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Gradient Coil Design and Realization
for a Halbach-Based MRI System

Bart de Vos1, Patrick Fuchs1 Student Member, IEEE, Thomas O’Reilly2,
Andrew Webb1,2, and Rob Remis1

1Circuits and Systems, Microelectronics, Delft University of Technology, Delft, The Netherlands
2C.J. Gorter Centre for High Field MRI, Radiology, Leiden University Medical Center, Leiden, The Netherlands

In this paper we design and construct gradient coils for a Halbach permanent magnet array magnetic resonance (MR) scanner.
The target field method, which is widely applied for the case of axial static magnetic fields, has been developed for a transverse
static magnetic field as produced by a Halbach permanent magnet array. Using this method, current densities for three gradient
directions are obtained and subsequently verified using a commercial magneto-static solver. Stream functions are used to turn the
surface current densities into wire patterns for constructing the gradient coils. The measured fields are in good agreement with
simulations and their prescribed target fields. Three dimensional images have been acquired using the constructed gradient coils
with very low degree of geometric distortion.

Index Terms—MRI, gradient coils, target field method, Halbach arrays, low field

I. INTRODUCTION

GRADIENT coils are an integral part of MRI systems.
Ideally, such coils produce linear magnetic fields that

are used to spatially encode an object or body part: linearity
allows simple image reconstruction via an inverse 2- or 3-
dimensional Fourier transform [1]. Numerous methods for the
design and optimisation of gradient coils have been proposed
over the years (e.g. [2], [3]), but most of these approaches are
for conventional MRI scanners with the static magnetic field
(B0) aligned axially along the bore of the system.

Interest in MRI in a low-resource setting is increasing
[4]. Conventional MRI hardware cannot be used under such
circumstances, since it is expensive and generally difficult
to maintain. Superconducting magnets, for example, are fi-
nancially out of reach, and high power and fast switching
requirements for gradient and radiofrequency hardware simply
cannot be met. Moreover, conventional scanners are typically
immobile and therefore cannot be easily transported to differ-
ent locations.

To address the difficulties that are encountered in a low-
resource setting, new MR systems are being proposed such as
MR scanners based on resistive magnets [5], [6] or systems
that utilize a Halbach permanent magnet array [7], [8]. For a
resistive magnet, gradient coil design runs along similar lines
as for conventional MRI systems, albeit typically for smaller
bore sizes and lower power requirements. In contrast, for a
Halbach array the background magnetic field is transverse
to the bore as opposed to along the bore, and this provides
additional challenges for the design of the gradient coils [9].
In a previous publication we described a 27 cm clear bore
Halbach array designed ultimately for pediatric neuroimaging,
operating at 2.15 MHz [7]. For this system simple non-
optimized gradient coils were constructed, but the linear range
was quite limited.

Manuscript received October 11th, 2019; revised December 5, 2019.
Corresponding author: P.S. Fuchs (email: p.s.fuchs@tudelft.nl).

In this paper, the target field method, as originally proposed
by Turner [10], is applied to design transverse oriented gradi-
ent fields. Specifically, a transverse gradient field is prescribed
on an inner cylinder that is concentric to the Halbach array
and the target field method is applied to find surface current
densities on an outer cylinder that generate magnetic fields,
which approximate this prescribed target field. Since this
is an inverse source problem, regularization is required to
obtain physically acceptable surface current densities. To this
end, we follow the standard target field method and include
regularization through apodization using a parametric spectral-
domain Gaussian filter. By following this approach, x-, y-,
and z- gradient coils are designed and realized. Furthermore,
field simulations and measurements of these are presented,
to show that the produced gradients are in good agreement
with simulation, thereby verifying that the modified target
field method can indeed be used to realize gradient coils in
case the background field is transverse to the axis of the
bore of a Halbach MR scanner. Finally, the gradient coils are
incorporated in an experimental low-field Halbach MR scanner
[7] thereby enabling us to use Fourier imaging techniques
to acquire three-dimensional low-field MR images. Initial
imaging results obtained with this scanner are presented as
well.

