
 
 

Delft University of Technology

Right place, Right Time
Modeling the search time and specificity of Cas9 and Argonaute
Klein, Misha

DOI
10.4233/uuid:a27816fb-b042-4532-9304-4c3a675fd78f
Publication date
2019
Document Version
Final published version
Citation (APA)
Klein, M. (2019). Right place, Right Time: Modeling the search time and specificity of Cas9 and Argonaute.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:a27816fb-b042-4532-
9304-4c3a675fd78f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a27816fb-b042-4532-9304-4c3a675fd78f
https://doi.org/10.4233/uuid:a27816fb-b042-4532-9304-4c3a675fd78f
https://doi.org/10.4233/uuid:a27816fb-b042-4532-9304-4c3a675fd78f


Right place, Right time

Modeling the search time and specificity of Cas9 and
Argonaute





Right place, Right time

Modeling the search time and specificity of Cas9 and
Argonaute

Dissertation

for the purpose of obtaining the degree of doctor
at Del University of Technology

by the authority of the Rector Magnificus,Prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Friday 13 December 2019 at 12:30 o’clock

by

Misha KLEIN

Master of science in Applied Physics
Del University of Technology, The Netherlands

born in Chicago, USA.



This disserta on has been approved by the:

Promotor: dr. C. Joo
Copromotor: dr. S.M. Depken

Composi on of the doctoral commi ee:

Rector Magnificus chairperson
Dr. C. Joo Del University of Technology, promotor
Dr. S.M. Depken Del University of Technology, copromotor

Independent members:
Prof. dr. ir. S.J. Tans Del University of Technology
Prof. dr. I. Finkelstein University of Texas at Aus n
Prof. dr. D. Rueda Imperial College
Prof. dr. P.R. ten Wolde AMOLF/VU Amsterdam
Prof. dr. H. Schiessel Leiden University

Reserve member :
Prof. dr. A.M. DogteromDel University of Technology

Printed by: …

Front & Back: Sebas aan de Ruiter

Copyright © 2019 by M. Klein

Casimir PhD Series, Del -Leiden 2019-37

ISBN 978-90-8593-420-2

An electronic version of this disserta on is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Contents

1 Introduction 1
1.1 Genes, Genomes and Genetic Engineering . . . . . . . . . . . . . . 2
1.2 Beyond the Central Dogma . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Nucleic acid guided, nucleic acid effector complexes . . . . . . . . . 5

1.3.1 The CRISPR-Cas adaptive immune system. . . . . . . . . . 5
1.3.2 RNA interference . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 The genome engineering toolbox . . . . . . . . . . . . . . . . . . . . 9
1.5 Off-targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Off-target prediction tools . . . . . . . . . . . . . . . . . . . 12
1.6 A physics-based approach . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Basics of physical modeling techniques . . . . . . . . . . . . . . . . 14

1.7.1 Kinetics 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.2 When reactions are fast: Equilibrium Thermodynamics . . 16
1.7.3 First Passage Problems of Continuous TimeRandomWalks

18
1.7.4 Decision making: The ’splitting probability’ . . . . . . . . . 21
1.7.5 Connection to experimental data . . . . . . . . . . . . . . . 22

1.8 In this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I Target recognition and off-target prediction 27

2 Hybridization kinetics explainsCRISPR-Cas off-targeting rules
29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Rule (i): Seed region. . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Rule (ii): Mismatch spread . . . . . . . . . . . . . . . . . . . 34
2.2.3 Rule (iii): Differential binding vs. differential cleavage . . . 36
2.2.4 Rule (iv): Specificity-efficiency decoupling . . . . . . . . . . 37
2.2.5 Comparison to experimental data for a broad class of RNA

guided nucleases. . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 A general model for RGNs with progressive R-loop forma-
tion followed by cleavage . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Building intuition by using the transition landscape (large
bias limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi Contents

2.4.3 A minimal model for RGNs with progressive R-loop forma-
tion followed by cleavage . . . . . . . . . . . . . . . . . . . . 42

2.4.4 Dissociation constant for catalytically dead nucleases. . . . 43
2.5 Author Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Acknowlegdements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.1 A general kinetic model for target recognition . . . . . . . . 44
2.7.2 A minimal kinetic model for target recognition. . . . . . . . 45
2.7.3 Dissociation constant for catalytically inactive systems . . . 48
2.7.4 Details of fitting procedure . . . . . . . . . . . . . . . . . . . 49
2.7.5 Cascade binds its guide in sections . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Explaining dCas9 binding and Cas9 cleavage 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 A kinetic model for target recognition by (d)Cas9-sgRNA . 59
3.2.2 Modeling measurable quantities for both dCas9 and Cas9 . 62
3.2.3 Free-energy landscape of (d)Cas9-sgRNA-DNA . . . . . . . 65
3.2.4 Conformational change of Cas9’s HNH domain couples to

R-loop formation . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.5 Promiscuous binding helps Cas9 to be both a specific and

an efficient nuclease. . . . . . . . . . . . . . . . . . . . . . . 68
3.2.6 Existing off-target prediction models can be seen as a lim-

iting case of ours. . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.7 Measuring relative rates at various concentrations . . . . . 72
3.2.8 Measuring relative fractions of cut DNA after various in-

cubation times . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Comment on translation to other guide RNA sequences (‘short-
cut’ to redoing measurement for every guide). . . . . . . . . 74

3.3.2 Move to other guided nucleases (generality of approach) . . 75
3.3.3 Test against genome-wide off-target data/prediction tools

will follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Kinetic model for Target Recognition . . . . . . . . . . . . . 76
3.5.2 Calculating (effective) association rates (HiTS-FLIP) . . . . 78
3.5.3 Calculating (effective) cleavage rates (NucleaSeq) . . . . . . 79
3.5.4 Calculating apparent binding affinities (CHAMP) . . . . . . 79
3.5.5 Simulated Annealing fitting . . . . . . . . . . . . . . . . . . 80
3.5.6 Translation tomodels assuming individualmismatches act

additively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.7 At short times, relative counts equal relative rates . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Contents vii

II Target search 93

4 Argonaute’s fast and specific target search 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Target search in 1D and 3D . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Facilitated diffusion enables rapid target search of miRNA. 97
4.2.2 Experimental evidence for lateral diffusion during target

search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Multiple protein conformations for fast and stable target search. . 97

4.3.1 Resolving the speed-stability paradox by utilizing multiple
binding modes . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Experimental evidence for two initial bindingmodes of Ago-
miRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.3 The experimental evidence for additional binding modes of
Ago-miRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Energy landscape of miRNA target search . . . . . . . . . . . . . . 103
4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Further insight into Ago-miRNA target search can improve
microRNA target prediction algorithms . . . . . . . . . . . . 105

4.5.2 Implications for other target search systems . . . . . . . . . 105
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Argonaute bypasses cellular obstacles without hindrance dur-
ing target search 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Single-molecule kinetics of CbAgo binding . . . . . . . . . . 113
5.2.2 Lateral diffusion of CbAgo . . . . . . . . . . . . . . . . . . . 113
5.2.3 Kinetic modelling of lateral diffusion . . . . . . . . . . . . . 115
5.2.4 Ago probes for targets during lateral diffusion . . . . . . . . 116
5.2.5 Ago target search is unhindered by structural and protein

barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.6 Ago relies on flexibility of DNA segments of bypassing block-

ades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.7 Ago uses hops to access distant DNA segments . . . . . . . 119

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Purification of CbAgo . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Purification of His-tagged Lin28b . . . . . . . . . . . . . . . 124
5.4.3 Single molecule experimental setup . . . . . . . . . . . . . . 124
5.4.4 Fluorescent dye labeling of nucleic acid constructs . . . . . 124
5.4.5 Single molecule chamber preparation . . . . . . . . . . . . . 125
5.4.6 Lin28 assay . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.7 QUANTIFICATION AND STATISTICAL ANALYSIS . . . 125



viii Contents

5.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . 126
5.5.1 Binding times single-target including recapture events fol-

low single-exponential distribution . . . . . . . . . . . . . . 135
5.5.2 Shuttling rate due to sliding alone. . . . . . . . . . . . . . . 136
5.5.3 Shuttling rate triple-target construct . . . . . . . . . . . . . 137
5.5.4 error estimates using bootstrapping . . . . . . . . . . . . . . 137
5.5.5 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . 140

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Optimal DNA/RNA target search using frequent skip-n-slides 147
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.1 Single-molecule FRET assay to probe lateral diffusion . . . 149
6.2.2 Ago slides over short distances . . . . . . . . . . . . . . . . . 150
6.2.3 Ago uses a mixture of skipping and sliding over larger dis-

tances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.4 Ago skips straight into the second trap for intermediate

trap separations . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.5 Ago skips over two thirds of all bases . . . . . . . . . . . . . 153
6.2.6 The total search time . . . . . . . . . . . . . . . . . . . . . . 154
6.2.7 Sliding is optimal for scanning densities above / . . . . . . 156
6.2.8 A mix of skipping and sliding is optimal for scanning den-

sities below / . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.9 Global optimal search strategy. . . . . . . . . . . . . . . . . 157

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.1 Monte Carlo simulations for validating 𝑃check . . . . . . . . . 159
6.4.2 Bootstrapping for error estimation and based on smFRET

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.3 protein purification . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.4 Nucleic acid preparation . . . . . . . . . . . . . . . . . . . . 160
6.4.5 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 161
6.4.7 Analysis of raw data. . . . . . . . . . . . . . . . . . . . . . . 161

6.5 Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.7 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . 162

6.7.1 Determining shuttling times using a mixture of skipping
and sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.7.2 Shuttling times scales with square of scanning density at
large trap separations. . . . . . . . . . . . . . . . . . . . . . 165

6.7.3 parameter sweep and estimation of slopes . . . . . . . . . . 168
6.7.4 Search time using skipping and sliding shows two optima . 168

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



Contents ix

Summary 181

Samenvatting 183

Acknowledgements 185

Curriculum Vitæ 189

List of Publications 191





1
Introduction

Advances in genome engineering – ‘making precise changes to DNA’ – announced
a new era of using Biology for Biotechnological applications. Most notably is the
discovery of the CRISPR-Cas systemwhich over the course of the past decade has
facilitated the development of strategies for making drought-resistant crops, tar-
geted antimicrobials, organ transfers from pigs to humans, eradicating malaria
mosquitoes and more. In spite of CRISPR-Cas systems having become a com-
mon tool in many scientific laboratories, their application – especially treating
humans – remains in its infancy due to concerns regarding its precision.

1
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cells DNA/genome
genes

?

genome engineering
human/corn
(organism)

Figure 1.1: Living organisms inherit traits encoded in their DNA.Making (precise) changes to anorganisms genome
is called ’genome engineering’.

1.1. Genes, Genomes and Genetic Engineering

W hat does making a drought resistant crop have in common with trea ng sickle cell
disease? To answer this ques on we must first consider what plants, humans, bac-

teria and all other living organisms on Earth have in common. All living organisms consist
of cells (Figure ??). Inside the cell resides its gene c material: DNA. DNA is said to en-
code for ’genes’, resul ng in an organism’s traits such as the color of an apple, or the color
of our eyes. Other traits, such as the corn being drought resistant, or a human having a
hemoglobin mutant leading to sickle cell disease, are also a direct result of the precise
’gene code’ or ’genome’. If we could somehow edit (’engineer’) an organism’s genome,
we should thereby be able to change its traits. In case of our two examples, both traits
(drought resistance in corn, human sickle cell disease) are caused by a single gene, and are
thereby altered just by edi ng the associated gene. However, what if we by mistake edit
the wrong gene? This could poten ally have dire consequences.

In this thesis we are concerned with understanding the most novel genome engineering
tools by means of mathema cal and physical modeling. To understand how we go about
transla ng edi ng specificity into physical quan es ( me, energy, etc.) we must first take
a deeper dive into their Biological origins.

1.2. Beyond the Central Dogma
The cell is the building block of all living ssue. Inside each cell countless of chemical re-
ac ons take place to make it grow, protect it against an ever changing environment, and
eventually make it divide – giving rise to new life. Virtually all cellular processes are carried
out by molecules called proteins. Orchestra ng all chemical reac ons requires that the
correct amount of ac ve protein is available at the right me.
One way of achieving this goal is to control the amount of each protein produced in the
first place. The cell encodes these instruc ons in the form of another kind of molecule:
Deoxyribonucleic acid or DNA for short. Encoding such informa on is possible since there
are just four forms each monomer cons tu ng one unit of either of the two helical DNA
chains (strands) can take on: Adenosine (A), Thymine (T), Guanine (G) and Cytosine (C),
called nucleo des. Moreover, in forming the double-stranded DNA (dsDNA) of an organ-
ism’s genome every A-nucleo de posi ons itself opposite to a T-nucleo de. Similarly, a
‘C’ is said ’to form a base pair with a G’ (Figure ??). This base pairing property allows the
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DNA repairtranscription 
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Figure 1.2: The Central Dogma of Molecular Biology states that gene c informa on is stored as DNA, copied dur-
ing replica on (cell division) and read out by first transcribing it into RNA and then transla ng it into an amino acid
sequence. Each of these processes is heavily regulated by the cell. Target searching proteins play important parts
herein: Transcrip on Factors act on transcrip on, DNA repair mechanisms safeguard replica on. Non-coding
RNA guided nucleases fall into this category as well: CRISPR associated (Cas) proteins prevent replica on of viral
elements, while RNAi controls transla on levels.

cell to encode informa on in the DNA’s nucleo de sequence, much like a computer stores
informa on in binary sequences.

Processing of the encoded informa on, resul ng in protein synthesis, happens in a series
of Chemical pathways famously termed ‘the Central Dogma of Biology’ (Figure ??). Dur-
ing cell division each daughter cell acquires an iden cal copy of the mother cell’s genome
(DNA). As each cell only has a single copy of the genome, before cell division takes place
the DNA gets replicated. To synthesize a protein, the DNA first gets transcribed, resul ng
in a precursor molecule, RNA, in which every nucleo de of one of the DNA’s strands is re-
placed by its complement – with the excep on of Thymine that gets replaced by Uracil (A
to T, T to U, C to G and G to C) (Figure ??). These RNA molecules are now ready to get
translated into a sequence of what are called amino acids that eventually folds into its final
form: a protein. Amazingly, all steps within the Central Dogma – replica on, transcrip on
and transla on – are actually carried out by proteins themselves.

Although the Central Dogma in essence details the flow of gene c informa on from DNA
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A U

U A
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G

C

RNA - RNA

A U

T A

C

G

G

C

DNA - RNA

A T

T A

C

G

G

C

DNA - DNA

Figure 1.3: Double-stranded nucleic acids form ’base pairs’. (le ) DNA-DNA pairs, A(denine) complements
T(hymine) and C(ytosine) complements G(uanine). (middle) DNA-RNA pairs, U(racil) replaces T(hymine), thereby
matching A(denine). The DNA’s Thymine s ll matches the RNA’s Adenine. (right) RNA-RNA pairs, A(denine) com-
plements U(racil). We will refer to any of the shown base pairs as ’matches’, while any other possible pair (i.e.
A-G) as ’mismatches’.

to protein, more detailed control of protein levels is achieved through numerous ‘feed-
back loops’. When DNA damage occurs, a set of proteins involved in DNA repair mech-
anisms must recognize and restore the original sequence to avoid transcribing incorrect
instruc ons or passing them on during replica on. Transcrip on levels (the amount of
RNA produced by a par cular gene) are ac vely up- or down-regulated by proteins termed
‘transcrip on factors’ that bind near the gene of interest to either facilitate or repress the
proteins that carry out transcrip on.
In this thesis we shall focus on a different kind of regula on that uses so called non-coding
RNA molecules. Unlike originally envisioned, RNA molecules are more than merely inter-
mediates between DNA and protein. In fact, large por ons of the genome do not even
directly encode for proteins at all – es mated to be more than 95% of the human DNA [?
]. Par ally, DNA can encode for RNA that is not meant to be translated: ‘non-coding RNA’.
Instead, making these RNA molecules bind to specific RNA or DNA sequences, using the
base pairing rules men oned above, can direct proteins to catalyze reac ons at desired se-
quences only. Examples can be found throughout all major kingdoms of life. Eukaryotes –
amongst which yeast, plants, animals and humans –make non-coding RNA bind tomessen-
ger RNA (mRNA, the coding form of RNA), thereby inhibi ng its transla on. Prokaryotes –
archaea and bacteria – use these non-coding RNAs to detect invading viral DNA and signal
it for destruc on. We shall detail both below.

Taken together, the cell uses DNA to store and read out informa on. In turn, parts of the
DNA are used to safeguard and regulate the flow of gene c informa on in an a empt to
prevent mistakes during read out and protect the integrity of the host’ instruc ons. Recog-
ni on of specific DNA/RNA sequences plays a crucial role herein.
The remainder of this chapter briefly reviews some of the different classes of small non-
coding RNA molecules, highlights their technological poten al and explains the need for
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physical modelling of the kind used throughout this thesis. The la er parts of this chapter
contain a brief introduc on into the relevant theore cal techniques that allow us to couple
the physics to experimental data. Although not needed to understand ‘the why’ and ‘the
what’, that sec on serves to addi onally explain ‘the how’ of all subsequent chapters.

1.3. Nucleic acid guided, nucleic acid effector complexes
1.3.1. The CRISPR-Cas adaptive immune system
Organisms have evolved various strategies to cope with their ever changing environments.
This too holds true for even the smallest of organisms: Prokaryotes. For bacteria and ar-
chaea such threats are ‘mobile gene c elements’ (MGEs), foreign DNA (or RNA) origina ng
from either viruses or plasmids. Bacteriophages, viruses that invade bacteria, in essence
consist of no more than a container with their gene c material. They do not possess the
required protein machinery to read out their own DNA. Hence, by themselves, they are
incapable of replica ng. For this reason, phages ‘invade’ host bacteria by injec ng their
DNA into them, hoping that the bacteria will not recognize it as being foreign and proceed
to transcribe and translate it as if it being part of its own genome. The viral genome will
encode for the proteins of the DNA-containing capsids that make up the body of the phage
par cle. If too many of such new phage par cles get synthesized inside the host, the inter-
nal pressure can increase to such levels that the bacteria will burst open, se ng the new
virus par cles free, enabling them to invade new bacteria.
Despite bacteriophages being about ten mes more abundant, their prokaryo c hosts are
s ll one of the most abundant life forms on earth [? ? ? ]. Prokaryotes have, akin to
what we know from humans, evolved immune systems. The centerpiece of this thesis is
an adap ve immune system (meaning it adjusts to the incoming phage as opposed to in-
nate systems that use a generic defense response) discovered in about half of all sequenced
bacteria species and nearly 90% of all archaea [? ? ]. About a decade before its func on
became clear, researchers discovered a par cular set of non-coding sequences as part of
the bacterial genome. The bacteria encode for an array of par ally palindromic, more con-
served, sequences. These ‘repeats’ are separated by highly variable sequences (‘spacers’).
It took un l the early 2000’s to realize the origin of these spacer sequences. Pioneering
bioinforma cs research found the spacer sequences to be origina ng predominantly from
MGEs [? ]. Soon a er followed the first experiments demonstra ng how this is part of an
adap ve immune response [? ]. The authors challenged phage sensi ve S. thermophilis
bacteria to new phages. Remarkably, the bacteria were able to survive the new a ack. In
addi on, bacteria that became immune did indeed incorporate a novel spacer sequence
from the phage into their, as it is now known to be, Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) array. Later experiments revealed the roles of a set of pro-
teins, typically co-transcribed with the array, termed CRISPR associated (Cas) in acquiring
the new spacers, processing those spacers into guides and the destruc on of the phage’s
DNA (Figure ??).
Upon encounter of a new phage genome, a set of Cas proteins – Cas1 and Cas2 – acquire
the new spacer and incorporate it into the array [? ](step 1 in Figure ??). Together, the
Cas1-Cas2 complex (at least the variant found in E.coli.) adapts a bu erfly-like structure
that neatly fits a single spacer sequence. Next, the CRISPR locus gets transcribed, the
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cas genes get translated, while the CRISPR array forms non-coding RNA. Processing of the
array’s transcript results in small RNA fragments that contain the transcript of individual
spacers [? ](step 2). These small RNAs get loaded into either a single or a complex of Cas
protein(s) [? ? ](step 3). Note that a er transcrip on the resul ng RNA actually contains
the sequence complementary to the DNA it originates from (see base pairing rules, Figure
??). Therefore, this ‘guide RNA’ (gRNA) is able to direct the Cas protein to the viral DNA
site. Once bound, the loaded Cas protein either possesses or recruits a nuclease (a DNA
cleaving enzyme) to destroy the viral DNA (step 4 in Figure ??) [? ? ? ? ].

For the CRISPR system to convey immunity to its host it must do more than effec vely
degrade or inac vate the foreign DNA. It must be able to dis nguish self- from non-self
(DNA in this case), preven ng self-targe ng, otherwise called autoimmunity. Par ally this
requirement is met by using the spacer sequence to generate the guide RNA. However, by
construc on the CRISPR array itself contains a perfect copy of the target. Also, the host’
DNA, by chance, may s ll contain a sequence similar to the spacer outside of its CRISPR
array. If the bacteria was to target its own DNA, it could kill itself. Most CRISPR systems
prevent this by pre-selec ng spacers that are preceded by a short (typically 3-5nt) mo f
termed the protospacer adjacent mo f (PAM) [? ? ? ]. Only the protospacer (the se-
quence complementary to the spacer on the opposite viral DNA strand) and not the repeat
sequence in the CRISPR array is flanked by the PAM. Direct interac ons between the Cas
protein and DNA can determine whether the DNA is foreign and should be marked for de-
struc on. A wide diversity of CRISPR-Cas systems have been discovered thus far. Despite
the zoo of different loci (sub-)types – 19 subtypes and s ll coun ng – they share a common
architecture (Figure ??). The CRISPR array, thememory of past infec ons, is co-transcribed
with the cas genes. As men oned, integra on of the novel spacers, adapta on, into the
array requires the proteins Cas1 and Cas2.
To classify the different CRISPR systems a two-step scheme is currently used [? ] (Figure
??). The first step groups the CRISPR loci into one of two major classes. Class I systems use
a mul -subunit protein complex for targe ng and degrada on of the foreign DNA (inter-
ference), whereas in class II systems this is carried out by a single Cas protein. The second
layer of classifica on is based on the presence of signature Cas proteins. Class I type I
systems, the most abundant subtype, use a mixture of the proteins Cas5 through Cas8 to
form a larger protein complex termed Cascade (“CRISPR associated complex for an -viral
defense”) [? ] that uses the crRNA guide to bind to the viral DNA. Once bound, it recruits
yet another protein: Cas3, the signature protein of type I systems, that is able to unwind
and degrade the phage genome [? ]. Similarly, type III systems form an interference com-
plex from the proteins Cas5 through Cas7 and their signature protein Cas10.
Class II systems (types II, V and VI) are considerably less complicated. Target interference
is carried out by a single Cas protein (see Cas9,12-14 in Figure ??) that possesses nuclease
(‘cleaving’) domains. For this reason, class II CRISPR systems are par cularly interes ng
from a technological perspec ve, as shall be highlighted below.
Even amongst CRISPR systems of the same type (and therefore class), there exist signifi-
cant differences. Such subtypes can vary based on differences in size or func on of their
signature gene or contain addi onal non-signature Cas genes, a prime example being Cas4
which recently has been found to take part in the adapta on process for type I-F systems [?
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Figure 1.4: The CRISPR-Cas system provides immunity against invading bacteriophages. (1) Upon infec on novel
spacers are aquired from phage DNA and incorporated in the host’ CRISPR locus. (2) Transcrip on and further
biogenisis results in CRISPR-RNA (crRNA) guides. (3) Cas nucleases loaded with the crRNA can search the invading
genome for matches to the guide (colored dot) that lie adjacent to a PAM sequence (yellow rectangle). (4) Having
found a proper target, the Cas nuclease binds the DNA stabily and becomes cleavage competent.

]. Moreover, new CRISPR systems are s ll being discovered, such as the subtypes of type
V that use the protein Cas14 [? ].
In a nutshell, the CRISPR-Cas system uses RNA guided Cas proteins to perform sequence
specific DNA edits.

1.3.2. RNA interference
Gene regula on, tuning the amount of protein produced from a given gene, is essen al
to any living organism. Cells par ally achieve this by controlling the transcrip on levels of
every gene. Addi onally, post-transcrip onal regula on is in place that modulates trans-
la on levels. Over 60% of all the protein encoding mRNA in human cells is subjected to
a type of regula on known as RNA interference (RNAi) [? ]. Eukaryo c systems possess
several RNAi pathways characterized by the form of the non-coding RNA it u lizes (Figure
??) [? ? ? ? ].
Mammalian genomes par ally encode for non-coding RNA termed pri-microRNA (step 1 in
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Figure 1.5: Classifica on of CRISPR systems. Typical architecture of the CRISPR locus is shown on top: The operon
controls the adapta on and interference machinery as well as the CRISPR array. Below the most important dif-
ferences between different types of CRISPR systems in their adapta on/interference modules are shown. For a
more elaborate list of CRISPR (sub-)types see [? ]. * signature gene, ** mul ple copies present on locus.

Figure ??A). These long transcripts are processed inside the nucleus by a protein named
Drosha, resul ng in pre-microRNA (step 2). Expor ng the pre-microRNA outside the nu-
cleus, into the cytosol, and further processing by the protein Dicer produces the final mi-
croRNA that contains the informa on needed to silence the transla on of amRNA (step 3).
The microRNA guide molecule gets loaded into a protein termed Argonaute (Ago), form-
ing a RISC (“RNA-induced silencing complex”) (step 4). As discussed above, the CRISPR
system uses the crRNA to guide Cas molecules to their complementary target. Similarly,
a microRNA-loaded Ago protein binds to mRNA at what is termed the 3’ untranslated re-
gion (3’-UTR), which as its name suggests serves as a demarca on of the stopping site of
transla on (step 5). By occupying the 3’-UTR, Ago blocks the transla on machinery either
directly or by recrui ng co-factors that ac vely degrade the mRNA.
A secondRNAi pathwayproduces small interfering RNA (siRNA) guides fromdouble-stranded
RNA (step 1 in Figure ??B). Such dsRNA, origina ng either fromwithin the cell itself or from
viral elements, reside in cytosol. The siRNA molecules are produced by Dicer (step 1) and
loaded into Argonaute (step 2). The siRNA pathway can either func on to inhibit transcrip-
on, the same way microRNAs are used, or target viral RNA (step 3).

