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Abstract

In the last couple of decades, Arctic Engineering has become a topic of interest. There are still plenty rooms of
research to understand the unique characteristic of sea ice, especially in relation to offshore engineering. This
includes the most fundamental problem in floating body motion analysis: the radiation-diffraction problem.
A powerful mathematical concept, - so called Greens Function – is one of the favourable tools to be used
for solving this mathematical problem. This is because the radiation-diffraction problem can be formulated
as a boundary value problem expressed by partial differential equations. Although the application is already
quite advanced for the open water case, the same cannot be said for the vessel operating in ice infested waters.
The integral solution of 3D Greens Function for ice-infested waters which has not been studied before, was
derived in this thesis. The open water case is also studied to gain more insight in the implementation of
an arbitrary floating body thoroughly. As a closure, interpretation about the difference between open and
ice-infested waters is discussed.

For Greens Function in the open water case, numerical evaluation of the principal value integral is not
straightforward due to the hyperbolic term inside the integrand. This term makes the integrand exceed the
limit of floating point number (in MATLAB) and cannot be evaluated into infinity. On the other hand, a
numerical integration is quite time consuming (whereas the analytical solution, as far as the writer’s concern,
is not found yet). A well-known alternative form of the solution which formulated as an infinite series might
improve the computation speed. The rate of convergence depends solely on the ratio of horizontal distance
between source and field point (R) and water depth (H). Another numerical issue arises in the deep water
case. A finite water depth causes a catastrophic cancellation, both for the integral and the infinite series
solution, due to the extremely small difference of the wave number between deep water and infinite water
depth. This is where the infinite depth solution needs to be used.

In numerical implementation, an influence function at a panel can be approximated by multiplying the
potential with panel’s surface area. Due to the singularity of the Rankine source term in the integral or the
modified Bessel function in the series, this approach fails and the solution need to be integrated over the
panel. Although the analytical solution is available, a numerical approach is chosen to simplify the problem.
The surface integration procedure can be done by transforming the global arbitrary panel orientation into the
local element coordinate system, and subsequently, perform a bilinear mapping to reshape the quadrilateral
panel into the desired rectangular panel. This transformation procedure is needed since MATLAB is only
capable to handle double numerical integration of a function bounded between four lines perpendicularly
each other. This encloses the whole challenge that needs to be addressed and might be re-occur in the ice-
infested waters as well.

From the derivation of the Greens Function for ice-infested waters, it is shown that the hyperbolic term
inside the integrand is present. This discloses that the obtained solutions cannot be used instantaneously.
Another effort to rewrite them in the exponential term might be useful. Moreover, the radiation condition is
not satisfied yet in this thesis. However, the suggested approach of the derivation by introducing an imaginary
line to represent the source depth location avoids the use of a singular term. Generally speaking, this thesis
initiates a promising foundation for further research in the hydromechanics analysis of sea ice.

Hendrikus Yun Fredo Ferdian
Delft, October 2017
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ỹ = local (element) y coordinate system
z̃ = local (element) z coordinate system
R = Horizontal distance between field point and source point
r = Actual distance between field point and source point
r1 = Actual distance between image of field point below seabed and source point
γ= Horizontal angle between field point and source point
H = Water depth
J0 = Zeroth order of Bessel function first kind
H0 = Zeroth order of Hankel function second kind
K0 = Zeroth order of modified Bessel function second kind
K1 = First order of modified Bessel function second kind
ω= Wave frequencies
G = Greens/influence function
S0 = Panel surface area
t = Time
v = Velocity
n = Normal unit vector
a = Added mass coefficient
b = Damping coefficient
c = Restoring coefficient
m = Mass
h = half-thickness of level ice
w = Vertical displacement of level ice
Ei = Modulus Elasticity of the Ice
F = Force
P = Pressure
Ø = Higher order terms generated from the series expansion
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1
Introduction to Thesis Topic

1.1. Motivation of the Problem
Although it is a relatively young field of research, offshore engineering in Arctic region had to be a hot topic
when the demand of hydrocarbons was high due to the fact that 30% estimation of global oil and gas reserves
are found in this region. Low oil price in the past few years indeed significantly reduces the attention of
offshore companies to consider exploration projects within this region. Nevertheless, it is an undeniable fact
that knowledge development in this topic grows. Oil & gas exploration has just become a trigger and prove
that engineering job in the Arctic region is feasible, which in the same time open a good path for another field
of business opportunity. It is obvious that vessels/floaters always involve in any kind of offshore operation,
whether the floater itself as the main utility structure or just become a supporting role such as handling an
installation/transportation job. With this in mind, understanding the dynamic behavior of the floater is a
crucial issue in any field of offshore engineering job.

As a matter of fact, understanding a floating body motion operating in the sea ice condition has its own
uniqueness in terms of challenge. Interaction between a floater and ice, fluid and ice, fluid and the floater
are interconnected each other. There are a lot branch hydromechanics analysis of floating bodies in sea-ice
condition, whether related to the ice-breaking process when a floater hits the ice or about the hydrodynamic
effect (e.g. radiation and diffraction forces) due to the presence of the level ice itself. This thesis will focus on
the latter case.

(a) An Example of Positionally-Stationed Floater in Sea Ice
(Source: ogj.com)

(b) Loading Ice breaker Crude Oil Tanker at Oil Terminal
(Source: pinterest.com)

Figure 1.1: Floater in Sea Ice

On the other hand, analyzing the motion of a vessel in open water has been a quite accustomed task
since decades ago. Accurate prediction of the motion, robust calculation in the computational/numerical
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2 1. Introduction to Thesis Topic

model, taking a non-linear phenomenon into account, forward speed consideration, motion coupling effects
for several bodies and any other sophisticated analyses to mimic a various real-life offshore project condition
are achievable and many researches have been evolved in this field. Many world leading universities, re-
search institutes and companies develop reliable tools to do this kind of analysis which usually described as
a boundary value problem based on potential theory. Greens Function is one of powerful mathematical tool
to solve partial differential equations which represents this boundary value problem. It can be said that and
the Greens Function is the "heart" of most diffraction codes. Even though the Greens Function for "open wa-
ter" condition has discovered decades ago, research activities to establish an efficient solution are still quite
attractive to improve the assumption being used. However, it does not seem that this radiation-diffraction
analysis, lean towards into the icy region of the seas. Most of the time, hydromechanics body analysis in the
sea ice focuses more on ice breaking processes (interaction of the ice and structure). This thesis tries to fill
the gap and provide an initial effort to establish a floating body motion analysis where the occurrence of level
ice in the sea surface is taken into account by deriving its Greens Function. The “open water” sea condition
analysis is still provided in an extensive manner (in terms of approach) to trigger the awareness about several
challenges which might be occur for ice-infested waters as well.

1.2. Historical Remark about Floating Body Analysis
To give a glance idea about research development in this field, some brief historical milestones are presented
in a narrative manner. The study about fluid mechanics already established since before the century (around
250 BC) when Archimedes discovered the fundamental principles of hydrostatic and dynamics. However,
there are several names that cannot be absent when one is going further in a literature study of modern
numerical hydomechanics.

In relation with the fundamental concept being used, Horace Lamb (1879) [13] wrote an important book
about classical theory of fluid mechanics. The work done by George Green (1828) about potential theory
gave a significant contribution in the implementation of mathematical technique (Greens Theorem) which
in fact is applicable in many fields of physics. The Greens Function becomes a powerful tool to solve a bound-
ary element problem represented by partial differential equations. Since floating body analysis can be well
formulated by this method (BEM), finding an efficient Greens Function is a pivotal task.

In 1950, John [10] suggested an infinite series form of Greens Function to analyze floating body motion
in 3-dimensional domain which derived based on eigen-function expansion method. Wehausen and Laiton
(1960) [20] derived the integration solution form from the same physical problem. Hess and Smith (1962,
1964, 1966)[7] [9] [8] worked extensively to calculate potential flows in arbitrary three-dimensional body
based on panel method. Even their field of research in the beginning was in aerodynamic, since they worked
in both of non-lifting and lifting potential flows, in the end their research can be applied not only in spacecraft
design but also in ship/floating structures.

Around two decades later, Newman (1985) [15] gave very important contribution in the development of
diffraction tools for analyzing numerical hydromechanics problem. An eigen-function expansion form of the
Greens Function which derived by John was used effectively. He distinguished the solution in several regions
based on its convergence rate parameters and used a multi-dimensional approximation in economized poly-
nomial. Because of this approach, computation speed to solve a large integral equations could be improved
significantly. His works have become an excellent step forward in the development of numerical solution with
a certain controlled accuracy. He implemented his works as a subroutine FINGREEN (in the form of 800 lines
FORTRAN code) and it became the ’heart’ of a well-known diffraction code called WAMIT supplied by MIT.
Up to several decades afterwards, this subroutine was used everywhere and became a benchmarking tool
for any other diffraction codes developed anywhere else. Even some research institutes/universities such as
DNV GL and TU Delft itself, are still using this FINGREEN subroutine to develop their own diffraction codes.
Noblesse and Tesle (1986)[17] gave a contribution into this field of research by providing an efficient method
of numerical evaluation for deep water case. Chakrabarti (2001)[4] validated the work done by Noblesse by
using several routines: 2 series solutions, 2 integral routines and 2 infinite depth series and in the end, he
compared the results to Newman’s solution. The most recent research in the evaluation of three-dimensional
open water Green function by Ying Liu (2015)[14] indicates that there is still plenty space of research to im-
prove the robustness of the solutions.

To create an awareness about the implementation of this Greens Function in well-developed diffraction
tool nowadays (and its extended capability), there are several numerical tools/software mentioned below.
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• WAMIT Version 6.4, 6.4S (developed by MIT) In WAMIT, the boundary value problem is solved by using a
Greens theorem to derive an integral equation to obtain the radiation and diffraction velocity potentials
on the body boundary. This software is capable to implement accurate surface panel discretization by
using a higher order panel method (e.g: B-Splines). Second order wave force (wave drift force) also can
be considered. Moreover, an analysis of coupling effect between multiple bodies is also possible.

• AQWA Release 15.0 (developed by ANSYS,Inc) Since directly evaluating the finite depth Greens Function
in frequency domain is time-consuming, in ANSYS AQWA, Greens Function (and its first order deriva-
tive) is computed beforehand and stored in a database. The desired solution from certain input pa-
rameters can be given efficiently. As a drawback, there is a certain limit of low frequency input, which
depends on the gravity and water depth. A second order wave effect also can be considered in this
program. In addition, there are many other interesting features to analyze/design a typical offshore
structure such as moorings, fenders, tethers, etc.

• SESAM WADAM version 8.1 (developed by Det Norske Versitas) Similar with ANSYS, Sesam is an exten-
sive offshore engineering software which has a lot of sub-programs for different analysis, such as Sesam
for offshore wind, marine operation, floating structures, moorings and risers, fixed structures, pipelines,
and even design optimization. Radiation/diffraction code lies in the Sesam for floating structure and
consists of 3 modules, from intact and damaged stability calculation (HydroD module), linear (Wadam),
or non-linear (Wasim) hydrodynamic analysis.

In the user manual of Wadam, it is explicitly stated that a potential theory described in the Newman’s
work[15] is being used. The actual implementation of this, is based on Wamit by using the 3D panel
method to evaluate velocity potentials and hydrodynamic coefficients. However, the method used in
Wasim is the Rankine panel method. Rankine method does not satisfy the free surface boundary con-
dition. As a consequence, the integral equation need to be solved will have unknowns both on the hull
and free surface. This makes the system of equation become larger. On the other hand, the matrix
equation of this system is easier to evaluate than the one solved by the Greens Function method. This
program can compute global responses of the structure and local loading on the vessels moving at any
forward speed. The simulation is carried out in the time domain, but the results are also transformed
into the frequency domain by using Fourier transform.

• MOSES, 2017 (developed by Bentley) MOSES is a powerful software devoted for a broad analysis of off-
shore engineering problem such as mooring design, ballasting, stability, transportation, sea-keeping,
launching, upending, lowering, load-out, deck installation and in-place analysis. In its hydrodynamic
module, the 3D diffraction theory has been validated with a model test result from Deep Water Con-
struction Vessel (DCV) Balder. Similarly with the other diffraction software, Moses uses a source su-
perposition technique by using the Greens Function solution method. Physically, distribution of the
source strength complies the John’s description [10] for shallow water case, and also Noblesse [17] for
deep water.

• Others At the research institutes in the Netherlands, apparently there are plenty of numerical tools exist,
such as DIFFRAC, SEAWAY, DELFRAC, SEASCAPE, DELWAVE with their own specialities and different
approaches.

However, none of the numerical tools described above are capable to analyze floating body motion in
the sea-ice condition. This is obvious because the boundary value problem is different, therefore the Greens
Function will also differ. A research focus in hydromechanics of ice-infested waters is still reasonably young.
Xu Ji (2016)[22] studied about the ice-induced vibration (due to ice breaking process). Even though it might
be applicable in stationary-positioned floater, the actual phenomenon try to be captured is different with the
radiation-diffraction problem. Timothy, et al (2017) [21] also studied about the breaking phenomena of the
ice, but due to the wave instead of the structure. They also included the calculation of the wave radiation
stress.
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1.3. Research Objectives
The research objectives of this thesis are formulated as three questions below.

• What is the possible form of the 3D Greens Function to solve radiation-diffraction problem in ice-
infested waters boundary value problem?

• What are the challenges of constructing an equation of motion for an arbitrary floating body in 3D open
water with finite depth?

• Up to what extend the approach used in open water analysis can be implemented for ice-infested wa-
ters?

To answer these specifically, some boundaries are established to define the working scope of the thesis. These
boundaries are

• The Greens Function (integral form) for ice-infested waters is derived without being implemented.

• A linear potential theory is used to describe the flow properties. All of boundary conditions, excitation,
and any other terms which present in the problem description are truncated into the linear part.

• The analysis is based on the low order panel method. Floating body is meshed into a large number of
quadrilateral panels. Considering the small size of the panel, it is quite reasonable to assume that the
panels have a flat surface.

• The open water analysis tends to focus on implementation of the approach and obtaining the calcula-
tion result, instead of an accurate and robust solution. The approach starts from generating arbitrary
shape numerical model and ends until obtaining the equation of motion without evaluating it.

• There is no effort has been done to improve the computation speed of Greens Function evaluation (e.g.:
by using economized polynomial /by creating a database). The approach used in this thesis (for open
water case) depends on the integral and the infinite series solution form.



2
General Formulation of The Problem

In this chapter, a general approach to construct an equation of motion of floating body is presented. The
explanation is made in such a way to cover the whole, but general idea of the approach. Some important
mathematics concepts are also recalled. However, no effort has been put to rewrite every derivation of the
formulas because the reader is expected to be familiar with the basic theory of hydromechanics.

2.1. Axis Convention
Normally, there are 3 axis conventions used in the analysis of floating body motion: earth bound coordinate
system, body bound coordinate system, and steadily translating coordinate system. Since the forward speed
is not incorporated in this thesis, only the first two coordinate systems are important. At the global earth
bound coordinate system, the X-Y plane lies in the still water surface with the positive X axis pointing towards
the bow, positive Y to the starboard side, and positive Z directed upwards. The origin of this coordinate system
lies in the center of floatation. The illustration is presented in the following figure.

Figure 2.1: Axis Convention (Source: wiki.marin.nl)

In the latter chapter, a local element coordinate system which depends on the panel’s orientation is found
to be important. This is related to the surface integration procedure. The approach of doing this will be
elaborated further in chapter 4.9:Panel Integration.

2.2. Problem Formulation
Generally speaking, the behavior of vessel motion can be understood by evaluation of the coupled 6 Degrees
of Freedom equation of motion. This matrix equation is generated from the fluid forces. The most common
approach to describe these fluid forces is by distinguishing these forces into 4 terms: wave excitation, diffrac-
tion, hydrostatic, and hydrodynamic response forces. In terms of linear approach, the excitation and reac-
tion forces are determined separately. The diffraction problem (composed by wave excitation and diffraction

5
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forces) is a condition where the floating body fixed in the certain position and wave excitation is present. In
contrast, the radiation problem (contains the hydrodynamic response forces) is a condition where the float-
ing body move and there is no wave excitation present. This radiation condition is used to determine the fluid
forces (from potential) at the left hand side of the equation of motion, whereas the diffraction condition is for
the right hand side. It means that since the very beginning, a strong assumption has been made because they
are determined independently. In reality, this excitation-reaction forces are coupled to each other. However,
this assumption is commonly acceptable for linear approach. One only needs to determine the magnitude of
these fluid forces to construct the matrix equation of motion.

m · z̈ =∑
F

m · z̈ = Fr +Fw +Fd +Fs

(m +a) · z̈ +b · ż + cz = Fw +Fd

with
Fr = Radiation force
Fw = Wave excitation (Froude Krylov) force
Fd = Diffraction force
Fd = Hydrostatic Force

At the left hand side of the equation of motion, the hydrostatic force determines the stiffness matrix co-
efficients (c), whereas the radiation forces influences the added mass coefficient (a) and damping matrix
coefficient (b). The wave excitation (Froude Krylov) force (Fw ) is an undisturbed wave force regardless the
presence of a body. This force needs to be adjusted by another forcing term (diffraction force Fd ) to repre-
sent the correct physical problem. Roughly speaking, the work done in this thesis is about calculating and
quantifying these forces.

In hydromechanics, a complete mathematical description of fluid flow can be derived from the viscous
Navier-Stokes equation. One can reproduce the characteristic of compressible and viscous flow from it. Since
the result improvement is not really comparable with the degree of complexity which risen, the physical char-
acteristic of the fluid flow such as velocity, acceleration, and forces can be derived based on potential flow
theory instead. This means, the fluid is assumed to be irrational, incompressible, having no drag force, non
viscous and no circulation is required to generate a lift force. The fundamental quantity must be obtained are
these potentials. The readers are expected to be well aware about these assumptions and realize until what
extend the same analysis/results can be applied.

A set of boundary equations is composed to determine these potentials. The needs of using this Greens
Function is due to the fact that these boundary equations are expressed in partial differential equations.
Greens Function is an impulse response of inhomogeneous linear differential equation defined on a domain
with specified boundary/initial conditions. For different problem with different set of boundary equations,
the Greens Function is going to be different. If one can evaluate this Greens Function, one can determine the
physical quantity in the fluid domain, including fluid forces composing the matrix equation of motion. In
the case of ice covered sea condition, this Greens Function only affects the added mass, damping coefficients
and the diffracted wave force. The incoming wave potential itself need to be redefined from the appropri-
ate surface condition. Several characteristic and identities of the Greens Function is recalled and presented
below.

Dimension of the Greens Function
Consider Poisson’s equation

52Φ(x) = F (x)

Just for the purpose of dimensional analysis, consider Φ as a velocity potential function (unit [m2/s]). In the
same time, this reflects that the right hand side of the equation (F) has a unit [1/s]. The unknown variable Φ
can be solved by convolving its Greens Function and the right hand side (F). Expression of the same differen-
tial equation problem by using the Greens Function is given by

52G(x − x̂) = δ(x − x̂)

Recalling the property of delta function ∫ ∞

−∞
δ(x − x̂)d x̂ = 1
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which indicates that the unit of δ(x − x̂) is [1/m] and in the same time defines that the unit of G is [m]. The
solution of Poisson’s equation is found by (G ∗F )

Φ(x) =
∫ ∞

−∞
G(x − x̂)F (x)d x̂

with unit [m2/s = m 1/s m]. This reflects that the dimension of Greens Function depends on the differential
operator 5 and the delta function defined.

Implementation in Hydromechanics
A short description above shows that the solution of differential equation can be expressed in terms of inte-
gration by finding an appropriate form of G. However, the effectiveness of this method in hydromechanics
field is shown in the implementation of actual problem. Consider two different potential functions Φ and Ψ
between certain closed surface S* with a volume V*. Starting from a divergence theorem and by implementing
the Greens second identity, these potential functions can be formulated asÑ

V ∗

(
Φ52Ψ−Ψ52Φ

)
dV ∗ =

Ï
S∗

(
Φ
∂Ψ

∂n
−Ψ∂Φ

∂n

)
dS∗

When potential function Φ represents velocity potential (satisfying LAPLACE equation), the left hand side of
the equation reduces into Ñ

V ∗

(
Φ52Ψ

)
dV ∗ =

Ï
S∗

(
Φ
∂Ψ

∂n
−Ψ∂Φ

∂n

)
dS∗

By determining the Ψ in such a way, this volume integral can be converted (evaluated) as a double integral
represented by right hand side of the equation only. Basically, the Ψ also represents the velocity potential,
but thisΨ will be treated in slightly different manner. There are a lot of solutions of the potential functionΨ
which satisfy the Laplace equation (52Ψ= 0). However, further simplification of the above equation (volume-
surface integral) can be acquired by finding the fundamental solution of Ψ instead of assuming an arbitrary
solution. Fundamental solution ofΨ satisfies

52Ψ(x −ξ) = δ(x −ξ)

and given by

Ψ=− 1

4πr
+wx,y,z,x̂,ŷ ,ẑ

with r =
√

x2 + y2 + z2

and (w) is arbitrary regular potential function. It is possible to include this another elementary solution (w)
since Laplace equation is linear (superimposing principle can be used). However, since this (w) is assumed to
be an additional regular potential function, the Laplace operator in the left hand side of the equation (inside
the volume integral) gives 52w = 0. Only the 1/r need to be evaluated to satisfy 52 1

r = δ(x−ξ). The proof that
this form (1/r) is the fundamental solution of Laplace equation can be found in many references and therefore
is not going to be discussed further. Some reference derived the Poisson’s equation by −52Ψ(x−ξ) = δ(x−ξ)
and obtaining the negation of the result above. The other elementary solution (w) is defined based on another
boundary equation which must be satisfied (e.g: free surface, seabed, radiation condition). By implementing
this fundamental solution, the left hand side of the volume integral becomesÑ

V ∗

(
Φ52Ψ

)
dV ∗ =

{
0 if x −ξ 6== 0

Φ if x −ξ = 0

Therefore

pΦ=
Ï

S∗

(
Φ
∂Ψ

∂n
−Ψ∂Φ

∂n

)
dS∗

where p =
{

0 for P outside fluid domain V
1 for P inside fluid domain V

P is the point where the source is situated. Until this point, the source point P can be placed anywhere in the
domain of interest. In order to represent that this source point P lies in the body (S), only half of this source
is needed to be taken into account (p = 1/2). This is the case because the source point produces a flow that



8 2. General Formulation of The Problem

radiates anywhere in 3D domain. By taking only half the strength of this source, it means only the half side of
the point produces the flow (half of the mass is streaming into V) and the other half is not (the other side of
the body which is in dry condition). The illustration about this fact can be seen in the following figure

Figure 2.2: Source Potential

As a result, the conversion of volume integral into surface integral is obtainedÏ
S
Ψ
∂Φ

∂n
dS =−1

2
Φ+

Ï
S
Φ
∂Ψ

∂n
dS

Ï
S

(− 1

4πr
+wx,y,z,x̂,ŷ ,ẑ )

∂Φ

∂n
dS =−1

2
Φ+

Ï
S
Φ
∂(− 1

4πr +wx,y,z,x̂,ŷ ,ẑ )

∂n
dS

TheΨ is none other than the distribution function (Greens Function) itself (it is derived from the delta func-
tion in the right hand side of the equation). Integration of influence function along the whole domain of
interest (body surface) where it was distributed, gives an identity (1). This will simplify the left hand side of
the equation become ∂Φ

∂n . On the other hand, theΦ in the right hand side of the equation (in a physical sense)
is the strength of the source term itself. At the end, this will give

∂Φ

∂n
=−1

2
σ+

Ï
S
σ
∂G

∂n
dS

Above form gives a possibility to have a potential function which satisfy the kinematic body boundary condi-
tion in the form of double integral operation. Moreover, if the (w) is determined in such a way (to satisfy the
other boundary equations), a complete description of potential flow on the surface body is obtained.

2.2.1. Boundary Conditions
Derivation of the potential in a whole domain is based on several boundary conditions expressed below. The
discussion about each condition can be found in many hydromechanics books, therefore, no more elabora-
tion is presented.