II. TARGET FIELD METHOD

To design gradient coils for a Halbach scanner with a
transverse B0 field, consider the cylindrical configuration
illustrated in Fig. 1 consisting of two cylinders that extend
to infinity in the positive and negative z-direction. The outer
cylinder has a radius a and the domains inside (r < a)
and outside (r > a) the cylinder are filled with air. This
cylinder supports a surface current density denoted by J and
our objective is to find a surface current that approximates a
prescribed magnetic field B on the inner cylinder with radius
b. Given the cylindrical structure of our configuration, we will
mainly work in cylindrical coordinates.
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Fig. 1. Geometry and coordinate system for the target field method. The outer
cylinder with radius a supports a surface current J and the x-component of
the magnetic field is prescribed on the inner cylinder with radius b < a. Both
cylinders are of infinite length in the z-direction.

As a first step, we specify the target fields. Specifically,
for a background field aligned in the x-direction, one of
the following three linear x-directed gradient fields must be
designed

Bx(b, φ, z) =


Γtr(z)b cos(φ)gx

Γtr(z)b sin(φ)gy

Γln(z)gz

(1)

on an inner cylinder with radius b < a to derive surface
currents (and ultimately the position of surface copper wires)
that generate fields which approximate these target fields. In
the above expressions, gx,y,z > 0 are constants and Γtr(z)
and Γln(z) are the transverse and longitudinal gradient shape
functions given by

Γtr(z) =
1

1 +
(
z
d

)n and Γln(z) =
z

1 +
(
z
d

)n , (2)

respectively, where d and n (n being an even integer) are
tuning parameters that determine the length and decay rate of
the gradient field in the z-direction. Note that Γtr(z) is an even
function of z, while Γln(z) is an odd function of z. Figure 2
illustrates the two gradient shape functions as a function of
z/d for various choices of the order n.

To find a surface current density that approximately pro-
duces the prescribed target fields, we apply a two-dimensional
Fourier transform with respect to the spatial coordinate z and
the angle φ. For a generic field quantity Ψ(r, φ, z) this Fourier
transform is given by

Ψ̃[m](r, k) =

∫ ∞
z=−∞

∫ π

φ=−π
Ψ(r, φ, z)e−jmφe−jkz dφ dz (3)

and the corresponding inverse Fourier transform is

Ψ(r, φ, z) =
1

4π2

∫ ∞
k=−∞

∞∑
m=−∞

Ψ̃[m](r, k)ejmφejkz dk. (4)

In Appendix A it is shown that the Fourier transform of the
target field Bx(b, φ, z) is related to the Fourier transform of
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Fig. 2. The gradient shape functions Γtr (top) and Γln (bottom) as a function
of z/d for different values of the order n of the gradient profile functions.

the φ-component of the surface current by

B̃[m]
x (b, k) =

j
2

[
P̃ [m−1](b, k)− Q̃[m−1](b, k)

]
J̃
[m−1]
φ (k)

+
j
2

[
P̃ [m+1](b, k) + Q̃[m+1](b, k)

]
J̃
[m+1]
φ (k),

(5)

where P̃ [m](b, k) and Q̃[m](b, k) are given by

P̃ [m](b, k) = aµ0kI
′
m(|k|b)K ′m(|k|a), (6)

and

Q̃[m](b, k) = m
aµ0

b

|k|
k
Im(|k|b)K ′m(|k|a), (7)

with µ0 the permeability of vacuum, and Im and Km modified
Bessel functions of the first and second kind, respectively, and
the prime indicates differentiation with respect to the argument
of the Bessel functions. Note that P̃ [−m](b, k) = P̃ [m](b, k)
and Q̃[−m](b, k) = −Q̃[m](b, k) for m ∈ Z.