Within the first few years a er its ini al discovery in 1998 [? ], RNAi based therapeu cs
started to emerge in which either the siRNA or microRNA pathway is manually ac vated
by injec ng synthe cally designed dsRNA into the cell to target specific mRNAs of interest.
For this reason, its authors, Andrew Z. Fire and Craig C. Mello, received the 2006 Nobel
prize in Physiology and Medicine [? ] less than a decade a er their original publica on
detailing this programmable RNA targe ng system.
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Figure 1.6: RNA interference pathways (in eukaryotes). (A) microRNA pathway:(1) non coding RNA encoded on
the genome. (2) ’cropping’ by Drosha. (3) Expor ng by Expor n 5 and ’dicing’ by Dicer. (4) Loading of the guide
into Argonaute. (5) RISC complex silences messenger RNA by binding to the 3’-UTR. (B) siRNA pathway:(1) dsRNA
in cytosol is processed by Dicer into siRNA.(2) Loading of siRNA into Argonaute. (3) RISC can either silence mRNA
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Peculiarly, Argonaut proteins have also been found in prokaryotes. Due to their similarity
to their eukaryo c counterparts, and the CRISPR systems described previously, these Ago
proteins are speculated to be involved in gene regula on or an -viral defense. However,
in many such cases, their precise func on remains elusive [? ]. Regardless, a er variants
have being reported that use DNA guides and/or target DNA [? ? ], researchers have been
interested in exploring also Ago’s poten al for genome engineering applica ons.

1.4. The genome engineering toolbox
What if we could express Cas9 outside of its bacterial host and load it with a guide se-
quence we designed ourselves? Could we thereby target a DNA loca on of our choice?
Researchers in 2012 have demonstrated exactly this. Type II CRISPR systems express a
two-part RNA, consis ng of what are termed the CRISPR RNA (crRNA) and trans-ac va ng
crRNA (tracrRNA). Jinek et al. [? ] demonstrated that it is indeed possible to perform ed-
its in vitro using a single synthe cally designed guide RNA (single guide RNA or sgRNA).
Soon a er followed the first demonstra on of edi ng human and mouse genomes [? ? ].
These studies further u lized that Cas9 also preprocesses its guide from the CRISPR array’s
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transcript (performing step 3 in Figure ??) [? ]. Designing a DNA containing several guides,
separated by repeats to form a ’synthe c CRISPR array’, the researchers demonstrated the
ability to edit the (human) genome at mul ple sites at once [? ].

It is rela vely inexpensive and simple to design a DNA guide to target a desired (DNA)
target. Cas9-sgRNA systems readily became commercially available. It therefore did not
take long before researchers would demonstrate CRISPR-Cas9 based genome edi ng can
be done in virtually any organism of interest, ranging from typical model systems for Bio-
logical experiments as Drosophila (the fruit fly) to technologically relevant E.coli, crops and
plants, livestock and, as men oned, even human cells. CRISPR-Cas9 has shown the poten-
al to be applied in numerous applica ons of which genera ng drought resistant plants [?

], targe ng an bio c resistant bacteria [? ] and trea ng gene c disorders [? ] are just a
few.

In essence, gene-edi ng uses Cas9 to cut an unwanted gene and relies on the DNA repair
machinery to either simply ‘remove’ it or replace it with a sequence supplied externally
(Figure ??). Other than CRISPR-Cas9, the ‘genome engineering toolbox’ is rapidly expand-
ing with other guided DNA nucleases. For instance, Cas12 [? ] and even some bacterial
Ago [? ] also enable DNA edi ng. Alterna vely, nuclease inac ve, or ‘dead’ dCas9 s ll
binds DNA, but is engineered to not cut it. Fusing dCas9 to other (bio-)molecules can di-
rect these to the desired sequence. For instance, fusing dCas9 to transcrip on factors can
direct them to a gene of interest to ‘interfere’ or ‘ac vate’ them (CRISPRi/CRISPRa)[? ],
tuning transcrip on much like RNAi tunes transla on (Figure ??). Instead, a aching fluo-
rescent proteins to dCas9 allows one to illuminate a specific part of DNA [? ] (Figure ??). It
is even possible to e the binding or cleavage by (d)Cas9, or the increasingly popular vari-
ant Cas13, to a visible change of the solu on’s color [? ? ? ] (Figure ??). These techniques
allow one to detect small amounts of DNA from infec ous diseases or gene c disorders.

1.5. Off-targeting
Unfortunately, RNA guided nucleases (RGNs) are not 100% specific. There are numerous
studies demonstra ng CRISPR-Cas9 [? ? ] either binding or cu ng target sequences
that do not fully match their guide RNA (DNA-RNA pairs other than those shown in Fig-
ure ??). Given their Biological roles in immune systems, it is actually not that surprising.
Viruses typically mutate extremely fast, meaning that any spacer sequence acquired by
the CRISPR system would rapidly be outdated if it were not to also target slight varia ons
of the spacer sequence. Moreover, bacterial genomes are about 1000 mes shorter than
mammalian genomes, increasing the probability of encountering off-target sites when re-
purposing CRISPR-Cas9 for human cells.

Uninten onally cu ng DNA at an unwanted loca on can cause serious damage to the cell.
In an a empt to counteract off-target ac vity asmuch as possible, different strategies have
been demonstrated to work. For instance, one may search for a Cas9 other than that from
themost common host (streptococcus pyogenes (spCas9)), or another CRISPR system alto-
gether, such as Cas12, that naturally appears to exhibit less off-target ac vity [? ? ]. Other
strategies [? ] include muta ng Cas9 to make it light-inducible to limit its dosage , turning
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Figure 1.7: The ”genome-engineering toolbox”. CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, and even Argonaute
are u lized in many different ways (see text). From the perspec ve of our model, the different systems are fairly
similar: a protein loaded with a guide that targets the complementary sequence.

it into a nuclease only for single-stranded DNA (a ‘nickase’) or reducing the length of the
guide RNA [? ]. Using protein engineering even synthe cally designed high-specificity Cas9
variants have been made [? ? ? ].

The strategies above have proven to be successful. However, the major challenge reducing
off-target ac vity faces is actually the detec on of off-target ac vity itself. There is an im-
mense amount of experiments needed to determine all off-targets for all possible guides,
even for a single gene target (Figure ??). On top of that, detec ng genome-wide off-targets
for even a single Cas9-sgRNA has proven to be challenging. State-of-the art detec on of
genome-wide off-targe ng unfortunately suffers from a rather low resolu on [? ? ]. The
sequencing techniques used offer a detec on limit around 0.1% - meaning 1 in a 1000 se-
quenced DNA must contain a cut. Note that this is s ll quite high compared to the shear
amount of DNA present in all the cells of an organ(ism) combined. To further advance the
applica on of CRISPR-Cas9 based gene edi ng, it is increasingly important to accurately tell
more than these ‘highly probable’ events. Although cu ng any par cular off-target might
happen infrequently, combining the possible billions of those events that may occur on a
genome makes that some off-targe ng is actually highly probable (Figure ??). Moreover,
infrequent off-target events can be enough to cause serious damage or even disease.

Stepping away from genomic target sites, one can design an in vitro experiment that sub-
jects Cas9-sgRNA to a library of off-targets containing a variety of mismatch pa erns. Re-
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cent experimental techniques (data used in following chapters) use this to allow for accu-
rately detec ng the full range of ac vity. The hope is the outcome of such experiments
can be translated back to the se ng of an applica on, thereby avoiding the need to re-
peat these experiments for every possible guide of interest. To this end, several computer
models are build based on the available data, with the goal of predic ng off-targets.

# on/off-target combinations ~ 1018

The numbers for the human genome:
genome length ~ 109 off-target sequences ~ ?on-target sequence(s) ~ 100

Cas9-sgRNA
sgRNA

genome to edit

a single high-activity on-target
and many low-activity
off-targets

20 nt guide 
sequence
(matches target) 

Figure 1.8: Although Cas9-sgRNA (or any other RGN of choice) predominantly targets the site that matches its
guide (green), it is not perfect. The shear volume of low frequency off-targe ng events makes encountering an
off-target more probable. Although not all off-target edits are necessarily harmful (red, as opposed to the black
arrows), a singlemistake can have consequences to the cell. Numbers in the inset are upper back-of-the-envelope
es mates assuming a random genome of human length, and are meant to demonstrate the imbalance between
on-target and the vast number of off-targets.

1.5.1. Off-target prediction tools
A guide RNA sequence is only 20nt long. As a result, there are likelymul ple different guide
sequences that can be used to target a specific gene (typically thousands of kilobases).
There exist several computer algorithms to decide which guide should be used to disrupt a
par cular gene locus (Figure ??). In essence, the user supplies a candidate guide sequence,
the target sequence and the genome to be edited. The computer algorithmwill return a list
of (the most highly probable) off-targets. Their workings can be characterized into one of
three types (see Figure ??). Alignment based predic on tools, such as CasOFF-finder [? ],
ChopChop [? ] and E-CRISP [? ], do nomore than search for sequences on the genome that
share sequence similarity to the intended target. Other tools use a mathema cal model to
score/rank the propensi es for off-targets to be cut. The model incorporates empirically
determined scoring schemes in a somewhat ad-hoc fashion. Examples include MIT’s pre-
dic on tool [? ], CCtop [? ] and the Cu ng Frequency Determina on (CFD) score [? ]. A
third, and increasingly popular, category of predic on tools is based on Machine Learning
[? ? ] in which a large amount of data is used to build an AI-based decision tool.

Unfortunately, each of the men oned predic on tools lacks good performance trying to
predict experimentally determined genomic off-targets [? ]. For this reason, it is becoming
increasingly important to go beyond such ’data driven predic on’ and be er understand
the processes by which RGNs search for and recognize their target site within a genome.
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Figure 1.9: Exis ng predic ons tools allow the user to provide the target gene locus & organism and output a
ranked list of off-targets. Red nucleo des indicate mismatches.

1.6. A physics-based approach

Say, you want to edit a specific human gene. How likely are you to encounter an off-target,
given a par cular nuclease and guide? Or, say youwant to build a diagnos cs tool based on
CRISPR-Cas9 (Figure ??). What is the expected false posi ve/nega ve rate of your design?
To answer such ques ons, wemustmove beyond the aforemen oned scoring schemes and
build a quan ta ve model. Instead of only asking if a par cular sequence will (likely) get
cleaved, we addi onally seek to understand why certain sequences are preferred - some-
thing none of the aforemen oned predic on tools is capable of doing. More precisely, we
ask:
”What frac on of DNAmolecules with sequence𝑋 (typically) gets cut (or merely bound) if I
subject my sample to a given concentra on of Cas9-sgRNA for a specified me?”With such
informa on, it becomes possible to use the computer to mimic any technique in which the
RGN is applied to predict its read-out.
To do such we build a physics based model. Restric ng our model to be governed by the
laws of physics, as we would believe any experimental data to be, should in principle guar-
antee an accurate performance for both probable and infrequent (off-)targets. This should
not only allow us to train our model using the exis ng data with highest signal-to-noise
ra o, it should in principle require far less data all together. As shall become clear in later
chapters, this allowed us to use datasets of lesser size, but higher quality, as our training
set. There are several other benefits for using a physical model.
If we are able to pinpoint the correct physical laws governing the target interference, we
should also be able to explain directly what feature in some sequence 𝑋 makes it suscep-
ble to cleavage, that some other sequence 𝑌 is lacking.

As building such a model necessitates a level of abstrac ng RGN systems (Figure ??), we
will hopefully learn along the way precisely what targe ng principles are shared . At the
very least, fairly comparing RGNs (i.e. Cas9 and Cas12) will detail exactly what should be
‘the tool of choice’ for a par cular situa on (Figure ??).

Unfortunately, construc ng a physical model of the target recogni on process for a RGN is
the hard part. What are the physical laws that are most important to incorporate and how
to translate those into a mathema cal model? The remainder of this thesis presents our
best a empts at answering those ques ons.
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1.7. Basics of physical modeling techniques
This sec on presents an overview of the physical theories and concepts used throughout
this thesis. This is not meant as a necessary prerequisite for following any reasoning de-
tailed in subsequent chapters, nor will it be needed to understand any conclusions thereof.
Instead, the collec on of topics discussed here form the basis of all mathema cal deriva-
ons and simula on techniques used.
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Figure 1.10: A single chemical reac on inwhich the RGN cleaves its substrate at rate . (A) Free-energy landscape.
A barrier of height - the distance from the bound state’s free-energy ( ) to the least favourable intermediate
( the transi on state ) - separates the bound from cleaved configura ons. (B) Popula on of cleaved DNA as a
func on of me. (C) Reac on me for individual reac ons - histogram produced genera ng many realisa ons -
are exponen ally distributed.

1.7.1. Kinetics 101
The cell can be viewed as a busy chemical factory. Molecules move around, occasionally
colliding into one another, enabling them to exchange chemical bonds, leading to new
chemical species. Technically, any such reac on is thus a result of a mul tude of forces
origina ng from not only from the molecules directly involved, but due to the crowded
nature of the cell’s environment, also other molecules in the surroundings. Fortunately,
keeping track of the exact trajectories of all these par cles is not actually needed in order
to extract useful (average) measures of a chemical reac on’s outcome. We have entered
the realm of sta s cal mechanics, in which we want to know what is most likely to happen
when repea ng a chemical reac on many mes (as is typical). If molecule 𝐴 reacts with 𝐵
to form species 𝐶, what is the concentra on of molecule 𝐶 a er a me 𝑡? Or say species 𝐴
is part of mul ple chemical pathways and is capable of reac ng either with species 𝐵 or
with 𝐵 , which is more likely to happen sooner? We shall cover the most important tech-
niques used to tackle such ques ons.

As an example, let us take a simplified view of an RGN interac ng with its target substrate.
The top panel of figure ??A shows a chemical reac on in which a target bound RGN cleaves
its substrate. Below is drawnwhat is called the free-energy landscape for this reac on. Any
possible set of posi ons of the RGN, target (or parts thereof) – together this will be referred
to as our ‘system’ – is summarized as one configura on along the horizontal axis in the dia-
gram – essen ally star ng from an unbound configura on on the le to a cleaved product
on the right. The only number we keep track of is what is called the system’s free-energy
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(𝐹 = 𝐸–𝑇𝑆) – a combina on of its internal energy (𝐸) and conforma onal entropy (𝑆) at a
fixed temperature (𝑇).
As far as our chemical reac on goes, we are not interested in any intermediate posi onal
configura on in which the substrate is not cleaved yet or the substrate is not bound yet.
We shall discuss below that a lower free-energy describes a more likely configura on or
’state’. Hence, we represent the reactants (RGN is bound to substrate) and products (sub-
strate gets cleaved) as local (or global) minima in the free-energy landscape. Comple ng
the reac on requires the system to first overcome an energe c barrier – the amount of Δ𝐹
- to take it over the local maximum called the transi on state (𝑇). In this thesis we used
what is called ‘kine c modeling’, in which we assume the me for any single reac on (one
arrow in the diagram) to get completed to be exponen ally distributed (Figure ??B and
C). Using 𝑝(𝑡) to denote the probability of not having completed the reac on of figure ??
before me 𝑡:

𝜙(𝑡) = 𝑘𝑒 (1.1)

1 − 𝑝(𝑡) = ∫ 𝜙(𝑡)d𝑡 = 1 − 𝑒 (1.2)

d𝑝
d𝑡 = −𝑘𝑝(𝑡) (1.3)

The inverse average me of the reac on, or reac on rate, 𝑘, is related to the (free-)energy
barrier of the reac on through the Arrhenius equa on:

𝑘 ∝ 𝑒 (1.4)

Throughout this thesis, we shall measure all energies in units of the thermal energy 𝑘 𝑇. A
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Figure 1.11: The RGN binds its substrate at a rate on. Before cleaving with rate clv, the RGN can unbind at a
rate off. (A) Free-energy landscape. Stable states (minima) are denoted by ’s, while transi on states between
two configura ons are indicated by ’s. (B) Solu on to Master equa on tracks popula ons of all the three states
over me.

slightlymore complicated reac on is one inwhich the RGN toggles betweenbeing unbound
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and bound to its substrate before it can cleave it (Figure ??). Its corresponding free-energy
landscape is shown in figure ??A. By extension of the previous example, every step within
this reac on scheme is characterized by aminima and a set of transi on barriers separa ng
it from subsequent steps. The Arrhenius equa on relates these barriers to reac on rates.
How do we now track the frac on of cleaved DNA? First note that all RGN and substrate
molecules must belong to one of the species described in the chemical reac on pathway.
Their rela ve frac ons, or the probability that any of the molecules belongs to a given
species, can vary over me, but the total is conserved:

𝑝ub(𝑡) + 𝑝bnd(𝑡) + 𝑝clv(𝑡) = 1 ∀𝑡 (1.5)

In this example the number of unbound molecules at a me 𝑡 decreases by unbound
molecules binding to a substrate. On average, every 𝑘on seconds an unbound molecule
binds. For this to happen at me 𝑡, there must be an unbound molecule available at me
𝑡 to start with. Hence, the rate of change of the unbound popula on decreases by a fac-
tor of 𝑝ub(𝑡) × 𝑘on. Similarly, when a bound molecule rejects its substrate, the frac on of
unbound molecules increases. Taken together, the set of differen al equa ons describing
the me evolu on of all of the different popula ons, termed the set of Master Equa ons,
are

d𝑝ub
d𝑡 = −𝑘on𝑝ub(𝑡) + 𝑘off𝑝bnd(𝑡) (1.6)

d𝑝bnd
d𝑡 = +𝑘on𝑝ub(𝑡) − (𝑘off + 𝑘clv)𝑝bnd(𝑡) (1.7)

d𝑝clv
d𝑡 = +𝑘clv𝑝bnd(𝑡) (1.8)

Commonly, one re-writes it in matrix-vector form (�⃗�(𝑡) = [𝑝ub(𝑡), 𝑝bnd(𝑡), 𝑝clv(𝑡)] ):

d�⃗�
d𝑡 = 𝑀�⃗�(𝑡) , 𝑀 = (

−𝑘on 𝑘off 0
+𝑘on −(𝑘off + 𝑘clv) 0
0 𝑘clv 0

) (1.9)

The solu on for this par cular problem is plo ed in figure ??B. In general, solving theMas-
ter Equa ons gives us access to all concentra ons of reactants and products for any par-
cular reac on pathway.

1.7.2.When reactions are fast: Equilibrium Thermodynamics
The reac ons described above eventually become irreversible - a er the RGN cuts its sub-
strate there is no way back (see Figure ??-??). However, the sub-process of substrate bind-
ing is reversible. If the binding and unbinding happenmuch faster than cleaving (𝑘off, 𝑘on ≫
𝑘clv, see Figure ??A), a (local) equilibrium between bound and unbound states may be
reached prior to cleaving. In other words, the bound and unbound states will essen ally
evolve together as if it being a closed system. A er the two have saturated (equilibrated)
the frac on of cleaved DNA is s ll set by the rate 𝑘clv and the now locally equilibrated frac-
on of bound molecules (equa on ??).



1.7. Basics of physical modeling techniques

1

17

A B

fr
e

e
-e

n
e

rg
y 

reaction coordinate
bound cleavedunbound

Figure 1.12: Same reac on as in Figure ??, but now with much higher rates of binding and unbinding. (A) Free-
energy landscape. (B) Solu on to Master equa on tracks popula ons of all the three states over me. Dots
indicate equillibrium frac ons of bound/unbound DNA calculated using the Detailed balance condi on of eq (??).

This trick of separa ng mescales can greatly simplify the solu on to the Master Equa-
ons, since the popula ons in the equilibrated states are known to sa sfy the Boltzmann

distribu on, which is me independent.

𝑝EQub,b =
𝑒 ub,b

𝑒 ub + 𝑒 b
≡ 𝑒 ub,b

𝑍 (1.10)

with 𝑍 commonly referred to as the system’s par on func on. Allowing for processes to
locally equilibrate serves as a means to account for the relevant ’slow’ reac on involving
𝑘clv and ignore any temporal contribu ons of the very short mes (𝑘on and 𝑘off ). Yet, we
did not lose the informa on that an unbound molecule must first bind before it is able
to cleave - as the stability of the bound state decreases, so does the frac on of bound
molecules.

In case of the molecule being completely incapable of cleaving (𝑘clv → 0 or equivalently
𝑇clv → ∞) the bound and unbound states form a completely closed system. Hence, a
(global) equilibrium will be reached eventually. At the same me, the master equa on
approach to determine concentra ons of either bound or unbound molecules at shorter
mes is s ll valid. How do we choose the set of rates in theMaster Equa on to ensure that

the resul ng probabili es approach the according values determined by the Boltzmann
distribu on? When equilibrated, the probability is sta onary, which wri en in terms of
the Master equa ons reads as follows:

𝑝EQub 𝑘on = 𝑝EQbnd𝑘off (1.11)

Equa on ?? says that the flow of probability out of the (un)bound state equals the flow
into it. Hence, se ng the rates according to this ’Detailed balance condi on’

𝑘off = 𝑘on
𝑝EQub
𝑝EQbnd

= 𝑘on𝑒 ( ub b) (1.12)
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guarantees that the probabili es will approach their appropriate Boltzmann weights:

lim
→
𝑝i(𝑡) = 𝑝EQi = 𝑒 i

𝑍 ∀𝑖 ∈ [bnd, ub] (1.13)

In figure ??B, the two dots shown are the equilibrium frac ons calculated using (the inverse
of) equa on ??. For themore involved reac on pathways considered later in this thesis, the
detailed balance condi on is applied for every pair of adjacent states 𝑖 and 𝑗: 𝑘 → /𝑘 → =
𝑒 ij .

A B C

A B C

A B C

A B C

D

A

C

B

D

Figure 1.13: Four examples of first passage problems. In each of the figures (A)- (D) we seek the first me we
arrive at node , star ng from node . The probability (density) that this occurs at me is denoted by ( ).

1.7.3. First Passage Problems of Continuous Time RandomWalks
Without solving the Master equa ons, we can s ll determine the average me needed to
complete a chemical reac on or its most likely outcome. To do such we pretend the chem-
ical reac on is actually a random walk on a la ce with each intermediate represen ng a
node. The walker takes a step on the la ce by comple ng a single reac on, thereby tak-
ing a step along an arrow shown in the diagram. A convenient way of approaching these
problems will be to view them as li le ’board games’. Walking on the board is done by
hopping from one node to another, one at the me and only along a direc on indicated by
an arrow. Here we focus on some ’rules of the game’.

The first important rule is that we only record the me in between transi ons. Transi ons
themselves happen instantaneously. It is as if we are playing a game of ’speed chess’ in
which we record the mes it takes to decide what moves to make, not the me needed to
actually move the piece across the board. More formally, when one considers the move-
ment of a body on an interval 𝑥 ∈ [𝑎, 𝑏], then a simple ques on one may ask is:”What
is the me at which the par cle passes the boundary at 𝑎 or 𝑏 for the first me?”. This
me is called the ’first passage me’. One may also ask: ”What is the probability that the

first passage me at boundary a equals 𝑡 = 𝑡 ?”. This will be referred to as the first pas-
sage probability. Let Ψ(𝑡)d𝑡 denote the probability that the first passage me lies within
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[𝑡, 𝑡+d𝑡]. Hence,Ψ(𝑡) is the ’first passage probability density’. Within the context of chem-
ical reac ons, the first passage me indicates when a reac on gets completed for the first
me. Hence, as men oned, our randomwalk will take place on a discre zed spa al la ce.

Time, however, remains a con nuous variable. In each of the following examples, we will
be a er the first passage at node 𝐶, star ng from node 𝐴 (Ψ(𝑡) ).

As an example, consider the ’board game’ shown in figure ??A. Star ng from node 𝐴, our
next move can only take us to a node that neighbors 𝐴 and for which there is an arrow
poin ng in the designated direc on. In this case, we have li le choice but walking to node
𝐵. Let𝜙 (𝑡)’s denote the probability densi es of reac on mes for individual reac ons -
represen ng exponen al distribu ons (see equa on ??) - making a step from𝑋 to 𝑌. What
is the probability that one arrives at node 𝐶 at me 𝑡? Given node 𝐴 is not directly con-
nected to node 𝐶, all possible paths that bring us to node 𝐶 must have first brought us to
node 𝐵 at some earlier me 𝜏 < 𝑡.

Ψ (𝑡) = ∫ 𝜙 (𝜏)𝜙 (𝑡 − 𝜏)d𝜏 (1.14)

The above integral reflects that we must sum over all possible ways of ending up at 𝐶 via
node 𝐴 - increasing for an increasing number of ways of ge ng to the designa on. In this
case it entails summing over all mes at which we arrived at the intermediate node 𝐵,
resul ng in the convolu on of𝜙 (𝑡) and𝜙 (𝑡). If we instead use Laplace transforms of
the probability densi es -

Ψ (𝑠) = ℒ {Ψ (𝑡)} = ∫ Ψ (𝑡)𝑒 d𝑡 (1.15)

- such a convolu on turns into a simple product in 𝑠-space:

Ψ (𝑠) = ℒ {∫ 𝜙 (𝜏)𝜙 (𝑡 − 𝜏)d𝜏}

= ∫ ∫ 𝜙 (𝜏)𝜙 (𝑡 − 𝜏)d𝜏𝑒 d𝑡

= ∫ ∫ 𝜙 (𝜏)𝜙 (𝑡 − 𝜏)𝑒 d𝜏d𝑡

≡ ∫ ∫ 𝜙 (𝜏)𝜙 (𝑢)𝑒 ( )d𝜏d𝑢

= ∫ 𝜙 (𝜏)𝑒 d𝜏∫ 𝜙 (𝑢)𝑒 d𝑢

= 𝜙 (𝑠) × 𝜙 (𝑠)

(1.16)

The Laplace transform is also a linear operator, whichwe shall put to prac ce in the example
shown in figure ??B. In this example there are two dis nct types of paths that lead from 𝐴
to 𝐶. We can walk directly from 𝐴 to 𝐶 (𝜙 ) or use node 𝐵 as an intermediate. Summing
over the dis nct paths equals summing over the corresponding Laplace transforms.

Ψ (𝑠) = 𝜙 (𝑠)𝜙 (𝑠) + 𝜙 (𝑠) (1.17)
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Only for a select set of problems it is possible to directly invert the Laplace transform. For-
tunately, this is not needed in order to obtain the mean first passage me at 𝐶 star ng
from 𝐴. For this, consider the derivate ofΨ(𝑠), evaluated at 𝑠 = 0.

(dΨ
d𝑠 ) = (∫ Ψ (𝑡)d𝑒

d𝑠 d𝑡)

= ∫ −𝑡Ψ (𝑡)𝑒 d𝑡

≡ − ⟨𝑡⟩

(1.18)

In general, the 𝑛 order moment of the first passage me - the first moment is called
the mean - is obtained by taking the 𝑛 order deriva ve of the Laplace transform. The
func onΨ(𝑠) is therefore also referred to as the moment genera ng func on.

