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Preface

“All models are wrong . . .

. . . but some are useful.”

George Box

Smart charging offers the potential for electric vehicles to use renewable energy more efficiently, lowering
costs and improving the stability of the electricity grid. Many computer models have been developed to
simulate the behavior of smart charging. Yet these models often assume that future information is known
perfectly, including when vehicles will begin charging and how much solar energy will be available at that
time. In reality, this information is subject to uncertainty, meaning the performance of smart charging may
be worse than predicted by these models. This report details the development of an improved model which
considers future uncertainty in smart charging behavior. It is determined that uncertainty does decrease the
effectiveness of smart charging, but with strategies that are able to robustly consider this uncertainty smart
charging can still offer tremendous benefits over traditional uncoordinated charging.

This thesis has been the culmination of a great deal of work, and it would have been utterly impossible
without the help of many people. To Ad van Wijk, thank you for providing me with guidance and supervision
throughout this project. I would also like to thank René van Swaaij and Zofia Lukszo for taking time out of
their busy schedules to sit with Ad on my thesis defense committee.

To Rishabh, thank you for your constant support, for your helpful suggestions, and for your invaluable
input through several rounds of drafts and rewrites. To Samira, thank you for your unending patience and
constructive criticism in working with me to formulate the optimization problem which forms the backbone
of this report. To Tomás, thank you for meeting with me to discuss my research. And to Hayes and Christopher
from Massport, thank you for providing me with the airport parking data which serves as a critical input to
my model. I am also compelled to thank my family for their love and cynicism throughout this process. And
finally, thank you to Katharina for the endless support, without which I am sure I would never have been able
to finish this thesis.

Over the past year, I have spent an enormous amount of time on this project, with the goal of developing
a detailed and versatile model. I have spent many long days struggling with MATLAB or optimization or
a seemingly never-ending ocean of previous research. On those days, the wise words of George Box have
brought me a great deal of reassurance.

I won’t pretend that my model is not wrong. It is. All models, of course, are wrong. But I hope that
this model is also useful. I hope that in some way I have contributed to the ever-growing body of scientific
knowledge surrounding electric vehicles and smart energy systems. I hope that future researchers will be
able to use the model I have developed and the results I have discovered, bringing us just a bit closer to a
more sustainable future. And even if this thesis is never read again, and my conclusions are never considered
by any future author, I am thankful for the opportunity I have had to write this thesis, and I am thankful for
everything that I have learned along the way. In that way this model has been useful, at least to me.

Y. D. Snow
Delft, August 2019
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1
Introduction

This thesis will examine solar parking lots, which can be used to charge electric vehicles using renewable
energy. Through smart charging, vehicle electricity demand can be coordinated in order to reduce the peak
demand for electricity. Solar parking lots and smart charging have already been extensively researched, but
these systems involve a great deal of uncertainty. The exact values for future solar power generation are
always uncertain, and the energy demand from electric vehicles which have not yet begun charging are often
unknown. In this thesis, smart charging strategies will be developed which allow for peak demand to be
reduced, despite these uncertainties. The effectiveness of these strategies is then tested through the use of
simulations of a solar parking lot. Previous research on the subject of smart charging for peak reduction has
typically assumed that solar power production and electric vehicle charging demand are known perfectly in
advance, making this thesis the first work to research smart charging for reducing the peak electricity demand
in solar parking lots when considering this forecasting uncertainty.

This chapter provides an overview of the entire thesis. In Section 1.1, the motivation behind this research
is described. Then, Section 1.2 will describe the goals of this research, and Section 1.3 will define the central
research question based on these goals. Finally, Section 1.4 will provide an outline of the entire report.

1.1. Motivation for the Research
Countless research has already demonstrated the need for the world to transition away from fossil fuels to-
wards renewable sources of energy. During this energy transition, solar panels and electric vehicles will play
increasingly critical roles. Solar panels allow for the generation of clean, sustainable electricity. Electric vehi-
cles, meanwhile, allow for us to work towards decarbonizing the transportation sector, reducing our depen-
dence on fossil fuels. Due to strong government incentives and rapidly falling prices, both of these technolo-
gies are growing exponentially. Although solar power and electric vehicles are currently small players on a
global scale, both will inevitably play a major role in our future energy systems.

Unsurprisingly, these two key technologies are often combined. By placing solar canopies over parking
spaces, solar energy can be generated and used to charge electric vehicles. These solar parking lots allow for
land which would otherwise be only used for parking to generate clean sustainable energy. At the same time,
these systems allow for electric vehicles to be charged using locally generated solar power. Solar parking lots
can offer a number of benefits to all the parties involved. The parking lot owner generates low-cost renewable
energy which can be used to charge the vehicles. The vehicle owners gain the opportunity to drive using green
energy while having their parked cars protected from the elements during charging. And society benefits from
decreased emissions and increased renewable energy.

Despite their advantages, there are downsides to these technologies. Solar power can be unreliable and
unpredictable, leading to increasing variability in our electricity supply. If the sun stops shining, fossil fuel
plants may need to quickly ramp up their generation, which can be expensive and polluting. But there can
also be problems if there is too much sun. High solar power production can lead to overgeneration, which is
also problematic for the electricity grid. At the same time, electric vehicles require an enormous amount of
electricity. If a large number of vehicles plug in at the same time, the combined load can result in a large peak
in electricity demand. This peak demand can again require fossil fuel powered peaking plants to ramp up
production. If the peak demand is too large, the stability of the entire electricity grid can be threatened. On a
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2 1. Introduction

local level, these peaks in demand can also create issues for distribution networks, leading to under-voltages
and harmonics in the power lines along with damage to transformers and other equipment.

Both of these problems have a single solution: smart charging. At times when large amounts of excess so-
lar energy is available, electric vehicles can be charged. When the sun isn’t shining, charging can be delayed
to avoid large spikes in demand. By intelligently scheduling vehicle charging in this way, the variability in
solar energy and the power demand from electric vehicles can both be reduced. Because of these advantages,
smart charging to reduce the peak electricity demand has been the subject of a large amount of research.
Computer models have been developed with the goal of evaluating the effectiveness of different smart charg-
ing strategies under various conditions. Pilot projects have begun to examine the feasibility of smart charging
in real world conditions. Although the initial results have been quite promising, there are problems with some
of the methods used. Many computer models of smart charging systems make unrealistic or oversimplified
assumptions about the electric vehicles which will be charging. If these models are not accurate, then the
conclusions which are drawn and the recommendations which are made may be flawed.

A further problem, is the presence of uncertainty in smart charging systems. During smart charging, it
is important to know how much solar power will be available. In addition, future vehicle charging demands
must be anticipated, including when the cars will arrive, how much energy they will need, and when they
plan on departing. Yet these quantities can never be predicted with absolute certainty. Solar generation
forecasts are frequently mistaken, and vehicle arrivals are typically unscheduled. Because of this uncertainty,
smart charging strategies may perform worse than expected. Yet previous literature on smart charging often
assumes that this information is known in advance with total accuracy. When designing an optimal strategy,
it is critical that uncertainty of both solar generation and vehicle behavior is taken into account.

1.2. Research Goals
These problems can fundamentally be broken down into two major questions. First, how can computer mod-
els for solar parking lots with smart charging realistically model the system they are designed to represent?
And second, how does forecasting uncertainty affect the performance of this system? These two questions
form the foundation for this this research, defining the two research goals presented here.

1.2.1. Develop a Useful Model for Solar Parking Lots
The first goal of this thesis is to develop a useful model for simulating smart charging in a solar parking lot.
This model should be sufficiently realistic and detailed that the conclusions which are drawn can be applied
to real-world situations. In developing this model, it is therefore important that the simulated system behav-
ior is as close as possible to the true system behavior. This thesis will consider two locations where smart
charging may be used: at the parking lot for an office or business park, and at the long-term parking facility
for an airport. The behavior of the solar parking lot at both locations will be modeled using real-world data
and and modeling practices from the literature, justifying any assumptions that needed to be made. The de-
tails of this model are described in Chapter 3. This model then serves as a tool to answer the second main
question of this thesis.

1.2.2. Investigate the Effect of Uncertainty on Smart Charging
The second goal for this thesis is to consider the effect of uncertainty when smart charging is implemented
in a solar parking lot. This requires a realistic understanding of the uncertainties which are inherent to this
system. Forecasting error for solar power generation will be simulated. Electric vehicle parking behavior,
such as the arrival and departure times, as well as the starting state of charge and the battery capacity, are
assumed to be unknown before arrival. Smart charging strategies are then developed which seek to minimize
the peak electricity demand despite these uncertainties. Different strategies will be considered for both the
solar and the vehicle uncertainties, as detailed in Chapter 4. The performance of these strategies will then be
analyzed, and the effectiveness of smart charging in an uncertain system will be evaluated.

1.3. Research Question
These two goals can be combined into the following research question:

How can smart electric vehicle charging be used to minimize the peak electricity demand at a
workplace or airport solar parking lot, considering uncertainty in solar power forecasting

and electric vehicle charging demand?
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1.4. Thesis Outline
After the introduction to this thesis, Chapter 2 will provide some background on the previous work which has
been carried out. A review will be made of the literature regarding solar parking lots, electric vehicle charging
strategies, and smart charging, including previous smart charging projects and ways in which smart charging
strategies can consider uncertainty.

Then, Chapter 3 will discuss the details of the computer model which is used to simulate the solar park-
ing lot. The model is built in MATLAB, and realistically simulates the solar modules, electric vehicles, vehicle
charging equipment, fixed storage battery, and lighting. The model uses real-world data with standard prac-
tices from literature to combine the individual components into a single model.

Next, Chapter 4 will describe the control strategies which are employed in this report. These strategies
are responsible for the charging and discharging of vehicle batteries, the management of energy in the fixed
storage battery, and the power which is sent to the electricity grid. As a base scenario, uncoordinated charging
is described. Mixed Integer Linear Programming (MILP) is then used to implement smart charging, with
the intention of minimizing peak demand. The optimization problem is first defined assuming that perfect
information is available, then expanded to take into account uncertainty with solar generation and vehicle
behavior.

Chapter 5 will then present and analyze the results of the computer simulations. This includes a discus-
sion of the preferred system topology, such as the fixed battery storage capacity and the choice between AC
and DC vehicle charging. The chapter also reports on the impact of uncertainty on the peak electricity de-
mand for a solar parking lot engaged in smart charging. The effectiveness of different charging strategies is
described.

Finally, Chapter 6 will summarize the conclusions of this report, including some key observations of the
simulation results. In addition, possible shortcomings of this thesis will be addressed, and recommendations
will be given for future work which can build on the findings of this report.





2
Background

Solar parking lots, peak demand reduction, and smart charging for electric vehicles are already the subject of
extensive research. This chapter will provide background information on the work which has been carried
out. Section 2.1 discusses the literature on solar parking lots including solar power, electric vehicles, vehicle
charging, and the combination of these elements through systems like the proposed PowerParking project.
Section 2.2 then describes the work which has been done with smart charging, including its theoretical ad-
vantages, previous smart charging projects, computer models of smart charging, and smart charging control
strategies, including those which deal with forecasting uncertainty.

2.1. Solar Parking Lots
Solar parking lots are systems where surface parking lots are covered by canopies containing solar panels as
part of the roof. The power which is generated can then be used to charge electric vehicles. Each component
of the solar parking lot will be discussed separately in this section.

2.1.1. Solar Power
Solar power is sustainable, abundant, and will undeniably play a large role in the energy transition. In 2018,
installed peak solar capacity in the Netherlands increased by 46%, from 2.9 GW to 4.2 GW [1]. Despite this
rapid growth, solar provides only a small fraction of the total Dutch electricity production, accounting for just
1.8% of total generation in 2018. In order to meet the goals for greenhouse gas emissions, this number will
need to grow substantially. As part of the Dutch Energy Agreement in 2013, a sharp increase was proposed
for all types of renewable energy, including solar and wind, with the share of renewables planned to rise from
4.5% in 2013 to 15.9% in 2023 [2]. The rise of solar energy in the Netherlands mirrors a global trend, with
worldwide installed solar capacity increasing by 25% in 2018 over 2017 [3]. In the Netherlands and around
the globe, this growth in solar power is driven by falling prices.

In some locations, solar power is becoming increasingly cost-competitive with fossil fuels, as seen in Fig-
ure 2.1 [1]. For large scale solar photovoltaic (PV) projects, the global levelized cost of energy (LCOE) was
$43 per MWh in 2018. This is lower than conventional energy such as coal or natural gas, and represents
a price drop of 88% in just the past ten years. Different methodologies will yield different average costs for
solar power, and prices are dependent on a variety of factors including the size and location of the solar
power plant. More conservative estimates suggest that the global unsubsidized LCOE for utility-scale solar
PV projects was $85 per MWh, although this price still represents a 77% decrease since 2010 [3]. Although
prices have fallen substantially, solar power in the Netherlands remains relatively expensive.

Renewable energy in the Netherlands is subsidized through the SDE+ scheme (Stimulering Duurzame
Energieproduction, stimulation of sustainable energy production). In 2017, the budget for SDE+ subsidies
was AC12 billion, of which 43% went to solar power projects with a peak power greater than 15 kW [1]. The
SDE+ contribution compensates generators of renewable electricity for the difference between the cost price
and the market value of the electricity they produce [4]. This means that the SDE+ contribution combined
with the market price for electricity should equal the cost of the renewable energy, which is known in the
SDE+ system as the “base amount.” In spring of 2019, the base amount for solar systems between 15 kW and
1 MW ranged from AC0.090–0.101 per kWh. In order for these systems to be profitable, their LCOE cannot be
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higher than this base amount, which is equivalent to AC90-101 per MWh. This cost is higher than the global
average of $43 per MWh, in part due to the poor solar conditions in the Netherlands, but there is reason to
believe that the cost could go down. Northern Germany has similar solar conditions to the Netherlands, with
a total annual Global Horizontal Irradiance (GHI) of 950 kWh per m2. Due to a more mature solar market,
however, the LCOE of utility-scale solar installations in northern Germany was only AC50.8–67.7 per MWh in
2018, with costs steadily decreasing over time [5]. As the Dutch solar industry matures, prices may decrease
to be more in line with those in Germany.

Figure 2.1: Global Levelized Cost of Electricity (LCOE) for various electricity sources [1]

The future of solar energy in the Netherlands is still uncertain. In 2019, the SDE+ budget will be reduced
from AC12 billion to AC10 billion. In 2020 an even bigger change will occur, with the SDE+ system being re-
placed by the SDE++ system. The new system will shift from subsidizing renewable electricity production to
greenhouse gas emission reduction [6]. This means that in addition to providing subsidies for sustainable
energy, the scheme will also incentivize technologies such as renewable heat production, hydrogen for in-
dustrial processes, and carbon capture and storage (CCS). The precise details of this scheme have yet to be
determined, but there are some concerns in the Dutch solar industry that these changes may weaken the
competitiveness of solar power projects [1].

Although solar power offers a number of benefits, it also presents a number of challenges. PV power is
variable and uncertain, and can lead to overgeneration and congestion. These issues will require the power
system to adapt as solar power becomes more common in the future [7]. In the Netherlands, the variable and
uncertain generation from sources like solar and wind power will require the electricity grid in the future to
be much more flexible. Peaking power plants will be required to rapidly ramp up and down their production
in to ensure that the electricity supply and demand remain balanced [7]. This flexible capacity is especially
important at times of peak demand, when renewable sources may not be available, as shown by the load
duration curves in Figure 2.2.

Load duration curves demonstrate the number of hours that the total electricity demand in the Nether-
lands is above a certain level. The residual load subtracts wind and solar power generation from the total load,
representing the demand that must be met by other sources. In 2015, only 8% of the total load was provided
by wind and solar power, resulting in a relatively small difference between the total and residual load dura-
tion curves [7]. In 2050, it is assumed that 80% of all electricity will come from wind and solar power. This
is in line with the EU target of reducing cutting greenhouse gas emissions 80% below 1990 levels by 2050 [2].
As shown in Figure 2.2, the peak residual load is barely below the peak total load, indicating at times of high
demand renewable energy may not provide very much power. By 2050, the share of the total load covered
by renewable energy will be less than 20% for 2600 hours per year. This unreliability is one issue in power
systems that rely heavily on variable renewable energy.

In addition to not always providing enough power, variable renewable sources can also provide too much,
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resulting in generation which is higher than the total demand and a residual load that is below zero. This
problem is known as overgeneration. As seen in Figure 2.2, by 2050 overgeneration will occur for over 3200
hours per year, resulting in 16%–17% of total renewable production which must be exported or curtailed. But
even when there is sufficient demand for renewable energy, it may still be wasted due to congestion.

(a) Load duration curve, 2015

(b) Load duration curve, 2050

Figure 2.2: Duration curves of total and residual load in the Netherlands [7]

Congestion occurs when components like transformers or cables are overloaded and unable to transport
electricity to where it is needed. This can be a serious problem for solar power, which is often connected to
the local distribution system, unlike conventional power plants which are typically connected directly to the
high-voltage transmission system. Liander, one of the Distribution System Operators (DSOs) in the Nether-
lands, estimates that by 2030 8% of their distribution transformers and 9% of their substation transformers
could become overloaded [7]. Connecting all the new solar power systems while preventing overloads and
avoiding congestion will require significant investments from grid operators. Enabling local consumption of
renewable energy and encouraging consumers to use the solar power they generate rather than feeding it into
the grid can help prevent this congestion. But solar power generation is only part of the problem. Congestion
is also exacerbated by the increased electrification of household loads, through technologies like heat pumps
and electric vehicles.

2.1.2. Electric Vehicles
The adoption of electric vehicles (EVs) will be crucial in the transition away from fossil fuels. Globally, road
transportation accounts for 17% of all emissions of carbon dioxide, or CO2 [8]. Critics often complain that
EVs are still charged using fossil fuels, meaning that they are still indirectly responsible for CO2 emissions.
EVs, however, are much more efficient than conventional cars, emitting 50% less CO2 than gasoline cars and
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40% less than diesel cars on a Well-to-Wheel basis [9]. Naturally, the emissions of EVs are strongly dependent
on the carbon intensity of the electricity grid in the time and place where they are being charged. When
assuming the average European carbon intensity of 521g CO2 per kWh, carbon emissions over the lifetime of
an EV will be 20–27% lower when compared to similar-sized conventional cars [10]. This benefit is because
the European electricity grid has a carbon intensity below that of natural gas (595 g CO2 per kWh). If EVs
were charged only using electricity generated by coal power (1029 g CO2 per kWh), they would have lifetime
emissions which are slightly higher than conventional vehicles. Fortunately, as the electricity grid becomes
more sustainable, emissions due to EV charging will go down. With the current European electricity mix,
55%–65% all EV emissions occur during charging. This means that if EVs were charged using exclusively
green energy, their lifetime emissions could be 66%–70% lower than conventional vehicles. As electricity
generation grows more sustainable, EVs become a greener choice.

Just like solar power, EVs are becoming increasingly affordable over time. Alternatively, EVs of the same
price are consistently improving, as seen in Figure 2.3 [11]. For EVs in the Netherlands costing less than
AC40,000, the estimated range in 2013 was only 125 km. By 2020, the range is expected to be around 300 km
[11]. As consumer options improve, the number of electric vehicles will continue to grow. In 2017, over one
million new electric vehicles were sold worldwide, an increase of 54% compared to the previous year, with
more than half of the growth taking place in China [9]. This exponential growth is likely to continue. By 2030,
the number of EVs worldwide is anticipated to be around 130 million.

Figure 2.3: The increase in range (in km) for affordable EVs over time [11]

In the Netherlands, EVs are becoming increasingly popular, driven heavily by government policy. The
Netherlands set the goal of reducing greenhouse gas emissions in the transport sector by 17% below 1990
levels by 2030, and 60% by 2050 [2]. Such a strong reduction is not possible with only improved efficiencies in
gasoline powered vehicles, and can only be achieved with electric vehicles powered by batteries or fuel cells,
which are charged using renewable energy [12]. The Dutch government is therefore working to incentivize the
adoption of EVs. In 2015, the government worked with the Formule-E team to create a path towards a more
electric future, publishing a report titled "Maak Elektrisch Rijden Groot" (Make Electric Driving Great) [11].
The report examined the current state of Dutch electric driving, and provided a number of recommendations
to increase the market share of EVs.

The Dutch efforts appear to have been successful, as seen in Figure 2.4. As of the end of 2017, there were
over 120,000 EVs on Dutch roads, accounting for 1.6% of the entire fleet. This figure puts the Netherlands
behind only Norway among European countries [13]. The Dutch government has set aggressive goals for
electrification. The Coalition Agreement of October 10, 2017 set the target of having 100% of all new cars be
emission free by 2030, with the ambition to ultimately switch the fleet over to entirely zero emission vehicles
[14]. If all new sales are zero emission by 2035, the entire Dutch fleet should be able to drive emission free by
2050 [2, 11]. The Netherlands is also seeking complete electrification of public transportation, with the goal of
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100% of all public bus sales to be electric by 2025, and 100% of public bus stock to be electric by 2030 [9]. This
transition has already begun. In April 2018, 100 battery powered electric buses were delivered to Schiphol for
use in and around the airport, giving it the largest electric bus fleet in Europe [15]. The plan is to completely
electrify the fleet with 258 buses by 2021.

Figure 2.4: Total EV registrations in the Netherlands over time [16]

The state of electric vehicle adoption in the Netherlands is changing extremely rapidly. The removal of a
tax incentive in 2017 caused sales of plug-in hybrid electric vehicles (PHEVs) to stop almost entirely, as can
be observed in Figure 2.4 [16]. During 2017, the total EV sales were therefore substantially lower than they
had been in previous years, with a market share of only 2.6% [9]. This was concerning, considering the Dutch
target of having 10% of all newly registered vehicles be electric by just 2020 [13]. Fortunately, the status of EVs
seems to be improving. Although PHEVs have remained unpopular, battery electric vehicle (BEV) sales are
growing rapidly. Total registrations for BEVs increased from roughly 21,000 at the end of 2017 to nearly 58,000
vehicles by May 2019 [16]. The adoption rate has been accelerating in recent years. By 2018, the market share
of EVs was up to 6.5%, and in the first five months of 2019 it reached 8.4%, suggesting that the Netherlands
may well succeed in reaching their goal of a 10% market share in 2020. With each passing year electric vehicles
are getting less expensive and more widespread.

2.1.3. Electric Vehicle Charging
As the share of EVs grows, so will the energy demand for charging these vehicles. This charging will be sup-
ported by an extensive network of electric vehicle chargers, or Electric Vehicle Supply Equipment (EVSE), a
network which is already in development. Globally in 2017, there were already almost 3 million private charg-
ers at homes and workplaces, with an additional 430,000 public chargers, of which roughly a quarter are fast
charging [9]. This number has been increasing rapidly over recent years, in conjunction with the increased
popularity of EVs. The increasing electricity demand due to EV charging can lead to issues like congestion,
which will be discussed in Section 2.2.

The availability of good charging infrastructure is an important consideration in the decision to purchase
an EV. This can create a chicken-and-egg problem, as buyers may be hesitant to purchase an electric vehicle
if there is not sufficient charging infrastructure, but infrastructure is less likely to be built if there is no de-
mand [9]. In order to get around this problem, the Netherlands has has invested heavily in public charging
infrastructure. In Amsterdam, there are 5.5 charging points per 1,000 inhabitants—the highest density of any



10 2. Background

city in Europe. This infrastructure is supported with grants, as there is currently no cost-effective business
case for building charging infrastructure [17]. As of 2017, the Netherlands had the highest number of public
EVSE per EV in the world, with roughly one public charging station for every four EVs in the country, as can
be seen in Figure 2.5 [9].

Figure 2.5: Ratio of public Electric Vehicle Supply Equipment (EVSE) to EVs [9]

Almost all publicly available chargers are slow chargers, especially in Europe, and slow charging is the
most common means of charging individually owned EVs due to the lower cost and greater convenience
when compared with fast charging. Slow charging can occur at public charging stations, at work, or most
commonly at home. 90% of EV owners in Norway and Sweden charge their vehicle at home on a daily or
weekly basis, while only 20%–40% charge at work [9]. This preference for home charging may be the reason
for Norway’s relatively limited public charging infrastructure, although it has the largest marker share of EVs
in the world as seen in Figure 2.5. This suggests that public charging infrastructure, while important, may not
be necessary in enabling the adoption of EVs.

Fast charging is more popular in China and Japan, although it still makes up the minority of all charging
events [9]. Fast charging can supply DC power at a high voltage in order to rapidly recharge a vehicle battery.
This can help enable long distance travel, reducing range anxiety which is one of the greatest concerns for
potential EV owners. Manufacturers are continuously seeking higher and higher charging rates for DC fast
charging. Tesla recently announced that the maximum power for their Supercharging network will increase
from 120 kW to 250 kW [18]. In Germany, BMW and Porsche are testing ultra-fast charging up to 450 kW,
enabling a vehicle to charge from 10% to 80% SOC in just 15 minutes [19]. Many electric vehicles, however,
are limited to a lower charge rate. The Nissan Leaf, for example, has a maximum charging power of 50 kW
[20]. It remains to be seen what role DC fast charging will play in the future of EV charging.

In the field of EV charging, increasing attention is being given to bidirectional charging. Bidirectional
charging, or Vehicle to Grid (V2G), is a system where EVs are able to discharge their batteries, powering the
electricity grid [21]. By sending power to the distribution network, V2G allows for EVs to provide ancillary
services to electricity grid operators. This could provide additional income for the owners while stabilizing
and allowing more flexibility in the grid. By allowing EVs to charge their batteries when renewable energy is
more abundant, and return the energy to the grid when it is needed, V2G could make the electricity grid more
sustainable [12]. Vehicles could also be used to benefit the grid with other ancillary services, for example by
reducing harmonics in transmission lines or regulating the system frequency. As vehicles are only in use a
small fraction of the time (4% in the USA), storage capacity in vehicles would likely be more than enough to
serve as short term storage even in power systems with very high penetration of variable renewable sources
of electricity [22]. Tapping into this unused potential could be more economical than paying for dedicated
storage, since the batteries would not need to be manufactured and installed for this purpose specifically.

Although Vehicle-to-Grid is typically considered to be synonymous with bidirectional charging, it has
sometimes been used to describe an aggregator who combines a number of EVs and controls their charging
demand in response to the electricity market price [23]. This “Unidirectional V2G” allows the aggregator
to sell the reduction in capacity to the system operator, allowing for them to provide auxiliary services like
frequency regulation. “Unidirectional V2G” is something of a misnomer, as there is no energy being sent from
the vehicle to the grid. These unidirectional charging strategies are also occasionally referred to as “V1G”,
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with uncoordinated charging then being referred to as “V0G” [24]. Although often used, these names are
somewhat meaningless. In order to avoid confusion, V2G in this report will refer exclusively to charging
strategies where energy is discharged from EV batteries, and unidirectional strategies will instead fall under
the broader umbrella of smart charging. It is also worth noting that some studies specify how the power from
the vehicles is used, with terms such as V2V (vehicle-to-vehicle), V2B (vehicle-to-battery), and V2X (vehicle-
to-everything). For simplicity, all bidirectional charging in this report will be considered as V2G.

Despite the possible benefits, there are concerns regarding the potential use of V2G. One of the biggest
concerns for EV drivers is that extensive charging and discharging can reduce the cycle life and storage capac-
ity of the battery. This phenomenon is known as battery degradation. Battery degradation is most dependent
on energy throughput and the depth of discharge for the battery. Some reports have found that with proper
control strategies, the effect of V2G on battery performance can be negligible [25]. Other researchers, how-
ever, have found that V2G services can dramatically shorten the battery lifetime for both Battery Electric
Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), accelerating the frequency of battery replace-
ment. One study found that vehicles which provide bulk energy services, regularly discharging large amounts
of energy to the grid, would require their batteries to be replaced annually [26]. If the vehicles provided only
ancillary services, the frequency of battery replacement could be reduced to once every two or three years.
The battery degradation could be minimized by using a lower energy throughput and limiting the allowed
depth of discharge. Nonetheless, battery degradation can be a serious problem for vehicles if V2G becomes
common. In addition to concerns about battery degradation, bidirectional charging will require significant
quantities of energy to be injected into the distribution grid. Doing so will likely require increased commu-
nication between the EVs and the electricity grid operators, as well as changes to the system infrastructure
[21]. Bidirectional charging is still the subject of academic research, and is generally considered only as part
of demonstration projects.