Since the target fields are known, equation (5) can be for-
mally solved for the φ-component of a spectral surface current
density. However, similar to the standard target field method,
such a current becomes unbounded as |k| → ∞, which is
not surprising, since we are attempting to directly solve an
(ill-posed) inverse source problem. Therefore, regularization is
applied in the form of a so-called apodization function T̃ (k),
which serves as a low-pass filter that prevents exponential
growth of the spectral domain current densities. Usually, the
Gaussian function T̃ (k) = e−2(kh)

2

is used for apodization
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(with h a regularization parameter) and we use this Gaussian
in our approach as well.

Having found a solution to equation (5) and filtering out
high spatial frequencies through multiplication by T̃ (k), the
φ-component of the surface current is obtained by substituting
the filtered spectral solution into the inverse Fourier transform.
Denoting the resulting spatial currents by Jxφ , Jyφ , and Jzφ for
the φ-component of the surface current in the case of an x-
, y-, or z-gradient target field, we obtain the surface current
densities

Jxφ (φ, z) = −jb
gx
π

cos(2φ)

∫ ∞
k=−∞

Γ̃tr(k)T̃ (k)

P̃ [2] + Q̃[2]
ejkzdk, (8)

Jyφ(φ, z) = −jb
gy
π

sin(2φ)

∫ ∞
k=−∞

Γ̃tr(k)T̃ (k)

P̃ [2] + Q̃[2]
ejkzdk, (9)

and

Jzφ(φ, z) = −j
gz
π

cos(φ)

∫ ∞
k=−∞

Γ̃ln(k)T̃ (k)

P̃ [1] + Q̃[1]
ejkzdk. (10)

The corresponding z-components of the surface current follow
directly from the continuity equation. Further details can be
found in Appendix B.

Finally, from the computed current densities it is straightfor-
ward to extract the wire or current paths using stream functions
as described in e.g. [10]. These stream functions can then be
used to realize the gradient coils.

To verify our design method, we first compute the surface
current densities given by (8) – (10) and use stream functions
to convert these current densities into wire patterns. These
patterns are then used in a magnetostatic field solver to verify
that currents flowing through the conductors of the gradient
coils indeed produce the prescribed target fields. Subsequently,
the three gradient coils were constructed and a magnetic field
map of the z-gradient coil measured. Finally, the three gradient
coils were incorporated into the low-field MRI Halbach-based
scanner described previously. Three-dimensional imaging re-
sults obtained with this scanner are presented.

III. RESULTS

A. Simulation results
The surface current densities of (8) – (10) were computed

using MATLAB1. The regularization parameter was chosen as
h = 0.05 and the order n of the target fields was taken as
n = 16 for the z-gradient coil and n = 30 for the x- and y-
gradient coils. These values were chosen in order for the physi-
cal length of the coils to correspond to the system requirements
(the length of the magnet is 50 cm, and the gradients are
constrained to an length of 37 cm inside the magnet). The
design of the y-gradient coil is equivalent to the design of the
x-gradient coil, since Jyφ(φ, z) = gy g

−1
x Jxφ (φ − π/4, z), that

is, Jyφ(φ, z) is a scaled and rotated version of Jxφ .
Subsequently, the computed surface current densities were

turned into discrete current paths using stream functions [10].
These current paths then served as input for a magnetostatic
field simulation using CST2. The simulations provided a mag-

1Matlab 2018b, The MathWorks, Inc., Massachussets, USA.
2Computer Simulation Technology, 2019, 3DS SIMULIA, Johnston, RI,

USA.
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Fig. 3. The x-gradient shape function along the bore of the coil (at radius b
and φ = 0) compared with the target field shape used to generate the gradient
coil.
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Fig. 4. The z-gradient shape function along the bore of the coil (at radius b
and φ = 0) compared with the target field shape used to generate the gradient
coil.

netic field, which could then be compared with the prescribed
target field (1).

