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Incremental Nonlinear Dynamic Inversion Control of Long-Stroke
Pneumatic Actuators

Hemjyoti Das1, Daan Pool2 and Erik-Jan van Kampen3

Abstract— Pneumatic cylinders provide an environment-
friendly actuation means by minimizing the leakage of any
harmful industrial fluids, as occurs for hydraulic actuators.
However, pneumatic actuation has not been utilized widely for
industrial servo applications due to its highly nonlinear nature.
Incremental nonlinear dynamic inversion (INDI) is a form of
nonlinear dynamic inversion (NDI) that relies less on plant-
model information, and is thus inherently robust to mismatches
in the known plant-model, and also to external disturbances.
Developing an incremental nonlinear controller for a pneumatic
system is the main focus of this research article, which is
accomplished by utilizing a cascaded-control approach, where
the inner-loop INDI tracks a given force and the outer-loop NDI
is for controlling the piston-position. Moreover, realistic sensor
noises have been added in the simulation and the robustness
of the incremental approach is demonstrated with respect to a
baseline PID controller.

I. INTRODUCTION

One of the common means of actuation for controlling a
machine is pneumatic actuation. The working medium of a
pneumatic cylinder is compressed-air [1], whereas hydraulic
cylinders use a mineral oil based-fluid [2]. These hydraulic
fluids can leak into the environment and can become a major
source of pollution [3]. This external-leakage might further
lead to internal-leakage and also wearing of the cylinder
components [4]. These shortcoming of a hydraulic actuator
can be overcome by replacing it with a safer pneumatic ac-
tuation. Thus, pneumatic actuators require less maintenance,
compared to hydraulics and can be economically beneficial
for a number of industries.

Pole-placement is one of the first developed controllers
for a pneumatic actuator [5], but the limitations of its
dynamic model and hardware forced the feedback-gains to
be high. Various adaptive control methods have also been
explored to estimate the unknown model parameters [6], [7],
in order to get a better control performance. Techniques
of back-stepping [8] and sliding mode [9] controller have
also been applied for the control of pneumatic actuators.
A comparative-study of some of these nonlinear controllers
shows improvement over the conventional linear control
techniques. However, in some cases, model-based adaptive
control techniques demand an iterative process to identify the
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accurate model of a system, which further requires immense
validation and verification [10].

Recent developments in incremental nonlinear dynamic
inversion (INDI) control have led to its widespread use for
aerospace control applications [11], [12]. INDI combines the
advantages of an incremental form with that of a model-
based nonlinear dynamic inversion (NDI) [13] to result in
a robust controller that relies less on the system model
and depends more on the accuracy of sensor feedback [12].
Currently, there is no available research work that exploited
INDI control for pneumatic actuation, which is the main
focus of this paper.

A number of industrial pneumatic actuators are currently
being controlled by conventional PID controllers [14], [1],
mainly due to its ease of implementation. However, the per-
formance of linear controllers for a nonlinear system is likely
to degrade under varying operating conditions [5]. Therefore,
a conventional PID controller has been implemented here
as a baseline controller and the second contribution of this
research article is to highlight the advantages of incremental-
control over a conventional linear-control strategy, in the
context of a pneumatic system. Realistic sensor noises are
introduced and the external load attached to the piston is
varied in order to compare the robustness property between
PID and the incremental approach.

II. PNEUMATIC SYSTEM DYNAMICS

A schematic diagram of a pneumatic system is shown
in Fig. 1 [15]. The dynamics of piston and the connected

Fig. 1: Schematic diagram of a pneumatic system

external-load can be described by the following equation:

(ML +Mp) ẍ+ Ff + FL = PAAA − PBAB − PaAr (1)



In Eq. (1), x is the position of the piston, PA and PB are
the pressures in chambers A and B, respectively, whereas
AA and AB are the respective areas of chamber A and B.
Pa denotes the ambient atmospheric-pressure. ML refers to
the mass of the external-load and Mp denotes the mass of
cylinder-piston including the rod. FL refers to the force due
to the external load and Ar is the cross-sectional area of the
piston rod. A Coulomb friction-force acts between the piston
and the inner-surface of cylinder, which is represented by Ff .

Next, the rate of change of pressure across each cylinder-
chamber is represented as follows [15]:

Ṗi =
RTk

Vi
(αinṁin,i − αoutṁout,i) −

Pik

Vi
V̇i (2)

In Eq. (2), the subscript i can be either A or B, depending
on the chamber. R is the non-dimensional ideal gas constant
and the temperature T is considered as the room-temperature.
ṁin,i and ṁout,i respectively refers to the rate of mass-inflow
and mass-outflow from the cylinder chamber i. αin and αout

are the thermal coefficients that are characteristics of the
compression and expansion process, respectively. k is the
specific heat ratio of the atmospheric air and Vi refers to the
volume of cylinder chamber i that can be expressed using
Eq. (3).