Continuity Condition
Laplace condition represents a continuity of the fluid. In Cartesian coordinate system, the Laplace
equation for inviscid and irrotational flow is

∂2Φ

∂x2 + ∂2Φ

∂y2 + ∂2Φ

∂z2 = 0

O2Φ= 0

holds at the whole domain of the fluid
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Sea Bed Boundary Condition (Finite Water Depth)
The seabed is assumed to be flat, located at −H in the global coordinate system. The vertical velocity
in this depth must be zero which indicates that there are no fluid going through the seabed.

∂Φ

∂z
= 0

holds at z =−H

Far away from the Ship
At distance far away from the ship, there is no disturbances occur due to the ship’s presence. This
condition can be expressed by

lim
R→∞

Φ= 0

Surface Boundary Condition (Ice-Infested Waters)
For ice-infested waters, the surface boundary condition is not really common to be found in hydrome-
chanics text book. This condition basically can be expressed based on combination of linearized Bernoulli
equation and Kirchoff-Love plate theorem and will be shown in chapter 3. Derivation of 3D Greens
Function for Ice-Invested Waters.

Free Surface Boundary Condition (Open Water)
The water particle cannot leave the free surface (kinematic boundary condition). This can be expressed
by a linearized Bernoulli equation below.

∂2Φ

∂t 2 + g
∂Φ

∂z
= 0

holds at z = 0

Figure 2.3: Boundary Conditions

2.2.2. Implementation of BEM in Numerical Hydromechanics of Floating Body
The boundary equations written above describe fluid characteristics in the domain. Since the presence of a
body disturbs these characteristics, one more boundary condition need to be satisfied which represented by
the kinematic condition on the oscillating body.

Kinematic Boundary Condition on The Oscillating Body Surface (Radiation Condition)
This boundary condition is needed to determine the hydrodynamic reaction force (to fill the left hand
side of the equation of motion) and represent the water tightness of a body (there is no fluid going
through the body). The velocity/displacement of water particle at a point on the surface body is equal
to the velocity/displacement of point on the body itself.

∂Φ j (x,z,t )

∂n
= ν j

holds at S0, with j = 1, ...,6 as mode of the motions
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Since To acquire the distribution of this potential along the immersed body, an unknown dummy vari-
able "(source strength σ)" is introduced as a constant multiplier in every panel. The magnitude of this
"unknown source strength" is determined by solving the linear system of matrix equation generated by
implementation of above kinematic boundary condition for each mode of motion. Therefore, in every
mode of motions, the unknown source strength has to be solved by its respective directional mode of
equation. Lastly, because the body is described as a panel instead of point, this final form of the poten-
tial must be integrated (or multiplied) along the panel surface. As a result, the final form of the potential
is given by

Φ j (x,y,z) = 1

4π

Ï
S0

σ j (x̂, ŷ , ẑ)G(x, y, z, x̂, ŷ , ẑ)dS0

or numerically as

Φ j (x,y,z) = 1

4π
σ j (x̂, ŷ , ẑ)G(x, y, z, x̂, ŷ , ẑ)∆S0

Kinematic Boundary Condition of The Wave Diffracted Excitation(Diffraction Condition)
Similarly with above approach, one more equation is introduced to represent the water-tightness of
the body. Instead for determining hydrodynamic reaction forces, this condition is needed to adjust the
undisturbed wave excitation forces and diffract them out of the body. In parallel with radiation con-
dition, the representation about this diffraction condition is about the fact that velocity/displacement
of water particle at a point on surface of the body is equal to the velocity/displacement of point on the
body itself.

∂Φd(x,z,t )

∂n
= ∂Φw(x,z,t )

∂n

holds at S0

where the wave potential can be taken from the linear wave theory and expressed by (complex form)

Φw(t ) = ζ0g

ω

cosh(k(z +H))

cosh(kH)
e i k(x cosµ+y sinµ)e−iωt

and the space dependent part

φw = ζ0g

ω

cosh(k(z +H))

cosh(kH)
e i k(x cosµ+y sinµ)

with µ represents the wave heading as visualized in the following figure

Figure 2.4: Approaching Wave Direction (Source: Offshore Hydromechanics [11])

The magnitude of diffraction potential is determined in the same manner by

Φd(x,y,z) =
1

4π
σd (x̂, ŷ , ẑ)G(x, y, z, x̂, ŷ , ẑ)∆S0
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2.3. Mathematics
In the following, several quite uncommon mathematical concepts are being used. These theorems are pre-
sented here just as a short reminder to the readers.

2.3.1. Surface Integral
An evaluation of function under a surface integral is easier when it reconstructed as a normal double integral
of converted function multiply by its Jacobian.Ï

R
f(x,y)d A =

Ï
S

f(g(u,v),h(u,v))

∣∣∣∣ ∂(x, y)

∂(u, v)

∣∣∣∣dud v

where the Jacobian is calculated by ∣∣∣∣ ∂(x, y)

∂(u, v)

∣∣∣∣=
∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
Generally speaking, this implies that the integral operation of a function (x, y) can be expressed in another
integral operation of function with different variables (g(x,y),h(x,y)).

2.3.2. Bessel Function
Bessel function are the solutions y(x) of Bessel’s differential equation for an arbitrary complex number (α).

x2 d 2 y

d x2 +x
d y

d x
+ (x2 −α2)y = 0

• Bessel Function (Jα,Yα)

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m +α+1)

( x

2

)(2m+α)

with
α= the order of Bessel function
Γ(n) = (n −1)!
Jα = Bessel Function of the first kind
Yα = Bessel Function of the second kind

For zeroth order Bessel Function of the first kind, the integral form can be written (Abramowitz and
Stegun (1972, p.360)[1]) as

J0(z) = 1

π

∫ π

0
e i z cosθdθ

• Hankel Function (H(1)
α , H(2)

α )
H (1)
α (x) = Jα(x)+ i Yα(x)

H (2)
α (x) = Jα(x)− i Yα(x)

with
H (1)
α = Hankel Function of the first kind

H (2)
α = Hankel Function of the second kind

• Modified Bessel Function (Iα, Kα)

Iα(x) = i−α Jα(i x) =
∞∑

m=0

1

m!Γ(m +α+1)

( x

2

)2m+α

Kα(x) = π

2

I−α(x)− Iα(x)

sin(απ)

with
Iα = Modified Bessel Function of the first kind
Kα = Modified Bessel Function of the second kin





3
Derivation of 3D Greens Function for

Ice-Infested Waters

3.1. Source Point on the Free Surface-Level Ice Interface Condition
In order to build up the derivation of Greens Function smoothly, initially, a simple 3D boundary-value prob-
lem is formulated. Source points (which represent the discretized floating body/panel) lie in an interface
between the free surface and level ice. This problem formulation is not representing the body motion anal-
ysis because there is no source point immersed in the water. However, it is still a good example to begin the
derivation with.

Figure 3.1: Source at Free Surface - Level Ice Interface Condition

3.1.1. Boundary Conditions
The implementation of a panel method is basically based on the pressure integration over the panel. The
pressure is obtained from the potential. When deriving the Greens Function, the potential is split as a space
dependent and time dependent part. An extensive discussion about this can be seen in the reference written
by Journee [11]. To begin with the derivation, an assumed velocity potential is given in the form

Φ(x,y,z,t ) =φ(x,y,z,ω)e
−iωt

adapting the notation as written in [11]

φ=−iω
7∑

j=0
φ̂ j ζ j

13



14 3. Derivation of 3D Greens Function for Ice-Infested Waters

combine the oscillatory motion and the potential into one variable

φ=−iω
7∑

j=0
φ̃ j

distinguish the diffraction, radiation and wave potentials

φ=−iω

(
(φ̃0 + φ̃7)+

6∑
j=1

φ̃ j

)

Slightly different from the potential for the open water, the potential for ice-infested waters is derived from
the φ̃ above. Therefore, every unknown potential quantity addressed in this derivation is represented as dis-
placement potentials with the unit [m2]. The boundary equations for this φ̃ are given in the following. The
φ̃ is expressed directly as a G (The Greens Function) by including the delta function in one of the boundary
equations.

Laplace

∂2G(x,y,z,t )

∂x2 + ∂2G(x,y,z,t )

∂y2 + ∂2G(x,y,z,t )

∂z2 = 0

Seabed

∂G(x,y,−H ,t )

∂z
= 0

Free Surface
The boundary condition at the free surface is composed by combination of pressure description based
on linearized Bernoulli equation and the equation of motion for Kirchoff-Love plate theorem. The left
hand side equation is derived from the linearized Bernoulli equation.

−ρw

(
∂2G(x,y,z,t )

∂t 2 + g
∂G(x,y,z,t )

∂z

)
= p(x,y,z,t )

The right hand side, an equation of motion for a thin plate is given by

p(x,y,t ) = D

(
∂4w(x,y,t )

∂x4 +2
∂4w(x,y,t )

∂x2∂y2 + ∂4w(x,y,t )

∂y4

)
+q(x,y,t ) +2ρi h

∂2w(x,y,t )

∂t 2

The boundary condition in the absence of external load (q) on top of the ice and taking an infinite
source disturbance into account (which is the representation of panel body) can be written as

−ρw

(
∂2G(x,y,z,t )

∂t 2 + g
∂G(x,y,z,t )

∂z

)∣∣∣
z=0

= D

(
∂4w(x,y,t )

∂x4 +2
∂4w(x,y,t )

∂x2∂y2 + ∂4w(x,y,t )

∂y4

)
+2ρi h

∂2w(x,y,t )

∂t 2 +δ(x − x̂)δ(y − ŷ)

since

w(x,y,t ) =
∂G(x,y,z,t )

∂z

∣∣∣
z=0

therefore

−ρw

(
−ω2G(x,y,z,t ) + g

∂G(x,y,z,t )

∂z

)∣∣∣
z=0

= D

(
k4

x

∂G(x,y,z,t )

∂z
+2k2

x k2
y

∂G(x,y,z,t )

∂z
+k4

y

∂G(x,y,z,t )

∂z

)∣∣∣
z=0

−2ρi hω2 ∂G(x,y,z,t )

∂z

∣∣∣
z=0

+δ(x − x̂)δ(y − ŷ)

with
D = 2h3Ei

3(1−v2)
2h =thickness of level ice
Ei =Modulus Elasticity of Level Ice
v =Poisson’s Ratio of Level Ice
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In order to raise the awareness about which quantity that the Greens Function really represent to, a di-
mensional analysis has been carried out. It is already mentioned that the boundary equations are represented
by displacement potential φ̃. This means, initially, before implementing the Greens Function, the pressure
equation is given by

−ρw

(
−ω2φ̃+ g

∂φ̃

∂z

)∣∣∣
z=0

−D

(
k4

x
∂φ̃

∂z
+2k2

x k2
y
∂φ̃

∂z
+k4

y
∂φ̃

∂z

)∣∣∣
z=0

+2ρi hω2 ∂φ̃

∂z

∣∣∣
z=0

= 0

by taking one expression (e.g.: ρwω
2φ̃), it can seen that the units of these terms (excluding the φ̃) are given

by [ kg
m3s2 = Pa

m2 ]. When the Greens Function is being implemented

[
Pa

m2 ][G] = [δ(x − x̂)][δ(y − ŷ)]

Therefore, the unit [G] = 1
Pa

3.1.2. Integral Transformation
Double integral Fourier transform is needed to change the boundary equations into ordinary differential
equations with the same differential variable. In this case, the transformation is used to convert the boundary
equations from x and y differential variables into the kx and ky by

Ĝ(kx ,ky ,z) =
∫ −∞

−∞

∫ −∞

−∞
G(x,y,z)e

−i (kx x+ky y)d xd y

for delta function

e−i (kx x̂+ky ŷ) =
∫ −∞

−∞

∫ −∞

−∞
δ(x − x̂)δ(y − ŷ)e−i (kx x+ky y)d xd y

and the inverse transformation is given by

G(x,y,z) = 1

4π2

∫ −∞

−∞

∫ −∞

−∞
Ĝ(kx ,ky ,z)e

i (kx x+ky y)dkx dky

δ(x − x̂)δ(y − ŷ) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e i (kx (x−x̂)+ky (y−ŷ))dkx dky

Therefore, by applying this integral transformation, the boundary equations change into

Laplace

−k2
xĜ(kx ,ky ,z) −k2

yĜ(kx ,ky ,z) +
∂2Ĝ(kx ,ky ,z)

∂z2 = 0

introduce new notation
k2 = k2

x +k2
y

∂2Ĝ(kx ,ky ,z)

∂z2 −k2Ĝ(kx ,ky ,z) = 0

Seabed

∂Ĝ(kx ,ky ,z)

∂z

∣∣∣
z=−H

= 0

Free Surface

−ρw

(
−ω2Ĝ(kx ,ky ,z) + g

∂Ĝ(kx ,ky ,z)

∂z

)∣∣∣
z=0

= D

(
k4

x

∂Ĝ(kx ,ky ,z)

∂z
+2k2

x k2
y

∂Ĝ(kx ,ky ,z)

∂z
+k4

y

∂Ĝ(kx ,ky ,z)

∂z

)∣∣∣
z=0

−2ρi hω2
∂Ĝ(kx ,ky ,z)

∂z

∣∣∣
z=0

+e−i (kx x̂+ky ŷ)
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3.1.3. Solving Differential Equation
In order to obtain a function Ĝ which satisfy all of above equations, second order homogeneous differential
equation from transformed Laplace condition can be solved by assuming a general solution:

Ĝ(kx ,ky ,z) =C1 cos(Sn z)+C2 sin(Sn z)

Fundamentally speaking, this assumed solution can be anything. This form has been chosen due to its flex-
ibility and has a lot of convenience. Substituting this assumed solution into the transformed BC (Laplace),
gives

−S2
n (C1 cos(Sn z)+C2 sin(Sn z))−k2 ((C1 cos(Sn z)+C2 sin(Sn z)) = 0

and the characteristic equation is

S2
n =−k2

with, S1 = i k and S2 =−i k
Therefore, the general solution can be written as:

Ĝ(kx ,ky ,z) =C1 cosh(kz)−C2 sinh(kz)

The subsequent steps afterwards are done by substituting above general solution into the other boundary
conditions to determine the unknown coefficients (C1 and C2). By substituting above equation into the sea
bed boundary condition, the following expression is obtained

∂ (C1 cosh(kz)−C2 sinh(kz))

∂z

∣∣∣
z=−H

= 0

C2 =C1 tanh(−kH)

Since the unknown constant C2 is expressed in term of C1, substitution into the general solution results an
equation with only one remaining unknown constant C1

Ĝ(kx ,ky ,z) =C1 cosh(kz)−C1 tanh(−kH)sinh(kz)

Ĝ(kx ,ky ,z) =C1 (cosh(kz)− tanh(−kH)sinh(kz))

Lastly, C1 can be obtained from substitution to the free surface boundary condition

−ρwC1
(−ω2 + g k(tanh(kH))

)= (k4D −2ρi hω2)C1k tanh(kH)+Pe−i (kx x̂+ky ŷ)

and solving for C1 gives

C1 =− e−i (kx x̂+ky ŷ)

(k4D −2ρi hω2 +ρw g )k tanh(kH)−ω2ρw

Therefore, all of the unknown constants are defined, and the complete solution becomes

Ĝ(kx ,ky ,z) =−e−i (kx x̂+ky ŷ)(sinh(kH)sinh(kz)+cosh(kz)cosh(kH))

(k4D −2hρiω2 +ρw g )k sinh(kH)−ρwω2 cosh(kH)

which can be rewritten by adjusting the trigonometric function and using an infinite depth wave number
α=ω2/g

Ĝ(kx ,ky ,z) =
e−i (kx x̂+ky ŷ)(tanh(kH)sinh(kz)+cosh(kz))

ρwαg − (k4D −2hρiαg +ρw g )k tanh(kH)

or

Ĝ(kx ,ky ,z) =
e−i (kx x̂+ky ŷ)

ρwαg − (k4D −2hρiαg +ρw g )k tanh(kH)

cosh(k(H + z))

cosh(kH)

The final form of the solution is double inverse Fourier transform of above solution (to convert it back in its
original domain), expressed in space (x, y, z) domain.

G(x,y,z,x̂,ŷ ,0,ω) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e i (kx (x̂−x)+ky (ŷ−y))

ρwαg − (k4D −2hρiαg +ρw g )k tanh(kH)

cosh(k(H + z))

cosh(kH)
dkx dky
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By inputting the correct dimensions of every terms, it can be seen that the unit of G is in [ 1
Pa ] and agrees

with the previous definition. When one omitting the effect of the ice by taking the limit of D and ρi into
zero, representation of the integral above is similar (extended version) with the one appears in the reference
written by Chris[12] for 2-dimensional fluid domain problem without the level ice. The only differences are
the exponent term (which reflect the difference dimension), constant denominator ρw and g which can be
included in the unknown G without changing the integral formulation itself. One need to remember that the
radiation condition is not satisfied yet. This is can be done by solving the integral above by using Cauchy’s
residue Theorem/ applying Sommerfeld radiation condition.

3.2. Source Point on the Fluid Domain
Considering the fact that above derivation is not applicable to analyze a floating body (pulsating source point
only lies in the interface between free surface and level ice), a different physical condition is formulated. In
the second case, an imaginary line between free surface and the seabed is introduced. The depth location
of this imaginary line represents the depth location of the source point (ẑ). As a consequence, the boundary
value problem is split into two parts. There will be two solutions of the function G and the potentials. One
describes the fluid characteristic between level ice/free surface into the imaginary line and one for the fluid
characteristic between an imaginary line into the seabed. In application, calculation of Greens Function at
the field point (panel) also must be distinguished whether it lies above or under imaginary line (source point
ẑ). In this section, all of transformed boundary equations are presented directly after implementing a double
integral of Fourier transform.

Figure 3.2: Source at Fluid Domain Introduced Interface Condition

3.2.1. Transformed Boundary Conditions
Laplace

Laplace condition is exactly the same with the one occur in the previous derivation (chapter 3.1 Source
Point on the Free Surface-Level Ice Interface Condition).

−k2
xĜn(kx ,ky ,z) −k2

yĜn(kx ,ky ,z) +
∂2Ĝn(kx ,ky ,z)

∂z2 = 0

with index n = 1,2.
Index 1 is used to derive the solution of field points located between the level ice-free surface and imag-
inary line, whereas index 2 is used for field points lay between the imaginary line and seabed. The other
boundary equations also remain the same.

Free Surface Condition

−ρw

(
−ω2Ĝ1(kx ,ky ,z) + g

∂Ĝ1(kx ,ky ,z)

∂z

)∣∣∣
z=0

= D

(
k4

x

∂Ĝ1(kx ,ky ,z)

∂z
+2k2

x k2
y

∂Ĝ1(kx ,ky ,z)

∂z
+k4

y

∂Ĝ1(kx ,ky ,z)

∂z

)∣∣∣
z=0
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−2ρi hω2
∂Ĝ1(kx ,ky ,z)

∂z

∣∣∣
z=0

Seabed Boundary Condition

∂Ĝ2(kx ,ky ,z)

∂z

∣∣∣
z=−H

= 0

Interface Condition
In addition to the boundary equations above, two interface conditions (dynamic and kinematic condi-
tions) must be specified in the imaginary line. These conditions are expressed by an equal displacement
and pressure fields.
Displacement:

∂Ĝ1(kx ,ky ,z)

∂z

∣∣∣
z=ẑ

=
∂Ĝ2(kx ,ky ,z)

∂z

∣∣∣
z=ẑ

Pressure: (
P1(kx ,ky ,z) −P2(kx ,ky ,z)

)∣∣∣
z=ẑ

= e−i (kx x̂+ky )

(
−ρw

(
−ω2Ĝ1(kx ,ky ,z) + g

∂Ĝ1(kx ,ky ,z)

∂z

)
+ρw

(
−ω2Ĝ2(kx ,ky ,z) + g

∂Ĝ2(kx ,ky ,z)

∂z

))∣∣∣
z=ẑ

= e−i (kx x̂+ky ŷ)

The right hand side of the pressure equation comes from double integral Fourier transform of the delta
function which represent the infinite source pressure disturbance.

3.2.2. Solving Differential Equation
From previous discussion, it is known that the general solution of transformed Laplace equation can be found
in the form

Ĝn(kx ,ky ,z) =C1,n cos(Sn z)+C2,n sin(Sn z)

Substitute this assumed solution into conditions:
The first potential (Ĝ1) with the free surface-level ice boundary condition, gives

−ρw (−g kC21 −ω2C11) = D(−kC21k4
x −2kC21k2

x k2
y −kC21k4

y )+2ρi hω2kC21

solve for C2,1

C2,1 =− ρwω
2C11

(k4D −2ρi hω2 + gρw )k

Substituted back to the assumed solution for Ĝ1(kx ,ky ,z)

Ĝ1(kx ,ky ,z) =
((k4D −2ρi hω2 + gρw )k cosh(kz)+ρwω

2 sinh(kz))C11

(k4D −2ρi hω2 + gρw )k

Substitute the assumed solution of Laplace equation into seabed boundary condition for the second potential
(Ĝ2), gives

−C12k sinh(kH)−C22k cosh(kH) = 0

solve for C2,2

C2,2 =− tanh(kH)C12

Substituted back to the assumed solution for Ĝ2(kx ,ky ,z)

Ĝ2(kx ,ky ,z) =C12(tanh(kH)sinh(kz)+cosh(kz))

The expression of Ĝ1(kx ,ky ,z) and Ĝ2(kx ,ky ,z) have unknown constants (C1,1 and C1,2) respectively. These con-
stants can be determined by using 2 interface conditions.
Displacement:

∂Ĝ1(kx ,ky ,z)

∂z

∣∣∣
z=ẑ

=
∂Ĝ2(kx ,ky ,z)

∂z

∣∣∣
z=ẑ
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Pressures:

(
−ρw

(
−ω2Ĝ1(kx ,ky ,z) + g

∂Ĝ1(kx ,ky ,z)

∂z

)
+ρw

(
−ω2Ĝ2(kx ,ky ,z) + g

∂Ĝ2(kx ,ky ,z)

∂z

))∣∣∣
z=ẑ

= e−i (kx x̂+ky ŷ)

At the very end, the expression of Ĝn(kx ,ky ,z) are given by:

Ĝ1(kx ,ky ,z) =
e−i (x̂kx+ŷky ) (sinh(kH)cosh(kẑ)+cosh(kH)sinh(kẑ))

(
(k4D −2hρiω

2 + gρw )k cosh(kz)+ρwω
2 sinh(kz)

)
ρwω2

(
(k4D −2hρiω

2 + gρw )k sinh(kH)−ρwω2 cosh(kH)
)

Ĝ2(kx ,ky ,z) =
e−i (x̂kx+ŷky ) (sinh(kH)sinh(kz)+cosh(kH)cosh(kz))

(
(k4D −2hρiω

2 + gρw )k sinh(kẑ)+ρwω
2 cosh(kẑ)

)
ρwω2

(
(k4D −2hρiω

2 + gρw )k sinh(kH)−ρwω2 cosh(kH)
)

and also can be rewritten by adjusting the trigonometric function and an infinite depth wave number

Ĝ1(kx ,ky ,z) =
e−i (x̂kx+ŷky ) (tanh(kH)cosh(kẑ)+ sinh(kẑ))

(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

)

Ĝ2(kx ,ky ,z) =
e−i (x̂kx+ŷky ) (tanh(kH)sinh(kz)+cosh(kz))

(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

)
or

Ĝ1(kx ,ky ,z) =
e−i (x̂kx+ŷky )

(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + ẑ))

cosh(kH)

Ĝ2(kx ,ky ,z) =
e−i (x̂kx+ŷky )

(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + z))

cosh(kH)

The final expression of the Greens Functions are double inverse Fourier transform of these solutions.

G1(x,y,z,x̂,ŷ ,ẑ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e i (kx (x̂−x)+ky (ŷ−y))

(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + ẑ))

cosh(kH)
dkx dky

G2(x,y,z,x̂,ŷ ,ẑ) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e i (kx (x̂−x)+ky (ŷ−y))

(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + z))

cosh(kH)
dkx dky

Similarly, these integral can be solved by using Cauchy’s residue Theorem and applying the Sommerfeld ra-
diation condition. The poles of the integrand depend on some sort of modified dispersion equation and
containing one propagating root and infinitely many evanescence roots.

