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Abstract
Many philosophical accounts of scientific models fail to distinguish between a simu-
lation model and other forms of models. This failure is unfortunate because there are 
important differences pertaining to their methodology and epistemology that favor 
their philosophical understanding. The core claim presented here is that simulation 
models are rich and complex units of analysis in their own right, that they depart 
from known forms of scientific models in significant ways, and that a proper under-
standing of the type of model simulations are fundamental for their philosophical 
assessment. I argue that simulation models can be distinguished from other forms 
of models by the many algorithmic structures, representation relations, and new 
semantic connections involved in their architecture. In this article, I reconstruct a 
general architecture for a simulation model, one that faithfully captures the com-
plexities involved in most scientific research with computer simulations. Further-
more, I submit that a new methodology capable of conforming such architecture into 
a fully functional, computationally tractable computer simulation must be in place. 
I discuss this methodology—what I call recasting—and argue for its philosophical 
novelty. If these efforts are heading towards the right interpretation of simulation 
models, then one can show that computer simulations shed new light on the philoso-
phy of science. To illustrate the potential of my interpretation of simulation mod-
els, I briefly discuss simulation-based explanations as a novel approach to questions 
about scientific explanation.
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1 Introduction

In recent years, philosophers have turned their attention to computer simula-
tions and their epistemological value in scientific modeling and scientific prac-
tice. When faced with these issues, authors employ one of several strategies: they 
compare the epistemological power of computer simulations to laboratory experi-
mentation (Morgan 2003; Parker 2009; Symons and Alvarado 2019; Ionescu 
2018; Boge 2019); they analyze different forms of inferring knowledge from sim-
ulations (Winsberg 2001; Beisbart 2012); they hold extensive discussions on the 
notion of simulated data as different in kind from experimental and observational 
data (Barberousse and Marion 2013; Humphreys 2013); or they show how com-
puter simulations are at the center of methodological, conceptual, and industrial 
changes in scientific research (Lenhard 2014).

There are many insightful discussions in the philosophical literature about the 
epistemology of computer simulations. Most of this literature, however, takes 
computer simulations to consist of the implementation of some kind of spe-
cial model running on the physical computer. This leaves a conceptual vacuum 
regarding the specific nature of such special models and the philosophical impli-
cations in connection with them. Although serious efforts can be found in the lit-
erature, most prominently Humphreys (1990, 2004), Hartmann (1996), Winsberg 
(1999), and more recently Durán (2018), there seems to be a discrepancy between 
the way philosophers conceptualize these models and the complexities attached 
to the practice of simulating.

The primary aim of this article is to articulate the richness and complexity 
of simulation models, that is, the type of models at the basis of computer sim-
ulations. To this end, I examine the general architecture for simulation models 
with the objective of recognizing practices, structures, and relations commonly 
found in computational practice and which differ from other forms of modeling 
(see Symons and Alvarado 2019; Durán 2018). In particular, I argue that simula-
tion models require new, arguably unprecedented techniques for their design and 
construction. I call these techniques recasting, and I understand them as ways to 
make compatible a multiplicity of models into one single simulation model for its 
implementation as a fully functional computer simulation. To show their novelty, 
I contrast recasting against forms of sub-modeling and multi-modeling.

The article is also a contribution to efforts showing the philosophical nov-
elty of computer simulations. To many, the fact that computer simulations are 
a scientific novelty also entails their philosophical novelty. However, this claim 
has found resistance in the work of Frigg and Reiss (2009), who have claimed 
that “the philosophical problems that do come up in connection with simulations 
are not specific to simulations and most of them are variants of problems that 
have been discussed in other contexts before” (Frigg and Reiss 2009, 595). Their 
objection touches upon matters in the metaphysics, the epistemology, the seman-
tics, and the methodology of computer simulations, and assert that any issues 
stemming from these subjects are already answered by more familiar work on 
scientific modeling and experimentation. Frigg and Reiss conclude that, although 
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computer simulations are indeed a scientific novelty, they do not explore com-
pletely new and uncharted philosophical territory.

Are Frigg and Reiss correct in uncoupling the scientific novelty of computer 
simulations from their philosophical novelty? Whereas their objection seems to be 
ambiguous—after all what does constitute a novelty in philosophy? (Humphreys 
2009)—we need to take Frigg and Reiss’ concerns seriously if we want to argue 
that simulation models are units of analysis for genuine philosophical inquiry. To 
my mind, there are two ways of doing this. A first approach consists in arguing that 
some issues in connection with computer simulations are unprecedented in the phil-
osophical arena. Humphreys (2009) has addressed this line of discussion by showing 
how the anthropocentric predicament1 is a problem of genuine philosophical value 
brought up by computer science and has no precedent in the general philosophy of 
science. A second approach, complementary to the first, consists in showing that 
computer simulations shed new light on established claims in the philosophy of sci-
ence, thus proving their (novel) philosophical value. This article advances the sec-
ond approach. Specifically, I show how the notion of simulation model presented 
here challenges established philosophical ideas about scientific explanation. If my 
considerations are correct, this article not only offers an unprecedented and detailed 
description of simulation models, but it also sheds new light on the philosophical 
novelty of computer simulations in the philosophy of science.

To achieve these various goals, the article is structured as follows. Section  2 
revisits the main interpretations of computer simulation found in the specialized 
literature. The aim here is to furnish my claim that little has been said about how 
‘special’ simulation models are, even by partisans of the philosophical novelty of 
computer simulations. I focus my attention on Humphreys’ notion of computational 
model as the most complete of these methodologies. Section 3 amplifies and illu-
minates Humphrey’s notion with a study on the architecture of simulation models.2 
Section  3.3 introduces the notion of recasting as the most salient methodological 
feature of simulation models and the core determinant for their architecture. Sec-
tion 3.4 deals exclusively with distancing recasting from sub-modeling and multi-
modeling, two customary practices in scientific modeling. Section 3.5 illustrates the 
architecture of simulation models with two examples of scientifically relevant com-
puter simulations.3 Finally, Sect. 4 presents the philosophical novelty of computer 
simulations understood as challenges posed to the current philosophy of science. 
This last section argues, pace Frigg and Reiss, that standard model-based treatment 
of scientific explanation cannot accommodate computer simulations. We must keep 

1 The predicament is the question of “how we, as humans, can understand and evaluate computation-
ally based scientific methods that transcend our own abilities” (Humphreys 2009, 617). Humphreys also 
works on the philosophical novelty of computer simulations in his book (Humphreys 2004).
2 Because Humphreys is interested in computational science in general, he calls these models compu-
tational models. Because I am interested in computer simulations in particular, I use the more accurate 
term simulation models.
3 Whereas it can be shown that the architecture of simulation models fits different computer simulations 
of varying complexity, the philosophical implications discussed in Sect. 4 are more visible with the type 
of complex, multi-modeling simulations that researchers are currently implementing.
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in mind that it is not within the intentions of this paper to elaborate at large on this 
complex philosophical issue. Rather, it will suffice to show that using model-based 
explanations fails to accommodate explanation for computer simulations. The article 
ends with a short survey of the philosophical tradition where the main claims can be 
located.