⟨𝑡 ⟩ = (−1) (d Ψ
d𝑠 ) (1.19)

The 0 order moment has a special interpreta on,

𝑃 ≡ Ψ (0) = ∫ Ψ (𝑡)d𝑡 (1.20)

It equals the probability of comple ng the specified reac on first. Later in this thesis we
will use exactly this probability to determine if a bound RGN will cleave before it unbinds.
Note that for all the board games shown in figure ??, this probability must equal one as
node 𝐶 is the only final product possible.

There are two more ’rules of the game’ that have come in extremely handy in later chap-
ters. First consider the example of figure ??C. The board reveals that node 𝐶 cannot be
reached within a single step. We must walk to node 𝐵 first. However, unlike in figure A
there are many ways in which we can get to node 𝐶 (for the first me). A er walking to
node 𝐵, we can decide to walk back to point 𝐴, then back to 𝐵 and finally walk to 𝐶. As
a ma er of fact, we can decide to walk back and forth between 𝐴 and 𝐵 as o en as we
want as long as we end by taking a step from 𝐴 to 𝐵 and one from 𝐵 to 𝐶. Using both the
convolu on property and the linearity of the Laplace transform we find

Ψ = [1 + (𝜙 𝜙 ) + (𝜙 𝜙 ) + (𝜙 𝜙 ) + ...] 𝜙 𝜙

= ∑(𝜙 𝜙 ) ]𝜙 𝜙

= 𝜙 𝜙
1 − 𝜙 𝜙

(1.21)

The last line follows from recognizing the geometric series.

Let us turn to one final example, figure ??D. Before to walking to 𝐶, we may walk back
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and forth between 𝐴 and 𝐵 several mes. Similarly, we are allowed to walk back and
forth between 𝐴 and 𝐷 as o en as we like. We can even walk along the path 𝐴-𝐷-𝐴-𝐵-
𝐴-𝐷-𝐴-𝐵-𝐶, or any other combina on in which we toggle between the nodes 𝐴,𝐵 and
𝐷 before making it to 𝐶. The previous example demonstrated that dealing with a single
’two-way-arrow’ - one reversible reac on - results in a sum of terms of the form 𝜙 𝜙
or 𝜙 𝜙 . At first glance, one may expect the solu on to this problem to be Ψ =
∑ (𝜙 𝜙 ) × ∑ (𝜙 𝜙 ) . Although any valid path from 𝐴 to 𝐶 is indeed rep-
resented by a term in the sum, we are not accoun ng for the fact that many paths are now
represented by one and the same contribu on. A first passage for which there are more
paths leading to it should become more likely. We are therefore s ll missing a combinato-
rial factor describing the number of ways the pairs for𝜙 𝜙 and𝜙 𝜙 can commute.
Instead of doing explicit combinatorics, coun ng every possible path by hand, we will s ll
approach the problem in a similar fashion as we did in the previous example. Before, we
characterized a par cular path by the number of mes one stepped back and forth, using
node 𝐵 in figure ??C. Let us do the same, now using the board game of figure D. Say we
walked back and forth twice, without knowing whether we used node B or D any of the
following paths could have been taken:

• Use node 𝐵 twice, walk 𝐴-𝐵-𝐴-𝐵-𝐴(-𝐵-𝐶): (𝜙 𝜙 )

• Use node 𝐷 twice, walk 𝐴-𝐷-𝐴-𝐷-𝐴(-𝐵-𝐶):(𝜙 𝜙 )

• First use 𝐵, then use 𝐷. walk 𝐴-𝐵-𝐴-𝐷-𝐴(-𝐵-𝐶): 𝜙 𝜙 × 𝜙 𝜙

• First use 𝐷, then use 𝐵. walk 𝐴-𝐷-𝐴-𝐵-𝐴(-𝐵-𝐶): 𝜙 𝜙 × 𝜙 𝜙

Taken together,Ψ , must gather a term equal to:

(𝜙 𝜙 ) + 2(𝜙 𝜙 𝜙 𝜙 ) + (𝜙 𝜙 ) = (𝜙 𝜙 + 𝜙 𝜙 ) (1.22)

Generalizing this example shows that walking back and forth a total of 𝑛 mes contributes
a term of (𝜙 𝜙 + 𝜙 𝜙 ) toΨ (𝑠).

Ψ (𝑠) =∑(𝜙 𝜙 + 𝜙 𝜙 ) × 𝜙 𝜙 (1.23)

1.7.4. Decision making: The ’splitting probability’
As a final piece of theory - tying together the first passage problems and the master equa-
on approaches - consider a bound RGN that can partake in one of two irreversible reac-
ons: unbinding (ignore (re-)binding) at a rate 𝑘off and cleavage at a rate 𝑘clv. When we

speak of the ’total outgoing rate’ from the bound state we are referring to 𝑘 = 𝑘ub + 𝑘clv.
Note that the condi onal wai ng me(s) are distributed as follows:

𝜙 = 𝑘i𝑒∑ ∀𝑖, 𝑥 ∈ [ub, clv] (1.24)

This is the generalisa onof equa on ??. Hence, if one tracks the number of boundmolecules,
this number will decrease exponen ally at a total rate of 𝑘, irrespec ve if a molecule
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cleaves or rejects the substrate. To know if the RGN is more likely to cleave before it un-
binds, or vice versa, we take a look at the zeroth order moment of its Laplace transform.

𝜙 (𝑠) = 𝑘
𝑠 + ∑ 𝑘 (1.25)

For sake of illustra on, we use the Laplace transform even though the corresponding inte-
gral in the temporal domain is easy to compute. Taking any of these two approaches,

𝑃 = 𝑘i
∑ 𝑘 (1.26)

This is commonly referred to as the ’spli ng probability’ of reac on path 𝑖.

1.7.5. Connection to experimental data
Throughout this thesis valida ng our model predic ons against experimental data forms
a crucial part of the research presented. Bulk biochemical assays may report on the frac-
on of cleaved molecules a er some fixed me. We can either use the master equa on to

obtain this same qua ty, or work within limmits wherin it should be well approximated by
the ra o in reac on rates for the different off-target molecules (inverse average mes), or
the (spli ng) probability for cleaving. Other assays use fluorescent labels to track popula-
ons of substrates and RGNs over me, thereby directly repor ng on the solu on to the

corresponding Master Equa on. Finally, single-molecule experiments enable one to track
individual guide-loaded RGN complexes, which allows one to directly measure (mean) first
passage mes or the me distribu ons 𝜙(𝑡) - or the total distribu on ofΨ(𝑡) in case of a
more complex chemical pathway.

1.8. In this thesis
This thesis is an account of modeling efforts aimed towards understanding the kine cs un-
derlying (off-)targe ng by RNA/DNA guided nucleic acid effector complexes.

Part I: Target recogni on and off-target predic on quan fies what types of off-targets
lead to cleavage before rejec on, with a par cular focus on the posi on of mismatches
within the guide-target hybrid.
Chapter ?? introduces a kine c model for the off-target binding and cleavage by CRISPR-
Cas, Argonaute, and similar RNA guided nucleases (RGNs). Previous literature revealed
such RGNs bind their substrate and aid the forma on of the guide-target hybrid in sequen-
al fashion. Using a minimalis c view of target recogni on, we say the addi on of a match

to the hybrid is energe cally (and kine cally) favorable, whereas a mismatch biases the
system towards rejec on of the off-target. Working out the mathema cs purely dictated
by the targe ng process being sequen al, allows us to give a physical explana on for amul-
tude of empirically derived ‘off-targe ng rules’ – a set of ‘rules of thumb’ experimenters

adhere to when designing their RGN-based assay.
In Chapter ??we built upon this model by expanding the parameteriza on to include posi-
on dependent (mis-)match biases. Using a series of high-throughput biophysical datasets
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we elucidate the free-energy landscape that underlies Streptococcus pyogenes Cas9 (sp-
Cas9) target recogni on. Previous reports showed cataly cally ‘dead’ Cas9 (dCas9) binds
manymore (genomic) off-targets than ac ve Cas9 cleaves. The presented free-energy land-
scape not only unifies those observa ons, but explains exactly what off-targets lead to sta-
ble binding, apparently without ge ng cut. In par cular, ourmodel allows one to calculate
how much off-target binding by dCas9 or cleavage by Cas9 is to be expected given the nu-
clease concentra on and reac on me used in an experiment. Finally, the free-energy
landscape further reveals Cas9’s major conforma onal change, in which it reposi ons its
nuclease domains to enable cleavage, directly couples to the en re hybrid forma on pro-
cess.

Thus far, we have been trea ng the selec on/rejec on of isolated off-targets. Part II: Tar-
get search focuses on how sequence specific binding proteins locate their cognate target
site amongst a pool of poten al off-targets. Apart from diffusing through solu on un l the
protein randomly collides with a target, proteins are found to enhance their reac on rates
by binding non-specifically and diffusing laterally along the DNA/RNA.
Chapter ?? uses the example of hAgo2 to review exis ng target search literature and hy-
pothesizes that a coupling of the protein’s structural changes to the hybrid forma on –
much like the kind found for spCas9 in Chapter ?? – balances search me and specificity.

Typically, the target search is further complicated as large por ons of cellular RNA/DNA
are occupied by other proteins. Moreover, the RNA/DNA is highly compacted, adop ng a
conforma on that severely deviates from being linear, even on the scale of the searching
protein. In Chapter ??we used a prokaryo c Argonaute as a model system to inves gate if
and how lateral diffusion can proceed in the presence of either structural or protein obsta-
cles. The presented single-molecule FRET experiments (a collabora on with T.J.Cui from
the lab of dr. Chirlmin Joo) demonstrate cbAgo can bypass both a secondary DNA struc-
ture (a ’Y-fork’) and a bound protein - covering DNA sites at (nearly) the same rates as on
bare DNA. Using kine c modeling allowed us to further demonstrate that the secondary
structure does not hinder the lateral sliding mo on, while the bulkier protein barrier does
- necessita ng some form of dissocia on from the DNA in order to ’skip’ over the obstacle
in order to proceed searching.
Mo vated by these observa ons, we ask whether a laterally diffusing protein must inter-
rogate all (off-)targets along its path in Chapter ??. We set up a rather generic model that
allows for the protein to interrogate only a frac on of all sites enclosed within its lateral
excursion. Using single-molecule FRET experiments performed on both a bacterial Ago and
hAgo2, our model shows both systems indeed only interrogate a rela vely small frac on
of all DNA/RNA sites. Surprisingly, despite essen ally “being blind” to a significant por on
of the target pool, we show how this can actually help to find the cognate site faster.
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2
Hybridization kinetics explains
CRISPR-Cas off-targeting rules

Due to their specificity, efficiency, and ease of programming, CRISPR associated
nucleases are popular tools for genome editing. On the genomic scale, these nu-
cleases still show considerable off-target activity though, posing a serious obsta-
cle to the development of therapies. Off-targeting is often minimized by choosing
especially high-specificity guide sequences, based on algorithms that codify em-
pirically determined off-targeting rules. A lack of mechanistic understanding
of these rules has so far necessitated their ad hoc implementation, likely con-
tributing to the limited precision of present algorithms. To understand the tar-
geting rules, we kinetically model the physics of guide-target hybrid formation.
Using only four parameters, our model elucidates the kinetic origin of the ex-
perimentally observed off-targeting rules, thereby rationalizing the results from
both binding and cleavage assays. We favorably compare our model to published
data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the hu-
man Argonaute 2 system.

This chapter has been published as: M.Klein, B.Eslami-Mossallam, D.Gonzalez Arroyo and M.Depken. Hybridiza-
on kine cs explains CRISPR-Cas off-targe ng rules. Cell Reports 22 1413–1423 (2018)
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2.1. Introduction

R NA guided nucleases (RGNs) target nucleic-acid sequences based on complementar-
ity to any guide RNA (gRNA) loaded into the complex. This versa lity, together with

the ability to design synthe c gRNA complementary to any target of choice, holds great
promise for gene edi ng and gene silencing applica ons [? ? ]. Among the known RGNs,
the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas)
nucleases Cas9 [? ? ? ? ] and Cpf1 [? ] are of special interest, as they are compara vely
simple single-subunit enzymes.

Cas nucleases originate from theCRISPR-Cas adap ve immune system,whichmanyprokary-
otes use to fight off foreign gene c elements. In vivo, the Cas protein (complex) is pro-
grammed by loading RNA transcribed from a CRISPR locus in the host genome. The tran-
scribed sequence includes sec ons referred to as spacers, which were acquired during past
encounters with foreign gene c elements [? ]. Once programmed, the Cas nuclease is
able to target and degrade gene c elements with the same sequence as the stored spacer,
and so offers protec on against repeat invasions. An autoimmune response to sequences
stored at the CRISPR locus is prevented through the addi onal requirement of a protein-
mediated recogni on of a short protospacer-adjacentmo f (PAM) sequence present in the
foreign genome, but not incorporated into the CRISPR locus with the spacer [? ? ].

As viruses evolve in response to the selec ve pressure induced by the CRISPR-Cas immune
system, the host is in turn under pressure to a ack slightly mutated target sequences in
addi on to the target. It is therefore not surprising that Cas nucleases exhibit considerable
off-target ac vity on sequences similar to the intended target [? ? ? ? ? ? ? ? ? ? ? ].
Such off-targe ng presents a severe problem for therapeu cs, as DNA breaks introduced
at the wrong site could lead to loss-of-func onmuta ons in a well-func oning gene, or the
improper repair of a disease causing gene [? ].

To shed light on the determinants of off-target ac vity, a recent flurry of experiments has
probed the level of binding and/or cleavage onmutated target sequences: high-throughput
screens of large libraries of off-targets [? ? ? ? ? ? ], genome-wide iden fica on [? ? ?
? ? ? ? ? ? ], systema c biochemical studies [? ? ? ? ? ? ? ? ? ], structural studies [?
? ? ? ? ? ? ], and single-molecule biophysical studies [? ? ? ? ? ? ? ] providing insights
into the mechanics of targe ng. To date, a number of rather peculiar targe ng rules have
been empirically established for Cas nucleases: (i) seed region: single mismatches within
a PAM proximal seed region can completely disrupt interference [? ? ], while PAM distal
mismatches have much less of an effect [? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ]; (ii)
mismatch spread: when mismatches are outside the seed region, off-targets with spread
out mismatches are targeted most strongly [? ? ? ? ]; (iii) Differen al binding vs. differen-
al cleavage: binding is more tolerant to mismatches then cleavage [? ? ? ? ? ? ? ]. (iv)

specificity-efficiency decoupling: weakened protein-DNA interac ons can improve target
selec vity while s ll maintaining efficiency [? ? ? ? ]. Although these experimental obser-
va ons have already aided the development of strategies to improve the specificity of the
CRISPR-Cas9 system [? ? ? ? ? ], an understanding of the mechanis c origin behind target
selec vity is s ll lacking, and our ability to predict off-targets remains limited [? ? ? ? ].
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Current off-target predic on algorithms are o en based on sequence alignment with the
target, and discard poten al targets if they have more than some (user-defined) threshold
number of mismatches [? ? ? ? ]. To recover themismatch-posi on dependence observed
as seed regions (rule (i)) and their coopera vity (rule (ii)), such scoring schemes must be
supplemented with ad hoc rules that penalize seed and closely spaced mismatches more
than non-seed mismatches [? ? ]. To move beyond ad hoc scoring schemes, we here
use biophysical modelling to incorporate knowledge of the underlying targe ng process.
With this aim, it would be a rac ve to assume that the binding dynamics has had me
to equilibrate before DNA degrada on [? ? ], as this would allow us to use simple bind-
ing/hybridiza on energe cs to predict cleavage ac vity. Though a rac ve, this approach
has recently been ques oned by Bisaria et al. by no ng that off-rates are generally not
found to be much faster than cleavage rates [? ], as would be required for establishing a
binding equilibrium before cleavage. In addi on, the authors show how abandoning the
equilibra on assump on directly explains the specificity increase observedwith shortened
gRNA [? ].

Inspired by these observa ons, we go beyond binding energe cs to build a biophysical
model capturing the kine cs of guide-target hybrid forma on. We show that the target-
ing rules (i)-(iv) can be seen as simple consequences of kine cs. The targe ng rules are
captured by four parameters that pertain to transi on barriers between metastable states
of the nuclease-guide-target complex, and we translate these into four experimentally ob-
servable quan es: the length of the seed region, the width of the transi on region from
seed to non-seed, the maximum amount of cleavage on single-mismatch off-targets, and
the minimal distance between mismatches outside the seed region that allows for the
cleavage of targets withmul ple mismatches. By tyingmicroscopic proper es to biological
and technological func on we here open the door to refined and ra onal reengineering of
the CRISPR-Cas system to further its use in therapeu c applica ons.

Though we frame our considera ons in terms of the well-studied and technologically im-
portant Cas9, our approach applies to any RGN that displays a progressive matching be-
tween guide and target before cleavage (Figure ??A). To demonstrate the generality and
power of our approach, we present fits to targe ng data from Argonaute 2 (hAgo2), as well
as type I, II and V CRISPR systems.

2.2. Results
At the start of target recogni on, Cas nucleases bind to dsDNA from solu on. The sub-
sequent recogni on of a PAM sequence triggers the DNA duplex to open up (Figure ??A),
exposing the PAM proximal nucleo des to base pairing interac ons with the guide [? ? ].
From here, an R-loop is formed, expanding the guide-target hybrid in the PAM distal direc-
on [? ? ? ? ? ? ]. If the target and guide reach (near-) full pairing, cleavage of the two

DNA strands is triggered [? ].
To establish the determinants of off- vs. on-target cleavage, we construct a biophysical
model of sequen al target recogni on in the unsaturated binding regime (see Methods).
Using this model, we can calculate the rate of cleavage for off-targets, given the guide. To
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Figure 2.1: Kine c model of RGN target recogni on. (A) The RGN ini ally binds its’ substrate at the PAM site,
from which it can either unbind with rate b( ), or ini ate R-loop forma on with rate f( ). A par ally formed
R-loop of length grows to length with rate f( ), or shrinks to length with rate b( ). Eventually,
the RGN will either cleave its substrate with rate f( ) or reject the substrate and unbind with rate b( ). In
the special case of a RGN that does not u lize PAM binding, it is assumed to bind straight into the ini al state of
R-loop forma on. (B) The transi on landscape of our minimal model. In the le panel, we illustrate a PAM bound
enzyme kine cally biased toward R-loop forma on by different amounts (black, grey, and light grey curves). The
kine c bias for the canonical PAM shown as PAM. In the middle panel we illustrate two kine c biases toward R-
loop extension (black and grey curves), with the larger bias indicated as C. In the same panel we further illustrate
two kine c biases against R-loop extension (grey and light grey curves) at mismatches (red ver cal lines), with the
largest bias shown as I. Once the complete R-loop is formed, the system is kine cally biased against cleavage
by clv

C/I C/I ∓ clv, as dictated by the nature of the terminal base pairing. See Figure ?? for complete energy
landscapes.

incorporate the mechanics of hybrid forma on, we envision the changing extension of the
R-loop as a diffusion through a free-energy landscape, eventually ending in either unbind-
ing from, or degrada on of, the targeted sequence (Figure ??A-B). Our model is parame-
terized by the free-energy of transi on states surrounding the metastable states of PAM
binding and the different progressions of R-loop forma on (see Methods and sec on ??).
When in a metastable state, the RGN will be biased towards transi oning to the neighbor-
ing state with the lowest intervening barrier. The difference in heights of the surrounding
barriers thus encodes the direc ons in which the system is most likely to progress, and we
therefore refer to these differences as kine c biases (Figure ??C). The balance between
eventual unbinding or cleavage can be calculated with reference to kine c biases alone,
and visualized by a ‘transi on landscape’ tracing out the transi on states (Figure ??B, ??
and Methods). In such a landscape, the R-loop typically grows whenever the forward bar-
rier is lower than the backward barrier; that is, whenever the transi on landscape lts
downward. To facilitate the discussion of our exact results, we appropriate a rule-of-thumb
from the limit of large biases (Methods): a er binding the PAM, Cas9 is most likely to un-
bind before cleavage if the highest barrier to cleavage is greater than the highest barrier
to unbinding, and vice versa (Figure ??A-B).
Though we treat the general scenario in the Methods sec on, we here further limit our-
selves to a minimal descrip on with only four effec vemicroscopic parameters, pertaining
to the average kine c bias for: R-loop ini a on a er PAM binding (ΔPAM), R-loop extension
past a correctly matched (ΔC) and mismatched (ΔI) base pairs, and addi onal bias against
cleavage once the R-loop is fully formed (Δclv) (for defini ons see Figure ??B and Meth-
ods). The parameter Δclv is chosen such that the forward barrier a er R-loop comple on
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is independent of the nature of the terminal base (Methods), se ng the final bias against
cleavage to ΔclvC/I = ΔC/I ∓ Δclv (Figure ??B). Using this approach, we inves gate to what
extent our minimal model explains the four empirical targe ng rules deduced from exper-
iments.

Figure 2.2: Rule (i) – seed region. (A) The rela ve-to-wildtype cleavage probability of a target with a single
mismatch. Our model predicts a sigmoidal curve, with maximum off-target ac vity max, seed length seed, and
width of the seed to non-seed transi on ∼ / C. See figure ?? for parametric sweeps. (B) Transi on landscapes
illustra ng that the placement of a single mismatch (fltr: before, exactly at, beyond the seed’s border) influences
the cleavage probability. (C) Increasing the kine c bias against cleavage can suppress cleavage of off-targets with
a PAM distal mismatch (compare right panel to right panel in (B)), while s ll maintaining a high on-target ac vity
(le panel).

2.2.1. Rule (i): Seed region
Following PAM binding, base pairing between guide and target is a empted (Figure ??B;
middle panel). To establish if the above men oned dependence of the cleavage propen-
sity on the posi on of mismatches within the guide-target hybrid could originate from the
kine cs of the targe ng process, we calculate the rela ve cleavage probability on a se-
quence with a single mismatch at posi on , compared to the cleavage probability on the
target sequence. In sec on ?? we show that this rela ve cleavage probability is in general
sigmoidal

𝑝clv(𝑛) =
𝑝max

1 + exp [−(𝑛 − 𝑛seed)ΔC]
, (2.1)

with 𝑛seed giving the posi on where the cleavage probability is half that of its maximum
𝑝max (Figure ??A), and the biases are measured in units of 𝑘 𝑇. We iden fy 𝑛seed as the
length of the kine c seed region, beyondwhich amismatchwill no longer strongly suppress
cleavage (Figure ??A). From Equa on ?? we see that the width of the transi on from seed
to non-seed region directly reports on the (average) correct-match bias (ΔC, see sec on
??), becoming narrower as the bias increases (Figure ??A and Figure ??A).
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The emergence of a seed-like region can be understood fromconsidering the rule-of-thumb
that the fate of the enzyme is dictated by the largest barrier: when a mismatch is placed at
𝑛seed (Figure ??B; right panel), the highest barrier to cleavage matches the barrier towards
unbinding, guaranteeing a near equal probability for cleavage and unbinding. Placing the
mismatch closer to the PAM increases the highest barrier towards cleavage (compare high-
est node to first node in Figure ??B; le panel), increasing the probability of rejec ng such
off-targets. Moving the mismatch distally from the PAM will gradually lower the highest
barrier towards cleavage (Figure ??B; middle panel), increasing the probability of accept-
ing such off-targets. Though the exact form of the parameters of Equa on 1 are given in
the Supplemental Informa on, it is informa ve to here give the kine c seed length in the
large-bias limit (Methods, ??),

𝑛seed ≈
ΔI − ΔPAM

ΔC
+ 1 (2.2)

From this we see that PAM bias and the base pairing biases all contribute to se ng the
extent of the seed region (Figure ??A, ??B). Weakening the PAM or correct-match bias ex-
tends the seed region, while weakening the bias for incorrect matches shrinks it.
A er PAM recogni on and R-loop forma on, cleavage completes a successful targe ng
process (Figure ??B; right panel). Tuning the final transi on state allows us to toggle be-
tween different regimes of minimal single-muta on specificity. Targets with a PAM distal
mismatch get cleaved with near unity probability (𝑝max ≈ 1) only if all transi on states
towards cleavage (including the cleavage step) lie well below the transi on state to un-
binding (Figure ??C; le panel, Figure ??C). For slow enough enzyma c ac vity, the final
barrier towards cleavagemight not go far below the barrier to unbinding, limi ng the max-
imal cleavage compared to the perfect match (𝑝max < 1)(Figure ??C; right panel). Conse-
quently, there can be a no ceable effect on off-target ac vity also when the mismatch is
outside the seed region (Figure ??A, ??C). Reversing this logic implies that a 𝑝max < 1 is
indica ve of a rela vely slow cleavage reac on.

2.2.2. Rule (ii): Mismatch spread
Considering more complex mismatch pa erns, we start by addressing all possible dinu-
cleo de mismatches (Figure ??A and ??B). The overall cleavage and binding pa erns ob-
tained strongly resemble experimental observa ons [? ? ? ]. As expected, placing both
mismatches within the seed disrupts cleavage (Figure ??A). However, moving the mis-
matches outside the seed does not necessarily restore cleavage ac vity.With the first mis-
match outside the seed region, a second mismatch only abolishes cleavage if it is situated
before 𝑛seed + 𝑛pair (Figure ??B), with
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Figure 2.3: Rule (ii) – mismatch spread. (A) The rela ve-to-wildtype probability to cleave a target with two
mismatches for a systemwith PAM . , I , C and clv . The seed length seed
is indicated with dashed lines, and seed pair is indicated with do ed lines. (B) Schema c of the probability to
cleave a target with two mismatches. The target is typically rejected in both blue regions and rejected in the red.
(C) Probability to cleave a target with a block of mismatches as a func on of the loca on of the last mismatch.
Also see ??. (D) Spreading out blocked mismatches (le panel) around their average posi on significantly lessens
the barrier to cleavage (right panel).

