resolution should be improved to reveal more details of the ova.
This improvement is attainable by increasing the amount of light available underneath the
diffuser, reducing the thickness of the diffuser sheet by a small amount, optimising the sample
illumination setup to direct more light, and using a camera with a smaller pixel size.
In the long-term, exploring the use of standalone mobile-phone camera units may prove
fruitful. Newer camera modules have a sub-micron pixel size, a larger sensor area, and f -
numbers of 1.9 and 1.8. However, programming these modules as standalone units is not
straightforward. For a proof-of-concept demonstration, building a mobile-phone microscope
using a mobile-phone with the relevant sensor will suffice. Table 5-1 lists the pixel and sensor
sizes of three state-of-the-art sensors used in mobile-phones.

Model Pixel size Sensor size

SONY IMX677 1.12 µm 6.270 × 4.729 mm

SONY IMX686 0.80 µm 7.398 × 5.555 mm

SAMSUNG ISOCELL Bright GW1 0.80 µm 7.42 × 5.555 mm

Table 5-1: Relevant specifications of newer CMOS sensors used in mobile-phones.

5-3 Next steps for our instrument

In this section, we state the necessary requirements to achieve the technology level for evalu-
ation and deployment of our ×1 microscope in a relevant contexts. Presently, the instrument
is only capable of imaging the S. haematobium ova by manual operation, but the objective is
to automate the process of imaging and analysing the prepared samples.
The system is equipped with the relevant hardware for achieving the required level of op-
eration. The modules that are incomplete or require development are the control software
modules, viz. the auto-focus, detecting the boundary of the filter membrane, traversing the
camera across the sample for scanning, and detecting the ova for diagnosing and quantifying
the infection. With these features installed, subsequent steps are to demonstrate and get
confirmation from experts on the quality of the images for diagnosis and quantification. This
step will provide the necessary feedback for optimising the device to improve the image qual-
ity, performance, and the user interaction. Parallelly, scanning a large number of samples,
quantifying them using a microscope and annotating the images obtained using the developed
device, with the cooperation of an expert is vital. This process will enable the construction
of a large dataset for analysis, and the development of a relevant object detection pipeline to
automate the diagnosis and quantification steps for use in the field.
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One of the motives for adopting a mobile-phone microscope was the possibility of registering
analysed samples and uploading the data to a medical records database. A feature like this will
assist and boost disease mapping procedures, enabling medical organisations and associations
to mobilise the necessary interventions for control and elimination programs effectively. The
presence of a computer in the instrument makes it possible to add more sophisticated features
for tele-medicine, like real-time remote analysis by an expert from a distant lab. However,
such technologies require consistent network access, which is currently limited in the context
areas.
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Chapter 6

Conclusions

The initial proposal for this work was to show the potential of using a reverse-lens mobile-
phone microscope integrated with computer vision software to diagnose and quantify urinary
schistosomiasis. However, realising this objective with the implemented design and custom
sample preparation protocol revealed problems - small filter area resulting in a limited area
for filtration, clogging of the filter by urine sediments, and ensuring the filter fabric is taut -
after testing with schistosomiasis-positive urine samples from the field. The discussed issues
are more relevant for quantification since the only requirement for diagnosis is the identifica-
tion of at least one ovum. With some deliberation after examining the results, we lead the
development of a device which does not alter the established sample preparation procedure,
and images the filtered urine sample over multiple FoVs. In other words, the new design was
an automated microscope.

This instrument has a magnification of ×1, was built to provide reliable performance while
keeping the manufacturing simple and inexpensive. We presented a potential method for
operating the stepper-motors without the use of calibration switches. The present costs
to procure the materials, manufacture structural components using 3D printing and laser-
cutting, and assembling the device are under €200. Although full-automation or diagnostic
assistance are the intended applications, the current device can only capture the images of
the filtered urine samples by manual operation. The missing features to complete the device
are the auto-focus software, automatically detecting the boundary of the urine filter, imaging
the entire filtered sample, and executing an object detection procedure for diagnosis and
quantification. Further optimisations will be necessary, for this device, based on evaluations
with the help of expert operators and parasitology researchers. After the manifestation of all
these specifications, analysing a large number of infected urine samples will be necessary to
validate the concept and report on the relevant statistical metrics.
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6-1 Final note