2  Computer Simulations: the Essential Contrast

Philosophers have made numerous efforts to provide a proper characterization, if 
not a straightforward definition of computer simulations and its distinctive meth-
odological features. Famously, in 1990 Humphreys presented a working definition 
that reads: “[a] computer simulation is any computer-implemented method for 
exploring the properties of mathematical models where analytic methods are una-
vailable” (Humphreys 1990, 501). Whereas this working definition still stands up 
as an accepted characterization for computer simulations, Hartmann has suggested 
two amendments to it. On the one hand, any definition of computer simulations must 
also stress the dynamic character of the mathematical model. According to Hart-
mann, “scientists reserve the term ‘simulation’ exclusively for the exploration of 
dynamic models” (Hartmann 1996, 84).4 On the other hand, Hartmann pointed out 
that computer simulations are also successfully used even when analytic methods 
are available.

Based on these objections, Hartmann offered his own definition, later adopted 
by many philosophers (e.g., Guala 2002; Parker 2009): “[s]imulations are closely 
related to dynamic models. More concretely, a simulation results when the equa-
tions of the underlying dynamic model are solved. This model is designed to imitate 
the time-evolution of a real system. To put it another way, a simulation imitates one 
process by another process. […] If the simulation is run on a computer, it is called a 
computer simulation” (Hartmann 1996, emphasis in original, 83).

Thus understood, Hartmann’s definition stands on three statements,

(a) a simulation is the result of solving the equations of a dynamic model;
(b) a computer simulation is the result of having a simulation running on a physical 

computer;
(c) a simulation imitates another process

To marshal the evidence, (a) takes it that the equations of a dynamic model are 
solved by means of mathematical inference—and thus, the model itself is mathemat-
ical. As Hartmann puts it: “[t]he corresponding dynamic model is conveniently for-
mulated in the language of differential equations” (Hartmann 1996, 84). When (a) 
is complemented with (b), we are in the presence of a computer simulation. Taken 

4 ‘Exploration’ here means finding the space of solutions to the dynamic model. This explains why all 
five functions of simulations described by Hartmann heavily resemble finding solutions to the underlying 
model (Hartmann 1996, 84–85).
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together, (a) and (b) entail that a computer simulation results when a dynamic math-
ematical model is implemented on the physical computer.

To illustrate these points, consider Hartmann’s example of the Boltzmann-
Uehling-Uhlen-beck (BUU) model of the dynamic behavior of low energy nuclear 
collisions. The model is representative of a typical mathematical model in the sense 
that it is highly idealized, it abstracts from collisions as well as from relativity the-
ory, and ignores specific quantum interactions, among other characteristics (Hart-
mann 1996, 93). Since the set of final equations is analytically unsolvable and cog-
nitively intractable, it is a good idea to opt for a computer to do the numerical work. 
This intuition is well captured by Hartmann and goes along with Humphreys’ work-
ing definition.

The above definitions have been cogently captured by Frigg and Reiss under 
the narrow sense of simulations, which “refers to the use of a computer to solve 
an equation that we cannot solve analytically, or more generally to explore math-
ematical properties of equations where analytical methods fail” (Frigg and Reiss 
2009, 596). If this is the predominant interpretation, it follows that the philosophical 
inquiry that arises in connection with computer simulations are variants of issues 
already discussed in different philosophical contexts. For instance, claims that the 
computer solves a mathematical model does not motivate claims about the method-
ology of computer simulations. Similarly, there is no genuine epistemological inter-
est in computer simulations if their use is only justified when mathematical models 
have no solutions. In more general terms, and under the current definitions, com-
puter simulations do not raise more philosophical interest than any other method 
that facilitates calculations.

Thus understood, these definitions treat mathematical models and simulation 
models on an equal methodological and epistemological footing. Indeed, a computer 
simulation is no more than a mathematical model solved mechanically, and thus 
inferences need only to include considerations about the accuracy of results.5

More refined accounts of computer simulations entertain the idea that a proper 
methodology must include extra elements, whether they be extra layers of mode-
ling or the mathematical manipulation of such models. Take, for instance, Wins-
berg, who argues for a hierarchy of models where, at the end of several transfor-
mations, we find the ‘computational model’ (Winsberg 1999). Morrison also urges 
for more attention to be given to the methodology of simulation models, which are 
the “result of applying a particular kind of discretization to the theoretical/math-
ematical model” (Morrison 2015, 219). To these authors, as well as to many oth-
ers (e.g., Lenhard 2019;6 Varenne 2018), the methodology of computer simulations 
plays a central role in their philosophical assessment, and thus simulation models 

5 For more detail on the implications of these definitions, see (Durán 2019), in particular, the PST view-
point on computer simulations.
6 Lenhard is a recent example of taking simulations as a ‘special’ kind of model. In his 2019 book, he 
discusses computer simulations as “a new type of mathematical modeling” and further suggests that their 
‘special’ status stems from a handful of general characteristics, such as plasticity, visualization, and oth-
ers. Yet another interesting case is the book “Mathematics as a Tool” (Lenhard and Carrier 2017), where, 
again, computer simulations are generally approached as a ‘special’ kind of mathematical model.
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are treated as a ‘special’ kind of model. However, little efforts are put into working 
out an architecture for simulation models.

Frigg and Reiss call this second sense of ‘simulation’ the broad sense, which 
refers “to the entire process of constructing, using, and justifying a model that 
involves analytically intractable mathematics” (Frigg and Reiss 2009, 596). Thus 
understood, the broad sense presents a richer view on computer simulations, one 
that acknowledges, among other things, the existence of a methodology for com-
puter simulations. Properly understood, however, this methodology seeks to locate 
simulations in the ‘methodological map’ (Rohrlich 1990; Galison 1996), but it has 
no interest in discussing the organization, relation, and functionality of the inner 
constituents of simulation models. In other words, the broad sense is more about 
figuring out exactly what simulations take from theory and experimentation than to 
account for the constitutive structures and relations of simulation models. My job 
here is precisely to elaborate on a detailed account of simulation models, one that 
also fosters their philosophical novelty.