Another barrier to V2G is the charging equipment which is required. V2G can be performed using AC
chargers, but this requires additional hardware to be installed in the vehicle [27]. Many manufacturers believe
that this hardware will reduce charging efficiency and increase costs. As a result, it is preferable to consider
DC equipment for V2G. This may be problematic in Europe. Currently, all DC bidirectional charging is tested
using CHAdeMO chargers, which are the industry standard for DC charging in Japan. In Europe, DC charging
uses the CCS standard, which has been opposed to V2G in the past, and as of 2018 there were no planned
V2G trials using CCS chargers. In order for V2G to be viable in Europe, V2G hardware must be developed and
tested using the CCS standard.

Currently very few vehicles are capable of bidirectional charging, due to either software or hardware re-
strictions, although this is changing rapidly. The Nissan leaf is one of the only commercially available pas-
senger BEVs which is compatible with V2G [27]. Other manufacturers, such as Honda [28], BMW [29], and
Volkswagen [30] are looking into the potential of V2G in small-scale research projects. Although V2G has a
greater potential with larger batteries, PHEVs are also considered for V2G. The Mitsubishi Outlander is the
most popular PHEV in the Netherlands, and is being tested in multiple V2G pilot projects around the country,
including Amsterdam and Zaandam [31, 32]. In Denmark, the GridMotion demonstration project will include
bidirectional charging with Peugot iOn or Citroen C-ZERO vehicles [33, 34]. But not all EV manufacturers view
V2G as a priority. Most notably, Tesla has no current plans to develop V2G, although they have experimented
with bidirectional charging in the past [35]. Given the increasing attention to V2G, it is important to consider
how bidirectional charging can play a role in smart EV charging projects.

2.1.4. Combining Solar Power and Electric Vehicles
With such rapid development in solar power and electric vehicles, it is only natural that the two technologies
would be combined into solar parking lots. In a solar parking lot, solar panels are mounted in canopies over
the parking spaces [36]. These parking lots offer a number of advantages for the parking lot operator and
for the drivers. The solar panels can provide shade to vehicles parked underneath, protecting the vehicles
from the elements, preventing sun damage, and keeping the internal temperature in the vehicle down [37].
Renewable energy from the solar panels can then be use to power nearby buildings or charge EVs. Charging
EVs using local solar power is known as Solar to Vehicle (S2V) charging, first described under that name
by Birnie (2009) [38]. These systems enable renewable energy to be used where it is generated, reducing
transmission losses and allowing for vehicles to drive more sustainably.

One of the biggest advantages of solar parking lots is that ample space is already available, especially in
urban areas where parking lots already occupy an enormous amount of land. This is especially beneficial in
places like the Netherlands where land is more limited. Considering only rooftop photovoltaic (PV) systems,
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there are 892 km2 of suitable roof space in the Netherlands. If this entire area was covered in solar panels, the
energy generated would be equivalent to half of all Dutch electricity demand [39]. Meanwhile, in Amsterdam
alone an estimated 1.6 million m2 are devoted to surface parking lots [40]. To illustrate how ubiquitous park-
ing lots are in many Dutch cities, Figure 2.6 highlights in green all the surface parking in a section of Delft
which includes part of the TU Delft campus. In many regions, parking can occupy a substantial area, cover-
ing approximately 4.97% of all urban land in the Upper Great Lakes region of the United States [41]. In Los
Angeles County, 14% of all land is devoted to parking [42]. As the amount of solar power in the Netherlands
increases, solar parking lots offer an opportunity for land to be used more efficiently.

Figure 2.6: Surface parking lots in part of Delft, demonstrating the potential of solar parking lots

The solar canopies which cover the parking spaces can be built in a variety of different configurations.
The different canopy designs can be distinguished according to the position and number of columns, and the
angle for the roof [43]. Solar canopies can be built over a single row of cars, over a double row, or over multiple
rows and aisles. For the sake of space efficiency, this report will consider solar canopies which are built over
two rows of cars. The possible designs for the frames are shown in Figure 2.7 [43].

Figure 2.7: Possible frame designs for a solar canopy [43]

Monopitch designs have the advantage of a higher overall yield if the modules can be oriented facing
south. Duopitch designs produce more energy if the panels are not tilted to face south, and have a slightly
higher generation than monopitch in the mornings and evenings. Although modules in the northern hemi-
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sphere are typically oriented south, the choice of azimuth for solar canopies is often limited by the geometry
of the parking lot. Ultimately, the difference in generation between monopitch and duopitch is relatively
small, regardless of the azimuth, and the choice is often made considering the visual impact rather than the
energy yield. The choice of a V-frame or a T-frame will not affect the energy yield, and is decided based on
other factors. A T-frame may be preferred aesthetically, but will require a greater amount of steel to support
the larger overhang, making the V-frame the most cost-effective solution. One final design consideration is
the tilt angle of the solar modules. A typical solar installation will have an optimal tilt angle of roughly the
latitude [44]. Solar canopies, however, typically have a much lower tilt angle of 5–10◦ [43]. Higher tilt angles
would be worse aesthetically, and would lead to higher wind loads, resulting in the need for deeper founda-
tions and more expensive supporting structures. When designing a solar canopy, it is therefore important to
balance the performance, cost, and aesthetics of the design.

Solar parking lots are an example of building integrated photovoltaic (BIPV) systems, an alternative to
conventional PV systems. Although solar parking lots are integrated into canopies over parking spaces, BIPV
systems can also be integrated into walls or rooftops, generating electricity while providing aesthetic and ar-
chitectural benefits [36]. A variety of systems have been investigated, including facades, skylights, and curtain
walls, using photovoltaic glass rather than conventional glass. These systems off additional advantages, such
as absorbing infrared and ultraviolet rays to help maintain a more comfortable building temperature. Being
integrated into a wall, however, prevents the modules from being oriented at their optimal orientation, and
can lead to heating issues. These issues, along with perceived higher prices, have led to these types of BIPV
systems representing only a small share of the PV market.

Another common idea for reducing land use is building PV modules into the surface of roads, parking lots,
or bike paths, taking advantage of these flat spaces for energy generation. In the Netherlands, a solar bike path
was built as a test project at Krommenie in the province of North Holland [45]. Despite the potential of this
project, there are still a number of drawbacks to solar roads. Because they are installed in the ground, the
solar modules cannot be oriented at the optimal tilt angle to capture sunlight, and the lack of convective
cooling can lead to overheating of the cells, lowering their efficiency. Panels are shaded by pedestrians and
bikes passing over the modules, and soiled by the dirt they leave behind. Finally, in order to make the roadway
safely drivable an anti-skid coating is required, which depending on the angle of incidence can absorb 27%–
55% of the incident irradiance. These factors combined result in a benchmark annual energy production
of only 85–90 kWh/m2 for Dutch solar bike paths, an efficiency of below 10%. Although solar roadways may
have some niche applications, the higher price and lower efficiency suggest that they are not suitable for large
scale energy generation if alternative locations are available.

(a) Wonderland Eurasia, Ankara [46] (b) Intel campus, Folsom [47] (c) Fastned EV charging station [48]

Figure 2.8: Images of different solar parking systems around the world

In part due to corporate commitments to sustainability, many solar parking lots have been built in recent
years, with some examples shown in Figure 2.8. Some installations are quite large, operating on the megawatt
scale. With a capacity of 10.2 MW, the world’s largest solar parking lot covers 1.3 million square meters of
parking at an amusement park in Ankara, Turkey [46]. At their offices in Folsom, California, Intel installed 8.7
MW of solar power over 3000 parking spaces, giving them the largest private solar parking lot in the United
States [47]. In the United States, the government of Maryland implemented a grant program to support solar
parking lots including EV charging. The largest project, at the new headquarters of the McCormick company
in Baltimore, included 20 EV charging stations under a solar roof with a capacity of 744 kW [49]. Smaller solar
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parking lots, including some with EV charging, are common as well. The Dutch company Fastned, which
operates fast electric vehicle charging stations, has built solar panels into the roof over their car charging
spaces [48].

Ultimately, solar parking lots can financially benefit parking lot operators, as the cost for the solar electric-
ity is quite low after an initial investment, reducing the expense of charging EVs. By charging vehicle owners
for the electricity they consume, and by selling the excess solar power, solar parking lots can be quite prof-
itable. One proposed system in Lisbon found a payback time of 14 years [50]. A similar analysis for solar EV
charging in the United States found a payback time of 14 years in Columbus, Ohio, and 15 years in Los An-
geles, California [51]. Due to their numerous advantages, solar parking lots are likely to become increasingly
common as solar prices continue to decrease and EVs become more widely used.

2.1.5. The PowerParking Project
In future energy systems, these technologies will all be combined. It is therefore important to investigate the
intelligent integration of solar parking lots, electric vehicle charging, V2G, and energy storage. In order to
research these systems under real-world conditions, the PowerParking project was developed. The goal of
PowerParking is to develop a public-private collaboration which provides an innovative, decentralized, and
integrated energy system for large parking areas. This could lead to greater production of renewable energy,
improved energy efficiency, increased stability in the grid due to storage and smart grids, and the stimula-
tion of electric transportation [52]. PowerParking seeks to carry out a project involving a solar parking lot
connected to electric vehicle chargers and energy storage as part of an intelligent microgrid. The proposed
project locations are in the long-term parking area at Lelystad Airport, and at a parking lot for the nearby
Lelystad Airport Business Park. The energy produced will be used locally, primarily to charge parked elec-
tric vehicles. Surplus energy can be stored in fixed battery storage, or used to power the nearby airport1. A
rendering of the PowerParking project is shown in in Figure 2.9.

Figure 2.9: The PowerParking project, with EVs charging under solar canopies [52]

The PowerParking project plans to include 100–125 parking spaces each at Lelystad Airport and Lelystad
Airport Business Park. All the parking spaces will be covered with solar canopies, totaling 500 kW peak capac-
ity. All the parking spaces will be suitable for EV charging, with bidirectional charging possible for 52 parking
spaces at the airport and 8 at the business park. Both locations will also include DC fast charging, LED light-
ing, and 250 kWh of fixed battery storage. The solar panels will produce 450,000 kWh of renewable electricity
per year, equivalent to reducing CO2 emissions by 750 tons annually compared to the carbon intensity of the
Dutch electricity grid. As part of the PowerParking project, a DC microgrid will be implemented. Typically, our

1The current plans for the PowerParking project have been scaled back from the original more ambitious design, but that original design
nonetheless serves as a strong template for smart solar parking lots. It is therefore the original PowerParking project which is discussed
in this section.
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electricity networks are operated using Alternating Current (AC). However, there are some situations where
Direct Current (DC) has advantages. Solar power is generated in the form of DC, and many loads such as LED
lights and lithium-ion batteries consume power in the form of DC. This means that if a DC microgrid is not
implemented, power could be generated in the form of DC by the solar panels, converted to AC, converted
back to DC to be stored in the fixed storage battery, converted back to AC for the EV charging equipment, and
finally converted back to DC power by the vehicle in order to charge the battery. This is highly inefficient [53].
The use of a DC microgrid could significantly reduce conversion losses.

DC power can be incorporated into a solar parking lot in two possible topologies [53]. The first involves the
construction of a full DC microgrid. All incoming AC power would be converted to DC, and all loads, including
the EV chargers, would run on entirely DC power. The alternative is a hybrid AC-DC network. A low-voltage
DC bus would connect some elements, such as the fixed battery storage, solar panels, and LED lighting. It
is also possible for the EV charging equipment to run on DC power, although slow chargers typically use AC.
Any AC chargers or other loads could be connected to both the DC bus and the electricity grid. Both systems
have advantages and disadvantages. The full DC network would require the least conversion between AC
and DC, but it would be more technically complicated and more expensive to implement. For this reason, a
hybrid AC-DC network is planned for PowerParking in Lelystad.

The choice of Lelystad as a location offers a number of advantages for PowerParking [52]. Firstly, this area
is currently under development, meaning that the project can be built into the infrastructure from the be-
ginning, rather than attempting to retrofit older construction. Furthermore, Lelystad is located in Flevoland,
which has the ambitious goal of becoming energy neutral by 2020 excluding transportation, and by 2030 in-
cluding transportation. This is a hugely challenging goal, especially given the growing demand for power in
the Flevoland due to the growing population and increasing development. Because of the large area require-
ments of renewable electricity, and the high costs of electricity networks, the government is interested in
building energy systems as an integrated part of future development. Finally, the parent company of Lelystad
Airport is the Schiphol Group. Schiphol Airport has plans for expansion, and has expressed interest in projects
like PowerParking at their own facilities. However, due to a number of uncertain factors it is not desirable to
carry out such an experimental and innovative project at the busiest airport in the Netherlands. Lelystad
therefore serves as a good pilot location.

To the author’s knowledge, there is currently no example of an integrated, decentralized energy system
with generation, storage, and bidirectional smart charging in a large-scale business environment. Although
there are projects with many of these individual elements, no project combines all these technologies at a
large scale. Large solar parking lots may have some unidirectional EV chargers, but the solar energy is usually
primarily intended to power nearby buildings, rather than a local microgrid [46, 47]. Smart charging projects
will be discussed in Section 2.2.3, but most of these systems are small pilot projects, often lacking one or more
of the elements studied at PowerParking.

The goal of PowerParking is to develop a framework for integrating all these technologies in a way that
adds value for all the parties involved and is feasible, scalable, and reproducible. Feasible in this context
means that the pilot project demonstrates the technical feasibility of such a system, as well as economic fea-
sibility without subsidies, enabling a system that supports electric mobility for everyone. Scalable means that
the project is able to be easily expanded as necessary. Lelystad Airport is planned to initially have 3,500 park-
ing spaces, with another 1,600 at the business park. Ideally, it would be possible to add more solar docks,
EV charging points, and battery storage without complicated or expensive renovations of the infrastruc-
ture which has already been built. Finally, the project should be reproducible, allowing the lessons which
are learned to be applied at other parking locations. Some suggested further locations are Schiphol Airport
(60,000 parking spaces currently, with an expansion of 11,000 planned), Keukenhof (8,000 spaces, including
1,000 for buses) and Q park (5,800 parking facilities with 800,000 parking spaces).

TU Delft is a partner in the PowerParking project, being involved with developing, testing, monitoring,
and evaluation of the parking infrastructure. This includes the system integration of the solar canopy, the
charging and discharging of vehicles, energy storage, matching energy demand, and measurement and anal-
ysis of data in order to further develop the business case [54]. As part of this role, TU Delft will be responsible
for the construction of a small-scale model in the Green Village. This model will be used to test the monitor-
ing system, the individual components, and the integrated system as a whole. The goal of this experiment
is to be in line with the vision of the PowerParking project, including modular design, bidirectional charg-
ing, solar panels, and a DC microgrid. Components will be identical to those which will be used at Lelystad,
providing insight into the project. The Green Village model will allow for the system to be tested under real-
world conditions to see how it may behave at Lelystad. For example, it is possible to investigate the system
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performance if a component fails, or if it is unexpectedly cloudy [55]. The results of tests at the Green Village
will be used in the design of the system in Lelystad. Despite the benefits of the Green Village model, however,
there are still many limitations to its utility.

There are some questions which cannot be practically answered using a small-scale model. In order to
evaluate the system at a larger scale, considering a wide range of scenarios, a computer model of the parking
lot is developed. The computer model can be simulated to analyze different design choices and control strate-
gies. This report will cover the development of the model, the implementation of various control strategies,
and the results of the simulation.

2.2. Smart Charging
Although there are benefits to the PowerParking project and solar parking lots, the system can only reach its
full potential when combined with smart charging.

2.2.1. The Challenges of Uncoordinated Vehicle Charging
Electric vehicles will play a significant role in future energy systems. Although they offer many benefits over
the current system, they also present significant challenges. When a vehicle begins charging the moment it
is plugged in, without consideration for electricity demand or price, it is known as uncoordinated charging
or dumb charging. Uncoordinated charging of electric vehicles can lead to increased demand for electricity,
especially at peak times. This can lead to higher electricity costs, greater carbon emissions, increased grid
congestion, and overloading of transformers and other infrastructure in distribution networks. In order to
make widespread EV adoption a reality, these challenges will need to be addressed.

As the market share of EVs increases, so does the electricity consumption. In 2017, EVs consumed 54 TWh
of electricity worldwide, equivalent to 0.2% of global electricity consumption [9]. In Norway, with the highest
penetration rate of EVs worldwide, the electricity used for vehicle charging is 0.78% of total demand. At the
household level, this demand could be enormous. In 2017, the average Dutch household consumed 2,980
kWh of electricity. If we consider an electric vehicle with typical efficiencies and driving behavior, the annual
charging demand for the vehicle would be 2,431 kWh [17]. This means that the addition of an electric vehicle
could almost double annual electricity consumption for a typical Dutch household.

Table 2.1: Impact of uncoordinated charging on peak grid load [21]

Location EV penetration [%] Peak load increase [%]

Los Angeles 5 3.03
California 10 17
United Kingdom 10 17.9
Portugal 11 14
Western Australia 17 37
Los Angeles 20 12.47
United Kingdom 20 35.8
California 20 43
Netherlands 30 54
Belgium 30 56
Western Australia 31 74
New York 50 10

Not only will the total demand for electricity grow, but at high levels of EV penetration uncoordinated
charging can lead to significant increases in peak electricity demand for the grid, as seen in Table 2.1 [21].
Even at modest levels of EV penetration, the increase in peak demand for electricity can be significant. One
study found that an EV penetration level of 30 % in the Netherlands would lead to a 54% increase in peak load
[56]. In Western Australia, a similar penetration level of 31% would lead to a 74% increase [57]. The increase
in peak electricity demand due to uncoordinated charging can lead to serious issues with the electricity grid.

Solar power alone is not able to solve the problem of increased peak demand. EVs are most commonly
charged when people arrive at home in the evening, a time when electricity demand is already at its peak and
when solar energy will be quite low [17]. Energy storage with batteries or other technologies could allow for
energy during the day to be stored and used to charge EVs in the evening, but seasonal fluctuations would still
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pose a problem [58]. Using solar power to charge EVs would lead to an excess of solar generation during the
summer and a shortage during the winter. Battery storage is unable to solve this problem because it cannot
handle seasonal variations, so an electricity grid with controllable generation is required to keep the system
balanced.

Electricity generation must always be carefully controlled to match the demand. The conventional ap-
proach is to increase or decrease the generation, which involves turning on or off power plants. This can
lead to issues, in particular during peak hours [59]. These high peak loads, combined with the problems al-
ready presented by the variability of solar energy, will put a serious strain on transmission and distribution
networks. The grid may become dangerously congested, and in the worst-case scenario, blackouts may even
occur. Electric vehicle charging demand will contribute significantly to congestion in the future, especially
in dense urban areas [7]. Grid operators all across Europe will need to upgrade their infrastructure in order
to accommodate EV charging and avoid congestion. In the Netherlands alone, network operators estimate
that they will spendAC20–71 billion preparing for the energy transition [2]. In addition to ensuring that trans-
mission and distribution capacity are available, it is also important to guarantee that sufficient generation
capacity is available at times of peak demand.

At times of peak demand, generation capacity is often provided by natural gas peaking plants. These
plants are rarely used, and the levelized cost of electricity from these plants can therefore be quite high. As
seen in Figure 2.1, a gas peaking plant will have an average LCOE of $179 per MWh, compared to only $58 per
MWh for a conventional combined cycle gas plant. Reducing the demand at peak times can therefore have
a substantial impact on electricity prices. These demand peaks also affect the environmental friendliness of
the electricity, although the relationship between carbon emissions and electricity demand is complicated.

Figure 2.10: Total electricity demand vs. Carbon Intensity (CI) in Ontario [60]

As shown in Figure 2.10, the carbon intensity of electricity production is strongly correlated with the elec-
tricity demand in Ontario [60]. This is because Ontario relies on carbon-free hydropower and nuclear elec-
tricity to supply the base load, with natural gas power used during times of higher demand. The relationship
between carbon emissions and electricity demand thus depends mainly on the types of power which are
used. In New Zealand by contrast, less than 20% of electricity is generated with fossil fuels, with most power
coming from hydropower and geothermal energy. Because the fossil fuels are mainly used to generate base
load power, there is no correlation between demand and carbon intensity, although New Zealand is largely
an exception in this regard [61]. In many power systems, coal is used to provide base load power while nat-
ural gas is used to run peaking plants at times of high demand. Because electricity from coal is more carbon
intensive than natural gas, in these locations the marginal emissions rate actually decreases at times when
the electricity demand is higher. This is true in Portugal [62] and many regions of the United States [63]. In
the Netherlands, coal power is being phased out entirely, to be replaced with renewable sources such as wind
and solar power [14]. In this future energy system, natural gas will be used to generate electricity only when
the supply from renewables is insufficient. Renewable sources are quite variable so the carbon intensity of
electricity will be dependent on the weather, but it will also be greater at times of high electricity demand as
it currently is in Ontario. This provides another incentive to reduce the electricity demand at peak times.
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Uncoordinated EV charging presents problems for the stability, cost, and sustainability of electricity net-
works from a large-scale perspective. But this charging behavior can also cause issues on the local level. The
increase of peak demand due to EV charging can lead to under-voltages due to the higher power demand as
well as current and voltage harmonics due to the nonlinear power electronic equipment in EV battery charg-
ers [64]. If EVs are charged using fast charging, the peak power demand will be higher and the voltage drops
will be greater when compared to slow charging [65]. Under-voltages are especially problematic at charg-
ing stations which are relatively far from the service transformer [64]. At high levels of EV penetration, these
voltage drops could violate the recommended limits, especially in secondary wires.

EV chargers can also lead to current and voltage harmonics, which reduce the power quality, lead to in-
creased power losses, and shorten the lifespan of components such as cables and transformers [66]. In order
to have a reasonable transformer life expectancy, it is recommended that the total harmonic distortion (THD)
in EV chargers is maintained below 25%–30%. The International Electrotechnical Commission (IEC) standard
1000-3-4 recommends a current THD of less than 20% [67]. In addition to harmonics and under-voltages, un-
coordinated charging can create issues at the local level through increased transformer loading.

If the demand due to EV charging exceeds the transformers rated capacity, the transformer may be-
come overloaded, increasing system losses and decreasing the transformer’s lifespan [64]. Simulations have
demonstrated that for high levels of PHEVs in residential distribution networks, the load due to vehicle charg-
ing will result in some transformers exceeding their rated capacity for part of the year [68, 69]. Transformers
are often loaded beyond their rated capacity for short intervals, and this overloading is often permissible the
temperature of the device remains low and the transformer overloading time is relatively short. Overloading
beyond these limits can lead to increased hot-spot temperatures, resulting in the evolution of free gas from
insulation and insulating fluid, reduced mechanical strength or deformation of conductors and structural in-
sulation, and high internal pressures resulting in leaking gaskets or loss of oil [70]. These issues can shorten
the lifetime of a transformer.

There are three main overloading types which are considered for transformers: planned overloading,
long-term emergency loading, and short-term emergency loading [70]. Planned overloading is typically re-
stricted to transformers that do not carry a continuous load, and may result in the hot-spot temperature rising
from the standard 65 ◦C to operate in the 120 ◦C – 130 ◦C range. Long-term emergency loading is due to the
prolonged outage of some other element in the power system which leads to a transformer being overloaded
from hours up to months. The hot-spot temperature may reach 120 ◦C – 140 ◦C, and the risk to the trans-
former is greater than for planned loading. Short-term emergency loading is due to unlikely events which
lead to serious disturbances and hot-spot temperatures as high as 180 ◦C. Although the duration is shorter
than long-term emergency loading, with events of half an hour or less, the higher temperatures mean that the
risk of failure is greatest for short-term emergency loading, which can typically occur only once or twice over
the typical lifetime of the transformer. Uncoordinated charging can lead to these types of short-term spikes
in demand, severely shortening the lifetime of a transformer in the distribution system.

Uncoordinated charging of EVs will lead to higher electricity demand, especially at peak times. This de-
mand can lead to congestion, more expensive and polluting power, issues with local power quality, and dam-
age to infrastructure such as transformers. These concerns over uncoordinated charging have led researchers
to seek techniques to minimize the peak demand due to EV charging.

2.2.2. The Benefits of Smart Charging
In order to avoid problems due to uncoordinated charging, the peak electricity demand can be reduced, a
process known as peak shaving. Often, the total energy used is not decreased, but instead demand is shifted
to off-peak times, known as valley filling [59]. Peak shaving and valley filling can offer a number of benefits,
including improved power quality, lower energy losses, decreased costs, more efficient integration of renew-
able energy, and higher reliability. Peak shaving can be achieved using three main strategies:

1. Energy Storage Systems (ESS), where energy storage technologies including Battery Energy Storage Sys-
tems (BESS) are charged during off-peak hours and used to power the grid at peak times

2. Demand Response (DR), where electricity consumers are incentivized to reduce their consumption at
peak times

3. Vehicle-to-Grid (V2G) schemes, where EVs can discharge their battery at times of peak demand

In the system modeled in this report, all three strategies are combined in an effort to reduce the peak load
as much as possible. As part of PowerParking and similar systems, fixed battery storage is combined with
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demand response from charging EVs, by shifting the charging rate and time of the vehicles. Some EVs are
also capable of providing V2G services. The use of BESS for peak shaving can be seen in Figure 2.11 [59].

Figure 2.11: An demonstration of peak shaving using battery energy storage systems (BESS) [59]

Demand response can be implemented using a wide variety of controllable loads. In the Netherlands, the
market for DR is expected to grow with the increasing use of renewable energy, and could include industry,
horticulture, cooling, and transport. By allowing demand response to trade on the intraday market, the po-
tential market is estimated to be 489 GWh per year, with a net gain ofAC11 million [71]. The Dutch government
recognizes that there is a great potential benefit in grid tariffs that depend on the load in real-time, thereby in-
centivizing consumers to use electricity in a way that is more efficient and flexible [2]. Furthermore, demand
response could help grid operators avoid costly infrastructure upgrades.

(a) Total investments, 2023–2030 (b) Total investments, 2031–2050

Figure 2.12: Cost of cumulative grid investment costs for Liander vs. reduction in peak demand [7]

Flexibility could reduce the required investments in electricity networks by hundreds of millions of eu-
ros, as seen in Figure 2.12. This figure shows the expected cumulative costs for electricity grid investments
by Liander, a Dutch DSO [7]. By 2050, the Dutch power system will need to support 56 GW of solar power
capacity and a 74% penetration rate of EVs. In order to avoid congestion, major upgrades will be needed for
infrastructure like transformers and cables. Some investments could be avoided by curtailing solar power at
key times. Alternatively, the peak demand can be reduced, allowing existing infrastructure to be used more
efficiently. As seen in Figure 2.12, reducing the peak demand by 20% without any curtailment could be more
cost-effective than curtailing 30% of solar generation. Time of Use (TOU) pricing is one suggested option to
reduce the peak demand, but many other techniques are possible. One kind of demand response problem
that demonstrates a great deal of potential for peak shaving is coordinated smart EV charging.
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In contrast to uncoordinated charging, smart charging alters the rate, rate of change, timing, and direction
of electric vehicle charging in a coordinated and intelligent way. Smart charging can include V2G technolo-
gies, but with or without bidirectional charging it could help balance generation and demand of electricity in
future energy systems [72]. Smart charging covers a range of possible goals, including: reducing the impact of
EV charging on peak grid loading; minimizing voltage deviations, line currents, power losses and load surges
in transformers; balancing the load and voltage profile; reducing the cost of electricity; maximizing the use of
renewable energy; and increasing the system stability, power quality, and reliability [21].

Properly implemented, smart charging can solve the problems of high peak grid demand that results from
uncoordinated charging and provide value to many parties [17]. EV drivers can better determine when they
should charge their vehicles, and may be financially rewarded for their flexibility. Grid operators can use the
flexibility provided by smart charging to reduce congestion and imbalance in electricity networks. This may
enable them to avoid costly infrastructure upgrades. Charge point operators can optimize the use of their
charging points, by for example distributing the available power to the cars present based on the drivers’
preferences. In order for smart charging to be effective, these stakeholders must work together along with
other partners like municipalities and EV manufacturers.

Smart charging also helps the parking lot operators. This peak shaving can also offer financial benefits
by preventing damage to equipment like transformers and cables, extending their lifespan. Reducing peak
consumption could also lead to parking lot operators charging less from the grid and more from renewable
energy. This will likely lead to a higher self-consumption of renewable sources of energy, although that is not
the explicit goal. In addition, by reducing their peak demand parking lot operators are able to reduce the size
of their grid connection. If demand in the parking lot grows, smart charging will allow the parking lot operator
to delay or avoid altogether the need to upgrade their infrastructure.