Vi = V0i +Ai

(
1

2
L± x

)
(3)

In Eq. (3), Voi and Ai refers to the inactive-volume and
area of chamber i, respectively. Voi is equal to the product of
chamber area Ai and the equivalent length of dead volume
denoted as L0 in Table. I. L refers to the total length of
one-complete piston stroke.

The mass-flow rate from a pneumatic valve to the cylinder
can be either classified as chocked or unchoked, depending
on the ratio of down-stream to up-stream chamber-pressure
[15], as summmarized in Eq. (4).

ṁv =
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Pu√
T

(
Pd

Pu
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if Pd

Pu
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(4)
In Eq. (4), Cf , C1 and C2 are the nondimensional dis-

charge constants whereas Pu and Pd denotes the upstream
and downstream pressure, respectively. Pcr is the critical
pressure, which depends on the specific heat ratio. Finally,
Av represents the orifice opening, which controls the flow
of air through a pneumatic-valve. The pneumatic valve is
modelled as first-order dynamics between the commanded
orifice-opening (Av) from the controller and the actual
orifice-opening (Avm ) that is supplied to the plant.

III. INCREMENTAL NONLINEAR DYNAMIC INVERSION
CONTROL (INDI)

Incremental Nonlinear Dynamic Inversion (INDI) is a
recently developed control-technique, which has been used
widely for aerospace applications [11]. It is more robust
compared to NDI [16] in handling external disturbances
and system uncertainties, due to its marginal dependency on

the plant dynamics. The basic principle of INDI is that it
combines the advantages of model inversion with that of
incremental approach to result in a control-command that
relies mores on the accuracy of the sensor feedback and
depends less on the system-dynamics. In order to frame
an INDI control, a general nonlinear plant is defined as
ẋ = f(x,u), where x and u refers to the state vector and the
supplied control-input, respectively. Taylor-series expansion
can be used to expand f(x,u) and then the higher-order
terms are neglected to obtain an simplified expression [11].
Next, considering a high sampling-rate and using time-scale
separation principle, it is assumed that the update-rate of the
control-command u is much higher than that of the state x.
Therefore, the state-Jacobian term is dropped [11]. Finally by
using inversion and by introducing the linear enforcement-
dynamics ẍ = v, the total control-command generated from
INDI is summarized in Eq. (5).

u = u0 + G (x0,u0)
−1

(v − ẋ0) (5)

In Eq. (5), x0 and u0 refers to the system-state and
control-command at the previous time-instant, respectively.
The chosen linear-law v will guarantee an asymptotic stabil-
ity of the plant-output error, and it will be discussed in more
details in Section IV. It can be observed from Eq. (5) that
the final expression of control-command does not contain
any information of the state-transition matrix [11], and is
thus less-dependent on the system dynamics. However, it is
dependent on the feedback of the state-derivative, and thus an
erroneous feedback of ẋ0 can reduce the efficiency of INDI.
In Eq. (5), the matrix G(x0,u0) denotes the jacobian of the
plant model f(x,u) with respect to the control command
u at the operating points x0 and u0. G(x0, u0) should be
invertible and thus should be a full-rank matrix. For our case,
it is a 1 × 1 non-zero matrix and is thus always full-rank.
It is also proved that if the considered system has a high
sampling-rate, then the uncertainties in control-effectiveness
does not influence the performance of the incremental control
approach INDI. The stability and robustness analysis of INDI
can be found in more details in [17].

IV. CONTROLLER DESIGN FOR A PNEUMATIC SYSTEM

A cascaded strategy of pneumatic control is discussed in
this section. It is similar in principle to that of a cascaded
hydraulic controller [18], which is summarized in Fig. 2.

Fig. 2: Block diagram of an cascaded control approach

The outer-loop is known as the position control loop,
which is fed with the desired piston-position xd. It also
receives the feedback of the actual piston-position x and



its velocity ẋ. Based on their error, the desired pressure-
difference PLd

across the two chambers is calculated, which
is then fed to the inner-loop force controller. The inner-loop
receives the feedback of the actual pressure-difference PL

across the two chambers, and also its time-derivative ṖL. The
output of the inner-loop controller is the commanded orifice-
opening Av of pneumatic valve, which is then acted upon by
a first-order valve-dynamics. In the following sections, two
different cascaded control approaches are discussed.