In 2012, the launching of a collaborative disease eradication programme called the London
Declaration on Neglected Tropical Diseases took place. It was a coordinated agreement be-
tween participating public and private sectors to control or eliminate at least ten diseases
from a list of NTDs by 2020. Concerning schistosomiasis, the goal was to ”sustain, expand
and extend drug access programmes to ensure the necessary supply of drugs and other inter-
ventions to help control by 2020” [53]. Funding the research led to a significant understanding
of the disease, and the development of novel approaches for diagnosis. We are now in the
year 2020, and schistosomiasis still affects 200 − 250 million people. Although novel diagnos-
tic and quantification approaches that do not require a lot of equipment and forgo sample
preparation are an ideal requirement, it makes sense to use them on a large scale when the
cost per diagnosis is affordable. Until then, we are confident that an instrument like the
one presented in this work can serve in diagnosing and mapping the diseases in remote areas
lacking adequate means.
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Appendix A

The Algorithm for Ova Detection

The following source code is(are) for the urine sample filtered using the inexpensive fabric
filter used with the mobile-phone microscope.

A-1 Algorithm in Python

A-1-1 detect.py

1 import cv2
2 import numpy
3 from sklearn . svm import SVC
4
5 # Load the pre-trained SVM model from scikit’s sklearn library
6 # using a preferred method (pickling , numpy , etc)
7 classifier =
8
9 # Open the image

10 raw_image = cv2 . imread (’PATH_TO_IMAGE’ , cv2 . IMREAD_GRAYSCALE )
11
12 # Compute the DFT
13 fft_img = numpy . fft . fftshift ( numpy . fft . fft2 ( raw_image ) )
14
15 # Create an ideal LPF
16 mask = numpy . zeros ( fft_mag . shape )
17
18 i_r = 36 # Internal radius of the LPF circle
19 i_r_sq = i_r∗∗2
20 y_center = mask . shape [ 0 ] / 2
21 x_center = mask . shape [ 1 ] / 2
22
23 for x in range ( mask . shape [ 1 ] ) :
24 for y in range ( mask . shape [ 0 ] ) :
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25
26 dist_sq = (x − x_center ) ∗∗2 + (y − y_center ) ∗∗2
27
28 if ( dist_sq <= i_r_sq ) :
29 mask [ y , x ] = 1
30
31 # Mask and IDFT
32 masked_fft = numpy . multiply ( fft_img , mask )
33 new_fft_inv = numpy . fft . ifft2 ( numpy . fft . ifftshift ( masked_fft ) )
34 filtered_image = numpy . real ( new_fft_inv ) # Take the real part
35
36 # Normalise pixel levels
37 filtered_image = cv2 . normalize ( filtered_image , None \
38 , alpha=0, beta=255 , norm_type=cv2 . NORM_MINMAX , dtype=cv2 . CV_8U )
39
40 # Apply threshold
41 thresh_img = cv2 . adaptiveThreshold ( filtered_image , 255 \
42 , cv2 . ADAPTIVE_THRESH_GAUSSIAN_C , cv2 . THRESH_BINARY_INV , 49 , 10)
43
44 # Detect contours
45 _ , contours , _ = cv2 . findContours ( thresh_img \
46 , cv2 . RETR_EXTERNAL , cv2 . CHAIN_APPROX_SIMPLE )
47
48 # Detect centres of potential ova
49 LEFT_X = 0
50 RIGHT_X = WIDTH − 32
51 TOP_Y = 0
52 BOTTOM_Y = HEIGHT − 32
53
54 centres = [ ] # Empty list to store centres
55
56 for i in range ( len ( contours ) ) :
57 x , y , w , h = cv2 . boundingRect ( contours [ i ] )
58
59 if (x > LEFT_X and x < RIGHT_X and y > TOP_Y and y < BOTTOM_Y ) :
60 centres . append ( ( x + w/2 , y + h/2) )
61
62 # Classify and draw boxes of predictions
63 final_img = raw_image . copy ( )
64 final_img = cv2 . cvtColor ( final_img , cv2 . COLOR_GRAY2RGB )
65
66 NUM_EGGS = 0
67 for c in centres :
68 img = raw_image [ c [ 1 ] −32 : c [ 1 ]+32 , c [ 0 ] −32 : c [ 0 ]+32 ]
69
70 img = ( numpy . expand_dims (img , 0) )
71
72 try :
73 prediction = numpy . argmax ( MODEL . predict ( img ) [ 0 ] )
74
75 if prediction == 1 :
76 final_img = cv2 . rectangle ( final_img , (c [0]−32 \
77 , c [1 ] −32) , ( c [ 0 ]+32 , c [ 1 ]+32) , (0 , 255 , 0) , 2)
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78 NUM_EGGS += 1
79
80 except ValueError :
81 # Do nothing for now
82 print "ValueError for" , c

A-2 Algorithm in C++

Makefiles are ignored. Build and test in a preferred development environment.