The grid connection can play a significant role in the cost of electric vehicle charging infrastructure. There
are two main aspects to this cost [73]. First, there is an upfront cost to connect to the electricity network. This
cost includes the installation of new infrastructure such as cables, electrical panels, and transformers, to
ensure sufficient capacity for the charging equipment. In order to reduce the project cost, charging station
operators can seek to reduce the capacity needed to minimize these installations. Second, there are recurring
costs for the electricity connection. In addition to paying for the electricity consumed, many facilities pay
demand charges, which consider the peak electricity demand. These charges will be dependent on the utility,
but in the United States, consumers will often pay these charges if their peak demand is above a certain
threshold, typically 20–50kW. These charges can range from $3–$40 per kW, meaning that the demand charges
can cost thousands of dollars per month without even considering the cost for electricity itself. These demand
charges can increase the monthly fee by up to a factor of four.

In the Netherlands, both the upfront and recurring costs for the electricity connection contribute signifi-
cantly to the cost of a charging station. For a single charging pole with two plugs, the initial grid connection
cost is estimated to be AC750, which is 23% of all one-time costs [74]. This cost is rising, having increased by
15% since 2013 even as total upfront costs have fallen by by 30%. As electric vehicles become more common,
the cost of charging infrastructure is expected to continue decreasing, but this connection cost is likely to
continue rising. The electricity connection also plays a role in recurring costs, with the grid connection for
a single charger estimate to cost AC190 per year, which is 37% of costs excluding electricity (AC510). The cost
of electricity will of course be dependent on how busy the charger is, but with an average demand the grid
connection will represent 20% of annual costs including energy (AC943) [74]. For operators of EV charging
stations, even a small reduction in the electricity capacity can lead to large savings. The use of smart charging
to reduce peak demand in parking lots is therefore the subject of considerable interest.

2.2.3. The Current State of Smart Charging
Smart charging projects have already been implemented around the globe, typically in the form of demon-
stration projects. These projects investigate the potential of smart charging under real world conditions. Most
smart charging projects are relatively recent, and relatively small. In Toronto, the ChargeTO pilot project was
the first project involving residential smart-charging, using a set of 30 EVs in 2015. The project found that by
curtailing the charging load when the vehicles charged overnight, they were able to shed 70–80% of charg-
ing load at peak times while still ensuring that all the vehicles were fully charged by their desired departure
time [75]. Vehicle to Grid (V2G) is also commonly investigated as part of these pilot projects. In the largest
project to date, Nissan is planning a large-scale V2G demonstrator project with 1000 charging stations across
the UK for commercial fleet drivers of their Leaf [76]. Nissan has long been a leader in bidirectional charging,
with V2G pilots involving the Leaf being deployed in Denmark [77], Italy [78], and the United States [79]. The
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pilot project in Denmark consisted of 10 Nissan Leafs, each with a battery of 24 kWh, providing frequency
containment reserves as part of a commercial V2G hub. Field results showed that EVs are able to operate
in aggregated mode to support the grid with fast frequency regulation [80]. Vehicle availability, especially
on weekdays, played an important role in the bidding process, as vehicles were not always present during
working hours.

In the Netherlands, there have been a wide range of projects involving smart charging. The FlexPower
project in Amsterdam, a collaboration between between the municipality, Nuon, Liander, and ElaadNL, con-
sisted of 200 charging points where vehicles are charged faster when there is lower demand for electricity, and
slower when demand is high. These stations are already in operation and available to consumers, as seen in
Figure 2.13 [13]. At the Amsterdam Arena, which has a very high peak demand for electricity during sports
events and gigs, energy storage and V2G are being investigated as a way to meet this peak demand [81]. And
consumers are now able to use Jedlix, a program from Eneco which enables drivers to save money by allowing
the company to control their charging rate based on the grid demand, availability of sustainable energy, and
electricity price [82]. Unlike most other smart charging projects, Jedlix controls the charging rate via software
on the car itself, rather than through the charging equipment. This allows for smart charging without the use
of dedicated infrastructure.

Figure 2.13: An EV driver charging her car at a FlexPower charging station in Amsterdam [13]

Some Dutch smart charging projects also consider V2G, such as LomboXnet in the Lombok neighborhood
of Utrecht. This system involved two EVs charging from a 31 kW PV installation, with V2G being used to
increase self-consumption of renewable energy and decrease peak electricity demand for the vehicles [83].
The project found that smart charging including V2G could increase self consumption from 49% to 87% and
decrease the demand peaks by 67%. Despite these benefits, the annual energy throughput increased by a
factor of 3–4 compared to a uncoordinated charging without V2G. Since energy throughput is the strongest
indicator for battery degradation, this suggests that V2G may cause the batteries to degrade at a rate much
higher than they otherwise would, incurring additional costs to the EV owner. The project used predictions
for renewable energy production and charging demand, and found that accurate forecasts were necessary
to achieve good results [84]. After the successful pilot program, the project is planning on expanding to 70
vehicles across five districts in the Utrecht region [13].

Consumers who have had the opportunity to try smart charging generally appreciate the ability to con-
tribute to the stability of the electricity grid and the integration of renewable energies, while being rewarded
financially for their flexibility [85]. One common concern for drivers is the longer charging times, which may
require more planning about when they would need to use their vehicle. In commercial smart charging, it
is therefore important that the EV owners are not inconvenienced. The required financial rewards for smart
charging are still uncertain. The ChargeTO project found that the majority of consumers considered adequate
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compensation for smart charging to be $10 per month or higher, with a quarter considering $25 per month
to be their required rate [75]. Other surveys, however, have found that despite the claims of consumers, will-
ingness to engage in smart charging was not related to the level of financial compensation [86].

Despite potential benefits, there are many barriers which impede the development of smart charging on
an institutional level. Typically, these barriers involve regulatory, financial, or coordination issues [17]. For
drivers charging at home, there is often no incentive to store excess solar energy in a vehicle battery, as net-
metering rules mean that the energy can be sold to the grid and then purchased back later at no additional
cost. There are also issues of double taxation. A vehicle owner who charges their car with 10 kWh and sells
3 kWh back to the grid may need to pay taxes on that 3 kWh both when buying and selling. The parliament
of the European Union (EU) recognizes these barriers, noting in a recent directive that smart charging and
V2G are hindered by legal and commercial barriers such as “disproportionate fees for internally consumed
electricity, obligations to feed self-generated electricity to the energy system, and administrative burdens,
such as the need for consumers who self-generate electricity and sell it to the system to comply with the re-
quirements for suppliers [87].” The directive recommends that member states implement laws which remove
these barriers, enabling EV charging to provide flexibility to the electricity market.

From the perspective of the grid operator, such as the transmission system operator (TSO) or distribu-
tion system operator (DSO), there are regulatory uncertainties which limit the use of smart charging. While
smart charging could be theoretically deployed to prevent congestion, it cannot be currently legally used to
permanently avoid grid upgrades [17]. Grid operators are still obliged to improve transmission infrastructure
as quickly as possible, meaning that preventing congestion via smart charging may provide little financial
benefit to them. This may be resolved in the future, as the recent EU directive instructs DSOs to make use
of demand response when possible as an alternative to expanding the electricity grid [87]. Doing so could
stimulate the adoption of electric transport by benefiting drivers and create much-needed flexibility in the
electricity grid, enabling the more rapid and efficient adoption of renewable sources of energy.

Even if these regulatory issues are solved, however, the adoption of smart charging may still be hindered
by risk-averse behavior from consumers [88]. Although smart charging could lead to lower prices if con-
sumers adjust their charging behavior, drivers tend to prefer certainty in pricing over variable pricing, even
if there is a good chance that the variable price will decrease their cost. There are also barriers from the per-
spective of the charging point operator [17]. The operator may profit by using the charge point as much as
possible, by having a higher number of cars parked for a shorter time. This means that the operator may
wish to prevent smart charging which delays charging or sells energy to the grid, unless they are adequately
compensated for this lost revenue. In addition, vehicle charging is more flexible if the charging station has a
higher higher-capacity grid connection, allowing for smart charging to be more effective. Because these con-
nections are more expensive, charging point operators typically install lower-capacity connections at public
or semi-public charging points. It remains to be seen if a business case develops for smart charging, which
would help to overcome these barriers.

2.2.4. Modeling Smart Charging
Although smart charging promises a wide range of benefits, it is often difficult to test in the real world. For
this reason, computer models are often used to simulate the charging behavior of EVs in order to understand
the impact of different scenarios and strategies [89, 90]. This behavior can be used to determine the behavior
of an energy system with coordinated or uncoordinated charging. Models for EV charging behavior can be
used for various purposes, and are therefore implemented in various different ways.

There are two different dimensions must be considered when determining the kind of model which will
be built. These dimensions are the required time resolution and the extent to which individual vehicles can
be aggregated together [89]. These choices will depend on the system being analyzed, with different kinds of
analysis calling for different modeling decisions. These two dimensions, and some examples of systems with
different modeling requirements, are shown in Figure 2.14 [89].

The first dimension is the time resolution. Vehicle Ownership and Annual Mileage Models (VOAMMs),
consider only behavior over longer periods of time, such as a year. VOAMMs are suitable for analyses of
annual energy requirements, but are not sufficient for studying charging patterns or the impact of charging
behaviors on the electricity grid. These subjects require a higher temporal resolution. Short period modeling
is therefore used, which analyzes behavior at a time resolution of an hour or less. These models can be used to
analyze issues such as CO2 emissions for EVs, based on the changing carbon intensity of electricity generation
over the course of the day. Short period modeling is also used when analyzing the impact of EV charging on
the electricity grid, and how that impact is affected by smart charging.
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Figure 2.14: Aggregation levels and time resolutions required by different EV models [89]

The second dimension is the level of vehicle aggregation. Some models consider the charging behavior of
each vehicle individually [91, 92]. Others aggregate vehicles together, considering only the combined impact
of all vehicles [93, 94]. When considering the behavior of individual vehicles, a common technique is the
Summary Travel Statistics Model (STSM), in which information about (conventional) vehicle use, such as
typical distance driven or times at which the EV is parked at home, is used to create vehicle use patterns.
STSMs can be used to generate charging profiles, which are useful for applications such as capacity planning,
but the models are not detailed enough to analyze the effect of different smart charging strategies or the
impact of charging on the power grid [89]. An alternative approach which can consider more complex vehicle
patterns over the course of the day is the Markov Chain Model (MCM). These models generate EV patterns
based on a Markov chain, in which an individual vehicle moves between driving and parking in commercial,
industrial, or residential areas [95]. The probabilities of transition from one state to another are based on
real-world traffic data. Although they are more suitable than STSMs for modeling smart charging, MCMs are
still not commonly used.

When modeling smart charging strategies, Activity Based Approaches (ABAs) are typically favored. These
approaches analyze travel using patterns of behavior which vary from driver to driver. In pure Activity Based
Models (ABMs), a set of desired traveling activities are generated for agents, such as locations where the
agents would like to arrive and depart at certain times [96]. Traveling and charging behavior is then chosen
assuming that the agents are seeking to maximize their own utility. These models have the advantage that
they allow for an interdependence between smart charging incentives and driving behavior. This is important
because drivers may change their driving and charging behavior based on these incentives, and if models do
not consider these interactions, they may not properly examine the impact of different charging scenarios
[97]. Despite their advantages, ABMs are more complex to model, and rarely implemented in the literature
[89].

The more common form of ABA is the Direct Use of Observed Activity-Travel Schedules (DUOATSs), where
observed vehicles patterns are used to model EV use. With this approach, non-electric vehicle driving pat-
terns are used to simulate EV behavior. This is a common approach, but it may fail to account for the fact
that driving behavior may be different for EVs compared to conventional vehicles. As seen in Figure 2.15, a
substantial fraction of drivers would need to change their driving behavior if they switched from a conven-
tional vehicle to an EV [98]. That study of Seattle drivers found that only 50% of one-car households and 80%
of two-car households would be able to have 99% of their driving needs met through an electric vehicle with
a range of 100 miles (160 km) that is charged daily. Consequently, drivers can be expected to change their
behavior if they begin driving an EV. It is therefore important to be cautious when using driving statistics for
conventional vehicles in models of EVs.
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Unlike BEVs, PHEVs do not experience the same limitations on driving range. Nevertheless, different pric-
ing structures for charging at different locations or times may lead to some drivers adapting their travel pat-
terns in order to minimize their charging costs [89]. This means that DOUATS models are often not suitable
for modeling smart charging systems where the driving behavior is expected to change based on the pricing
incentives for smart charging. Despite its limitations, the DUOATS approach is often used in models includ-
ing those analyzing the impact of smart charging and demand response. For example, a study using driving
data from the United States Department of Transportation’s National Household Travel Survey (NHTS) found
that PHEVs would significantly increase the peak load in the electric grid when they begin charging during
evening hours, but that this load could be nearly eliminated if vehicles delayed charging as much as possible,
so that they only finish charging right before departing in the morning [99]. Another study used the same
NHTS data to generate a Monte Carlo simulation based on the charging probability at each time of day [93].
They found that the Monte Carlo simulation accurately matched empirical data from a PHEV demonstration
project in Texas. DOUATS modeling is considered to be usable under circumstances where it is reasonable to
assume that driving behavior of conventional vehicles will be similar to that of EVs, or where driving behav-
ior is taken from EVs specifically. In this report, DOUATS modeling will be used, with real-world driving data
used to generate vehicle patterns for a Monte Carlo simulation. Driving data will be taken from EVs whenever
possible, and from comparable conventional vehicles when suitable EV data is lacking.

(a) Single vehicle households (b) Double vehicle households

Figure 2.15: Vehicle range vs. usability, given conventional driving behavior [98]

2.2.5. Smart Charging Strategies
Smart charging encompasses a wide range of possible behaviors and strategies. There are a number of pos-
sible goals for smart charging, including minimizing peak loads, maximizing use of renewable energy, or
minimizing costs for either drivers or parking lot operators [37]. Although these goals are overlapping, it is
desirable to state the desired outcome, in a manner which allows different objectives to be compared quan-
titatively. In this report, the goal will be for the parking lot operator to reduce the total demand for electricity
at peak times.

Charging strategies seeking to reduce peak demand can involve coordinated or uncoordinated charging
of EVs. One possibility for uncoordinated charging is delay charging, in which vehicle charging is delayed past
a certain time of day, typically after the evening peak demand is over. A similar option is off-peak charging,
where vehicles are prevented from charging during times of high demand, such as the morning and evening
peak hours, but are allowed to charge freely the remainder of the day [21]. Although these strategies may
serve to shift some of the charging demand, they are still uncoordinated and do not take into account future
loads. These strategies therefore will not lead to the optimal reduction in peak demand.

Under some implementations, these strategies can actually increase the peak load. For example, delay
charging can be incentivized by instituting lower electricity tariffs during off-peak nighttime hours such as
after 22:00. The lower tariffs may then lead to electricity demand spiking dramatically at the time when the
low-tariff period begins [96]. This new peak demand may be greater than the original, meaning that delay
charging could cause greater stress on the grid than fully uncoordinated charging. Off-peak charging can
suffer from the same problem. If a no-charge window is implemented from 13:00–19:00, drivers will simul-
taneously begin charging their vehicles after the window is over. This can result in a higher peak load than
scenarios with no limitations on charging [99]. Another study found that with uncoordinated vehicle charg-
ing, a simulated electricity grid began to experience unacceptable levels of congestion at a 10% penetration
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rate of EVs. If a dual-tariff policy were adopted, where the price of electricity is different at day and at night,
that number could be increased to only 14% [100]. The dual-tariff policy was not able to avoid congestion
due to the creation of a new peak in electricity demand at the time when the lower rate period begun. Us-
ing fully coordinated smart charging, congestion could be avoided up to a 52% penetration of EVs without
any upgrades to the electricity network. The same level of penetration with uncoordinated charging led to
unacceptably high peak loads, as seen in Figure 2.16 [100].

Figure 2.16: Load on electricity network with different charging strategies [100]

Uncoordinated charging, regardless of incentives, is unsuitable to reduce peak electricity demand. Co-
ordinated smart charging is necessary in order for peak shaving to achieve its full potential. Yet even coor-
dinated charging may be insufficient to achieve optimal peak shaving if future information is not taken into
account. A smart charging strategy known as Real-Time (RT) charging was tested as part of the LomboXnet
project [83]. In this strategy, the difference between the PV generation and the uncontrollable loads is calcu-
lated at each time step. If there is more PV power than electricity demand, EVs are charged using that excess.
EVs extract power from the grid only when there is not enough energy in the battery to make an upcoming
trip. The RT strategy can be combined with V2G, where energy is extracted from the vehicle batteries in order
to cover the uncontrollable loads when PV power is insufficient. RT strategies, with or without V2G, do not
consider future loads or generation, and are therefore not nearly as effective at reducing the peak demand.
RT control was able to reduce peak loading by 27% without V2G and 43% with V2G. A linear programming
algorithm which considered future energy and loads, however, was able to reduce peak loads by 67%, even
considering solar forecasting uncertainty. In order to reduce the peak demand by the greatest margin, smart
charging should consider future PV generation, charging demand, and uncontrollable loads.

A similar real-time algorithm can be employed to encourage EV users to use a greater portion of solar
energy. In this control strategy, EV drivers would not be guaranteed to receive power from an EV charging
station when they plug in, with the charging station. Instead, power delivered to EVs would be limited by
the charging infrastructure. In this system, the speed at which EVs are charged will be dependent on the
driver’s Solar Friendliness Index, which is the proportion of energy used by the driver that comes from solar
power [101]. This system would encourage people to charge at times when solar power is available, increasing
utilization of renewable energy. Despite this benefit, the control strategy could artificially prevent some EVs
from being charged before they need to depart, which could be frustrating to the drivers.

In order to determine the best control strategy while considering the limitations of the system, EV charg-
ing is often formulated as an optimization problem. The target of an optimization problem is finding a set
of variables which minimizes an objective function subject to a set of constraints. These problems can be
differentiated by the objective function which is optimized, the variables which are considered, and the con-
straints which are implemented. When considering demand response programs such as smart EV charging,
there are a number of possible objective functions [90]. Some common objective functions which are con-
sidered include minimizing electricity cost, maximizing social welfare, and minimizing power consumption.
The optimal energy to charge EVs at each time step can be solved using linear programming (LP). If charg-
ing is unidirectional, the problem can often be expressed without integer variables or non-linear constraints.
If a linear objective function is chosen, the problem can be formulated as LP, where the decision variables
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determine the amount of energy charged to each vehicle, and the constraints consider the requirements and
limitations of the vehicles. Linear programming can be used with variety of possible objective functions, such
as minimizing the total electricity cost [102], maximizing the power which can be delivered without violating
electricity network limits [103] or minimizing the peak demand [104, 105].

Although many smart charging optimization problems use only continuous variables when unidirectional
charging is considered, this is not sufficient to consider bidirectional charging. In the event that the charging
and discharging rates or efficiencies are not the same, binary variables must be introduced which represent
whether a vehicle is charging or discharging [104, 106]. This transforms the problem from Linear Program-
ming (LP) to Mixed Integer Linear Programming (MILP). In these formulations, the power delivered to or from
the vehicle battery is still considered to be a continuous variable. Some charging models do consider control
strategies in which the vehicle charger is considered to be binary, either on or off based on the desired power
regulation [107]. This strategy, however, may lead to issues with power quality due to the rapid changes in
power consumption, so continuous charging power is usually preferred.

In both LP and MILP, it is assumed that the constraints are linear functions of the decision variables. This
assumption is often not strictly the case. For example, the maximum charging power for a vehicle battery
decreases as the battery approaches being fully charged. This change in maximum charging power as a func-
tion of stored energy results in the introduction of nonlinear constraints [108]. There are a number of possible
strategies to solve nonlinear constrained optimization problems. One common approach is Particle Swarm
Optimization (PSO) [109]. In PSO, a set of random solutions is modeled as a swarm of particles with a set of
positions and velocities. The objective function is then evaluated for each particle, and the particles with the
best value of the function are found. The position and velocity of each particle is updated as a function of
it’s misfit and the misfit of its neighbor in such a way that over time the swarm will tend towards the global
optimum. A similar approach is known as Krill Herd optimization, which can also be used to reduce peak
grid demand and reduce EV charging costs [110].

Another approach for solving nonlinear optimization problems is through the use of a genetic algorithm.
A set of possible solutions is used to generate new solutions in a process that mimics natural selection. Over
time, the set of solutions will evolve towards the optimum. This approach was used to find a charging strategy
that maximizes the use of solar energy in a solar parking lot [50]. There are other nonlinear optimization
approaches, such as the Maximum Sensitivities Selection approach, which minimizes system losses during
EV charging by finding the sensitivity of the entire system to each EV charger. By prioritizing the EVs with the
lowest sensitivities, overall system losses can be minimized [111]. This is able to reduce system losses while
maintaining the grid demand below a maximum level. Ultimately, algorithms such as these can have a high
computational cost and limited problem size [112]. It is therefore desirable to seek linear formulations for
these optimization problems.

2.2.6. Smart Charging with Uncertainty
When formulating the EV charging schedule as an optimization problem, it is necessary to know future sim-
ulation inputs. This includes the value of future PV generation, uncontrollable loads, and EV arrivals and
departures. In much of the research on smart charging, it is assumed that all of these factors are known accu-
rately in advance [50, 104, 113]. In reality, this is often not the case. Optimization algorithms must be updated
to account for this problem.

For PV generation and uncontrollable loads, the most simple approach is to use nominal optimization.
In this strategy, the optimization algorithm is solved using the predicted values, and then executed using
the actual results. This approach should work well if forecasting errors are small. A nominal optimization
control strategy was used in the simulation of LomboXnet, with the assumption that the absolute error in
PV forecasting was less than 10% of generated values [83]. It was found that this strategy was required solar
errors to be below 20%, an unrealistically low value. Solar forecasting errors in the Netherlands will likely be
closer to 40%–60%, as will be discussed in Section 3.1.5.

There are more advanced algorithms which allow for errors and uncertainty to be included in optimiza-
tion problems, even when continuing to use LP or MILP techniques. One possible approach uses stochastic
programming, which seeks to minimize the expected value of the objective function, considering a a set of
inputs with errors given by known distribution functions. The expected value is found by considering a set
of possible errors, determining the value of the objective function for each error, and finding the average of
these values weighted by their likelihoods. This approach can be used to minimize power losses during smart
charging of EVs with uncertain electricity demand, using quadratic programming [94]. Similar techniques
can be used to minimize the variance of the total demand when charging known EVs while simultaneously
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powering other uncertain electrical loads [102]. Although these studies were able to minimize their respective
objective functions, there are drawbacks to the use of stochastic programming.

Stochastic programming can consider a range of possible uncertain scenarios, but the optimization prob-
lem considers only the expected value, and can therefore allow for high peak demand in the worst-case sce-
nario. In order to ensure the minimum peak demand under uncertainty, robust optimization can be used.
Robust optimization guarantees stability and performance over a range of possible uncertainties [114]. This
can lead to improved worst-case scenario performance when compared to both nominal and stochastic op-
timization. Robust optimization has been used to schedule the charging of fuel-cell vehicles, considering the
possible uncertainty in PV generation [115]. When seeking to minimize peak grid demand under all possible
scenarios, robust optimization may enable the lowest peak load despite the uncertainty.

In order to be truly robust, however, the smart charging model must consider uncertainty in the charging
demand of EVs, including the arrival time, departure time, battery capacity, and initial state of charge (SOC).
Previous literature dealing with uncertainty has often not considered the demand for individual EVs [94, 102]
or assumed that all this information is known in advance [83, 115]. These studies thereby assume that the
unexpected arrival of EVs will not lead to a decrease in performance. This assumption is flawed. If vehicles
with a high demand for electricity arrive unexpectedly at an inconvenient time, the peak electricity demand
could increase significantly.

One approach to handle uncertain EV behavior is through the use of fuzzy logic. Fuzzy logic, in contrast
to binary logic, uses variables with a value ranging between 0 and 1. Fuzzy logic can be used to establish
a control strategy which works in complex, nonlinear systems, allowing for the mathematical formulation of
general rules such as “when electricity is cheap, EVs should be charged faster.” [116] Fuzzy logic can be used to
establish a control strategy for EV charging which results in lower electricity costs and higher use of renewable
energy. Fuzzy logic can also be used to enable EVs to support the electricity grid through improved frequency
control [117]. Fuzzy logic can also be used to account for the uncertainty in EV behavior by transforming
uncertain objectives and constraints into satisfaction functions of fuzzy constraints. Probabilistic models can
be used to estimate arrival times, departure times, and initial SOCs, allowing for an optimization problem to
be clearly defined even under uncertainty. When seeking to minimize charging cost, fuzzy optimization was
able to handle this uncertainty robustly, achieving higher profits than the deterministic approach which did
not consider uncertainty [118]. This study, however, did not compare the performance to an approach which
considered uncertainty using non-deterministic approaches such as stochastic or robust optimization. Fuzzy
logic also has a number of drawbacks [112]. Fuzzy logic controllers are only suitable for systems with a limited
number of EVs. As the number of vehicles grows, the rule table becomes more complicated and the algorithm
becomes less efficient. Furthermore, tuning the parameters of the fuzzy logic controller can be difficult to do
accurately, and a poorly tuned controller will lead to sub-optimal results.

When using non-fuzzy logic, it is possible to determine an optimal charging strategy for EVs through a
decentralized, or local, optimization scheme. In this approach, the optimal behavior is determined only for
vehicles which have already arrived, rather than being planned ahead by a centralized controller. As vehicles
arrive and depart, the optimal solution can be recalculated and updated, without forecasting or predicting
future EV arrivals. When minimizing the total cost of charging, this solution was found to perform nearly as
well as the optimal strategy with perfect information [119]. The performance of this technique improves with
a larger number of EVs and with a smaller fraction of EVs which engaging in V2G. A similar technique was
used to minimize peak electricity demand through peak shaving and valley filling with smart charging of EVs
[120]. The study found that the peak shaving behavior was close to the optimal performance under some
circumstances.

Decentralized optimization performs best when the EV properties are relatively homogeneous. These
strategies have been proven to be optimal if all arrival times, departure times, and battery requirements are
identical for each vehicle [121]. In cases where vehicle behavior is non-homogeneous, increasing variability
and uncertainty can reduce performance. Many studies on decentralized optimization underestimate the
possible uncertainty in EV charging demands. For example, reference [119] considers vehicles only with a
battery of 16 kWh, charging stations of up to 5 kW, and charging durations of at least four hours. This means
that all vehicles had some amount of flexibility in their charging behavior. It was also assumed that vehicles
arrived uniformly throughout the day, without any significant spikes in arrivals at one time, which is clearly
unrealistic. Reference [120] considers only PHEVs with a battery capacity of 10 kWh, and again assumes that
all arrivals are uniform within a certain time window. This study found that peak shaving strategies performed
best when arrival and departure times are all the same, with the peak load increasing as the charging duration
becomes more variable. The peak load deviates significantly from the optimum if the arrival time range
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for the vehicles is allowed to range from 20:00 until 5:00 the next day, for vehicles departing at 9:00. This
estimation of arrival uncertainty was deemed “unlikely”, despite the fact that no charging events of less than
four hours were considered. As will be demonstrated in Section 3.2.1, charging events of less than four hours
are quite common both in workplace and airport parking. This means that many charging events will be
relatively inflexible.

The performance of smart charging algorithms decreases as PV forecasting and future EV charging be-
havior becomes more uncertain. The existing literature frequently underestimates this uncertainty, with re-
spect to both PV generation and EV charging. More commonly, uncertainty is ignored altogether. This will
lead to simulations overestimating the potential of smart charging, promising benefits which may not be at-
tainable. In order to evaluate the potential of smart charging to reduce peak demand, detailed models are
needed which consider realistic errors in solar forecasting and the inherent variability and unpredictability
in EV charging behavior. Different smart charging algorithms can then be investigated. By constructing such
a model, smart charging can be investigated under real-world conditions.
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System Modeling

In order to use computer simulations to analyze a solar parking lot, it is important to develop a realistic
model of this system. A computer model was therefore built which includes solar panels, battery storage, EV
charging, lighting, and a connection to the electricity grid. This system is shown in Figure 3.1. In order to
obtain meaningful results, care was taken to ensure that each component was modeled accurately, using a
combination of real-world data and modeling practices from the literature.

Figure 3.1: Diagram of the smart solar parking lot

In the system, energy is generated with a solar array built into a canopy mounted over the parking spaces.
The solar panels are connected to a DC bus, which is also connected to fixed battery storage, some DC Electric
Vehicle (EV) chargers, and the lighting system. The DC grid is also connected bidirectionally to the main AC
electricity grid, which is connected to AC EV chargers.