𝑛pair ≈
ΔI
ΔC
+ 1, (2.3)

in the large-bias limit (Methods and sec on ??). The general form of the two-mismatch
seed region is shown in Figure 3B, where only off-targets in the red region lead to cleav-
age. In the dark blue region, off-targets are rejected due to the first mismatch, and in the
light blue region they are rejected due to the second mismatch. The single- and double-
mismatch rules can now be unified and generalized (see Figure ??D; right panel) into a
single rule for any number of mismatches: ”Off-targets will typically be rejected if any mis-
match, say the mth mismatch, is posi oned closer than 𝑛seed+(𝑚−1)𝑛pair to the PAM.”.
Note that for systems not requiring PAM recogni on,𝑛seed = 𝑛pair. The above rule also
captures the extreme case of a ‘block’ of consecu ve mismatches, which has also been
inves gated experimentally [? ? ? ? ]. Placing such a block effec vely acts as placing a
single mismatch with the bias ΔI scaled by the size of the block (Figure ??C-D and Figure
??), giving a block-seed region of size 𝑛seed + (𝐵 − 1)𝑛pair. Hence, a block of mismatches
leads to less off-targe ng compared to spread out mismatches (Figs 3C-D). Given the cor-
respondence of these predic ons with literature, our model seems to automa cally and
correctly capture the non-mul plica ve cleavage suppression by mul ple mismatches, in
sharp contrast to the ad hoc scoring schemes employed in current predic on algorithms [?
].
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2.2.3. Rule (iii): Differential binding vs. differential cleavage

Figure 2.4: Rule (iii) - Differen al binding versus differen al cleavage. (A) Transi on landscapes illustra ng the
difference between ac ve Cas9 (grey curves) and dCas9 (black curves) when encountering either the cognate site
(le panel) or an off-target with amismatch within the seed (right panel). (B) The dissocia on constant for targets
with any combina on of two mismatches for energe c biases PAM . , C and I . The
endof the seed region is indicatedwith dashed lines. See figure ??for single-mismatchedoff-targets. (C) Transi on
landscape for an ac ve Cas9 bound to an off-target possessing a block of mismatches placed at the PAM distal
end. Even though cleavage is unlikely, unbinding takes a long me.

Cataly cally dead systems (for example dCas9 [? ] or Cascade without Cas3) bind
strongly to sites that their cataly cally ac ve counterparts do not cleave [? ? ? ? ? ? ]. In
order to explain this effect, we model inac ve systems with a very large cleavage barrier
(gray in Figure ??B; right panel, Methods). In agreement with experimental observa ons
[? ], our model predicts a dissocia on constant that is higher when a mismatch is placed
closer to the PAM (Figure ??B and ??).
In general, the gene edi ng (Cas9) and gene silencing (dCas9) capabili es should be seen
as two related but separate proper es of the RGN. For example, the most stable config-
ura on of the RGN on the mismatched target shown in the right panel of Figure ??A is a
bound state with a par al R-loop (purple). However, a cataly c ac ve variant will most
likely eventually reject this off-target (gray) as the barrier to cleavage is higher than to un-
binding. Hence, even though cleavage sites are strong binders (Figure ??A; le panel),
observing a long binding me on an off-target site should not be taken to imply that this
site will also display substan al off-target cleavage (Figure ??A; right panel).
Ac ve Cas9 variants also strongly bind to sites they are incapable of cleaving, especially
those containing mul ple PAM-distal mismatches [? ? ]. Such a series of mismatches
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induces a large barrier that opposes, and thereby likely prevents, cleavage (Figure ??C).
Although we are yet to extract temporal informa on from our model, it is clear that the
state right before the first mismatch (purple) might be stably bound over experimental
mescales.

Figure 2.5: Rule (iv) – specificity-efficiency decoupling. (A) The cleavage probability on a fully cognate target
but with a mismatched PAM, compared to one with the correct PAM, as a func on of the average and difference
in the kine c bias of the correct and incorrect PAM. Independent of the sequence following both PAMs, one can
iden fy three regimes (Supplemental Informa on). Only in regime a is the RGN’s specificity improved through a
decrease in the average PAM bias toward R-loop ini a on. (B) On-target efficiency for the target with the correct
PAM. In regime a, the RGN’s efficiency is not compromised, allowing for simultaneous maintenance of on-target
efficiency and specificity. (C) The cognate protospacer flanked by either a canonical PAM (black) or incorrect PAM
sequence (grey) is bound by aWT (top panel) or engineered RGN (panel). (D)Amatched/mismatched protospacer
(black/grey) bound by wildtype/engineered RGN (top/bo om panel).

2.2.4. Rule (iv): Specificity-efficiency decoupling
R-loop forma on is preceded by PAM recogni on. Although PAM mismatches o en com-
pletely abolish interac ons with the target [? ? ? ], binding to (and interference with)
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targets flanked by non-canonical PAM sequences has been observed [? ]. Since PAM mis-
matches will shi the en re free-energy landscape upwards from the bound PAM state
onwards (Figure ??B; le panel), these always increase the highest barrier to cleavage,
thereby reducing the cleavage efficiency on any sequence. For increased specificity, we
thus need the cleavage efficiency for the off-targets to be reduced more than for the tar-
get itself.
Protein reengineering approaches most easily affect the overall strength of PAM inter-
ac ons, influencing the kine c bias for both the correct PAM (ΔPAM) and incorrect PAM
(ΔPAM)). In Figure ??A we show the rela ve cleavage efficiency between protospacers
flaked by incorrect and correct PAMs, and in Figure ??B we show the cleavage efficiency
with the correct PAM — both as func ons of the average kine c bias ((ΔPAM + ΔPAM)/2)
and the kine c bias difference (ΔPAM − ΔPAM). As long as the system operates in region A
(Figure ??A), it is possible to increase the specificity by lowering the average kine c bias
toward R-loop forma on without changing the kine c-bias difference (sec on ??). Out-
side this region, the system either does not discriminate between PAMs (region C) or is
insensi ve to the average kine c bias (region B). Interes ngly, it is only in region B that
lowering the average bias also leads to a lower on-target efficiency (Figure ??B), and con-
sequently the wild type (wt) nuclease can only be improved if brought into region A, where
it is possible to engineer specificity increases with limited costs in the on-target efficiency.
The transi on-state diagrams shown in the top panel of Figure ??C show a situa on where
the barrier to cleavage (right most node) is substan ally lower than the barrier to unbind-
ing (le most node) for two different PAM biases, both resul ng in near unit-probability to
cleave , and corresponding to region C in Figure ??A. Reengineering the nuclease to have
overall weaker PAM binding (Figure ??C, bo om panel) brings the system into region B,
where the cleavage probability for the correct PAM (black) remains close to unity, while
the probability of cleaving with the incorrect PAM (gray) is dras cally lowered. The above
scenariomight explain how PAMmutant Cas9s are able to outperform their wildtype coun-
terparts [? ? ] on specificity without significant loss in efficiency.

Another approach to gain specificity is to weaken the protein-DNA interac ons effec ng
the bias for R-loop extension [? ? ]. In Figure 5Dwe show how engineering the PAM-bound
nuclease in this way, inducing a lower gain for correct base pairing, can render previously
cleaved off-targets (gray line in top panel) rejected (gray line in bo om panel). We further
see how we can retain on-target specificity if the highest transi on state towards cleavage
(rightmost node of black line) remains substan ally lower than the transi on state to un-
binding (le most node of black line). The above scenario might explain howmutant Cas9s
could have an extended seed, while having negligible reduc on in on-target cleavage ac-
vity [? ? ].

2.2.5. Comparison to experimental data for a broad class of RNA
guided nucleases

To test our model, we acquired published datasets from different RGN systems, and fi ed
Equa on ?? to singly mismatched targets and blocks of mismatches. The fi ed sigmoid has
only three effec ve fit parameters (𝑝max orKD,max, 𝑛seed and ΔC), so we can unfortunately
not get an es mate for all microscopic parameters from the single-mismatch datasets (sec-



2.2. Results

2

39

Figure 2.6: Comparison to experimental data. Fit of sigmoid (equa on ??) to experimental data from: (A)
spCas9 [? ]. (B) LbCpf1 [? ]. (C) AsCpf1 [? ]. (D) Human Argonaute 2 [? ]. (E) E. coli Cascade complex [? ]. Values
reported in (A)-(D) correspond to the median of 1000 bootstrap replicates, and the confidence intervals in the
text correspond to 68%. See Figure ?? for addi onal fits.

ons ?? and ??)—for this, further experiments are required, as outlined below. Details of
the fi ng procedure and addi onal fits can be found in sec on ??.

Perhaps the best characterized RGN system is the Type-II CRISPR associated Streptococcus
Pyogenes Cas9 (spCas9). Among the systemswe es mate parameters for, the dataset from
Anderson et al. [? ] traces out the sigmoidal trend par cularly well. For this data set we fit
out a kine c seed of about 11.3 [11.0,11.4] nt (68% confidence interval between 11.0 and
11.4), and an average bias per correct base pair of about ΔC = 1.70[1.15, 4.0]𝑘 𝑇 (Figure
??A). This posi ve bias indicates that associa on with the RGN stabilizes the hybrid, which
is in line with recent studies demonstra ng that the protein has a strong contribu on to
the energe cs of the resul ng bound complex [? ? ? ]. The rela ve cleavage probability
levels-off around 𝑝max = 0.74[0.72, 0.77], indica ng that spCas9 retains some specificity
even against errors that are outside the seed. We performed addi onal fits using a second
target site from the dataset of Anderson et al. and data obtained from Pa anayak et al. [?
], which produced results that do not significantly differ (Figures S5A-C).

Recently, the type V CRISPR associated enzyme Cpf1 has been characterized as another
single-subunit RGN [? ]. Kleins ver et al. [? ] performed in vivo (human cells) cleavage
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assays using two different variants named LbCpf1 (Figure ??B) and AsCpf1 (Figure ??C).
Both variants exhibit quan ta vely similar off-targe ng, both with seed lengths (𝑛seed ≈
18.9[18.5, 19.2] nt for LbCpf1 vs. 19.1 [18.7,19.3] nt for AsCpf1) and maximum off-target
ac vity (𝑝max ≈ 0.84[0.66, 1.0] nt for LbCpf1 vs. 0.83[0.71,1.0] for AsCpf1). Compared to
spCas9, the Cpf1s are much more specific as the seed region is significantly larger.

Single-molecule FRET experiments done with hAgo2 [? ] u lized targets with two con-
secu ve mismatches. Given that hybrid forma on is not preceded by PAM recogni on,
and that consecu ve mismatches impose a combined penalty (Figures 3C-D), the es -
mated half-satura on point is approximately twice the kine c seed length for a single mis-
match ( 𝑛seed ≈ 10 [9.5,9.9] nt). The hAgo2 data thus suggests a similar seed length as
that of spCas9 (Figure ??D), consistent with the observa on that hAgo2 and spCas9 dis-
play structural similari es within their respec ve seed regions [? ]. Our fits further re-
veal that hAgo2 likely exhibits a substan ally lower gain per correctly formed base pair
(ΔC ≈ 0.77[0.66, 0.92]𝑘 𝑇).

Unlike the aforemen oned RGNs, the Type I CRISPR uses a mul -subunit protein complex,
termed Cascade, to target invaders [? ]. Semenova et al. [? ] measured the dissocia-
on constant in vitro of the E. Coli subtype I-E Cascade. Fi ng their data, we find that

mismatches within the first 9 nt of the guide lead to rapid rejec on (Figure ??E). Interest-
ingly, the energe c gain for a match again suggests a large contribu on of the protein to
the overall stability (energe c bias 𝛿C ≈ 3.7𝑘 𝑇). Structurally, subunits of the Cascade
complex bind to nucleo des 6, 12, 18, 24 and 30 of the guide [? ]. To model this property
we assume that incorpora ng matches or mismatches at the Cascade-guide binding posi-
ons does not affect affinity. Including this effect mainly reduced the es mated energe c

gain for matches (𝛿C ≈ 1.9𝑘 𝑇, sec on ?? and Figure ??D), a value more in line to those
obtained for the other CRISPR systems.

2.3. Discussion
We have presented a general descrip on of target recogni on by RGNs with a progres-
sive matching between guide and target (Figure ??A), applicable to both CRISPR and Arg-
onaute systems. In its simplest form, our model contains only two parameters to describe
the R-loop forma on process: an average kine c bias towards incorpora on beyond a
match (ΔC) and an average kine c bias against extending the R-loop beyond a mismatch
(ΔI) (Figure ??B; middle panel). Despite the simplifica ons going into this minimal model,
we can qualita vely understand the targe ng rules for these RGNs as resul ng from kinet-
ics, as illustrated graphically for: seed region (Figure ??B), mismatch spread (Figure ??D),
the poor match between cleavage propensity and binding propensity (Figure ??A) and the
specificity-efficiency decoupling (Figure ??C-D ). Based on our model we have been able
to establish a general targe ng rule: ”Off-targets will typically be rejected if any mismatch,
say the mth mismatch, is posi oned closer than 𝑛seed + (𝑚 − 1)𝑛pair to the PAM.”

Although Figure 6 shows that our model can already describe experimental data from var-
ious RGNs, the number of microscopic parameters in the physical model (ΔPAM,ΔC ,ΔI and
Δclv, Figure 1B) exceeds the number of fit parameters available from single-mismatch ex-
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periments (ΔC,𝑝max, and 𝑛seed). It is therefore not possible to determine all themicroscopic
parameters from single-mismatch experiments alone. However, Figure 3B shows that with
two mismatches, we could also fit out 𝑛pair, and so determine all the microscopic param-
eters. It should be possible to directly extract all four microscopic parameters once such
extended datasets become available.

One should recognize that ourminimalmodel does not capture all the physics of the target-
ing process. Nucleic-acid interac ons are explicitly sequence dependent, RGNs are known
to undergo conforma onal changes prior to cleavage [? ? ? ], and the ΔC we fit out in
Figure 6 technically only reports the matching-bias at the end of the seed, allowing for
variable biases along the R-loop. Although these are all topics that need to be explored for
future improved quan ta ve predic ons, such extensions are not needed to explain the
observed targe ng rules, and will not qualita vely alter the trends predicted by our model.
An excep on might be the data from Cpf1 (Figure ??B-C), since it shows an increased tol-
erance to mismatches of nucleo des 1,2,8 and 9 compared to our minimal model, with a
second independent study showing the same behavior [? ]. Similarly, devia ons from the
sigmoidal trend are observed for Cascade (Figure ??E). Such features could be explained
either through a sequence or posi on dependence of the kine c biases.

In conclusion, our model is capable of explaining the observed off-targe ng rules of CRISPR
and Argonaute systems in simple kine c terms. A er having established the general u lity
of this approach, the next step will be to move beyond our minimal model and gradually
allow for conforma onal control and sequence effects by le ng our parameters depend
on the nature of matches/mismatches as well as their posi ons. Fi ng such a generalized
model against training data would likely improve on present target predic on algorithms
by limi ng overfi ng, as it captures the basic targe ng rules deduced from experiments
while using only a minimal set of physically meaningful parameters.

2.4. Methods
2.4.1. A generalmodel for RGNswith progressive R-loop formation

followed by cleavage
Given the observed dependence of cleavage ac vity on Cas9 concentra on [? ? ? ? ? ], we
here limit ourselves to the regime where nuclease concentra ons are low enough that all
binding sites are unsaturated. The unsaturated regime is also the regime with the highest
specificity, and should therefore be of par cular interest in gene-edi ng applica ons.
We define the cleavage efficiency 𝑃clv(𝑠|𝑔) as the frac on of binding events to sequence
𝑠 that result in cleavage, given the RGN is loaded with guide sequence 𝑔. If we in the un-
saturated regime assume the binding rate to be independent of sequence, we can express
the rela ve rate of non-target vs. target cleavage as

𝑝clv(𝑠|𝑔) =
𝑃clv(𝑠|𝑔)
𝑃clv(𝑔|𝑔)

(2.4)

This rela ve efficiency is a direct measure of specificity, approaching unity for non-specific
targe ng (𝑃clv(𝑠|𝑔) ≈ 𝑃clv(𝑔|𝑔)) and zero for specific targe ng (𝑃clv(𝑠|𝑔) ≪ 𝑃clv(𝑔|𝑔)).



2

42 2. Hybridization kinetics explains CRISPR-Cas off-targeting rules

In our model, we denote the PAM bound state as and the subsequent R-loop states by
the number of base pairs that are formed in the hybrid. Each of the states 𝑛 = 1, ..., 𝑁 are
taken to transi on to state 𝑛−1/𝑛 + 1with backward/forward hopping rate 𝑘b(𝑛)/𝑘f(𝑛)
(Figure ??A). The ra o between forward and backward rates sets the rela ve probability of
going forward and backward from any state, and can be parametrized in terms of Δ(𝑛), the
difference in the free-energy barrier between going backwards and forwards from state 𝑛
(Figure ??A),

𝑘f(𝑛)
𝑘b(𝑛)

= 𝑒 ( ). (2.5)

Here we measure energy in units of 𝑘 𝑇 for nota onal convenience, and we will refer to
Δ(𝑛) as the bias toward cleavage. Themodel (Figure ??A) is known as a birth-death process
[? ], and the cleavage efficiency is given by the expression (sec on ??),

𝑃clv(𝑠|𝑔) =
1

1 + ∑ 𝑒 ( ) , Δ𝑇(𝑛) = ∑ Δ(𝑚). (2.6)

Here Δ𝑇(𝑛) represents the free-energy difference between the transi on-state to solu on
and the forward transi on state from posi on 𝑛 (Figure ??A-C). For systems like hAgo2,
there is no ini al PAM binding [? ? ], and the sums in Equa on ?? should omit the PAM
state (𝑛,𝑚 = 0).

2.4.2. Building intuition by using the transition landscape (large
bias limit)

Though we will use the exact results of Equa on ?? for all calcula ons, it is useful to build
intui on for the system by considering the case of large biases. In this limit, the term (say
𝑛 = 𝑛∗) with the highest transi on-state dominates the sum in Equa ons ?? and ?? (Figure
??A-B), and the cleavage efficiency can be approximated as

𝑃clv(𝑠|𝑔) ≈
1

1 + 𝑒 ( ∗) (2.7)

Based on this we deduce the rule-of-thumb that cleavage dominates (𝑃clv > 1/2) if the
first state of the transi on landscape is the highest (Δ𝑇(𝑛∗) > 0) (Figure ??A). Conversely,
a poten al target is likely rejected (𝑃clv < 1/2) if any of the other transi on states lies
above the first (Δ𝑇(𝑛∗) < 0) (Figure ??B).

2.4.3. A minimal model for RGNs with progressive R-loop forma-
tion followed by cleavage

Given that the defining feature of RGNs is their ability to target any sequence, we expect
the major targe ng mechanisms to depend more strongly on mismatch posi on than on
the precise nature of the mismatches. With this in mind, we consider a sequence inde-
pendent model with the aim of finding a descrip on that captures the gross, sequence
averaged, features with a minimal number of parameters.
Focusing first on how PAM binding effects the system (Figure ??1; le panel), we see that
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Δ(0) = ΔPAM controls the kine c bias between ini a ng R-loop forma on and unbinding.
A canonical PAM (black) promotes R-loop ini a on, while a non-canonical PAM lessens
(darker gray) or reverses (lighter gray) the bias towards R-loop forma on. Note that PAM
independent systems omit this ini al step.
Turning to the bias of R-loop progression, we represent the guide-target hybrid as a se-
quence of matches (C, correct base pairing) and mismatches (I, incorrect base pairing).
Defining the average kine c bias towards/against extending theR-loopbyone correct/incorrect
base pair as ΔC/ΔI (Figure ??B; middle panel), we take Δ(𝑛) = ΔC or Δ(𝑛) = −ΔI depend-
ing on if the base pairing is correct or incorrect (sec on ??). In themiddle panel of Figure 1B
we show a transi on landscape with moderate gains for correct base pairings and moder-
ate costs for incorrect base pairings (dark gray). The black transi on landscape corresponds
to an increased gain for matches, while the light gray corresponds to an increased penalty
for mismatches.
Lastly, considering the bias between cleavage and unwinding of the R-loop, we assume that
an incorrect base-pair at the terminal posi on adds the same change in bias as it did in the
interior of the R-loop. Therefore, introducing the cleavage bias Δclv, we take Δ(𝑁) = ΔclvC
for a correct match and Δ(𝑁) = −ΔclvI for amismatch, with ΔclvC/I = ΔC/I∓Δclv as bias against
cleavage from the fully hybridized state (Figure ??B; right panel). In the right panel of Fig-
ure ??B, we show examples where the terminal bias ΔclvC/I corresponds to a terminal match
(black), terminal mismatch (dark gray), and for a cataly cally dead nuclease (light gray).

2.4.4. Dissociation constant for catalytically dead nucleases
Apart from examining cleavage propensity, many experiments have focused on the binding
of cataly cally dead Cas9 (dCas9) or other cataly cally dead RGNs [? ? ? ? ? ? ? ].
To be able to relate pure binding experiments to cleavage experiments, we also calculate
the dissocia on constant KD for our minimal model when describing a cataly cally dead
system (Δclv ≈ ∞) (Figure ??D) through

𝑃bound =
[RGN]

[RGN] + KD
(2.8)

Here 𝑃bound equals the probability to bind a substrate in any of the (𝑁) possible R-loop
configura ons and follows from Equa on ?? (see sec on ??). Further, [RGN] denotes
the concentra on of effector complex. Differences in stability of the bound states now
parameterize our model (Fig S1D).
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2.7. Supplemental Information
2.7.1. A general kinetic model for target recognition
In Figure ??A we illustrate the states of our model. The RGN is described as either being
unbound, bound to the PAM (in case of CRISPR systems), having formed an R-loop of length
𝑛 = 1,… ,𝑁 or having cleaved its target substrate. Let us label these states as 𝑖 ∈ [−1,𝑁+
1], with 𝑁 being the total length of the guide (target) sequence. Each state 𝑖 ∈ [0, 𝑁] has
rates 𝑘f(𝑖) and 𝑘b(𝑖) associated with it for transi oning to 𝑖 + 1 and 𝑖 − 1 respec vely.

The cleavage probability
The probability to cleave a target site once the substrate is bound (𝑃clv) is equivalent to the
fixa on probability of a Birth-Death process with absorbing states being the unbound and
post-cleavage states [? ]. As the deriva on is fairly straight forward, we give it here for
completeness. When star ng with an R-loop of length 𝑛 − 1, we calculate the probability
to cleave 𝑃clv, before reducing the R-loop to a length of 𝑛 − 2. Coun ng all paths that
take you from 𝑛 − 1 to 𝑁 + 1 we can construct a recursion rela on for 𝑃clv, ,

𝑃clv, = ∑ ( 𝑘f(𝑛)
𝑘b(𝑛 − 1) + 𝑘f(𝑛)

(1 − 𝑃clv, )) 𝑘f(𝑛)
𝑘b(𝑛) + 𝑘f(𝑛)

𝑃clv,

= 𝑃clv,
𝛾 + 𝑃clv,

, 𝛾 = 𝑘b(𝑛)
𝑘f(𝑛)

,

or equivalently
1
𝑃clv,

= 1 + 𝛾
𝑃clv,

. (S2.1)

The boundary probability 𝑃clv, , represen ng the probability to cleave staring with a full
R-loop and without reducing the R-loop’s length, is given by a simple spli ng probability

𝑃clv, =
𝑘f(𝑁)

𝑘f(𝑁) + 𝑘b(𝑁)
= 1
1 + 𝛾 . (S2.2)
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Using equa ons ?? and ?? we have

1
𝑃clv,

= 1+𝛾 1
𝑃clv,

= 1+𝛾 +𝛾 𝛾 1
𝑃clv,

= 1+𝛾 +𝛾 𝛾 +𝛾 𝛾 𝛾 1
𝑃clv,

= … = 1+∑∏𝛾 ,

from which it follows that

𝑃clv ≡ 𝑃clv, =
1

1 + ∑ ∏ 𝛾
. (S2.3)

The transition landscape
We assign a free-energy 𝐹 to each metastable state 𝑖 ∈ [0, 𝑁], and the transi on state
energy 𝑇 to the highest free energy point on the reac on path from 𝑖 to 𝑖 + 1, for 𝑖 ∈
[−1,𝑁]. Introducing the a empt rate 𝑘 we write the associated forward and backward
rates as follows (all energies are measured in units of the thermal energy)

𝑘f(𝑖) = 𝑘 exp(−(𝑇−𝐹)), 𝑘b(𝑖) = 𝑘 exp(−(𝑇 −𝐹)) ⇒ 𝛾 = exp(−Δ ), Δ = 𝑇 −𝑇 .
(S2.4)

In terms of transi on-state free energies we can write ?? as

𝑃clv =
1

1 + ∑ exp(−∑ Δ )
≡ 1
1 + ∑ exp(−Δ𝑇 )

, Δ𝑇 =∑Δ . (S2.5)

From the above it is clear that the cleavage probability depends only on the transi on state
energies, and not on the free energies of the metastable states. If we assume there to be
one dominant minimal bias, say for 𝑛 = 𝑛∗, then this can be approximated as

𝑃clv ≈
1

1 + exp(−Δ𝑇 ∗) . (S2.6)

which we will refer to as the large-bias limit.

2.7.2. A minimal kinetic model for target recognition
To understand what cons tutes the targe ng principles of RGNs, we introduce a simplified
model where: for the PAM state (𝑖 = 0) we have Δ = ΔPAM; for a par al R-loop (𝑖 ∈
[1, 𝑁−1]) we haveΔ = ΔC if the 𝑖:th base in the R-loop is correctlymatched, andΔ = −ΔI
if mismatched; for a completed R-loop (𝑖 = 𝑁) we have Δ = ΔC−Δclv if the terminal base
is mismatched, and Δ = −ΔI − Δclv if mismatched. An R-loop in which 𝑛 base pairs are
incorporated, out of which 𝑛C(𝑛) are forming correctWatson-Crick pairs, is then described
by

Δ𝑇 = ΔPAM + 𝑛C(𝑛)ΔC − (𝑛 − 𝑛C(𝑛))ΔI − 𝛿 , Δclv, 𝑛 = 0,… ,𝑁 (S2.7)

where 𝛿 , represents the Kronecker delta: 𝛿 , = 1 if 𝑛 = 𝑁 and 𝛿 , = 0 otherwise.
For PAM independent systems, we instead use

Δ𝑇 = 𝑛C(𝑛)ΔC − (𝑛 − 𝑛C(𝑛))ΔI − 𝛿 , Δclv, 𝑛 = 1,… ,𝑁.



2

46 2. Hybridization kinetics explains CRISPR-Cas off-targeting rules

The emergence of a seed region
Here we show that when comparing off-targets with a single mismatch to the cognate
sequence, the rela ve cleavage probability is sigmoidal, irrespec ve of the values of the
model parameters. Let there be a single mismatch at posi on 𝑛MM, giving

𝑛C(𝑛) = {
0, 𝑛 < 𝑛MM
1, 𝑛 ≥ 𝑛MM

.

Using equa on ?? it is then straight forward to show that

𝑝clv(𝑛MM) ≡
𝑃clv(single error at 𝑛MM)

𝑃clv(no error)
= 𝑝max

1 + 𝑒 C( MM seed) , (S2.8)

where

𝑝max =
(1 − 𝑒 C)𝑒 PAM(1 + 𝑒 on) + 1 − 𝑒 on

(1 − 𝑒 C)𝑒 PAM(1 + 𝑒 tm) + 1 − 𝑒 tm

𝑛seed =
1
ΔC

ln [ 𝑒 I C − 1
(1 − 𝑒 C)𝑒 PAM(1 + 𝑒 tm) + 1 − 𝑒 tm ] ,

(S2.9)

and we have introduced the R-loop comple on bias with a cognate and terminal-mismatch
target respec vely

Δ𝑅on = 𝑁ΔC, Δ𝑅tm = (𝑁 − 1)ΔC − ΔI = Δ𝑅on − (ΔC + ΔI)

as well as the total bias toward cleavage of the on-target and on off-target with terminal-
mismatch target respec vely

Δ𝑇on = Δ𝑅on + ΔPAM − Δclv, Δ𝑇tm = Δ𝑅tm + ΔPAM − Δclv = Δ𝑇on − (ΔC + ΔI).