The exception here is Humphreys, who, after abandoning the working definition, 
introduced the notion of a computational model (Humphreys 2004). To my mind, 
the sextuple: <Template, Construction Assumptions, Correction Set, Interpretation, 
Initial Justification, Output Repre-sentation> (Humphreys 2004, 103) is the closest 
we have today to an architecture of simulation models. Each member of this sextu-
ple carries its own characteristic and raises its own set of technical and philosophical 
difficulties. A short description indicates that the template consists of a computa-
tionally tractable theoretical template, that is, a set of partial differential equations 
with the appropriate initial and boundary conditions suitable for the computer. The 
construction assumptions and the correction set are responsible for adjusting the 
computational model to good representation and computation of the template—they 
are also responsible for the accuracy of the results. The interpretation is originally 
employed in the construction and acceptance of the template. Finally, the output 
representation is essentially the visualization stage of the simulation (Humphreys 
2004, 72ff).

Humphreys’ treatment of computational models is not exhaustive, thus leaving 
sufficient room for further development. One could, for instance, focus on the out-
put representation and argue, together with Perini and others, that visual representa-
tions are a genuine, non-linguistic form of scientific arguments (Perini 2005). Draw-
ing from and expanding on Perini’s work, one could then show that visualizations 
of computer simulations can bear truth without resorting to mathematical models 
(Durán 2018).

My interest here focuses on amplifying and illuminating Humphreys’ work by 
elaborating on a detailed architecture of simulation models. Such an architecture, 
nevertheless, differs from Humphreys’ computational model in several specific 
respects. One such difference is that I take simulation models to be an amalgam-
ate of mathematical models, databases, integration modules, and other constituents. 
Furthermore, I bring attention to the techniques of recasting and clustering numer-
ous models into one simulation model. In fact, I believe that Humphreys does not 
take notice of the multiplicity of models that compose the computational model, but 
rather of the different stages to which one mathematical model—and its multiple 
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differential equations—undergoes before it becomes part of the template (see his 
examples in Humphreys 2004, 72). Above and beyond this interpretation, a more 
detailed analysis of the architecture of simulation models is urgently needed, espe-
cially when philosophers are still discussing the epistemology of computer simula-
tion, and much of that discussion is based on the misleading claim that mathemati-
cal models are directly implemented on the physical computer.7 Moreover, if I am 
correct about the architecture of computer simulations, then we have solid grounds 
for claims about the philosophical novelty of computer simulations. These are the 
topics for the following sections.

3  A Survey on the Architecture of Simulation Models

This section surveys the architecture of simulation models (SM). The SM, I will 
argue, is a rich and complex structure that departs in important ways from standard 
models used in scientific research. This is the case because the SM encompasses at 
least two different units of analysis (i.e., kernel simulations and integration mod-
ules) and involves three forms of relations (i.e., representation, implementation, and 
integration. See Fig. 1). Furthermore, I will argue that the construction of the SM 
is possible because of a new methodology that is in place. I call it recasting, and it 
consists of clustering a multiplicity of models into one fully computational SM. Let 
me mention that I will exclude from the analysis strategies aimed at choosing the 
right programming language and the decision process that leads to selecting certain 
abstract data types over others (e.g., pointers, classes, etc.). I also exclude practices 
exclusively pertaining to the design and programming of the SM, such as the speci-
fication of SM (see Durán 2018, Section 2.2), the social organization and division of 
labor involved in developing software, and other general software engineering prac-
tices (Pfleeger and Atlee 2010). The focus is then set on elaborating on the rich and 
complex structure that makes the SM a special type of scientific model.

3.1  Models, Kernel Simulations, and Integration Modules

Let us begin with Fig. 1, which illustrates the typical SM of the kind of computer 
simulation of interest. In a bottom-up fashion, we first identify the kernel simula-
tion (KSi), understood as the implementation of mathematical models (Mi) in the 
formalism of a programming language. Then come the integration modules (IMk), 
which play two fundamental roles, namely, they integrate external databases, proto-
cols, libraries and the like with the KSi, and ensure the synchronization and compat-
ibility among them. The purpose of the IMk, as we will discuss later, is to ensure the 
computational tractability of the SM. Let us begin by briefly clarifying the nature of 

7 This article supports the claim that our general understanding of computer simulations can be signifi-
cantly advanced if we shift away from the study of simulations as branches of mathematics and physics, 
and focus more on computer science and software engineering as basic disciplines. This is the position of 
authors such as Symons and Alvarado (2019), Durán (2018), and Boyer-Kassem (2014).
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Mi, KSi, and IMk, and then move forward to discuss the relations of representation, 
implementation, and integration.

A first approach takes Mi to be any mathematical model typically present in sci-
entific research. This includes phenomenological models, data models, theoreti-
cal models, causal models, and the like (Frigg and Hartmann 2006; Altman 2018), 
instrumented in a mathematical or logical formalism, pseudo-code (Durán 2018, 
46), and similar formats. The Boltzmann-Uehling-Uhlen-beck (BUU) model of 
dynamic behavior for low energy in nuclear collisions furnishes a good example, 
but so does the liquid drop model of the atomic nucleus and Schelling’s model of 
segregation. Thus understood, Mi could be any mathematical model used in scien-
tific research with the purpose of implementing it as (part of) a computer simulation. 
Strictly speaking, the Mi is not part of the SM. However, it would be a mistake to 
remove the use of Mi altogether and favor new ways of modeling real-world phe-
nomena directly into the KSi (more on this shortly).

The KSi, on the other hand, is indeed a member of the SM. It is understood as 
an algorithmic structure that implements the Mi in a suitable language capable 
of computation by a physical computer (on this point, see Durán 2018, 37–54).8 

Fig. 1  A general architecture for simulation models

8 We are not interested in discussing the nature of algorithms. Important insights can be found in (Blass 
et al. 2009; Primiero 2014; Hill 2016); as for programming languages, computational traditions, and soft-
ware engineering methodologies, the work of (Eden and Turner 2007; Turner 2007; Eden 2007; Turner 
2018) added much clarity to the problem.
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Examples of KSi include the calculation of the Greatest Common Divisor (Durán 
2018, 47), the implementation of equations of energy, angular momentum, and 
inward force for an orbiting satellite (Woolfson and Pert 1999a), and many other 
cases. A closer look on how Mi are successfully implemented into KSi is dis-
cussed in more detail in Sect. 3.2, but the classic source of examples is Knuth 
(1973).