This comparison can be found Figs. 3 and 4, where the
prescribed target field profile functions are shown along with
the simulated and normalized field along the bore of the coil
at φ = 0 and r = b, since the target field is prescribed at
this radius. As can be seen from the figures, the simulated
fields closely follow the prescribed target profile functions.
The difference is primarily caused by the apodization function.
This function effectively smoothes the fields along the z-
direction.

To study the effects of the coil parameters on the perfor-
mance of the gradient coils, let us first consider the coil effi-
ciency η, which is defined as the gradient strength produced by
a unit current (T/m/A). We found that the order n of the target
field profile function essentially does not influence the coil
efficiencies of the x- and y-gradient coils. As n increases, the



4 IEEE TRANSACTIONS ON MAGNETICS, VOL. XX, NO. X, OCTOBER 20XX

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x/a

y
/a

0

0.2

0.4

0.6

0.8

1

εtr

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x/a

y
/a

0

0.2

0.4

0.6

0.8

1

εln

Fig. 5. Linear uniformity error ε{tr,ln} with respect to the field at the center
of the bore. The error εtr for the x-gradient coil is shown at the top, while
the error εln for the z-gradient coil is shown at the bottom. The red line and
cross indicate the reference field line.

distance between adjacent turns decreases, which will increase
the inductance and shorten the physical coil length in the z-
direction. The coil efficiency, however, remains essentially the
same. On the other hand, n does influence the efficiency of
the z-gradient. For example, if we increase the order of the
profile function from n = 6 to n = 26, the efficiency drops
by approximately 20%. Larger orders may be necessary for z-
gradient coils, however, since otherwise the coil length in the
z-direction may become longer than the length of the Halbach
array. We note that special care must be taken when increasing
n in gradient coil design, since numerically the wires can be
placed arbitrarily close together but in reality this is limited
by the construction method. Close inspection of the current
paths with the construction method in mind is needed to find
the respective limits for this parameter.

The linear uniformity of the gradient influences the region
which can be imaged without distortions. This is quantified
using the difference between the linear varying (prescribed)
field and the field actually generated. In this case the simulated
fields along the center line of the corresponding gradient are
used as opposed to the prescribed fields. For the x-gradient
this center line is across the bore in the x-direction (red line

in Fig. 5, top), for the z-gradient it is along the axis of the
bore (cross in Fig. 5, bottom). For the simulated field values
Bx this error is computed as

ε{tr,ln}(x, y) =
|Bx(x, y)−B{tr,ln}x |

|B{tr,ln}x |
(11)

where the references B{tr,ln}x are defined asBtr
x = Bx(x, 0, 0),

and Bln
x = Bx(0, 0, z). These errors are displayed in Fig. 5

from which it is immediately clear that the x-gradient field
is linear over a much larger area in the xy-plane than the
z-gradient field.

The uniformity of the gradient fields can also be described
in terms of the linear spherical volume. Within this volume the
deviation of the simulated field from a target field is less than
5%. For the transverse x- and y gradients the linear spherical
volume is approximately 70% of the diameter of the outer
cylinder. In other words, a sphere centered at the origin and
having a radius of 0.7a completely encloses a region where
the realized field deviates less than 5% from the prescribed
field. For the longitudinal z-gradient field, however, the linear
volume is only 20% of the diameter of the outer cylinder.
Clearly, the linear region of the z-gradient coil is smaller
than the linear region of the x- and y-gradient coils, which
is due to the geometry of the z-gradient coil. In commercial
scanners similar nonuniformity issues arise for these type of
gradient fields and their effects in three-dimensional imaging
are usually corrected in post-processing.