A. Incremental Control Approach

1) Outer-Loop Position Control: The outer-loop com-
mand of the incremental approach is computed using NDI
by utilizing the dynamics of piston and external-load. The
area of chamber B is AB , which can be related to that of
chamber A as AA=AB+Ar, where Ar refers to the piston-
area. Using this relation in Eq. (1), the following equation is
obtained:

(ML +Mp) ẍ+Ff +FL = (PA−PB)AA +PBAr −PaAr

(6)
Before proceeding to model inversion, the friction force

Ff is ignored, as they can be oscillatory for some part of
the trajectory, which will then be reflected in the final NDI
output. It should be noted that even though Ff is ignored in
the controller design, but it is included while simulating the
plant dynamics. The designed NDI controller thus involves
a partial dynamic inversion [19]. Next, by introducing the
linear control law ẍ = v1 in Eq. (6), the expression for
desired pressure-difference across the chambers is calculated
as follows:

PLd
=

(Mp +ML) v1 + PaAr − PBAr + Fl

AA
(7)

In Eq. (7), it is assumed that the external load Fl is
known and measured using a force sensor. PLd

refers to the
difference of pressure between the two chambers of cylinder.
The linear control law v1 is chosen as follows:

v1 =Kp1
(xd(t) − x(t)) +Kd1

(ẋd(t) − ẋ(t))

+Ki1

∑
((xd(t) − x(t)) ∆t)

(8)

In Eq. (8), xd refers to the desired piston-position, x
is the actual piston-position and the tuning parameters are
denoted by Kp1 , Kd1 and Ki1 . ∆t is the sampling time of
the simulation.

2) Inner-Loop Force Control: The inner-loop control is
based on INDI and is also known as a force control loop
[18]. In order to derive the INDI control law, the mass-
flow rate in Eq. (4) is equated in Eq. (2). Furthermore,
by utilizing the expression for the differential pressure PL,
the equation of motion can be as expressed as ṖL =
f(Av,Other Parameters), where f refers to a function that
depends on the orifice-opening Av and other parameters,
which includes the flow-rate constants Cf , C1 and C2, the
ideal-gas constant R, the temperature T , the specific heat-
ratio k, the complete stroke-length L, the inactive chamber-
volume V0, the area of chambers AA and AB , and the

position of the piston x. Next, similar to Section III, by
utilizing a high-sampling rate of the system, the relation
ṖL = ṖL0

+G(Av−Av0) is obtained, where ṖL0
refers to the

derivative of actual pressure-difference across the chambers
at the previous sampling-instant. Av and Av0 denote the
orifice opening of the valve, measured at the current and
previous time-instant, respectively.

As mentioned in Section III, INDI is robust to variations
in the control-effectiveness G that is introduced previously in
Eq. (5). Therefore, a fixed control-effectiveness of magnitude
3 · 108 Pa · s−1 ·m−2 is used here, which is chosen after
carefully analyzing the time-domain response of the INDI-
controlled system, and then averaging the value of G over
the whole simulation period. Next, by introducing the linear
control law ṖL = v2 and by using inversion similar to Eq.
5, the relation Av = Av0 +G−1

(
v2 − ṖL0

)
is obtained for

the final INDI control-output. The linear control-law v2 is
summarized below in Eq. (9), where Kp2

and Ki2 are the
tuning parameters.

v2 = ṖLd
(t) +Kp2

(PLd
(t) − PL(t)) +Ki2

∑
((PLd

(t) − PL(t)) ∆t) (9)

B. PID Control Approach

1) Outer-Loop Position Control: It is summarized in Eq.
(10), where Kp3 , Kd3 and Ki3 denotes the proportional,
derivative and integral constants of the PID, respectively.

PLd
=Kp3

(xd(t) − x(t)) +Kd3
(ẋd(t) − ẋ(t))

+Ki3

∑
((xd(t) − x(t)) ∆t)

(10)

2) Inner-Loop Force Control: It is summarized in Eq.
(11), where Kp4

, Kd4
and Ki4 are the tuning parameters.

Av =Kd4(ṖLd
(t) − ṖL(t)) +Kp4 (PLd

(t) − PL(t))

+Ki4

∑
((PLd

(t) − PL(t)) ∆t)
(11)

In Eqs. (8), (9), (10) and (11), the terms proportional to
the velocity and position error are sufficient for obtaining
the desired time-domain characteristics such as rise-time and
overshoot. However to ensure a zero steady-state error be-
tween the reference and the actual trajectory of the cylinder-
piston, the integral term is added.