It is interesting to note that current simulational practice sometimes allows 
mathematical and logical formalism the be omitted in favor of a ready-made 
algorithmic structure. This means that, on an increasing number of occasions, 
researchers prefer to dispense themselves the trouble of first developing an Mi 
and then figuring out its implementation as a KSi, by directly coding their sys-
tems as a KSi. For instance, (DeAngelis and Grimm 2014; Peck 2012) show how 
a simulation model—or parts of it—may be nothing more than an algorithm that 
frames the agents’ behavior. The model’s representation takes place directly 
at the level of algorithmic structures KSi and without mediating any standard 
Mi. The representation, then, is built up from suspected relational structures 
abstracted from the target system and directly coded as KSi. For such a case, the 
KSi simply corresponds to the Mi.

In addition to Mi and KSi, we also find integration modules (IMk) as central 
components of the SM. IMk are meant to facilitate the integration, connection, 
and functionality among all KSj as a fully functional and computable SM. An 
IMk is understood as a computationally tractable algorithmic structure that ful-
fills different functionalities and purposes, such as managing routines of con-
trol and performance checks, executing protocols, ensuring I/O operations, and 
providing access to external databases, among other tasks. It is not within the 
scope of an IMk, however, to hold representational relations to a target system 
in the same way that the Mi and KSi do (see Sect. 3.2). A good example of IMk, 
then, are computer shared libraries that allow a KSi written in FORTRAN to be 
fully functional in a KSj written in Language C. Another example are off-the-
shelf databases that feed the simulation with the relevant data, like the Interna-
tional Air Transport Association database used by GLEaM, the simulation of the 
dynamics of epidemic transmission discussed in Sect. 3.5.

The rather abstract ideas presented so far will be made clear in Sect.  3.5 
where I discuss two examples of computer simulations as used in contemporary 
research. I will also be discussing the philosophical intake of KS

i
 and IMk in 

Sect.  4. For now, it is sufficient to recap our findings that Mi are implemented 
into KSi and integrated with IMk in order to conform to a fully functional, com-
putationally tractable SM. This interpretation of SM deviates significantly from 
the general idea that philosophers have of simulation models and computer sim-
ulations. Unlike the portrayal of simulations computing a single mathematical 
model which render results (Humphreys 1990, 1996; Guala 2002), most models 
implemented as simulations in fact require a multiplicity of models, input of 
data from different sources, ad-hoc solutions for the internal communication of 
modules in the simulation, and the like. Figure  1 is a close description of the 
architecture of many simulation models.
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3.2  The Representation Relation, the Implementation Relation, 
and the Integration Relation

Pertaining to the architecture of the SM, there are three relations of importance, 
namely, the representation relation, the implementation relation, and the integra-
tion relation. The representation relation can be further subdivided into two types. 
That is, R

M
i
 understood as the representation relation that holds between an Mi and 

its sub-target system TS
M

i
 , and ℜ understood as the representation relation holding 

between the SM and the target system TS. Taken individually, a given R
M

i
 can be 

characterized in terms of the philosopher’s favorite representation relation, such as 
isomorphism, homomorphism, similarity, or any other. Taken together, however, 
the representational relation ( ℜ ) for the whole SM can be identified neither with 
any individual nor joint combination of R

M
i
 . ℜ is, therefore, a representational rela-

tion of significant philosophical value. Strikingly, philosophers have seldom put any 
efforts into theorizing the representation relation ℜ.9 Instead, philosophers either 
assume that the SM somehow inherits the representational capacity of the M imple-
mented (see the advocates of the PST viewpoint Durán 2019), or it is claimed with-
out further argumentation that the SM holds a representational relation with real-
world phenomena (see the partisans of the DPB viewpoint Durán 2019).

Admittedly, I am not offering a theory of representation for SM, and thus I am 
subject to my own criticism. Instead, I engage in the much simpler job of pointing 
out what needs to be considered in order to satisfy such a future theory. To see this, 
consider the following. For a multiplicity of Mi to be receptive to becoming part of 
the SM, there must exist an equal multiplicity of R

M
i
 for each TS

M
i
 (i.e., one repre-

sentational relation for each corresponding model and sub-target system). It follows 
that the representational relation for the whole SM, i.e., ℜ , needs to be philosophi-
cally evaluated separately as a unique relation. This for two reasons. First, because, 
as mentioned, neither R

M
i
 stands out as representative for ℜ . This is true for all 

instances except for the simple case of implementing a unique M1 (hence, M1 ≡ SM). 
In such a trivial case, R

M
i
 ≡ ℜ.10 Second, because the target system of the simula-

tion model (TSM) could not be identified with, nor is the joint composition of each 
individual target system TS

M
i
 . The exception is, again, the case of a unique model M1 

where TS
M

1

 is the TSM. In this case TS
M

1

 ≡ TSM.11

Thus far, I have assumed that each R
M

i
 holds for an Mi and its target system TS

M
i
 . 

However, this assumption only aims maintaining some degree of simplicity in the 
architecture of simulation models, for it does not hold for all types of simulations. 
There is an increasing use of SM that implement Mi whose R

M
i
 may simply not exist. 

Illuminating cases are found in economics (Grüne-Yanoff 2009; Mäki 2009) and 

11 Let us note that the interpretation offered by Humphreys (2004, 2009), Winsberg (1999, 2010) are 
special cases to my architecture where the two exceptions apply.

9 To the best of my knowledge, only Bueno (2014) has offered a theory of representation for computer 
simulations. For criticism, see (Durán 2019).
10 There is the possibility that all the R

M
i
 are of the same type, say, similarity. In such a case, ℜ could 

only be taken to be of the same type of all R
M

i
 . However, the differences between each TS

M
i
 and target 

system of the simulation model TSM that I discuss next still remain.
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neuroscience (Chirimuuta 2013), both with applications in computer simulations. 
Discussing such cases will introduce a number of subtleties that this article cannot 
handle at this stage. The reader is advised, however, that the architecture of SM here 
presented is not intended to account for such complex R

M
i
 and Mi.

As for the implementation relation (Ii), that is, the relation that enables the appli-
cation of Mi as an algorithmic structure KSi, there are several ways to deal with 
it. Typically, the question to answer is how a physical system P (e.g., the physical 
computer, the brain) implements an abstraction C (e.g., an algorithm or a mental 
calculation). Chalmers has famously argued that a physical system P implements 
a computation C when the causal structure of P mirrors the formal structure of C 
(Chalmers 1994, 392). In this view, implementing an algorithm involves instantiat-
ing the appropriate pattern of causal interaction among internal states of the com-
puter (i.e., those that P mirrors from C).12 This position, known as the structuralist 
view of computational implementation,13 is shared by many proponents (Copeland 
1996; Dresner 2010 Godfrey-Smith 2008; Scheutz 2001). On the opposite side is 
Rescorla, who argues that structuralism predicts incorrect implementation condi-
tions for some, though perhaps not all, computations. To Rescorla’s mind, it is per-
fectly possible to find cases where P implements C in conditions where P does not 
mirror the formal structure of C (Rescorla 2013, 683).