This system was modeled using MATLAB, with values for solar generation, EV behavior, and lighting re-
quirements created at discrete time steps of 15 minutes. This time resolution was chosen because charging
demand and solar power generation are assumed to be reasonably static within such a short window, allowing
for the model to balance accuracy and computational efficiency.

In total, 40 parking spaces were considered in this simulation. The number 40 was chosen as the size
in order to strike a balance. If the simulated system were too small, then a single vehicle charging could
substantially impact the peak demand, and the results might not be generalizable to larger systems. If the
system were too large, computation time could be problematic. Considering these different concerns, 40
parking spaces was found to be a good size for this model. Note smart charging in a larger system can be
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expected to reduce the peak demand at least as much as in this smaller system, since it could be broken
down into several parking lots of 40 vehicles each.

The model was designed to realistically represent each component of the system. In this chapter, each
component will be discussed individually. In Section 3.1, the solar energy generation will be discussed. Sec-
tion 3.2 will then discuss the parking and charging behavior of EVs. Section 3.3 will discuss the EV chargers.
Section 3.4 will discuss the fixed battery storage. Finally, Section 3.5 will discuss the other loads and losses
which consume energy in the model. These components are combined to simulate the system as a whole.
The overall system behavior will be dependant on the charging strategy being employed, which will be dis-
cussed in Chapter 4.

3.1. Solar Energy
Solar energy is clearly a critical component in solar parking lots. A realistic model of solar energy generation
is therefore crucial.

3.1.1. System Design
The Photovoltaic (PV) modules which were simulated are Canadian Solar 60 cell CS6K-300 modules, with
a nominal maximum power of 300 W, corresponding to an efficiency of 18.33% [122]. These modules were
chosen because of their relatively high efficiency and good performance at low irradiance levels. In addition,
having modules with 60 cells instead of a larger 72 cell module enables the panels to be installed with less
cost and difficulty. The specifications of these modules are shown in Table 3.1 [122].

Table 3.1: Specifications for CanadianSolar CS6K-300 Solar Modules [122]

Specification Value Unit

STC NMOT

Nominal max power (Pmax) 300 222 W
Optimal operating voltage (Vmp) 32.5 30.0 V
Optimal operating current (Imp) 9.24 7.40 A
Open circuit voltage (Voc) 39.7 37.2 V
Short circuit current (Isc) 9.83 7.93 A
Module Efficiency 18.33 16.95 %

Cell type Mono-crystalline Si
Cell arrangement 60 (6×10), 6 inch cells
Dimensions 1650×992×35 mm
Weight 18.2 kg
Nominal module operating temperature (NMOT) 42±3 ◦C
Temperature coefficient (Pmax) -0.39 % / ◦C
Temperature coefficient (Voc) -0.29 % / ◦C
Temperature coefficient (Isc) +0.05 % / ◦C

The module placement and orientation is based on the design for the PowerParking project. The panels
are all elevated with the lower edge 2.6 meters above the ground, oriented facing due south with a tilt angle of
13◦. The solar canopies use a monopitch design, meaning that all panels are oriented in the same direction.
This allows for the system to maximize energy generation.

The topology of the solar power installation is shown in Fig 3.2. The design for the system is based on
the proposal for the PowerParking project at Lelystad Airport and Lelystad Airport Business park. The solar
panels with power optimizers are collected into canopies, with each canopy covering four parking spaces, as
seen in Fig. 3.2a. Each canopy contains 40 PV modules in a 5 by 8 grid. Since each solar module has a nominal
power of 300 W, each canopy has a nominal power of 12 kW.

Because the PV system is connected to a DC microgrid, the solar canopies are not connected directly to
an inverter. Instead, each module is connected to a module level DC-DC converter, sometimes referred to as
a power optimizer, shown in Fig. 3.2b. The power optimizers adjust the DC output voltage of each module,
ensuring that the module is operating at its maximum power point in a process known as maximum power
point tracking (MPPT). If the solar modules were connected in series without power optimizers, each mod-
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ule would need to operate at the same current. In this case, the power output of this string of solar modules
would be limited by the module with the lowest output current. Shading, soiling, degradation, or module
mismatch losses could then significantly reduce overall power generation [123]. With power optimizers, each
module can operate at a different current, with the output current of the DC-DC converters remaining con-
stant, reducing these losses. In addition, the optimizers can operate at a DC voltage close to the voltage of
the solar modules, allowing them to be more efficient than micro-inverters, which must boost the input volt-
age to a much higher level so that it can be converted to AC power [44]. Commercial power optimizers from
companies like SolarEdge can operate with an efficiency greater than 98%, and can operate as either buck or
buck-boost converters depending on the model [124]. Power optimizers are frequently included in commer-
cial installations, as their improved performance and higher-efficiency MPPT can increase the overall system
yield.

(a) A single solar canopy with four parking spaces

(b) Solar module with
power optimizer (c) The complete system, consisting of 40 parking spaces

Figure 3.2: Diagrams showing the topology of the solar system in the parking lot

In order to reach a higher voltage, reducing resistive losses, the power optimizers in each canopy are
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connected in series as seen in Fig. 3.2a. The solar canopies are then connected to each other in parallel,
as seen in Fig. 3.2c. The connection of the canopies in series prevents the DC bus voltage from becoming
dangerously high. In addition, this will prevent the system voltage from being affected if solar canopies are
added or removed. In total, 10 canopies are considered in this system, covering a total of 40 parking spaces,
with a nominal power of 120 kW. The canopies are connected to a DC bus, which connects further to the
battery and lighting, and a central inverter to convert power from DC to AC. Because of the high peak power
level in the system, multiple inverter units will be needed. The Canadian Solar CSI-66KTL-GS was selected
due to its high efficiency and rated output power [125]. The specifications of this inverter are shown in Table
3.2. The inverters are rated to a CEC efficiency of 98.4%, with a peak efficiency of 98.8%. The rated and
maximum output power for the inverter is 66 kW, so two of these inverters connected together would be able
to output up to 132 kW of power, ensuring that if necessary all the solar power could be converted from AC to
DC. Each inverter is also rated to a DC input power of 90 kW, giving the system a safety factor of 50%.

Table 3.2: Specifications for the Canadian Solar CSI-66KTL-GS Inverter [125]

Specification Value Unit

Inverter type Grid-tie string inverter
Grid connection type 3 phase / PE
Peak efficiency 98.8 %
CEC weighted efficiency 98.4 %
Dimensions 630×1034×354 mm
Weight 78 kg
DC max input power 90 kW
AC max / rated output power 66 kW

The system is modular, and can be expanded without great difficulty. If more solar canopies are needed,
they can be built alongside the old ones, and connected to the DC bus in parallel. This allows the system to
scale easily according to the needs of the parking lot operator. Note that if the system is expanded too much,
the current in the cables of the DC bus may exceed the rated capacity, and they may need to be replaced with
higher capacity ones. Additional inverters may also be required if more power must be converted to AC.

3.1.2. Weather Data
Weather data is required to simulate solar power output. This requires the solar irradiance, including Direct
Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). In
addition, data on temperature, humidity, air pressure, and wind speed can be used to create a more accurate
model.

In order to obtain highly accurate models for solar power, weather data was used from the Cabauw weather
station of KNMI (Koninklijk Nederlands Meteorologisch Instituut, Royal Dutch Meteorological Institute), lo-
cated in the province of Utrecht roughly 70 km southwest of Lelystad airport. [126]. This dataset includes
weather data including DHI, DNI, GHI, dry bulb temperature, relative humidity, air pressure, and wind speed,
recorded at one minute intervals since in 2005.

The weather data from Cabauw was used to create a Typical Meteorological Year (TMY), according to the
procedures developed by the National Renewable Energy Laboratory (NREL) [127]. TMY data enables the
simulation of the typical solar energy output for a PV installation. A TMY dataset is composed of 12 typical
meteorological months, which are concatenated together. The data for each month is taken directly from his-
torical data for that month in a previous year, without modification. This ensures that short term fluctuations
and variations are considered. In the case of this report, data from 2009–2018 was used to construct the TMY
dataset. For each month of the year, the weather in that month is compared across all the years. The month
which has the most typical values for irradiance, temperature, and wind velocity is used. The exact manner
in which the month is chosen is described by the User Manual for TMY3 Datasets [127]. For example, January
2014 was the most typical January in all the years examined. The data from January 2014 was therefore used
in this model.

The weather data from Cabauw is has been gap-filled and validated by KNMI for temperature, pressure,
windspeed, and humidity. For the irradiance data, some gaps were occasionally present. In this case, the
months with missing irradiance data were not eligible to be chosen as the typical month in the TMY3 dataset.
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However, the complete days from those months were still used to determine what a typical month looks like.
For example, if 1–3 February 2012 was missing data from the weather data, 2012 would not be a candidate for
the dataset for the month of February. However, 4–29 February 2012 would still be used to determine which
February was the most typical. Once the weather dataset was created, the expected solar power output in a
typical year was simulated.

3.1.3. Solar System Simulation
Solar power output is dependent on a number of factors, and can be modeled with a high degree of accuracy
by various different software packages. This model uses PVLib [128]. This tool is developed as a toolbox
addition to MATLAB by Sandia National Labs and is validated, open source, and able to model a number of
different system topologies.

The first step in calculating solar energy is determining the position of the sun. This is a function of the
location and the time. However, the apparent position is also a function of atmospheric refraction, which
is dependant on temperature and pressure. This data was used to calculate the sun azimuth and altitude at
each minute, using the pvl_ephemeris function. The altitude was then used to calculate the air mass, which
represents the amount of air which absorbs solar radiation as it travels through the atmosphere. The relative
airmass was calculated using the method the method described by Kasten and Young in 1989, which is the
default method in PVLib [129]. Using the tilt and azimuth of the solar array, and the zenith and azimuth of
the sun, the angle of incidence on the solar array was calculated. This was done using the equation:

cos(AOI) = cos(aM )cos(aS )cos(AM − AS )+ sin(aM )sin(aS ) (3.1.1)

where AM and AS are the azimuth of the solar module and sun respectively, and aM and aS are the altitude
of the module and sun respectively [44].

The solar radiation which is incident on the modules can be broken into three main components: beam
radiation, which comes from direct sunlight; diffuse radiation, which comes from the rest of the sky excluding
direct sunlight; and ground reflected radiation, which is the sunlight that reflects onto the panels from the
ground in front of them. Beam radiation is a function of DNI, along with the Angle of Incidence (AOI), which
is the angle at which the sunlight reaches the solar panels:

Ebeam = DNI ·cos(AOI) (3.1.2)

Next, the diffuse radiation, Ediffuse is calculated. This is the radiation which is incident on the Plane of
Array (POA) for the solar panels. POA diffuse radiation is only a fraction of the DHI, because the tilt of the
modules themselves blocks out some of the diffuse radiation. Calculating the POA diffuse radiation requires
knowledge of where in the sky the diffuse radiation originates. There are a number of solar radiation models,
and the one chosen was first described by Perez et al. in 1990 [130]. In an empirical test of the most common
models, Perez 1990 was found to have the highest overall accuracy [131]. The model depends on the apparent
solar position, which takes into account distortion of light through the atmosphere as a function of air pres-
sure and temperature. In addition, the model considers the array orientation and tilt, the DHI, the DNI, and
the time of year.

The ground reflected radiation is dependent on the module orientation and the GHI, along with the
albedo of the ground. The albedo is the fraction of incident light which is reflected by a surface, with an
albedo of 1 being completely reflective and an albedo of 0 reflecting nothing. Asphalt, which is a typical
material for parking lots, has an albedo around 0.1 (in comparison to grass which is approximately 0.2 and
concrete which is approximately 0.3) [132]. The ground reflected radiation is given by:

Eground = GHI ·α ·0.5(1−cos(θM )) (3.1.3)

Where GHI is the global horizontal irradiance, α is the albedo, and θM is the module tilt angle [44]. The total
irradiance which is incident on the solar panel is then given by:

Etotal = Ebeam +Ediffuse +Eground (3.1.4)

The efficiency of solar modules depends on the cell temperature, with power decreasing by 0.39% per
degree as seen in Table 3.1. The cell temperature was calculated using the Photovoltaic Array Performance
Model developed by Sandia National Laboratories [133], which considers the module parameters, illumina-
tion, ambient temperature, and wind speed. Using this model, the cell temperatures were modeled for each
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time interval. Given the temperature of the cells, a new IV curve was calculated based on the temperature,
the irradiance, and the module parameters. This was done using the five-parameter De Soto model [134],
which is more accurate than the four-parameter model [135]. This model assumes a single-diode equivalent
circuit for a solar cell, and allows for the calculation of the voltage and current and the maximum power point
to be calculated at each time step. The single-diode model is frequently used in the modeling of photovoltaic
systems, as it offers a good compromise between accuracy and simplicity [136]. The equivalent circuit for the
single-diode model can be seen in Figure 3.3 [134].

Figure 3.3: Single diode equivalent circuit for a solar cell [134]

The simulation must further consider that some of the incident light is reflected due to soiling on the
panels. The amount of energy lost due to soiling is heavily dependent on the location, and is a factor of
rainfall, air pollution, and the surrounding environment [137]. Although the Netherlands has a relatively low
level of air pollution and a high annual rainfall, a conservative value of 2% is taken for soiling losses. Note
that the light which is blocked by soiling does not contribute to energy generation, but nonetheless warms
the panels.

Further losses were then considered. Resistive losses in the system are dependant on the system topology
and therefore difficult to calculate without an exact knowledge of the configuration. For simplicity, these
losses were assumed to be a constant 3%. Furthermore, MPPT and DC-DC conversion losses in the power
optimizers were assumed to be 2%, based on typical literature values [44] and values from manufacturers of
power optimizers [124]. It is assumed that there are no surrounding buildings or trees which would shade the
panels, and because there is only a single row of solar canopies the modules are not able to cast a shadow on
each other. Therefore, shading losses were not considered.

3.1.4. Solar Power Output
The net daily generation, along with the average daily generation for each month and the year as a whole, can
be seen in Figure 3.4.

Figure 3.4: Net solar energy generation on each day of the year, as well as monthly and annual averages

Over the course of a year, the system generates 133,625 kWh, which is an average of 366 kWh per day.
Since the system has a nominal power of 120 kW, this production is equivalent to 3.05 sun hours per day. This
corresponds to a capacity factor of 12.7%, which is typical for the Netherlands [44]. Naturally, the solar power
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output is very dependant on the season. During June the system had an average daily output of 657 kWh, a
capacity factor of 22.8%. During December, on the other hand, the average daily output was only 65 kWh per
day, or 2.3%. Thus, generation during the sunniest month is ten times higher than it is during the least sunny
month.

The average system efficiency is 16.9%, which is quite close to the Nominal Module Operating Temper-
ature (NMOT) efficiency of 16.95%. Compared the nominal efficiency of 18.33% for the PV modules, the
performance ratio of the system is 0.92. This high value for the performance ratio can be explained by a few
factors. First, because the modules are connected to a DC microgrid, inverter losses are not considered as
part of the PV system. Furthermore, the use of power optimizers on each module instead of a centralized
maximum power point tracker means that MPPT losses are quite low. In addition, modules were specifi-
cally chosen which have a relatively high power output under low irradiance, which reduces irradiance losses
and gives the system a higher average efficiency in a cloudy location like the Netherlands. And finally, the
open-backed mounting system in the solar canopies, combined with the high wind speeds and low air tem-
peratures, means that the cell temperatures in the system are almost always below the nominal operating
module temperature of 45◦ C, which reduces the temperature losses.

Weather data was recorded at one minute intervals, and the power generation for the typical meteorolog-
ical year was calculated at that same resolution. Because the simulation has a time step of 15 minutes, the
minutely PV data was integrated to give the average power over each 15 minute interval. For the purpose of
the simulation, generation is assumed to be constant within each time interval.

3.1.5. Forecasting Solar Energy
When considering the accuracy of a solar forecast, two metrics were used: The Root Mean Square Error
(RMSE), and the Mean Bias Error (MBE). These metrics are commonly used in literature in order to quan-
tify the errors in solar forecasting [138, 139]. The RMSE is the square root of the mean of the square of the
errors, and is analogous to the standard deviation. The RMSE is therefore observable in the spread of fore-
casting errors, with a larger RMSE corresponding to greater over- and underestimations. The MBE is simply
the average of the errors, and is analogous to the mean. A negative MBE means that most forecasts are below
the true generation, whereas a positive MBE means that forecasts are typically greater than the real results.

(a) Root Mean Square Error (RMSE)

.

(b) Mean Bias Error (MBE)

Figure 3.5: Typical errors in central Europe for solar forecasts made at midnight for the upcoming day [139]

Figure 3.5 demonstrates the accuracy of solar irradiance forecasting in central Europe [139]. In Germany,
Austria, and Switzerland, forecasts one day ahead which are made at midnight typically have an RMSE of
40%–60% and an MBE of -5% – 10%. These quantities are given as a percentage of the average daily gener-
ation. In this simulation, solar uncertainty was therefore typically assumed to have an RMSE of 50% and an
MBE of 0%, although a range of values was investigated.

In order to demonstrate the impact of different forecasting errors, Figure 3.6 compares the forecasted
values of total daily generation with the true values. The forecasted values are taken from simulated forecasts
of the following 24 hours, starting at midnight, which are generated using the process described below. As can
be observed, a higher value of the RMSE results in a wider range of errors, with more days where the forecasted
generation is high but the actual generation is low and vice versa. MBE, on the other hand, does not affect the
spread of the forecasting errors. Instead, it affects the expected difference between the forecasted and actual
generation. When the MBE is positive, forecasted generation is on average higher than actual generation, as



36 3. System Modeling

evidenced by the fact that most days are above the diagonal black lines. When the MBE is negative, on the
other hand, forecasted generation is on average below the actual generation, with most days sitting below the
diagonal line.

(a) 20% RMSE, 0% MBE (b) 40% RMSE, 0% MBE (c) 60% RMSE, 0% MBE

(d) 50% RMSE, -10% MBE (e) 50% RMSE, 0% MBE (f) 50% RMSE, 10% MBE

Figure 3.6: Forecast vs. reality for net daily generation with different forecasting errors

In order to simulate the system behavior under uncertainty, it is important to accurately generate fore-
casts of solar energy in a way which realistically resembles real-world solar forecasting errors. Much of the
forecast which was generated was dependant on the value for clear sky generation. This represents that en-
ergy which would have been generated under ideal, cloudless conditions, and is a function of the time, date,
and location. The clear sky generation, compared to the actual generation, is shown in Figure 3.7. To illustrate
the changing clear sky generation over the course of the year, the 15th day of each month is presented.

Figure 3.7: Clear sky and actual irradiance over the course of the year

The clear sky values for clear sky DHI, DNI, and GHI were generated using the method given in [140]. This
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method relies on the Linke Turbidity Coefficient, which is used to determine atmospheric transmittance, the
amount of light which can pass through the atmosphere. The transmittance depends on factors such as air
mass and humidity. For the purposes of this simulation, the clear sky generation was intended to describe
the maximum possible energy generation at a given moment. Therefore, a constant value of 2.5 was chosen
for the Linke Turbidity coefficient. Lower values of the coefficient correspond to a higher level of irradiance,
and 2.5 was the minimum value of the course of the year for this location. This value appears to consistently
represent the maximum theoretical generation over the course of the year. Once the clear sky irradiance
was known, it was used to simulate the clear sky generation using the same methods described previously to
simulate solar power generation.

Based on the clear sky generation, simulated forecasts of future solar power generation were made. To
illustrate these forecasts, some some example days are shown in Figure 3.8. These foreasts have an RMSE of
50% and an MBE of 0%.

Figure 3.8: Solar generation forecasts made at different times of day, compared to the true generation

Three forecasts, made at at at midnight, 6 AM, and noon, are compared with the actual power which is
generated. As can be observed, the forecasting errors are greater in the further future. This means that the
predicted generation at 3 PM is most accurate with the forecast made at noon, less so with the forecast made
at 6 AM, and most inaccurate with the forecast made at midnight. It is possible for forecasts to significantly
over- or underestimate the generation over the course of a day, although forecasts are correct on average over
the course of a year.

Because weather data is not accurately available at 15 minute intervals very far in advance, it was assumed
that the forecast was given hourly. In order to base the forecast off of hourly data, values exactly on the hour
were considered for the forecast, with the intermediate time steps interpolated linearly. Because forecasts are
based only on hourly predictions, whereas the control strategy updates every 15 minutes, it is possible that
variations within an hour can lead to larger errors at individual time steps.

Solar forecasts were then generated by adding normally distributed random errors to the hourly values of
PV generation. The errors generated were proportional to the clear sky generation values, and mean and stan-
dard deviation for the normally distributed errors were chosen based on the desired accuracy of the forecasts.
When considering the error, it is necessary to consider both the errors at each time step and the net error over
the course of the day. For this reason, two errors were introduced at each time step: daily errors, which are
the same at every time step throughout the day, and hourly errors, which are independently generated for
each hour and linearly interpolated to 15 minute intervals. Both kinds of error are normally distributed and
proportional to the clear sky generation. The magnitude of the errors was scaled linearly based on the time
until the predicted value, so that forecasts are less accurate in the further future. It was found that the hourly
errors should have a standard deviation 20% of the daily error in order to mostly closely remember the errors
in literature [138]. Forecasts were then truncated so that they are always between zero and the clear sky gen-
eration. It was also assumed that the generation forecast at the present time step is always accurate, because
the system generation can be monitored in real time.

Once the forecasts were simulated, the forecasting errors were quantified in order to develop a charging
strategy which is able to reduce the peak demand despite this uncertainty. The forecasting error at each time
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step was calculated as a fraction of the clear sky irradiance, in order to normalize the errors with respect
to the time of day and year. The standard deviation of these errors is then determined as a function of the
time since the forecast was made, as the errors increase at time steps further in the future. Example days with
forecasts made at 6 AM, displaying the range of one, three, and five standard deviations around the forecasted
generation are shown in Figure 3.9.

Figure 3.9: Comparison of different standard deviations of forecasting error in solar power production

The range of uncertainty for power generation is limited to being between zero and the clear sky gen-
eration. The standard deviation grows wider over the course of the day, because forecasting uncertainty is
greater for time steps further in the future. In addition, the standard deviation is dependant on the clear sky
forecast. At times when very little solar generation is possible, the forecasting error must be smaller. As can
be observed, almost all possible days are within three standard deviations of the forecasted generation, even
on days with very large forecasting error. Using these simulated solar generation forecasts, with a quantified
range of forecasting errors, it is then possible to develop a smart charging strategy which is able to minimize
the peak electricity demand under uncertainty.

3.2. Electric Vehicle Behavior
In order to realistically simulate electric vehicle charging, it is necessary to accurately model the parking and
charging behavior of the EVs. The possible methods and techniques for modeling EV behavior are described
in Section 2.2.1. For this report, vehicle modeling will be done using a Monte Carlo simulation, with randomly
generated vehicle behavior generated based on real-world data, as a Direct Use of Observed Activity-Travel
Schedules (DUOATS) model. In every instance, an effort has been made to ensure that the generated behavior
of the vehicles is realistic. This is necessary because overly simplified EV behavioral models can lead to a
simulation that does not capture the reality of the requirements for EV charging.

In a DUOATS model, it is important to consider that the behavior of electric vehicles may be fundamen-
tally different than that of conventional vehicles. For this reason, data from EVs should be used whenever
possible. In this model, two different parking locations were considered. The first location is an airport long-
term parking facility, and the second location is a workplace parking lot. For airport long-term parking, no
adequate EV-only dataset could be found. Instead, vehicle behavior is based on data from Boston-Logan
International Airport [141]. It is assumed that the long-term parking behavior at Logan would be similar to
other major airports, including those in the Netherlands. For the input data in this model, data from only
Economy Parking was used, as this parking garage is primarily for long term travelers, with 87% of vehicles
remaining parked for more than 24 hours.

For workplace parking, vehicle behavior was modeled on data from the EV project, a project run by the
United States Department of Energy from 2009 to 2013 which contains data for 8,228 electric vehicles with
hundreds of thousands of trips and charging events [142]. This data was broken down into four categories:
private residential, private nonresidential, public, and DC fast charging. For this model, only private non-
residential is considered, which is the type of parking that might be available at an office parking lot. It is
assumed that commuting patterns for office workers in the United States would be relatively similar to those
in the Netherlands. For both airport and workplace parking, weekdays and weekends are treated separately.



3.2. Electric Vehicle Behavior 39

For each vehicle, four pieces of data were considered: the arrival time, the departure time, the state of charge
when the vehicle begins charging, and the battery capacity.

3.2.1. Arrival and Departure Times
The arrival and departure times are generated using a Monte Carlo simulation, based on arrival and departure
rates which are based on historical parking data. Rates were calculated separately for an airport and for a
workplace. Historical data is frequently used when modeling EV parking behavior [65, 143]. For simplicity,
some authors assume that vehicle arrival and departure rates are given by simple Gaussian functions, for
example assuming that vehicles arrive with a peak time of 18:00 and a standard deviation of five hours [108].
Another model assumes that the arrival and departure rates are Gaussian functions with a standard deviation
of one hour and peaks at 9:00 and 17:00 respectively [104]. This technique ignores the reality that vehicles
will arrive and depart throughout the day, likely with multiple peaks. The arrival and departure rates which
are used in this model are shown in Figure 3.10. The arrival, departure, and net occupancy rates are in terms
of the percentage of total parking spaces per hour.

.

(a) Long-term airport parking

(b) Workplace parking

Figure 3.10: Arrival, departure, and net occupancy rates for EVs

In airport long-term parking, arrival and departure rates are based on one month of data from Boston
Logan International airport, which measures the number of vehicles arriving and departing every hour [141].
The arrivals and departures were separated by whether it was a weekday or weekend, and used to generate a
Gaussian mixture model, approximating arrivals and departures each as the sum of two Gaussian functions.
The arrival and departure rates for long-term airport parking are shown in Figure 3.10a. For workplace park-
ing behavior, data was used from the EV Project, which gave the total fraction of charging stations which were
occupied every 15 minutes [142]. By calculating the change in median occupancy at each time step, it is pos-
sible to calculate the net rate of arrivals minus departures. For example, if the number of vehicles increases
from 11% to 12% over a fifteen minute interval, the change in the net occupancy rate is 1% per fifteen min-
utes, or 4% per hour. Although the net rate is known, at each time step there are vehicles both arriving and
departing, and it is necessary to consider the rates separately. EV project data also includes the total number
of vehicle arrivals. Given that the arrival rate integrated over a day will be equal to the total arrivals, it is pos-
sible to approximate the arrival and departure rate independently as the sum of two Gaussian functions, as
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shown in Figure 3.10b, again considering weekends and weekdays separately.
Once the arrival and departure rates are known, the arrival rates are scaled to control how full the parking

lot is. Through trial and error, it was determined that in a parking lot of 40 spaces, the peak rate should
be 10 vehicles per hour in a workplace and 1 vehicle per hour in an airport. At these rates, the parking lot
is full at the busiest times, but with space consistently available at off-peak hours. The number of vehicles
arriving at a given time step can be generated using a Poisson distribution [109]. In this model, time steps are
separated at 15 minute intervals, and the arrival time for each new vehicle is chosen at random assuming a
uniform distribution of arrival times between the current time step and the next. If there are not sufficient
open spaces, then the vehicles fill up the parking lot and the remaining vehicles will go park elsewhere.

In addition to the arrival time, it is also necessary to know the departure time for the vehicles. In some
models in the literature, the departure times are chosen randomly from a normal distribution [95, 104, 118].
Less commonly, models can consider the time between a vehicles arrival and departure, assuming that the
parking duration is normally distributed [144]. In reality, the probability of departure should be based both
on the time of day and on the parking duration, a consideration often ignored in previous literature. The
departure rates as a function of the time of day are shown in Figure 3.10, and the distribution of parking
durations are shown in Figure 3.11.

.