3.3. Further Favourable Form
From above derivation, it is shown that the obtained solutions are not really simple and quite cumbersome
to evaluate because of the double integral. This issue can be avoided by using Bessel function. Basically, the
effort is about expressing the spatial Cartesian dimension into the radial form to change a partial differen-
tial equation into an ordinary differential equation. This can be done by combining wave number in each
horizontal direction (x and y axis) into one as shown in the figure below.
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Figure 3.3: Combined Wave Number

Therefore,
kx = k cosϕ

ky = k sinϕ

where k is the modulus of wave number and agree with the introduced notation in section 3.2.1.Integral
Transformation. Rewriting the obtained solution of the first problem (source point on the free surface-level
ice interface condition) by implementing above adjustment and assuming

f(k) =
1

ρwαg − (k4D −2hρiαg +ρw g )k tanh(kH)

cosh(k(H + z))

cosh(kH)

gives

G(x,y,z,x̂,ŷ ,0,ω) = 1

4π2

∫ ∞

0

∫ 2π

0
f(k)e

i (k cosϕ(x̂−x)+k sinϕ(ŷ−y))dϕdk

Since f(k) does not depend on ϕ, it can be excluded from the first integrand. Horizontal distance between
source and field point also can be written in a polar coordinate system as shown in the following figure

Figure 3.4: Plan View of Source and Field Points

with,
x̂ −x = R cosγ
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ŷ − y = R sinγ

One must be aware that the horizontal distance is not inside the cosines term. This fact gives

G(x,y,z,x̂,ŷ ,0,ω) = 1

4π2

∫ ∞

0
f(k)

∫ 2π

0
e i kR(cosϕcosγ+sinϕsinγ)dϕdk

Implement some trigonometric identities gives

G(x,y,z,x̂,ŷ ,0,ω) = 1

2π2

∫ ∞

0
f(k)

∫ π

0
e i kR cos(ϕ−γ)dϕdk

The integrand with respect to ϕ can be represented by zeroth order Bessel function of the first kind (see
chapter 2.3.3. Bessel Function) and gives

G(x,y,z,x̂,ŷ ,0,ω) = 1

2π

∫ ∞

0
f(k) J0(kR)dk

Therefore, the final simplified solution appears as a single integral evaluation

G(x,y,z,x̂,ŷ ,0,ω) = 1

2π

∫ ∞

0

1

ρwαg − (k4D −2hρiαg +ρw g )k tanh(kH)

cosh(k(H + z))

cosh(kH)
J0(kR)dk

For the second problem (source point on the fluid domain), above adjustment also can be implemented in
the exactly the same manner. The difference is only about the term f(k) which given by

f1(k) =
(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + ẑ))

cosh(kH)

f2(k) =
(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + z))

cosh(kH)

In the end, the final solutions are given by

G1(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + ẑ))

cosh(kH)
J0(kR)dk

G2(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + z))

cosh(kH)
J0(kR)dk

The implementation of this Greens Function in a floating body analysis is not going to be done in this
thesis. This is the case considering a reason that the radiation condition is not satisfied yet. Nevertheless, to
address the whole possible challenges of analyzing arbitrary shape floating body, the open water solution is
used instead.





4
Numerical Hydromechanics Approach for

Open Water Condition

This chapter is intended to discuss about the implementation of the theory, to construct a matrix equation of
motion for an arbitrary shape floating body in the open water sea condition. The discussion is presented in
a narrative manner, in line with the code/function need to be generated in the programming tool being used
(MATLAB). Every restrictions and concerns are mentioned in each respective section.

4.1. Numerical Model Generation
Regardless conducting an analysis for rigid body or solely analysis of the fluid motion itself (without body), a
point coordinate information is needed. For the case of floating body analysis, one needs to build a numerical
model and discretize it into a large number of panels. In this thesis, it must become a concern that the
generated panel’s shape has to be a quadrilateral. The developed MATLAB code will fail when any other type
of polygons are present (e.g: triangular, hexagonal, etc.). As long as the panel has four corners (vertices),
the analysis can proceed smoothly. For a panel with an extremely short distance between its corners, some
problem about the accuracy of the solution raises. Generally speaking, the accurate and robust calculation
time will be achieved when the element shape is not deviate too much from a rectangular shape. This is due
to the reason that in the end, one of the term inside the Greens Function need to be integrated numerically
over the panel area by MATLAB. These generated panels are assumed to be flat and have a constant source
term over the surface (except specific case when the Greens Function gives an infinite solution/singular).
This constant source lies in the center point of the panel.

There are two types of data input being used: one is generated from ANSYS, and one uses the standard-
ized hydrodynamic software format so called "International Marine Software Associates (IMSA) format" and
provided as an interface definition file (Idf.). The motivation of generating these two types of input is because
by using ANSYS, one can "draw" the body by defining its dimensions, such as the width, length, depth, etc.
In contrast, sometimes, describing the coordinates of 3D geometric object such as sphere, ellipsoid, wigley
hull, etc. is much simpler by using a mathematical function. In both input, the center of floatation must be
placed in the global origin coordinate system (0,0,0). Both of the input formats are explained in the following
sub-section. Basically, this section explains how to generate the mesh properly in order to get a ’read-able
information (by the MATLAB code being created)’ about the panel coordinates (vertices) of the floating body.

4.1.1. Input generated from ANSYS
A body geometric data generated from ANSYS must contain the whole shape of the wetted body (the im-
mersed part), even though the body is symmetric. There are several things must present in the ANSYS output
data:

• List of Nodes
A list of nodes represents the vertices of panels which generated from the meshed body. In ANSYS
mechanical APDL, one only needs to type NLIST, , , ,COORD before writing the /OUTPUT command to
get this information.

23
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• Element Data
An element data represents the connectivity of the generated nodes. Apparently, the element data label
generated by ANSYS contains more information, such as element numbers, materials, types, rel, esy, sec
and nodes. Only the element number and the nodes are treated in the developed MATLAB codes. Any
other information about element parameter are neglected. ELIST is the command need to be written.

• List of Key-points
The meshing procedure by ANSYS is determined by key-points. The nodes are generated between these
points. Moreover, the ordering number of these key-points needs to be done in a clockwise direction to
obtain unit vectors pointing outward direction, otherwise the panel faces the inner-side (the dry-side)
of the body. Basically, this can be done while defining the plane area between those points. KLIST is
the command need to be written.

• List of Lines
A list of lines provides an information to calculate the water plane area which becomes an important
key to determine hydrostatic coefficient automatically. LLIST is the command need to be written.

A complete example of the input command in ANSYS including the generated output format which going to
be used for analysis are provided in Attachment 1. Example ANSYS Mechanical APDL Command to Generate
The Geometric Model & Attachment 2. Example Geometric Input Generated FROM ANSYS. The following
figure visualizes the information listed above.

Figure 4.1: Example ANSYS Model

Point A,B,C,D,E,F,G,H are the key-points. To generate the appropriate direction of normal unit vectors in
the starboard side, the plane area must be defined from ABCD /BCDA /CDAB/ DABC instead of ADCB,etc.
Same goes for the other sides (BFGC,FEHG,AEHD,GCDH). Every line connecting these key-points has to be
selected before being exported in ANSYS.out.

4.1.2. International Marine Software Associates [IMSA]Input Format
In contrast with the input format generated from ANSYS, when the IMSA input format is chosen, one needs
to be aware that this format only capable to handle a symmetric shape floating body. Only half of the wetted
body needs to be modelled from the bow to the aft. A crucial information about this input format is about the
number of grids in the X and Y directions. They must be input correctly and represent a correct number of
the generated node coordinate data which calculated beforehand. If the number of grids and the generated
nodes do not match, an error message will appear.

On the other hand, the order of coordinate data also becomes a crucial input. It must be assured that
the coordinate data is sorted in ascending order from the same X, Y, then Z respectively. If the input is not
provided in this way, the whole calculation will give completely incorrect results. This is because the MATLAB
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script developed in this thesis reads the geometric output in "slice by slice" manner, from the coordinate which
has the same lowest X (and does not necessarily have the same Y and Z at the same time), until the highest X
coordinates. It is similar to grouping the stern coordinates and move discretely to the bow. In addition, the
geometric meshing in the vertical (Z) direction is not possible. It means, every perfectly vertical panel cannot
be modelled (discretized) by using this input format. When one needs to model a ship with transoms, or any
other un-ship-shaped structure with large vertical walls (e.g: Barge, Semi-submersible, etc.), the ANSYS input
format is the one must be used.

Figure 4.2: Example IMSA Format Input

A complete example of the IMSA input format is provided in Attachment 3. Example Geometric Input
Generated in IMSA Format.

4.2. Dispersion Relation

The dispersion relation is one of the most important equations in the linear wave theory. The derivation of
the expression can be found in many reference. The final form of the equation is given by

k tan(kH) =−α

The above equation is a transcendental equation. The roots (k) depends whether the solution is proportional
to exp(−iωt ) or exp(iωt ). When one assumes that all variables are proportional to exp(−iωt ), the solution in
complex plane consists a pair of imaginary roots (propagating roots) and infinitely many real roots (evanes-
cence roots). In contrast, when the variables are assumed to be proportional to exp(iωt ), the solution is
given by a pair of real roots (propagating roots) and infinitely many imaginary roots (evanescence roots). To
give more insight about the occurrence of these roots, the following figures illustrate the obtained values for
different water depths and frequencies. All of variables are assumed proportional to exp(−iωt ).
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Figure 4.3: Dispersion Equation at 200 m Water Depth

Figure 4.3: Dispersion Equation at 20 m Water Depth

The figures given above are the plot of (|1/(k tan(kH)+α)|) in a complex plane. When the dispersion
relation is satisfied, the plot gives an infinite value represented by the singular points. It can be seen that for
the same water depth, the propagating root is higher (the shorter the wavelength) for a higher frequency. On
the other hand, it can be seen that the deeper the water, there are a lot more evanescence roots occurring in
the same wave number range, compare to the shallow water case.

4.3. Greens Function (Integral Solution Form)
It is already mentioned that the fundamental property must be obtained is the potential. These potentials are
derived based on several boundary equations mentioned in chapter 2:General Formulation of The Problem.
As one can see, these boundary equations relate physical quantities of the flow and presented as a partial
differential equation. The solution of potentials can be reformulated as an integral equation by using Greens
Theorem. The whole formulation specified in the following are derived based on point sources with strength
−4π reside at the point (x̂n , ŷn , ẑn).

The characteristic of fluid in the real life basically is irregular, both in space and time. The potential which
can fully describe the fluid behavior can be expressed in the function of time. In order to account this time
dependency, the potential is expressed in a harmonic function. As one already knows that any arbitrary func-
tion can be represented as a superposition of infinitely many harmonic functions with different frequencies
and amplitudes, it is always a good start to express the time dependency as a simple harmonic function in
one frequency.

Φ(x,y,z,t ) = φ̄(x,y,z)e
iωt
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In order to derive the Greens Function, a written expression as given in the reference [11] is adopted

φ̄=−iω
7∑

j=0
φ j ζ j

φ̄=−iω

(
(φ0 +φ7)ζ0 +

6∑
j=1

φ̄ j ζ j

)
with index i = 0,1−6,7 for wave,radiation, and diffraction potential respectively.

From above notation, it is clear that the unit of potential changes. Φ expresses the complete dependency
(time and space) of a velocity potential (unit = [m2/s]) and the φ̄ is its complex magnitude of the oscillation
(space dependent part). One must be aware that the assumed form of the potential is proportional to exp(iωt )
which gives pair of real propagating root and infinitely many evanescence roots. The introduced notation
φ is another expression of the potential (sort of magnitude base for displacement potential, with unit [m]
in the physical sense). The derivation of Greens Function is based on this potential φ. Even though the
derivation of Greens Function for the open water case is not extensively explained in this thesis (the solution is
taken from the work done by Wehausen,J.V. and Laitone,E.V. [20]), above explanation about the unit is a good
way to keep in track with the physical meaning behind it. Wehausen,J.V. and Laitone,E.V. [20] expressed the
source disturbance in the Laplace Boundary Condition. They assumed the solution of this partial differential
equation in the form of

G(x,y,z,x̂,ŷ ,ẑ,t ) =G1(x,y,z,x̂,ŷ ,ẑ,ω) cos(ωt )+G2(x,y,z,x̂,ŷ ,ẑ,ω) sin(ωt )

With G1 = 1
r +w as shown in chapter 2.2. Problem Formulation. It can be shown that by implementing point

source with strength −4π, above solution is exactly agree with fundamental solution of Laplace equation
superimposed by another assumed potential (w). Basically one can assume a solution in any kind of form for
the same boundary value problem. The imaginary part (G2(x,y,z)) is determined in such a way to satisfy the
radiation boundary condition at infinity. By implementing the Greens Function, a set of boundary equations
can be rewritten in the forms

• Continuity condition
O2Gi = δ(x̂ −x)δ(ŷ − y)δ(ẑ − z), for i = 1,2

• Free surface boundary condition
∂Gi (x,y,0)

∂z −αGi (x,y,0) = 0, for i = 1,2

• Far away from the ship (Sommerfeld Radiation Condition)

limR→∞
p

R
(
∂G1
∂R +αG2

)
= 0 and limR→∞

p
R

(
∂G2
∂R −αG1

)
= 0

• Sea bed boundary condition
∂Gi (x,y,−H)

∂z = 0, for i = 1,2

Above equations are the boundary equations mentioned in chapter 2.2.1. Boundary Conditions rewritten in
the G form. The positive sign inside Sommerfeld Radiation Condition also reflects that the time dependence
is assumed in the form exp(iωt ). First of all, those boundary equations are transformed into the wave number
frequency domain. The solution of Greens Function is obtained by substitution of the assumed solution
into transformed partial differential equations one by one as done in chapter 3. Derivation of 3D Greens
Function for Ice-Infested Waters. The delta functions in the first condition are automatically satisfied by term
(1/r), therefore the other assumed potential (w) only needs to satisfy a Laplace equation instead. For the
other conditions, both of (1/r) and (w) must be substituted simultaneously. After the unknown constants are
obtained, the solution is transformed back to the space coordinate and time domain. The final solution is
given in the form:

G(x,y,z,x̂,ŷ ,ẑ,t ) =
[

1

r
+ 1

r1
+PV

∫ ∞

0

2(ξ+α)e−ξH .coshξ(H + ẑ).coshξ(H + z)

ξsinhξH −αcoshξH
.J0(ξR)dξ

]
cos(ωt )

+i

[
2π

(k2 −α2)

(k2 −α2)H +α .coshk(H + ẑ).coshk(H + z).J0(kR)

]
sin(ωt )
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or summarized as

G(x,y,z,x̂,ŷ ,ẑ,t ) = [Ga +Gb +Gc ]cos(ωt )+ i [Gd ]sin(ωt )

with
Ga = 1

r = 1p
(x−x̂)2+(y−ŷ)2+(z−ẑ)2

Gb = 1
r1

= 1p
(x−x̂)2+(y−ŷ)2+(z+2H+ẑ)2

Gc = PV
∫ ∞

0
2(ξ+α)e−ξH .coshξ(H+ẑ).coshξ(H+z)

ξsinhξH−αcoshξH .J0(ξR)dξ

Gd = 2π(k2−α2)
(k2−α2)H+α .coshk(H + ẑ).coshk(H + z).J0(kR)

and
R =

√
(x − x̂)2 + (y − ŷ)2

It is quite clear that every term has the unit [1/m]. Several terms expressed above are discussed separately
in the following chapter. The Ga is addressed as the fundamental Rankine source term, Gb is its image below
the seabed, Gc and Gd represent the wave source terms. In case of infinite water depth, the Gb is not present
and substituted by the image of Rankinse source term above the free surface instead. Moreover, the wave
source term part (Gc and Gd ) will has much simpler expression. This difference is not going to be discussed
any further because this thesis only cover the finite water depth problem. Roughly speaking, infinite depth is
particular case of finite depth problem.

4.3.1. Fundamental Rankine Source Term [Ga](Real Part)

Figure 4.4: Fundamental Rankine Source Term

The Fundamental Rankine source term represents the influence at field point (x, y, z) due to source point at
(x̂, ŷ , ẑ) as visualized in above figure. This term is originally derived as a fundamental solution of the Laplace
equation in 3D domain. It goes to infinity (singular) for evaluation at its own point. Since only at an infinitely
small point the magnitude is infinite, total influence over the panel will be finite. Therefore, by doing sur-
face/double integration over the panel, the magnitude of influence function can be determined. Detail of the
integration approach over a quadrilateral panel is elaborated further in the section 4.9. Panel Integration. To
give an idea about a distribution of the influence over a panel, the following figure illustrates a field panel
influence due to its own source, over a rectangular panel.
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Figure 4.5: Fundamental Rankine Source Term Over Rectangular Panel Due to Its Own Source

4.3.2. Rankine Image Source Below Seabed [Gb](Real Part)

Together with the fundamental Rankine source term, the source image below seabed reproduces a similar
physical characteristic of the seabed line. This term will never be singular. The illustration about this term is
given in the following figure.

Figure 4.6: Rankine Image Source Below Seabed

About its distribution over the panel, the calculation is approximated by an evaluation of the influence at
the panel’s center point and multiply by panel area. The following figures represent the distribution. Figure
(a) shows the distribution when the field and source points are close to the seabed whereas figure (b) visual-
izes the distribution as the distance grows. As one can see, for the case (b), the approximation by multiplying
the influence at center point with panel area is a relatively good approximation since as long as the distance
r1 is far enough, there is no big difference of the influence over the panel surface/sides.
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(a) (b)

Figure 4.7: Rankine Image Source Below Seabed Over The Panel

4.3.3. Wave Source Term (Real and Imaginary Part)

Gc (Real Part)
The real part of the wave source term evaluation is relatively cumbersome. The denominator of the
Gc is a dispersion relationship itself, which means that the poles of integrand are just a propagating
root and an infinitely many evanescence root. The principal value of the integral can be calculated by
contour integration method over a complex number domain or by omitting the pole, then integrate it
in its axis of integration. The latter one is chosen because it is relatively easy to be done. This means
that the integrand is evaluated along the propagating root axis by excluding the positive real root of
dispersion equation.

Even the pole location is evident, some numerical issue arises during evaluation of the integrand. Two
cosines hyperbolic terms in the nominator and denominator easily overshoots the results into a num-
ber bigger than maximum double precision floating point that MATLAB can handle (overflow computa-
tion). This is an undesirable process of numerical integration since above integrand is finite (visualized
by the following figures). This issue gives a NaN output when the ξ goes higher, and never reach ξ=∞.
Apparently, a subroutine can be made in such a way that the numerical integration process is stopped
just before the hyperbolic terms result in infinite values. As a consequence of doing this, a lot of pre-
cision will lost during numerical integration (figure (a)). To encounter this problem, the integrand is
rewritten as an exponential form. It is known that sinh(x) = (ex −e−x )/2 and cosh(x) = (ex +e−x )/2. By
implementing these identities, an alternative form of the same integrand can be written as:

Gc = PV
∫ ∞

0

(ξ+α)eξ(ẑ+z).
(
1+e−2ξ(H+ẑ)

)
.
(
1+e−2ξ(H+z)

)
ξ.

(
1−e−2(ξH)

)−α.
(
1+e−2(ξH)

) J0(ξR)dξ

Above form ensures that overflow computation will not happen. The exponents terms on both nom-
inator and the denominator are always negative (therefore it converges) as long as z 6= ẑ 6= 0, which
physically means, there should not be any panel’s center point lies exactly on the free surface line. Two
figures below represent the behavior of integrand after and before the modification into an exponential
form.
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(a) Original integrand of wave source term (b) Modified integrand of wave source term

As one can see from the above figures, propagating root of the dispersion equation lies in ξp = 0.1019
based on a certain specific input example. This is the value of ξ where Gc goes to infinity (the pole).
After ξ goes around 7 (figure (a)), the nominator of integrand exceeds the extreme floating point num-
ber and therefore, the Gc results in NaN and cannot be evaluated (represented by the discontinuity of
the tail). Even the integrand clearly converges, behavior of the tail can not be captured. After rewriting
the equation in an exponential form, this undesired behavior can be avoided (figure (b)), and the inte-
grand can be evaluated until infinity. From ξ= 0 up to slightly below the pole (ξp −10−8), the integrand
is evaluated along the real axis. Around the pole, the integration path is shifted in complex-number
domain with the same tolerance (ξp ± i 10−8). In the end, from ξp + 10−8 into infinity, the integrand
can be evaluated back in its propagating root axis (see the following figure). Since Gc is a real function,
the integration along the real axis gives a real result. In contrast, the integration paths around the pole
which going to the (positive and negative) imaginary plane give the imaginary results. However, these
results compensate each other and the whole integration process gives an exact real result which is in
agreement with what expected (real part of the wave source term).

Figure 4.9: Path of Integration

Gd (Imaginary Part)
An evaluation the imaginary part of the wave source term has a different computational issue. There is
no singularity problem arise. The nominator is always positive and the zeroth order Bessel function of
the first kind never gives an infinite result. However, when the water depth (H) is quite deep, the propa-
gating root of dispersion equation (k) is very close to the wave number of infinite water depth (α). If this
difference cannot be captured (if the evaluation of the dispersion equation cannot give a high precision
propagating root), this term gives a zero value. The resulting damping coefficient in the end will be zero
as well. This phenomenon is illogical because it means physically, there is no energy being dissipated
by the system. Basically, this problem can be encountered by using an infinite depth solution of the
Greens Function. Another effort to rewrite the equation in slightly different form might work as well.
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Further discussion about this is elaborated together with the alternative solution (infinite series) form
in the following section. For visualization purposes, the distribution of these wave influence sources
(real and imaginary part) is plotted in the following figures. It is shown that an approximation of influ-
ence function over the panel by multiplication with panel area will overestimate the result. However,
the workload to improve accuracy of the results is rising quite significantly and generating an accurate
result itself is not really the aim of this thesis, therefore, it is going to be neglected for a time being.

(a) Wave Source Term Over The Panel (Real) (b) Wave Source Term Over The Panel (Imaginary)

4.4. Numerical Efficiency of the Greens Function (Infinite Series Form)
From the previous section, it is known that in order to acquire a single influence function in a point, one
needs to do a numerical evaluation of wave source term (real part) which cannot be done instantaneously.
This is a relatively unfavorable issue considering the number of points (panels) which must be evaluated is in
order hundreds-thousands. In addition, to understand the dynamic characteristic of a system, one needs to
evaluate the matrix equation of motion from different excitation (wave) frequencies. Moreover, even though
an analytical solution related to surface integral of fundamental Rankine source term (1/r) over an arbitrary
quadrilateral panel has been found, in this thesis (for simplicity purpose and establish a more generic method
to integrate an arbitrary function: e.g. Greens Function for ice-infested waters), this distribution is also inte-
grated numerically instead. This fact also adds quite a large amount of computational time. This means, that
the evaluation of the Greens Function by using the original integral equation is not really efficient. An alter-
native form which can give more robust solution might be used for. Based on the eigenfunction expansion
method, a solution of the same boundary value problem derived by John (1950)[10] is given as

G(x, y, z, x̂, ŷ , ẑ, t ) = [G1]cos(ωt )+ i [G2]sin(ωt )

with

G1 =
(
4

∞∑
n=1

k2
n +α2

(k2
n +α2)H −α coskn (z +H)coskn (ẑ +H)K0(kn R)

)
−

(
2π

k2 −α2

(k2 −α2)H +α coshk(z +H)coshk(ẑ +H)Y0(kR)

)

G2 =
[

2π
k2 −α2

(k2 −α2)H +α coshk(z +H)coshk(ẑ +H)J0(kR)

]
and
α= ω2

g (infinite water depth wave number)

R = 1/
√

(x − x̂)2 + (y − ŷ)2

K0 = zeroth order modified Bessel Function of the second kind
Y0 = zeroth order Bessel Function of the second kind
J0 = zeroth order Bessel Function of the first kind

It is completely clear that the above formula is somewhat become an alternative solution to avoid the
principal value integration of the original integral solution. The imaginary part (Gd ) from integral solution is
exactly the same with the (G2) above. From a computational point of view, this alternative solution is much
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more convenient rather than the original integral solution. Generally speaking, this infinite series form is
applicable in any region, except for the case when the horizontal distance between source and field point
(R) is zero. John [10] explicitly stated that this alternative form of the Greens Function is valid only when
R > 0. The modified Bessel Function of the second kind (K0) gives ∞ for R = 0. It means, this alternative
approach fails and the original integral solution need to be used. This case is present in the determination of
diagonal values inside the Greens Function matrix, which represent the influence of field points due to their
own source (x = x̂, y = ŷ , z = ẑ), and also in the case when field point is straight above/under source points
(x = x̂, y = ŷ). The latter case occurs when the floating body has perfectly vertical meshed sides/transoms.