Unlike these positions, I am not interested in theorizing on the implementation 
relation between a physical system and an abstract one, but rather on the implemen-
tation relationship between Mi and its respective KSi, both being abstract entities. 
I understand that this choice neglects the limitations that the physical computer 
imposes on the computation of KSi, such as the order of precision in the results. But 
insofar as we keep in mind that any KSi needs to be implemented on the physical 
computer, and thus be computable, and that the physical implementation imposes 
restrictions on the realizability of that KSi as discussed by Chalmers and Rescorla, 
then momentarily ignoring the implementation on the physical computer should not 
constitute a problem for us.14

The notion of implementation of interest here can be approached semantically 
and methodologically. Regarding the former, I draw on Rapaport’s idea that imple-
mentation is semantic interpretation (Rapaport 1999, 2005, 2019). In its simplest 
form, this means that a semantic domain (e.g., KSi), standardly characterized by 
rules of symbolic manipulation, interprets a syntactic domain (e.g., Mi) (Rapaport 
1999, 110). Interpretation here is taken as a correspondence or mapping relation 
between the properties, structure, operations, states, and the like of the syntactic 

12 This seems to be the assumption that drives Parker (2009) to claim that the materiality of the physi-
cal computer plays some relevant role in the interpretation of the results of computer simulations (Durán 
2013, 2018).
13 Not to be confused with other forms of structuralism in the literature, such as structuralism about the 
natural numbers (Benacerraf 1965; Halbach and Horsten 2005) and structural realism (Ladyman 2016), 
among others.
14 Computational Reliabilism is a promising framework for entrenching the epistemic reliability of any 
computational system, including computer simulations (Durán and Formanek 2018).
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domain into the semantic domain (Rapaport 2005, 386–389).15 To illustrate these 
points, consider a simulation of a satellite orbiting around a planet under tidal stress. 
For such a case, researchers might want to implement standard equations of energy, 
angular momentum, and inward force (Woolfson and Pert 1999a). In order to imple-
ment such equations (i.e., Mi) into KSi, a series of functions, data types, condition-
als and control flow statements among other instructions must be in place. Take for 
instance the implementation of the equations of angular momentum as presented in 
Woolfson and Pert (1999b). These equations are interpreted as the summation of the 
squares of three real variables representing the position of the satellite. Each one of 
these variables correspond, in turn, to a three-dimensional array corresponding to 
the FORTRAN programming language.

Let us further note that implementing any Mi into a KSi also triggers a series of 
processes and relations—many of which the researchers do not have control over 
nor program themselves—aimed at making the implementation computable. For 
instance, the equations of angular momentum require, during the execution of the 
simulation, special allocations of memory (i.e., as arrays), interpretation of the data 
types involved (i.e., real data type), the execution of protocols in the operating sys-
tem (e.g., for avoiding deadlocks), etc. At any rate, the logical analysis of Ii shows 
that the implementation relation consists of a series of mapping of the entities, struc-
tures, relations, operations, and the like found on the Mi into an appropriate algorith-
mic way (i.e., the KSi).

From a methodological perspective, Ii also includes a number of discretization 
techniques and ad-hoc solutions (Winsberg 1999). For instance, there is an explicit 
decision of implementing the stress of the satellite by three masses connected by 
springs each of the same unstrained length (Woolfson and Pert 1999a). This is an 
example of a typical ad-hoc solution for a problem where the stress of the satellite 
cannot be represented by a point mass. To ensure high degrees of fidelity, the KSi 
inherits core features of the Mi that it is implementing.16 For instance, if the Mi is a 
nonparametric statistical model, then the KSi will include a call to a pseudo-number 
engine, the treatment of infinity, and a way to represent the distribution of spaces; 
if the Mi represents the time-evolution of two variables, then the KSi must also rep-
resent its dynamics in finite time. These are a few among several chief characteris-
tics that simulations maintain in order to offer reliability and trustworthiness of their 
results (Durán and Formanek 2018).

Finally, the integration relation (ir) can be epistemically and methodologically 
understood as being similar to Ii. The ir connects or binds KSi with IMk for the pur-
poses of ensuring, among other things, synchronization and compatibility among the 
KSi. The ir, then, can be simply seen as linkages of IMk for the compatibility of SM. 
In this respect, I do not think that the ir has any philosophical relevance in itself, and 

15 It is important to keep in mind that the notions of ‘semantic’ and ‘syntactic’ used by Rapaport do not 
attempt to capture philosophical viewpoints on theories and models.
16 I am loosely reinterpreting Weisberg’s fidelity criteria as describing how similar the KSi must be to 
the Mi in order to be considered a computationally tractable implementation (Weisberg 2007, 221).
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thus I shall not pursue any further characterization of it. It is important to mention it, 
however, for the sake of technical completeness.

3.3  Recasting

Frequently, philosophers take the analysis of computer simulations to be exhausted 
in the fact that a model is implemented as a simulation. We have seen this in the 
work of Hartman, Parker, and Guala, who take that a given M is somehow directly 
computed by a physical machine. Winsberg and Humphreys, on the other hand, 
argue that a given M is implemented into the SM by alterations of M and extra levels 
of modeling (for more on these points, see Durán 2019). I submit that the design and 
construction of an SM entails more processes and a higher level of complexity than 
accounted so far.

Unlike these philosophers, I take the SM to be a more complex structure, one 
with two salient characteristics. First, it clusters a multiplicity of Mi into a fully oper-
ational SM. Second, the SM includes modules, structures and aggregations that go 
beyond the mere alteration and implementation of Mi into the corresponding KSi. 
These two characteristics are an indication of the richness and complexity of the SM, 
and ultimately speak in its favor as a unit of philosophical analysis in its own right. I 
call recasting the whole process of converting the SM into a fully operational simu-
lation. To be more specific, the process of recasting is divided into three main proce-
dures, namely, the implementation of the multiplicity of Mi into their corresponding 
KSi, the integration of KSi into the SM by means of modules and structures IMk, and 
the aggregation of the external IMk into the SM. Let us discuss them in turn.