Here 𝑝max represents an upper bound on the achievable rela ve cleavage rate, and 𝑛seed
marks the transi on from a region with no cleavage (the seed region) to a region with
maximal cleavage. Note that our sigmoid func on has three parameters ( 𝑝max, 𝑛seed and
ΔC), which is one less than then number of microscopic parameters (ΔPAM, ΔC, ΔI, and Δclv).
Hence, we will not be able to fit out all four microscopic parameters relying on single-
mismatch-data alone. Interes ngly, the microscopic parameter ΔC also sets the with of the
transi on region from seed to non-seed. To get an es mate of the width of the transi on
region, we linearize 𝑝clv around the point of most rapid increase (𝑛MM = 𝑛seed)

𝑝clv(𝑛MM) ≈
1
2𝑝max +

1
4𝑝maxΔC(𝑛MM − 𝑛seed). (S2.10)

This func on transi ons from no rela ve cleavage to maximal rela ve cleavage over the
distance 𝑤 = 4/ΔC, giving us an es mate of the width of the transi on region.

When dealing with a stretch of mismatches, the rela ve cleavage probability s ll fol-
lows the sigmoidal form of equa on ??, but with modified 𝑝max and 𝑛seed.
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The physiological limit and the large-bias limit
For the correct PAM we expect there to be a considerable PAM bias, and assuming at least
a moderate bias for R-loop extension over correct basepairs, we should be able to take
(1 − 𝑒 C)𝑒 PAM ≫ 1 in equa on ??. Further, we expect the overall bias on an on-target
to be strongly toward cleavage (Δ𝑇on ≫ 1), as well as a large change in total bias when
comparing a correctly and incorrectly matched base pair (ΔI + ΔC ≫ 1). With these as-
sump ons equa on ?? becomes

𝑝max ≈
1

1 + 𝑒 tm

𝑛seed ≈
ΔI + ΔC − ΔPAM

ΔC
+ ln𝑝max − ln(1 − 𝑒 C)

ΔC
≈ ΔI − ΔPAM

ΔC
+ 1,

(S2.11)

From thiswe see that themaximumcleavage probability is dictated by the total free-energy
bias toward cleavage. The first term a er the first approximate equality in the equa on for
𝑛seed has a simple interpreta on as the point where the barrier to unbinding matches the
barrier toward cleavage. For the physiological cases examined (see Figure ?? and ??), the
values of 𝑝max are between 0.7 and 1, and ΔC values are order 1 as well. In this limit the
second term adds a correc on term that is only a small frac on of a full nucleo de posi on
and can therefore be neglected, as done in the last step in the above equa on. Equa on
?? can also be arrived at through taking the large-bias limit men oned above.

Generalized targeting rule
As we do not have the experimental data to fit mul ple mismatches, we do not here per-
form the exact calcula on of the cleavage probability for mul ple mismatches. Instead
we start from the fact that the physiological limit of a single mismatch was well described
by the large-bias limit, and so consider also mul ple mismatches in the large bias limit. If
the first mismatch is outside the seed, then the second mismatch (si ng say at 𝑛MM2) will
dominate and balance cleavage and dissocia on when

1
2 ≈ 𝑃clv(𝑛MM2) ≈

1
1 + exp(−Δ𝑇

MM2
) ⇒ Δ𝑇

MM2
≈ 0

From equa on ?? we have (assuming that 𝑛MM2 < 𝑁),

0 ≈ Δ𝑇
MM2

= ΔPAM−2ΔI+(𝑛MM2−2)ΔC ⇒ 𝑛MM2 ≈ 𝑛seed+𝑛pair, 𝑛pair ≡
ΔI
ΔC
+1,

which shows that the second mismatch balances cleavage and unbinding when situated a
further distance 𝑛pair out from 𝑛seed. For each addi onal mismatch added, it is easy to
show that the balance point shi s a further 𝑛pair bases out.

Effect of PAM recognition on target selectivity
Using equa on ?? we can asses how much protec on a par cular non-canonical PAM site
offers against cleaving the host’s own genome. Le ng the canonical PAM have ΔPAM and
the non-canonical PAM have ΔPAM, we can write the rela ve cleavage probability

𝑝PAMclv =
1 + 𝑒 PAM [1 + ∑ 𝑒 ]

1 + 𝑒 PAM [1 + ∑ 𝑒 ]
= 1 + 𝑒 ( PAM

crit
PAM)

1 + 𝑒 ( PAM
crit
PAM)

(S2.12)
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where we renamed Δ𝑅 = 𝑇 − 𝑇 and introduced the cri cal PAM bias ΔcritPAM

ΔcritPAM = ln [1 +∑ 𝑒 ] . (S2.13)

For the case of well separated PAM biases (ΔPAM > ΔPAM), the cleavage probability has
three asympto c regimes

𝑝PAMclv ∼ {
1, ΔcritPAM ≪ ΔPAM ≪ ΔPAM, Region c) in Figure ??A-B
exp [−(ΔcritPAM − ΔPAM)] , ΔPAM ≪ ΔcritPAM ≪ ΔPAM, Region a) in Figure ??A-B
exp [−(ΔPAM − ΔPAM)] , ΔPAM ≪ ΔPAM ≪ ΔcritPAM, Region b) in Figure ??A-B.

A minimal energetic model for target recognition
Now consider a extension of our minimal model where the transi on between metastable
state has energy biases (𝛿PAM, 𝛿C, 𝛿I) in direct analogy with the kine c biases (see equa on
??)

Δ𝐹 = 𝐹 − 𝐹 = 𝛿PAM + 𝑛 (𝑛)𝛿C − (𝑛 − 𝑛 (𝑛))𝛿I. (S2.14)

Hence, all energies are measured with respect to the solu on’s free-energy.

2.7.3. Dissociation constant for catalytically inactive systems
Experiments on inac vated RGNs usually probe the frac on of sites bound at some late
experimental me. Assuming the system has had enough me to equilibrate one typically
calculates the dissocia on constant, the concentra on atwhich the bound frac on reaches
half of its maximum value (second equality in Equa on ??). This is done in analogy to a
more simple two-state model that only has a bound state and an unbound state. To make
this analogy within our model, we consider all molecules that are not in solu on to be
bound.

𝑃ub = 𝑃 , 𝑃 = ∑𝑃 (S2.15)

The binding rate from solu on onto any sequence should be propor onal to the concentra-
on of RGNmolecules. We set our 𝛿PAM within the context of the minimal model Equa on

?? at some reference concentra on, at which we also calculate all free energies (Δ𝐹’s).
Furthermore, in equilibrium Boltzmann sta s cs is valid:

Δ�̃� ([RGN]) = Δ𝐹 − log([RGN]), 𝑃 ∝ 𝑒 ̃ (S2.16)

Taken together, the equilibrium frac on and dissocia on constant are given by

𝑃b([RGN]) =
[RGN] ∑ exp [−Δ𝐹 ]

1 + [RGN] ∑ exp [−Δ𝐹 ]
=

[RGN]
[RGN] + KD

KD =
1

∑ exp [−Δ𝐹 ]
.

(S2.17)



2.7. Supplemental Information

2

49

For our minimal model of equa on ??, with a single mismatch is placed at posi on 𝑛MM,
equa on ?? results in

𝐾D(𝑛MM) =
𝐾max

1 + 𝑒( MM
eq
seed) C

, 𝐾max =
𝑒 PAM(𝑒 C − 1)
𝑒 C I − 1 ,

𝑛eqseed =
𝑁𝛿C − 𝛿I
𝛿C

+ 1
𝛿C

ln
1 − 𝑒 ( C I)

1 − 𝑒 ( C I)

(S2.18)

Note that this seed length 𝑛eqseed does not in general equal its kine c counterpart 𝑛seed in
equa on ??.

2.7.4. Details of fitting procedure
Since comparing rela ve cleavage (or binding) on constructs containing 1 mismatch (or a
set of conseque ve mismatches) leads to a probability/dissocia on constant as in equa-
ons ?? and ??, we fit a sigmoidal func on to the data. Where replicates were available,

we created 1000 bootstrapped replicates, and for each performed a straight least square
fit by minimizing

𝜒 =∑(𝑃data(𝑖) − 𝑃model(𝑖)) (S2.19)

In Figure ?? and ??A-C, we used the bootstrapped median values for all three parameters,
and report the 68% confidence intervals.

In case of the dataset from [? ] no such replicates were available. In stead, we used the
reported averages and standard devia ons to minimize

𝜒 = ∑ (𝑃data(𝑖) − 𝑃model(𝑖)
𝜎tot(𝑖)

) (S2.20)

where we had to take the finite precision of measurements in to account as some errors
were reported as zero. This was done through taking

𝜎tot = √𝜎STD + 𝜎round (S2.21)

with𝜎STD being the reported sta s cal error amongstmul ple replicates and𝜎round = 0.5
a lower es mate of the error introduced by having a finite precision in the measurement.
Since themost rapid transi on out of the seed region that can be recorded is over one base
pair, 𝑤min = 1, we know the highest measurable ΔC is Δmax

C (see equa on ??). Therefore,
we cannot discriminate amongst ΔC values beyond 4, and we have constrained our fits to
respect this condi on.

2.7.5. Cascade binds its guide in sections
A er assembly of the Cascade complex onto the guide RNA, every 6 base is flipped out
and does not interact with the target. Incorpora ng this into the parameteriza on of our
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model we assume that the kine c bias does not dependent on the sequence of guide and
target at these posi ons,

𝛿C(𝑛flip) = −𝛿I(𝑛flip), ∀𝑛flip ∈ (6, 12, 18, 24, 30) (S2.22)

To perform the fit shown in Figure ??D, we chose one par cular realiza on of this condi on
with 𝛿C(𝑛flip) = −𝛿I(𝑛flip) = 0. To allow us to fit a con nuous curve to the data, data
points at any of the 𝑛flip posi ons where not taken into account and the remaining data
points where re-indexed accordingly. The resul ng plot shows the piecewise con nuous
curve when we re-introduce the flipped out bases by equa ng the dissocia on constant to
its wildtype value at these posi ons.

Figure S2.1: General Energy landscapes, related to figure ??. (A) Free-energy landscape underlying the scheme
of figure 1A. Our model is completely determined by the set of transi on states (open circles). The largest barrier
opposing cleavage, is given by the point with the highest drawn transi on state (smallest ). In the limmit
of large kine c biases (see Methods: ‘high bias limit’ ), it is this barrier that dominates the probality to cleave
the target sequence represented. The landscape shown represents a target that is likely cleaved as the largest
barrier is opposing unbinding rather then cleavage, or, in other words, the highest transi on state lies below the
unbinding transi on (le most circle). (B) On the contrary, a target will likely get rejected if the highest transi on
state (placed at ∗) lies above the transi on state towards solu on. In this scenario the largest barrier obstruc ng
cleavage is larger then the barrier hindering unbinding. (C) Examples of transi ons that bias the RGN to extend
the R-loop if the transi on state to the right lies below the one to the le (le panel), or to shrink the R-loop
if the transi on state to the right lies above the one to the le (right panel). The difference in heights of the
transi on states is refered to as a ‘kine c bias‘. (D) Free-Energy landscape as in figure A, in which parameters in
equilibrium limit are indicated. Energe c biases ( ( )) are now set by the stable states within the diagram and
their cumula ve gain ( ( )) is used to calculate the dissocia on constant.
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Figure S2.2: Single mismatch off-targets, related to figure ??. (A) Rela ve probability of cleaving a singly mis-
matched target. Seed length ( seed) is kept constant by tuning C and I, while ensuring equa on 2 of the main
text is sa sfied ( clv , PAM . ). (B) The width of the transi on region from seed to non-
seed is set by the posi ve bias for correct base pairs ( C)( clv , PAM . ). (C) Tuning the
intrinsic bias against cleavage ( clv) allows for differen al targe ng of sequences with PAM distal mismatches by
shi ing max of equa on 1 of the main text ( C , PAM , I ).



2

52 2. Hybridization kinetics explains CRISPR-Cas off-targeting rules

Figure S2.3: Block of mismatches, related to figure ??. The probability to cleave a target with conseque ve
mismatches is equal to the probability to cleave a target with a single mismatch (placed at the start of the block)
and with a mismatch bias scaled by the length of the block ( C , PAM , clv ).

Figure S2.4: Dissocia on constant for single-mismatch targets, related to figure ??. (A) Dissocia on constant
for singly mismatched targets. Fixing C fixes the width of the curve, the steepness of the transi on from seed
to non-seed ( PAM , C ). (B) Fixing the ra o between match and mismatch energies fixes the
seed length ( EQ

seed through equa on ??) ( PAM , I C).
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Figure S2.5: Addi onal comparison to experimental data , related to figure ??
(A)Data from Anderson et al. [? ], PSMD7 target Confidence interval for fit parameters (68%): C[0.43,4.0), seed
[12.3,14], max[0.53,0.75]. (B) Data from Andersonet al. [? ],global fit to both target sites (VCP2 target is shown
in Figure 6 of main manuscript). Confidence interval for fit parameters (68%): C[0.59,4.0), seed [10.9,13.9],
max[0.50,1.0]. (C) Data from Pa anayak et al. [? ], for each muta on posi on the median score of all single-

mismatched targets within the library with the muta on at that loca on was used. Errorbars indicate standard
devia on. Confidence interval for fit parameters (68%): C[0.20,4.0), seed [7.5,14.3], max[0.58,0.98]. (D) Data
from Semenova et al. [? ], fit performed a er accoun ng for the assembly of Cascade onto its guide in sec ons.
All experimental data shown corresponds to mean ± standard devia on.
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Mechanistic modeling explains

dCas9 binding and Cas9
cleavage dynamics

Genome engineering using the RNA guided DNA endonuclease CRISPR-Cas9 is
on the rise. When loaded with a single-guide RNA (sgRNA), the Cas9-sgRNA
binds and cleaves the DNA site complementary to the supplied guide sequence.
Unfortunately, Cas9-sgRNA is known to also cleave DNA sites with non-perfect
complementarity, a phenomenon more commonly known as off-targeting. To-
wards quantifying the risks of its implementation, wemodel the (off-)target bind-
ing, dsDNAunwinding, and cleavage by Cas9-sgRNA to tell the fraction of cleaved
DNA when subjected to a fixed nuclease concentration for a given time. Within
the same physical model, we also capture the binding dynamics of catalytically
‘dead’ dCas9 and rationalize the large disparity in off-targeting observed with
its active counterpart. Using a series of recent high-throughput biophysical ex-
periments, we extract the microscopic free-energy landscape that underlies the
interactions between Cas9-sgRNA and an (off-)target DNA. We reveal the major
conformational change, which repositions Cas9’s nuclease domains, initiates si-
multaneously with DNA unwinding, only to be completed once a (near) complete
RNA-DNA hybrid is formed. Finally, by direct comparison and using the free-
energy landscape, we rationalize how our kinetic model improves upon existing
thermodynamic models.
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3.1. Introduction

C RISPR (clustered regularly interspaced short palindromic repeats)-Cas (CIRPSR associ-
ated) systems, CRISPR-Cas9 systems in par cular, have opened the door to a mul tude

of gene edi ng applica ons [? ? ]. Cas9 uses two RNA molecules – the CRISPR RNA (cr-
RNA) and trans-ac va ng crRNA (tracrRNA) – as a guide to bind and cleave complementary
(double-stranded) DNA. Most biotechnological applica ons instead load Cas9 with a syn-
the c singe-guide RNA (sgRNA) containing a 20 nucleo de (nt) long sequence designed to
be complementarity to the DNA sequence one wishes to target [? ]. The rela ve ease by
which Cas9-sgRNA can be programmed to bind and cleave any (genomic) DNA sequence
of interest has enabled its use in gene silencing/ac va on [? ], fluorescent imaging of ge-
nomic loci [? ], RNA or DNA detec on [? ? ] and genome edi ng [? ? ].

Structural [? ? ] and biophysical [? ? ? ] studies indicate that Cas9’s two nuclease domains
(HNH and RuvC) are ac vated only a er binding the DNA target, which is o en taken to im-
ply Cas9 is reasonably specific. However, Cas9-sgRNA also targets sites (off-targets) other
than those fully complementary to its guide (the on-target) [? ? ? ? ? ? ? ? ? ]. Such off-
targe ng can induce unwanted genomic altera ons, including point muta ons, large-scale
dele ons or chromosomal rearrangements [? ]. Due to the high risk of deleterious effects,
such edi ng errors have impeded a wide-spread implementa on of Cas9-sgRNA in human
therapeu cs.
Though experiments have demonstrated that the posi on of mismatches along the guide-
to-target hybrid strongly influences both binding and cleavage ac vi es, the process be-
hind this is not yet quan ta vely understood. For example, cataly cally inac ve (‘dead’)
dCas9 notoriously binds more off-targets sites than Cas9 cleaves [? ? ? ? ], and there is at
present no way of transla ng binding affini es into cleavage propensi es, or vise versa.

Here we unify binding and cleavage of Streptococcus pyogenes Cas9 (spCas9) within a sin-
gle kine c model. We expect such a physics-based framework to hold several advantages
compared to exis ng in silico predic on tools that are either based on empirically derived
scoring schemes [? ? ] or Machine Learning approaches [? ? ] u lizing scoring schemes
derived and hidden within a “black box” algorithm. First, all our model parameters are
physically interpretable, rates and energies determining the binding/cleavage reac ons. As
a result, the model’s output is physically interpretable as well, returning effec ve reac on
rates for either binding or cleavage reac ons under variable experimental condi ons. This
allows us to tell more than what off-targets are cleaved most (at steady-state) and answer
the ques on: “What frac on of my off-target pool is bound or cut at a given nuclease con-
centra on and a er a given me?” Hence, such a model offers an in silico tes ng-ground
for future binding or cu ng based experiments.
Second, using the language of free-energy landscapes allows us to e reac on intermedi-
ates (metastable states) to structural data.

Expanding upon our own kine c modeling efforts (Chapter ??)[? ] we shall use three high-
throughput biophysical datasets to elucidate the free-energy landscape that (d)Cas9-sgRNA
experiences while interac ng with (off-)target DNA. First, Boyle et al. [? ] measured the
rate of change in bound DNA frac on at fixed dCas9-sgRNA concentra on in the first 1500
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seconds of the reac on for a library of off-targets. Second, Jones et al. [NucleaSeq data
from [? ]] used satura ng concentra ons of (ac ve) Cas9-sgRNA to determine effec ve
cleavage rates. Finally, Jones et al. [CHAMP data from [? ]] independently measured the
half-satura ng concentra ons 10 minutes a er introducing (inac ve) dCas9-sgRNA. We
demonstrate that our parameterized model is capable of accurately describing all three
quan es. Moreover, we can predict the half-satura ng concentra ons, while training
the model only with data taken at fixed concentra on. To the best of our knowledge, we
thereby present the first physical model capable of quan ta vely describing both bind-
ing and cleavage reac ons, for both varying (d)Cas9-sgRNA concentra ons and incuba on
mes.

The free-energy landscape we propose, the extracted model parameters, helps us explain
experimental observa ons in terms of reac on rates for the sub-processes of ini al target
binding, (par al) hybrid-forma on and inducing the DNA breaks. In par cular, the free-
energy landscape helps us understand how Cas9 balances being both an efficient (high
enough ac vity on on-target) and specific (low enough ac vity on off-targets) nuclease,
at the cost of binding more promiscuously. We show mismatches come at (nearly) equal
energe c costs throughout the guide-target hybrid, while the free-energy represen ng in-
terac ons with the on-target shows a dis nct posi on dependence. We shall demonstrate
how the previously characterized conforma onal rearrangements involving Cas9’s two nu-
clease domains [? ? ? ] manifests itself within our proposed Cas9-gRNA free-energy land-
scape. Hence, we thereby unify observa ons across bulk and single-molecule experiments.

Finally, we demonstrate how both the state-of-the-art predic on tool [? ], as well as the
recently published model by Zhang et al. [? ], can both been seen as a limi ng case of our
more general model. By direct comparison of predic ons and by showing that we are not
in the required limits, we shall explain exactly how our model improves upon the exis ng
ones.

3.2. Results
3.2.1. A kinetic model for target recognition by (d)Cas9-sgRNA
The reac on scheme underlying our model is shown in Figure ??A. A Cas9-sgRNA from
solu on binds a DNA target a er first using protein-DNA interac ons to recognize a 3nt
‘protospacer adjacentmo f’ (PAM) sequence – canonically 5’-NGG-3’ – located on the non-
target DNA strand [? ? ]. Binding to the PAM triggers a conforma onal change that enables
interac ons with the +1 DNA base pair [? ? ] ini a ng sequen al forma on of a DNA-Cas9-
sgRNA-DNA ‘sandwich’, called the R-loop [? ? ? ? ]. The R-loop can grow and shrink un l
unbinding or reaching comple on, a er which Cas9 uses its two nuclease domains (HNH
and RuvC) to cleave the target and non-target DNA strands [? ].

While exis ng theore calmodels only incorporate the thermodynamics [? ? ], we (Chapter
??)[? ] and others [? ] have emphasized the importance of incorpora ng the kine cs of
the PAM binding, hybridiza on and cleavage reac ons to explain several experimental ob-
serva ons. To build a kine c model of target recogni on by Cas9-sgRNA, we treat every
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R-loop formation cleaved
(active Cas9) 

unbound PAM recognition

...

A

Boyle  (HiTS-FLIP) CHAMP Nucleaseq  B C D

slope:

curve:

Figure 3.1: kine c model captures both binding and cleavage data. (A) General reac on schema underlying
our kine c model. A Cas9-sgRNA from the soluble pool (with known concentra on) binds the DNA at the PAM
site, sequen ally progresses through R-loop forma on, and eventually cuts the DNA. The set of forward and
backward rates describing transi ons (arrows) between states (images) fully parameterize our model. (B) Fit to
HiTS-FLIP data [? ]. top: the associa on rate ( a) is es mated as the slope of a straight line forced through the
origin and fi ed to three measurement points (see S.I.). Figure here shows representa ve calcula ons using the
extracted model parameters. middle: fit against off-targets with 1 mismatch. Bo om: fit against off-targets with
2 mismatches (data in upper triangle/ model in lower triangle). (C) Fit to NucleaSeq data [? ]. top: the cleavage
rate ( clv) is es mated by an exponen al fit to the frac on of uncut off-target DNA (see S.I.). middle: fit against
off-targets with 1 mismatch. Bo om: fit against off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (D) Predic on of CHAMP data [? ]. top: ABA values are the logarithm of the half-satura on
concentra on a er 10 minutes of dCas9-sgRNA interac ons with DNA (see S.I.). middle: predic on of off-targets
with 1 mismatch. Bo om: predic on of off-targets with 2 mismatches (data in upper triangle/ model in lower
triangle).

intermediately sized R-loop (1,2,…,20 nt) as well as the PAMbound and unbound (solu on)
configura ons as metastable states, and transi ons between states as being thermally ac-
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vated. In general, the model is completely parameterized by the set of forward and back-
ward rates (Figure 1A) for every Cas9-sgRNA-DNA combina on.

Though the type of mismatch ma ers, experimental data also shows consistent trends in
both binding and cleavage ac vity with respect to the posi on for any mismatch type (i.e.
the data shown in this work). As a step towards a full sequence dependent model, and to
uncover any sequence independent determinants of targe ng ac vity, we here use a (tar-
get) sequenced averaged parameteriza on of a specific Cas9-sgRNA combina on. In this
scenario, all internal forward reac ons represent the same process of removing one DNA-
DNA base pair and forming a new one between the guide RNA and target strand DNA. To
simplify ma ers, we assume only backward reac ons can be dependent on posi on and
the complementarity between RNA and DNA, thereby carrying all posi on dependency.
This assumes the transi on state encountered when extending the R-loop occurs before
the RNA base interacts with the DNA base (the dsDNA always matches). Hence, apart from
a (concentra on dependent) rate of binding from solu on onto the PAM (𝑘on) and the final
rate of inducing the DNA breaks (𝑘cat), a single forward rate (𝑘f) is used to parameterize all
remaining forward reac ons (Figure ??A, S.I.). Although no direct evidence that forward
rates must be posi on independent, we shall show that the current parameteriza on is
sufficient to capture the trends in the data. Instead of using backward rates as our model
parameters directly, we use the detailed balance condi on (𝑘b(𝑛) = 𝑘f𝑒 n n-1 ) to relate
every backward rate to the forward rate and the difference in free-energy between con-
secu ve states (𝐹n − 𝐹n-1, Figure ??A, S.I.). As we assume that placing a mismatch at the
posi on within the R-loop promotes only the corresponding backward rate, this implies all
free-energies from the posi on onwards will be raised by the same amount (S.I.).

All in all, a total of 44 independent parameters describe target binding and cleavage of
a fixed Cas9-sgRNA at any DNA target: (1-2) The rate of PAM binding from solu on, 𝑘on,
and the free-energy gained/lost in this process,𝐹PAM (both at the (d)Cas9-sgRNA concentra-
on the data is taken), (3) the forward rate 𝑘f, (4-23) 20 free-energy differences describing

progressing the R-loop when guide and target are matching, (24-43) 20 penal es for mis-
matches within the R-loop that (locally) increase the difference in free-energy, raising the
on-target’s landscape from the posi on of the mismatch onwards, and (44) the cataly c
rate 𝑘cat which is set to zero when considering nuclease inac ve dCas9 [see Figure ??A, S.I.
for details].

As Cas9 is known to interact with the DNA, especially with the non-target strand [? ], the
target recogni on process is not fully described by the hybridiza on energies of the nucleic
acids alone. For this reason, adding a matching base pair to the hybrid does not need to
be energe cally favorable, and the parameters corresponding to matches can include any
form of protein-DNA interac ons or conforma onal changes that couple to R-loop progres-
sion. Mismatch penal es are assumed to be posi ve, as replacing amatchwith amismatch
is by defini on energe cally unfavorable.
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3.2.2. Modeling measurable quantities for both dCas9 and Cas9

We have set it as our goal to quan ta vely describe the outcome of both binding and
cleavage experiments within a single physical framework. To this end, three independent
high-throughput biophysical datasets were used to compare against our model.
First, Boyle et al. [? ] used a high-throughput fluorescence microscopy assay (HiTS-FLIP:
‘high-throughput sequencing-fluorescent ligand interac on profiling’) to determine the
rate of change in the bound DNA popula on (for a large library of off-targets) within the
first 1500 seconds upon introducing dCas9-sgRNA (top panel Figure ??B).We used amaster
equa on formula on to numerically determine the temporal evolu on of the bound frac-
on at any off-target, which we interpreted as the equivalent of (background corrected)

fluorescence intensi es. From here, we extracted the reported (effec ve) associate rate
(𝑘a) by mimicking the procedure used in the experiments by Boyle et al. (top panel Figure
??B, see S.I. for details). Note this effec ve associa on rate does not equal the binding
rate from solu on (𝑘on), but rather is modulated by the rate of rejec on from the DNA,
explaining its dependence on mismatch configura on.