Fundamentally speaking, for evaluation of an influence function at the field point due to its own source,
the original integral equation fails as well. Fundamental Rankine source term (Ga) goes to infinity. However,
since it is already discussed that the surface integration result of (Ga) over the panel is finite, the solution still
can be found. It is obvious that integrating (over surface area) the fundamental Rankine source term (1/r)
from the integral solution is much more convenient rather than integrating the whole infinite series solution.

To understand about the effectiveness of this alternative solution, study about the convergence rate has
been conducted. From the equation given above, it is clear that only magnitude proportional to the cosines
part (real part) needs to be evaluated until converge using the evanescence roots (kn). The magnitude of the
sinus part (imaginary part) is calculated based on a propagating root (k) of dispersion equation. However, the
propagating root (k) also influences the real part in expression inside the right bracket. It has a similar expres-
sion to the imaginary part, except for the Bessel function (Y0 and J0). However, since it does not influence the
rate of convergence, but some sort of giving an amplitude base for the real part, the study is focussed for the
left bracket part of the real solution (G1).

In order to study about the behavior of the summation in every evanescence root (kn), initially, left bracket
expression of the real part is distinguished into four terms as

G(x,y,z,x̂,ŷ ,ẑ,t ) = 4
∞∑

n=1
GaGbGcGd

with
Ga = k2

n+α2

(k2
n+α2)H−α

Gb = coskn(z +H)
Gc = coskn(ẑ +H)
Gd = K0(knR)

Above terms are plotted separately for particular input of (x, y, z, x̂, ŷ , ẑ, and H) with respect to the evanes-
cence roots (kn) obtained. The results depicted below are Ga , Gb , Gc and Gd plotted from around 650 evanes-
cence roots.

(a) First Term of the G (b) Second and Third Term of the G
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(c) Forth Term of the G (d) Greens Function (Infinite Series Solution)

The first three graphs above (a,b,c) show the behavior of distinguished terms of the real part which eval-
uated using the evanescence roots. Figure (a),(c) and (d) are plotted in a semi-logarithmic scale. It must be
noted that those terms must be multiplied each other. Figure (d) shows the result of multiplication (Gsum =
GaGbGcGd ) which represent the whole summation of the terms for every evanescence root that need to be
summed up.

If one looks the behavior separately in each term, the first contribution (Ga) shows that after using several
numbers of root, it converges into some constant value. Theoretically, this never be a zero value because the
squared summation of an evanescence root and an infinite depth wave number (k2

n +α2) never be zero. The
second and third contributions (Gb and Gc ) are simply a sinusoidal behavior, which can be represented by the
second graph (b). This means that they do not affect the rate of convergence. The last term (Gd ) represented
by the third graph (c). It is shown that Gd is converging exponentially (since it is semi-logarithmic scale) to
zero constant value. When these terms are multiplied each other, term Gd is the one that governing the rate of
convergence of the summation. This can be clearly seen in figure (d). The first term (Ga) initially contributes
to tilt the slope of figure (d) until kn = 2. Afterwards the prevailing slope of the figure (d) is kind of equal
with slope (Gd ) at the figure (c). It can be concluded that when Gd is extremely small, adding more roots
will not give any significant difference. For a large number of modes (after Ga become constant), the rate of
convergence solely depends on (knR).

However, it is obvious that an infinitely many evanescence root (kn) is obtained from the dispersion equa-
tion kn tan(kn H) =−α. This dispersion relation is plotted in the following figures to give some idea about the
characteristic of the roots.

Figure 4.12: Dispersion Relation

The x axis in the above graphs is the (kn H) which define the tangent, and the y axis is the dispersion
equation. It is quite clear that the dispersion relation is satisfied when it gives a negative value (−α) which
occur in the blue hatched area. It can be concluded that the satisfying roots (kn) appear in certain periodic
function. The root kn in front of the tangent term only affects the graph’s curvature and does not affect the



4.4. Numerical Efficiency of the Greens Function (Infinite Series Form) 35

periodical occurrence of the roots. Therefore, the occurrence of these roots can be formulated as

π(n − 1

2
) ≤ kn H ≤πn

with
n = 1,2, ...,∞
which depends on π, integer n and H . Recalling Gd = K0(knR) as the only governing term for the rate of
convergence, the term inside zeroth order modified Bessel Function of the second kind can be represented
by

πnR/H

Since π and integer n are just constant values, the rate of convergence in the end will solely depend on R/H .
The number of roots needed to obtain a converge solution is calculated by

N = N̂ H/R

with
N = number of roots
N̂ = dummy constant
and the N̂ is determined based on a numerical test and specified degree of accuracy about the G compared
to the integral solution.

In order to compare the effectiveness of series and integral solution, the influence function is calculated
for different region of R/H. Those regions are:
– Region 1: 0 ≤ R/H ≤ 0.0005
– Region 2: 0.0005 ≤ R/H ≤ 0.05
– Region 3: 0.05 ≤ R/H ≤ 0.5
– Region 4: 0.5 ≤ R/H
On those regions, the influence functions are distinguished again in another 4 different value of R/H and also
plotted in different normalized depth location. Results for the first region are shown in 4 graphs below.
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(a) Convergence of the series at seabed
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36 4. Numerical Hydromechanics Approach for Open Water Condition

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Roots

0

0.02

0.04

0.06

0.08

0.1

0.12

R
ea

l(G
)

Convergence Rate for Regions 0.0 <R/H< 0.0005 at z/H = -0.33

R/H = 0.0001
R/H = 0.0003
R/H = 0.0004
R/H = 0.0005

(c) Convergence of the series at 1/3 water depth
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(d) Convergence of the series on the free surface

Figure 4.13: Real(G) Region 0 ≤ R/H ≤ 0.0005

One general conclusion which could be taken from those graphs is the fact that in this region, the influ-
ence function needs a large number of roots to converge (up to 8000 evanescence roots). On the graph (a),
the influence function converge to zero, which is in line with the fact that on the seabed, the influence is
vanish (theoretically, it is not necessarily zero, but its derivative with respect to z instead). The R/H locations
at each graph above (blue, red, yellow and purple lines) also determined in such a way in which they are pro-
portional to the wave number. Each different line represents the same oscillating location of the trough/peak
of the wave at an instantaneous moment in time. From graph (c) and (d), one can clearly see that as R/H goes
larger, which means the examined field point is going further from the source point, the influence function
also goes smaller (satisfying radiation boundary condition at infinity).

Generally, the behavior of influence functions in the other regions is the same with above. The only dif-
ference is the fact that the bigger the ratio R/H , the smaller number of evanescence roots need to be used
to acquire converged solution. This is actually can already be seen from the graph (d) above. The blue line
is the shortest distance between field and source point compared to the other lines (red, yellow and purple).
It is shown that the blue line converged after around 8000 evanescence roots whereas for the other locations
already converged before around 2000 roots.

However, to clearly see the difference, several graphs are provided in the following to visualize this behav-
ior. Another 3 regions of R/H are presented together with four different locations of normalized depths in
each region. The figures below are visualization of influence function for region 2: 0.0005 ≤ R/H ≤ 0.05.
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(a) Convergence of the series at seabed
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(b) Convergence of the series at 2/3 water depth
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(c) Convergence of the series at 1/3 water depth
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(d) Convergence of the series on the free surface

Figure 4.14: Real(G) Region 0.0005 < R/h ≤ 0.05

It can be seen that after 2000 roots (does not necessarily need until 8000 roots), the smallest ratio of R/H,
or can be said as the shortest distance to the source point (line blue, clearly seen in figure (d)), the influence
function is already converge. The order of magnitude is also in agreement with the representative distance as
discussed in previous region.
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(a) Convergence of the series at seabed
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(b) Convergence of the series at 2/3 water depth
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(c) Convergence of the series at 1/3 water depth
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(d) Convergence of the series on the free surface

Figure 4.15: Real(G) Region 0.05 < R/h ≤ 0.5

For region 3: 0.05 ≤ R/H ≤ 0.5, the influence function converges quite soon. Less than hundred numbers
of root are needed to obtain a converged solution.



38 4. Numerical Hydromechanics Approach for Open Water Condition

0 2 4 6 8 10 12 14

Number of Roots

-10

-8

-6

-4

-2

0

2

R
ea

l(G
)

#10-4

Convergence Rate
Regions 0.5 <R/H< 3.0 at z/H = -1.0

R/H = 0.5000
R/H = 1.1166
R/H = 1.7332
R/H = 2.3498
R/H = 2.9664

(a) Convergence of the series at the seabed
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(b) Convergence of the series at 2/3 water depth
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(c) Convergence of the series at 1/3 water depth
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(d) Convergence of the series on the free surface

Figure 4.16: Real(G) Region 0.5 < R/h ≤ 3

Lastly, for region 4: 0.5 ≤ R/H, the influence function converges immediately by only using several num-
bers of evanescence root. It means that in this region, the infinite series solution is capable to improve the
computation speed significantly compared to the integral solution. Based on several graphs above, previously
plotted Gsum with respect to kn and some numerical test, which is also stated in the work done by Newman
(1984) [15], infinite series form can give an accurate solution (10−6 precision) when N = 6H/R (obtained
N̂ = 6). In order to quantify the effectiveness of this series solution based this specified accuracy, computa-
tion times between the infinite series and the integral solution are compared. This comparison is done in 4
different regions above and the results are summarized in the following figures.

(a) Comparison of Computational Speed in All Region (b) Comparison of Computational Speed in Region 2

Figure 4.17: Computation Speed Difference Between Series and Integral Solution

From above figure, it is quite clear that for a small ratio of R/H , infinite series form is useless to provide a
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more robust solution. This is where Newman [15] gave a significant contribution by introducing a "polyno-
mial expansion" form (Chebhyshev polynomial) of the Greens Function. He implemented the infinite series
only for region R/H > 0.5 , and using the polynomial expansion form for the other region. A recent research by
Yingyi Liu [14] even make a great improvement of Newman’s work by distinguishing the region into four, and
using an epsilon algorithm to propose another approximation solution of Greens Function. This robustness
issue is not going to be discussed any further. However, the evaluation at R = 0 still become a crucial thing
which discussed in the latter chapter.

On the other hand, considering the fact that both of integral and the infinite series solution will be used
together, it must be ensured that they really represent the correct evaluation of the problem. The graphs
depicted below show a comparison of influence function at a field point, between infinite series and integral
solution for different water depth and frequencies at a certain distance from the source point. These values
are only the real part of the solution since the imaginary part from both forms are the same.

(a) Series vs Integral Solution for Different Water
Depth

(b) Series vs Integral Solution for Different Wave
Frequencies

From two graphs above, it can be seen that the integral and the infinite series solution initially are in
a good agreement (give the same results). After reaching a specific water depth/frequencies, the difference
between integral and the infinite series solution grows exponentially. Careful examination concludes that this
issue is related to the wave number/propagating root. As soon as the deep water condition has been reached,
the propagating root and an infinite depth wave number are indistinguishable. This issue can clearly be seen
in the following figures.

(a) Km (b) Km −ω2/g

Figure 4.19: Propagating Root and Infinite Depth Wave Number

Figure (a) shows the propagating roots and infinite depth wave number for different frequencies and wa-
ter depth, whereas figure (b) shows the difference between them. It is clear that after 10−16, the difference
(Km −α) cannot be captured. The reason behind it is because maximum number of decimal digits can be
captured for double precision is 10−16. Therefore, when this condition happens, the expression in the right
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bracket of the infinite series solution (G1) is become zero (k2−α2 = 0). However, even though above compar-
ison is only between the real part of both solutions and integral solution does not have this kind of issue, the
imaginary part of both solutions have the same formulation except for the Bessel Function. This means, as
long as the deep water condition being reached, the imaginary part of the Greens Function is zero as men-
tioned in chapter 4.3.3. Wave Source Term (Imaginary Part). Based on this restriction, by using the same form
of Greens Function, one needs to specify the range of frequencies of interest based on water depth or vice
versa. For example, from figure (b) above, for frequency range 0−1 radian/second (maximum wave period
6.2 seconds), the maximum water depth can be evaluated is just slightly deeper than 150 meters (red line).
Since this is quite undesirable limitation, another effort seems necessary to be done. An infinite depth solu-
tion of Greens Function (which has been discovered as well) can be implemented in this condition. Another
alternative is by rewriting the integral solution in a slightly different manner as

G(x,y,z,x̂,ŷ ,ẑ,t ) =
[

1

r
+ 1

r1
+PV

∫ ∞

0

(ξ+α)eξ(ẑ+z).
(
1+e−2ξ(H+ẑ)

)
.
(
1+e−2ξ(H+z)

)
ξ.

(
1−e−2(ξH)

)−α.
(
1+e−2(ξH)

) J0(ξR)dξ

]
cos(ωt )

+i

[
2π

(k +α)e−kH sinh(kH)

αH + sinh2(kH)
cosh(k(ẑ +H))cosh(k(z +H))J0(kR)

]
sinωt

Even though there is no (k2−α2) present, the denominator (sinh2) term is also easily reach a value larger than
the maximum double precision for a large value of H. Another effort to rewrite it in exponential form might
help, but this is not going to be discussed any further. Up to this point, the evaluation of influence function
still cannot assure to be correct. Above explanation so far, only gives a fact that the integral and the infinite
series solution have the same results. One needs to validate them by checking all of boundary equations.

4.5. Validation of Greens Function
The boundary equations must be satisfied by the Greens Function are: continuity, seabed, free surface, and
radiation conditions. In order to validate these conditions, one needs to determine the first and second
derivative of Greens Function with respect to global direction (x,y,z). Since it is already checked that the
integral and infinite series solution give reasonable the same results, the validation is done based on the in-
finite series solution. In this form, terms x and y only appear inside the Bessel function: K0(knR), Y0(knR)
and J0(knR) with (R =

√
x2 + y2) whereas the z term appears on the third term (cos(km z)) with (m = 0−∞)

and k0 = i k. Derivation of the Bessel Function is easily obtained by using the symbolic toolbox in MATLAB
(MATLAB is provisioned with Bessel Functions)/ Maple or any other similar program. The first derivatives of
the infinite series solutions are given in equations below.

∂G

∂m
= ∂G1

∂m
cos(ωt )+ ∂G2

∂m
sin(ωt )

with m = x, y, z
and respectively, those expressions are given by

∂G1

∂x
=

[
4

∞∑
n=1

k2
n +α2

(k2
n +α2)H −α coskn (z +H)coskn (ẑ +H)
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2R

]
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2π
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]
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The second order derivatives of the Greens Function are determined in the same manner by

∂2G

∂2m
= ∂2G1

∂2m
cos(ωt )+ ∂2G2

∂2m
sin(ωt )

with m = x, y, z
and respectively
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The same expressions are also valid for the other Bessel Functions (Y0, J0) by simply changing the (K0).

Apparently, another singularity problem also appears in those expressions. The modified zeroth order
Bessel Function of the second kind (K0) still there and is singular when R = 0. This is also the case for the
firstth order Bessel Function of the second kind (K1) which occur in the second order derivatives. However,
since in the beginning, the infinite series solution form is never going to be used for (R = 0), the derivative
expression for the integral solution is also needed (only the real part due to the fact that the imaginary part is
the same and not singular). These expressions are given in the following
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(
1+e−2ξ(H+ẑ)
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∂
∂y

1
r1

= −(2y−2ŷ)
2((x−x̂)2+(y−ŷ)2+(z+2H+ẑ)2)3/2

∂
∂z

1
r1

= −(4H+2z+2ẑ)
2((x−x̂)2+(y−ŷ)2+(z+2H+ẑ)2)3/2

Only the first order derivative forms are given above. The exponential form of the wave source term is
already implemented to avoid an overflow computation as occur in the original expression. However, for
x and y derivatives, it seems that the expressions given above contain some terms which having 2R as the
denominator. Even this seems to be singular, the nominator of this term is always related to the horizontal
distance between source and field point (x− x̂ or y− ŷ), which is zero (for R = 0). This means, the result of this
expression is zero instead of singular. This is reasonable when one sees this characteristic from the physical
sense. The case of R = 0 occurs for a field point’s evaluation due to the source at straight above or under the
source point, or due to its own source point. In the first case, a perfectly vertical panel will give no horizontal
kinematic contribution to the panel straight above or below it. This is represented by x − x̂ or y − ŷ = 0 which
discussed above. This reflects that a singularity issue occur solely due to the modified zeroth order Bessel
Function of the second kind (K0), not the other Bessel Function (Y0 or J0). The zero(th) order Bessel Function
of the first kind (J0) on the imaginary part and zero(t h) order Bessel function of the second kind (Y0) from
propagating root of the real part will just give one instead of infinity for R = 0.

In terms of the implementation, the second order derivative is not really needed because in order to cal-
culate unknown source strength distribution by solving matrix linear equation, only a normal derivative of
the Greens Function is required. The second order derivative is only used to validate the Laplace boundary
equation. As long as the validation does not include the evaluation of field point due to its own source or any
other location which is exactly below/above it, the derivative expression of the infinite series solution can be
used without any issue. Due to this reason, for validation purpose, only a single source point is determined
in the origin of the global coordinate system (x̂, ŷ , ẑ) = (0,0,0). The boundary conditions are evaluated in the
3-Dimensional domain and plotted as a sliced 3D cube. Water depth for this validation is chosen to be 100 m
without any conceptual reason. Initially the Laplace (continuity) boundary condition is checked. Basically,
both for the real and the imaginary part must satisfy all of the boundary condition independently since they
are just representing a time dependency (when cos(ωt ) is zero, only the real part determines the magnitude of
the G and vice versa). But it is true that the combination of both also needs to satisfy the boundary conditions.
The result of the continuity (Laplace) condition (O2G) is given in the following figures.

(a) Real Part (b) Imaginary Part

Figure 4.20: Continuity Check Due to Point Source at The Origin

From above graphs, it can be seen that even the result is not completely zero anywhere, the magnitude is
extremely small (in order 10−18). It can be concluded that the continuity condition is satisfied. Subsequently,
∂G
∂z is calculated and plotted in the same domain which represent the vertical velocity of the fluid particle.
The seabed boundary condition is satisfied when the magnitude is zero, which is indeed represented by the
following figures.
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(a) Real Part (b) Imaginary Part

Figure 4.21: Vertical Velocity (∂G/∂z) Due to Point Source at The Origin

From above graph, it is shown that the vertical velocities at the seabed (z =−100) are zero. The velocities
at the surface radiate from source point which also makes sense. On the other hand, just for visualization
purpose, the velocity in the horizontal direction (x and y) also calculated and presented in the following fig-
ures

(a) Real (∂G/∂x) (b) Imaginary (∂G/∂x)

(c) Real (∂G/∂y) (d) Imaginary (∂G/∂y)

Figure 4.22: Horizontal Velocity due to point source at the origin
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Above graphs visualize that for water particles situated close to the source point, they have much higher
velocity magnitude, and diminishing when they go further from the source point. Direction of the propa-
gation is also illustrated in an intuitively correct manner. For the radiation boundary condition, validation is
confirmed by the Greens Function itself. There must be zero influence in the distance infinitely far away from
the source point. This condition is visualized on the same 3D fluid domain since it is can already be seen that
from the distance 50 m from a source point, the pattern of influence is vanishing.

(a) Real part (b) Imaginary part

Figure 4.23: Greens Function due to point source at the origin

From above graph, it is clear that the influence concentrates in the source point location. However, if the
excitation frequencies or the discretization size is changed, the plotting gives a quite different behavior. This
is the case because all above graphs cannot really capture the fluid particle continuously. It is clear that some
peak/trough of the wave (at an instantaneous moment in time) might miss from specified discretization size.

Lastly, the pressure boundary condition is calculated based on
∂2Φw(x,z,t )

∂t 2 +g ∂Φw
∂z . Apparently, both for real and

imaginary part give the same results, therefore, only one figure is presented below. It is clearly shown that
in the surface condition, there will be no pressure, and as it goes deeper, it simply increases as hydrostatic
pressures.

Figure 4.24: Pressure Condition

Up to this point, it is quite reasonable to conclude that the Greens Function and its derivatives are calcu-
lated correctly, including the fact that the integral and the infinite series solutions are interchangeable with
each other. In the following section, the discussion moves to the implementation of the whole approach by
considering the presence of a floating body.
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4.6. Directional Derivative of Greens Function
In order to implement the kinematic body boundary condition (the last boundary condition must be sat-
isfied), every panel orientation is determined. This orientation is represented by unit vector. Due to the
difference of input format between the ANSYS output model and the IMSA input format, the determination
of unit vector on both formats is treated in a slightly different manner. One only needs to choose which input
format being used, then, the following subroutines in MATLAB code already programmed automatically to
calculate them.

From a theoretical point of view , there is no difference between those input formats. A calculation of unit
vector is based on cross product operation between two vectors . The difference between two points (which
can be seen as two vertices) generates one vector. Since the panels are assumed to be flat, three vertices give
2 vectors lying in the same plane. Even though these two vectors are not necessarily perpendicular, a cross
product operation between those vectors gives a normal vector. By normalizing this generated vector, the

normal unit vector is obtained. For the given corner points of the panel
(
p1(x1,y1,z1); p2(x2,y2,z2); p3(x3,y3,z3)

)
,

the unit normal vector is calculated by

T1 =
(
(x2 −x1), (y2 − y1), (z2 − z1)

)
T2 =

(
(x3 −x1), (y3 − y1), (z3 − z1)

)

N = (T1 ⊗T2)

|T1 ⊗T2|

In the ANSYS input format, the discretization technique being used to generate the mesh must comply
the specification stated in the "list of key point". This is to make sure that the unit vector generated is pointing
outward to the fluid domain from the surface body instead of the other way around. In the IMSA input format,
this kind of thing is not an issue as long as the ordering number of coordinate data is already complying with
the specification discussed in chapter 4.1.2. IMSA input format. One thing must be kept in mind is the fact
that the IMSA input format is only capable to handle a symmetric body (in X axis global coordinate). The de-
termination of these unit vectors is only by calculating the unit vector from half part of the body (since there is
only half part of the structure must be generated), then the results are being mirrored with the X axis together
with the panel coordinates. Script to plot these generated unit vectors follows directly afterwards to ensure
that the input of discretization technique is correct and gives an appropriate direction of the unit vector. This
is can be considered as an error prevention/detection before going further into the sophisticated calculation
which require a quite significant amount of time. Four figures depicted below are some illustrations of the
unit vectors generated from these two types of input format.

(a) 3D Rectangular (b) 3D Trapezoid
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(c) Sphere (d) Spheroid

Figure 4.25: Example Generated Unit Vector

When the normal unit vectors of the panels are acquired, one can calculate the normal derivative of
Greens Function. This directional derivative is necessary to obtain the source strength distribution of each
panel which calculated by solving a matrix linear system from the kinematic body boundary condition. For
unit vector N = (n1,n2,n3), a normal derivative of the Greens Function (unit [1/m2]) is calculated by

∂G

∂n
=

(
∂G

∂x
n1

)
+

(
∂G

∂y
n2

)
+

(
∂G

∂z
n3

)

4.7. Determining Distributed Source Term
The last step of calculating fluid forces in the matrix equation of motion is by solving the unknown distributed
source strength (σ).