The implementation relation of Mi into KSi has been discussed earlier. By bring-
ing it up again, I intend to draw attention to the fact that it is not one Mi implemented 
as the algorithmic structure KSi, as computer simulations are often addressed in the 
specialized literature, but rather of a multiplicity of Mi that are ultimately clustered 
in the SM.

The integration step, on the other hand, has largely been neglected by the domi-
nant literature on computer simulations and does require our attention. In an increas-
ing number of contexts, the SM implements a multiplicity of Mi, many of which are 
of different kind (e.g., phenomenological models, data models, theoretical models 
Frigg and Hartmann 2006) and hold different structures (e.g., time and space scale, 
grid resolution, etc.). In this respect, a fully functional, computationally tractable, 
and representationally sound SM requires all KSi to be integrated in the right way.17 
To this end, researchers make use of IMk to ensure full cohesion and operation-
alization. For instance, if a KSi implements a non-parametric statistical model Mi 
whereas another KSj implements a Mj that represents the time-evolution of two vari-
ables, then there must be an IMk in place that either makes the two KS compatible 

17 Let it be noted that I group under the same umbrella a series of disparate computer processes: a data-
base and a daemon are different in fundamental respects. Nevertheless, and for the purposes of this arti-
cle, I see no objection in referring to all of them as integration modules (IMk).
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with each other, or collects the outcome of each individual KS into the input for a 
third KSm.

Thus understood, integration modules IMk are binding units into the SM with the 
purpose of making the latter computable. As discussed earlier, there are multiple 
purposes for the IMk, including providing cohesion and interaction among the KSi 
(e.g., communication protocols, synchronization in parallel and distributed comput-
ing, synchronization of sub-processes); enabling their integration (e.g., time and 
space multi-scale integration, parameter integration); and coupling, understood as 
the degree of interaction between IMk and KSi (e.g., deadlock detection in distributed 
databases with its error control). Furthermore, IMk are operationalized to uphold 
standards of tractability for the SM (e.g., response time and processing speed), com-
putability (e.g., managing routines of error control, performance checks, and I/O), 
and modularity (e.g., scalability, maintenance), among others. It is indeed in virtue 
of recasting a number of Mi into KSi that differ in scale, parameters, resolution, and 
the like, that many IMk gain their value: they are the binding units that ultimately 
enable the SM to be a successful simulation.

Finally, the aggregation step consists in including external IMk as a constitutive 
part of the SM. Typical examples are databases, pseudo-random number engines, 
I/O and basically any other form of software, library, structured data, etc., that con-
tribute to the success of the simulation. Let us note that none of these are related to 
the implementation of an Mi into the SM. Section 3.5 shows an example where the 
IATA database is constitutional for the success of a medical simulation, and which 
cannot be taken as part of any of the Mi implemented.

Recasting, then, makes plain the structural richness of SM, their value as units 
of analysis in their own right, and ultimately provides the basis for claims about the 
philosophical novelty of computer simulations. Before ending this section, there is 
one more point to discuss, that is, that recasting is possible because of a new form 
of abstraction uniquely found in computational systems. Typically, the construal of 
a given Mi requires the researcher to subject the phenomenon in the real-world to 
processes of abstraction, idealizations, and fictionalizations, thus having to decide 
which aspects of the phenomenon will actually be considered (Weisberg 2007). The 
SM does not necessarily abstract from the real-world, but rather inherits, so to speak, 
such abstractions from the Mi. To this abstraction, we also need to factor in the inte-
gration and aggregation steps just discussed. In this context, recasting is impossible 
without tools that hide, but do not neglect, details about the implementation of each 
Mi, the integration of each KSi, and aggregations of each IMk. This is to say that 
the properties, structures, operations, relations and the like present in each Mi can 
be effectively implemented into the KSi without stating explicitly how such imple-
mentation is carried out (the same can be said about the integration and aggrega-
tion steps). Colburn and Shute call this form of abstraction information hiding, and 
to them it constitutes a novel form of abstraction introduced by computer science 
(Colburn 1999; Colburn and Shute 2007). Examples include abstracting from the 
details how the messages among computer processes are passed on, how the com-
puter hardware represents the value of parameters, and how programming languages 
handle irrational numbers, among other exclusively computational related issues 
(Colburn and Shute 2007). Owing to information hiding, researchers are entitled to 
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several claims, including that the process of recasting a multiplicity of Mi and IMk 
into a fully functional SM is done minimizing the loss of information, that ℜ repre-
sents the target system in the intended way, that the SM is a reliable model (Durán 
and Formanek 2018), and that the results of SM are (approximate) correct of the 
target system, among others.

Before illustrating the architecture of SM with two examples and discussing 
further their philosophical implications, let me briefly examine sub-modeling and 
multi-modeling as two known practices in modeling that could be deemed as can-
didates for replacing recasting. If my arguments against sub-modeling and multi-
modeling as forms of recasting is convincing, then I believe we are in the presence 
of a new form of modeling.

3.4  Sub‑modeling and Multi‑modeling

Sub-modeling is another term for partitioning an unmanageable model into smaller, 
easier-to-handle parts. In this respect, it is more a modeling strategy than a way to 
conceive of the model. Once a scientific model has been partitioned, each sub-model 
is a representational unity in itself that addresses different aspects of a phenomenon, 
and which is decoupled from other sub-models. The aim, then, is not to integrate a 
diversity of models into a larger and more encompassing model, but rather to ‘disin-
tegrate’ a unity into simpler, more manageable, ontologically similar units. In other 
words, the researcher’s motivations, aims and final results in sub-modeling differ in 
relevant aspects from recasting. Bailer-Jones puts this issue in the following way: 
“[p]ortioning the problem-solving task in this way makes the individual tasks much 
more manageable, and scientists with their specific expertise can work on individual 
submodels, while remaining comparatively unconcerned with the issues arising in 
other submodels” (Bailer-Jones 2009, 132).

Naturally, at a later stage the sub-models need to be integrated back into the orig-
inal model. This methodological step is, again, hardly the same case as recasting 
where there is no breakup of the model in the first place, and the main aim con-
sists in integrating a disperse and—in most cases—incompatible set of models into 
a computable unity. Unlike sub-modeling, then, in recasting researchers cannot 
remain unconcerned with issues rising from the different Mi, their implementation 
as KSi, and the integration with IMk.

Multi-modeling, on the other hand, is another term for a hierarchy of models that 
are neither equally valid nor equally successful. Each model in the hierarchy has 
its proper functions, purposes, representational capacity, and limitations that differ 
from other models in the hierarchy. Now, since multi-modeling imposes a complex-
ity that the analytic treatment is not always prepared to cope with, they are kept rela-
tively simple. This means that their treatment is of a simple individual model within 
the hierarchy.