To summarize, we have found that the coil efficiency η
of the x- and y-gradient coils does not significantly vary for
moderate changes in the order n of the target field function.
The coil efficiency of the z-gradient coil, however, is strongly
dependent on n. Larger values of this parameter lead to z-
gradient coils with a smaller spatial extent in the longitudinal
z-direction, but decrease the coil efficiency. Moreover, for all
coils the winding separation decreases as n increases, which
puts a restriction on the magnitude of the order n of the profile
function, since in practice wires cannot be placed arbitrarily
close to each other.

B. Gradient Construction

To fixate and accurately position the wires, a 3D printable
mould was created where the current paths were designed as
slots. These slots facilitate easy and accurate placement of the
wires. A single layer of 1.5 mm diameter copper wire was used
to minimize the resistance and to reduce power dissipation.
For the z-gradient coil, the order of the target field profile
function n = 16 is chosen, which leads to a gradient coil
with a longitudinal length that is acceptable. For x- and y-
gradient coils an order of n = 30 was chosen. This was the
maximum n for which the adjacent wires (diameter 1.5 mm)
do not overlap. It must be noted that all three gradients have a
slightly different radius as they are placed on top of each other.
Denoting the radii of the x-, y-, and z-gradient coils by ax, ay ,
and az , respectively, the coils were placed on top of each other
such that az < ay < ax. In other words, the y-gradient coil
is positioned on top of the z-gradient coil, and the x-gradient
coil on top of the y-gradient coil. This order of stacking was
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Fig. 6. A prototype z-gradient coil (top), where the 3D printed mould is
clearly visible, and the gradient coil assembly after attaching the y-gradient
(bottom).

chosen because the z-gradient has the lowest efficiency and
the x-gradient naturally has the highest performance due to
the background field being x-directed.

The resistance and inductance of the coils were measured
using a keysight U1733C RCL mete and a table of the coil
design parameters and electrical properties can be found in
Table I. Renderings of the wire paths of the coils are shown
in Fig. 9, where currents run in a clockwise manner through
the red wires and in a counterclockwise manner through the
black wires. Lastly, photographs of the finished assembly and
the 3D moulds can be found in Fig. 6.

C. Measurements results
The field generated by the gradient coils is measured using

a multipurpose 3-axis measuring robot [11]. The robot holds
an AlphaLab inc. Gauss meter model GM2 which measures
the field at a resolution of 10 mm isotropic. In Figs. 7 and 8,
the x-component of the measured gradient field is shown as
measured along the linear axis of the gradient at the center
of the coil (Bx(x, 0, 0) for the x-gradient, Bx(0, y, 0) for the
y-gradient and Bx(0, 0, z) for the z-gradient). The measured
and simulated fields are in good agreement with each other.
Finally, for completeness we mention that the resistance and
inductance of the coils were also measured using a keysight
U1733C RCL meter. These can be found in Table I together
with the efficiency of the coils computed from the field
measurements.

The constructed coils were incorporated in an experimental
low-field Halbach MR scanner that is currently under devel-
opment at the Leiden University Medical Center (LUMC) [7].
The gradient coils were tested and used to acquire three-
dimensional images of different types of objects. Figure 10
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Fig. 7. The simulated and measured x-component of the gradient field in a
longitudinal slice through the center of a x- and y-gradient coil. The fields
have been normalised for ease of comparison, the measured efficiency η can
be used to find the relation between current and field strength.
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Fig. 8. The simulated and measured x-component of the gradient field in a
longitudinal slice through the center of a z-gradient coil. The fields have been
normalised for ease of comparison, the measured efficiency η can be used to
find the relation between current and field strength.

provides an example of such an image, in which coronal,
sagital, and transverse slices through a melon are depicted.
Minimal distortion can be observed, which is most likely due
to B0 inhomogeneities and not due to any nonlinearities in the
gradient fields.

IV. DISCUSSION AND CONCLUSION

We have applied the target field method to design gradient
coils for an MR scanner with a transverse magnetic back-
ground field. It is then relatively straightforward to turn these
current paths into a constructed gradient coil using simple
three-dimensional printing techniques and wire winding. Field
measurements confirmed that the proposed design procedure
indeed leads to gradient coils that produce the required gradi-
ent fields.
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TABLE I
DESIGN PARAMETERS OF THE GRADIENT COILS. THE POWER IS COMPUTED FOR A GRADIENT STRENGTH OF 10 MT/M.