Kinematic Boundary Condition on The Oscillating Body Surface (Radiation Condition)

∂φ j

∂n
= v j

with ( j = 1, ...,6) represent the mode motions of the body (surge, sway, heave, roll, pitch and yaw)

∂φ j

∂n
=−1

2
σ j (x,y,z) + 1

4π

Ï
S0

σ j (x̂,ŷ ,ẑ) ·
∂G(x,y,z,x̂,ŷ ,ẑ)

∂n
dS0

−1

2
σ j (m) + 1

4π

N∑
n=1

σ j (n)
∂Gmn

∂n
∆Sn = ∂φ j (m)

∂n

for m = 1, ..., N and n 6= m which can be solved in a matrix equation as


A11 ... ... ... A1N

... A22 ... ... ...

... ... A33 ... ...

... ... ... ... ...
AN 1 ... ... ... AN N



σ j ,1

...

...

...
σ j ,N

=


v j ,1

...

...

...
v j ,N


with;
Ann =− 1

2

Anm = 1
4π

∂Gmn
∂n ∆Sn

σn, j = unknown source strength
nn, j = directional cosines of the oscillating body
Index (n) up to (N) is the index of the receiver panel (field point). Index (m) is for the pulsating panel
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(source point), whereas index (j) is an index of the motion. The direction cosines which describe the
motions are given as

sur g e : n1 = cos(n, x)
sw ay : n1 = cos(n, y)
heave : n3 = cos(n, z)

r ol l : n4 = y cos(n, z)− z cos(n, y) = (r
⊗

n)1

pi tch : n5 = z cos(n, x)−x cos(n, z) = (r
⊗

n)2

y aw : n6 = x cos(n, y)− y cos(n, x) = (r
⊗

n)3

Above explanation shows that the normal derivative ofφ is unit-less [m/m = 1] and agrees with the right
hand side of the equation. Source strength magnitude (σ) is unit-less, the expression inside surface
integration also gives no unit [1/m2.m2 = 1].

Kinematic Boundary Condition of The Wave Diffracted Excitation(Diffraction Condition)
Similarly, the source strength of a diffraction potential can be obtained in the exactly the same manner
with radiation source strength, by changing the index 1 to 6 becomes 7 and substitute the right hand
side equation with the normal derivative kinematic component of the wave potential.

∂φ0

∂n
+ ∂φ7

∂n
= 0

−1

2
σ7(m) + 1

4π

N∑
n=1

σ7(m)
∂Gmn

∂n
∆Sn =−∂φ0(m)

∂n
A11 ... ... ... A1N

... A22 ... ... ...

... ... A33 ... ...

... ... ... ... ...
AN 1 ... ... ... AN N



σ7,1

...

...

...
σ7,N

=


v7,1

...

...

...
v7,N


This right hand side of the equation represents the directional relation of the wave and the panel’s
orientation. This normal derivative of wave potential is given by

∂Φ0

∂n
=

(
∂Φ0

∂x
n1

)
+

(
∂Φ0

∂y
n2

)
+

(
∂Φ0

∂z
n3

)
with
∂Φ0
∂x = i kζ0g

ω
cosh(k(H+z))

cosh(Hk) e(i k(x cosµ+y sinµ)) cosµ
∂Φ0
∂x = i kζ0g

ω
cosh(k(H+z))

cosh(Hk) e(i k(x cosµ+y sinµ)) sinµ
∂Φ0
∂z = kζ0g

ω
sinh(k(H+z))

cosh(Hk) e(i k(x cosµ+y sinµ)) cosµ

Fundamentally speaking, the unit of φ0 and φ7 must be equal to φ1−6 [m]. In contrast, the wave poten-
tial above is taken from well-known velocity potential of linear wave theory (unit [m2/s]). Apparently,
this is not an important issue as long as when the pressure is being calculated, this potential does not
re-multiplied by the wave frequency ω and amplitude ζ0 as shown in the third equation of chapter 3.3,
or in other word, these potentials (φ0 and φ7) are no longer magnitude base of displacement potential
like the radiation potentials, but already the velocity potentials. The other alternative approach to keep
a generic condition of the unit, is by multiplying wave potential above with (1/(ζ0ω)).

Procedure explained above reveals that the determination of source strength can be summarized as pro-
cedure of solving matrix linear system

[A][σ j ] = [v j ]

[σ j ] = [A]−1[v j ]

for j = 1, ...,7
Accuracy of the solution depends on the condition number of the matrix [A]. Apparently, for certain input
excitation frequencies, this condition number is quite high and give inaccurate results. This phenomenon is
called irregular frequencies and occur when the determinant of matrix [A] is close to zero, and the inverse
operation cannot be calculated properly. Discussion about this issue is outside the scope of this thesis.
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Finally, when all of the source strength distribution is acquired, the potentials which satisfy all of five
boundary conditions can be obtained easily by

φ j (x,y,z) = 1

4π

Ï
S0

σ j (x̂, ŷ , ẑ)G(x, y, z, x̂, ŷ , ẑ)dS0

with [m] as the unit of the φ. Since (G) is complex in time (G = G1 cos(ωt )+ iG2 sin(ωt )), the obtained po-
tentials (φ) are also complex. For the sake of computational effort, the double integral operation can be
approximated numerically (multiplication with panel area) as

φ j (x,y,z) = 1

4π
σ j (x̂, ŷ , ẑ)G(x, y, z, x̂, ŷ , ẑ)∆S0

which can be rewritten in a vector - matrix operation.

[
Φ j (1...m)

]= [ 1
4πσ j (1)

1
4πσ j (2) ... 1

4πσ j (m)
]

G1,1∆S0 ... ... ...
... G2,2∆S0 ... ...
... ... ... ...
... ... ... GN ,N∆S0


Above vector-matrix operation is used when the evaluation of Green’s Function is done without doing surface
numerical integration over the panel. The assumption of constant source strength over the panel is imple-
mented here. For the elements inside matrix G where the series solution fails (the diagonal term and some
other location where x = x̂ and y = ŷ), ∆S0 is excluded and the element of this matrix G is integrated over the
area. The procedure of integration is elaborated further in chapter 4.9: Panel Integration. Roughly speaking,
every physical characteristic of the fluid (in the hydrodynamic sense) such as pressure, acceleration, force
and displacement are within one’s grasp.

4.8. Equation of Motion
Once all of the potentials needed are obtained, the final coupled 6 Degrees of Freedom equation of motion
can be constructed as

(m +a) · z̈ +b · ż + cz = Fw +Fd

with
Fr = Radiation force
Fw = Wave excitation (Froude Krylov) force
Fd = Diffraction force
Fd = Hydrostatic Force
These forces are calculated based on pressure integration. It is known that the pressure can be obtained from
original velocity potential (Φ)

p(x,y,z,t ) =−ρ ∂Φ
∂t

which can be expressed in terms of magnitude base of displacement potential (φ0−7)

p(x,y,z,t ) = ρω2

(
(φ0 +φ7)ζ0 +

6∑
j=1

φ j ζ j

)
e−iωt

Therefore, the final forces are calculated by integrating these pressures over the panel area for each respective
mode of motion

Fk =−
Ï

S0

pnk dS0

4.8.1. Hydrodynamic Coefficients
Hydrodynamic coefficients which represent the motion of the body consists of added mass and damping
coefficients. These coefficients are determined by distinguishing the generic pressure integration above for
radiation potential only.

Fk =−ρω2
6∑

j=1
ζ j e−iωt

Ï
S0

φ j nk dS0
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Since above forces are written in the frequency domain, it is quite clear that coefficients for the left hand side
equation of motions can be calculated by
Added mass coefficient:

ak j =−Re

[
ρ

Ï
S0

φ j nk dS0

]
Damping coefficient:

bk j =−Im

[
ρω

Ï
S0

φ j nk dS0

]
for j and k = 1, ..,6 Recalling the unit of magnitude base displacement potential (φ0−7) is [m], the added mass
coefficient above has unit [kg] whereas for the added damping coefficient is [kg/s] which is absolutely correct.

4.8.2. Inertia and Restoring Force Coefficients
The inertia forces of the body are characterized by the mass matrix. The added mass coefficients obtained
from the hydrodynamic reaction forces above, need to be added to the original mass of the system which
described by 6x6 matrix below.

Mass =



ρw5 0 0 0 0 0
0 ρW 5 0 0 0 0
0 0 ρW 5 0 0 0
0 0 0 Ixx 0 −Ixz

0 0 0 0 Iy y 0
0 0 0 −Izx 0 Izz


with
Ixx = k2

xxρW 5
Iy y = k2

y yρW 5
Izz = k2

zzρW 5

The developed MATLAB code is capable to calculate the mass automatically from discretized convex hull
body input. The AlphaShape command in MATLAB is used to create a bounding volume that envelops a set
of 3-D points (vertices). For arbitrary (non-convex) hull shape (e.g. semi submersible, TLP, etc.), one needs to
calculate and assign the mass matrix manually. This is due to the fact that the determination of a displaced
volume (5) still needs to be improved for an arbitrary coordinate input. A manipulation of the alphaShape
command such as tightening/loosing/add/remove the points might useful to create a generic subroutine to
calculate an arbitrary displaced volume. Since this already deviates from the subject of interest of the thesis,
no more effort has been put. Moreover, for calculating the mass moment of inertia (Ixx , Iy y , Izz ), one still
needs to specify the radii of inertia manually even for convex hull shape. However, based on the reference
written by Journee [11], radii of inertia (for ship-shaped structure) can be approximated by
kxx = 0.3B to 0.4B
ky y = 0.22L to 0.28L
kzz = 0.22L to 0.28L
the coupling terms Ixz and Izx are generally small and most of the time can be neglected.

The last term in the left hand side equation of motion which must be calculated is the stiffness matrix,
which determined as shown below

Stiffness =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 C33 C34 C35 0
0 0 C43 C44 C45 0
0 0 C53 C54 C55 0
0 0 0 0 0 0


with
C33 = ρW g Aw

C44 = ρW g 5GMroll
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C55 = ρW g 5GMpitch

This matrix represents the restoring coefficient due to the hydrostatic force. One must be aware that
any elements do not correspond to the upward force (buoyant force) will have zero coefficients. It means,
for a certain degree of freedom, the equation of motions is mass - damping (without stiffness) system. These
restoring force coefficients depend on several inputs, such as the water plane area (Aw ), displaced volume (5)
and distance of center of gravity to the metacenter (GM). The developed MATLAB code is capable to calculate
those parameters automatically. The water plane area (AW ) is determined by calculating the polyarea of the
coordinates situated at the free surface. The displaced volume is already obtained from the calculation of the
mass matrix, whereas for (GM), it can be calculated based on location of the center of gravity (input), center
of buoyancy, and also radii of inertia mentioned in the previous subsection. In the end, the GM is calculated
by
B Mroll = Ixx /5
B Mpitch = Iy y /5
GMroll = K B +B Mroll −KG
GMpitch = K B +B Mpitch −KG
with visualization of the parameters are shown in the figure below.

Figure 4.26: Hydrostatic Stability (Source: Offshore Hydromechanics [11])

4.8.3. Excitation
The determination of excitation forces can be done in the same manner with hydrodynamic reaction forces
by pressure integration from the appropriate potentials (wave and diffraction).

Fk =−ρω2ζ0e−iωt
Ï

S0

(
φ0 +φ7

)
nk dS0

One must be aware that the potential written above is magnitude base displacement potential. As mentioned
in chapter 3.7, if the determination of the wave and the diffraction potential above is based on original velocity
potential taken from the linear wave theory, integration above must be divided by the wave amplitude (ζ0)
and frequency (ω).

Another thing must be underlined is the fact that the diffraction potential above is derived from an influ-
ence function (G) which is in a complex form (G =G1 cos(ωt )+iG2 sin(ωt )). It means that the excitation force
will also remain in a complex form.

4.9. Panel Integration
In regards to the evaluation of field point due to its own source, the evaluation of influence function and
its derivative is always need to be integrated. This is the only case where the following approach needs to
be used. The surface integration procedure is done based on the integral solution instead of the infinite
series. This is due to the reason that the integral solution has distinguishable terms (fundamental Rankine
source term, its image below the seabed, and the wave source term) which can be derived first, then being
(surface) integrated later on. Due to the fact that any other terms than fundamental Rankine source (Ga)
are not singular in any possible condition, their influence function over the panel can be approximated by
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multiplying by panel area. It is possible to integrate image Rankine source below seabed (Gb) and imaginary
part of the wave source term (Gd ) and obtained more accurate results. However, this is not really the case
for the real part of the wave source term (Gc ). Evaluation of the principal value integral numerically needs
one integration variable (ξ). In order to integrate it over the area, one will need another two more integration
variables. It means, in exchange for an accurate solution, a function of three variables must be integrated
to give another function of two variables. This is not possible to be done in a numerical program such as
MATLAB. Only a symbolic toolbox is having the ability to do this. Therefore, for this thesis, any other terms
rather than (Ga) and their first derivatives are not going to be integrated. The second order derivatives also
do not need to be calculated because only the normal derivative of the G is needed.

Basically, the following approach is needed only to cover a single problem: Numerically integrating a 3-
Dimensionally arbitrary orientated function (1/r) over a quadrilateral panel. An analytical solution of this
problem has been formulated decades ago. It is obvious that analytical solution is much better than a numer-
ical approximation. However, since the main motivation of this thesis is to evaluate the Greens Function for
ice-infested waters which has a different form from the open water solution, it is better to provide a generic
method of surface integration for any kind of 3-dimensional arbitrarily orientated function (not only 1/r).

4.9.1. Implementation: Transformation to Local Coordinate System
Principally, the magnitude of an influence function depends on the distance between the source and field
points. There is a certain distribution apply over the panel surface. Due to the flat panel assumption, the sur-
face integration of quadrilateral panel could be calculated based on a standard double integration. However,
the arbitrariness of panel’s orientation in 3D domain raises a generic problem of the integration procedure.
Such an effort can be made to untangle this problem by transforming the vertices information to the local
panel coordinate system. The singular point becomes the origin of the local element coordinate system, and
the panel located in the same z local element coordinate system.

Figure 4.27: Element Local Coordinate System

This method of transformation adapts the work done by Hess and Smith [7] and can be implemented
by using 3 unit vectors perpendicularly each other. These vectors can be generated from the vertices data.
The determination of a normal unit vector pointing outward of the panel is already discussed in the pre-
vious chapter. This unit vector (N) is assigned to be a local Z (z̃) axis in the element coordinate system(
z̃ = nx̃3 ,n ỹ3 ,nz̃3

)
. The unit vector which assigned as local X axis the element coordinate system (x̃) is cal-

culated from the difference between the first and third nodes of the panel, and then being normalized after-
wards

(
x̃ = nx̃1 ,n ỹ1 ,nz̃1

)
. These two unit vectors (x̃ and z̃) are obviously perpendicular each other. Finally, the

least unit vector which assigned as the local Y axis the element coordinate system
(
ỹ = nx̃2,n ỹ2,nz̃2

)
is cal-

culated by normalizing the resulting cross product between those two unit vectors. These three unit vectors
are becoming the tool (a transformation matrix) to express an arbitrary vertices information and orientation,
into their own local coordinate system. One must be aware that this transformation procedure has to be done
in every single panel of the body. The transformation matrix is given by:

T =
 nx̃1 n ỹ1 nz̃1

nx̃2 n ỹ2 nz̃2

nx̃3 n ỹ3 nz̃3


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A quadrilateral panel bounded by 4 vertices
(
p1(x1,y1,z1), p2(x2,y2,z2), p3(x3,y3,z3), p4(x4,y4,z4)

)
in global coordinate

system can be transformed into the same quadrilateral panel which having a local element coordinate system
given by

(
p̃1(x̃1,ỹ1,z̃1), p̃2(x̃2,ỹ2,z̃2), p̃3(x̃3,ỹ3,z̃3), p̃4(x̃4,ỹ4,z̃4)

)
by:

x̃k = nx̃1 · (xk −x0)+n ỹ1 ·
(
yk − y0

)+nz̃1 · (zk − z0)
ỹk = nx̃2 · (xk −x0)+n ỹ2 ·

(
yk − y0

)+nz̃2 · (zk − z0)
z̃k = nx̃3 · (xk −x0)+n ỹ3 ·

(
yk − y0

)+nz̃3 · (zk − z0)

with k = 1,2,3,4. In above equation, x0, y0, z0 are the center point of the panel p0 which calculated by averag-
ing the vertices.

x0 = 1
4 (x1 +x2 +x3 +x4)

y0 = 1
4

(
y1 + y2 + y3 + y4

)
z0 = 1

4 (z1 + z2 + z3 + z4)

This approach makes sure that the values of z̃ will always be zero because this axis is no other than a unit
vector pointing outward of the panel itself, with the origin is the center point of the panel.

4.9.2. Implementation: Bilinear Mapping
Even though the flat panel assumption and the element local coordinate system transformation resolve the
surface integration problem, the fact that panel’s shapes are completely random (depends on the meshing
technique) elevates another issue. Generating subroutine to integrate a quadrilateral panel from arbitrary
four vertices still become a challenging task to do. MATLAB is only capable to do a numerical double in-
tegration for the perfect rectangular limit (even though not necessarily square) of the function. In order to
encounter this problem, some transformation technique which commonly applied in digital image process-
ing, -so called Bilinear Mapping- is implemented. This mapping is some sort of a manipulation technique to
find a linear relation (combination) of two vector spaces to yield an element of another vector space. Easy in-
terpretation about this mapping is like finding the linear mathematical function (operation) when one needs
to re-scale/fitting a not-rectangular image into a square image as illustrated in the following figure.

Figure 4.28: Bilinear Mapping

This technique makes the integration procedure become much simpler. The function bounded by the
quadrilateral panel f (x̃, ỹ) is transformed into a function bounded by a rectangular panel f (u, v). It means,
the distribution function inside the panel (the fundamental Rankine source term) which initially in the func-
tion of (x̃, ỹ) needs to be expressed in the function of (u, v). Additionally, the transformed rectangular panel
can be specified to lay in the desired coordinates location. This transformed coordinate location is chosen in
such a way to make the integration procedure become easier (e.g: located between 0 and 1). For an arbitrary
quadrilateral panel with vertices

(
p1(x̃1,ỹ1); p2(x̃2,ỹ2); p3(x̃3,ỹ3); p4(x̃4,ỹ4)

)
, the bilinear mapping transforms these

vertices into
(
q1(u1,v1); q2(u2,v2); q3(u3,v3); q4(u4,v4)

)
with

q1 = (0,0)
q2 = (1,0)
q3 = (1,1)
q4 = (0,1)
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To obtain the transformation constants, both linear operations below are being used

x̃ = a +bu + cv +duv

ỹ = e + f u + g v +huv

Those equations can be expressed in a matrix operation

[
x̃(u,v)

ỹ(u,v)

]
=

[
a b c d
e f g h

]
1
u
v

uv


[

x̃1(u,v) x̃2(u,v) x̃3(u,v) x̃4(u,v)

ỹ1(u,v) ỹ2(u,v) ỹ3(u,v) ỹ4(u,v)

]
=

[
a b c d
e f g h

]
1 1 1 1
0 1 1 0
0 0 1 1
0 0 1 0


Introduce new notations

[M ] = [T ][N ]

[T ] = [M ]−1[N ]

where [T ] is the transformation matrix needs to be obtained in every panel. Above matrix operation solves 8
unknown constants which used to express the (x̃) and (ỹ) in terms of (u) and (v). At this point, the original
Greens Function solution encounters two transformation procedures.

G(x, y, z, x̂, ŷ , ẑ) 7→G(x̃, ỹ ,0, x0, y0, z0) 7→G(u, v,0, x0, y0, z0)

Basically, the second transformation procedure encloses any problems related to the surface integration of
a Greens Function along the panel. Since the variable of integration changes, some calculus technique -so
called "change of variables"- need to be implemented. This technique is given in the expression belowÏ

R
G(x̃,ỹ)d A =

Ï
S

G(g(u,v),h(u,v))

∣∣∣∣ ∂(x̃, ỹ)

∂(u, v)

∣∣∣∣dud v

with the expression inside vertical brackets is the Jacobian determinant which can be calculated by∣∣∣∣ ∂(x̃, ỹ)

∂(u, v)

∣∣∣∣=
∣∣∣∣∣ ∂x̃

u
∂x̃
v

∂ỹ
u

∂ỹ
v

∣∣∣∣∣
with
∂x̃
∂u = b + vd ; ∂x̃

∂v = c +ud ;
∂ỹ
∂u = f + vh ; ∂y

∂v = g +uh;

In case when the Jacobian determinant is positive, the orientation of the function G is preserved. In
contrast, a negative Jacobian flips the orientation of a function G up side down. Use is made about the fact
that Ï

R
f d A =

Ï
−R

− f d A

It means that the absolute value of the Jacobian determinant is the one must be used. This reflects an expan-
sion or shrinkage about the bond/limit area of the original function G .

Up to this point, the whole procedure to generate a matrix equation of motion of an arbitrary shape float-
ing body in open water sea condition is done completely. The Greens Function matrix is fully obtained (in-
cluding solution for the singular term) and has been validated based on the boundary equations. A compari-
son about the computation speed difference between infinite series and integral solution is also provided. If
computation speed is not really an issue, one can use the integral solution to conduct the whole analysis, and
integrate the terms (Gb) and (Gd ) if desired. Considering that originally, the above approach is provided to
establish a generic method to integrate any kind of 3-dimensional arbitrarily orientated function, apparently,
the solution of Greens Function for ice infested waters is provided in an integral form. There is one integra-
tion variable appear in the calculation of an influence function at a point. This issue is exactly the same with
the integration of a real part of the wave source term in the open water condition (Gc ). Fortunately, it seems
that a singular behavior will not occur. It means that the influence function over the whole panel can be ap-
proximated by multiplying the influence function at center point by panel area, and there is no need to use
the panel integration at all.





5
Further Discussion

This chapter addresses the difference between an integral solution of Greens Function in an open water and
the ice-infested waters.

5.1. Comparison of the Integral Solution
Based on the derivation done in chapter 3, the solution of Greens function for ice-infested waters is given by

G1(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(
(k4D −2hρi gα+ gρw )k cosh(kz)+ρw gαsinh(kz)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + ẑ))

cosh(kH)
J0(kR)dk

G2(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(
(k4D −2hρi gα+ gρw )k sinh(kẑ)+ρw gαcosh(kẑ)

)
ρw gα

(
(k4D −2hρi gα+ gρw )k tanh(kH)−ρw gα

) cosh(k(H + z))

cosh(kH)
J0(kR)dk

On the other hand, the Greens function of the open water case which has been derived by Wehausen and
Laitone [20] is given by

G(x,y,z,x̂,ŷ ,ẑ,t ) =
[

1

r
+ 1

r1
+PV

∫ ∞

0

2(ξ+α)e−ξH .coshξ(H + ẑ).coshξ(H + z)

ξsinhξH −αcoshξH
.J0(ξR)dξ

]
cos(ωt )

+i

[
2π

(k2 −α2)

(k2 −α2)H +α .coshk(H + ẑ).coshk(H + z).J0(kR)

]
sin(ωt )

To see the difference between above Greens function, the effect of level ice from the ice-infested waters solu-
tion is omitted by taking the limit of ice characteristic (D and ρi ) into zero and apply trigonometric identities.
This will give the integral solution become

G1(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(k cosh(kz)+αsinh(kz))cosh(k(H + ẑ))

ρw gα (k sinh(kH)−αcosh(kH))
J0(kR)dk

G2(x,y,z,x̂,ŷ ,ẑ) = 1

2π

∫ ∞

0

(k sinh(kẑ)+αcosh(kẑ))cosh(k(H + z))

ρw gα (k sinh(kH)−αcosh(kH))
J0(kR)dk

When the constants ρw , g and α are included in the G, it is quite clear that the denominator of above form
is exactly the same with the denominator of the wave source term (real part) from open water solution. The
fundamental Rankine source term is not present, since the derivation of Greens Function for ice-infested
waters, the delta function is plugged in the pressure equation instead of the Laplace equation. It can be con-
cluded that the imaginary line introduced in the derivation of Greens Function for ice-infested waters avoids
the presence of this singular term (1/r ). The image below seabed (1/r1) also vanishes by this procedure. But,
since before obtaining the solution (G2), the assumed solution has been substituted in the seabed boundary
condition as well, this condition is automatically satisfied.