V. SIMULATION RESULTS

The tracking results of the incremental control approach
is compared with that of a PID in three different conditions.
Error measures such as root mean square error (RMSE) and
absolute error are used for the comparison of the incremental
approach with the baseline PID controller. Prior to these
comparisons, both the controllers are tuned to achieve sim-
ilar time-domain characteristics such as rise-time, settling-
time and overshoot. The controllers are tuned using a step
response such that there is no overshoot in their response.
Moreover, a difference of 0.08 seconds is observed in the
rise-time of outer-loop response of the two controllers. For
the inner-loop responses, a difference of 0.6 seconds is
observed in the settling-time of the two approaches, which
is acceptable for our application. The sampling time for the
simulations was 0.1 milliseconds.



A. Controller Comparison under Nominal Conditions

The controller is initially analyzed under nominal condi-
tions where sensor noises are not added and the external-
load is considered as 2,000 N. The amplitude and frequency
of this reference sinusoidal signal are chosen as 0.5 m and
0.2356 rad/s, respectively. The dimensions of the pneumatic
system are summarized in Table. I.

TABLE I: Dimensions of a long-stroke pneumatic system

Parameter Long-stroke pneumatic system
Piston stroke (L) 1.2 m

Equivalent Length of dead volume (L0) 0.1 m
Chamber diameter (dc) 0.16 m

Rod diameter (dp) 0.032 m
External load mass (ML) 200 kg

Piston plus rod mass (Mp) 2 kg
Maximum orifice opening (Avmax ) 2.2062 ·10−3 m2

Maximum supply pressure (Ps) 10 bar

(a) Nominal case tracking results of incremental approach

(b) Nominal case tracking results of PID

Fig. 3: Tracking results for a nominal case of external load
FL=2,000 N

The tracking results and the tracking errors for the
nominal-case are plotted in Fig. 3 and Fig. 4, respectively.
The tracking errors are calculated only after the control
inputs stabilize, i.e., all the simulation transients have died
out. Besides this, some extra margin is considered and thus a
time range of 10-50 seconds is used for calculating the errors
of both the controllers. It is observed that for both the outer-
loop position controllers, all the three error measures are
minimal. For instance, the RMSE of outer loop PID is 0.62
mm, whereas the RMSE of outer-loop incremental approach
is 0.14 mm. For the inner-loop, tracking errors of PID are
higher than that of its incremental counterpart. For instance,
the RMSE error of PID is 64.7% higher than its incremental
counterpart. We also observe that for the inner-loop tracking
error of incremental approach, peaks are observed at 20,
33 and 47 seconds. The reason for this observation is that
these points mark the turn-around points of the reference

(a) Inner-loop tracking errors of PID and incremental approach

(b) Outer-loop tracking errors of PID and incremental approach

Fig. 4: Tracking errors of incremental control approach and
PID for a nominal case of external load FL=2,000 N

trajectory to be tracked, where the rate of change of chamber-
pressure changes its direction. This further causes a jump in
the calculated pressure-derivative due to this discontinuity,
which is then reflected in the output of incremental approach
and finally in the inner-loop error.

B. Controller Comparison under Varying External Load

Fig. 5: Nominal-case tracking errors of PID and incremental
approach for varying load

The nominal mass of the external load is considered to be
200 kg and the value of gravitational constant g is taken as
9.8 m/s2. The variation of the gravitational component felt
by the cylinder is done by considering a sinusoidal motion
about a base point that is fixed to the ground. The axis of
rotation is directly perpendicular to the axis of motion of
the cylinder which will ensure a two-dimensional motion of
the cylinder, besides ensuring that the component of gravity
acting directly along the axis of cylinder will keep changing
throughout the tracking trajectory. The outer-loop tracking
RMSE of incremental approach is 98.4% lower than that
of the PID (Fig. 5). The reason for such a disparity in the
tracking errors is because the incremental approach considers
the varying load in its controller formulation, as is expressed



using Eq. (7). However, the output of corresponding PID con-
trol does not directly depend on the varying load, but rather
only on the piston-position error and its time-derivative, as
expressed in Eq. (10).