A-2-1 util/eggidentify.h

1 #include <opencv2/ core . hpp>
2
3 #ifndef _EGG_IDENTIFY_
4 #define _EGG_IDENTIFY_
5
6 class EggIdentify
7 {
8
9 private :

10 cv : : Mat raw_image ;
11 cv : : Mat process_image ;
12 cv : : Mat user_image ;
13 cv : : Mat threshold_image ;
14 cv : : Mat erosion_kernel ;
15
16 // Resources for contours detection.
17 std : : vector<std : : vector<cv : : Point>> contours ;
18 std : : vector<cv : : Vec4i> hierarchy ;
19
20 // Resources for contour centres.
21 std : : vector<cv : : Point2d> ctr_centres ;
22
23 void prepare_images ( void ) ;
24 void determine_contour_centres ( void ) ;
25
26 public :
27 const static int RAW_IMAGE = 0 ;
28 const static int PROC_IMAGE = 1 ;
29 const static int USER_IMAGE = 2 ;
30
31 EggIdentify ( ) ;
32
33 void capture_image ( void ) ;
34 void show_img ( int ) ;
35 void run ( void ) ;
36 } ;
37
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38 #endif

A-2-2 util/eggidentify.cpp

1 #include <opencv2/opencv . hpp>
2 #include <opencv2/ core / core . hpp>
3 #include <opencv2/ imgproc . hpp>
4 #include "opencv2/highgui.hpp"
5
6 #include <st r ing>
7
8 #include "eggidentify.h"
9

10 EggIdentify : : EggIdentify ( )
11 {
12 // Initialize the erosion kernel.
13 erosion_kernel = cv : : getStructuringElement (cv : : MORPH_RECT , cv : : Size

(5 , 5) ) ;
14
15 // Initialize the vector of Point2d for contour centres.
16 ctr_centres = std : : vector<cv : : Point2d>() ;
17 }
18
19 void EggIdentify : : capture_image ( void )
20 {
21 // Currently reading an image from the storage.
22 raw_image = cv : : imread ("../../images/regions/02.jpg" , cv : :

IMREAD_GRAYSCALE ) ;
23
24 // Add code to retrieve the image from the camera.
25
26 prepare_images ( ) ;
27 }
28
29 void EggIdentify : : prepare_images ( void )
30 {
31
32 process_image = raw_image . clone ( ) ;
33
34 cv : : cvtColor ( raw_image , user_image , cv : : COLOR_GRAY2BGR ) ;
35 }
36
37 void EggIdentify : : show_img ( int img_code )
38 {
39
40 std : : string win_name = "" ;
41
42 switch ( img_code )
43 {
44 case EggIdentify : : RAW_IMAGE :
45 win_name = "Raw image" ;
46 cv : : namedWindow ( win_name , CV_WINDOW_NORMAL ) ;
47 cv : : imshow ( win_name , raw_image ) ;
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48 break ;
49
50 case EggIdentify : : PROC_IMAGE :
51 win_name = "Process image" ;
52 cv : : namedWindow ( win_name , CV_WINDOW_NORMAL ) ;
53 cv : : imshow ( win_name , raw_image ) ;
54 break ;
55
56 case EggIdentify : : USER_IMAGE :
57 win_name = "User image" ;
58 cv : : namedWindow ( win_name , CV_WINDOW_NORMAL ) ;
59 cv : : imshow ( win_name , raw_image ) ;
60 break ;
61
62 default :
63 break ;
64 }
65
66 if ( win_name != "" )
67 {
68 cv : : resizeWindow ( win_name , 800 , 800) ;
69 }
70
71 cv : : waitKey (1 ) ;
72 }
73
74 void EggIdentify : : determine_contour_centres ( void )
75 {
76 const int EDGE = process_image . rows ;
77 const int EDGE_M_1 = EDGE − 1 ;
78
79 // Initialize the mask image.
80 // CAN BE INITIALIZED IN ADVANCE (IF EDGE IS KNOWN).
81 cv : : Mat mask_image = cv : : Mat : : zeros ( process_image . size ( ) , CV_32F ) ;
82
83 const int r = 36 ;
84 const int r_sq = r ∗ r ;
85
86 for ( int x = 0 ; x < r ; x++) {
87 for ( int y = 0 ; y < r ; y++) {
88
89 if ( ( x∗x + y∗y ) <= r_sq ) {
90 mask_image . at<float>(y , x ) = 1 . 0 ;
91 mask_image . at<float>(EDGE_M_1 − y , x ) = 1 . 0 ;
92 mask_image . at<float>(y , EDGE_M_1 − x ) = 1 . 0 ;
93 mask_image . at<float>(EDGE_M_1 − y , EDGE_M_1 − x ) = 1 . 0 ;
94 }
95 }
96 }
97
98 // Initialize resources for frequency domain filtering.
99 cv : : Mat planes [ 2 ] = {cv : : Mat_<float>(process_image )