However, above forms clearly give an overflow computation as shown in the real part of the wave source
term from the Greens function for the open water case due to the presence of hyperbolic terms. Same tech-
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nique with the open water case is used to entangle this issue and gives

G1(x,y,z,x̂,ŷ ,ẑ) = 1

4π

∫ ∞

0

(
(k +α)ekz + (k −α)e−kz

)(
ek(H+ẑ) +e−k(H+ẑ)

)
(k −α)ekH − (k +α)e−kH

J0(kR)dk

G2(x,y,z,x̂,ŷ ,ẑ) = 1

4π

∫ ∞

0

(
(k +α)ekẑ − (k −α)e−kẑ

)(
ek(H+z) +e−k(H+z)

)
(k −α)ekH − (k +α)e−kH

J0(kR)dk

Based on the acquired forms above, the finite depth issue also re-occurs. Term (k −α) results a zero
as soon as the difference between propagating root and an infinite depth wave number cannot be captured.
However, since the source and field points are always below the free surface (ẑ and z < 0), and the water depth
(H) is a positive quantity, some of the exponential terms above still give an overflow computation problem
and cannot be evaluated. Another effort to avoid a positive exponent has been done, and the final obtained
solution are given as

G1(x,y,z,x̂,ŷ ,ẑ) = 1

4π

∫ ∞

0

ek(z+ẑ)
(
k(1+e−2kz )+α(1−e−2kz )

)
(1+e−2k(H+ẑ))

k(1−e−2kH )−α(1+e−2kH )
J0(kR)dk

G2(x,y,z,x̂,ŷ ,ẑ) = 1

4π

∫ ∞

0

ek(z+ẑ)
(
k(1−e−2kẑ )+α(1+e−2kẑ )

)
(1+e−2k(H+z))

k(1−e−2kH )−α(1+e−2kH )
J0(kR)dk

Basically, above final forms have been derived in the exactly the same manner as an exponential form
of the wave source term of the open water solution. Apparently, some positive exponent terms still occur
(e(−2kẑ)) and (e(−2kz)), therefore, the integral still cannot be evaluated into infinity. However, by implementing
the same technique of principal value integration, which has been done in open water case, even before
reaching k =∞, the nature of this integrand does not seem to be converging. This is most susceptible reason
is due to fact that the radiation condition is not satisfied yet. However, further study need to be conducted.

Another thing must be underlined is the fact that at the very end, the final Greens Function only affects
the hydrodynamic forces: radiation and diffraction forces. The added mass matrix, damping matrix, and
also the diffracted force are highly influenced. The original mass (without added mass) and stiffness matrix
remains the same with the open water case since they have nothing to do with hydrodynamic reaction force.
Another thing that still become a major concern, is about the wave excitation term. The original wave velocity
potential taken from the linear wave theory also must be re-derived by implementing the free surface-level
ice interface condition.



6
Conclusion and Future Recommendation

The final conclusion of the whole thesis are presented in this chapter. Research questions stated in the first
chapter are answered and the recommendations for future research are also included.

6.1. Conclusion
Possible solution of 3D Greens Function for ice-infested waters

The Green’s function for ice-infested waters condition has been derived in this thesis. About the ap-
plication in a floating body, the formulation is split into 2 solutions based whether the field points are
above or below the source point. The obtained formula can be seen in chapter 3.3. Further Favourable
Form.

Addressing the challenges of numerical hydromechanics analysis for an arbitrary floating body in 3D fi-
nite water depth

• Original integral solution of Greens Function (the real wave source term part) need to be rewritten
in an exponential form to be computed. The source and field points (center point of the panels)
should not be located exactly in the free surface line.

• Alternative form of the Greens Function might improve the computational speed. An infinite se-
ries solution with 10−6 precision is faster than the integral solution when R/H ≥ 0.05.

• The convergence rate of the infinite series solution of Greens Function only depends on the ratio
of horizontal distance between field and source point (R) and water depth (H).

• Catastrophic cancellation occurs for both solutions in the deep water condition.

• The integral solution fails (singular) for r=0 and R=0 for the infinite series solution. When this is
the case, the influence function must be determined based on surface/double integration over
the panel.

• Local element and bilinear transformations approaches ensure that any 3-Dimensional function
can be integrated over a quadrilateral panel numerically. Without these two transformations, any
terms generated in Greens Function for ice-infested waters cannot be calculated when they are
singular.

Implementation of Open Water Approach to The Ice-Infested Waters

• There is no singular term present in the solution of Greens Function for ice-infested waters, there-
fore, the influence of a panel not necessarily need to be integrated over the surface and can be
approximated by multiplication with panel area.

• The wave excitation potential need to be re-derived by taking the presence of level ice.
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6.2. Future Recommendation
• Further effort to satisfy radiation condition in the formulation of Greens Function for ice-infested wa-

ters has to be done.

• Further effort to rewrite the Greens Function in an exponential form might needed to avoid an overflow
computation.

• Another alternative form of Greens Function in terms of infinite series solution (or even Chebyshev
polynomial/epsilon algorithm) can be derived to improve the computation speed.

• A problem related to finite water depth still occurs. It is wise to derive the Greens Function for the case
of infinite water depth as well.
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Attachment 1. 
EXAMPLE ANSY MECHANICAL APDL COMMAND TO 

GENERATE THE GEOMETRIC MODEL 
(RECTANGULAR BARGE) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
! ansys script file for the ship model 
!____________________________________________________________ 
FINISH 
/clear 
/prep7 
!____________________________________________________________ 
! elements to be used 
et,1,shell63    !used 
!____________________________________________________________ 
! define ship geometry 
*ask,L,ships length,40.0    
*ask,B,ships width,15.0 
*ask,T,ships draft,6 
*ask,thk,plate thickness,0.5  
*ask,es,element size,L/20.0 
!____________________________________________________________ 
! define materials 
mp,ex,1,emod    !linear material property,elastic modulus,call shell, call value 
mp,nuxy,1,nxy    !linear material property,poisson ratio, call shell, call value 
!____________________________________________________________ 
! set view 
/view,all,1,1,1 
/vup,all,Z 
!____________________________________________________________ 
! set up panel 
k, 1,L/2,B/2.0,0    !right up front 
k, 2,L/2,-B/2.0,0    !left up front 
k, 3,-L/2,B/2.0,0    !right up rear 
k, 4,-L/2,-B/2.0,0    !left up rear 
k, 5,L/2,B/2.0,-T    !right bottom front 
k, 6,L/2,-B/2.0,-T    !left bottom front 
k, 7,-L/2,B/2.0,-T    !right bottom rear 
k, 8,-L/2,-B/2.0,-T    !left bottom rear 
!____________________________________________________________ 
!  create area's 
a,2,1,5,6 
aatt,,1    !associates element attributes,material,set constant 
a,1,3,7,5 
aatt,,1    !associates element attributes,material,set constant 
a,3,4,8,7 
aatt,,1    !associates element attributes,material,set constant 
asel,none   !unselect the full set 
a,4,2,6,8 
aatt,,1    !associates element attributes,material,set constant 
asel,none    !unselect the full set 
a,6,5,7,8 
aatt,,1    !associates element attributes,material,set constant 
asel,none    !unselect the full set 
!____________________________________________________________ 
! CREATE MESH 
esize,es 
!mshape,1,2D 
allsel 
amesh,all 



!____________________________________________________________ 
!  equivalence nodes 
nummrg,node,lsp/10000.    !merge node 
NUMMRG,KP,LSP/10000.    !merge keypoints (will also merge lines, areas, vol) 
!____________________________________________________________ 
/ESHAPE,1     !display elements with shapes determined from the real 
constans/section definition 
EPLO      !Produces an element display of the selected elements 
!____________________________________________________________ 
CDWRITE,DB,Ship'Model,CDB    !writes geometry and load database items to a 
file, exept solid,Filename,extension 
! SET ANALYSIS OPTIONS AND EXECUTE 
/OUTPUT,Ship'Model,OUT,,    !Redirects output file, filename, extension, 
location   
/OUTPUT,ShipModelOutputNEW,txt 
NLIST,,,,COORD 
ELIST 
KLIST 
LLIST 
/OUTPUT 
! ansys script file for the ship model 
!____________________________________________________________ 
FINISH 
/clear 
/prep7 
!____________________________________________________________ 
! elements to be used 
et,1,shell63    !used 
!____________________________________________________________ 
! define ship geometry 
*ask,L,ships length,40.0    
*ask,B,ships width,15.0 
*ask,T,ships draft,6 
*ask,thk,plate thickness,0.5  
*ask,es,element size,L/20.0 
!____________________________________________________________ 
! define materials 
mp,ex,1,emod    !linear material property,elastic modulus,call shell, call value 
mp,nuxy,1,nxy    !linear material property,poisson ratio, call shell, call value 
!____________________________________________________________ 
! set view 
/view,all,1,1,1 
/vup,all,Z 
!____________________________________________________________ 
! set up panel 
k, 1,L/2,B/2.0,0    !right up front 
k, 2,L/2,-B/2.0,0    !left up front 
k, 3,-L/2,B/2.0,0    !right up rear 
k, 4,-L/2,-B/2.0,0    !left up rear 
k, 5,L/2,B/2.0,-T    !right bottom front 
k, 6,L/2,-B/2.0,-T    !left bottom front 
k, 7,-L/2,B/2.0,-T    !right bottom rear 
k, 8,-L/2,-B/2.0,-T    !left bottom rear 
!____________________________________________________________ 
!  create area's 
a,2,1,5,6 
aatt,,1     !associates element attributes,material,set constant 



a,1,3,7,5 
aatt,,1     !associates element attributes,material,set constant 
a,3,4,8,7 
aatt,,1     !associates element attributes,material,set constant 
asel,none    !unselect the full set 
a,4,2,6,8 
aatt,,1     !associates element attributes,material,set constant 
asel,none    !unselect the full set 
a,6,5,7,8 
aatt,,1     !associates element attributes,material,set constant 
asel,none    !unselect the full set 
!____________________________________________________________ 
! CREATE MESH 
esize,es 
!mshape,1,2D 
allsel 
amesh,all 
!____________________________________________________________ 
!  equivalence nodes 
nummrg,node,lsp/10000.   !merge node 
NUMMRG,KP,LSP/10000.   !merge keypoints (will also merge lines, areas, vol) 
!____________________________________________________________ 
/ESHAPE,1    !display elements with shapes determined from the real 
constans/section definition 
EPLO     !Produces an element display of the selected elements 
!____________________________________________________________ 
CDWRITE,DB,Ship'Model,CDB  ! SET ANALYSIS OPTIONS AND EXECUTE 
/OUTPUT,ShipModelOutputNEW,txt !Redirects output file, filename, extension, location 
NLIST,,,,COORD 
ELIST 
KLIST 
LLIST 
/OUTPUT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attachment 2. 
EXAMPLE GEOMETRIC INPUT GENERATED FROM 

ANSYS (RECTANGULAR BARGE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 LIST ALL SELECTED NODES.   DSYS=      0 
 
   NODE        X                   Y                   Z 
        1    20.0000000000       -7.50000000000        0.00000000000     
        2    20.0000000000        7.50000000000        0.00000000000     
        3    20.0000000000       -5.62500000000        0.00000000000     
        4    20.0000000000       -3.75000000000        0.00000000000     
        5    20.0000000000       -1.87500000000        0.00000000000     
        6    20.0000000000        0.00000000000        0.00000000000     
        7    20.0000000000        1.87500000000        0.00000000000     
        8    20.0000000000        3.75000000000        0.00000000000     
        9    20.0000000000        5.62500000000        0.00000000000     
       10    20.0000000000        7.50000000000       -6.00000000000     
       11    20.0000000000        7.50000000000       -2.00000000000     
       12    20.0000000000        7.50000000000       -4.00000000000     
       13    20.0000000000       -7.50000000000       -6.00000000000     
       14    20.0000000000        5.62500000000       -6.00000000000     
       15    20.0000000000        3.75000000000       -6.00000000000     
       16    20.0000000000        1.87500000000       -6.00000000000     
       17    20.0000000000        0.00000000000       -6.00000000000     
       18    20.0000000000       -1.87500000000       -6.00000000000     
       19    20.0000000000       -3.75000000000       -6.00000000000     
       20    20.0000000000       -5.62500000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
       21    20.0000000000       -7.50000000000       -4.00000000000     
       22    20.0000000000       -7.50000000000       -2.00000000000     
       23    20.0000000000       -5.62500000000       -2.00000000000     
       24    20.0000000000       -5.62500000000       -4.00000000000     
       25    20.0000000000       -3.75000000000       -2.00000000000     
       26    20.0000000000       -3.75000000000       -4.00000000000     
       27    20.0000000000       -1.87500000000       -2.00000000000     
       28    20.0000000000       -1.87500000000       -4.00000000000     
       29    20.0000000000        0.00000000000       -2.00000000000     
       30    20.0000000000        0.00000000000       -4.00000000000     
       31    20.0000000000        1.87500000000       -2.00000000000     
       32    20.0000000000        1.87500000000       -4.00000000000     
       33    20.0000000000        3.75000000000       -2.00000000000     
       34    20.0000000000        3.75000000000       -4.00000000000     
       35    20.0000000000        5.62500000000       -2.00000000000     
       36    20.0000000000        5.62500000000       -4.00000000000     
       37   -20.0000000000        7.50000000000        0.00000000000     
       38    18.0000000000        7.50000000000        0.00000000000     
       39    16.0000000000        7.50000000000        0.00000000000     
       40    14.0000000000        7.50000000000        0.00000000000     
 
   NODE        X                   Y                   Z 
       41    12.0000000000        7.50000000000        0.00000000000     
       42    10.0000000000        7.50000000000        0.00000000000     
       43    8.00000000000        7.50000000000        0.00000000000     
       44    6.00000000000        7.50000000000        0.00000000000     
       45    4.00000000000        7.50000000000        0.00000000000     
       46    2.00000000000        7.50000000000        0.00000000000     
       47   0.355271367880E-14    7.50000000000        0.00000000000     
       48   -2.00000000000        7.50000000000        0.00000000000     
       49   -4.00000000000        7.50000000000        0.00000000000     
       50   -6.00000000000        7.50000000000        0.00000000000     
       51   -8.00000000000        7.50000000000        0.00000000000     
       52   -10.0000000000        7.50000000000        0.00000000000     
       53   -12.0000000000        7.50000000000        0.00000000000     
       54   -14.0000000000        7.50000000000        0.00000000000     
       55   -16.0000000000        7.50000000000        0.00000000000     
       56   -18.0000000000        7.50000000000        0.00000000000     
       57   -20.0000000000        7.50000000000       -6.00000000000     
       58   -20.0000000000        7.50000000000       -2.00000000000     
       59   -20.0000000000        7.50000000000       -4.00000000000     
       60   -18.0000000000        7.50000000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
       61   -16.0000000000        7.50000000000       -6.00000000000     
       62   -14.0000000000        7.50000000000       -6.00000000000     
       63   -12.0000000000        7.50000000000       -6.00000000000     
       64   -10.0000000000        7.50000000000       -6.00000000000     
       65   -8.00000000000        7.50000000000       -6.00000000000     
       66   -6.00000000000        7.50000000000       -6.00000000000     
       67   -4.00000000000        7.50000000000       -6.00000000000     
       68   -2.00000000000        7.50000000000       -6.00000000000     
       69  -0.355271367880E-14    7.50000000000       -6.00000000000     
       70    2.00000000000        7.50000000000       -6.00000000000     
       71    4.00000000000        7.50000000000       -6.00000000000     
       72    6.00000000000        7.50000000000       -6.00000000000     

       73    8.00000000000        7.50000000000       -6.00000000000     
       74    10.0000000000        7.50000000000       -6.00000000000     
       75    12.0000000000        7.50000000000       -6.00000000000     
       76    14.0000000000        7.50000000000       -6.00000000000     
       77    16.0000000000        7.50000000000       -6.00000000000     
       78    18.0000000000        7.50000000000       -6.00000000000     
       79    18.0000000000        7.50000000000       -2.00000000000     
       80    18.0000000000        7.50000000000       -4.00000000000     
 
   NODE        X                   Y                   Z 
       81    16.0000000000        7.50000000000       -2.00000000000     
       82    16.0000000000        7.50000000000       -4.00000000000     
       83    14.0000000000        7.50000000000       -2.00000000000     
       84    14.0000000000        7.50000000000       -4.00000000000     
       85    12.0000000000        7.50000000000       -2.00000000000     
       86    12.0000000000        7.50000000000       -4.00000000000     
       87    10.0000000000        7.50000000000       -2.00000000000     
       88    10.0000000000        7.50000000000       -4.00000000000     
       89    8.00000000000        7.50000000000       -2.00000000000     
       90    8.00000000000        7.50000000000       -4.00000000000     
       91    6.00000000000        7.50000000000       -2.00000000000     
       92    6.00000000000        7.50000000000       -4.00000000000     
       93    4.00000000000        7.50000000000       -2.00000000000     
       94    4.00000000000        7.50000000000       -4.00000000000     
       95    2.00000000000        7.50000000000       -2.00000000000     
       96    2.00000000000        7.50000000000       -4.00000000000     
       97   0.177635683940E-14    7.50000000000       -2.00000000000     
       98   0.177635683940E-14    7.50000000000       -4.00000000000     
       99   -2.00000000000        7.50000000000       -2.00000000000     
      100   -2.00000000000        7.50000000000       -4.00000000000     
 
   NODE        X                   Y                   Z 
      101   -4.00000000000        7.50000000000       -2.00000000000     
      102   -4.00000000000        7.50000000000       -4.00000000000     
      103   -6.00000000000        7.50000000000       -2.00000000000     
      104   -6.00000000000        7.50000000000       -4.00000000000     
      105   -8.00000000000        7.50000000000       -2.00000000000     
      106   -8.00000000000        7.50000000000       -4.00000000000     
      107   -10.0000000000        7.50000000000       -2.00000000000     
      108   -10.0000000000        7.50000000000       -4.00000000000     
      109   -12.0000000000        7.50000000000       -2.00000000000     
      110   -12.0000000000        7.50000000000       -4.00000000000     
      111   -14.0000000000        7.50000000000       -2.00000000000     
      112   -14.0000000000        7.50000000000       -4.00000000000     
      113   -16.0000000000        7.50000000000       -2.00000000000     
      114   -16.0000000000        7.50000000000       -4.00000000000     
      115   -18.0000000000        7.50000000000       -2.00000000000     
      116   -18.0000000000        7.50000000000       -4.00000000000     
      117   -20.0000000000       -7.50000000000        0.00000000000     
      118   -20.0000000000        5.62500000000        0.00000000000     
      119   -20.0000000000        3.75000000000        0.00000000000     
      120   -20.0000000000        1.87500000000        0.00000000000     
 
   NODE        X                   Y                   Z 
      121   -20.0000000000        0.00000000000        0.00000000000     
      122   -20.0000000000       -1.87500000000        0.00000000000     
      123   -20.0000000000       -3.75000000000        0.00000000000     
      124   -20.0000000000       -5.62500000000        0.00000000000     
      125   -20.0000000000       -7.50000000000       -6.00000000000     
      126   -20.0000000000       -7.50000000000       -2.00000000000     
      127   -20.0000000000       -7.50000000000       -4.00000000000     
      128   -20.0000000000       -5.62500000000       -6.00000000000     
      129   -20.0000000000       -3.75000000000       -6.00000000000     
      130   -20.0000000000       -1.87500000000       -6.00000000000     
      131   -20.0000000000        0.00000000000       -6.00000000000     
      132   -20.0000000000        1.87500000000       -6.00000000000     
      133   -20.0000000000        3.75000000000       -6.00000000000     
      134   -20.0000000000        5.62500000000       -6.00000000000     
      135   -20.0000000000        5.62500000000       -2.00000000000     
      136   -20.0000000000        5.62500000000       -4.00000000000     
      137   -20.0000000000        3.75000000000       -2.00000000000     
      138   -20.0000000000        3.75000000000       -4.00000000000     
      139   -20.0000000000        1.87500000000       -2.00000000000     
      140   -20.0000000000        1.87500000000       -4.00000000000     
 
   NODE        X                   Y                   Z 
      141   -20.0000000000        0.00000000000       -2.00000000000     
      142   -20.0000000000        0.00000000000       -4.00000000000     
      143   -20.0000000000       -1.87500000000       -2.00000000000     
      144   -20.0000000000       -1.87500000000       -4.00000000000     
      145   -20.0000000000       -3.75000000000       -2.00000000000     



      146   -20.0000000000       -3.75000000000       -4.00000000000     
      147   -20.0000000000       -5.62500000000       -2.00000000000     
      148   -20.0000000000       -5.62500000000       -4.00000000000     
      149   -18.0000000000       -7.50000000000        0.00000000000     
      150   -16.0000000000       -7.50000000000        0.00000000000     
      151   -14.0000000000       -7.50000000000        0.00000000000     
      152   -12.0000000000       -7.50000000000        0.00000000000     
      153   -10.0000000000       -7.50000000000        0.00000000000     
      154   -8.00000000000       -7.50000000000        0.00000000000     
      155   -6.00000000000       -7.50000000000        0.00000000000     
      156   -4.00000000000       -7.50000000000        0.00000000000     
      157   -2.00000000000       -7.50000000000        0.00000000000     
      158  -0.355271367880E-14   -7.50000000000        0.00000000000     
      159    2.00000000000       -7.50000000000        0.00000000000     
      160    4.00000000000       -7.50000000000        0.00000000000     
 
   NODE        X                   Y                   Z 
      161    6.00000000000       -7.50000000000        0.00000000000     
      162    8.00000000000       -7.50000000000        0.00000000000     
      163    10.0000000000       -7.50000000000        0.00000000000     
      164    12.0000000000       -7.50000000000        0.00000000000     
      165    14.0000000000       -7.50000000000        0.00000000000     
      166    16.0000000000       -7.50000000000        0.00000000000     
      167    18.0000000000       -7.50000000000        0.00000000000     
      168    18.0000000000       -7.50000000000       -6.00000000000     
      169    16.0000000000       -7.50000000000       -6.00000000000     
      170    14.0000000000       -7.50000000000       -6.00000000000     
      171    12.0000000000       -7.50000000000       -6.00000000000     
      172    10.0000000000       -7.50000000000       -6.00000000000     
      173    8.00000000000       -7.50000000000       -6.00000000000     
      174    6.00000000000       -7.50000000000       -6.00000000000     
      175    4.00000000000       -7.50000000000       -6.00000000000     
      176    2.00000000000       -7.50000000000       -6.00000000000     
      177   0.355271367880E-14   -7.50000000000       -6.00000000000     
      178   -2.00000000000       -7.50000000000       -6.00000000000     
      179   -4.00000000000       -7.50000000000       -6.00000000000     
      180   -6.00000000000       -7.50000000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      181   -8.00000000000       -7.50000000000       -6.00000000000     
      182   -10.0000000000       -7.50000000000       -6.00000000000     
      183   -12.0000000000       -7.50000000000       -6.00000000000     
      184   -14.0000000000       -7.50000000000       -6.00000000000     
      185   -16.0000000000       -7.50000000000       -6.00000000000     
      186   -18.0000000000       -7.50000000000       -6.00000000000     
      187   -18.0000000000       -7.50000000000       -2.00000000000     
      188   -18.0000000000       -7.50000000000       -4.00000000000     
      189   -16.0000000000       -7.50000000000       -2.00000000000     
      190   -16.0000000000       -7.50000000000       -4.00000000000     
      191   -14.0000000000       -7.50000000000       -2.00000000000     
      192   -14.0000000000       -7.50000000000       -4.00000000000     
      193   -12.0000000000       -7.50000000000       -2.00000000000     
      194   -12.0000000000       -7.50000000000       -4.00000000000     
      195   -10.0000000000       -7.50000000000       -2.00000000000     
      196   -10.0000000000       -7.50000000000       -4.00000000000     
      197   -8.00000000000       -7.50000000000       -2.00000000000     
      198   -8.00000000000       -7.50000000000       -4.00000000000     
      199   -6.00000000000       -7.50000000000       -2.00000000000     
      200   -6.00000000000       -7.50000000000       -4.00000000000     
 