(a) Parking duration at long-term airport parking

(b) Parking durations at work

Figure 3.11: Parking durations for EVs

At every time step it is randomly determined whether each vehicle will depart or not, with the probability
of departure at a given time pd (t ) is based on the departure rate rd (t ) and the average number of vehicles
present at that time N (t ). However, this probability must also consider the time since the vehicle parked.
This model introduces a novel technique to incorporates the parking duration, with the use of a scaling factor
g (t − ta) which is a function of the time since the arrival time ta . The overall probability is then given by:

pd (t ) = rd (t )

N (t )
· g (t − ta) (3.2.1)

For example, if there is a time of day when 20 vehicles are typically present, a departure rate of 2 vehicles per
hour would correspond to a departure probability of 10% per hour for each vehicle, multiplied by the dimen-
sionless scaling factor which differs for each vehicle. The value of this function was adjusted through trial and
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error such that the distribution of parking durations was comparable for the simulated and measured data.
The scaling function is given by:

g (t − ta) =


min(0.7+0.1(t − ta),1.3) Work Weekday

min(0.8+0.15(t − ta),2.5) Work Weekend

min(0.014(t − ta),1.4)+3 Airport, t − ta < 3

min(0.014(t − ta),1.4) Airport, t − ta ≥ 3

(3.2.2)

A constant value of g (t − ta) = 1 would imply that the departure probability is independent of the time since
arrival. In reality, g (t − ta) begins at a value below one, as the vehicle is less likely to depart right after it
arrives. The value then increases linearly until it reaches a certain maximum value. This value is greater than
one, because vehicles which have been parked for a long time are more likely to depart soon. At the airport,
there is a significantly increased likelihood of departure in the first three hours after arrival, representing the
vehicles which are picking up or dropping off people at the airport. Once a vehicle has been parked for more
than three hours, it is likely that the vehicle will remain parked long term.

Vehicle arrivals and departures were generated for a full year. At each time step, it is randomly determined
whether each vehicle will depart or not, based on its individual departure probability. The departure time for
each vehicle is chosen at random assuming a uniform distribution of departure times between the current
time step and the next. A vehicle cannot depart in the same time step during which it arrives, and once
a vehicle departs no new vehicle can park in that space until the subsequent time step. A typical week of
occupancy for both the airport and the workplace parking lot is shown in Figure 3.12.

.

(a) Airport long-term parking

(b) Workplace parking

Figure 3.12: Typical week of simulated parking data

Note that in airport parking, there is little variation over the course of a single day, with the occupancy
varying over a longer timescale. In addition, weekend and weekday parking are relatively comparable. At a
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workplace parking facility, there are clear patterns of arrivals and departures during weekdays, with weekends
having lower arrival rates.

3.2.2. Battery Capacity
In order to model the capacity of EV batteries, a constant battery size is often assumed [94, 145]. For the
sake of accuracy, this model uses the distribution of electric vehicles currently registered in the Netherlands.
The quantities of electric vehicles, as of January 31 2019, are shown in Table 3.3 [146, 147]. The information
for the vehicle registrations is taken from the Netherlands Enterprise Agency, or RVO (Rijksdienst voor On-
dernemend) [146]. Although battery capacities for the vehicles are publicly available from the manufacturers,
vehicle batteries are often prevented by software from fully charging or discharging to prevent battery degra-
dation. The fraction of the battery which can be used is known as the usable capacity, which is the capacity
considered in this report. The usable capacity is not publicly available, but can be determined through hard-
ware tests, which have been done for many models. The results of these tests are compiled through the EV
Database, a resource cited by the RVO in their reports [147].

Table 3.3: Data for EVs registered in the Netherlands, January 31 2019 [146, 147]

Type Brand Model Number Battery [kWh] Usable [kWh]

PHEV Mitsubishi Outlander 24,167 12 9
Volvo V60 14,082 11.2 8
Volkswagen Golf 10,928 8.7 7
Volkswagen Passat 8,060 9.9 8
Audi A3 6,430 8.8 7
Other PHEV 33,992
Total PHEV 97,659

BEV Tesla Model S 12,873 75 / 100 72.5 / 94
Nissan Leaf 5,786 40 38
Tesla Model X 4,629 75 / 100 72.5 / 94
Volkswagen Golf 4,174 35.8 32
Renault Zoe 3,847 41 37
BMW i3 3,552 22 / 33 18.8 / 27.2
Jaguar I-Pace 3,505 90 84.7
Hyundai Ioniq 2,579 30.5 28
Opel Ampera 1,193 60 58
Hyundai Kona 1,087 67.1 64
Other BEV 5,243
Total BEV 47,381

Vehicles are generated randomly based on their frequency as given in Table 3.3. It is assumed that all types
of vehicle are equally likely to charge; that is, the fraction of charging events which involve a BEV is equal to
the fraction of EVs which are a BEV. Because the RVO data does not include all EVs, but only the most popular
models, it is assumed that PHEVs where the model is not known have a battery size distribution which is the
same as other PHEVs, with the same being true for BEVs. For PHEVs, this is likely given the homogeneity of
battery sizes. For BEVs, almost 90% of registered vehicles are represented by this list, so the vehicles not listed
should not significantly change the distribution. The Teslas, as well as the BMW i3, have multiple possible
battery sizes which are available to consumers. It is assumed that for these vehicles that half of all vehicles
have contain one of the available battery sizes, and half have the other.

It is worth noting that the landscape of EVs is changing rapidly in the Netherlands. For example, the Tesla
Model 3 does not even appear on the list of EV registrations, because it was not present in the Netherlands
until February 2019. It is now one of the best selling EVs in the country, and is already in eighth place on the
list of most common BEVs [16]. Furthermore, PHEVs currently make up the majority of all electric vehicles in
the Netherlands, but the number of PHEVs has been slowly declining since December 2016, while the number
of BEVs has been growing exponentially, as seen in Fig. 2.4. As BEVs with larger batteries become increasingly
affordable and the fraction of PHEVs decreases, charging requirements may change significantly.
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3.2.3. Initial State of Charge
The battery state of charge (SOC) is defined as the energy which is stored in a battery as a percentage of the
the usable capacity. The initial SOC, at the time when the vehicle begins charging, was simulated as being
randomly drawn from a truncated normal distribution, with the parameters based on historical data from EV
studies. The distributions of the initial SOC are shown in Figure 3.13.

Figure 3.13: Probability densities for battery SOC when charging begins

There are other methods which can be used to model the initial SOC value when the vehicle is plugged in.
Some models make the simple yet unrealistic assumption that all vehicles begin charging with their battery
completely empty [65, 94]. Other models assume that vehicles start the day with a completely charged battery,
and then estimate the energy which is used by the vehicle as it drives to its destination, based on the real-
world driving data and the vehicle energy efficiency [110, 148]. This technique is flawed. Firstly, not all EV
owners fully charge their vehicle each evening. One study determined that EV drivers only charged their
vehicles on average about 0.6 times per day [92]. Furthermore, the decision by the EV owner to begin charging
is often dependant on the battery state of charge itself. In a study of 135 EV drivers, 55% stated that they
charged their vehicle “whenever I get a chance,” but 54% stated that they recharged when the SOC fell below
a certain level [149]. Because the decision to begin charging is dependant on the SOC, the distribution of the
SOC will not depend only on the driving distance.

The psychological dynamics which determine charging behavior can be described by a User Battery In-
teraction Style (UBIS), which varies greatly between individuals [150]. High interaction users begin charging
based on their specific requirements, such as the distance they plan to drive and the current battery SOC,
resulting in their initial SOC tending to be distributed around a clear peak value. Low interaction users, on
the other hand, will begin charging based on other factors, such as location or time of day, resulting in their
initial SOC being more uniformly distributed. EV drivers are likely to have a higher interaction UBIS when
there is a greater density of refueling options [150] or when they have been driving their EV for a longer period
of time [149].

Because of the combination of both high- and low-interaction EV drivers, values for the initial SOC tend to
approximately follow a truncated Gaussian distribution, as seen in Figure 3.13. The use of a truncated Gaus-
sian is common in the literature, although the characteristics of the distribution are often assumed without
a basis in real-world data. One publication used a mean of 50% and a standard deviation of 30% [145], with
another choosing a mean of 50% and a standard deviation of 10% [109]. It is preferable to use a realistic
distribution of the initial SOC based on historical data.

In this model, the coefficients for the distribution were calculated by fitting the distribution to data from
the EV Project [142]. This data closely resembles the results of the study examining 79 BEVs in Germany,
suggesting that the initial SOC is comparable across different regions [150]. The distribution for BEVs has a
mean of 50% and a standard deviation of 18%, with PHEVs having a slightly lower mean of 45% and a larger
standard deviation of 30%. Both distributions are truncated between SOC values of 0% and 90%. PHEVs have
a wider distribution because they have a smaller battery, and because they have a conventional fuel tank and
internal combustion engine, so drivers do not need to concern themselves with running out of battery power.
Because of the ability to drive with an empty battery, many PHEVs will begin charging when the battery is
completely discharged, which is not true of BEVs. According to EV Project data, less than 1% of BEVs began
charging at an SOC below 10%, but with PHEVs, 20%–40% began charging at this SOC level, depending on the
region [142]. This model therefore assumes that 30% of all PHEVs begin charging with an SOC of 0% of the
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usable capacity.

3.3. Electric Vehicle Charging
Electric vehicle chargers, also known as Electric Vehicle Supply Equipment (EVSE), are an important com-
ponent in a smart parking lot. Chargers are available in a number of power ratings and configurations, from
a host of manufacturers. In the PowerParking system, the charging stations will be provided by Alfen. This
model will consider the case of both unidirectional and bidirectional charging. With bidirectional charging,
or Vehicle to Grid (V2G), energy can be discharged from the EV batteries. For simplicity, in a scenario consid-
ering V2G it is assumed that all vehicles are capable of and willing to allow bidirectional charging.

3.3.1. Charging Rate
The charging equipment is intended to represent typical slow charging for a commercial parking lot. Electric
Vehicle charging stations can be categorized as level 1, 2, or 3 [20]. Level 1 charging uses 120 V AC household
outlets, which are the standard in some parts of the world including North America. In Europe, where 230
V AC is the standard, level 1 charging need not be considered. Level 2 charging uses 230 V single phase or
400 V three phase AC power, and these chargers are the primary equipment used for both public and private
charging in Europe. For this reason, it is assumed that the chargers in this simulation are single-phase level 2
chargers. Most Level 2 chargers use a dedicated 40 A circuit, with a maximum 32 A usable This corresponds
to a power of 7.4 kW. All AC slow chargers ate therefore assumed to have a power of 7.4 kW, with all vehicles
able to charge at that power level simultaneously.

Although almost all Level 2 charging involves AC power, it is possible for slow charging to use DC power
as well. In a microgrid where power is generated by solar panels, for example, using DC charging could avoid
unnecessary conversion of DC power (from the solar panels) to AC power (for the grid) and back to DC (for
the EV battery). Because DC power could lead to decreased power losses, this model will also consider DC
slow charging. In order to keep AC and DC slow charging as comparable as possible in the simulation results,
it is assumed that the DC slow chargers will also have a maximum power of 7.4 kW.

Level 3 charging, or DC fast charging, offers the possibility to charge EVs in less time but will not be con-
sidered in this model. Coordinated smart charging is not possible with DC fast charging because the driver
typically expects their vehicle to be charged as quickly as possible, providing very little room for flexibility.
According to EV project data, 47% of all fast charging events lasted less than 20 minutes, with 97% of events
lasting less than 45 minutes [142]. In addition, the parking lots in this model are not ideal locations for DC
fast charging stations. The parking lots at the airport and the workplace are both intended for drivers who
will be parked for an extended period of time, meaning that there is no clear business case for installing a fast
charging station at either parking lot. Although there are some drivers who are parked for shorter durations
who might use fast charging at these locations, a fast charger could be better placed in a location where many
drivers will frequently need fast charging, such as at highway rest areas and shopping centers. If an airport
is installing fast charging stations, they would be better placed at the short term parking for pick-ups and
drop-offs. Because there is little relevance to smart charging, and because there is no compelling business
case, DC fast charging is not considered in this model.

3.3.2. Charging and Discharging Efficiency
When charging a battery, some of the energy is lost. The increase in the battery SOC is given by the charging
efficiency, ir ηchg . Similarly, energy is lost when discharging a battery, meaning that the decrease in battery
SOC is greater than the energy which is ultimately delivered. This is determined by the discharging efficiency,
or ηdi s . We can also consider the energy which is lost over a complete charge-discharge cycle, known as the
round-trip efficiency or ηbat t . These efficiencies can be defined as [151]:

ηchg = ∆Ebat t

∆Ei n
(3.3.1)

ηdi s =
∆Eout

∆Ebat t
(3.3.2)

ηbat t =
∆Eout

∆Ei n
(3.3.3)

= ηchg ·ηdi s (3.3.4)
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Where ∆Ebat t is the increase in the stored energy in the battery, ∆Ei n is the total energy supplied to the
battery, and ∆Eout is the net energy discharged from the battery. The charging, discharging, and round-trip
efficiencies in this model are summarized in Table 3.4.

Table 3.4: Charging and discharging efficiencies

Type Charging [%] Discharging [%] Round trip [%]

EVs, AC 88.35 75.05 66.31
EVs, DC 90.25 90.25 81.45
Fixed battery 95.00 95.00 90.25

When considering the losses during charging and discharging, three types of losses will be considered:
losses in the EVSE; losses in the power electronic components in the EV, which convert the AC power from
the EVSE to the DC power required by the battery (or vice versa during discharging); and losses in the battery
itself. Losses in the EVSE are primarily resistive losses, and are designed to be relatively low. One study found
that EVSE losses are dependant on the current, and range from 0.1%–0.32% during charging and 1.39%–1.42%
during discharging [152]. These losses are dependant on the current and the SOC of the EV battery.

Power losses are also considered in the power electronics within the EV itself. Energy which is supplied
from the EVSE in AC must be converted to DC power in order to charge the EV battery. During discharging,
the power electronics must convert DC power from the battery to AC. These losses are again dependant on
the current and battery SOC, but for a charger with a voltage of 240 V and a current of 30 A, power electron-
ics losses were 5.73%–7.82% during charging and 19.50%–20.85% during discharging. When considering the
losses in the EVSE as well, losses before the power reaches the battery are therefore 5.8%–8.1% during charg-
ing and 20.6%–22.0% during discharging. For the purposes of this simulation, the losses are assumed to be
7% and 21% respectively during AC charging and discharging, excluding losses in the battery. Excluding bat-
tery losses, the round trip efficiency for an AC charger is therefore 73.5%. Losses in the battery itself reduce
that efficiency further.

During DC slow charging, the onboard rectifier in the EV is not needed, which should reduce the efficiency
losses. Unfortunately, there is little reliable data about the efficiency of bidirectional slow DC charging, with
many papers conflating slow charging with AC charging. Industrial DC-DC converters for EV fast charging
can have efficiencies of greater than 98% [153]. Because the slow charging unit will be smaller, with a lower
voltage and power output, it is assumed that losses will be higher. In addition, if the vehicles are charged
from the grid, energy from AC power must be converted to DC. The overall losses, including rectification, are
therefore assumed to be 5%. During V2G, EVs connected to DC EVSE do not need to convert power from
DC to AC eliminating losses from the vehicle’s internal inverter. It is therefore assumed that losses during
discharging are also 5%.

Finally, losses in the battery itself should be considered. These losses are due to internal resistance within
the battery, and chemical side reactions which occur during charging and discharging. The efficiency is heav-
ily dependant on the charging or discharging rate, with a higher rate leading to a lower efficiency. The charg-
ing and discharging rate are typically measured in terms of the C-rate, which is the ratio of the battery power
to the battery capacity. For example, a battery being charged with 10 kW of power and a capacity of 20 kWh
would have a C-rate of 10/20 = 0.5. Battery efficiencies are dependant on both the C-rate and the battery
state of charge, with the efficiency decreasing at a higher SOC [154]. For this reason, vehicle charging rates
are often reduced at higher SOC values.

In this model, the charging rate is already quite low, and therefore does not need to be slowed down at a
higher battery SOC. The smallest battery considered in this report are PHEVs with a capacity of 8.7 kWh. At
a charging rate of 7.4 kW, this corresponds to a maximum C-rate of 0.85. When considering a larger vehicle,
such as a Tesla with a 100 kWh battery pack, the C-rate is only 0.07. At these low charging rates, the effect
of varying SOC levels is not considered to be significant. At a current of 30 A, round trip losses in the battery
were found to only range from 2.50%–3.26% based on the SOC [152]. Even at a higher current of 70 A, round
trip losses only ranged from 5.27%–7.87% depending on SOC, suggesting that charging efficiency is primarily
dependant on current and not SOC for slow-charging vehicle batteries. These efficiencies are also in line
with other literature values, which found that at a rate of 1 C, round trip losses are roughly 6%–8% [151, 154].
Another study found that in a slightly more conservative value of 9% round-trip losses [155]. Note that these
losses are under ideal conditions, with efficiencies decreasing in adverse temperatures and older batteries.
For this reason, the charging and discharging efficiency in the battery itself are both assumed to be 95%,
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corresponding to round trip losses of 9.75%. The battery efficiency is multiplied by the efficiency of the power
electronics to obtain the overall efficiencies, as shown in Table 3.4.

3.4. Fixed Battery Storage
In addition to the electric vehicles, there is also the fixed storage battery which can be used to store energy for
later use. This battery is connected to the DC microgrid, allowing it to directly charge from the solar panels
without power being converted to AC first. The battery can discharge in order to charge the EVs, through an
inverter if necessary.

3.4.1. Battery Capacity and Power
Fixed storage batteries with a range of capacities were investigated as part of this simulation. Larger batteries
offer more flexibility, but increase the cost of the system. As will be demonstrated in Section 5.1, the optimal
battery capacity was determined to be 50 kWh in a parking lot without bidirectional charging. In a parking lot
with V2G, it was determined that additional energy storage in the form of a fixed battery offers no advantages,
and so the battery was not included in those simulations.

In order to prevent degradation, the battery is restricted to using a portion of its total capacity. In lit-
erature, the recommended maximum depth of discharge for for lithium-ion batteries in stationary storage
applications is 80% of total capacity [152]. The SOC of the battery is therefore assumed to be maintained
between 20% and 100% of its total capacity. This means that the 50 kWh battery had a usable capacity of 40
kWh. In order to avoid battery degradation, the battery was limited to a C-rate below 1 during both charging
and discharging. For the 50 kWh battery, the maximum power to or from the battery was therefore 50 kW.

3.4.2. Charging and Discharging Efficiency
As with electric vehicles, the fixed storage battery will have losses in both the power electronics and the bat-
tery itself. Unlike EVs, however, the power electronics which supply power to the fixed storage battery can be
much larger and more efficient. The efficiency of the power electronic equipment is therefore assumed to be
98%, which is the efficiency given for a DC-DC converter for EV fast charging [153]. In addition, the fixed stor-
age battery will be better maintained and monitored, resulting in lower internal battery losses. The battery
losses are therefore assumed to be 3% during both charging and discharging, which is comparable to litera-
ture values for fixed battery storage [151, 154]. The overall efficiency, during both charging and discharging,
was therefore assumed to be 95%. This corresponds to a round trip efficiency of 90.25%. The efficiency for
the fixed battery storage, as well as for the EV chargers, is listed in Table 3.4.

3.5. Other Loads and Losses
This section will discuss other electrical loads which will contribute to the total demand in the parking lot
being simulated. In addition to loads which consume electricity, electrical losses will also be considered. In
this simulation, the only load considered, apart from those already described, is LED lighting. Other loads
which are not connected directly to the parking lot, such as nearby buildings, are not included, as these do
not contribute to the grid exchange of the parking lot itself. Climate control and ventilation, which may be
required in some enclosed parking structures, are not needed in a surface parking lot. Other loads such as
cameras or ticket machines are considered to be negligible and are not taken into account.

3.5.1. LED Lighting
The lighting for the smart solar parking lot is generated using Light Emitting Diodes, or LEDs. Although older
lighting technologies used AC power, the development of low-cost LEDs has led to the increased adoption of
these DC devices, due to their high efficiency and long lifetime [156]. In addition, LEDs use DC power and
can therefore be powered directly from the DC microgrid. The lighting in the parking lot must be sufficient
to ensure a safe and comfortable atmosphere for the users. According the the Netherlands Standardization
Institute, the area around parking places should be lighted to a minimum of 75 lux [157]. One possible plan
for the PowerParking project is to have LED lighting could be affixed to the underside of the solar canopies,
with each canopy having 180 watts of lighting. The luminous efficiency of LEDs can exceed 100 lumens per
watt, meaning that each canopy generates more than 18000 lumens [158]. Because the canopies would cover
four parking spaces, an area of roughly 65 m2, this would correspond to an illuminance of 277 lux, well above
the minimum requirement of 75 lux. With 10 solar canopies and 180 W of lighting per canopy, the peak power
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requirement for lighting is 1.8 kW in total. Note that a single EV charger uses 7.4 kW of power, making lighting
relatively insignificant in terms of total energy consumption.

Furthermore, the LEDs need not be constantly illuminated. Smart lighting system can turn the lights off
when the sun is shining. At night, occupancy sensors can be used to reduce the lighting to a lower level when
the parking lot is unoccupied. In one typical case, a parking lot required lighting 14.2 hours a day on average.
By using occupancy sensors, they were able to operate the lighting at a high-power level for only 8.0 hours
per day, with a low power level for the remaining 6.2 hours. This reduced electricity consumption by 37%
[156]. In this model, it is assumed that occupancy sensors could similarly reduce the average power needed
for lighting by 40%. During times when natural light is insufficient, the total power required is for lighting is
therefore reduced from 1.8 kW to 1.08 kW. When natural light provides more than 300 lux of illuminance, it is
assumed that the LEDs can be turned off completely. The global efficiency of sunlight is 105 lumens per Watt,
which means that the LEDs must be turned on if the Global Horizontal Irradiance (GHI) is below 3 Watts per
m2 [159]. This is true on average 12.1 hours per day, with the nighttime hours obviously being longer during
the winter and shorter during the summer.

3.5.2. Electrical Losses
Resistive losses in the cables will take place as power is transmitted between the solar panels, battery, EVSE,
and EVs. These losses have already been described in the respective sections for each system component.
There are also losses in the system when energy is converted between DC and AC or vice versa. Power con-
verted from DC to AC is done through the centralized inverters as described in section 3.1, with the losses
discussed there. Power converted from AC to DC is done through rectifiers connected to DC slow chargers for
EVs, discussed in section 3.3, or through a rectifier connected to the fixed storage battery, discussed in section
3.4. Losses for these power electronic devices are discussed in those sections. These losses can compound on
each other, especially in cases with a great deal of charging and discharging. The overall efficiencies for a few
possible scenarios are shown in Table 3.5.

Table 3.5: Overall efficiencies for different scenarios

Scenario Efficiency [%]

AC charging DC charging

Vehicle charged directly 88.35 90.25
Battery to vehicle 79.74 81.45
Vehicle to vehicle (V2V) 58.58 73.51

In all of these scenarios, the power originates at either the electricity grid or is generated by solar panels.
If the solar panels are powering an AC load, there will be additional inverter losses. Similarly, if the grid is
powering a DC load, there will be rectifier losses. These losses are not included in Table 3.5 for the sake of
simplicity. Due to the efficiency of those components, those losses are considered to be negligible. Because
of the low discharging efficiencies as given in Table 3.4, bidirectional charging results in very high losses,
especially with AC charging. For this reason, fixed battery storage may be preferable to V2G unless more
efficient bidirectional charging technology is developed.
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Charging Strategies

In addition to the physical system, the solar parking lot also requires a control system. This control system
is responsible for managing the loads, charging vehicles, and controlling power to and from the battery. The
general topology of the system, including the flow of electricity and information, is shown in Figure 4.1.

Figure 4.1: Diagram of the smart solar parking, including a control system

There are a number of possible charging strategies for smart solar parking lots. Strategies from the liter-
ature have previously been discussed in Section 2.2. In this report, two main strategies will be considered:
uncoordinated charging, described in Section 4.1, and coordinated smart charging seeking to minimize the
peak electricity demand. Smart charging is first described in Section 4.2 assuming perfect knowledge about
future solar power generation and EV behavior. Then, Section 4.3 will describe smart charging strategies
which consider solar power uncertainty. Finally, Section 4.4 will describe smart charging strategies which
additionally consider unknown EV behavior.

49
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4.1. Uncoordinated Charging
Uncoordinated charging, also referred to as dumb charging, is implemented in this model as a base-case sce-
nario. Vehicles begin charging at the maximum possible rate the moment they are connected, and continue
charging until either they are fully charged or they depart. A fixed storage battery is also used, which charges
whenever generation for solar power is greater than the current consumption, and discharges whenever the
demand from vehicles and other loads is greater than generation. When the battery is unable to charge or dis-
charge further due to the state of charge reaching the allowed limits, energy is bought or sold from the grid.
This strategy does not consider any future information about solar generation or electric vehicle demand.

Almost all vehicle charging is currently uncoordinated, with smart charging being the exception rather
than the rule. Uncoordinated charging has the advantage of not requiring extra communication networks or
charging infrastructure while being simpler for EV drivers. It is therefore the relatively simple and inexpensive
to implement. Since the vehicle begins charging at the maximum rate immediately, it will also be the fastest
strategy at a given charging power level. Despite the benefits, uncoordinated charging can result in high
peaks in the electricity demand. There are uncoordinated charging strategies which seek to reduce these
peaks, such as off-peak or delay charging described in Section 2.2, but these strategies can fail to reduce and
may even increase the peak demand. Smart charging is therefore considered.

4.2. Smart Charging with Perfect Information
In smart charging, the parking lot operator does not necessarily begin charging vehicles the moment that
they are connected. It is possible to delay the start of charging, or to charge at a slower rate. In addition, it is
possible for the parking lot operator to make use of fixed battery storage to store electricity when it is available
and use it when required. Furthermore, it is possible for some vehicles to engage in Vehicle to Grid (V2G),
where the batteries of electric vehicles are discharged to send power to other charging vehicles or other loads.
Examples of a vehicles state of charge (SOC) under different charging strategies are shown in Figure 4.2.

Figure 4.2: Examples of battery state of charge (SOC) over time for different strategies

In this model, it is assumed that EV drivers prefer to have their vehicle as fully charged before they depart,
and parking lot operators must therefore charge all the vehicles as much as possible. Within these limitations,
the parking lot operator can control the EV charging in order to achieve their own goal. For this analysis, it is
assumed that during smart charging the parking lot operator will seek to reduce the peak electricity demand
as much as possible, given the reasons described in Section 2.2. Note that this peak shaving behavior may
not reduce the overall grid exchange, it will only reschedule the times when electricity is bought and sold.
The overall net grid exchange is difficult to change regardless of the strategy, because the total generation is
uncontrollable, as is the total energy needed to charge the vehicles. This means that the net grid exchange
is relatively unaffected by the charging strategy. Through intelligent control strategies, however, the peak
demand can be reduced significantly.



4.2. Smart Charging with Perfect Information 51

4.2.1. Model Predictive Control
Model Predictive Control (MPC) is a form of control strategy that has become the accepted standard for de-
termining the optimal behavior in complex constrained multivariable problems [160]. In MPC, the control
action is determined at each time step by solving an open-loop optimal control problem over a finite hori-
zon. This differentiates MPC from some controllers which use an infinite horizon. Model Predictive Control
is capable of handling constraints on inputs, states, and outputs [161], making it suitable for modeling the
smart solar EV charging system.

In MPC, an optimization problem is formulated to determine the optimal control sequence for the sys-
tem. The current state of the system is used as the initial state in this problem. MPC solves the optimization
problem at each time step k in the period under consideration:

k ∈ {1, . . . , NT } (4.2.1)

where NT is the number of time steps considered in one full simulation. Rather than considering the full
simulation period, The optimization problem is solved for a smaller set of time steps from the current time
step to the finite time horizon:

t ∈ {k, k +1, . . . ,k +Np −1} (4.2.2)

where t represents a given time step up to the horizon, k is the current time step and Np is the number of
time steps in the horizon. The optimal control sequence is determined at each time step t .

In MPC, only the first control action is implemented to update the system state. The value of k is then
incremented by one and the computation is repeated. Because the time horizon recedes with each computa-
tion, MPC is also known as receding horizon control [162]. The optimization problem is solved at each time
step until the behavior is determined for the full simulation period. MPC differs from conventional control
strategies in that the optimization problem is solved online, rather than off-line. This means that the opti-
mal control strategy is not calculated in advance, but is instead determined during operation. MPC is able to
handle control problems where off-line computation of a control law may be difficult or impossible. In this
system, developing an optimal off-line control strategy is quite difficult, so MPC is used. The total simulation
time is 365 days with time steps spaced by 15 minutes. The simulation is finished when the horizon at the end
of the time window reaches 365 days, in order to ensure that the size of the time window remains consistent.
A time horizon of 24 hours is chosen, meaning that Np = 24 ·4 = 96 and NT = 364 ·24 ·4 = 34,944.

The length of the time horizon in the MPC problem must be chosen carefully. A longer time horizon can
lead improved results as the optimization problem considers more information. Increasing the window size,
however, will result in increased computation time. The choice of the time horizon in this model is made by
simulating the solar parking lot for one year, assuming that perfect information is available. The impact of
MPC window size on the grid exchange can be observed in Figure 4.3.