A second experiment, the CHAMP (‘chip-hybridized associa on- mapping pla orm’) assay
[? ? ], similar to HiTS-FLIP, uses a high-throughput fluorescence setup to determine binding
ac vi es. However, while HiTS-FLIP tracks the bound frac on over me at a fixed dCas9-
sgRNA concentra on of 1nM, CHAMP measures the bound frac on a er a fixed me of
10 minutes for a series of concentra ons. Hence, while both repor ng on dCas9 bind-
ing off-targets, the CHAMP and HiTS-FLIP datasets probe the binding ac vity’s response to
uniquely varying experimental condi ons. Using the bound frac ons, CHAMP determines
the half-satura on concentra ons (effec ve dissocia on constants) a er 10 minutes of
dCas9 exposure. Comparing this to a reference of 1 nM, allows one to define an ’Apparent
Binding Affinity’ (ABA, ΔABA = ABA− ABAon-target) as the logarithm of the rela ve dissoci-
a on constant (Figure ??D top panel, see S.I. for details).

Finally, Jones et al. also present the NucleaSeq (nuclease diges on and deep sequencing)
technique [? ] to measure the (effec ve) cleavage rates for a library of off-targets (𝑘clv)
by monitoring the frac on of uncut DNA over me and fi ng this to a single exponen al
func on (top panel Figure ??C). The S.I. shows how we numerically determined 𝑘clv for
all off-targets within the experimental library. Note that is not the same as the intrinsic
cataly c rate (𝑘cat) we have set as a model parameter. Rather, 𝑘clv ≤ 𝑘cat, as NucleaSeq
reports the (inverse) average me to bind the target, complete the R-loop and induce the
DNA breaks (which happens at the rate 𝑘cat), explaining how 𝑘clv can depend on the off-
target sequence.
All three experiments used the same guide sequence derived from 𝜆-phage DNA. (CHAMP
and NucleaSeq addi onally used the same off-target library), thereby minimizing poten al
sequence dependencies that would effect a successful transla on between the datasets
by our model.

As a first approach we have fit our model against the HiTS-FLIP data alone, leaving the
others as tests (Figure ??). Figure ??A shows the fit against all library members with a sin-
gle mismatch (top panel), and those with two mismatches (bo om panel), together form-
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ing the en re dataset used to fit. Figure ??B shows that we captured measured values of
CHAMP with high precision (top panel: one mismatch, bo om panel: two mismatches,
combined correla on coefficient: 93%). This strongly indicates that the model’s imple-
menta on of varying nuclease concentra on is valid, as this predic on of dCas9 binding
at varying concentra ons (CHAMP) is based on model parameters extracted solely from
the HiTS-FLIP data taken at 1 nM. Further, using a 𝑘cat ≫ 1𝑠 to not make this the rate
limi ng step, we predict cleavage rates from NucleaSeq with approximately 84% correla-
on, again only using dCas9 based informa on (Figure ??C shows comparison to library

members with one mismatch on top and with two mismatches below). Yet, Figure ??C re-
veals that the model underes mates 𝑘clv for many off-targets (which cannot be resolved
by a further increase in 𝑘cat). In addi on, our stochas c op miza on algorithm (see S.I.
for details) returned rela vely strongly varying parameter sets, while s ll giving similar fit
quali es (Figure S1D). Figures ??D-F show the parameter set (Figure ??D: on-target free-
energy landscape, Figure ??E: mismatch penal es, Figure ??F: rate parameters) of the best
fit (lowest 𝜒 , see S.I.) that was used to produce Figures ??A-C together with parameter
sets belonging to fits that differ less than 5% in their predic on of the fi ed HiTS-FLIP data
(see S.I.). We no ced that apart from the on-target’s free-energy at the PAM and 11-12 nt
into the R-loop, most parameters are allowed to vary significantly without apparent loss in
fit quality. Especially the strongly varying mismatch penal es (Figure ??E) and rate param-
eters (Figure ??F) may not affect the resul ng associa on rates (Figure ??A), but strongly
affect the cleavage rates (Figure ??C). In the coming sec on we shall describe the obtained
parameters in more detail. For now, we note that fi ng our model only to associa on
rates can constraint our model parameters enough to describe CHAMP, but not enough
for NucleaSeq.

We take the heterogeneity of the fit parameters (Figures ??D-F) as a sign that the best fit
represents an overfit to the HiTS-FLIP data, capturing noise, thereby limi ng our predic ve
power of the NucleaSeq data. In an a empt to combat this, and more confidently report
the underlying kine c parameters, we proceeded by using a simultaneous fit to HiTS-FLIP
(𝑘a) together with NucleaSeq (𝑘clv) (Figures ??B-C, see S.I. for details). We reasoned that
as 𝑘clv values report the me needed for Cas9-sgRNA to make it from the solu on state all
the way through the free-energy landscape into the post-cleavage state, the predic on of
the NucleaSeq data should be more sensi ve to the value of the mismatch penal es and
forward rates. These parameter values set the placement, height and typical crossing mes
of (effec ve) energe c barriers within the off-target free-energy landscapes. Adding this
informa on to that coming from HiTS-FLIP, presumably being most sensi ve to the stabil-
ity of different states as this determines whether or not binding will be long enough lived
to be observed, should be enough to constraint our model parameters sufficiently. Figure
?? shows fit parameters, in par cular the mismatch penal es up un l nt 16 (Figure ??B)
and the forward rates (Figure ??C) are now more strongly constrained. The combina on
of having typical cleavage mes (NucleaSeq) at satura ng condi ons together with typical
mes to reach stable binding (HiTS-FLIP) at a fixed concentra on, also strongly constrained

the fi ed binding rate (𝑘on) (Figure ??C).

More importantly, using this combined fit we see it is possible to quan ta vely capture
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both dCas9 binding andCas9 cleavage dynamicswithin a single physical framework (Figures
??B and C). Clearly, our model nicely reproduces values for off-targets with one (middle
panel Figure ??B) and two mismatches (bo om panel Figure ??B). Using the fit to library
members with up to two mismatches, we also accurately reproduce measured 𝑘a’s for all
off-targets in the library with more mismatches, leading to a combined correla on of 89%
(Figure ??A). Similarly, our model accurately reproduces cleavage rates from NucleaSeq
both for single-mismatched (middle panel Figure ??C) and double-mismatched off-targets
(bo om panel Figure ??C), with high accuracy (combined correla on of 93%, Figure ??B).
Interes ngly, the model recovers that a mismatches between nt 12 and nt 17 can strongly
reduce cleavage ac vity (Figure ??C, middle panel) while minimally influencing apparent
binding ac vity (Figure ??B, middle panel). We shall discuss the physics underlying this
below. Finally, without fi ng any parameters, we manage to accurately translate from
the temporal sweep of HiTS-FLIP (Figure ??B) to the Cas9-sgRNA concentra on sweep of
CHAMP for all given off-targets (95% correla on, Figures ?? and ??C).

Taken together, we build and parameterized (as we shall discuss using Figure ??) a single
kine c model (Figure ??A) that explains the dynamics of (d)Cas9-sgRNA-DNA interac ons
both at various mes and concentra ons. Next, we shall take a further look at the physical
proper es of Cas9 extracted from the data and describe their consequences.

A B

C D

Figure 3.2: Kine c parameters. (A) Free-energy landscape represen ng on-target DNA interac ng with 1nM
Cas9-sgRNA. (B) Free-energy landscape represen ng off-target DNA (mismatches at posi ons 12 and 18) inter-
ac ng with 1nM Cas9-sgRNA (blue). On-target free-energy landscape shown in grey. (C)Mismatch penal es as a
func on of loca on within RNA-DNA hybrid. (D) Forward rate parameters.
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3.2.3. Free-energy landscape of (d)Cas9-sgRNA-DNA

From a simultaneous fit (S.I.) to the data shown in Figures ??B and C, we obtain the free-
energy landscape that the Cas9-sgRNA experiences upon interac ng with a given DNA
target, for the guide common to both experiments. Figure ??A shows the resul ng free-
energy landscape for interac ng with the on-target, while Figure ??B shows both the on-
target’s landscape (grey, dashed line) together with an example landscape encountered
at an off-target with mismatches placed at nt 12 and nt 18 (blue, solid line). The la er is
obtained by raising all points from the 12th posi on onwards in the on-target’s landscape
by the 12th mismatch penalty, and all points from the 18th posi on onwards by the 18th

penalty (Figure ??C, S.I.). Figure ??D shows the obtained rate constants.
Remarkably, the on-target free-energy landscape (Figure ??A) shows a dis nct posi on de-
pendence, which we have found to be responsible formany features seen in the dataset(s).
Star ng from the PAM bound state, the free-energy strongly increases and remains rela-
vely high for the first 8 nt. Destabilizing the first 8 R-loop associated states results in an

effec ve barrier that must be bypassed before a stable binding intermediate is reached.
As a result, adding a single mismatch within this region makes the effec ve barrier nearly
insurmountable within the me of a typical experiment. Hence, we recover what is com-
monly referred to as the ‘seed’ region wherein a single mismatch can completely disrupt
either binding or cleavage [? ? ]. The end of the seed-region contains another (slighter)
increase (see nucleo des 6 to 8). Although no direct evidence, we hypothesize such an
addi onal barrier reflects the cost of rearranging the guide outside the seed into proper
helical form to enable further hybrid forma on [? ].
A er the unstable seed, the bound state gradually becomes more stable when forming nt
10-12, reaching a local minimum a er the 12th base pair. Interes ngly, before reaching
a final cleavage competent state (full R-loop), the free-energy landscape reveals a second
effec ve barrier a er nucleo de 13. Below we shall show the presence of two regions
of unfavorable R-loop progression is consistent with experimentally established conforma-
onal dynamics of Cas9’s nuclease domains.

The mismatch penal es (Figure ??C) remain rather constant (at about 6±1𝑘 𝑇) through-
out. Notable excep ons are nucleo des 2, 9 and those from 17 un l 19. The lower mis-
match penalty of around 4 𝑘 𝑇 at the second R-loop posi on originates the increased ac-
vity seen for both dCas9 and Cas9 when mu ng nt 2 compared to muta ng either of its

neighbors (Figures ??B-D). Similarly, as placing the first of two mismatches at the 9th posi-
on results in a lower cleavage rate compared to placing it at either the 8th or 10th posi on,

we fit an increased mismatch penalty of around 9 𝑘 𝑇. Muta ng nucleo des 17-19 comes
at a lesser cost of 4 𝑘 𝑇, compared to most of the other posi ons. This, together with
the on-target target binding being always more stable than ini al PAM recogni on a er
the 17th base pair (Figure ??A), is consistent with a previous reports that have shown Cas9
can indeed cleave substrates that contain mismatches at nucleo des 17-20 with only slight
hindrance [? ? ].
The fi ed rate constants of Figure ??D reveal that, at 1nM Cas9-sgRNA, PAM recogni on
happens at a rate (𝑘on) that is 5 orders of magnitude less than the rate of progressing the
R-loop (𝑘f) and the rate of catalyzing cleavage (𝑘cat). The large forward rate (𝑘f) results
in similarly high rates for shrinking the R-loop (𝑘b(𝑛) = 𝑘f𝑒 n n-1 , see S.I.). Yet, despite
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growing or shrinking the R-loop by one nucleo de happening rather fast, the shear amount
of such steps needed before the full R-loop is formed makes that R-loop forma on is s ll
the rate limi ng process to cleavage (and stable binding), thereby governing Cas9’s mis-
match tolerance.

In conclusion, our physical model allows us to the extract the free-energy landscape de-
scribing the interac on between target DNA and a Cas9-sgRNA complex. In what follows,
we shall first in more detail explain how the landscape shown in Figure ??A captures Cas9’s
major conforma onal change, and show how this results in the pronounced difference be-
tween binding (dCas9) and cleavage (Cas9) ac vi es

A

C

B
Open Inter-

mediate
Closed

Figure 3.3: Rela ng free-energy landscape to Cas9’s conforma onal dynamics. (A) Equilibrium occupancies
(10nM dCas9-gRNA) for all 21 microscopic states, and different off-targets. This mimics the FRET histograms
shown in Figure 1C of [? ] (B)A coarse-grained view of the on-target free-energy landscape (Figure ??A). Using the
nomenclature of [? ] we iden fy the ‘open’, ‘intermediate’ and ‘closed’ states. Solid colors show the states with
the greatest contribu on (the most stable states in every subgroup). (C) A. Frac on of equilibrium occupancies
for each of the three coarse-grained states, shown for off-targets with increasing number of consecu ve PAM
distal mismatches.

3.2.4. Conformational change of Cas9’s HNH domain couples to R-
loop formation

Figure ??A reveals that although forming a complete R-loop with the on-target (at 1nM) is
energe cally favorable, reaching this cleavage competent state is preceded by surpassing
two regions of significant instability. This is surprising, given we have previously showed
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(Chapter ??)[? ] that the sequen al nature of the R-loop forma on process in itself dic-
tates clearmismatchposi on dependent unbinding/cleavage rates at off-targets. Evenwith
a constant gain for every match added to the R-loop, the placement of a mismatch s ll
modulates the barrier opposing rejec on of the off-target. As the free-energy landscape
of Figure ??A clearly deviates from one with a constant downward slope, it must be the
result of structural proper es of the Cas9 protein that couple to hybrid forma on.

A comparison of guide-bound and target-bound structures revealed Cas9 undergoes a con-
forma onal change in which the ac ve sites of its HNH and RuvC nuclease domains are
reposi oned favorably for cleavage [? ? ? ]. A bulk FRET experiment, in which two of
dCas9’s (ini ally distant from each other) amino-acids are fluorescently labelled, confirmed
the HNH domain rearranges itself prior to cleavage, and showed the RuvC domain move-
ment is strictly coupled to that of the HNH domain [? ]. More recently, single-molecule
FRET studies have shown the existence of two dominant bound configura ons of Cas9-
sgRNA [? ? ? ]. As the HNH domain moves, the distance between the fluorescent dyes
changes, resul ng in an altered FRET efficiency. By collec ng the FRET efficiency traces
of many molecules, observed for long enough me, one obtains an es mate of the equi-
librium occupa on in the state space along the FRET coordinate, the posi on of the HNH
domain.

Given the free-energy landscapes for both on-target and off-targets (Figure ??), we can di-
rectly calculate the equilibrium dCas9 occupa on in each state according to the Boltzmann
distribu on (S.I.), which is what the FRET efficiency histograms a empt to es mate. Fig-
ure ??A displays equilibrium distribu ons for various amounts of PAM distal mismatches,
thereby directly mimicking the experiment performed by Dagdas et al. (see Figure 1C in [?
]). In linewith the authors’ findings, we confirmdCas9-sgRNA-DNA ismainly found in one of
three states (conforma ons) (indicated by different colors in Figure ??B). When subjected
to on-target DNA, nearly all bound molecules are cleavage competent (occupying the final
state). Introducing mismatches causes dCas9-sgRNA-DNA to get trapped in an interme-
diate configura on (the orange colored peak around nt 12 in Figure ??A). Four or more
terminal mismatches is sufficient to effec vely deplete the final state (blue bars in Figure
??A). As the target contains more mismatches, the ini al (bound) state (the peak seen for
the solu on and PAM states in Figure ??A) becomes more favorable. Figure ??C shows the
frac ons of molecules occupying each of the three ‘coarse-grained states’ (defined in Fig-
ure ??B) as a func on of the number of consecu vely placed PAMdistal mismatches. Using
the terminology introduced by Yang et al. [? ], we iden fy an ‘open’ HNH conforma on
(roughly corresponding to the microscopic states up un l the 8th base pair in Figure ??A),
a ‘closed’ configura on (roughly corresponding states 17–20 in Figure ??A), as well as an
‘intermediate’ configura on (states 9–16 in Figure ??A). In agreement with the study of
Dagdas et al. [? ], the system gradually switches from mainly occupying the closed state,
to the open state as moremismatches are introduced, transi ng via the intermediate state
in the process. We note the smFRET studies probe the reac on coordinate along the HNH
conforma onal change, whereas our model’s reac on coordinate indicates targe ng pro-
gression (PAMbinding + R-loop forma on). The similarity between ourmodel and the data
discussed here thus reveals a likely equivalence of these two point of views. We conclude
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that Cas9’s nuclease domains must rearrange themselves in order for the R-loop to extend.
Moreover, Figure ??B shows that the conforma onal change is split over two major barri-
ers, with the first barrier being encountered straight a er binding to the PAM.
Furthermore, Yang et al. men on that although three main FRET values were observed
on any (off-)target, the value of the intermediate state depends on the number of mis-
matches introduced – signifying the HNH domain adopted a (slightly) different configura-
on. Indeed, Figure ??A shows that with 7 PAM distal mismatches the R-loop is unlikely

to progress passed the 12th base pair, while the likelihood of observing a par al R-loop
of length 16 is many mes higher with only 4 mismatches, both corresponding to what
we iden fy as ‘the intermediate HNH state’ in Figure ??B. The reported shi in FRET value
upon introduc on ofmoremismatches is consistent with ourmodel’s predic on that Cas9-
sgRNA-DNA occupies different microscopic states. This is in line with our finding that the
conforma onal change happens throughout the hybrid forma on process.
Finally, we note that only the closed state is found to be cleavage competent [? ], also con-
sistent with our model. We conclude that the free-energy landscape (Figure ??) obtained
by fi ng bulk data (Figure ??) is not only consistent with, but complements structural and
single-molecule data on (d)Cas9.
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Figure 3.4: Difference between binding and cleavage ac vi es. (A) Associa on rates from HiTS-FLIP (purple
triangles) and cleavage rates from NucleaSeq (orange squares), for single-mismatch off-targets, both normalized
to the corresponding on-target rates. (B) Free-energy landscape for off-target (mismatch at posi on 2) (blue)
together with on-target (grey). A seed mismatch significantly raises the largest barrier (horizontal lines) opposing
both binding and cleavage. (C)With a mismatch at posi on 10, binding and cleavage s ll are limited by the same
barrier (horizontal line). Compared to placing a mismatch in the seed (figure B), the off-target landscape (blue) is
raised far less in comparison to the on-target landscape (grey). (D) mismatch at posi on 15 causes binding and
cleavage to be limited by different barriers. Binding is stabilized a er surpassing the first barrier (entering posi on
12), whereas cleavage requires Cas9 to surpass also the second barrier visible.
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3.2.5. Promiscuous binding helps Cas9 to be both a specific and an
efficient nuclease

With the free-energy landscape in hand, we can now explain what off-target sequences
typically lead to binding without cleavage. Figure ??A overlays the data from Nucleaseq
(orange squares) and HiTS-FLIP (purple triangles) experiments for singly-mismatched off-
targets, both normalized to their respec ve on-target values. Clearly, placing just a single
mismatch within approximately 8 nucleo des from the PAM significantly slows down both
binding and cleavage. Figure ??B shows the free-energy landscape for a target with a mis-
match at the second nucleo de. To cleave either the on-target (grey, dashed line) and the
off-target (blue, solid line), the largest energe c penalty comes from making it passed the
‘seed’ (nt 8). The off-target has raised this barrier (from the grey horizontal line to the
blue horizontal line) by an amount equal to the second mismatch penalty seen in Figure
??C. The increased barrier exponen ally suppresses the corresponding off-target (effec-
ve) cleavage rate. Given cleavage implies binding, also the effec ve associa on rate is

exponen ally suppressed. Placing the mismatch further down the hybrid, for example at
nt 10, we see both binding and cleavage rates have recovered par ally from their values in
the seed (Figure ??A). The corresponding landscape in Figure ??C shows that the seed s ll
imposes the largest barrier against cleavage, and thereby also against binding. Although
raising the energy, and the barrier against R-loop comple on, the energy for the off-target,
also a er nt 10, remains almost at the same height as the on-target landscape’s height in
seed (compare the grey and blue horizontal lines). In other words, the mismatch therefore
only minimally raises the effec ve barrier opposing R-loop comple on. Hence, both dCas9
and Cas9 can complete R-loop forma on at rates closer to that of comple ng the R-loop
for the on-target.

Interes ngly, placing amismatch between nt 12–17 significantly reduces the cleavage rate,
while only minimally impac ng the associa on rate (Figure ??A). Figure ??D, displaying a
landscape with a mismatch at nt 15, reveals that although binding (making it into any long-
lived bound state) is limited mainly by the seed, cleavage necessitates proceeding past the
second large barrier – now of similar height – seen beyond the 13th base pair. Hence,
(d)Cas9 will bind such a target at a rate comparable to the on-target and get trapped in a
configura on with a par al R-loop (the ‘intermediate state’ referred to above, Figures ??A-
B). Eventually, Cas9 escapes from this intermediate, either through unbinding or cleavage,
both requiring it to overcome a second large energe c barrier, thereby leading to rela vely
low cleavage rates at such off-targets, diverging from the rela ve associa on rate.

Besides providing Cas9 the ability to swi ly reject off-targets without matching seeds, the
associated energe c barrier (between the ‘open’ and ‘intermediate’ configura ons dis-
cussed above) significantly opposes cleavage of even the on-target. Raising this barrier
further as ameans to gain specificity, definitely reduces the efficiency atwhich Cas9 cleaves
the on-target. The introduc on of the second barrier separa ng the intermediate and
closed states in the on-target free-energy landscape (Figures ??A and ??B) allows Cas9 to
reject an addi onal set of off-targets, without having to sacrifice the rate at which it can
cut the on-target – preven ng the first barrier from becoming of insurmountable height.
Therefore, the promiscuous binding of Cas9 can be seen as a price to pay in order to be
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both a (sufficiently) fast and specific nuclease.

A
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Figure 3.5: Comparison to thermodynamics based models. (A) Upper half shows NucleaSeq data for double
mismatched off-targets, normalized to the on-target’s rate. Bo om half uses single-mismatch data from Figure
??A as a naïve Bayes classifier to predict the double-mismatch data. For every set of two mismatch posi ons,
the lower half shows the product of the corresponding data points from Figure ??A. (B) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with one mismatch (Figure ??A). (C) Sequenced averaged CFD
score compared to NucleaSeq data for off-targets with two-mismatches (upper half Figure ??B) (D) Sequenced
averaged uCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with onemismatch.
(E) Sequenced averaged uCRISPR score (normalized to on-target) compared to NucleaSeq data for off-targets with
two-mismatches.

3.2.6. Existing off-target prediction models can be seen as a limit-
ing case of ours

Currently, state-of-the-art off-target predic on [? ] is based mainly on the ‘Cu ng Fre-
quency Determina on’ (CFD) score [? ] – a ‘naïve Bayes classifica on’ scheme [? ] as-
suming mismatches affect the rela ve cleavage rate independent of the distance between
them. More recently, Zhang et al. report their ‘unified CRISPR’ (uCRISPR) score [? ], in
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which cleavage probabili es are evaluated as the Boltzmann weight corresponding to the
cleavage competent state (see S.I.), outperforms the CFD score.

In the S.I. we show that both models can be seen as a limi ng case of ours. To reduce
our model to theirs, wemust assume target-binding equilibrates prior to cleavage and that
all bound states are unstable compared to solu on (independent of nuclease concentra-
on) (see S.I.). Within this limit, the rela ve rate of cleaving a mul -mismatched off-target

versus the on-target equals the product of the corresponding rela ve rates of cleaving the
set of singly mismatched off-targets (see S.I. for details). For example, if an off-target has
mismatches at posi ons 5 and 7, its corresponding rela ve rate equals the product of the
rela ve rates for cleaving the off-targets with one mismatch at nt 5 and the one with a
mismatch at nt 7, all compared to the on-target cleavage rate. As this is exactly how the
CFD score has been constructed using their own set of experiments [? ], a special case of
the mechanis c model presented here produces a score equal to the CFD score – despite
the construc on of the CFD score not beingmo vated by physics. Furthermore, our model
directly reduces to the uCRISPR score within these same limits (S.I.).
The physical regime wherein CFD and uCRISPR could ever produce accurate predic ons
corresponds to all bound states, including the cleavage competent state being energe -
cally unfavorable compared to solu on, noma er the nuclease concentra on. This regime
clearly does not comply with free-energy es mates, even at 1nM (d)Cas9-sgRNA (Figure
??A). We take the quan ta ve agreement between our model and the bulk experimental
data (Figure ??), and its consistency with single-molecule data (Figure ??), to imply the
physical regime suggested by our model parameters to be valid.

As assuming no coopera ve effect ofmismatches (as done in by themen oned equilibrium
based models) is an a rac ve approach due to its simplicity, it is informa ve to see exactly
where it fails. To test whether a naïve Bayes classifier can be used as an accurate predictor
of the NucleaSeq data for the given sgRNA, we first test whether products of rela ve 𝑘clv
values for singly mismatched off-targets in the NucleaSeq dataset are a good predictor of
the corresponding measurements at off-targets containing two mismatches (Figure ??A).
Figure ??A shows the NucleaSeq data normalized to the on-target cleavage rate. While the
upper half displays the normalized data directly, the bo om half is constructed by using
products of the measured single-mismatch values (Figure ??A). Clearly, assuming no coop-
era ve effect of mismatches does not result in the measured (rela ve) cleavage rates. In
par cular, the cleavage rate is severely overes mated when both mismatches are placed
outside the seed (beyond nt 8), but before nt 16. That is, when the mismatches are placed
in between the ‘intermediate’ and ‘closed’ states (Figure ??B), which is exactly the set of
off-targets that tend to lead to a divergence between apparent binding and cleavage rates
(Figure ??).

Next, directly comparing the CFD score (Figures ??B,C) and the uCRISPR score (Figures
??D,E) to the (normalized) Nucleaseq data, we see both methods seem to be plagued
by this same underes ma on due to the non-addi ve nature of mismatches. The CFD
score completely fails to produce even qualita vely similar rela ve rates (Figures ??B,C).
Note that the method used in Figure ??A represents an equivalent CFD score, had the
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authors’ used the Nucleaseq assay to produce their data, thereby showing it is the under-
lying assump ons of the CFD score rather than the training data that leads to inaccurate
predic ons. Furthermore, the uCRISPR score produces a single-mismatch profile similar to
the Nucleaseq data (Figure ??D). Therefore, as mismatches also act independently within
uCRISPR (see S.I.), this leads to a two-mismatch profile nearly iden cal to the one shown
in Figure ??A, despite the large difference in absolute values compared to the data. Hence,
even though the uCRISPRmodel has introduced an addi onal energe c penalty for placing
consecu ve mismatches (see supplement of [? ]), it s ll ranks off-targets almost iden cal
to a model that assumes mismatches each effect the cleavage rate independently.