C. Controller Comparison in the Presence of Sensor Noise

In order to test the robustness property of both the
control approaches, normally distributed Gaussian noise is
introduced in both the simulated piston-position and the
chamber-pressure sensors. The accuracy of both the position
and chamber-pressure feedback is found after a survey of a
few available sensors [20], [21]. The feedback of piston-
velocity and the chamber pressure-derivative are obtained
using numerical-differentiation of their parent variable. The
properties of the simulated sensor noise are summarized in
the Table. II. In order to attenuate the sensor noise, a first

TABLE II: Summary of simulated sensor noise

Sensor Piston-Position Chamber-Pressure
Mean error -9·10−9 m 0.09 Pa
Maximum error 1.1 ·10−4 m 1,114.3 Pa
Standard-deviation of error 2.49 ·10−5 m 249.8 Pa

order filter is implemented. Two sets of filtering schemes
are tested named as moderate-filtering and high-filtering. The
cut-off frequencies of high-filtering scheme is set to be lower
than the moderate-filtering scheme. A filter with a lower
cut-off frequency than the system’s cut-off frequency will
ensure that besides noise, some useful information from the
plant dynamics is also filtered out. Thus, these two schemes
involve a trade-off between useful information content and
sensor noise, which will be used for comparing the two
control schemes.

(a) Robust case outer-loop tracking errors without filtering

(b) Robust case inner-loop tracking errors without filtering

Fig. 6: Robust case tracking errors without filtering

It is observed from Figs. 6, 7 and 8 that the errors signifi-
cantly reduced after the introduction of low-pass filters. For

(a) Robust case outer-loop tracking errors with moderate filtering

(b) Robust case outer-loop tracking errors with high filtering

Fig. 7: Robust case outer-loop tracking errors with filtering

(a) Robust case inner-loop tracking errors with moderate filtering

(b) Robust case inner-loop tracking errors with high filtering

Fig. 8: Robust case inner-loop tracking errors with filtering

instance, the outer-loop mean absolute tracking error reduced
by over 10 times, as compared to the corresponding unfiltered
scenario of the incremental approach. It is also found that the
RMSE of outer-loop incremental approach is lower than the
outer-loop PID by 75.84% but however, the RMSE of inner-
loop incremental approach is higher than inner-loop PID
by 26.3% for the moderate filtering scheme. The absolute
error of inner-loop PID is lower than inner-loop incremental
approach by 26.6% and this trend is also found in their
corresponding RMSE. Therefore it can be concluded from
these observations that in the presence of moderate filtering
scheme, the inner-loop and outer-loop errors do not show
a similar trend for both the control approaches. Following
this, the introduction of high-filtering further reduced the



inner-loop tracking errors for the incremental approach by
around 83.0% as compared to its corresponding error using
moderate filtering. However, with the high-filtering scheme,
PID showed degradation, with the error rising by 57.0% as
compared to the corresponding moderate filtering results.
It can also be observed that the RMSE of the inner-loop
incremental approach is 87.7% lower than that of the inner-
loop PID. A similar trend is also found in the outer-loop,
where the RMSE of PID is greater than the incremental
approach by 98.9%. Therefore, it can be concluded from
these results that if the cut-off frequency of filter is increased
to attenuate more noise, similar to our high-filtering scheme,
then the incremental approach will perform better than PID.
However, in the absence of any filters or with the moderate-
filtering scheme, no clear advantage of a particular control
approach was found.

VI. CONCLUSIONS AND FUTURE WORK

A cascaded-control strategy based on incremental nonlin-
ear dynamic inversion control is successfully designed in
this paper, for position-tracking tasks using a long-stroke
pneumatic cylinder. The performance of the incremental
control approach is compared with a PID, and it is found
to be similar and satisfactory for the nominal case, with the
maximum absolute error being less than 1% of the reference
amplitude for both the controllers.

Furthermore, realistic sensor noises are introduced in the
system, which are then filtered using two different filtering
schemes as a result of which the performance of both the
control approaches increased, when compared with the unfil-
tered approach. For the incremental control approach, there is
a significant decrease of over 99% in the RMSE of the inner-
loop tracking using the high filtering incremental approach.
However, this is not the case with the response obtained from
PID, thus glorifying the robustness of incremental control
approach in the presence of realistic sensor noise, by utilizing
comparatively less information of plant dynamics. It is also
found that for the case of varying external load, the RMSE
of outer-loop tracking error of the incremental approach is
around 98% higher than for the PID. Therefore, it can be
concluded that incremental control approach has potential in
increasing the tracking performance of pneumatic actuators,
as observed from a number of simulation scenarios in this
research article.

The outer-loop of the incremental approach that is cur-
rently based on NDI can be designed using INDI in future
research, which will further reduce the dependency of the
controller on the system states. The compressibility effects of
the pneumatic cylinder also needs to be studied in more detail
in order to find its dependency on the chamber volumes.
Moreover, the variation of the cut-off frequency of the
low-pass filters require more investigation in order to find
the maximum efficiency of the incremental controller in
the presence of sensor noises. Besides this, more study is
required for finding the instability in the designed controlled
system due to low-pass filtering.
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