Figure 4.3: Simulated grid exchange vs. MPC time horizon

The figure depicts the minimum and maximum grid exchange, as well as the 10%–90% range and the
median. Also depicted are the minimum and maximum grid exchange during uncoordinated charging, for
comparison. As can be observed, the peak grid demand, especially in a workplace, is significantly higher
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for shorter time horizons. As the horizon gets longer, the maximum demand decreases. Although the opti-
mization problem does not seek to increase the minimum demand, this value also increases with longer time
horizons. This is because the controller stores more energy, considering the demand further in the future. The
minimum and maximum demand do not change significantly in either parking lot for time horizons longer
than 24 hours. The only exception is that workplace peak demand decreases slightly if the time horizon in-
creases from 24 to 48 hours. This longer horizon, however, extended the simulation time from 2.5 hours to 8
hours. Furthermore, forecasting accuracy decreases for longer time horizons, meaning that the benefits of a
longer horizon are likely to diminish as uncertainty is introduced into the model. For these reasons, a time
horizon of 24 hours was chosen.

Model Predictive Control considers a state-space model of the form:

x(k +1) = f (x(k),u(k),ν(k)) (4.2.3)

y(k) = g (x(k),u(k),ν(k)) (4.2.4)

0 ≤ h(x(k),u(k),ν(k)) (4.2.5)

where x represents the state variables, u the control variables, ν represents auxiliary variables, y represents
that output, and h represents constraints on the state, control, and auxiliary variables [160].

We express our optimization problem in the form:

minimize
ũ(t )

J (x(t ), ũ(t )) such that 0 ≤ h(x(k), ũ(k)) (4.2.6)

where J is the objective function and ũ(k) is the set of all decision variables including the auxiliary variables.
For the sake of computational simplicity, the problem can be formulated such that all equations for the

state, output, and constraints are linear. This model can be formulated linearly as a Mixed Integer Linear
Programming (MILP) problem, specifically as a Mixed-Logical Dynamical (MLD) system consisting only of
continuous and binary variables. This system has the form [163]:

x(k +1) = Ax(k)+B1u(k)+B2δ(k)+B3z(k) (4.2.7)

y(k) =C x(k)+D1u(k)+D2δ(k)+D3z(k) (4.2.8)

g ≤ E1x(k)+E2u(k)+E3δ(k)+E4z(k) (4.2.9)

The optimization problem was solved using Gurobi, which is able to handle MILP problems quickly and
efficiently [164]. The specific formulation of the MLD model will be detailed in the following sections.

4.2.2. Objective Function
We are considering the case of a parking lot operator seeking to reduce the peak demand on the grid. For the
optimization problem under consideration then, the objective function is:

minimize max
(
Eg r i d (k), . . . ,Eg r i d (k +Np −1)

)
(4.2.10)

where Eg r i d (k) is the net energy exchange between the parking lot operator and the electricity grid at time k.
In order to simplify the optimization computation, it is desirable to formulate the problem using only linear
functions. This is accomplished through the introduction of an auxiliary variable E max

g r i d which represents the

local maximum for the grid exchange over the time horizon under consideration:

E max
g r i d = max

(
Eg r i d (k), . . . ,Eg r i d (k +Np −1)

)
(4.2.11)

The objective function can be rewritten as:

minimize E max
g r i d (4.2.12)

4.2.3. Decision Variables
In the MPC formulation, the control variables represent the energy transferred to or from each of the batteries.
The state variables are then the amount of energy stored in each battery. During each time step within the
window considered in MPC, the decision is made to either charge or discharge each electric vehicle, and to
either charge or discharge the fixed battery storage. The energy to or from the fixed storage and the electric
vehicles is given by Ei (t ) where i ∈ {1, . . . , Nb}, t ∈ {k, . . . ,k +Np −1}. Each battery is represented by the index
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i , with Nb as the total number of batteries. The electric vehicle charging stations are represented by i =
1, . . . , Nb −1, and the fixed storage battery is represented by i = Nb . Because the simulation considers 40 EV
charging stations, Nb = 41. The energy used to charge each battery Ei (t ) is in units of kWh, and is defined to
be positive during charging and negative during discharging. We therefore have the control variables given
by:

u(t ) = E(t ) = [E1(t ), . . . ,ENb (t )]T (4.2.13)

for t ∈ t = k, . . . ,k +Np −1. The state variables are defined as:

x(k) = S(k) = [S1(k), . . . ,SNb (k)] (4.2.14)

where Si (k) is the energy stored in battery i at time k, in units of kWh. The formula for the updated state
variable depends on whether the battery is charging or discharging, given by :

Si (k +1) =
{

Si (k)+ηchg ,i ·Ei (k), Ei (k) > 0

Si (k)+ 1
ηdi s,i

Ei (k), Ei (k) ≤ 0
(4.2.15)

where ηchg ,i is the efficiency during charging for battery i and ηdi s,i is the efficiency during discharging. The
fixed storage battery, AC vehicle chargers, and DC vehicle chargers all have different efficiencies, so the values
are dependant on i . Because the charging rate for these batteries is quite low, the efficiency is assumed to be
independent of the SOC.

This charging and discharging behavior of the batteries is nonlinear. For computational efficiency, it is
desirable to solve the optimization problem using linear programming. The problem is therefore formulated
as a Mixed-Logical Dynamical (MLD) system, with the introduction of binary and continuous variables [165].
For each battery at each time step, a binary decision variable δi (t ) is introduced, defined by:

[δi (t ) = 0] ↔ [Ei (t ) > 0] (EV or battery is charging) (4.2.16)

[δi (t ) = 1] ↔ [Ei (t ) ≤ 0] (EV or battery is discharging) (4.2.17)

This binary variable can be used to reformulate equation 4.2.15:

Si (k +1) = Si (k)+ηchg ,i ·Ei (k) · (1−δi (k))+ 1

ηdi s,i
Ei (k) ·δi (k) (4.2.18)

Although this formulation is simpler, it is still nonlinear because it contains the product of two decision vari-
ables. Another set of continuous decision variables is therefore introduced:

zi (t ) = δi (t ) ·Ei (t ) (4.2.19)

The state variable is then expressed in terms of a linear combination of the decision variables:

Si (k +1) = Si (k)+ηchg ,i ·Ei (k)+
(

1

ηdi s,i
−ηchg ,i

)
zi (k) (4.2.20)

As a final auxiliary variable, we consider the maximum grid exchange within the MPC time window, E max
g r i d ,

which is needed for a linear objective function. The decision variables are then given by:

E max
g r i d , E(t ), δ(t ), z(t ) (4.2.21)

for t ∈ {k, . . . ,k +Np −1}. We define E(t ) = [E1(t ), . . . ,ENb (t )]T , with the same for δ(t ) and z(t ). The number of
decision variables in each optimization problem is therefore 3 ·Nb ·Np +1 = 11,809, with 3,936 of those being
binary.

4.2.4. Constraints
In a Mixed Logical Dynamics model, the constraints must be in the form of linear inequalities of the deci-
sion, state, and auxiliary variables [165]. Because the MLD formulation in this problem also introduces the
auxiliary variable E max

g r i d , we must also consider the constraints on this variable. It is defined as:

E max
g r i d = max(Eg r i d (k), . . . ,Eg r i d (k +Np −1)) (4.2.22)

with Eg r i d (t ) = El oad (t )−EPV (t )+
Nb∑
i=1

Ei (t ) (4.2.23)
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where El oad (t ) is the energy going to loads such as lighting, and EPV (t ) is the energy generated from the PV
system. The signs are defined such that positive energy means that the parking lot is buying from the grid,
and negative means that they are selling to the grid. Note that because they are uncontrollable, Eload (t ) and
EPV (t ) are not considered decision variables. In order to express this as a linear constraint, we establish:

E max
g r i d ≥ Eload (t )−EPV (t )+

Nb∑
i=1

Ei (t ) (4.2.24)

for all t ∈ {k, . . . ,k +Np −1}. Although this equation only defines the lower bound, the objective function in-
creases with higher values of E max

g r i d . Therefore, the objective function will be minimized at the true maximum

value of grid exchange within the time window. We then consider a limit to the energy which can be sold to
the grid:

E min
g r i d ≤ Eload (t )−EPV (t )+

Nb∑
i=1

Ei (t ) (4.2.25)

for all t ∈ {k, . . . ,k+Np −1}. E min
g r i d is a constant value that represents the minimum possible value of exchange

with the grid. Since energy being sold to the grid is defined to be negative, this is equivalent to the maximum
allowable energy which can be sold at a given time step, which is limited by physical restrictions of compo-
nents like the inverters and the transformer. This constraint is needed because the objective function only
considers maximum, and not minimum exchange with the grid. Note that a small limit on the power which
can be sent to the grid may require curtailment of solar power at certain times. Because curtailment is not
considered in this simulation, the limit is set at a level which is attainable at all time steps, including when so-
lar power is generating at its full capacity and there is no possibility to store energy in any batteries. A suitable
value for E min

g r i d is therefore -128 kW, which is 105% of peak generation capacity.

Next, we consider the constraints for the state variables, which represent the energy stored in the batteries
of both the electric vehicles and the fixed storage. By using the definition of the state variable in equation
4.2.20, we can establish:

Smin
i (t +1) ≤ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) (4.2.26)

Smax
i (t +1) ≥ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) (4.2.27)

for all i ∈ {i , . . . , Nb} and t ∈ {k, . . . ,k+Np−1} where Smin
i and Smax

i are the minimum and maximum acceptable
levels of energy stored in each battery at a given time. These limits are based on the technical constraints of
the vehicle, as well as the desire that the battery in EVs should charged as much as possible in the time the
vehicle is parked.

In order to establish the value of Smin
i , we consider that the desired energy in a vehicle is high enough that

there is sufficient time to fully charge the vehicle to 100% of its usable capacity before departure, with the
desired stored energy given by:

Sdesired
i (t ) =Ci −P max

EV ·ηchg ,i · (tdep,i − t ) (4.2.28)

where Ci is the usable capacity of the vehicle in space i , tdep,i is the departure time for the vehicle, and P max
i

is the maximum power which can be supplied by the charging equipment. We must also consider that not
all vehicles can be charged in the time available, in which case we must consider the maximum achievable
energy which can be stored in a battery at a given time, given by:

Sachievable
i (t ) = Si (tar r,i )+P max

EV ·ηchg · (t − tar r,i ) (4.2.29)

where tar r,i is the arrival time for the vehicle and Si (tar r,i ) is the energy that was stored in the vehicle battery
when it arrived. For electric vehicles, the battery should be charged to the desired level if possible, and to the
achievable level if not. For the fixed storage, the energy stored should be kept above SOC min

bat t ·Cbat t where

Cbat t is the capacity of the battery in kWh and SOC min
bat t is the minimum allowable state of charge for the

battery, defined to be 20%, because it is assumed that only 80% of the capacity is usable. This means that the
minimum stored energy is defined as:

Smin
i (t ) =

{
max(0, min(Sdesired

i (t ), Sachievable
i (t ))) i = 1, . . . , Nb −1

SOC min
bat t ·Cbat t i = Nb

(4.2.30)
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The maximum energy allowed is more straightforward. For both the electric vehicles and the fixed storage
battery, it is simply the total usable capacity, Ci :

Smax
i (t ) =Ci i = 1, . . . , Nb (4.2.31)

Finally, we consider the auxiliary MLD variables δ(t ) and z(t ). To define δ(t ), we consider a function of
the decision variables f (x) defined such that [ f (x) ≤ 0] ↔ [δ = 1]. We also consider the auxiliary variable
z = f (x) ·δ. These are defined given the constraints [163]:

δ ∈ {0,1} (4.2.32)

f (x) ≤ M(1−δ) (4.2.33)

f (x) ≥ ε+ (m −ε)δ (4.2.34)

z ≤ Mδ (4.2.35)

z ≥ mδ (4.2.36)

z ≤ f (x)−m(1−δ) (4.2.37)

z ≥ f (x)−M(1−δ) (4.2.38)

Where M is the maximum allowable value of f (x), and m is the minimum. An overestimate of M (or an
underestimate of m) is also acceptable, but for computational purposes a value close to the true maximum
or minimum is preferred. The tolerance ε is a small value, typically the machine precision of the solver. In the
case of our model, f (x) = Ei (t ). The minimum and maximum values given by:

Mi = P max
i ·∆t (4.2.39)

mi =−P max
i ·∆t (4.2.40)

where ∆t is the length of the interval between time steps. By substituting the chosen values of f (x), M , and
m for each battery and time step, we can establish the constraints on these auxiliary variables. Combining all
the constraints allows for the full definition of the optimization problem.

4.2.5. Complete Optimization Formulation
Combining the previous sections, we can express this optimization problem using MLD as follows:

minimize
E max

g r i d ,E ,δ,z
E max

g r i d (4.2.41)

With the decision variables:

E max
g r i d , Ei (t ), δi (t ), zi (t ) for i ∈ {1, . . . , Nb}, t ∈ {k, . . . ,k +Np −1} (4.2.42)

Such that:

E max
g r i d ≥ Eload (t )−EPV (t )+

Nb∑
i=1

Ei (t ) ∀ t (4.2.43)

E min
g r i d ≤ Eload (t )−EPV (t )+

Nb∑
i=1

Ei (t ) ∀ t (4.2.44)

Smin
i (t +1) ≤ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) ∀ i , t (4.2.45)

Smax
i (t +1) ≥ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) ∀ i , t (4.2.46)

δi (t ) ∈ {0,1} ∀ i , t (4.2.47)

Ei (t ) ≤ Mi · (1−δi (t )) ∀ i , t (4.2.48)

Ei (t ) ≥ ε+ (mi −ε) ·δi (t ) ∀ i , t (4.2.49)

zi (t ) ≤ Mi ·δi (t ) ∀ i , t (4.2.50)

zi (t ) ≥ mi ·δi (t ) ∀ i , t (4.2.51)

zi (t ) ≤ Ei (t )+Mi · (1−δi (t )) ∀ i , t (4.2.52)

zi (t ) ≥ Ei (t )+mi · (1−δi (t )) ∀ i , t (4.2.53)
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4.3. Smart Charging with Uncertainty in PV Forecasting
In real world, the true value of the solar power generation EPV (t ) is not known exactly. Instead, we have only
a forecast of the solar energy generation, given by:

E f cst (t ) = EPV (t )+ωPV (t ) (4.3.1)

where ωPV (t ) represents the error in the solar forecasting. This error can result in uncertainty with regard
to the objective function. The state variables, however, represent the stored energy in the batteries, which
is known accurately. This means that we do not need to consider uncertainty in the state equations, as is
sometimes necessary when performing optimization under uncertainty. Given this error in the solar fore-
casting, the optimization strategy must be reconsidered. We consider two strategies, nominal optimization
and robust optimization.

4.3.1. Nominal Optimization
The nominal strategy is the simplest way of handling uncertainty in solar power generation. The there is no
uncertainty in the solar forecasting,ωPV (t ) = 0, and bases the optimization decision on the forecasted values.
The optimization problem is rewritten as follows:

minimize
E max

g r i d ,E ,δ,z
E max

g r i d (4.3.2)

With the decision variables:

E max
g r i d , Ei (t ), δi (t ), zi (t ) for i ∈ {1, . . . , Nb}, t ∈ {k, . . . ,k +Np −1} (4.3.3)

Such that:

E max
g r i d ≥ Eload (t )−E f cst (t )+

Nb∑
i=1

Ei (t ) ∀ i , t (4.3.4)

E min
g r i d ≤ Eload (t )−E f cst (t )+

Nb∑
i=1

Ei (t ) ∀ i , t (4.3.5)

(4.2.45)− (4.2.53)

Note that this formulation is almost identical to the original, with the only difference being that E f cst (t ) re-
places EPV (t ), as they are assumed to be equivalent. This method has the advantage of being easy to solve,
and it is one which is likely to be implemented by parking lot operators when anticipating renewable energy
production. The problem is that nominal optimization may lead to a higher peak demand if the forecasting
errors are large. We would preferably implement a solution which reduces the peak grid exchange regardless
of the forecasting error. For that reason, we use robust optimization.

4.3.2. Robust Optimization
In this strategy, we seek to choose charging behavior that will result in the lowest possible grid exchange re-
gardless of the forecasting error. This means that the system should be robust with regard to the forecasting
error. A control system is considered to be robust when stability and performance is guaranteed to be main-
tained for all possible uncertainties in a certain range. Robust optimization can lead to improved perfor-
mance when compared to nominal optimization, but it does have two possible drawbacks. Firstly, it is more
computationally demanding, and secondly it may lead to control actions which are excessively conservative
[114].

Robustness can only be considered with respect to a limited range of uncertainty. As part of the modeling
process it is necessary to accurately describe the uncertainty in the system. Errors in solar forecasting can be
described as a form of bounded input uncertainty. This means that the uncertainty is limited to an unknown
disturbance in the input, but the linear coefficients defining the system are known precisely. This is in con-
trast to other uncertainty sets, where the system states may be affected by uncertainties [114]. The system
with an MLD formulation, considering the bounded input uncertainty, can be expressed given:

x(k +1) = Ax(k)+B1u(k)+B2δ(k)+B3z(k)+B4w(k) (4.3.6)

y(k) =C x(k)+D1u(k)+D2δ(k)+D3z(k)+D4w(k) (4.3.7)

g ≤ E1x(k)+E2u(k)+E3δ(k)+E4z(k)+E5w(k) (4.3.8)
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where w(k) is a vector of uncertainties in the system. To ensure robustness, we use min max optimization,
which minimizes the cost function over the decision variables while maximizing it over all possible uncer-
tainty vectors [166]:

minimize
ũ(t )

maximize
w∈W

J (x(t ), ũ(t ), w(t )) (4.3.9)

where W is the bounded uncertainty set. In this case, the uncertainty under consideration is with regards
to the solar energy generation, with an error ωPV (t ) = E f cst (t )−EPV (t ). The objective function as given in
equation 4.2.6 must then be revised:

minimize
E max

g r i d ,Ei (t ),δi (t ),zi (t )
maximize
ω∈ΩPV (t )

E max
g r i d (4.3.10)

where ω is a vector representing a random possible value for the forecasting errors at each time step t , and
ΩPV (t ) is the bounded set of all possible forecasting errors.

One approach to solving this problem relies on multi-parametric mixed integer linear programming (mp-
MILP) [167]. The inner problem can be solve first explicitly. The outer problem can then be solved using
MILP. However, this can be computationally inefficient with a large vector of parameters and a far prediction
horizon [168]. Because this problem considers several thousand variables and an MPC horizon of 96 time
steps, this solution is practically infeasible. It was found that for this problem, a robust optimal solution
could be found efficiently using Monte Carlo optimization.

For Monte Carlo optimization, we consider a finite but large number of possible error vectors:

Ω∗
PV = {ω(1)

PV , . . . ,ω(Ne )
PV } ⊆ΩPV (4.3.11)

where Ne is the number of error vectors being considered. If Ne is sufficiently large, we can considerΩ∗
PV to be

a reasonably good approximation ofΩP t . In this model, a value of 10,000 is chosen for Ne . Although in reality
the forecasting error is normally distributed, a bounded distribution is necessary for robust optimization. For
this reason, the distribution is artificially truncated such that:

−3σPV (t ) ≤ω( j )
PV (t ) ≤ 3σPV (t ) (4.3.12)

for all t ∈ {k, . . . ,k + Np − 1} and j ∈ {1, . . . , Ne }. The upper and lower bounds are determined by σPV ,t , the
standard deviation of the forecasting error at time t . The forecasting error is also truncated so that the fore-
casted power generation cannot be less than zero or greater than the clear sky generation. The choice of three
standard deviations as a limit, rather than a more conservative value of five or seven, is justified based on sim-
ulation results. One year of operation was simulated for the solar parking lot, using robust optimization to
consider the solar forecasting errors. The number of standard deviations considered for the bounds on the
forecasting error during robust optimization does not noticeably impact the peak demand, leading to the
conclusion that three standard deviations is sufficiently robust. The results of these simulations are shown in
Figure 4.4.

Figure 4.4: Electricity demand vs. standard deviations considered during robust optimization

Although the peak demand does not change at more conservative bounds for the forecasting error, the
10th percentile for grid exchange does decease slightly with more standard deviations being considered. With
more conservative bounds for the forecasting errors, vehicles are charged earlier in the day, resulting in the
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vehicles being fully charged by the middle of the day and solar energy being sent to the grid. This demon-
strates how the robust strategy may lower the peak demand at the expense decreasing the self-consumption
of renewable energy.

The errors at each time step are therefore drawn randomly from the uniform distribution given by:

ω
( j )
PV (t ) ∈U (−3σPV (t ), 3σPV (t )) (4.3.13)

We then consider a new auxiliary variable T defined as the maximum value for the objective function un-
der all possible forecasting errors. Because the objective function is not directly dependant on the forecasting
uncertainty, T can simply be defined as being equal to the original objective function.

T = max(J (ũ, x,ω(1)
PV ), . . . , J (ũ, x,ω(Ne )

PV ) (4.3.14)

= E max
g r i d (4.3.15)

We must then consider that the constraints are satisfied for all possible error vectors. The affected constraints
are those dependant on the grid exchange, which is given by:

Eg r i d (t ) = Eload (t )−E f cst (t )+ωPV (t )+
Nb∑
i=1

Ei (t ) (4.3.16)

In order for the solution to be robust, the constraints must be satisfied under all forecasting scenarios:

E max
g r i d ≥ Eload (t )−E f cst (t )+ω(1)

PV (t )+
Nb∑
i=1

Ei (t ) (4.3.17)
...

E max
g r i d ≥ Eload (t )−E f cst (t )+ω(Ne )

PV (t )+
Nb∑
i=1

Ei (t )

E min
g r i d ≤ Eload (t )−E f cst (t )+ω(1)

PV (t )+
Nb∑
i=1

Ei (t ) (4.3.18)
...

E min
g r i d ≤ Eload (t )−E f cst (t )+ω(Ne )

PV (t )+
Nb∑
i=1

Ei (t )

for all t ∈ {k, . . . ,k +Np −1}.
These constraints, however, are redundant when formulating the optimization problem. Consider the

minimum and maximum values for the forecasting error at each time step in the MPC window:

ωmin
PV (t ) = min

(
ω(1)

PV (t ), . . . ,ω(Ne )
PV (t )

)
(4.3.19)

ωmax
PV (t ) = max

(
ω(1)

PV (t ), . . . ,ω(Ne )
PV (t )

)
(4.3.20)

for all t ∈ {k, . . . ,k +Np −1}.
These can be substituted into the constraints containing uncertainty, given by Equations 4.3.17 and 4.3.18,

with the general form given in Equation 4.3.8. As proven in [169], the constraints and will hold for all distur-
bances assuming:

g ≤ E1x(k)+E2u(k)+E3δ(k)+E4z(k)+E5wmax(k) (4.3.21)

g ≤ E1x(k)+E2u(k)+E3δ(k)+E4z(k)+E5wmin(k) (4.3.22)

meaning that only the minimum and maximum values for the disturbances need be considered, rather than
all possible values. This is because a constraint cannot be active at some intermediate value of the distur-
bance without violating the constraint at an extreme value.

In the case of this model, the matrix E5 only takes the form of the identity matrix, so it can be determined
whether the constraint will be active at the minimum or maximum value of the disturbance. A greater-than
constraint will be active only at the maximum value of the disturbance, and a less-than constraint will only
be active at the minimum. The constraints in Equations 4.3.17 and 4.3.18 can therefore be simplified, con-
sidering only the maximum and minimum values respectively of the solar forecasting uncertainty.
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The complete optimization problem is then given by:

minimize
T,E max

g r i d ,E ,δ,z
T (4.3.23)

With the decision variables:

T, E max
g r i d , Ei (t ), δi (t ), zi (t ) for i ∈ {1, . . . , Nb}, t ∈ {k, . . . ,k +Np −1} (4.3.24)

Such that:

T ≥ E max
g r i d (4.3.25)

E max
g r i d ≥ Eload (t )−E f cst (t )+ωmax

PV (t )+
Nb∑
i=1

Ei (t ) ∀ i , t (4.3.26)

E min
g r i d ≤ Eload (t )−E f cst (t )+ωmin

PV (t )+
Nb∑
i=1

Ei (t ) ∀ i , t (4.3.27)

(4.2.45)− (4.2.53)

4.4. Smart Charging with Uncertainty in EV Behavior
Another assumption made in the optimization formulation is that the arrival time, departure time, initial state
of charge, and battery capacity is known for all vehicles. In reality, this is known only for the vehicles which
have already arrived and begun charging. These vehicles are assumed to transmit battery state of charge data
to the charger, and the EV driver will tell the system when plugging in when they will be departing. This
information, however, is not known before arrival.

Some information may be known before arrival, but with a high degree of uncertainty. For example, some
airport parking lots allow the driver to reserve a space in advance, meaning that arrival timetar r,i and possibly
even departure time tdep,i could be known for some vehicles before the EV arrives. The capacity Ci and initial
state of charge SOCi (tar r,i ), however, will not be known until arrival. Furthermore, not all vehicles will reserve
a space in this way, meaning that the at least some of the arrivals will be unplanned.

This uncertainty can introduce error into these variables, which affects the optimization formulation.
These values determine the minimum and maximum allowable stored energy, Smin

i (t ) and Smax
i (t ), through

equations 4.2.30 and 4.2.31. These limits are in turn included in constraints 4.2.45 and 4.2.46. Rather than
considering all these uncertainties individually, their effect can be included into the uncertainty of the mini-
mum and maximum stored energy:

Smin
i (t +1) = Smin

i (t )+ωSmin
i

(t ) (4.4.1)

Smax
i (t ) = Smin

i (t )+ωSmax
i

(t ) (4.4.2)

where ωSmin
i

(t ) represents the uncertainty in the change in the value of Smin
i (t ), and ωSmax

i
(t ) represents the

uncertainty in the difference between Smin
i (t ) and Smax

i (t ). The bounds of these uncertainties are determined
by the uncertainties regarding arrival time, departure time, capacity, and initial SOC. Note that these un-
certainties again do not appear directly in the objective function, and do not introduce uncertainty into the
values of the state variables, only into the state constraints.

It is then necessary to consider both the uncertainty of solar power generation, and uncertainty of EV
charging demand. Solar uncertainty will be dealt with using robust optimization, as described in Section 4.3.
EV demand uncertainty will be handled with three different techniques: optimization without EV forecasting,
optimization with average EV demand forecasting, and optimization which is robust over a range of possible
EV demands.

4.4.1. Optimization Without EV Forecasting
This is the simplest way of handling uncertainty regarding EV charging. In this strategy, the optimal behavior
is calculated only for the vehicles present, during the times in which they are present. Spaces not yet occu-
pied, or spaces after a vehicle has departed, are assumed to be empty. This means that for the spaces i which
are not known to be occupied at time t :

Smin
i (t ) = Smax

i (t ) = 0 (4.4.3)
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The optimization problem is then formulated identically to the formulation in the Section 4.3.2, with solar
forecasting uncertainty handled robustly.

This strategy is clearly a poor one, as it ignores the inevitable demand from vehicles which have not yet
arrived. A better strategy would consider the inevitable demand from vehicles which will begin charging in
the future.

4.4.2. Optimization With Average EV Demand Forecasting
In this strategy, solar forecasting is again handled robustly. Regarding charging demand uncertainty, it is as-
sumed that EVs may be present in any future time slots. For vehicles which have not arrived yet, it is assumed
that vehicles will have an energy demand that is average for vehicles in the parking lot. This means that the
minimum and maximum stored energy are given by:

Smin
i (t ) = Smin

i (t ) (4.4.4)

Smax
i (t ) = Smax

i (t ) (4.4.5)

where Smin
i (t ) and Smax

i (t ) represent the average values for these variables. These values are substituted into
constraints4.2.45 and 4.2.46. We can then solve the optimization problem again using robust optimization
to consider the PV forecasting error, and the average approach to consider demand from future charging
vehicles. Using the formulation for robust optimization from the Section 4.3.2, the optimization problem
here is given by:

minimize
T,E max

g r i d ,E ,δ,z
T (4.4.6)

With the decision variables:

E max
g r i d , Ei (t ), δi (t ), zi (t ) for i ∈ {1, . . . , Nb}, t ∈ {k, . . . ,k +Np −1} (4.4.7)

Such that:

Smin
i (t +1) ≤ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) ∀ i , t (4.4.8)

Smax
i (t +1) ≥ Si (t )+ηchg ,i Ei (t )+

(
1

ηdi s,i
−ηchg ,i

)
zi (t ) ∀ i , t (4.4.9)

(4.2.47)− (4.2.53)

(4.3.25)− (4.3.27)

4.4.3. Optimization with Robust Consideration of EV Demand
In this strategy, a charging strategy is found which is robust with regard to uncertainty of EV energy demands
in addition to solar forecasting uncertainty. It is necessary to consider the uncertainty for the minimum and
maximum amount of energy which is allowed to be stored in a vehicle battery.