Taken together, the more general kine c model presented in this work correctly treats
how mul ple mismatches alter cleavage rates, and how binding does not imply cleavage,
while the equilibrium based CFD and uCRISPR fail to do such.

3.2.7. Measuring relative rates at various concentrations
Thus far we have presented a physical model capable of explaining experimental data of
various forms (Figures ?? and ??), and demonstrated the added benefit of incorpora ng
the kine cs of the targe ng process (Figures ?? and ??). In what remains, we shall use our
model to predict cleavage rates under various experimental condi ons.
Figures ??A and B show cleavage rates, normalized to on-target values, for several Cas9-
sgRNA concentra ons. First, we note that as the concentra on is decreased, the ra o of
cleavage rates (symbols in Figure ??A) approaches the ra o in probabili es for a (PAM)
bound Cas9-sgRNA to cleave the DNA prior to rejec ng it (pink line). This cleavage proba-
bility is the central quan ty of Chapter ?? [? ] and we here confirm its validity in the low
concentra on regime.
Interes ngly, varying the concentra on mainly effects the rela ve cleavage rate at off-
targets with PAM distal mismatches. Figure ?? shows that by lowering the concentra on
the height of the effec ve barrier separa ng the open and intermediate states increases
rela ve to the one separa ng intermediate and closed configura ons. Hence, at low con-
centra ons the contribu on of this second transi on to the cleavage rate is reduced, which
manifests itself in an increase in the rates of cleaving correspondingly mismatched off-
targets (a less sever ‘dip’ between posi ons 13 and 17) (Figure ??A). A similar signature
is seen when comparing mismatches with two mismatches at 0.01nM and 100nM Cas9-
sgRNA (Figure ??B). Lowering the concentra on causes the effec ve cleavage rate to be-
come limited by the rate of binding a DNA sequence from solu on, mul plied by the prob-
ability to cleave once bound (𝑘clv ≈ 𝑘on𝑃clv, as 𝑘on becomes rate limi ng at low concentra-
ons, Figure ?? and Chapter ??).

3.2.8. Measuring relative fractions of cut DNA after various incu-
bation times

Other than the concentra on, the exposure me of the DNA to Cas9-sgRNA can be var-
ied experimentally. Figures ??C and D show the rela ve probability of cleaving off-targets
(compared to on-target) for different incuba on mes. When considering off-targets with
a single mismatch, placing a mismatch directly adjacent to the PAM results in the lowest
cleavage rate. If the experiment runs for a me exceeding the inverse of this rate (the
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Figure 3.6: Measuring cleavage ac vity under varying experimental condi ons. (A) Cleavage rates, normalized
to on-target, for various nuclease concentra ons (symbols). Solid line (pink) shows the probability that a PAM
bound Cas9-sgRNA cuts the DNA before unbinding (rela ve to on-target) (Equa on ??). (B) Rela ve cleavage
rates for 0.01nM Cas9-sgRNA (upper half) and 100nM (lower half) Cas9-sgRNA. (C) Probability of a DNA target
being cut, rela ve to on-target, a er a fixed me (different symbols) and 1nM Cas9-sgRNA. 1mm represents clv
for the off-target with a mismatch adjacent to the PAM, which is the off-target with the lowest cleavage rate
amongst all off-targets with a single mismatch. Solid link (pink) shows ra o between cleavage rates (off-target vs.
on-target). (D) 2mm represents clv for the off-target with mismatches at the first two posi ons adjacent to the
PAM, which is the off-target with the lowest cleavage rate amongst all off-targets with two mismatches. Upper
half 2mm . on-target, lower half shows 2mm.

maximum 𝑘clv denoted by 𝑡1mm in Figure ??C), essen ally any off-target (with a single)
mismatch will get cut. Hence, no difference between off-targets and on-target will be ob-
served when coun ng the rela ve frac ons of cleaved DNA (light blue diamonds in Fig-
ure ??C). Similarly, using 𝑡2mm to denote the inverse cleavage rate for the off-target with
mismatches at the first two R-loop nucleo des, all measured cleavage rates approach the
off-target rates for incuba on mes exceeding 𝑡2mm (Figure ??D). Performing this same
experiment a er much shorter incuba on mes (dark green squares), we see that for mis-
matches in the seed, these rela ve counts are well approximated by the rela ve cleavage
rates at the corresponding nuclease concentra on (pink line in Figure ??C or the curve for
1 nM in ??A). In the S.I.we show this implies the cleavage probability is well approximated
by a single-exponen al process. Placing the mismatch between intermediate and closed
states increases the me to surpass the intervening barrier. When the me to transi on
into the closed state becomes comparable to the me to transi on into the intermediate
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state from PAM, we expect the probability to cleave a DNA not anymore to follow a single
exponen al curve. For this reason the ra o in the cleavage rates does not anymore match
the ra o in counted cleaved molecules when a mismatch is placed between posi ons 11
and 16 (Figure ??C). In conclusion, the incuba on me greatly influences the rela ve frac-
ons of cut DNA, both for PAM proximal as well as PAM distal mismatches (Figures ??C and

D).

3.3. Discussion
The increasing popularity of the CRISPR-Cas9 system as a genome-edi ng tool calls for a
quan ta ve understanding of its risks. Here, we presented a single mechanis c model
(Figure ??A) to describe the kine cs of off-targe ng by Cas9-sgRNA, as well as binding
by the nuclease inac ve dCas9-sgRNA. Using a (target) sequence averaged approach, we
demonstrated our model accurately describes experimental associa on rates (Figure ??B),
cleavage rates (Figure ??C) and dissocia on constants (Figure ??D). The free-energy land-
scape(s) describing interac ons between (d)Cas9-sgRNAwith on-target (Figures ??A andD)
and off-target DNA (Figures ??B-D) serve as our model parameters. Hence, using the bulk
data (Figure ??B and C), we extracted the microscopic thermodynamic and kine c proper-
es of Cas9-sgRNA (Figure ??). The par cular free-energy landscape obtained shows signa-

tures consistent with Cas9’s major conforma onal change, rearrangement of its nuclease
domains, observed in structural and single-molecule experiments (Figure ??). Moreover,
the barriers opposing this conforma onal change directly explains how Cas9’s promiscu-
ity when it comes to off-target binding is the price to pay for it to balance on-target and
off-target cleavage ac vi es (Figure ??). Further, the free-energy landscape implies Cas9
operates far from the regime in which exis ng predic on models operate. As a result, only
our model quan ta vely describes the difference between Cas9 and dCas9 specifici es
(Figure ??). Finally, we showed how varying nuclease concentra ons and incuba on mes
strongly influence, not only the quan ta ve, but also the qualita ve specificity profiles
(Figure ??).

3.3.1. Comment on translation to other guide RNA sequences (‘short-
cut’ to redoing measurement for every guide)

In Figures ??A-C, we display target sequence averaged cleavage ac vi es (w.r.t on-target)
from datasets across the literature [? ? ? ], including the data used to construct the CFD
score (Figures ??B,C). Different curves correspond to different guide sequences. Also, Fig-
ure ??D shows a second NucleaSeq dataset (together with the data shown in Figure ??C)
[? ]. Clearly, the cleavage rate is strongly dependent on the guide sequence used.
As a future improvement to our model parameteriza on, incorpora ng (guide) sequence
dependencies seems the most logical way forward. However re-training our model against
equivalent datasets (HiTS-FLIP + NucleaSeq ) [? ? ] for every guide sequence of interest
would require an immense amount of experimental effort.
For this reason, developing a transla on between guides, using the current parameter set
could be an a rac ve approach. Figure ?? showed our model is capable of producing a
wide range of specificity profiles by varying the experimental condi ons. This varia on
appears to be similar to that caused by the guide sequence shown in Figure ??. For ex-
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ample, Figure ??A shows data belonging to six guides from Doench et al. [? ]. A transla-
on from the lower three curves (pink, orange, yellow) to the upper three curves (purple,

green, blue) seems to be achievable within our model by a combina on of lowering the
concentra on (Figure ??A) and increasing the incuba on me (Figure ??C). This similarity
between Figures ?? and ?? leads us to believe a less experimentally (aswell as computa on-
ally) intensive scheme may exist to predict off-targe ng for different guides. Differences
in sequence manifest themselves in the energe cs (Figures ??A-C), altering (effec ve) bar-
rier heights separa ng states. Figure ?? demonstrated the same can be achieved through
varying the Cas9-sgRNA concentra on. Alterna vely, increasing the incuba on me in-
creases the probability of exceeding the typical me needed to reach states further down
the landscape (Figure ??A). We hypothesize that varying the guide sequence could possi-
bly bemodeled by an altered ‘effec ve nuclease concentra on’ and ‘effec ve experimental
me’, while keeping the same model parameters (Figure ??) as determined for the guide

used in this work. In this manner, sequence dependencies can possibly be derived from
experiments performed for a limited set of guides.

3.3.2. Move to other guided nucleases (generality of approach)

Cas9-sgRNA is by far not the only RNA guided nuclease system u lized in biotechnological
applica ons. Other CRISPR associated nucleases, such as CRISPR-Cas12a, CRISPR-Cas13
and CRISPR-Cas14 offer a diversified ‘genome-engineering toolkit’ to complement Cas9 [?
? ? ? ? ? ? ]. Moreover, the high-specificity requirements for therapeu c applica ons has
driven the development of several strategies to improve Cas9’s cleavage specificity, with
the use of either engineered [? ? ? ] or natural variants (such as N. meningi des Cas9)
[? ] becoming increasingly popular. The general model presented in this work (Figure
??A) should be applicable to any RNA guided nuclease whose target binding happens in
a sequen al fashion. High-throughput measurements using different nuclease systems
(preferably similar to HiTS-FLIP, CHAMP and/or NucleaSeq, i.e. [? ? ? ? ]), will allow us to
also decipher their microscopic free-energy landscape underlying target interference and
can point towards the relevant structure-func on rela ons (as done here for Streptococcus
pyogenes Cas9).

3.3.3. Test against genome-wide off-target data/prediction tools will
follow

Exis ng off-target predic on tools [? ? ? ? ? ? ? ? ] are not all made to quan ta vely
predict experimental measurements, but rather to rank off-targets according to their ac-
vity (w.r.t on-target). Typically, the performance is assessed using either of two methods.

Either the rank correla on between modeled scores and measurements is used as a per-
formance measure [? ? ]. Alterna vely, predic on tools are tested for their capability to
separate the ‘cut’ from ‘uncut’ genomic DNA sites [? ]. Although our physical model offers
more than such a classifica on scheme, we nevertheless are working towards performing
tests against iden fied genomic off-targets [? ? ] in order to directly compare our model
to other bioinforma cs or machine learning based predictors.
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3.5. Supplemental Information
3.5.1. Kinetic model for Target Recognition
We here explain in more precise mathema cal terms how we have built the model put
forth in the main text and in Figure ??A. To incorporate the concentra on of Cas9-sgRNA
present in solu on (’sol’), we shall take the viewpoint of a single DNA target sequence, ei-
ther on- or off-target. A er one of the Cas9-sgRNA binds the DNA at its PAM site, R-loop
forma on (Cas9 mediated strand exchange between gRNA and DNA) is modeled as a se-
quen al process. That is, the gRNA-DNA hybrid grows or shrinks with single-nucleo de
increments, allowing for hybrids of intermediate lengths (1-20 bp formed). Cleavage (’clv’)
can follow complete R-loop forma on (20 nucleo des in case of Cas9). Together, wemodel
the en re target recogni on process as a random walk on the linear state-space, 𝑛 ∈
[sol, PAM, 1, 2, ...., 20, clv]. Knowing the probability of a Cas9-sgRNA-DNA to be found in
each of the states a er a me 𝑡 gives access to anymeasurable quan ty of interest (see be-
low for examples). Le ng𝑃n(𝑡) denote the occupancy of state𝑛 at me 𝑡, and𝑘f(𝑛)/𝑘b(𝑛)
the rates (inverse average mes) for ’forward’(𝑛 → 𝑛 + 1)/’backward’(𝑛 → 𝑛 − 1) transi-
ons, the occupancies evolve according to the following set of Master Equa ons

𝜕𝑃sol
𝜕𝑡 = −𝑘f(sol)𝑃sol(𝑡) + 𝑘b(PAM)𝑃PAM(𝑡) (S3.1)

𝜕𝑃n
𝜕𝑡 = 𝑘f(𝑛 − 1)𝑃n-1(𝑡) − (𝑘f(𝑛) + 𝑘b(𝑛))𝑃n(𝑡)

+ 𝑘b(𝑛 + 1)𝑃n+1(𝑡) ∀𝑛 ∈ [PAM, 1, 2, ...., 19]
(S3.2)

𝜕𝑃20
𝜕𝑡 = 𝑘f(19)𝑃19(𝑡) − (𝑘f(20) + 𝑘b(20))𝑃20(𝑡) (S3.3)

From here on we interchangeably use 𝑛 = −1 ≡ sol, 𝑛 = 0 ≡ PAM and 𝑛 = 21 ≡ clv.
Given any DNA is either unbound, bound or cleaved, the frac on of cleaved DNA (for ac ve
Cas9) is set by 𝑃clv(𝑡) = 1 − ∑

clv
𝑃n(𝑡). Defining the vector �⃗�(𝑡) = [𝑃sol(𝑡), 𝑃PAM(𝑡),

𝑃1(𝑡),....,𝑃20(𝑡)] , the solu on to Equa ons ?? and ?? can be wri en as

�⃗�(𝑡) = 𝑒 �⃗�(0), (S3.4)

with the (tri-diagonal) rate matrix 𝐾’s elements given by

𝐾 , =
⎧⎪
⎨⎪⎩

−𝑘f(𝑛 − 1) 𝑛 = 𝑚 + 1
𝑘f(𝑛) + 𝑘b(𝑛) 𝑛 = 𝑚
−𝑘b(𝑛 + 1) 𝑛 = 𝑚 − 1
0 else

(S3.5)
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In general, we recognize the system is completely determined by the set of forward and
backward rates for every Cas9-sgRNA-DNA of interest. To extract informa on from the ex-
perimental data, we now proceed to show the par cular parameteriza on used through-
out this work.

As men oned in the main text, we have chosen a DNA sequence averaged parameteriza-
on. Adding any nucleo de to the R-loop is assumed to happen at the same rate (denoted

by 𝑘f, as opposed to the general posi on dependent forward rate 𝑘f(𝑛)). Further, the rate
of binding from solu on onto the DNA (transi oning from sol (𝑛 = −1) to PAM (𝑛 = 0)) is
assumed to grow linearly with concentra on, 𝑘on = 𝑘on([Cas9-sgRNA]ref)×[Cas9-sgRNA],
resul ng in the binding rate at our chosen reference concentra on [Cas9-sgRNA]ref = 1nM
being a free-parameter. Finally, catalyzing the reac on to induce the DNA breaks is as-
signed a separate rate of 𝑘cat. Taken together, forward transi ons are assigned the follow-
ing rates

𝑘f(𝑛) = {
𝑘on([Cas9-sgRNA]) 𝑛 = PAM

𝑘f 𝑛 ∈ [1, 2, ..., 19]
𝑘cat 𝑛 = 20

(S3.6)

Backward rates (unbinding, shrinking the R-loop) are set by requiring the convergence of
𝑃n(𝑡) to the Boltzmann Distribu on when equilibrated.

𝑃EQn = 𝑒 n

∑
∈[sol,PAM, ..., ]

𝑒 m
∀𝑛 ∈ [sol, PAM, 1..., 20] (S3.7)

Given all occupancies are me-independent in this limit ( ⃗ = 0), Equa ons ??-?? result
in the ’detailed balance condi on’

𝑘b(𝑛) = 𝑘f(𝑛 − 1)
𝑃EQn-1

𝑃EQn
= 𝑘f(𝑛 − 1)𝑒 n n-1 ∀𝑛 ∈ [PAM, 1, ..., 20] (S3.8)

Differences in free-energy (𝐹n’s, measured in units of 𝑘 𝑇) between consecu ve states for
a par cular Cas9-sgRNA-DNA are modeled as (𝐹sol = 0 as reference state)

𝐹n − 𝐹n-1 = {
𝐹PAM([Cas9-sgRNA]) 𝑛 = PAM

𝜖 (𝑛) match at 𝑛 ∈ [1, 2, ...20]
𝜖 (𝑛) + 𝜖 (𝑛) mismatch at 𝑛 ∈ [1, 2, ...20]

(S3.9)

If the nth base of the target is complementary to the corresponding base of the guide, the
Cas9-sgRNA-DNA ternary complex gains/loses 𝜖 (𝑛) 𝑘 𝑇 in incorpora ng the basepair into
the R-loop. The Cas9 protein is known to interact with the (non-target strand) DNA, as well
as undergo conforma onal changes, during the process of R-loop forma on. For this rea-
son, 𝜖 (𝑛)’s can either be nega ve (signifying an energe c benefit) or posi ve (penalizing
progression of the R-loop). If the nth base of the target does not match the guide’s base,
the ternary complex gets penalized 𝜖 (𝑛) ≥ 0 for incorpora ng the mismatch into the
R-loop. All subsequent free-energy states are therefore also raised by this same amount
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(Figure ??B), thereby only locally increasing the backward rate (Equa on ??).
The energy of the PAMbound configura on ismodeled as a concentra on dependent free-
energy, 𝐹PAM([Cas9-sgRNA]) = 𝐹PAM([Cas9-sgRNA]ref) − log([Cas9-sgRNA]), becoming
more stable with increasing nuclease concentra on. Note that using the concentra on
dependencies of both 𝐹PAM and 𝑘on, via Equa on ??, leads to a concentra on independent
rate to return to solu on 𝑘b(PAM).

In conclusion, we have built a general kine c model (Equa on ??), and used a DNA se-
quence averaged parameteriza on to reduce our parameter space to the following 44 pa-
rameters: (1) 𝐹PAM([Cas9-sgRNA]ref), (2-21) 20x 𝜖 (𝑛)’s, (21-41) 20x 𝜖 (𝑛)’s,
(42) 𝑘on([Cas9-sgRNA]ref), (43) 𝑘f, and (44) 𝑘cat. When considering dCas9 cleavage is un-
able to occur, which is simply modeled by se ng 𝑘cat = 0 (leaving 43 free-parameters).

3.5.2. Calculating (effective) association rates (HiTS-FLIP)
To predict measured associa on rates, we assume equivalence between the solu on to
the Master Equa ons (Equa on ??) and the fluorescence signal obtained in the HiTS-FLIP
experiment [? ]. Experiments are performed at 1nM dCas9-sgRNA, which we thereby set
as our reference concentra on. Given the experiment uses dCas9, all molecules are either
in solu on or bound to DNA (𝑃clv = 0). Here we follow the procedure detailed in Boyle et
al. [? ]. First, we determine the frac on of bound DNA molecules,

𝑃bnd(𝑡) = ∑
∈{PAM, ,.. }

𝑃n(𝑡) = 1 − 𝑃sol(𝑡) (S3.10)

at three specified me points 𝑡 = 500𝑠, 𝑡 = 1000𝑠 and 𝑡 = 1500𝑠, star ng with all
DNA molecules being unbound at 𝑡 = 0𝑠 (𝑃sol(0) = 1 , 𝑃n(0) = 0 ∀𝑛 ≠ sol). Next,
the effec ve associa on rate (𝑘a) is defined as the coefficient of a linear fit to the three
occupancies, forced to go through the origin,

𝑝 = 𝑘a𝑡 ∀𝑖 ∈ [0, 1, 2, 3] (S3.11)

Equa on ?? is the approximate solu on for 𝑃bnd(𝑡) for 𝑡 ≪ 𝑘a , if one would assume the
system not to consist of 21 possible bound states (as done here), but just by a single one.
Namely, in this simplified two-state system (𝑛 ∈ [sol, bnd])

𝜕𝑃bnd
𝜕𝑡 = 𝑘a𝑃sol(𝑡) ⇒ 𝑃bnd(𝑡) = 1 − 𝑒 a ≈ 𝑘a𝑡 if 𝑡 ≪ 𝑘a (S3.12)

Using least-squares op miza on (linear regression),

𝑘a =
∑ 𝑡 𝑝

∑ 𝑡
(S3.13)
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3.5.3. Calculating (effective) cleavage rates (NucleaSeq)
Next, we show how we instead can use the solu on to the Master Equa ons (Equa on
??) to mimic the NucleaSeq experiment [? ]. NucleaSeq is performed at satura ng con-
centra ons of Cas9-sgRNA, which we model by se ng 𝐹PAM ≪ 0𝑘 𝑇 (we chose 𝐹PAM =
−1000𝑘 𝑇), 𝑘on → ∞. As done in the original experiment, the frac onof DNAnot cleaved,

𝑃no clv(𝑡) = 1 − 𝑃clv(𝑡) = ∑
clv

𝑃n(𝑡) (S3.14)

is evaluated at the mepoints 𝑡 through 𝑡 as 0 s,12 s,60 s,180 s,600 s,1800 s,6000 s,18000
s, and 60000 s (using the ini al condi on of everything being unbound at 𝑡 = 0𝑠, which
due to the high nuclease concentra on results in (near) instantaneous occupa on of the
DNA). Similarly to Boyle et al., Jones et al. assume the system to consist of just a single
bound state, for which the frac on of cleaved DNA under satura ng condi ons (no un-
bound DNA) follows

𝜕𝑃clv
𝜕𝑡 = 𝑘clv𝑃no clv(𝑡) ⇒ 𝑃no clv(𝑡) = 𝑒 clv (S3.15)

Hence, we obtain the effec ve cleavage rate (𝑘clv(𝑡)) by fi ng a line (forced through origin)
to the logarithm of the occupancies,

log(𝑝 ) = −𝑘clv𝑡 ∀𝑖 ∈ [0, 1, 2, ..., 9], (S3.16)

Using linear regression,

𝑘clv = −1 ×
∑ 𝑡 log(𝑝 )

∑ 𝑡
(S3.17)

3.5.4. Calculating apparent binding affinities (CHAMP)
A third quan ty used throughout this work are ’Apparent Binding Affini es’ (ABA) obtained
from the CHAMP experiment [? ]. CHAMP experiments are performed using dCas9, at
varying nuclease concentra ons, rather than varying incuba on mes. Using the fi ed
binding rate at 1nM,

𝑘on([Cas9-sgRNA]) = 𝑘1nMon
[Cas9-sgRNA]
[1 nM] (S3.18)

The experiment consists of determining the frac on of bound DNA, Equa on ??, at 𝑡 =
10 minutes, for the concentra ons ([Cas9-sgRNA]) 0.1 nM,0.3 nM,1 nM,3 nM,10 nM,30
nM,100 nM and 300 nM. Assuming the system has had sufficient me to equilibrate within
these 10 minutes, the series of occupancies should follow the Hill Equa on (using 𝑐 =
[Cas9-sgRNA]/[ nM] to denote the rela ve concentra on)

𝐻 = 1
1+

(S3.19)
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A fit of Equa on ?? to the series of occupancies (for the specified concentra ons), results
in the apparent half-satura on concentra on, or apparent dissocia on constant𝐾 for the
(off-)target of interest. The ABA is defined as the logarithm of 𝐾 , which has units of free-
energy. The quan ty shown are what are termed, ΔABA’s, which are ABA differences w.r.t.
the on-target

Δ𝐴𝐵𝐴 = 𝐴𝐵𝐴off-target − 𝐴𝐵𝐴on-target (S3.20)

3.5.5. Simulated Annealing fitting
All fits are performed using a custom wri en Simulated Annealing (SA) algorithm to mini-
mize the 𝜒 (least-squares op miza on). Prior to fi ng, the data (𝑘a and 𝑘clv values) are
converted to sequence averaged values for every unique mismatch pa ern, weighted by
the square of their corresponding measurement errors (𝜎(sequence)),

𝑘clv/a(mm pa ern) ≡ ∑
the same mm-pa ern:

𝑤 𝑘clv/a,i , 𝑤 = /∑ (S3.21)

The sums in Equa on ?? run over all off-target sequences in the library that have the
same mismatch pa ern. This par cular weighted average is chosen as one can prove
that it represent the best possible sequence averaged model - it is the global op mal 𝜒
when allowing one to assign exactly one model value to every possible mismatch pa ern.
Hence, a good fit to the weighted averaged data represents a good fit to the raw data. The
corresponding measurement error in the weighted averaged rates (’standard error in the
weighted mean’) follows

�̂�(mm pa ern) ≡ ∑
the same mm-pa ern:

𝑤 𝜎 , (S3.22)

Furthermore, in our experience we obtained more accurate predic ons of the lower val-
ued 𝑘clv’s in the NucleaSeq experiment when fi ng not to the 𝑘clv’s, but to the log(𝑘clv)
values in stead. For consistency we therefore also fi ed against log(𝑘a) values (in case
of the simultaneous fit). To construct a global 𝜒 for both associa on and cleavage rate
experiments, the individual 𝜒 ’s are added together a er dividing each by the number of
different sequences with the iden cal mismatch pa ern in the respec ve libraries. For
both libraries, each member sequence contains more than the 20 nucleo des + 3 PAM nu-
cleo des that are important for targe ng. Hence, mul ple members would be considered
to be an on-target (also because of the first nucleo de in the NGG PAM that is allowed to
vary). Similarly, more than 3 off-targets are present with a single mismatch at one of the
20 R-loop posi ons. Using 𝑖 to iterate over unique mismatch pa erns, we let 𝑁 denote
the number of library members with pa ern 𝑖. Further, their simply are more unique mis-
match pa erns with two mismatches ( × / = 190 in total) than with a single mismatch
(20 in total). To not over represent the influence of sequences with twomismatches, com-
pared to single mismatches (and on-targets), the 𝜒 is further divided into individual terms
with fixed total number of mismatches, dividing by the total number of unique mismatch
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configura ons in every group,

𝜒 = 1
𝑁on-target

∑
on-targets

( log(𝑘
model
a ) − log(𝑘experiment

a )
�̂� )

+ 1
20 ∑

single mm posi on:

1
𝑁 (

log(𝑘model
a,i ) − log(𝑘experiment

a,i )
̂𝜎 )

+ 1
190 ∑

double mm pa ern:

1
𝑁 (

log(𝑘model
a,i ) − log(𝑘experiment

a,i )
̂𝜎 )

+ 1
𝑁on-target

∑
on-targets

( log(𝑘
model
clv ) − log(𝑘experiment

clv )
�̂� )

+ 1
20 ∑

single mm posi on:

1
𝑁 (

log(𝑘model
clv,i ) − log(𝑘experiment

clv,i )
̂𝜎 )

+ 1
190 ∑

double mm pa ern:

1
𝑁 (

log(𝑘model
clv,i ) − log(𝑘experiment

clv,i )
̂𝜎 )

(S3.23)

Here,𝑘experiment and �̂� values are givenby Equa ons ?? and ??. Themodel’s values𝑘experiment

are determined using Equa ons ?? and ??.