Similar to sub-modeling, in multi-modeling each model might be decoupled from 
the others. Moreover, just like sub-modeling, the main objective in multi-modeling 
consists in decomposing or partitioning rather than composing a target system. 
Unlike sub-modeling, however, multi-models are models in themselves, located 
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somewhere in a hierarchy of models, and not a ‘piece’ of a larger model. Thus 
understood, there is a sense in which multi-modeling resembles recasting and SM to 
some detail.

Suppose for a moment that recasting entails a hierarchy of models. This means 
that, in order to accommodate multi-modeling to a form of recasting, we need each 
individual model in the multi-model hierarchy to relate, vis á vis each KSi in the 
simulation model. In other words, the SM is conceived as a well-structured hierarchy 
of kernel simulations. It is in this way that the SM becomes a structural image, hier-
archically organized, of a multi-model. Unfortunately, this is as far as the analogy 
can be established. First, this image does not capture what researchers typically call 
a computer simulation. Although there might be some cases of a hierarchical SM, 
those are very unusual in the actual practice of computer simulations. Furthermore, 
and as I discussed in Sect. 3, a computable and fully functional SM also requires the 
integration of KSi via IMk. This means that the hierarchy of models must also reflect 
these extra modules. However, the inclusion of IMk breaks the hierarchical structure 
since their job is, precisely, to integrate the multiplicity KSi into a computational 
(not necessarily hierarchical) SM.

Admittedly, we cannot logically exclude the possibility that, in some very specific 
cases, recasting takes the form of multi-modeling. However, we have made its occur-
rence so rare and unlikely that it is safe to conclude that recasting, and along with it 
the SM, are not part of a charted philosophical territory. Let us now have a brief look 
at the architecture of computer simulations with an actual working example.

3.5  Example: Medical Simulations

In order to illustrate the architecture of computer simulations, consider two simula-
tions of an epidemic outbreak. Ajelli et al. (2010) provide a side-by-side comparison 
of a stochastic agent-based model and a structured meta-population stochastic model 
(GLobal Epidemic and Mobility-GLEaM). The agent-based model includes an 
explicit representation of the Italian population through highly detailed data on the 
socio-demographic structure—in our parlance, KS1 implements M1. In addition, and 
for determining the probability of commuting from municipality to municipality, 
Ajelli et al. use a general gravity model used in transportation theory—that is, KS2 
implements M2. However, the epidemic transmission dynamic is based on an ILI 
(Influenza-like Illness) compartmentalization based on stochastic models that inte-
grate susceptible—M3, latent—M4, asymptotic infections—M5, and symptomatic 
infections—M6 (Ajelli et al., 2010, 5). In our schemata, each Mi, 3 ≤ i ≤ 6 represents 
a type of infection TS

M
i
 and it is implemented as a KSi in the SM. The authors define 

their agent-based model as “a stochastic, spatially-explicit, discrete-time, simulation 
model where the agents represent human individuals […] One of the key features 
of the model is the characterization of the network of contacts among individuals 
based on a realistic model of the socio-demographic structure of the Italian popula-
tion” (Ajelli et  al. 2010, 4). Typically, IM are not explicitly mentioned in general 
descriptions of the simulations, but they are nonetheless central during the stages of 
designing and coding of the actual SM. In this case, the authors mentioned that both 
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GLEaM and the agent-based model are dynamically calibrated in that they share 
exactly the same initial and boundary conditions. Such calibration is carried out by a 
module IM that integrates both simulations (Ajelli et al. 2010, 6).

On the other hand, the GLEaM is a multiscale mobility network based on high-
resolution population data that estimates the population with a resolution given by 
cells of 15 × 15 min of arc. Balcan et al. (2009) explain that a typical GLEaM con-
sists of three data layers. A first layer, where the population and mobility are imple-
mented, allows for the partitioning of the world into geographical regions—i.e., KS1 
implements M1. This partition defines a second layer, the sub-population network, 
where the inter-connection represents the fluxes of individuals via transportation 
infrastructures and general mobility patterns—KS2 implements M2. Finally, and 
superimposed onto this layer, is the epidemic layer, that defines the disease dynamic 
inside each sub-population—KS3 implements M3—(Balcan et al. 2009). In the study 
conducted by Ajelli et  al., the GLEaM also represents a grid-like partition where 
each cell is assigned the closest airport (this could actually be another Mi or simply 
an external IMk, like a database). The sub-population network uses geographic cen-
sus data—IM1—and the mobility layers obtain data from different databases, includ-
ing the International Air Transport Association database consisting in a list of air-
ports worldwide connected by direct flights (i.e., {IM2, IM3, …}).

The example of the two computer simulations give us a good sense of the inter-
connectivity between different Mi, their implementation as KSi, and the final inte-
gration into a fully functional SM via IMk. Let us now summarize our findings. In a 
given SM, several IMk integrate a number of KSi for computational purposes. Each 
KSi, in turn, implements a multiplicity of Mi in such a way that is computationally 
tractable. Since most of the structures found in an Mi can be reconstructed in terms 
of a given programming language, it is reasonable to take that KSi is an accurate 
implementation of such Mi. The process of information hiding discussed earlier war-
rants the implementation.

Let us now turn to my last discussion, where I address the philosophical novelty 
of SM.

4  The Philosophical Novelty of Computer Simulations: the Case 
of Scientific Explanation

The previous sections made an effort to present and discuss the architecture of simu-
lation models, and to show how this structure better accounts for the current practice 
of simulation modeling. I argued for a rich and complex structure that builds from 
different sources ranging from mathematical models to sizable external databases. 
I now argue how, by means of taking SM as units of analysis in their own right, we 
could give content to the idea that computer simulations introduce new challenges to 
the philosophy of science. To make this visible, I briefly revisit two recent discus-
sions on scientific explanation for computer simulations and show why the whole 
explanatory enterprise fails when taking simulations as the simple implementation 
of mathematical models.
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The first attempts to elaborate on the logic of scientific explanation for com-
puter simulations is found in the works of Krohs (2008) and Weirich (2011).18 To 
these authors, a mathematical model M (in Krohs’ terminology, a theoretical model) 
explains a real-world phenomenon (RWp) in the usual way, that is, by relating prop-
erties of the former that account for the latter. On occasion, the M includes equations 
that are too complex for humans to solve analytically, and therefore the representa-
tion of RWp cannot be guaranteed. This means that an explanation of RWp cannot 
take effect. Computer simulations amend this by finding the set of solutions to M, 
and thus, claim Krohs and Weirich, reestablish the representational relation to RWp. 
As Krohs summarily puts it: “[t]he explanatory relation holding between simulation 
and real world is therefore an indirect one. In the triangle of real-world process, the-
oretical model, and simulation, explanation of the real-world process by simulation 
involves a detour via the theoretical model” (Krohs 2008, 284). Thus understood, 
computer simulations play the instrumental role of solving M, but not the explana-
tory role of accounting for RWp, which ultimately is left to M. It is in the sense of 
being a mere instrument that computer simulations do not pass the mark of what 
constitute a philosophical issue.