   NODE        X                   Y                   Z 
      201   -4.00000000000       -7.50000000000       -2.00000000000     
      202   -4.00000000000       -7.50000000000       -4.00000000000     
      203   -2.00000000000       -7.50000000000       -2.00000000000     
      204   -2.00000000000       -7.50000000000       -4.00000000000     
      205  -0.177635683940E-14   -7.50000000000       -2.00000000000     
      206  -0.177635683940E-14   -7.50000000000       -4.00000000000     
      207    2.00000000000       -7.50000000000       -2.00000000000     
      208    2.00000000000       -7.50000000000       -4.00000000000     
      209    4.00000000000       -7.50000000000       -2.00000000000     
      210    4.00000000000       -7.50000000000       -4.00000000000     
      211    6.00000000000       -7.50000000000       -2.00000000000     
      212    6.00000000000       -7.50000000000       -4.00000000000     
      213    8.00000000000       -7.50000000000       -2.00000000000     
      214    8.00000000000       -7.50000000000       -4.00000000000     
      215    10.0000000000       -7.50000000000       -2.00000000000     
      216    10.0000000000       -7.50000000000       -4.00000000000     
      217    12.0000000000       -7.50000000000       -2.00000000000     
      218    12.0000000000       -7.50000000000       -4.00000000000     
      219    14.0000000000       -7.50000000000       -2.00000000000     
      220    14.0000000000       -7.50000000000       -4.00000000000     

 
   NODE        X                   Y                   Z 
      221    16.0000000000       -7.50000000000       -2.00000000000     
      222    16.0000000000       -7.50000000000       -4.00000000000     
      223    18.0000000000       -7.50000000000       -2.00000000000     
      224    18.0000000000       -7.50000000000       -4.00000000000     
      225    18.0000000000       -5.62500000000       -6.00000000000     
      226    16.0000000000       -5.62500000000       -6.00000000000     
      227    14.0000000000       -5.62500000000       -6.00000000000     
      228    12.0000000000       -5.62500000000       -6.00000000000     
      229    10.0000000000       -5.62500000000       -6.00000000000     
      230    8.00000000000       -5.62500000000       -6.00000000000     
      231    6.00000000000       -5.62500000000       -6.00000000000     
      232    4.00000000000       -5.62500000000       -6.00000000000     
      233    2.00000000000       -5.62500000000       -6.00000000000     
      234   0.333066907388E-14   -5.62500000000       -6.00000000000     
      235   -2.00000000000       -5.62500000000       -6.00000000000     
      236   -4.00000000000       -5.62500000000       -6.00000000000     
      237   -6.00000000000       -5.62500000000       -6.00000000000     
      238   -8.00000000000       -5.62500000000       -6.00000000000     
      239   -10.0000000000       -5.62500000000       -6.00000000000     
      240   -12.0000000000       -5.62500000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      241   -14.0000000000       -5.62500000000       -6.00000000000     
      242   -16.0000000000       -5.62500000000       -6.00000000000     
      243   -18.0000000000       -5.62500000000       -6.00000000000     
      244    18.0000000000       -3.75000000000       -6.00000000000     
      245    16.0000000000       -3.75000000000       -6.00000000000     
      246    14.0000000000       -3.75000000000       -6.00000000000     
      247    12.0000000000       -3.75000000000       -6.00000000000     
      248    10.0000000000       -3.75000000000       -6.00000000000     
      249    8.00000000000       -3.75000000000       -6.00000000000     
      250    6.00000000000       -3.75000000000       -6.00000000000     
      251    4.00000000000       -3.75000000000       -6.00000000000     
      252    2.00000000000       -3.75000000000       -6.00000000000     
      253    0.00000000000       -3.75000000000       -6.00000000000     
      254   -2.00000000000       -3.75000000000       -6.00000000000     
      255   -4.00000000000       -3.75000000000       -6.00000000000     
      256   -6.00000000000       -3.75000000000       -6.00000000000     
      257   -8.00000000000       -3.75000000000       -6.00000000000     
      258   -10.0000000000       -3.75000000000       -6.00000000000     
      259   -12.0000000000       -3.75000000000       -6.00000000000     
      260   -14.0000000000       -3.75000000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      261   -16.0000000000       -3.75000000000       -6.00000000000     
      262   -18.0000000000       -3.75000000000       -6.00000000000     
      263    18.0000000000       -1.87500000000       -6.00000000000     
      264    16.0000000000       -1.87500000000       -6.00000000000     
      265    14.0000000000       -1.87500000000       -6.00000000000     
      266    12.0000000000       -1.87500000000       -6.00000000000     
      267    10.0000000000       -1.87500000000       -6.00000000000     
      268    8.00000000000       -1.87500000000       -6.00000000000     
      269    6.00000000000       -1.87500000000       -6.00000000000     
      270    4.00000000000       -1.87500000000       -6.00000000000     
      271    2.00000000000       -1.87500000000       -6.00000000000     
      272    0.00000000000       -1.87500000000       -6.00000000000     
      273   -2.00000000000       -1.87500000000       -6.00000000000     
      274   -4.00000000000       -1.87500000000       -6.00000000000     
      275   -6.00000000000       -1.87500000000       -6.00000000000     
      276   -8.00000000000       -1.87500000000       -6.00000000000     
      277   -10.0000000000       -1.87500000000       -6.00000000000     
      278   -12.0000000000       -1.87500000000       -6.00000000000     
      279   -14.0000000000       -1.87500000000       -6.00000000000     
      280   -16.0000000000       -1.87500000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      281   -18.0000000000       -1.87500000000       -6.00000000000     
      282    18.0000000000        0.00000000000       -6.00000000000     
      283    16.0000000000        0.00000000000       -6.00000000000     
      284    14.0000000000        0.00000000000       -6.00000000000     
      285    12.0000000000        0.00000000000       -6.00000000000     
      286    10.0000000000        0.00000000000       -6.00000000000     
      287    8.00000000000        0.00000000000       -6.00000000000     
      288    6.00000000000        0.00000000000       -6.00000000000     
      289    4.00000000000        0.00000000000       -6.00000000000     
      290    2.00000000000        0.00000000000       -6.00000000000     
      291    0.00000000000        0.00000000000       -6.00000000000     
      292   -2.00000000000        0.00000000000       -6.00000000000     
      293   -4.00000000000        0.00000000000       -6.00000000000     



      294   -6.00000000000        0.00000000000       -6.00000000000     
      295   -8.00000000000        0.00000000000       -6.00000000000     
      296   -10.0000000000        0.00000000000       -6.00000000000     
      297   -12.0000000000        0.00000000000       -6.00000000000     
      298   -14.0000000000        0.00000000000       -6.00000000000     
      299   -16.0000000000        0.00000000000       -6.00000000000     
      300   -18.0000000000        0.00000000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      301    18.0000000000        1.87500000000       -6.00000000000     
      302    16.0000000000        1.87500000000       -6.00000000000     
      303    14.0000000000        1.87500000000       -6.00000000000     
      304    12.0000000000        1.87500000000       -6.00000000000     
      305    10.0000000000        1.87500000000       -6.00000000000     
      306    8.00000000000        1.87500000000       -6.00000000000     
      307    6.00000000000        1.87500000000       -6.00000000000     
      308    4.00000000000        1.87500000000       -6.00000000000     
      309    2.00000000000        1.87500000000       -6.00000000000     
      310    0.00000000000        1.87500000000       -6.00000000000     
      311   -2.00000000000        1.87500000000       -6.00000000000     
      312   -4.00000000000        1.87500000000       -6.00000000000     
      313   -6.00000000000        1.87500000000       -6.00000000000     
      314   -8.00000000000        1.87500000000       -6.00000000000     
      315   -10.0000000000        1.87500000000       -6.00000000000     
      316   -12.0000000000        1.87500000000       -6.00000000000     
      317   -14.0000000000        1.87500000000       -6.00000000000     
      318   -16.0000000000        1.87500000000       -6.00000000000     
      319   -18.0000000000        1.87500000000       -6.00000000000     
      320    18.0000000000        3.75000000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      321    16.0000000000        3.75000000000       -6.00000000000     
      322    14.0000000000        3.75000000000       -6.00000000000     
      323    12.0000000000        3.75000000000       -6.00000000000     
      324    10.0000000000        3.75000000000       -6.00000000000     
      325    8.00000000000        3.75000000000       -6.00000000000     
      326    6.00000000000        3.75000000000       -6.00000000000     
      327    4.00000000000        3.75000000000       -6.00000000000     
      328    2.00000000000        3.75000000000       -6.00000000000     
      329  -0.355271367880E-14    3.75000000000       -6.00000000000     
      330   -2.00000000000        3.75000000000       -6.00000000000     
      331   -4.00000000000        3.75000000000       -6.00000000000     
      332   -6.00000000000        3.75000000000       -6.00000000000     
      333   -8.00000000000        3.75000000000       -6.00000000000     
      334   -10.0000000000        3.75000000000       -6.00000000000     
      335   -12.0000000000        3.75000000000       -6.00000000000     
      336   -14.0000000000        3.75000000000       -6.00000000000     
      337   -16.0000000000        3.75000000000       -6.00000000000     
      338   -18.0000000000        3.75000000000       -6.00000000000     
      339    18.0000000000        5.62500000000       -6.00000000000     
      340    16.0000000000        5.62500000000       -6.00000000000     
 
   NODE        X                   Y                   Z 
      341    14.0000000000        5.62500000000       -6.00000000000     
      342    12.0000000000        5.62500000000       -6.00000000000     
      343    10.0000000000        5.62500000000       -6.00000000000     
      344    8.00000000000        5.62500000000       -6.00000000000     
      345    6.00000000000        5.62500000000       -6.00000000000     
      346    4.00000000000        5.62500000000       -6.00000000000     
      347    2.00000000000        5.62500000000       -6.00000000000     
      348  -0.355271367880E-14    5.62500000000       -6.00000000000     
      349   -2.00000000000        5.62500000000       -6.00000000000     
      350   -4.00000000000        5.62500000000       -6.00000000000     
      351   -6.00000000000        5.62500000000       -6.00000000000     
      352   -8.00000000000        5.62500000000       -6.00000000000     
      353   -10.0000000000        5.62500000000       -6.00000000000     
      354   -12.0000000000        5.62500000000       -6.00000000000     
      355   -14.0000000000        5.62500000000       -6.00000000000     
      356   -16.0000000000        5.62500000000       -6.00000000000     
      357   -18.0000000000        5.62500000000       -6.00000000000     
 
 LIST ALL SELECTED ELEMENTS.  (LIST NODES) 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
       1   1   1   1   0   1      1     3    23    22 
       2   1   1   1   0   1      3     4    25    23 
       3   1   1   1   0   1      4     5    27    25 
       4   1   1   1   0   1      5     6    29    27 
       5   1   1   1   0   1      6     7    31    29 
       6   1   1   1   0   1      7     8    33    31 

       7   1   1   1   0   1      8     9    35    33 
       8   1   1   1   0   1      9     2    11    35 
       9   1   1   1   0   1     22    23    24    21 
      10   1   1   1   0   1     23    25    26    24 
      11   1   1   1   0   1     25    27    28    26 
      12   1   1   1   0   1     27    29    30    28 
      13   1   1   1   0   1     29    31    32    30 
      14   1   1   1   0   1     31    33    34    32 
      15   1   1   1   0   1     33    35    36    34 
      16   1   1   1   0   1     35    11    12    36 
      17   1   1   1   0   1     21    24    20    13 
      18   1   1   1   0   1     24    26    19    20 
      19   1   1   1   0   1     26    28    18    19 
      20   1   1   1   0   1     28    30    17    18 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
      21   1   1   1   0   1     30    32    16    17 
      22   1   1   1   0   1     32    34    15    16 
      23   1   1   1   0   1     34    36    14    15 
      24   1   1   1   0   1     36    12    10    14 
      25   1   1   1   0   1      2    38    79    11 
      26   1   1   1   0   1     38    39    81    79 
      27   1   1   1   0   1     39    40    83    81 
      28   1   1   1   0   1     40    41    85    83 
      29   1   1   1   0   1     41    42    87    85 
      30   1   1   1   0   1     42    43    89    87 
      31   1   1   1   0   1     43    44    91    89 
      32   1   1   1   0   1     44    45    93    91 
      33   1   1   1   0   1     45    46    95    93 
      34   1   1   1   0   1     46    47    97    95 
      35   1   1   1   0   1     47    48    99    97 
      36   1   1   1   0   1     48    49   101    99 
      37   1   1   1   0   1     49    50   103   101 
      38   1   1   1   0   1     50    51   105   103 
      39   1   1   1   0   1     51    52   107   105 
      40   1   1   1   0   1     52    53   109   107 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
      41   1   1   1   0   1     53    54   111   109 
      42   1   1   1   0   1     54    55   113   111 
      43   1   1   1   0   1     55    56   115   113 
      44   1   1   1   0   1     56    37    58   115 
      45   1   1   1   0   1     11    79    80    12 
      46   1   1   1   0   1     79    81    82    80 
      47   1   1   1   0   1     81    83    84    82 
      48   1   1   1   0   1     83    85    86    84 
      49   1   1   1   0   1     85    87    88    86 
      50   1   1   1   0   1     87    89    90    88 
      51   1   1   1   0   1     89    91    92    90 
      52   1   1   1   0   1     91    93    94    92 
      53   1   1   1   0   1     93    95    96    94 
      54   1   1   1   0   1     95    97    98    96 
      55   1   1   1   0   1     97    99   100    98 
      56   1   1   1   0   1     99   101   102   100 
      57   1   1   1   0   1    101   103   104   102 
      58   1   1   1   0   1    103   105   106   104 
      59   1   1   1   0   1    105   107   108   106 
      60   1   1   1   0   1    107   109   110   108 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
      61   1   1   1   0   1    109   111   112   110 
      62   1   1   1   0   1    111   113   114   112 
      63   1   1   1   0   1    113   115   116   114 
      64   1   1   1   0   1    115    58    59   116 
      65   1   1   1   0   1     12    80    78    10 
      66   1   1   1   0   1     80    82    77    78 
      67   1   1   1   0   1     82    84    76    77 
      68   1   1   1   0   1     84    86    75    76 
      69   1   1   1   0   1     86    88    74    75 
      70   1   1   1   0   1     88    90    73    74 
      71   1   1   1   0   1     90    92    72    73 
      72   1   1   1   0   1     92    94    71    72 
      73   1   1   1   0   1     94    96    70    71 
      74   1   1   1   0   1     96    98    69    70 
      75   1   1   1   0   1     98   100    68    69 
      76   1   1   1   0   1    100   102    67    68 
      77   1   1   1   0   1    102   104    66    67 
      78   1   1   1   0   1    104   106    65    66 



      79   1   1   1   0   1    106   108    64    65 
      80   1   1   1   0   1    108   110    63    64 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
      81   1   1   1   0   1    110   112    62    63 
      82   1   1   1   0   1    112   114    61    62 
      83   1   1   1   0   1    114   116    60    61 
      84   1   1   1   0   1    116    59    57    60 
      85   1   1   1   0   1     37   118   135    58 
      86   1   1   1   0   1    118   119   137   135 
      87   1   1   1   0   1    119   120   139   137 
      88   1   1   1   0   1    120   121   141   139 
      89   1   1   1   0   1    121   122   143   141 
      90   1   1   1   0   1    122   123   145   143 
      91   1   1   1   0   1    123   124   147   145 
      92   1   1   1   0   1    124   117   126   147 
      93   1   1   1   0   1     58   135   136    59 
      94   1   1   1   0   1    135   137   138   136 
      95   1   1   1   0   1    137   139   140   138 
      96   1   1   1   0   1    139   141   142   140 
      97   1   1   1   0   1    141   143   144   142 
      98   1   1   1   0   1    143   145   146   144 
      99   1   1   1   0   1    145   147   148   146 
     100   1   1   1   0   1    147   126   127   148 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     101   1   1   1   0   1     59   136   134    57 
     102   1   1   1   0   1    136   138   133   134 
     103   1   1   1   0   1    138   140   132   133 
     104   1   1   1   0   1    140   142   131   132 
     105   1   1   1   0   1    142   144   130   131 
     106   1   1   1   0   1    144   146   129   130 
     107   1   1   1   0   1    146   148   128   129 
     108   1   1   1   0   1    148   127   125   128 
     109   1   1   1   0   1    117   149   187   126 
     110   1   1   1   0   1    149   150   189   187 
     111   1   1   1   0   1    150   151   191   189 
     112   1   1   1   0   1    151   152   193   191 
     113   1   1   1   0   1    152   153   195   193 
     114   1   1   1   0   1    153   154   197   195 
     115   1   1   1   0   1    154   155   199   197 
     116   1   1   1   0   1    155   156   201   199 
     117   1   1   1   0   1    156   157   203   201 
     118   1   1   1   0   1    157   158   205   203 
     119   1   1   1   0   1    158   159   207   205 
     120   1   1   1   0   1    159   160   209   207 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     121   1   1   1   0   1    160   161   211   209 
     122   1   1   1   0   1    161   162   213   211 
     123   1   1   1   0   1    162   163   215   213 
     124   1   1   1   0   1    163   164   217   215 
     125   1   1   1   0   1    164   165   219   217 
     126   1   1   1   0   1    165   166   221   219 
     127   1   1   1   0   1    166   167   223   221 
     128   1   1   1   0   1    167     1    22   223 
     129   1   1   1   0   1    126   187   188   127 
     130   1   1   1   0   1    187   189   190   188 
     131   1   1   1   0   1    189   191   192   190 
     132   1   1   1   0   1    191   193   194   192 
     133   1   1   1   0   1    193   195   196   194 
     134   1   1   1   0   1    195   197   198   196 
     135   1   1   1   0   1    197   199   200   198 
     136   1   1   1   0   1    199   201   202   200 
     137   1   1   1   0   1    201   203   204   202 
     138   1   1   1   0   1    203   205   206   204 
     139   1   1   1   0   1    205   207   208   206 
     140   1   1   1   0   1    207   209   210   208 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     141   1   1   1   0   1    209   211   212   210 
     142   1   1   1   0   1    211   213   214   212 
     143   1   1   1   0   1    213   215   216   214 
     144   1   1   1   0   1    215   217   218   216 
     145   1   1   1   0   1    217   219   220   218 
     146   1   1   1   0   1    219   221   222   220 
     147   1   1   1   0   1    221   223   224   222 

     148   1   1   1   0   1    223    22    21   224 
     149   1   1   1   0   1    127   188   186   125 
     150   1   1   1   0   1    188   190   185   186 
     151   1   1   1   0   1    190   192   184   185 
     152   1   1   1   0   1    192   194   183   184 
     153   1   1   1   0   1    194   196   182   183 
     154   1   1   1   0   1    196   198   181   182 
     155   1   1   1   0   1    198   200   180   181 
     156   1   1   1   0   1    200   202   179   180 
     157   1   1   1   0   1    202   204   178   179 
     158   1   1   1   0   1    204   206   177   178 
     159   1   1   1   0   1    206   208   176   177 
     160   1   1   1   0   1    208   210   175   176 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     161   1   1   1   0   1    210   212   174   175 
     162   1   1   1   0   1    212   214   173   174 
     163   1   1   1   0   1    214   216   172   173 
     164   1   1   1   0   1    216   218   171   172 
     165   1   1   1   0   1    218   220   170   171 
     166   1   1   1   0   1    220   222   169   170 
     167   1   1   1   0   1    222   224   168   169 
     168   1   1   1   0   1    224    21    13   168 
     169   1   1   1   0   1     13    20   225   168 
     170   1   1   1   0   1     20    19   244   225 
     171   1   1   1   0   1     19    18   263   244 
     172   1   1   1   0   1     18    17   282   263 
     173   1   1   1   0   1     17    16   301   282 
     174   1   1   1   0   1     16    15   320   301 
     175   1   1   1   0   1     15    14   339   320 
     176   1   1   1   0   1     14    10    78   339 
     177   1   1   1   0   1    168   225   226   169 
     178   1   1   1   0   1    225   244   245   226 
     179   1   1   1   0   1    244   263   264   245 
     180   1   1   1   0   1    263   282   283   264 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     181   1   1   1   0   1    282   301   302   283 
     182   1   1   1   0   1    301   320   321   302 
     183   1   1   1   0   1    320   339   340   321 
     184   1   1   1   0   1    339    78    77   340 
     185   1   1   1   0   1    169   226   227   170 
     186   1   1   1   0   1    226   245   246   227 
     187   1   1   1   0   1    245   264   265   246 
     188   1   1   1   0   1    264   283   284   265 
     189   1   1   1   0   1    283   302   303   284 
     190   1   1   1   0   1    302   321   322   303 
     191   1   1   1   0   1    321   340   341   322 
     192   1   1   1   0   1    340    77    76   341 
     193   1   1   1   0   1    170   227   228   171 
     194   1   1   1   0   1    227   246   247   228 
     195   1   1   1   0   1    246   265   266   247 
     196   1   1   1   0   1    265   284   285   266 
     197   1   1   1   0   1    284   303   304   285 
     198   1   1   1   0   1    303   322   323   304 
     199   1   1   1   0   1    322   341   342   323 
     200   1   1   1   0   1    341    76    75   342 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     201   1   1   1   0   1    171   228   229   172 
     202   1   1   1   0   1    228   247   248   229 
     203   1   1   1   0   1    247   266   267   248 
     204   1   1   1   0   1    266   285   286   267 
     205   1   1   1   0   1    285   304   305   286 
     206   1   1   1   0   1    304   323   324   305 
     207   1   1   1   0   1    323   342   343   324 
     208   1   1   1   0   1    342    75    74   343 
     209   1   1   1   0   1    172   229   230   173 
     210   1   1   1   0   1    229   248   249   230 
     211   1   1   1   0   1    248   267   268   249 
     212   1   1   1   0   1    267   286   287   268 
     213   1   1   1   0   1    286   305   306   287 
     214   1   1   1   0   1    305   324   325   306 
     215   1   1   1   0   1    324   343   344   325 
     216   1   1   1   0   1    343    74    73   344 
     217   1   1   1   0   1    173   230   231   174 
     218   1   1   1   0   1    230   249   250   231 
     219   1   1   1   0   1    249   268   269   250 



     220   1   1   1   0   1    268   287   288   269 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     221   1   1   1   0   1    287   306   307   288 
     222   1   1   1   0   1    306   325   326   307 
     223   1   1   1   0   1    325   344   345   326 
     224   1   1   1   0   1    344    73    72   345 
     225   1   1   1   0   1    174   231   232   175 
     226   1   1   1   0   1    231   250   251   232 
     227   1   1   1   0   1    250   269   270   251 
     228   1   1   1   0   1    269   288   289   270 
     229   1   1   1   0   1    288   307   308   289 
     230   1   1   1   0   1    307   326   327   308 
     231   1   1   1   0   1    326   345   346   327 
     232   1   1   1   0   1    345    72    71   346 
     233   1   1   1   0   1    175   232   233   176 
     234   1   1   1   0   1    232   251   252   233 
     235   1   1   1   0   1    251   270   271   252 
     236   1   1   1   0   1    270   289   290   271 
     237   1   1   1   0   1    289   308   309   290 
     238   1   1   1   0   1    308   327   328   309 
     239   1   1   1   0   1    327   346   347   328 
     240   1   1   1   0   1    346    71    70   347 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     241   1   1   1   0   1    176   233   234   177 
     242   1   1   1   0   1    233   252   253   234 
     243   1   1   1   0   1    252   271   272   253 
     244   1   1   1   0   1    271   290   291   272 
     245   1   1   1   0   1    290   309   310   291 
     246   1   1   1   0   1    309   328   329   310 
     247   1   1   1   0   1    328   347   348   329 
     248   1   1   1   0   1    347    70    69   348 
     249   1   1   1   0   1    177   234   235   178 
     250   1   1   1   0   1    234   253   254   235 
     251   1   1   1   0   1    253   272   273   254 
     252   1   1   1   0   1    272   291   292   273 
     253   1   1   1   0   1    291   310   311   292 
     254   1   1   1   0   1    310   329   330   311 
     255   1   1   1   0   1    329   348   349   330 
     256   1   1   1   0   1    348    69    68   349 
     257   1   1   1   0   1    178   235   236   179 
     258   1   1   1   0   1    235   254   255   236 
     259   1   1   1   0   1    254   273   274   255 
     260   1   1   1   0   1    273   292   293   274 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     261   1   1   1   0   1    292   311   312   293 
     262   1   1   1   0   1    311   330   331   312 
     263   1   1   1   0   1    330   349   350   331 
     264   1   1   1   0   1    349    68    67   350 
     265   1   1   1   0   1    179   236   237   180 
     266   1   1   1   0   1    236   255   256   237 
     267   1   1   1   0   1    255   274   275   256 
     268   1   1   1   0   1    274   293   294   275 
     269   1   1   1   0   1    293   312   313   294 
     270   1   1   1   0   1    312   331   332   313 
     271   1   1   1   0   1    331   350   351   332 
     272   1   1   1   0   1    350    67    66   351 
     273   1   1   1   0   1    180   237   238   181 
     274   1   1   1   0   1    237   256   257   238 
     275   1   1   1   0   1    256   275   276   257 
     276   1   1   1   0   1    275   294   295   276 
     277   1   1   1   0   1    294   313   314   295 
     278   1   1   1   0   1    313   332   333   314 
     279   1   1   1   0   1    332   351   352   333 
     280   1   1   1   0   1    351    66    65   352 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     281   1   1   1   0   1    181   238   239   182 
     282   1   1   1   0   1    238   257   258   239 
     283   1   1   1   0   1    257   276   277   258 
     284   1   1   1   0   1    276   295   296   277 
     285   1   1   1   0   1    295   314   315   296 
     286   1   1   1   0   1    314   333   334   315 
     287   1   1   1   0   1    333   352   353   334 
     288   1   1   1   0   1    352    65    64   353 