Direction n d [mm] l [m] # turns/quadrant a [mm] ηsim [mT/m/A] ηmeas [mT/m/A] R [Ω] L [µH] P [W]

z 16 140 38 15 135 0.52 0.59 0.37 180 329
x 30 155 42 12 139 0.81 0.95 0.41 227 165
y 30 155 43 12 137 0.82 1.02 0.40 224 162

x

y

z

Fig. 9. Three-dimensional rendering of the wire paths of the x- (left), y-
(middle), and z- (right) gradients. The color indicates the direction of the
current: red for clockwise and black for counterclockwise currents.

Transverse x- and y-gradient coils are generally more
efficient, and therefore easier to design with respect to field
requirements than the longitudinal z-gradient coils. The coil
efficiency of the transverse coils is typically less sensitive to
the order of the target field profile function and the magnitude
of the order is basically limited by the spacing allowed
between the wires. The region of uniform linearity is also
much larger for transverse gradient coils than for z-gradient
coils as indicated by the uniformity error that we introduced
and the linear spherical volume. The coil efficiency of a z-
gradient coil, in contrast, strongly depends on the order of
the profile function and decreases as the order increases. This
indicates that a relatively small order should be chosen to
realize an effective z-gradient coil, but selecting a small order
leads to a very long gradient coil which may be longer than the
magnet itself. Careful tuning is therefore necessary to obtain a
realizable z-gradient coil with a sufficiently large linear region
and coil efficiency. Given the cylindrical geometry of our Hal-
bach configuration, it can also be expected that the realization
of a z-gradient coil in a scanner with a transverse background
field is more difficult than realizing transverse gradient coils,
since the magnitude of a linearly varying transverse field along
the bore of the magnet naturally increases as we move in a
radial direction towards the coil.

Possible extensions of this work include incorporating gra-
dient power minimization as it relates to the Halbach config-
uration, since this would simplify power supply requirements,
which is of importance in a low-resource setting. In addition,
using conductive sheets for the construction of a gradient coil
may be a feasible large-scale production method.

To summarize, with the proposed design methodology it is
possible to design effective x-, y-, and z-gradient coils in case
of transverse background fields as encountered in a Halbach
permanent magnet scanner. The method is very efficient and
allows for parametric coil design, thereby providing insight
into the tradeoffs of gradient coil construction.

APPENDIX A
DETAILS OF THE MODIFIED TARGET FIELD METHOD

We denote the domain inside the cylinder Region I, while
the domain outside the cylinder is called Region II. Field
quantities having their support in these domains carry a
corresponding superscript.

The magnetic field in both domains is governed by the field
equations ∇ · B = 0 and ∇ × B = 0. The latter equation
is satisfied if we write B = −∇Φ, where Φ is the scalar
magnetic potential. Substitution in the first field equation gives
∇2Φ = 0. In other words, the potential satisfies Laplace’s
equation inside and outside the cylinder. Writing this equation
in cylindrical coordinates, we have

∂2ΦI,II

∂r2
+

1

r

∂ΦI,II

∂r
+

1

r2
∂2ΦI,II

∂φ2
+
∂2ΦI,II

∂z2
= 0. (12)

Furthermore, at the current-carrying surface r = a we have
the boundary conditions

lim
r↑a

∂ΦI

∂r
= lim

r↓a

∂ΦII

∂r
, (13)

lim
r↑a

1

r

∂ΦI

∂φ
− lim

r↓a

1

r

∂ΦII

∂φ
= µ0Jz, (14)

and

lim
r↓a

∂ΦII

∂z
− lim

r↑a

∂ΦI

∂z
= µ0Jφ, (15)

and, finally, the surface current must satisfy the continuity
equation

∂Jz
∂z

+
1

a

∂Jφ
∂φ

= 0. (16)