Opposing this view is my own work (2017), where I argue that the logic of expla-
nation for computer simulations must include the SM into the explanatory relation. 
To this end, it must be first shown that the SM is in a better position to explain than 
any Mi. This is accomplished precisely by noticing that a given SM is a collection 
of models, relations, and external modules that exceed any one Mi. Furthermore, 
I call  attention to the fact that researchers are interested in explaining the results 
of their simulations with the purpose of understanding real-world phenomena, 
but not to explain the latter directly. Decoupling explanation from understanding 
allows me to fully circle the logic of explanation for computer simulations. Indeed, 
researchers first explain the results of their simulations, and only after a further epis-
temic step are they able to understand something about the real world (Durán 2017, 
40).

A simple example will help to contrast the two approaches. Consider a simula-
tion of a satellite orbiting a planet under tidal stress, as presented by Woolfson and 
Pert (1999b). The visualization of the results shows a series of spikes that represent 
the tidal stress that the satellite undergoes during orbiting. Researchers are naturally 
inclined to first explain the behavior of the simulated satellite, such as the spikes 
(i.e., the results of the simulation), before designing, building, and operating the real 
satellite. In the context of this example, I call attention to the fact that the visualiza-
tion shows the spikes having a steadily downwards trend, an effect that is the result 
of a truncation error during the computation of SM. I conclude that, if an M exoge-
nous to the simulation were to be used for explanatory purposes (v.gr., a mathemati-
cal model of the planetary orbit), as Krohs and Weirich propose, then researchers 
would either be unable to account for the trend downwards or, having explained the 
spikes with M, they would have wrongly ascribed the downwards trend to the real 

18 The works of Miłkowski (2016) and Fernández (2003), for instance, are better understood as attempts 
to have explanation using computer simulations.
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world (i.e., they would have misleadingly claimed that the satellite’s orbit will even-
tually become circular). I then show how, by reconstructing the SM as the explan-
ans, researchers are able to account for this trend and thus understand the overall 
behavior of the satellite. Motivated by these results, I offer an in-depth account of 
explanation for computer simulations that, as a matter of fact, includes the SM in the 
explanatory relation.

The fundamental difference between my approach, on the one hand, and Krohs 
and Weirich, on the other, is that we understand computer simulations in radically 
different ways. I build my claims around the idea that the SM is a rich and complex 
model, with methodological and epistemological value in and by itself. Krohs and 
Weirich, echoing authors such as Hartmann (1996), Frigg and Reiss (2009), Parker 
(2009), and others, mingle the analysis of simulations with the analysis of other 
forms of mathematical models.

Now, if these claims are correct, we find ourselves with a handful of genuine phil-
osophical issues attached to the logic of scientific explanation for computer simula-
tions. On the one hand, and taking my approach seriously, further arguments need to 
be provided on how and to what extent researchers are able to access and reconstruct 
the SM for the purpose of explaining. Although I offer a detailed reconstruction of 
the SM as the explanans for the simulation of the satellite, I also notice  that cog-
nitively accessing every function, procedure, and data-type in the SM is challeng-
ing. In this respect, the right levels of description for the explanans is a novel issue 
that needs to be discussed in detail if this account is to be successful. On the other 
hand, a central philosophical question that seeks an answer is how, by explaining the 
results of a computer simulation, researchers understand RWp. These issues draw on 
problems related to representation, realism, and the notion of understanding in the 
context of computer simulations. Unfortunately, these topics have also received little 
attention in the specialized literature (except for Bueno (2014). See footnote 9). The 
bottom line is that we have on our hands a computationally-based explanation that 
differs in important aspects from a model-based explanation, and thus offers signifi-
cant philosophical value.

5  Final Remarks

The philosophical analysis of computer simulations must recognize the rich struc-
ture and methodology of SM, and refrain from reducing the discussion to the mere 
implementation of an M onto a physical computer. The latter way of looking at com-
puter simulations impoverishes their nature and importance in scientific practice, 
ultimately assimilating simulations as tools with mere instrumental value.

Over the past years, much has been discussed concerning the heterogeneity of 
models and the myriad of methods by which they can be constructed, applied, and 
evaluated in their own right. The works of Suárez and Cartwright on the piecemeal 
borrowing of models from a range of different domains (Suárez and Cartwright 
2008), as well as the many works collected under the idea of models as mediating 
between our theories and the world (Morgan and Morrison 1999), furnish two good 
examples of these kinds of philosophical discussions. The work presented here is an 
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attempt to support the claims behind these and other philosophers who share similar 
viewpoints. I depart from them, however, in that I focus on a new kind of scientific 
model, that is, the simulation model. I am, of course, not alone in this enterprise. 
As mentioned, Humphreys (1990) already attempted to distinguish mathematical 
models from computational methods, and authors sensitive to the methodology of 
computer simulations have followed a similar path (Winsberg 2010; Morrison 2015; 
Varenne 2018; Symons and Alvarado 2019).

My approach departs from theirs on several accounts, including the use of studies 
in computer science and software engineering as the most suitable body of knowl-
edge for understanding simulation models. With this firmly in mind, I showed that 
recasting is a significant methodological move that brings new insight into studies 
on simulation models and computer simulations. Moreover, recasting makes sense 
of the fact that simulation models handle many parameter values and thus hold great 
representational capability and model expressiveness, arguably the most celebrated 
characteristics of computer simulations along with their computing power.

Admittedly, with some discussions, I have only scratched the surface of what 
is now deemed a pressing issue. This is most visible in my treatment of the nov-
elty of simulation models for explanations. In spite of these—and other, possibly 
unknown—shortcomings, the article also accomplishes its original aim of taking 
Frigg and Reiss’ objections to computer simulations as philosophically novel seri-
ously, as well as offers an in-depth, unprecedented architecture of simulation models 
that could be—and, in many cases should be—the basis for the philosophical study 
of computer simulations.
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