Smin
i (t +1) = Smin

i (t )+ωSmin
i

(t ) (4.4.10)

Smax
i (t ) = Smin

i (t )+ωSmax
i

(t ) (4.4.11)

First, note that Smin
i (t ) is non-strictly increasing, because as the vehicle grows closer to its departure time and

the required stored energy can never decrease. This means that ωSmin
i

(t ) ≥ 0. In addition, the increase in the

required stored energy can never be greater than the maximum possible energy which is able to be charged
to a battery during a single time step. This means that:

0 ≤ωSmin
i

(t ) ≤ ηchg ,i ·P max
i ∆t (4.4.12)

where ∆t is the length of each time step. Although this serves as a suitable upper bound for ωSmin
i

(t ), it was

determined that in airport charging the demand for energy is much lower than at a workplace. In order for
robust optimization to avoid overly-conservative behavior, it is necessary that the uncertainty is bounded
with realistic values. The upper bound for ωSmin

i
(t ) was therefore taken to be ωSmin

i
(t ) ≤ ηchg ,i ·P max

i only for

workplace parking, and 10% of that value in airport parking.
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We then note that the maximum allowable stored energy is determined by the battery capacity and ini-
tial stored energy, and is by definition greater then the minimum required stored energy, meaning Smax

i (t )−
Smin

i (t ) = ωSmax
i

(t ) ≥ 0. This uncertainty reaches its maximum value when Smin
i = 0 and Smax

i is as large as
possible. This cannot be greater than the usable capacity of any of the EV batteries, which is a Tesla with 94
kWh. This means that:

0 ≤ωSmax
i

(t ) ≤ 94 (4.4.13)

As with the PV uncertainty, we perform a robust Monte Carlo simulation with a set of many possible
uncertain values:

Ω∗
Smin (t ) = {ω(1)

Smin (t ), . . . ,ω(Ne )
Smin (t )} (4.4.14)

Ω∗
Smax (t ) = {ω(1)

Smax (t ), . . . ,ω(Ne )
Smax (t )} (4.4.15)

where Ne is the number of uncertainty vectors under consideration. The values for these uncertainties are
selected from a uniform distribution of their possible values:

ω
( j )

Smin
i

∈U (0, ηchg ,i ·P max
i ·∆t ) (4.4.16)

ω
( j )

Smin
i

∈U (0, 94) (4.4.17)

for all i , j , and t . We can then substitute these values into the constraints for the optimization problem:
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for all i ∈ {1, . . . , Nb −1}, t ∈ {k, . . . ,k +Np −1}. As with the PV uncertainty, we can consider the minimum and
maximum uncertainties:
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Again, we can then substitute these extreme values into the constraints without any change to the optimiza-
tion problem. This is because the less-than constraints will only be active at the upper bound for the left-hand
side of the inequality, and the greater-than constraints will only be active at the lower bound:
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These constraints are problematic, because they risk making the problem infeasible if ωmax
i (t ) > ωmin

i (t ),
which is highly likely. In robust optimization, when constraints on the state variables can potentially lead
to infeasibility, there are two options. The first is to simply remove constraints for some portion of the pre-
diction horizon until the problem is again feasible. This, however, can lead to large constraint violations in
the closed-loop, without providing any option to control the size of the violations. The preferred solution
is to use a soft constrained technique, where the constraints on these state variables are relaxed, and the
violation is penalized as part of the cost function. This allows for the problem to remain feasible, while pro-
viding the ability to tune the performance based on the penalty function [170]. Using soft constraints for
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state variables in robust MPC optimization is typically preferred over other solutions because it allows for the
control strategy to consider the presence of errors and noise, whereas using hard state constraints may lead
to overly-conservative behavior [114].

In this problem, the state constraints are maintained as hard constraints for vehicles which are present
at time k, as their minimum and maximum stored energy are known with certainty. The remainder are ex-
pressed as soft constraints:
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for all i ∈ {1, . . . , Nb−1}, t ∈ {k, . . . ,k+Np−1}. The slack variables ε1
i (t ) ≥ 0 and ε2

i (t ) ≥ 0 correspond respectively
to the constraints for the minimum and maximum stored energy, and are added to the optimization problem
as an auxiliary decision variables. Because there is no uncertainty regarding the fixed storage battery, we do
not consider the case of i = Nb .

The slack variables are then included in the cost function in order to tune the performance. If there is
no penalty for constraint violation, the problem is equivalent to the optimization problem without EV fore-
casting. If the penalty is large, there will be a greater incentive to follow constraints as tightly as possible.
The penalty function of the slack variable must be positive definite [170]. In order to use MILP in this prob-
lem, the penalty function must be linear. For simplicity, the function is taken to be constant. More advanced
cost functions could also be functions of time; for example, it might be advantageous to have the penalty for
constraint violation decrease for time steps which are further in the future. The cost function is given by:
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where c1 and c2 are constants. It is empirically determined that the peak demand was minimized for penal-
ties of c1 = 1,c2 = 1, although increasing the penalty above these values did not significantly affect the peak
demand. The complete optimization formulation is then given by:
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With the decision variables:
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(4.2.47)− (4.2.53)

(4.3.25)− (4.3.27)



5
Results and Discussion

Using the model developed in Chapter 3 and the charging strategies discussed in Chapter 4, smart charging
in solar parking lots was simulated. In this chapter, the results of these simulations will be presented and
analyzed. First, Section 5.1 will discuss the performance of the system with varying system parameters. Then,
Section 5.2 will examine the impact of forecasting uncertainty on the system performance. Conclusions based
on these results will be given in Chapter 6.

5.1. Effect of Different System Parameters
Many of the system design parameters are based on results from real-world data or literature. However, some
aspects of the system design must be determined experimentally. In order to determine these system param-
eters, various simulations were run examining the performance of smart charging with different parameters.
Based on these simulations, the preferred system design was determined. The system parameters which are
discussed in this section are: the capacity of the fixed battery storage; the use of AC vs DC chargers; and the
battery capacity of the EVs which charge in the parking lot.

When simulating the solar parking lot, the energy at each time step is determined. Plots of this energy
of time are useful in understanding the behavior of the system under various conditions and strategies. As a
baseline, one week of charging using uncoordinated charging is shown in Figure 5.1

Figure 5.1: Power flows at a workplace with uncoordinated charging

The energy at each time step is shown as stacked areas. By convention, energy entering the system from
generation or the grid is positive, and energy leaving the system through consumption or sale is negative. At
each time step, the total energy generated and bought must equal the total consumed and sold, making the
graph symmetric about the x axis. Different colors correspond to different types of energy. Grid electricity is
shown in grey, with energy being positive when it is bought and negative when it is sold. Solar power gener-
ation, always positive, is in yellow. Fixed battery storage is shown in red, and is positive when the battery is
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being discharged and negative when it is charged. The LED lighting is shown in green and is always negative,
although the contribution from lighting to the total load is negligible. EV charging is shown in blue, with the
total power being discharged from EVs being positive and the total power being charged to EVs being nega-
tive. The losses during charging and discharging the fixed battery and EVs are included in those categories.
In addition, the peak demand over the course of the week is indicated through a black circle. The graph then
allows for the observation of the different contributions from various sources and loads by comparing the
relative heights of the stacked areas.

There are a few observations that can be made based on Figure 5.1 specifically. Firstly, the amount of
energy from solar power is not nearly as much as the amount required for charging EVs in a workplace park-
ing lot. Therefore, a significant amount of energy must be purchased from the grid. Secondly, batteries are
not very effective at reducing the peak electricity demand. The peak demand during this week is on Thurs-
day morning, when the 111.4 kW is drawn from the grid. This is slightly above the demand on Wednesday
morning. On Tuesday, a high level of solar irradiance led to some excess generated solar energy. That energy
was stored in the 50 kWh fixed battery, but it was quickly used up on Tuesday afternoon. A larger battery
would not have avoided the peaks on Wednesday and Thursday, because the battery was already completely
discharged by then. Finally, note that vehicles tend to arrive on weekday mornings, with many plugging in
simultaneously. In uncoordinated charging, this leads to large spikes in the power delivered to EVs on week-
day mornings. Because there is very little solar energy available at the beginning of the day, these spikes in
demand are powered with energy from the electricity grid, leading to high peak demand at those times. In
order to avoid these peaks, smart charging is used.

5.1.1. Fixed Storage Capacity
In the parking lot, there is a fixed storage battery system attached to the DC microgrid. This battery can be
charged and discharged in order to reduce the peak grid exchange. A larger battery would enable more en-
ergy to be stored, enabling greater flexibility and reducing the peak load. However, this comes at a greater
expense to the parking lot operator, meaning that the battery should be no larger than necessary. In addi-
tion, the optimal capacity for the battery will depend on whether or not there is bidirectional charging. If
Vehicle to Grid (V2G) is possible in the parking lot, the discharging vehicles can potentially replace a fixed
storage battery. Systems with different fixed battery storage capacities were simulated, assuming that perfect
information was available. The relationship between peak grid demand and fixed battery capacity is shown
in Figure 5.2. Note that only 80% of the fixed battery capacity is usable.

Figure 5.2: Peak grid demand vs. fixed battery storage capacity

As can be observed, smart charging with or without Vehicle to Grid (V2G) can decrease the peak electricity
demand compared to uncoordinated charging. These advantages, however, are limited. Somewhat surpris-
ingly, at both an airport and a workplace parking there is no advantage in having a fixed storage battery larger
than 50 kWh. This is equivalent to 40 kWh of usable capacity, which is only 1 kWh of usable capacity per
parking space.

In order to see how smart charging can reduce the peak demand, Figure 5.3 shows one week of power flows
for a workplace parking lot with a 50 kWh battery, where future solar energy production and EV charging
demands are known perfectly. In order to reduce the peak electricity demand, charging is redistributed so
that the grid exchange is nearly flat over the course of the day. This peak-shaving behavior can reduce the
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maximum demand by 52.6% on Wednesday afternoon, from 111.4 kW to only 52.8 kW. Smart charging also
lead to valley-filling, where more power is drawn from the grid at times of low demand to charge vehicles.
On Tuesday night into Wednesday morning, power was drawn from the grid to fully charge the fixed storage
battery, so that the electricity could be used on Wednesday morning to charge the newly arrived vehicles.
Most of the peak shaving and valley filling behavior, however is not accomplished using the fixed storage
battery. Instead, it is accomplished using the flexibility inherent to the vehicles, by charging them evenly over
the course of the day and taking advantage of solar energy when it is available.

Figure 5.3: Power flows at a workplace with smart charging with perfect information

Figure 5.3 demonstrates why a larger battery is not beneficial in reducing the peak demand. Because of
the flexibility inherent to the vehicles, charging can be rescheduled to even out the demand with minimal use
of the battery. The opportunity to charge the battery is limited. This is because there is rarely any excess solar
energy. Charging the battery from the grid can reduce the peak demand somewhat, but too large of a battery
would put excessive strain on the grid when charging. A fixed storage battery cannot generate energy, and
since the demand is higher than the generation power must always be drawn from the grid at some point.
The battery only enables that power to be drawn as evenly as possible over the course of the day, and for that
purpose 50 kWh is sufficient. Drawing power from the grid further in advance and storing it for a longer time
is not possible, because fixed battery storage is sufficient only to handle mismatch in supply and demand
lasting a few hours. With a couple of days of low solar generation, even a very large battery will quickly
run out of energy. Because batteries cannot practically store enough energy for days or weeks, as would be
required, 50 kWh is sufficient to handle short term fluctuations.

Figure 5.4: Power flows at a workplace with smart charging with perfect information using V2G

For systems with bidirectional charging, no fixed battery storage is needed, as demonstrated by Figure
5.4. This is because the storage in the vehicles themselves is sufficient to enable short-term flexibility. As can
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be observed, at a workplace the power which is drawn from vehicles is much lower than the power needed to
charge them. The total energy storage required is minimal, and as a result a fixed storage battery is not needed
in systems where V2G is in use. For parking lots that have V2G, the peak grid demand can be reduced by 61%
in an airport and 56% in the workplace when compared to uncoordinated charging. Although the charging
patterns for electric vehicles are somewhat different, the grid demand in Figures 5.3 and 5.4 are quite similar,
demonstrating how both fixed storage and V2G are able to reduce the peak demand.

It is interesting to note that, as seen in Figure 5.2 peak demand at a workplace with bidirectional charging
is the same as for a parking lot with a fixed battery. For airport parking, however, V2G results in a higher peak
demand. This is somewhat surprising, because V2G is often assumed to be a valuable technique in reducing
peak electricity demand. The reason for the increased peak is that vehicles parked at an airport use more
energy when engaged in V2G, as seen in Table 5.1.

Table 5.1: Energy used for AC electric vehicle charging with perfect information

Charging strategy Energy demand [kWh / day]

Workplace Airport

Uncoordinated charging 1019 107
Smart charging with fixed battery 1045 107
Smart charging with V2G 1080 176

Energy losses during discharging mean that more energy is needed if V2G is used. At a workplace, almost
all vehicles depart within 24 hours, meaning that the controller can anticipate this additional energy demand
and V2G is not used unless it is necessary. This means that overall energy demand is only slightly affected
and the peak does not increase. At an airport, however, vehicles can remain parked for days or even weeks.
Vehicles are therefore discharged to reduce the peak load in the short term. In airport long term parking,
an average of 18.7 kWh is discharged from each vehicle during the time it is parked, while at a workplace
parking lot that figure is only 0.9 kWh per vehicle. Losses during discharging result in airport smart charging
consuming 64% more energy per vehicle, compared to charging without V2G. This increased electricity con-
sumption means that V2G will lead to a greater peak demand when vehicles needs to be recharged, especially
in a system where they are parked for longer periods of time.

Even without energy storage in vehicles or a battery, smart charging can still reduce the peak demand with
or without a fixed storage battery. With a 50 kWh battery smart charging is able to reduce the peak demand
by 54% in a workplace and 76% in an airport when compared to uncoordinated charging. Without a fixed
battery the peak demand could not be reduced as substantially, although it can still be decreased by 51% in
workplace parking and 22% in airport parking. This means that for a parking lot operator seeking to decrease
their construction costs, a fixed storage battery may not be necessary in order to fully realize the benefits of
smart charging, especially with workplace charging. For these simulations, however, either V2G or a 50 kWh
fixed battery was used as a form of energy storage.

5.1.2. AC or DC Vehicle Charging
Slow charging in vehicles is generally done using AC power, with DC power being reserved for fast charging.
Most slow charging, therefore, considers only AC charging equipment. DC slow charging should be able to
reduce losses as the efficiency for DC charging is higher than the efficiency of AC charging, especially during
V2G, as can be observed in Table 3.4. With V2G using an AC charger, the DC power from the battery must
be converted to AC power through an on-board inverter, which can have high losses. When charging is done
with DC equipment, these losses can be avoided. In this model, slow DC charging was considered in addition
to AC charging. The relationship between peak grid exchange and charging type is shown in Figure 5.5. In all
cases, 40 charging stations are considered in total, meaning that 0 DC chargers corresponds to 40 AC chargers
and vice versa.

Despite these benefits of DC charging, there is no major difference compared to AC charging with regard
to the peak demand. For uncoordinated charging or unidirectional smart charging, the difference in effi-
ciency does not significantly impact the peak demand. The only exception is in airport charging with V2G.
As has already been discussed, the longer parking durations at airports result in greater quantities of energy
being discharged from vehicle batteries when V2G is considered, compared with workplace charging. This
means that the improved discharging efficiency can marginally decrease the peak demand. At an airport, DC
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Figure 5.5: Peak demand vs. number of DC chargers

chargers result in a peak demand of 13.73 kW, compared to 14.98 for AC charging, a decrease of 8%. For unidi-
rectional charging, the decrease is only 2.4%, and in workplace parking there is not decrease in peak demand,
with or without V2G.

Due to their higher efficiency, DC chargers also reduce the total energy demand, as seen in Table 5.2.
These values compared to the energy required for AC charging, as given in Table 5.1. For workplace charging,
the improvement in efficiency leads to a marginal decrease in the total energy. Even for V2G, however, the
energy use only drops 3.3%. Similarly, airport unidirectional and uncoordinated charging do not use signifi-
cantly less energy with DC compared to AC chargers. With V2G, however, the difference is substantial. For an
airport parking lot with bidirectional AC chargers, EVs require an average of 176 kWh per day. If DC chargers
are used, that quantity drops 20% to 140 kWh. DC charging may therefore be valuable in a parking lot which
heavily utilizes bidirectional charging, such as airport long term parking. In this model, however, only AC
chargers are considered. This is because commercial DC slow charging is more or less non-existent, as AC
charging remains the standard around the world for slow EV charging equipment.

Table 5.2: Energy used for DC electric vehicle charging with perfect information

Charging strategy Energy demand [kWh / day]

Workplace Airport

Uncoordinated charging 1003 104
Smart charging with fixed battery 1028 105
Smart charging with V2G 1044 140

5.1.3. Battery Capacity of EVs
The properties of electric vehicles in the Netherlands are changing rapidly. With the introduction of lower-
priced EVs with larger batteries, it is likely that the energy demand of BEVs will also increase. As shown in
Figure 2.3, the range for affordable EVs has increased from roughly 125 km in 2013 to an anticipated 300 km
in 2020. This increase in battery size, combined with the increasing popularity of EVs, results in a higher
energy demand. In 2013, the average public charging station in the Netherlands would consume 5.0 kWh of
electricity per day. By 2018, that figure had grown to 9.9 kWh per day, and it is anticipated that the average
consumption will increase by a further 50% by 2025–2030 [74].

Even if vehicle batteries remain the same size they are currently, the demand for electricity to charge EVs
in the Netherlands will continue to grow. This is because the number of battery electric vehicles (BEVs) is
increasing exponentially, while the number of plug-in hybrid electric vehicles (PHEVs) is steadily decreasing,
as shown in Figure 2.4. On 31 December 2016, the fraction of EVs which were fully electric was only 11.7%.
By 31 January 2019, that number had increased to 32.7%. Because January 2019 was the latest data available
when simulations were being run, it is the date used for models in this report. Already, this model is out of
date. As of 31 May 2019, the fraction of BEVs has risen to 37.5%, with BEV registrations increasing from 44,984
to 57,947 over just five months as PHEV registrations decreased from 97,702 to 96,662 [16]. If these trends
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continue, BEVs will make up more than 50% of all electric vehicles in the Netherlands by the middle of 2020.

These trends could have significant consequences for solar parking lots with EV charging. This report
considers primarily a system where only 32.7% of EVs are BEVs. But if that fraction increases, the average
energy required in a charging event will increase as well. The relationship between the energy consumed by
a vehicle during charging and the proportion of BEVs is shown in Figure 5.6a. Because the vehicles require
more energy, charging events will last longer. This means that uncoordinated charging with more BEVs will
result in a higher peak demand, as as shown in Figure 5.6b.

(a) Energy per charging event (b) Peak demand with uncoordinated charging

Figure 5.6: Effect of the percentage of EVs which are fully electric on charging demand

At the current proportion of BEVs, the energy demand is roughly 10.6 kWh per vehicle in a workplace, and
13.1 kWh per vehicle in an airport. If 100% of all EVs were BEVs, the required energy would approximately
double to 21.3 kWh at a workplace and 28.1 kWh at an airport. Vehicles charging at an airport require more
energy than those at a workplace because workplace charging sessions are shorter, and therefore more likely
to be interrupted before the vehicle is able to charge fully. A Tesla car with a usable capacity of 94 kWh would
take over 12 hours to charge from an empty battery. Because most vehicles in a workplace parking lot remain
parked for less than 12 hours, the energy per event is limited for these parking lots. In airports, where vehicles
are parked for longer, almost all vehicles have enough time to charge fully. This means that the energy per
event is higher for airports.

As the overall demand for energy increases, so does the peak demand. Considering uncoordinated charg-
ing, if all EVs were plug-in hybrids, the peak demand at a workplace would be only 115 kW, but at the current
rate of 32.7%, the peak demand is 146 kW. If all EVs were BEVs, peak demand would leap to 231 kW, more
than double the peak demand with only PHEVs. A similar trend is observed with airport charging, where the
peak demand increases from 39 kW to 75 kW as the fleet switches from all PHEVs to all BEVs. Using smart
charging could potentially reduce the peak demand for electricity, but as vehicles continue to inevitably grow,
the energy and peak demand will grow as well. Any plan for smart parking lots must take into account this
future growth.

5.2. Effect of Uncertainty
In the previous section, simulation results considered only smart charging with perfect information. That
is, it was assumed that solar power forecasts were perfectly accurate. It was also assumed that EV arrival
times departure times, battery capacities, and battery SOC on arrival would all be known perfectly in advance.
These assumptions are commonly made in smart charging models, but they are clearly flawed. In reality, solar
power forecasts are frequently mistaken. Information about EVs such as the battery capacity, state of charge,
arrival time, and departure time is often not known until after the vehicle arrives. In Chapter 4, charging
strategies were developed which allow for the consideration of these uncertainties in smart charging. The
peak energy demand under different control strategies will be presented here. First, uncertainty and error in
PV forecasting will be discussed. Then, the impact of unknown EV arrivals will be determined.
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5.2.1. Solar Power Forecasting Uncertainty
Since solar generation is not known perfectly in advance, strategies were developed in Section 4.3 to consider
this uncertainty. First a nominal strategy was described, where the forecasted values are used in determining
the charging actions without considering forecasting errors. A robust strategy was also detailed, which de-
termines the optimal strategy for reducing the peak demand over a range of possible forecasting errors. The
robust strategy is more effective at reducing the peak demand over the course of the year, as demonstrated in
Figure 5.7. The peak demand is compared to the root mean squared error (RMSE) in Figure 5.7a and to the
mean bias error (MBE) in Figure 5.7b.

(a) Peak demand vs. root mean square error (RMSE)

(b) Peak demand vs. mean bias error (MBE)

Figure 5.7: Peak demand vs. forecasting errors for solar power generation

The RMSE is analogous to the standard deviation of the forecasting error, meaning that a larger RMSE
corresponds to forecasting errors which are more widely distributed. In this simulation, the typical value for
the RMSE is taken to be 50%. When using nominal smart charging, an increasing RMSE results in a larger
peak demand. This is because a larger RMSE will mean larger over-and underestimations of the forecast for
the upcoming day, resulting in higher peak demand under the planned control strategy. Robust optimization
avoids this problem, by selecting an optimization strategy which has the best performance under a wide range
of forecasting errors. Robust optimization therefore leads to a lower peak demand than nominal optimization
for systems both with and without V2G. Interestingly, the peak demand when using the robust strategy is
not very sensitive to the magnitude of the RMSE. This is because as the RMSE grows larger, the range of
forecasting errors considered by the controller grows as well.

The MBE is analogous to the mean of the forecasting error, meaning that a positive MBE corresponds to
chronic overestimation of future solar generation, and a negative MBE corresponds to consistently underes-
timating future generation. In this simulation, the typical value for the MBE is taken to be 0%. As with the
RMSE, robust optimization is relatively insensitive to the MBE, because over-and underestimation in solar
forecasts are already considered by the optimization controller. The nominal optimization is somewhat de-
pendant on the MBE, with a larger MBE leading to a greater peak demand, and a more negative MBE leading
to a lower demand. If the MBE is positive, the solar forecast will be on average overestimate the true genera-
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tion, leading to vehicle charging being delayed, with the plan to charge when solar energy is available. When
the forecast is wrong and insufficient solar power is generated, more energy will need to be drawn from the
grid. Similarly, a negative MBE will cause the controller to behave more conservatively, resulting in a lower
peak electricity demand, as overestimating future solar production is less likely in this scenario.

The performance of nominal and robust strategies can also be compared by examining the power flows
over a typical week. Power flows for one week using the nominal strategy are shown in Figure 5.8.

Figure 5.8: Power flows for workplace smart charging with nominal solar forecasting

In order to compensate for the forecasting errors, energy is charged to and discharged from the fixed
battery storage. As the forecast becomes more accurate over the course of the day, the changing behavior can
be observed. On Tuesday, solar energy was quite high, but the forecast underestimated the production. As
a result, more energy from the grid was used Monday evening and Tuesday morning to charge vehicles and
the fixed battery storage. As the day went on, the forecast improved and the system updated itself, ultimately
reducing the energy that needed to be bought from the grid. This is why a downward slope is visible for
the grid energy on Tuesday morning. Wednesday suffered from the opposite problem, with the forecasted
energy being higher than the actual production, As a result, more energy needed to be bought from the grid
as the control system updated over the course of the day. This led to the peak demand for the week increasing
slightly from the ideal scenario, with 55.5 kW being drawn from the grid on Wednesday afternoon.

Figure 5.9: Power flows for workplace smart charging with robust solar forecasting

In order to consider forecasting uncertainty, robust optimization was used, as shown in Figure 5.9. With
robust optimization, vehicles charging is scheduled considering the possibility that forecasted solar power
may be not end up being generated. As with nominal optimization, forecasts improve over the course of the
day, leading to more variable grid exchange when compared with ideal smart charging. With robust optimiza-
tion, however, more vehicle charging is done in the morning, in order to avoid higher demand later in the day
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in the event that there is little solar energy. Robust optimization is often excessively conservative, leading to
more charging in the morning than is necessary. As a result, the peak demand during robust optimization
occurred on Wednesday morning, with a maximum load of 57.2 kW. As the day went on, some solar energy
was used to charge vehicles, and the demand on the grid reduced. This pattern is even starker on Tuesday,
where energy was also drawn from the grid to charge the fixed battery and vehicles, in anticipation that the
forecasted generation would be an overestimate. In reality, solar generation on Tuesday was underestimated.
On Tuesday afternoon, there was more solar power than there was demand from vehicles. Because the fixed
battery was already full, some energy had to be sold to the grid.

Because of this overly-conservative behavior, when considering solar forecasting uncertainty robust opti-
mization leads to a higher peak demand than nominal optimization on most days of the year, despite the fact
that the annual peak is still lower for the robust strategy. Robust optimization considers the worst-case sce-
nario for forecasting errors, which can lead to the robust optimization to rely less on solar power generation
when it is available. As a result, nominal optimization results in a lower peak demand most days of the year,
as seen in Figure 5.10. In this figure, the maximum electricity demand is shown for each day of the year at the
airport parking lot, considering nominal optimization, robust optimization, and optimization with perfect
information.

Figure 5.10: Daily peak demand at an airport considering PV uncertainty

Most of the time, especially during the summer, the nominal optimization results in a lower daily peak.
This is because at times when solar energy is available, nominal optimization relies on the forecast when
charging the vehicles. If the forecast is wrong, however, and overestimates the solar energy which will be
available, robust optimization can result in a lower daily peak demand. Because the winter days with little
solar energy, are the days with the highest peak demand, robust optimization performs better when looking
at the year as a whole. On more than 80% of all days, however, the nominal optimization has a lower peak
demand for electricity. This overly conservative behavior, where robust optimization does not rely on solar
electricity, can also lead to more solar energy being sent to the grid, as seen in Table 5.3.

Table 5.3: Net energy exchange with different strategies

Airport [kWh] Workplace [kWh]

To grid From grid Net To grid From grid Net

Uncoordinated 101,730 14,319 -87,411 14,258 258,422 244,164
PV Known, EVs Known 91,319 5,797 -85,522 8,748 262,534 253,786
PV Nominal, EVs Known 93,050 6,282 -86,768 8,914 262,540 253,626
PV Robust, EVs Known 95,668 8,413 -87,255 31,138 287,882 256,743

In airport charging, the energy required to charge EVs is less than the energy generated by solar energy.
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This means that the net grid exchange is negative. During uncoordinated charging, vehicles are charged with-
out considering the availability of solar energy, so a large amount of energy needs to be purchased from the
grid. Smart charging reduces that problem, delaying charging until solar energy is available. Using robust
optimization, the controller relies less on future solar energy, because the forecast may be mistaken. This
means that more energy must be purchased from the grid. Robust optimization therefore results in 34% more
energy being purchased compared to nominal optimization. Despite robust optimization purchasing 2,131
kWh more from the grid, in total 487 kWh more are sent to the grid. This is because energy which is sent to
the grid results in fewer efficiency losses compared to being stored in a battery. In workplace charging, a sim-
ilar effect is observed. Robust optimization purchases 9.7% more energy from the grid compared to nominal
optimization. Again, the net energy used is roughly the same, meaning that more energy must be sent back
to the electricity grid. In total, the solar panels produce 133,625 kWh over the course of a year. Using nominal
optimization, only 6.5% of that energy is sent to the grid with workplace charging. With uncoordinated charg-
ing, 10.7% of solar energy is sent to the grid. Using robust optimization, that figure is 23.3%. Although robust
optimization does reduce the peak demand, it comes at the cost of a higher average electricity demand and a
lower level of self-consumption.