     289   1   1   1   0   1    182   239   240   183 
     290   1   1   1   0   1    239   258   259   240 
     291   1   1   1   0   1    258   277   278   259 
     292   1   1   1   0   1    277   296   297   278 
     293   1   1   1   0   1    296   315   316   297 
     294   1   1   1   0   1    315   334   335   316 
     295   1   1   1   0   1    334   353   354   335 
     296   1   1   1   0   1    353    64    63   354 
     297   1   1   1   0   1    183   240   241   184 
     298   1   1   1   0   1    240   259   260   241 
     299   1   1   1   0   1    259   278   279   260 
     300   1   1   1   0   1    278   297   298   279 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     301   1   1   1   0   1    297   316   317   298 
     302   1   1   1   0   1    316   335   336   317 
     303   1   1   1   0   1    335   354   355   336 
     304   1   1   1   0   1    354    63    62   355 
     305   1   1   1   0   1    184   241   242   185 
     306   1   1   1   0   1    241   260   261   242 
     307   1   1   1   0   1    260   279   280   261 
     308   1   1   1   0   1    279   298   299   280 
     309   1   1   1   0   1    298   317   318   299 
     310   1   1   1   0   1    317   336   337   318 
     311   1   1   1   0   1    336   355   356   337 
     312   1   1   1   0   1    355    62    61   356 
     313   1   1   1   0   1    185   242   243   186 
     314   1   1   1   0   1    242   261   262   243 
     315   1   1   1   0   1    261   280   281   262 
     316   1   1   1   0   1    280   299   300   281 
     317   1   1   1   0   1    299   318   319   300 
     318   1   1   1   0   1    318   337   338   319 
     319   1   1   1   0   1    337   356   357   338 
     320   1   1   1   0   1    356    61    60   357 
  
    ELEM MAT TYP REL ESY SEC        NODES 
  
     321   1   1   1   0   1    186   243   128   125 
     322   1   1   1   0   1    243   262   129   128 
     323   1   1   1   0   1    262   281   130   129 
     324   1   1   1   0   1    281   300   131   130 
     325   1   1   1   0   1    300   319   132   131 
     326   1   1   1   0   1    319   338   133   132 
     327   1   1   1   0   1    338   357   134   133 
     328   1   1   1   0   1    357    60    57   134 
 
 LIST ALL SELECTED KEYPOINTS.   DSYS=      0 
 
    NO. X,Y,Z LOCATION                   KESIZE     NODE  ELEM MAT REAL TYP 
ESYS 
     1   20.0       7.50       0.00       0.00         2     0   0    0   0    0 
     2   20.0      -7.50       0.00       0.00         1     0   0    0   0    0 
     3  -20.0       7.50       0.00       0.00        37     0   0    0   0    0 
     4  -20.0      -7.50       0.00       0.00       117     0   0    0   0    0 
     5   20.0       7.50      -6.00       0.00        10     0   0    0   0    0 
     6   20.0      -7.50      -6.00       0.00        13     0   0    0   0    0 
     7  -20.0       7.50      -6.00       0.00        57     0   0    0   0    0 
     8  -20.0      -7.50      -6.00       0.00       125     0   0    0   0    0 
 
 LIST ALL SELECTED LINES. 
  
 NUMBER    KEYPOINTS    LENGTH   (NDIV)(SPACE) KYND NDIV  SPACE  
#NODE #ELEM   MAT  REAL  TYP  ESYS 
      1      2      1  15.00        0   1.000    0    8   1.000     7     0     0     0     0     0 
      2      1      5  6.000        0   1.000    0    3   1.000     2     0     0     0     0     0 
      3      5      6  15.00        0   1.000    0    8   1.000     7     0     0     0     0     0 
      4      6      2  6.000        0   1.000    0    3   1.000     2     0     0     0     0     0 
      5      1      3  40.00        0   1.000    0   20   1.000    19     0     0     0     0     
0 
      6      3      7  6.000        0   1.000    0    3   1.000     2     0     0     0     0     0 
      7      7      5  40.00        0   1.000    0   20   1.000    19     0     0     0     0     
0 
      8      3      4  15.00        0   1.000    0    8   1.000     7     0     0     0     0     0 
      9      4      8  6.000        0   1.000    0    3   1.000     2     0     0     0     0     0 
     10      8      7  15.00        0   1.000    0    8   1.000     7     0     0     0     0     0 
     11      4      2  40.00        0   1.000    0   20   1.000    19     0     0     0     0     
0 
     12      6      8  40.00        0   1.000    0   20   1.000    19     0     0     0     0     
0 
 



 

 
 
 
 
 
 

 
 
 
 
 
 

  
 
 

Attachment 3. 
EXAMPLE GEOMETRIC INPUT GENERATED IN 

INTERNATIONAL MARINE SOFTWARE ASSOCIATE 
FORMAT (SPHERE) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
$IDF 3.01 



$ENTITY 
MESH 
$VESSEL NAME 
prct_try 
$DATA SOURCE 
Del*2idf 
$DATE 
07/08/02 
$TIME 
13:33:12 
$UNITS 
SI 
$COORDINATE SYSTEM 
1,-1,-1 
$COMMENTS 
TITLE = " project: nmsh " 
$GEOMETRY 
2 
$PART 
wet_srf 
30, 16 
-225,2.7555e-14,-0 
-225,2.7404e-14,-2.8802e-15 
-225,2.6952e-14,-5.7289e-15 
-225,2.6206e-14,-8.5148e-15 
-225,2.5172e-14,-1.1207e-14 
-225,2.3863e-14,-1.3777e-14 
-225,2.2292e-14,-1.6196e-14 
-225,2.0477e-14,-1.8438e-14 
-225,1.8438e-14,-2.0477e-14 
-225,1.6196e-14,-2.2292e-14 
-225,1.3777e-14,-2.3863e-14 
-225,1.1207e-14,-2.5172e-14 
-225,8.5148e-15,-2.6206e-14 
-225,5.7289e-15,-2.6952e-14 
-225,2.8802e-15,-2.7404e-14 
-225,7.8056e-30,-2.7555e-14 
-223.68,24.327,-0 
-223.68,24.194,-2.5428 
-223.68,23.795,-5.0578 
-223.68,23.136,-7.5174 
-223.68,22.224,-9.8946 
-223.68,21.068,-12.163 
-223.68,19.681,-14.299 
-223.68,18.078,-16.278 
-223.68,16.278,-18.078 
-223.68,14.299,-19.681 
-223.68,12.163,-21.068 
-223.68,9.8946,-22.224 
-223.68,7.5174,-23.136 
-223.68,5.0578,-23.795 
-223.68,2.5428,-24.194 
-223.68,6.8912e-15,-24.327 
-219.74,48.368,-0 
-219.74,48.103,-5.0559 
-219.74,47.311,-10.056 
-219.74,46.001,-14.947 
-219.74,44.187,-19.673 
-219.74,41.888,-24.184 
-219.74,39.131,-28.43 
-219.74,35.945,-32.365 
-219.74,32.365,-35.945 
-219.74,28.43,-39.131 
-219.74,24.184,-41.888 
-219.74,19.673,-44.187 
-219.74,14.947,-46.001 
-219.74,10.056,-47.311 
-219.74,5.0559,-48.103 
-219.74,1.3702e-14,-48.368 
-213.22,71.843,-0 
-213.22,71.449,-7.5096 
-213.22,70.273,-14.937 
-213.22,68.327,-22.201 
-213.22,65.632,-29.221 
-213.22,62.218,-35.921 
-213.22,58.122,-42.228 
-213.22,53.39,-48.072 
-213.22,48.072,-53.39 
-213.22,42.228,-58.122 
-213.22,35.921,-62.218 
-213.22,29.221,-65.632 

-213.22,22.201,-68.327 
-213.22,14.937,-70.273 
-213.22,7.5096,-71.449 
-213.22,2.0351e-14,-71.843 
-204.2,94.475,-0 
-204.2,93.958,-9.8753 
-204.2,92.411,-19.642 
-204.2,89.851,-29.194 
-204.2,86.307,-38.426 
-204.2,81.818,-47.238 
-204.2,76.432,-55.531 
-204.2,70.209,-63.216 
-204.2,63.216,-70.209 
-204.2,55.531,-76.432 
-204.2,47.238,-81.818 
-204.2,38.426,-86.307 
-204.2,29.194,-89.851 
-204.2,19.642,-92.411 
-204.2,9.8753,-93.958 
-204.2,2.6763e-14,-94.475 
-192.79,116,-0 
-192.79,115.36,-12.125 
-192.79,113.46,-24.118 
-192.79,110.32,-35.846 
-192.79,105.97,-47.181 
-192.79,100.46,-58 
-192.79,93.846,-68.183 
-192.79,86.205,-77.619 
-192.79,77.619,-86.205 
-192.79,68.183,-93.846 
-192.79,58,-100.46 
-192.79,47.181,-105.97 
-192.79,35.846,-110.32 
-192.79,24.118,-113.46 
-192.79,12.125,-115.36 
-192.79,3.286e-14,-116 
-179.12,136.16,-0 
-179.12,135.42,-14.233 
-179.12,133.19,-28.31 
-179.12,129.5,-42.077 
-179.12,124.39,-55.383 
-179.12,117.92,-68.082 
-179.12,110.16,-80.035 
-179.12,101.19,-91.112 
-179.12,91.112,-101.19 
-179.12,80.035,-110.16 
-179.12,68.082,-117.92 
-179.12,55.383,-124.39 
-179.12,42.077,-129.5 
-179.12,28.31,-133.19 
-179.12,14.233,-135.42 
-179.12,3.8572e-14,-136.16 
-163.35,154.73,-0 
-163.35,153.88,-16.174 
-163.35,151.35,-32.171 
-163.35,147.16,-47.815 
-163.35,141.36,-62.935 
-163.35,134,-77.366 
-163.35,125.18,-90.949 
-163.35,114.99,-103.54 
-163.35,103.54,-114.99 
-163.35,90.949,-125.18 
-163.35,77.366,-134 
-163.35,62.935,-141.36 
-163.35,47.815,-147.16 
-163.35,32.171,-151.35 
-163.35,16.174,-153.88 
-163.35,4.3832e-14,-154.73 
-145.66,171.49,-0 
-145.66,170.55,-17.925 
-145.66,167.74,-35.654 
-145.66,163.09,-52.992 
-145.66,156.66,-69.75 
-145.66,148.51,-85.743 
-145.66,138.74,-100.8 
-145.66,127.44,-114.75 
-145.66,114.75,-127.44 
-145.66,100.8,-138.74 
-145.66,85.743,-148.51 
-145.66,69.75,-156.66 
-145.66,52.992,-163.09 



-145.66,35.654,-167.74 
-145.66,17.925,-170.55 
-145.66,4.8578e-14,-171.49 
-126.27,186.23,-0 
-126.27,185.21,-19.466 
-126.27,182.16,-38.719 
-126.27,177.12,-57.548 
-126.27,170.13,-75.747 
-126.27,161.28,-93.115 
-126.27,150.66,-109.46 
-126.27,138.4,-124.61 
-126.27,124.61,-138.4 
-126.27,109.46,-150.66 
-126.27,93.115,-161.28 
-126.27,75.747,-170.13 
-126.27,57.548,-177.12 
-126.27,38.719,-182.16 
-126.27,19.466,-185.21 
-126.27,5.2755e-14,-186.23 
-105.39,198.79,-0 
-105.39,197.7,-20.779 
-105.39,194.45,-41.331 
-105.39,189.06,-61.43 
-105.39,181.6,-80.855 
-105.39,172.16,-99.395 
-105.39,160.82,-116.85 
-105.39,147.73,-133.02 
-105.39,133.02,-147.73 
-105.39,116.85,-160.82 
-105.39,99.395,-172.16 
-105.39,80.855,-181.6 
-105.39,61.43,-189.06 
-105.39,41.331,-194.45 
-105.39,20.779,-197.7 
-105.39,5.6313e-14,-198.79 
-83.281,209.02,-0 
-83.281,207.87,-21.849 
-83.281,204.45,-43.458 
-83.281,198.79,-64.591 
-83.281,190.95,-85.016 
-83.281,181.02,-104.51 
-83.281,169.1,-122.86 
-83.281,155.33,-139.86 
-83.281,139.86,-155.33 
-83.281,122.86,-169.1 
-83.281,104.51,-181.02 
-83.281,85.016,-190.95 
-83.281,64.591,-198.79 
-83.281,43.458,-204.45 
-83.281,21.849,-207.87 
-83.281,5.921e-14,-209.02 
-60.194,216.8,-0 
-60.194,215.61,-22.662 
-60.194,212.06,-45.075 
-60.194,206.19,-66.994 
-60.194,198.06,-88.18 
-60.194,187.75,-108.4 
-60.194,175.39,-127.43 
-60.194,161.11,-145.07 
-60.194,145.07,-161.11 
-60.194,127.43,-175.39 
-60.194,108.4,-187.75 
-60.194,88.18,-198.06 
-60.194,66.994,-206.19 
-60.194,45.075,-212.06 
-60.194,22.662,-215.61 
-60.194,6.1414e-14,-216.8 
-36.401,222.04,-0 
-36.401,220.82,-23.209 
-36.401,217.18,-46.164 
-36.401,211.17,-68.613 
-36.401,202.84,-90.31 
-36.401,192.29,-111.02 
-36.401,179.63,-130.51 
-36.401,165,-148.57 
-36.401,148.57,-165 
-36.401,130.51,-179.63 
-36.401,111.02,-192.29 
-36.401,90.31,-202.84 
-36.401,68.613,-211.17 
-36.401,46.164,-217.18 

-36.401,23.209,-220.82 
-36.401,6.2898e-14,-222.04 
-12.181,224.67,-0 
-12.181,223.44,-23.484 
-12.181,219.76,-46.712 
-12.181,213.67,-69.427 
-12.181,205.25,-91.382 
-12.181,194.57,-112.34 
-12.181,181.76,-132.06 
-12.181,166.96,-150.33 
-12.181,150.33,-166.96 
-12.181,132.06,-181.76 
-12.181,112.34,-194.57 
-12.181,91.382,-205.25 
-12.181,69.427,-213.67 
-12.181,46.712,-219.76 
-12.181,23.484,-223.44 
-12.181,6.3644e-14,-224.67 
12.181,224.67,-0 
12.181,223.44,-23.484 
12.181,219.76,-46.712 
12.181,213.67,-69.427 
12.181,205.25,-91.382 
12.181,194.57,-112.34 
12.181,181.76,-132.06 
12.181,166.96,-150.33 
12.181,150.33,-166.96 
12.181,132.06,-181.76 
12.181,112.34,-194.57 
12.181,91.382,-205.25 
12.181,69.427,-213.67 
12.181,46.712,-219.76 
12.181,23.484,-223.44 
12.181,6.3644e-14,-224.67 
36.401,222.04,-0 
36.401,220.82,-23.209 
36.401,217.18,-46.164 
36.401,211.17,-68.613 
36.401,202.84,-90.31 
36.401,192.29,-111.02 
36.401,179.63,-130.51 
36.401,165,-148.57 
36.401,148.57,-165 
36.401,130.51,-179.63 
36.401,111.02,-192.29 
36.401,90.31,-202.84 
36.401,68.613,-211.17 
36.401,46.164,-217.18 
36.401,23.209,-220.82 
36.401,6.2898e-14,-222.04 
60.194,216.8,-0 
60.194,215.61,-22.662 
60.194,212.06,-45.075 
60.194,206.19,-66.994 
60.194,198.06,-88.18 
60.194,187.75,-108.4 
60.194,175.39,-127.43 
60.194,161.11,-145.07 
60.194,145.07,-161.11 
60.194,127.43,-175.39 
60.194,108.4,-187.75 
60.194,88.18,-198.06 
60.194,66.994,-206.19 
60.194,45.075,-212.06 
60.194,22.662,-215.61 
60.194,6.1414e-14,-216.8 
83.281,209.02,-0 
83.281,207.87,-21.849 
83.281,204.45,-43.458 
83.281,198.79,-64.591 
83.281,190.95,-85.016 
83.281,181.02,-104.51 
83.281,169.1,-122.86 
83.281,155.33,-139.86 
83.281,139.86,-155.33 
83.281,122.86,-169.1 
83.281,104.51,-181.02 
83.281,85.016,-190.95 
83.281,64.591,-198.79 
83.281,43.458,-204.45 
83.281,21.849,-207.87 



83.281,5.921e-14,-209.02 
105.39,198.79,-0 
105.39,197.7,-20.779 
105.39,194.45,-41.331 
105.39,189.06,-61.43 
105.39,181.6,-80.855 
105.39,172.16,-99.395 
105.39,160.82,-116.85 
105.39,147.73,-133.02 
105.39,133.02,-147.73 
105.39,116.85,-160.82 
105.39,99.395,-172.16 
105.39,80.855,-181.6 
105.39,61.43,-189.06 
105.39,41.331,-194.45 
105.39,20.779,-197.7 
105.39,5.6313e-14,-198.79 
126.27,186.23,-0 
126.27,185.21,-19.466 
126.27,182.16,-38.719 
126.27,177.12,-57.548 
126.27,170.13,-75.747 
126.27,161.28,-93.115 
126.27,150.66,-109.46 
126.27,138.4,-124.61 
126.27,124.61,-138.4 
126.27,109.46,-150.66 
126.27,93.115,-161.28 
126.27,75.747,-170.13 
126.27,57.548,-177.12 
126.27,38.719,-182.16 
126.27,19.466,-185.21 
126.27,5.2755e-14,-186.23 
145.66,171.49,-0 
145.66,170.55,-17.925 
145.66,167.74,-35.654 
145.66,163.09,-52.992 
145.66,156.66,-69.75 
145.66,148.51,-85.743 
145.66,138.74,-100.8 
145.66,127.44,-114.75 
145.66,114.75,-127.44 
145.66,100.8,-138.74 
145.66,85.743,-148.51 
145.66,69.75,-156.66 
145.66,52.992,-163.09 
145.66,35.654,-167.74 
145.66,17.925,-170.55 
145.66,4.8578e-14,-171.49 
163.35,154.73,-0 
163.35,153.88,-16.174 
163.35,151.35,-32.171 
163.35,147.16,-47.815 
163.35,141.36,-62.935 
163.35,134,-77.366 
163.35,125.18,-90.949 
163.35,114.99,-103.54 
163.35,103.54,-114.99 
163.35,90.949,-125.18 
163.35,77.366,-134 
163.35,62.935,-141.36 
163.35,47.815,-147.16 
163.35,32.171,-151.35 
163.35,16.174,-153.88 
163.35,4.3832e-14,-154.73 
179.12,136.16,-0 
179.12,135.42,-14.233 
179.12,133.19,-28.31 
179.12,129.5,-42.077 
179.12,124.39,-55.383 
179.12,117.92,-68.082 
179.12,110.16,-80.035 
179.12,101.19,-91.112 
179.12,91.112,-101.19 
179.12,80.035,-110.16 
179.12,68.082,-117.92 
179.12,55.383,-124.39 
179.12,42.077,-129.5 
179.12,28.31,-133.19 
179.12,14.233,-135.42 
179.12,3.8572e-14,-136.16 

192.79,116,-0 
192.79,115.36,-12.125 
192.79,113.46,-24.118 
192.79,110.32,-35.846 
192.79,105.97,-47.181 
192.79,100.46,-58 
192.79,93.846,-68.183 
192.79,86.205,-77.619 
192.79,77.619,-86.205 
192.79,68.183,-93.846 
192.79,58,-100.46 
192.79,47.181,-105.97 
192.79,35.846,-110.32 
192.79,24.118,-113.46 
192.79,12.125,-115.36 
192.79,3.286e-14,-116 
204.2,94.475,-0 
204.2,93.958,-9.8753 
204.2,92.411,-19.642 
204.2,89.851,-29.194 
204.2,86.307,-38.426 
204.2,81.818,-47.238 
204.2,76.432,-55.531 
204.2,70.209,-63.216 
204.2,63.216,-70.209 
204.2,55.531,-76.432 
204.2,47.238,-81.818 
204.2,38.426,-86.307 
204.2,29.194,-89.851 
204.2,19.642,-92.411 
204.2,9.8753,-93.958 
204.2,2.6763e-14,-94.475 
213.22,71.843,-0 
213.22,71.449,-7.5096 
213.22,70.273,-14.937 
213.22,68.327,-22.201 
213.22,65.632,-29.221 
213.22,62.218,-35.921 
213.22,58.122,-42.228 
213.22,53.39,-48.072 
213.22,48.072,-53.39 
213.22,42.228,-58.122 
213.22,35.921,-62.218 
213.22,29.221,-65.632 
213.22,22.201,-68.327 
213.22,14.937,-70.273 
213.22,7.5096,-71.449 
213.22,2.0351e-14,-71.843 
219.74,48.368,-0 
219.74,48.103,-5.0559 
219.74,47.311,-10.056 
219.74,46.001,-14.947 
219.74,44.187,-19.673 
219.74,41.888,-24.184 
219.74,39.131,-28.43 
219.74,35.945,-32.365 
219.74,32.365,-35.945 
219.74,28.43,-39.131 
219.74,24.184,-41.888 
219.74,19.673,-44.187 
219.74,14.947,-46.001 
219.74,10.056,-47.311 
219.74,5.0559,-48.103 
219.74,1.3702e-14,-48.368 
223.68,24.327,-0 
223.68,24.194,-2.5428 
223.68,23.795,-5.0578 
223.68,23.136,-7.5174 
223.68,22.224,-9.8946 
223.68,21.068,-12.163 
223.68,19.681,-14.299 
223.68,18.078,-16.278 
223.68,16.278,-18.078 
223.68,14.299,-19.681 
223.68,12.163,-21.068 
223.68,9.8946,-22.224 
223.68,7.5174,-23.136 
223.68,5.0578,-23.795 
223.68,2.5428,-24.194 
223.68,6.8912e-15,-24.327 
225,2.7555e-14,-0 



225,2.7404e-14,-2.8802e-15 
225,2.6952e-14,-5.7289e-15 
225,2.6206e-14,-8.5148e-15 
225,2.5172e-14,-1.1207e-14 
225,2.3863e-14,-1.3777e-14 
225,2.2292e-14,-1.6196e-14 
225,2.0477e-14,-1.8438e-14 
225,1.8438e-14,-2.0477e-14 
225,1.6196e-14,-2.2292e-14 
225,1.3777e-14,-2.3863e-14 
225,1.1207e-14,-2.5172e-14 
225,8.5148e-15,-2.6206e-14 
225,5.7289e-15,-2.6952e-14 
225,2.8802e-15,-2.7404e-14 
225,7.8056e-30,-2.7555e-14 
$END ENTITY 
 
 
 
 