Applying the Fourier transform (3) to Laplace’s equation,
the boundary conditions, and the continuity equation, we
obtain the spectral domain equations

r2
∂2Φ̃[m]

∂r2
+ r

∂Φ̃[m]

∂r
− (m2 + k2r2)Φ̃[m] = 0, (17)

lim
r↑a

∂Φ̃I;[m]

∂r
= lim

r↓a

∂Φ̃II;[m]

∂r
, (18)

jm
(

lim
r↑a

1

r
Φ̃I;[m] − lim

r↓a

1

r
Φ̃II;[m]

)
= µ0J̃

[m]
z , (19)

and

jk
(

lim
r↓a

Φ̃II;[m] − lim
r↑a

Φ̃I;[m]

)
= µ0J̃

[m]
φ (20)

and
kaJ̃ [m]

z +mJ̃
[m]
φ = 0. (21)
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Fig. 10. Coronal (left), sagital (middle), and transverse (right) images of a melon obtained with the low-field scanner of the LUMC that incorporates the
gradient coils described in this paper. A 3D-TSE sequence was used with TE/TR = 30 ms/2000 ms. Echo train length was 32, with a Field of View of
192x192x192 mm. The data matrix consisted of 128 x 128 x 128 complex points. Total acquisition time was 17 minutes 4 seconds.

As is well known [12], the solution of (17) in Region I
that is bounded at the origin is given by Φ̃I;[m](r, k) =
αm(k)Im(|k|r), where the coefficient αm(k) is independent
of r, while the solution in Region II that remains bounded
as r → ∞ is given by Φ̃II;[m](r, k) = βm(k)Km(|k|r) with
βm(k) independent of r. Substituting these solutions in the
boundary conditions, the coefficients are found as

αm(k) = −jaµ0
|k|
k
K ′m(|k|a)J̃

[m]
φ (22)

and

βm(k) = −jaµ0
|k|
k
I ′m(|k|a)J̃

[m]
φ . (23)

Having the spectral domain potential at our disposal, the cor-
responding spectral domain magnetic field can be determined.
Of particular interest is the magnetic field inside the cylinder
(Region I), since the target field is prescribed in this region.
Explicitly, for the magnetic field in Region I, we have

B̃I;[m]
r = −∂Φ̃I;[m]

∂r

= jaµ0kI
′
m(|k|r)K ′m(|k|a)J̃

[m]
φ ,

(24)

B̃
I;[m]
φ = − jm

r
Φ̃I;[m]

= −aµ0

r
m
|k|
k
Im(|k|r)K ′m(|k|a)J̃

[m]
φ ,

(25)

and

B̃I;[m]
z = −jkΦ̃I;[m]

= −aµ0|k|Im(|k|r)K ′m(|k|a)J̃
[m]
φ .

(26)

Now the target field is in the x-direction and is prescribed on
the inner cylinder r = b . Writing this field in terms of its
cylindrical components, we have

Bx(b, φ, z) = BI
r(b, φ, z) cos(φ)−BI

φ(b, φ, z) sin(φ) (27)

and applying the Fourier transform to the above equation gives

B̃[m]
x (b, k) =

1

2

[
B̃I;[m−1]
r (b, k) + B̃I;[m+1]

r (b, k)
]

− 1

2j

[
B̃

I;[m−1]
φ (b, k)− B̃I;[m+1]

φ (b, k)
]
.

(28)

Substituting (24) and (25) in the above expression we arrive
at (5).

APPENDIX B
SURFACE CURRENT DENSITY FOR A z-GRADIENT COIL

We show how we obtain the surface current from the
prescribed target field for the design of a z-gradient coil. The
analysis for an x- or y-gradient coil runs along similar lines.