Figure 5.11: Peak demand for different control strategies considering PV uncertainty

The conclusions from this section are summarized in Figure 5.11. Using robust optimization results in a
peak demand which is lower than that of nominal optimization, although it is still higher than ideal charg-
ing using perfect information. Despite the uncertainty of solar generation, robust and nominal optimization
still have a much lower peak demand compared to uncoordinated charging. In addition, note that at airport
parking, bidirectional charging results in a higher peak electricity demand, whereas at the workplace these
numbers are roughly equal. This is because airport charging results in more energy being discharged from
a vehicle compared to workplace charging. Because of the higher energy demand due to losses during dis-
charging at an airport parking lot with V2G, the peak demand in these systems is higher than at an airport
parking lot with only fixed battery storage.

5.2.2. Electric Vehicle Behavior Uncertainty
The charging demand of EVs is not known before they arrive. The vehicles’ arrival time, departure time, bat-
tery capacity, and initial state of charge will all be unknown before the vehicle begins charging. Without this
information, smart charging cannot as effectively plan the vehicle charging for the coming day. Section 4.4
considers three strategies to handle this uncertainty. The no-forecast strategy determines the optimal behav-
ior for the vehicles already present, without considering the possibility of future arrivals. The average strategy
considers future arrivals by assuming an average energy demand for vehicles which have not yet arrived. Both
the no-forecast and average strategies are nominal, meaning that they consider only one possible scenario,
rather than a many scenarios for the EV energy demand. The robust strategy considers a range of possible
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future arrivals, seeking to minimize the peak demand robustly over all possible future sets of vehicles. For all
of these strategies, a robust approach is also used to consider the errors in the solar power forecasting.

Figure 5.12: Power flows for workplace smart charging with no forecasted EV demand

The simplest way of handling this uncertainty is with no EV forecasting. The resulting power flows for a
typical week are shown in Figure 5.12. Because the charging strategy does not plan for future arrivals, vehicles
are not charged nearly as quickly overnight or in the mornings. This charging is delayed to reduce the peak
demand at these times. This creates a problem when a large number of vehicles arrives during the day, and
there is not much solar energy to charge those vehicles. On Wednesday, a large number of vehicles begin
charging, and the resulting demand resulted in a peak load of 98.9 kW. This peak is much higher than smart
charging with perfect information, and only slightly lower than the peak during uncoordinated charging as
shown in Figure 5.1. Although the no-forecast strategy is relatively simple to implement, it is quite ineffective
at reducing peak power demand. To solve this problem, the average strategy can be implemented, as seen in
Figure 5.13.

Figure 5.13: Power flows for workplace smart charging with average forecasted EV demand

In the average strategy, the forecast for future EV charging demand is based on the average demand of ve-
hicles. This allows the control strategy to plan for future arrivals, charging vehicles in such a way that the peak
demand will be minimized when new vehicles begin charging. As can be observed, more EVs are charged in
Wednesday morning in Figure 5.13 compared with Figure 5.12. Because the future arrivals were anticipated,
the peak demand on Wednesday was reduced from 98.9 kW to 73.4 kW. This strategy is not without its down-
sides however. If the actual EV charging demand is below average, the nominal strategy may lead to excessive
charging in the morning, in anticipation of a nonexistent demand. On Tuesday, this results in energy being
drawn from the grid in order to charge vehicles in the morning, leading to excess solar energy being sold to
the grid in the afternoon. On Monday, with a below average demand for EV charging, vehicles are still charged
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primarily in the morning. As a result, the peak demand occurs on Monday morning, drawing 84.5 kW from
the grid. Although the peak was higher when no forecasting was considered, this is still a substantially larger
demand than the scenario with perfect forecasting.

Figure 5.14: Power flows for workplace smart charging with robust EV demand forecasting

Through the use of robust charging strategies, this peak can be further reduced, as seen in Figure 5.14.
Robust optimization considers a range of possible EV charging requirements, and implements a charging
strategy which results in the lowest peak load regardless of the energy demand. In the robust consideration of
EV uncertainty, the controller is able to schedule vehicle charging so as to avoid the largest peak demands of
both the no forecasting and the nominal optimization. On Wednesday, vehicles are charged more evenly over
the day, resulting in a peak demand of 73.7 kW, compared to 98.9 kW for optimization without forecasting.
On Monday, more charging is delayed until the afternoon, resulting in a peak of 75.5 kW, compared to 84.5
kW for the average strategy. As a result, robust optimization leads to the lowest peak demand.

Figure 5.15: Daily peak demand at an airport considering EV demand uncertainty

When handling uncertainty with EV behavior, robust optimization often leads to a higher peak demand,
as seen in Figure 5.15. This figure depicts the maximum demand on the grid each day of the year, for the
different optimization strategies. As can be observed, perfect information leads to the lowest peak demand,
as would be expected. On many days, in particular during the summer, the peak demand is less than zero,
meaning that electricity is never bought from the grid. When PV generation is uncertain, even if the EV de-
mand is known, there are far fewer days when no electricity is bought from the grid. Still, the annual peak
demand is relatively low as long as EV demand is known. When this demand is uncertain, the annual peak
can increase significantly.
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With airport charging, future vehicle arrivals are infrequent enough that the no-forecast strategy results
in a relatively low peak demand on most days. On days like December 28th, however, the no-forecast strategy
leads to the largest peak load. A high demand for energy to charge vehicles on that day leads to a sharp spike
in the demand, as seen in Figure 5.15. The strategy with average forecasted demand anticipated this load
to an extent, charging the fixed battery, but this was not sufficient to minimize the peak demand. Only the
robust strategy was able to maintain a low peak demand over the course of the year. These peaks can lead
to serious problems for infrastructure such as transformers. Robust optimization is an effective strategy for
reducing these high peaks in the demand for power. As discussed in Section 2.2, transformer lifetimes can be
significantly shorted by even short events where the load on the transformer is well above the rated capacity.
This suggests that the robust behavior, where the peak load on most days is higher but the overall maximum
demand is minimized, will result in a longer transformer lifetime than other strategies with a lower peak on
most days but a few events with very high loading for short intervals.

Robust optimization can lead to more conservative behavior, as it did when considering uncertain solar
forecasting. The robust strategy can again lead to more energy being sold to and bought from the grid, as seen
in Table 5.3. At an airport parking lot, the long charging periods for the vehicles leads to a lot of excess energy
being sold to the grid. With perfect information, relatively little energy then needs to be bought from the grid,
with a total of only 5,797 kWh over the course of a year. With EV behavior being known and robust optimiza-
tion for solar forecasting, that total increases to 8,413 kWh, because vehicles are charged earlier and more
aggressively under the concern that there may not be sufficient solar power in the future. If future vehicles
are unknown, this conservative behavior is intensified. More energy is drawn from the grid to preemptively
charge the parked vehicles and the fixed battery, so that the peak demand will be lower regardless of how
many vehicles arrive and need to be charged. As a result, the energy bought from the grid increases to 19,255
kWh. Although it is able to minimize the annual peak electricity demand, the robust charging strategy will
still lead to lower self-consumption of solar power and more energy in total being drawn from the grid.

Figure 5.16: Peak demand for different control strategies considering EV demand uncertainty

The peak demand with various optimization strategies is shown in Figure 5.16. In a long-term parking
lot at an airport, smart charging can reduce the peak demand by 76.2% if fixed battery storage is used. If
the solar generation is uncertain the peak demand will increase, but a robust strategy will still allow for the
peak demand to be reduced by 75.7%. When EV demand uncertainty is considered with a robust strategy,
the peak demand can still be reduced by 72.6%. Considering uncertainty with robust strategies is therefore
nearly as effective at reducing the peak demand as smart charging using perfect information. The use of
robust strategies is crucial in achieving this goal. If the no-forecast strategy is used instead to account for
EV uncertainty, the peak demand will only be reduced by 19.4%. Although robust strategies can lead to an
increased peak demand on most days, and a lower self consumption, robust optimization is still the most
effective way to minimize the peak demand.
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Although the potential for peak shaving is greatest at an airport, the peak demand can also be effectively
reduced in a workplace parking lot. With perfect information, smart charging using fixed battery storage
can reduce the annual peak demand by 54.2%. Introducing solar forecasting uncertainty leads to a peak
reduction of 47.3%, and including unknown EV charging demand as well results in a peak demand reduction
of only 38.6%. Although smart charging is not able to reduce the peak demand at a workplace as much as at an
airport, even under uncertainty it is still an effective tool for peak shaving at both types of parking lot. Again,
robust strategies are critical in ensuring that the peak demand is reduced. Using the no-forecast strategy
results in a peak demand of only 16.0% when compared with uncoordinated charging.

The societal benefits of peak shaving have already been discussed, but this reduction in peak demand
can also provides financial benefits to the parking lot operator. The grid connection for a single EV charging
station in the Netherlands is estimated to cost AC750 up front and an additional AC190 each year. The peak
demand can be reduced by 72.6% at an airport and 38.6% at a workplace. If the grid connection costs could
be reduced proportionately, smart charging at an airport could result in a total savings over the first ten years
of operation ofAC1924 per charging station. Although workplace smart charging is not able to reduce the peak
demand as much, the savings for each charging station could still total AC1023 over the first ten years. Smart
charging to facilitate peak shaving could therefore offer significant savings to parking lot operators, although
a more comprehensive study of all the costs and benefits is still required.

Bidirectional charging, or V2G, is often discussed in the context of smart charging and peak shaving. In
workplace parking, V2G is able to reduce the peak demand about as much as a fixed battery storage system.
Vehicles at a workplace are parked for relatively short periods of time, meaning that energy is discharged from
the vehicles relatively rarely and the power needed to recharge the vehicles does not significantly increase the
peak demand. At an airport, however, V2G results in substantial higher peak demands than fixed battery
storage when using robust charging strategies. This is because vehicles are parked for a longer time, allowing
for more energy to be drawn from their batteries in order to charge other vehicles. When the vehicles need
to be recharged, the increased load results in a higher peak demand. If the system is increasingly uncertain,
the peak demand in V2G strategies surprisingly decreases. For example, with perfect information and V2G,
the peak demand at an airport parking lot is 60.7% lower than it would be using uncoordinated charging. If
solar forecasting is uncertain and EV demand is unknown, robust strategies lead to a decrease in peak load of
63.7%. This is because scenarios with less certainty result in less energy being drawn from vehicles batteries,
saving the stored energy in case it is needed later. By decreasing the amount of energy drawn from the vehicle
batteries, the peak demand is therefore reduced. When using average forecast or no-forecast approaches
to handle unknown EV charging demand, V2G can reduce the peak demand more than battery storage. As
previously discussed, these strategies do not ensure that the fixed battery storage will be sufficiently charged
when it is needed, whereas V2G always allows vehicles to provide power at times of high demand. Despite
this possible advantage, the peak demand can still be reduced most effectively through the use of fixed battery
storage and robust charging strategies.

Through either fixed battery storage or V2G, energy storage of some form is critical in minimizing the
peak demand as much as possible when compared with uncoordinated charging. This is especially true when
uncertainty is considered. At a workplace with perfect information, the peak demand will be 67.2 kW with
a battery, but 72.5 kW without one. When solar forecasting and future EVs are accounted for using robust
optimization, the peak demand will increase to 90.1 kW with a fixed storage battery, but 116.2 kW if there is
no battery. During smart charging at a workplace, battery storage offers only a minor advantage when vehicle
behavior and solar power is known in advance, but is much more valuable when these inputs are uncertain.
Airport charging suffers from the same problem. The peak demand with perfect information is 9.1 kW with a
battery, increasing to 29.8 kW without ones. When uncertainty is considered, the peak demand increases to
only 10.4 kW if a battery is used, but to 30.7 kW if there is no battery or V2G. This means that, when accounting
for uncertainty, the peak demand can only be reduced by 20.8% at a workplace and 19.4% at an airport if no
form of energy storage is available. Smart charging is capable of reducing the peak demand at a solar parking
lot, but robust strategies and energy storage are important in enabling peak shaving to operate at its full
potential.
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Conclusions and Recommendations

In this report, smart charging has been investigated as a means to reduce peak electricity demand when
charging electric vehicles (EVs) using solar energy. The goal was to build a realistic computer model of a solar
parking lot, in order to answer the following research question:

How can smart electric vehicle charging be used to minimize the peak electricity demand at a
workplace or airport solar parking lot, considering uncertainty in solar power forecasting

and electric vehicle charging demand?

The findings in this report have served to answer this question. In this chapter, some key conclusions
will be discussed in Section 6.1. Of course, there is still a great deal of research left to be done on this topic.
Section 6.2 will discuss questions which must be answered by future researchers.

6.1. Conclusions
In this section, a number of key conclusions from this report will be highlighted and summarized. Many of
these conclusions are demonstrated in Figure 6.1.

Figure 6.1: Peak demand, with future PV power and EV charging demand either known or handled robustly

The peak electricity demand for the system is given, considering smart charging with either bidirectional
charging with Vehicle-to-Grid (V2G) or unidirectional charging with fixed battery storage. The peak demand
with with uncoordinated charging is also given. Furthermore, the effect of uncertainty is demonstrated. If
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the future PV generation or EV charging demand is unknown, a robust charging strategy is used to minimize
the peak demand. In this section, these results will be discussed.

6.1.1. Smart charging can reduce peak electricity demand
Uncoordinated charging of EVs can lead to very high peak electricity demand at parking lots, even when solar
canopies are used to generate electricity. At a workplace parking lot, uncoordinated charging can result in
a peak electricity demand of 3.7 kW per parking space. At an airport parking lot, because vehicles remain
parked for longer, the peak demand is lower, but still amounts to 1.2 kW per space. Using smart charging can
reduce these peaks, redistributing the energy needed to charge EVs so that less power is used at times of peak
demand, and more power is used when demand is low. These smart charging practices are known as peak-
shaving and valley-filling. With perfect information about future solar generation and EV charging demand,
using fixed battery storage, smart charging can reduce the peak electricity demand by 54.2% at a workplace
parking lot and 76.2% at an airport. This corresponds to the “PV Known, EVs Known” category in Figure
6.1. This reduction in the peak demand offers a number of benefits for parking lot operators, electricity grid
operators, and society as a whole. High peaks in demand can require inefficient or polluting fossil fuel plants
to ramp up production, and even threaten the stability of the electricity grid. These peaks can also lead to
under-voltages, current harmonics, and overloading of components like power lines and transformers. This
can lead to the lifetime of this equipment being shortened. Coordinated smart charging is an effective way
avoid these issues by achieving peak shaving in solar parking lots.

6.1.2. PV forecasting errors lead to higher peak loads
Smart charging relies on knowledge of the future in order to schedule vehicle charging. If solar energy will be
generated later in the day, EV charging can be delayed in order to take advantage of that energy. This relies on
accurate knowledge of future solar energy generation. Although many models assume that this information
is known in advance, in reality solar forecasting is subject to errors and uncertainty. This uncertainty will re-
sult in an increase in the peak demand, but through the use of robust charging strategies, this increase can be
minimized. When considering solar generation forecasting errors, peak demand can still be reduced below
the level of uncoordinated charging by 75.7% at an airport, and 47.3% at a workplace. This corresponds to the
“PV Robust, EVs Known” category in Figure 6.1, demonstrating that with robust strategies, the peak demand
increases by only 2% at an airport and 15% at a workplace compared to a scenario with perfect information.
The alternative to robust optimization is nominal optimization, which assumes that the forecasted solar gen-
eration is accurate. Nominal optimization can increase peak demand by 36% at a workplace and 35% at an
airport compared to optimization with perfect information, although the peak is still far lower than it would
be with uncoordinated charging. Although robust optimization has results in a lower peak demand, it also
leads to higher demand much of the time, with more energy being drawn from the grid. Compared to nom-
inal optimization, robust optimization draws 9.7% more energy from the grid at a workplace, and 34% at an
airport. These peak shaving strategies are therefore at odds with the goal of increasing the self-consumption
of renewable energy.

6.1.3. Uncertainty about EV charging demand further increases peak loads
Smart charging strategies rely on a knowledge of the vehicles which need to be charged. Almost all models
assume that it is known well in advance what time the vehicles will arrive, when they will depart, and what
their battery capacity and initial state of charge will be. In reality, this information is often unknown before
the vehicle arrives at the parking lot. As a result, optimal charging strategies cannot be planned in advance,
and the peak demand is higher than it would be in a system with perfect information. Even considering
uncertainty in the EV energy demand, the peak load using robust smart charging strategies is still lower than
it would be using uncoordinated charging, by 72.6% at an airport and 38.6% at a workplace. This corresponds
to the “PV Robust, EVs Robust” category in Figure 6.1, and represents an increase in the peak demand of 15%
at an airport and 34% at a workplace. Although this uncertainty leads to a higher peak demand, robust smart
charging is still highly effective at peak shaving. Robust strategies are again needed to consider EV demand
uncertainty. One alternative approach relies on scheduling the charging behavior for only vehicles which
have already arrived, without forecasting any additional demand. Although this strategy is simple, it does not
reduce the peak demand as much as the robust strategy, leading to reductions of only 19.4% at an airport and
16.0% at a workplace. Although smart charging can reduce the peak demand, some strategies described in
the literature at not effective at achieving this goal. In designing smart solar parking lots, care must therefore
be taken to ensure that the charging strategy is robust with respect to forecasting uncertainties.
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6.1.4. Energy storage is important in reducing peak demand
In order to implement smart charging with the goal of peak shaving, it is important that excess energy can
be stored for later use. Energy can be stored in either a fixed battery storage installation, or the battery of an
electric vehicle which is able to discharge through Vehicle-to-Grid (V2G) technologies. At workplace parking,
because the charging demand is so high, charging can often be scheduled so that peak demand is reduced
and a battery is not necessary. When future information is known perfectly, the peak demand can be reduced
by 54% if battery storage is used and 56% if V2G is employed. Without any form of energy storage, the peak
demand can still be reduced by 51%. When uncertainty is considered, energy storage becomes more critical.
If future solar generation and EV demands are unknown, the peak demand at a workplace can be reduced
by 38.6% with a battery and 37.1% with V2G. If there is no form of energy storage at all, the peak can only be
reduced by 20.8%. When uncertainty is considered, energy storage becomes even more crucial when trying
to reduce peak demand.

At an airport parking lot, where the energy demand is already lower, reducing the peak demand is more
difficult, making energy storage even more critical. With perfect information, peak demand can be reduced
at an airport by 76.2% with battery storage and 60.7% with V2G, but only by 21.7% with no form of energy
storage at all. When considering uncertainty, the peak demand can still be reduced by 72.6/% using battery
storage and 63.7% using V2G, but only 19.4% with no energy storage. Energy storage, either in the form of a
fixed storage battery or V2G, is therefore crucial in reducing the peak demand, especially when uncertainty is
being considered.

It was determined that at both workplace and airport parking lots there is no benefit to fixed battery
storage with a capacity larger than 50 kWh (1 kWh of usable capacity per parking space). This is because
the battery is only capable of handling short term fluctuations. After several days with low solar output, the
battery will run out of stored energy regardless of its capacity, meaning that a bigger battery cannot further
reduce peak demand. It was also determined that there was no benefit to combining both V2G and battery
storage, as they serve practically the same purpose. Adding fixed battery storage to a system with V2G does
not reduce the peak demand.

6.1.5. Fixed battery storage can reduce peak demand more that vehicle-to-grid
Vehicle-to-grid (V2G) is a technology in which EVs are able to charge bidirectionally. In addition to drawing
power from the charging equipment to charge the battery, vehicles are also able to discharge their batteries,
sending power to the grid or to charging equipment for other vehicles. Although V2G is a possible form of
energy storage, the round-trip efficiency is lower than a fixed battery due to losses in the power electronic
equipment. In addition, EVs which are discharged must later be recharged before their departure, resulting
in a higher energy demand when V2G is used. This means that the more bidirectional charging is used in
a system, the higher the peak demand will be. In workplace charging, where vehicles are not parked very
long, V2G does not result in a peak demand which is much different from the peak demand when using fixed
battery storage, as shown in Figure 6.1. When perfect information is known in advance, V2G can actually lead
to a slightly lower peak demand, but once uncertainty is introduced battery storage allows for a lower peak
demand than V2G at a workplace. At an airport, where vehicles are parked for a longer duration, V2G can
substantially increase the peak demand, as vehicles are more deeply discharged in order to provide power
for other vehicles. As a result, fixed battery storage results in a lower peak demand when compared to V2G,
especially at an airport. V2G already faces concerns over issues like increased battery degradation for vehicles
which regularly engage in bidirectional charging. Due to the greater risk and lower effectiveness of V2G with
regards to peak shaving, battery storage is recommended in smart solar parking lots.

6.1.6. Grid independence is not possible in the system which was modeled
One possible goal for a solar parking lot could be complete independence from the electricity grid. This
self sustaining microgrid would be able to generate all the electricity it needs from solar power. Such a sys-
tem could have a number of advantages, including lower costs as the expense of a grid connection could be
avoided entirely. In the system modeled for this report, such grid independence is not possible, even for air-
port long-term parking which uses substantially less energy than a workplace parking lot. Even with perfect
information, and a battery of up to 1000 kWh, there are always some times when drawing power from the grid
is necessary. Because there will always be prolonged periods of time with very little solar energy, this problem
cannot be solved by simply increasing the solar power or size of the battery. More significant changes to the
system are required in order to achieve total grid independence. Some possible approaches are discussed in
Section 6.2.
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6.2. Questions for Future Work
This research has provided insight into the subject of smart solar parking lots, and how their peak electricity
demand can be minimized under uncertain conditions. Despite these findings, a number of questions still
remain which were unable to be properly addressed by this report.

6.2.1. What will this system cost?
In this report, the costs of the solar parking lot were not calculated. Future work could expand on this report
in order to determine the financial viability of smart charging in solar parking lots. A detailed cost analysis
would consider the optimal system topology, including the capacity of fixed battery storage, the availability
of bidirectional vehicle chargers, and the sizing of the PV system. Such an analysis would also need to con-
sider the cost benefits of smart charging, including the need to purchase less electricity and the potential to
sell peak-shaving as an auxiliary service to grid operators. Smart charging could also lower the cost for the
electricity grid connection, which is a significant fraction of the price for a new vehicle charging station. We
estimate that over the first ten years of operation, smart charging could lead to a savings of AC1924 at an air-
port and AC1023 at a workplace for each charging station. Given the tremendous potential for savings, a full
economic analysis may find that smart charging pays for itself.

Ultimately, such an analysis depends on the findings of this report. In order to determine the desired
capacity for the fixed battery storage, or whether it is worth it to include battery storage at all, it is first nec-
essary to determine how the battery capacity affects the performance of smart charging. In order to find the
savings achieved by reducing the grid connection, it is first essential to calculate the true potential for smart
charging to reduce the peak demand considering all the possible uncertainties. A meaningful financial anal-
ysis, therefore, depends of an understanding of the system behavior when solar forecasting and EV behavior
is uncertain. Now that the performance of smart charging under uncertainty has been realistically modeled
and quantified, an accurate economic analysis can be conducted.

6.2.2. How can the model be improved?
As the British statistician George Box once famously remarked, “All models are wrong, but some are useful.”
[171]. Naturally, no model will be sufficient to completely describe a complex system with perfect accuracy
and this model is no exception. Whenever possible, however, the assumptions which were made are clarified
and justified. This model was constructed with the goal of considering many details, including the uncer-
tainty in solar generation and EV behavior, details which have often been omitted in previous research. Still,
further models could possibly improve on the accuracy of this one by utilizing better input data and improv-
ing on assumptions which were made. One possible improvement could be the use of better EV behavioral
data. The EV project data which was used considered only American EV drivers in the period of 2009–2013. It
may be that drivers in another time or place would behave differently, and newer data on charging behavior
could lead to more accurate results. In addition, charging behavior in airport long-term parking was based
on conventional vehicles, as no suitable dataset could be found for EVs. If airport EV charging data was used,
the results could be improved. These changes, however, are unlikely to radically alter the conclusions of this
report.

It could also be interesting to consider other system topologies. For example, the only loads considered
other than EV charging was the lighting for the parking lot. Larger loads, such as a nearby office building
or DC fast charging stations, might lead to different strategies and conclusions. At an airport, the charging
load from the parking lot could be combined with the demand from the airport buildings, with the goal of
reducing the overall peak demand at the airport behind the meter. In this case, other charging strategies
might be preferred, and the effectiveness of smart charging for peak shaving might be different.

6.2.3. How well would other charging strategies work?
In this report, different strategies were considered in order to minimize the peak demand. As a base scenario,
uncoordinated charging was considered. For smart charging, model predictive control (MPC) was imple-
mented, considering both nominal and robust techniques for handling the uncertainty in the model. Of
course, there are more optimization techniques which could be considered, which are discussed in section
2.2. Delay or off-peak charging could be used to reduce peak demand without coordinated charging behav-
ior, although previous research has found that these strategies can be ineffective or even counterproductive.
Real-time charging can allow for coordinated charging without the need for forecasting, although it is unclear
how well this strategy would perform under real-world conditions. Other optimization techniques could also
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be used when considering forecasting errors, such as stochastic programming. Furthermore, other objective
functions could be considered beyond the reduction of peak demand. For example, the the system controller
could seek to maximize self-consumption of renewable energy or minimize the cost of purchasing electricity.
Smart charging with these goals has also typically ignored forecasting uncertainty in the past.

6.2.4. What will the requirements be for a solar parking lot in the future?
Many of the details of this model are based on current technologies, which might lead to systems looking
different in the future. For example, the efficiency of EV chargers or solar panels might improve. This im-
provement, however, is likely to be small and will probably not affect the conclusions significantly. In ad-
dition, uncertainty may change in the future, as solar power forecasts improve. Uncertainty regarding EV
behavior may decrease if vehicles reserve parking spaces online in advance, as is common at many airports.
Even with reservations, however, some vehicles will always park without advance planning, resulting in some
uncertainty.

The electricity demand due to electric vehicles has been quickly increasing in recent years, and it is likely
to continue to do so. Battery technology has been dropping in price, leading to larger and larger batteries
in EVs. In addition, changing financial incentives in the Netherlands have resulted in the number of Battery
Electric Vehicles (BEVs) with larger batteries dramatically increasing in number, while plug-in hybrid electric
vehicles (PHEVs) with smaller batteries have seen registrations slowly decrease. As BEVs become more pop-
ular, and PHEVs become less common, the energy per charging event will increase. This means that parking
lot operators in the future will need to prepare for the increasing electricity demand from the new generation
of EVs.

6.2.5. Is a fully grid independent solar parking lot possible?
Currently, the solar parking lot which was modeled cannot be completely grid-independent, even at an air-
port. This is because there will always be some demand for charging EVs at a time when solar energy is not
available and there is not enough stored energy. One way to avoid this problem is to curtail vehicle charg-
ing. If vehicle charging was limited to the power which is available from energy storage and solar panels, the
system could be energy-independent. This might be problematic for drivers whose vehicles are not charged,
although most vehicles would probably be charged in the time before departing. Curtailment would proba-
bly most severely affect vehicles which are only parked for a short time, whereas vehicles parked for several
days would probably be able to charge completely before departure.

In theory, the airport parking lot should be able to charge all the vehicles without curtailment, relying
only on locally generated solar energy. On average, the solar canopies in this system generated a total of 3341
kWh per parking space over the course of the year. The energy demand for charging EVs, however, was only
941 kWh per space per year. Even as the energy demand per EV increases, there should still be more than
enough solar energy to charge all the vehicles in the parking lot. The greatest barrier is storage. Most of the
solar energy is generated during the summer months, and an independent microgrid would need to store
that energy until the winter. Batteries are insufficient for seasonal storage, meaning a different technology
would need to be used.

Hydrogen storage could enable a solar parking lot to operate without a connection to the electricity grid.
Electrolyzers could be used to generate hydrogen from excess solar energy during the summer months. This
energy could then be used to run fuel cells during the winter, allowing for the solar parking lot to use 100%
renewable energy year-round. Because the energy generated in this system is substantially greater than the
energy consumed, this system should be possible even considering the efficiency losses in hydrogen gener-
ation, storage, and consumption. Further research is needed to evaluate the feasibility of such a system, but
there is theoretical potential for a hydrogen-powered grid-independent solar microgrid for charging EVs at
an airport long-term parking lot.
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