100 , cv : : Mat : : zeros ( process_image . size ( ) , CV_32F ) } ;
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101 cv : : Mat complex_image ;
102 cv : : merge ( planes , 2 , complex_image ) ;
103
104 // Compute the DFT.
105 cv : : dft ( complex_image , complex_image , cv : : DFT_COMPLEX_OUTPUT ) ;
106
107 // Split into real and imaginary parts.
108 cv : : split ( complex_image , planes ) ;
109 // Multiply both parts individually with the mask.
110 planes [ 0 ] = planes [ 0 ] . mul ( mask_image ) ;
111 planes [ 1 ] = planes [ 1 ] . mul ( mask_image ) ;
112 // Merge the new real and imaginary parts.
113 cv : : merge ( planes , 2 , complex_image ) ;
114
115 // Compute the inverse DFT.
116 cv : : dft ( complex_image , complex_image , cv : : DFT_INVERSE ) ;
117 cv : : split ( complex_image , planes ) ;
118 // Get the element -wise magnitude.
119 cv : : magnitude ( planes [ 0 ] , planes [ 1 ] , process_image ) ;
120
121 cv : : normalize ( process_image , process_image , 0 . 0 , 255 .0 , CV_MINMAX ) ;
122 process_image . convertTo ( process_image , CV_8U ) ;
123
124 // Compute the threshold image.
125 cv : : adaptiveThreshold ( process_image , threshold_image , 255 .0
126 , cv : : ADAPTIVE_THRESH_GAUSSIAN_C , cv : : THRESH_BINARY_INV , 49 , 10 . 0 ) ;
127 // Erode the image.
128 cv : : erode ( threshold_image , threshold_image , erosion_kernel ) ;
129
130 // Determine the contours in the threshold image.
131 cv : : findContours ( threshold_image , contours , hierarchy , cv : :

RETR_EXTERNAL
132 , cv : : CHAIN_APPROX_SIMPLE , cv : : Point (0 , 0) ) ;
133
134 cv : : drawContours ( user_image , contours , −1, cv : : Scalar (0 , 0 , 255) , 2 ,

8 , hierarchy ) ;
135
136 // Determine the centre for each contour detected (using bounding

boxes).
137 for ( size_t i = 0 ; i < contours . size ( ) ; i++) {
138 cv : : Rect bound_rect = cv : : boundingRect ( contours [ i ] ) ;
139 ctr_centres . push_back (cv : : Point2d ( bound_rect . x + ( bound_rect .

width / 2)
140 , bound_rect . y + ( bound_rect . height / 2) ) ) ;
141 }
142 }
143
144 void EggIdentify : : run ( void ) {
145
146 ctr_centres . clear ( ) ;
147 determine_contour_centres ( ) ;
148 }
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A-2-3 Schistoscope.cpp

1 #include <iostream>
2
3 #include <opencv2/ core . hpp>
4 #include "opencv2/highgui.hpp"
5
6 #include "util/eggidentify.h"
7
8 int main ( int argc , char const ∗argv [ ] )
9 {

10 EggIdentify EggId = EggIdentify ( ) ;
11
12 EggId . capture_image ( ) ;
13 EggId . run ( ) ;
14
15 // EggId.show_img(EggIdentify::RAW_IMAGE);
16
17 cv : : waitKey (0 ) ;
18
19 return 0 ;
20 }
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