For a z-gradient coil, the Fourier transform of the target
field is given by B̃[m]

x (b, k) = 2πgzΓ̃ln(k)δm,0, where the delta
symbol denotes the Kronecker delta and

Γ̃ln(k) =

∫ ∞
z=−∞

Γln(z)e−jkz dz. (29)

Note that Γ̃ln(k) is imaginary and an odd function of k.
Substitution of the Fourier transform of the target field in

(5) gives

2πgzΓ̃ln(k)δm,0 =

j
2

[
P̃ [m−1](b, k)− Q̃[m−1](b, k)

]
J̃
[m−1]
φ (k)

+
j
2

[
P̃ [m+1](b, k) + Q̃[m+1](b, k)

]
J̃
[m+1]
φ (k).

(30)

Since the left-hand side of this equation vanishes for m odd,
we take a surface current for which all even numbered angular
modes of its φ-component vanish, that is, we take J̃ [m]

φ (k) = 0
for m even and k ∈ R. Furthermore, for m = 0 we obtain

2πgzΓ̃ln(k) =
j
2

[
P̃ [1](b, k) + Q̃[1](b, k)

] [
J̃
[−1]
φ (k) + J̃

[1]
φ (k)

]
,

where we have taken the symmetry of P̃ [m] and Q̃[m] with
respect to m into account. For the surface current we now
take J̃ [−1]

φ (k) = J̃
[1]
φ (k) and we obtain

J̃
[1]
φ (k) = −j

2πgzΓ̃ln(k)

P̃ [1](b, k) + Q̃[1](b, k)
= J̃

[−1]
φ (k). (31)



8 IEEE TRANSACTIONS ON MAGNETICS, VOL. XX, NO. X, OCTOBER 20XX

Similarly, for m even and not equal to zero (m = 2n, n =
±1,±2, ..) the left-hand side vanishes and if we take a surface
current for which all odd numbered angular modes are even
with respect to m, that is,

J̃
[−2n+1]
φ (k) = J̃

[2n−1]
φ (k), n = 1, 2, ..., (32)

then we satisfy (30) if

J̃
[2n+1]
φ (k) = − P̃

[2n−1](b, k)− Q̃[2n−1](b, k)

P̃ [2n+1](b, k) + Q̃[2n+1](b, k)
J̃
[2n−1]
φ (k),

(33)
for n = 1, 2, ... . In other words, all odd-numbered higher-
order modes can be determined recursively starting from
J̃
[1]
φ (k) as given by (31).
To obtain the φ-component of the surface current in the spa-

tial domain, we substitute the modes in the Fourier inversion
formula and include apodization to obtain

Jzφ(φ, z) =
1

4π2

∫ ∞
k=−∞

∞∑
m=−∞

J̃
[m]
φ (k)T̃ (k)ejmφejkz dk

=
1

2π2

∞∑
m=1
m odd

cos(mφ)

∫ ∞
k=−∞

J̃
[m]
φ (k)T̃ (k)ejkz dk.

(34)

The current consists of an infinite summation of odd-numbered
angular modes. Each term in this series represents the φ-
component of a surface current that produces its own magnetic
field. The total magnetic field consists of a superposition of
these individual fields due to the linearity of the field equa-
tions. Since we want to realize a z-gradient coil in practice,
we have to truncate the series and to keep the construction of
the coil as simple as possible, we keep the first current term
in the series only. Our final expression for the φ-component
of the surface current becomes

Jzφ(φ, z) =
1

2π2
cos(φ)

∫ ∞
k=−∞

J̃
[1]
φ (k)T̃ (k)ejkz dk

= −j
gz
π

cos(φ)

∫ ∞
k=−∞

Γ̃ln(k)T̃ (k)

P̃ [1](b, k) + Q̃[1](b, k)
ejkz dk.

(35)

The z-component of the surface current that corresponds to
(35) follows from the continuity equation for the surface
current.
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