The SA algorithm [? ] is commonly used for high-dimensional op miza on problems, such
as the fit presented here, and we here highlight the specific adjustments made to suit our
problem. In brief, the SA algorithm finds the (presumably) global minimum of the objec-
ve func on 𝜒 (�⃗�), a func on of the set of parameter values �⃗�, by assuming equivalence

to the poten al energy of a physical system. In every itera on, the parameter vector is
updated according to (le ng 𝑈(−𝛿, 𝛿) denote the uniform distribu on from −𝛿 to 𝛿)

�⃗� → �⃗� + 𝑈(−𝛿, 𝛿)⏝⎵⎵⎵⏟⎵⎵⎵⏝
⃗

(S3.24)

We shall refer to𝛿 as the step size. A er the update, the newparameter set (�⃗� ) is accepted
if it lowers the objec ve func on (𝜒 (�⃗� ) < 𝜒 (�⃗�)) or with a probability propor onal to
its corresponding Boltzmann weight when 𝜒 (�⃗� ) ≥ 𝜒 (�⃗�). The resul ng ’acceptance
probability’ is known as the Metropolis condi on,

𝑝acc = min[1, 𝑒
( ⃗ )/

𝑒 ( ⃗ )/ ] (S3.25)

In the SA algorithm, the ’temperature’ (𝑇) is reduced itera vely to bias the system (pa-
rameter vector �⃗�) to occupy its ’ground state’ (global minimum of 𝜒 (�⃗�)). We start from
an ini al temperature (𝑇 ) as the temperature at which the ini ally supplied step size (𝛿)
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results in an acceptance ra o between 40% and 60% (evaluated every 1000th itera on).
Next, �⃗� is reset, and 𝛿 is adapted every 1000 itera ons to ensure an acceptance ra o of
40-60% at the current temperature, before moving on to the next temperature a er one
more set of 1000 itera ons. In analogy with sta s cal mechanics, we thereby let the sys-
tem equilibrate at every temperature before moving onwards [? ]. Here, we used an ex-
ponen al cooling scheme with a 1% cooling rate for which the temperatures are defined
by the series

𝑇 = 0.99 𝑇 (S3.26)

The algorithm is stopped, minimum has been found, when both: (i) the temperature has
fallen below 1% of its ini al value 𝑇 < 0.01𝑇 , and (ii) the rela ve change in average
𝜒 (a er equilibra on), induced by reducing the temperature from 𝑇 to 𝑇 , has fallen
below the user-defined threshold (10 for all reported fits)

| ⟨𝜒 ⟩ − ⟨𝜒 ⟩ |
⟨𝜒 ⟩ ≤ 10 (S3.27)

with ⟨𝜒 ⟩ deno ng the average 𝜒 at temperature 𝑇 (determined in the 1000 steps a er
’equilibra on’ as been reached, acceptance ra o of 40-60%). To be more confident that
our presented solu on represents the global op mum of 𝜒 , we repeat our SA fit several
mes, Figures ?? and ?? presents the best solu on amongst the different replica.

In Figures ??D-F we post-selected the final results from the individual runs of the algo-
rithm by requiring that the resul ng 𝑘a values (the only quan ty fi ed in this figure) on
average differ ≤ 5% from those corresponding to the best fit. That is, the runs shown in
Figures S1D-F sa sfy

1
# mm-pa erns

∑
mm-pa ern:

|𝑘runa,i − 𝑘besta,i |
𝑘besta,i

≤ 0.05, (S3.28)

which we take to be ’equally valid’ solu ons, as we now have filtered out fits clearly frozen
into sub-op mal minima. For the simultaneous fit of Figure ??, no such selec on was
needed as all runs sa sfied the equivalent of Equa on ?? with both 𝑘a and 𝑘clv.

3.5.6. Translation to models assuming individual mismatches act
additively

Here we show in what limits our kine c model corresponds to exis ng state-of-the-art
(model-based) predic on tools, in par cular CFD [? ] and uCRISPR [? ]. Although no direct
comparison with our model has been given, we also discuss how the model of Farasat and
Salis can be ra onalized from ours [? ]. Despite the different parameteriza ons, said mod-
els treat mismatches along the R-loop in quite similar fashion. To get the probability (rela-
ve rate) to cleave an off-target (compared to the on-target), the individual contribu ons

of separate mismatches are either added together in energy-space (uCRISPR) or mul plied
together in terms of their provabili es (CFD). From our physical model, we can understand
what assump ons have (implicitly) been made in their construc on, and therefore must
hold in order to produce an accurate predic on.
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As has been done explicitly when construc ng uCRISPR, we start by assuming the PAM
recogni on and R-loop forma on processes equilibrate prior to cleavage. In this limit, the
effec ve rate of cleaving an off-target equals the frac on of Cas9-sgRNA-DNA that is in the
cleavage competent state, mul plied by the bare cataly c rate,

𝑘clv ≈ 𝑘cat𝑃EQ20 (S3.29)

When our sequen al model equilibrates, occupancies follow the Boltzmann distribu on,

𝑃EQ20 = 𝑒 20

1 + ∑
PAM

𝑒 n

(S3.30)

The Boltzmann factor (𝑒 20 ) alone explains how straight addi on of free-energymismatch
penal es lead tomul plica on of probabili es. However, as seen in Equa on ??, the Boltz-
mann factormerely describes the numerator and to calculate the probability onemust first
evaluate the par on func on which is the denominator. Exis ng models used different
versions of the par on func on. First, Farasat and Salis, only account for the solu on
and cleavage competent states (state ’20’). Within the context of our microscopic model,
this implies all but the final state’s energy are much greater than the solu on state’s free-
energy,

𝐹n ≫ 1 𝑘 𝑇 ∀𝑛 ∈ [PAM, 1...19] ⇒ 𝑃EQ20 ≈ 𝑒 20

1 + 𝑒 20
(S3.31)

This is the core of the model used by Farasat and Salis ([? ]), in which 𝐹20 includes both se-
quence and posi on dependent mismatch penal es. In effect, both uCRISPR and CFD have
further assumed also the cleavage competent state is unstable (compared to solu on),

𝐹20 ≫ 1 𝑘 𝑇, (S3.32)

which reduces the occupa on to al but its corresponding Boltzmann weight

𝑃EQ20 ≈ 𝑒 , (S3.33)

The uCRISPR model uses Equa on ?? to determine (rela ve) cleavage rates (Equa on ??),
using a set of sequence and posi on dependent energies. To par ally correct for their
model’s inability of naturally explaining the non-addi ve naturemul plemismatches have,
the authors used a set of addi onal energe c penal es for incorpora ng consecu ve mis-
matches.
We note that Equa on ?? also describes the CFDmodel. CFD uses a set ofmeasured proba-
bili es to cleave singlymismatched off-targets w.r.t the on-target, which according to Equa-
on ?? amounts to measuring rela ve rates.

𝑝 ≡ 𝑃EQ20 (1x mm)
𝑃EQ20 (on-target)

(S3.34)

The probability to cleave an off-target containing mul ple mismatches, say at loca ons
𝑚𝑚1 and 𝑚𝑚2, is obtained by mul plying the individual probabili es for the off-targets
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containing either of the mismatches. To see that our general model also returns mul pli-
ca ons of probabili es in the limit where Equa on ?? is valid, we denote the free-energy
of the off-targets (applying Equa on ??)

𝐹20(2x mm) ≡ 𝜖 (mm 1) + 𝜖 (mm 2) + 𝐹20(on-target) (S3.35)

Next, using the approxima ons (Equa ons ?? and ??) leading up to Equa on ??,

𝑃EQ20 (2x mm)
𝑃EQ20 (on-target)

= 𝑒 20(2x mm)

𝑒 20(on-target)

= 𝑒 ( (mm 1) (mm 2))

= 𝑒 (mm 1) × 𝑒 (mm 2)

= 𝑒 20(mm 1)

𝑒 20(on-target) ×
𝑒 20(mm 2)

𝑒 20(on-target)

= 𝑃EQ20 (mm 1)
𝑃EQ20 (on-target)

× 𝑃EQ20 (mm 2)
𝑃EQ20 (on-target)

= 𝑝 × 𝑝

(S3.36)

Note that Equa on ?? represents the defining assump on of any ’naïve Bayes classifier’
used to predict cleavage ac vi es [? ].

In conclusion, the models discussed here are only ever expected to produce accurate (rela-
ve) cleavage rates if any bound state is unstable, independent of Cas9-sgRNA concentra-
on - an assump on that contradicts our model’s parameteriza on (Figure ??).

3.5.7. At short times, relative counts equal relative rates
A er exposing the DNA to Cas9-sgRNA for a me 𝑡, the number of DNA molecules cut
equals the probability of any molecule being cleaved, 𝑃clv(𝑡) given by Equa ons ?? and ??,
mul plied by the total number of copies in the original pool ofmolecules (𝑁pool). Assuming
the same copy number of every off-target tested in the experiment, le ng 𝑃on-targetclv (𝑡)
denote the probability of a on-target DNA molecule being cleaved, the number of cleaved
copies of an off-target compared to the number of cut on-targets equals

𝑃clv
𝑃on target
clv

= 1 − 𝑒 clv

1 − 𝑒 on target
clv

→≈ 1 − (1 − 𝑘clv𝑡)
1 − (1 − 𝑘on target

clv 𝑡)
= 𝑘clv
𝑘on target
clv

(S3.37)

, if the system can be approximated by the simpler Equa on ??. We thus see that for
short experiments, the frac on of cut DNA molecules can approach the frac on to the
corresponding effec ve cleavage rates.
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�t parameters

HiTS-FLIP (Boyle et al. 2017) NucleaSeq (Jones et al. 2019) CHAMP (Jones et al. 2019)A B C

D E F

Figure S3.1: related to Figure ??. Fit only to dCas9 data from HiTS-FLIP (Boyle et al.) (A) Comparison of model
to HiTS-FLIP data. top: fit against off-targets with 1 mismatch. bo om: fit against off-targets with 2 mismatches
(data in upper triangle/ model in lower triangle). (B) Comparison of model to CHAMP data. top: predic on of
off-targets with 1 mismatch. bo om: predic on of off-targets with 2 mismatches (data in upper triangle/ model
in lower triangle). (C) Comparison of model to NucleaSeq data. top: predic on of off-targets with 1 mismatch.
bo om: predic on of off-targets with 2 mismatches (data in upper triangle/ model in lower triangle). (D) Free-
energy landscape for 1nM sgCas9-RNA interac on with on-target DNA. Green curves represent fit results from
individual runs of our Simulated Annealing op miza on algorithmwhose resul ng values differ less than 5% from
the best-solu on’s outcomes (figure A) (see S.I.). Black shows median to guide the eye. Pink shows best solu on,
used to produce figures A-C. (E) Mismatch penal es as a func on of posi on along the RNA-DNA hybrid. Blue
dots show individual fit results (a er selec on). Black shows median to guide the eye. Pink shows best solu on,
used to produce figures A-C. (F) Forward rate parameters. Green dots show individual fit results (a er selec on).
Black shows median to guide the eye. Pink shows best solu on, used to produce figures A-C.
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A B C

Figure S3.2: related to Figures ?? and ??. Simultaneous fit to HiTS-FLIP and NucleaSeq data. (A) Free-energy
landscape for 1nM sgCas9-RNA interac on with on-target DNA. Green curves represent fit results from individual
runs of our Simulated Annealing op miza on algorithm whose resul ng values differ less than 5% from the best-
solu on’s outcomes (Figures ??A-B) (see S.I.). Black shows median to guide the eye. Pink shows best solu on,
used to produce Figures ??A-C. (B)Mismatch penal es as a func on of posi on along the RNA-DNA hybrid. Blue
dots show individual fit results (a er selec on). Black shows median to guide the eye. Pink shows best solu-
on, used to produce Figures ??A-C. (C) Forward rate parameters. Green dots show individual fit results (a er

selec on). Black shows median to guide the eye. Pink shows best solu on, used to produce ??A-C.
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A B

C D

E

Figure S3.3: related to Figure ??. Correla on plots and addi onal test data. (A) Correla on of model values
(fit+predic on) to HiTS-FLIP data. A er making a 2D histogram of the data points, each is assigned a color accord-
ing to the histogram’s bin wherein they lie. Darker color indicates a higher density of data points. Dashed line
indicates perfect correla on. Both data fi ed against (up un l 2 mismatches) and the remainder of the library (>2
mismatches) are included. The la er therefore serves as a test. (B) Correla on of model values (fit) to NucleaSeq
data. Orange/Purple indicates a higher/lower density of data points. (C) Correla on of model values (predic on)
to CHAMP data. Darker color indicates a higher density of data points. (D) CHAMP data for off-targets with con-
secu ve mismatches. Values on the ver cal/horizontal axis indicate the first/final mismatch in the stretch. (E)
Model predic on of the data shown in figure D.
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ed close HNH

close HNH
seed (’fast’)

Figure S3.4: related to Figure ??. Free-energy landscapes at varying nuclease concentra ons. Free-energy
landscape for 0.001nM (blue) and 100nM (grey) Cas9-sgRNA interac ng with on-target DNA. The height of the
first effec ve barrier is modulated by nuclease concentra on, while the height of the second remains constant.
Hence, at higher nuclease concentra ons, the difference between dCas9 binding and Cas9 cleavage rates is more
pronounced.
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A B

D

Figure S3.5: related to Figure ??. comparing single-mismatch profiles for various guides (data taken across the
literature). (A) Cleavage ac vity w.r.t on-target, for different guides. Data from Doench et al. [? ] (processed
dataset from Zhang et al. [? ]). (B) Cleavage ac vity w.r.t on-target, for different guides. Data from Hsu et al. [?
] (processed dataset from Zhang et al. [? ]). (C) Cleavage ac vity w.r.t on-target, for different guides. Data from
Pa anayak et al. [? ]. (D) NucleaSeq data for guide used throughout this study (orange triangles) and a second
guide (green squares).
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4
Why Argonaute is needed to

make microRNA target search
fast and reliable

MicroRNA (miRNA) interferes with the translation of cognate messenger RNA
(mRNA) by finding, preferentially binding, and marking it for degradation.
To facilitate the search process, Argonaute (Ago) proteins come together with
miRNA, forming a dynamic search complex. In this review we use the language
of free-energy landscapes to discuss recent single-molecule and high-resolution
structural data in the light of theoretical work appropriated from the study of
transcription-factor search. We suggest that experimentally observed internal
states of the Ago-miRNA search complex may have the explicit biological func-
tion of speeding up search while maintaining specificity.

This chapter has been published as: M.Klein*, S.D.Chandradoss*,M.Depken and C.Joo. Why Argonaute is needed
to make microRNA target search fast and reliable. Seminars in Cell and Developmental Biology 65 20–28 (2017)
(*co-first authors)
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4.1. Introduction

E ukaryotes regulate gene expression post-transcrip onally through the RNA interfer-
ence (RNAi) pathway. This pathway begins with the transcrip on of non-coding RNA

and its subsequent matura on into microRNA (miRNA). To facilitate search and suppres-
sion of target messenger RNA (mRNA), Argonaute (Ago) proteins join together with the
miRNA molecule, forming an efficient search complex [? ? ]. In the pool of cellular RNA,
the search complex finds mRNA cognate to its miRNA and primes its degrada on. As the
search relies on thermal mo on, the func oning of the search complex can be understood
in terms of diffusion and the binding-energy landscape of mRNA-Ago-miRNA interac ons.
In this Review, we discuss recent single-molecule and structural data on Ago, and borrow
free-energy considera ons and theory from transcrip on-factor search, highligh ng how
several of the observed Ago conforma ons could func on to speed up the search process.

1D hopping

1D sliding

Intersegmental 
       transfer

3D diffusion

Figure 4.1: Facilitated diffusion. Four different modes of search can in principle be dis nguished. 1) 3D search:
An Argonaute protein probes a new sequence by first unbinding, then diffusing through the cytosol, and finally
binding to probe a new uncorrelated site. 2) Sliding: A non- specifically bound protein laterally diffuses along the
mRNA to probe a new site, probing every poten al intermediate site from the start to the new site. 3) Hopping:
A non-specifically bound protein unbinds, but quickly rebinds again to a site close by (along the RNA) from where
it unbound, but not necessarily probing every site in between. 4) Intersegmental transfer: a hopping mechanism
where unbinding and binding posi ons are correlated in 3D space, but far apart along the RNA. This is possible
due to the coiled conforma on RNA adapts in vivo. binding

4.2. Target search in 1D and 3D
Ever since the ini al observa ons of an astonishingly high associa on rate of the E. coli Lac
repressor to the lac operon [? ], researchers have been trying to understand general mech-
anisms that could speed up target search on nucleic-acid templates. In their seminal work
[? ], Berg, Winter and von Hippel proposed a facilitated diffusion mechanism by which the
protein combines three-dimensional diffusion through the cytoplasmwith lateral diffusion
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along the DNA (see Fig.??) [? ]. We here qualita vely summarize the theore cal argu-
ments behind this sugges on and review the experimental evidence for lateral diffusion
by various search complexes.

4.2.1. Facilitated diffusion enables rapid target search of miRNA
Though facilitated diffusion was originally aimed at transcrip on-factor search on DNA, the
same arguments apply to any searcher along a nucleic acid sequence, including Ago-miRNA
search on RNA. The benefit of employing both 3D and 1D search can be qualita vely un-
derstood as follows: To find the next sequence to probe, it will always be faster to diffuse a
short distance laterally along the RNA (through hopping and sliding; Fig. ??) than to diffuse
a long distance through the cytosol. As lateral diffusion brings you to close-by sites, there
exists a point beyond which the search complex starts predominantly probing sites already
visited. At this point it becomes favorable to move to an unprobed RNA neighborhood by
diffusing through the cytosol. Minimizing redundancy of the one-dimensional (1D) search
thus comes at the cost of employing the slower 3D search, and there exists an op mum
par oning between the two [? ? ? ? ? ].

4.2.2. Experimental evidence for lateral diffusion during target search
Single-molecule fluorescence studies brought direct evidence of lateral diffusion during
molecular target search, including sliding of transcrip on factors [? ? ], DNA repair proteins
[? ? ? ] zinc-finger proteins [? ], and the DNA recombina on protein RecA [? ]. Like
Argonaute, RecA makes a nucleoprotein complex (a RecA—single-stranded DNA filament)
that is ready to basepair for target search [? ? ? ? ? ]. In order to inves gate lateral
diffusion of Ago-miRNA on RNA, we adopted an in vitro single-molecule FRET assay that
was developed for studying RecA-mediated target search [? ]. We placed two iden cal
binding sites on a single target RNA strand, each of which led to a different FRET efficiency
with Ago-miRNA bound [? ]. We observed that a substan al frac on of the binding events
(> 50%) shu led between two strong binding posi ons via rapid lateral diffusion. When
using a volume-occupying reagent (PEG) to mimic physiological condi ons, most binding
events (> 90%) displayed shu ling by the same Ago-miRNA complex. This suggests that
lateral diffusion could also be important for in vivomicroRNA search.

4.3. Multiple protein configurations for fast lateral dif-
fusion and stable target recognition

While target search is sped up by facilitated diffusion, Slutsky and Mirny [? ? ] argued that
it is not possible to have both fast lateral diffusion and stable/preferen al binding to the
target using a single nucleoprotein conforma on. The more stable binding to the target is,
the more stable binding to similar sequences also becomes, and the lateral diffusion slows
down as it gets increasingly trapped at non-target sites. To understand what is needed
for the resolu on of this apparent paradox, we now follow Slutsky and Mirny [? ? ] and
consider the sta s cal varia on of binding energies along the substrate (which for us is
mRNA).
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Figure 4.2: Search-stability paradox. (A) Energies of the binding sites are shown as short black horizontal mark-
ers. Being a sum of base pairing energies, binding energies are (approximately) Gaussian distributed with a stan-
dard devia on . The target site is separated from the other binding sites by an energy of about . When
diffusing laterally, the minimal barrier towards diffusion is set by the energe c difference between neighbouring
sites ( ). In reality there are intervening barriers, as depicted by the dashed line. With li le loss of generality,
we will ignore these addi onal contribu ons to the barriers and focus on the best-case scenario. (B) Recogni on
mode − Stable binding, but slow search: A larger difference between target and non-target energies comes at
the cost of having larger barriers towards diffusion. The right panel shows the complete distribu on of energe c
states (standard devia on R) of which a subset is plo ed in the le panel. The typical (minimal) barrier towards
diffusion ( R) and differen al binding energy ( R) are indicated. (C) Search mode − Fast search, but no sta-
ble binding: Decreasing the barriers also decreases the difference between target and non-target energy, which
hampers the ability of the search complex to selec vely bind to the target. The right panel shows the complete
distribu on of energe c states (standard devia on S) of which a subset is plo ed in the le panel. The typ-
ical (minimal) barrier towards diffusion ( S ) and differen al binding energy ( S) are indicated. (D) Search
+ Recogni on - Fast search and stable binding: If the search complex posesses (at least) two dis nct binding
modes, it becomes possible to combine the landscapes of figures B (blue) and C (green) to enable rapid diffusion
( ≈ S ) towards the target without loss of selec vity ( ≈ R) (orange).

4.3.1. Resolving the speed-stability paradox by utilizing multiple
binding modes

Apart from the target, the sequences being searched through can be considered as essen-
ally random and uncorrelated [? ? ]. A substan ally preferen al binding to the target

requires that a correct match has a considerable energe c difference (Δ𝐸, for defini on
see Fig. ??A) to all par al matches. Slutsky and Mirny assume that the search complex
has a binding energy roughly propor onal to the degree of sequence homology between
probed and target sequence. Under the assump on that the binding energy comes only
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from individual nucleo de-basepairing energies, a large energe c difference between tar-
get and non-target posi ons can only be achieved by large differences in pairing for each
nucleo de. A general increase of basepairing energies results in a larger standard devia on
among binding energies at different posi ons (compare 𝜎R of the “recogni on” landscape
and 𝜎S of the “search” landscape in Fig. ??B and C respec vely), and the diffusion constant
along the mRNA can be shown to decrease sharply [? ? ]. In Fig. ??B we illustrate how a
large recogni on energy will generally imply large barriers to lateral diffusion (Δ𝐸 , for def-
ini on see Fig. ??A),resul ng in a slow search process. Reversely, in Fig. ??C we illustrate
how small barriers to diffusion implies poor recogni on. Slutsky and Mirny proposed that
the coupling between recogni on energy and diffusion barrier (Δ𝐸 being propor onal to
Δ𝐸) can be broken if the search complex can stochas cally switch between two internal
modes with different binding energy strength (Fig. ??D):

1. A search (S) mode: small affinity differences and fast diffusion (𝜎S ⪅ 2𝑘 𝑇 ; Ref. [?
])

2. A recogni on (R) mode: large affinity differences and slow diffusion (𝜎R ⪆ 5𝑘 𝑇 ;
Ref. [? ])

An efficient searcher must have evolved the ability to combine the search and recogni on
modes. Thereby, the non-specific (average) energies (dashed lines in Fig. ??B-D) are ar-
ranged such that all energies of the search mode lie between the energies of all non-target
sites and the target in the recogni on mode (see Fig. ??D). Such systems predominantly
move according to the search mode when not at the target site, but predominantly oc-
cupy the recogni on mode once at the target (see states with orange dots in Fig. ??D). The
effec ve search barriers are now set by the search mode (Δ𝐸 ≈ Δ𝐸S) while the recog-
ni on energies are set by the recogni on mode (Δ𝐸 ≈ Δ𝐸R). Both fast search and stable
recogni on is thus in principle possible if the searching protein possesses at least two dis-
nct bindingmodes, and the above case represents the theore cal ideal scenario (formore

general cases see [? ? ? ? ? ]).

4.3.2. Experimental evidence for two initial binding modes of Ago-
miRNA

Both recent structural and single-molecule data of eukaryo c Ago proteins suggest that the
hybridiza on between guide and target is gradual and is coupled to structural changes in
the search complex. We here discuss these studies in the light of a search-stability paradox
for Ago-miRNA.
Biochemical, structural and computa onal analyses suggest that Argonaute divides itsmiRNA
guides into five func onal domains (5’anchor, seed, mid region, 3’ supplementary region,
and the tail region) (Fig. ??). The seed region (nt 2–8) is crucial for gene suppression [?
? ? ? ? ? ? ], and it was shown that protein mediated interac ons stabilize nt 2–6 into
an A-form-helix that exposes nt 2–4 (or 2–5) for base paring with the target (Fig. ??A) [?
]. Based on this observa on, Schirle et al [? ] proposed a step-wise target recogni on for
human Argonaute-2 (hAgo2), in which the ini al recogni on of the target occurs in the 5’
part of the miRNA. Two subsequent single-molecule studies showed that Ago-miRNA in-
deed uses this so-called sub-seed for the ini al weak recogni on. Solomon et al designed
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Figure 4.3: Structural and domain overview of hAgo2 and miRNA. (A) The binary structure of hAgo2-miRNA
showing fourwell conserveddomains amongArgonaute proteins (snapshot of the structure 4W5N taken in pymol)
(B) Argonaute proteins dividemiRNA(orange) in to several domains. The 5’ phosphate and nt 1 ofmiRNA (anchor)
is bound to the pocket in the MID domain. The nt 2–8 are known as seed sequence, as they are crucial for ini al
targe ng. The nt 9–10 have the least significant role in target recogni on and are known as the mid region. The
3’ supplementary region is comprised of nt 13–16, they also have considerable role in stabilizing miRNA-target
interac on. The nucleo des beyond the 16th do not base pair with the target and are called the tail region. The
3’ OH is bound to the binding pocket in PAZ domain making it as a 3’ anchor. The t1 Adenosine (t1A) in the target
RNA (pink) binds to the binding pocket in MID domain..

di-nucleo demuta on constructs formouse Ago-miRNA andmeasured the unbinding rate
from the target RNA [? ]. We have also shown that, when the paired region was gradually
shrunk from the full seed (nt 2-8) to only the first three nucleo des (nt 2-4), no difference
in the binding rate was no ceable [? ]. These two results showed that it is only the first
three nucleo des of the seed that are used to maintain weak interac on during the ini al
search.
The two single-molecule works also suggested that Ago-miRNA exhibits a sharp increase
in the binding affinity when the number of paired nucleo des changes from 6 to 7 [? ? ].
Comparison of crystal structures suggests that this property originates from the fact that
Argonaute makes the guide kink away from the A-form stacked structure in several places
[? ? ? ? ]. The most prominent kink disrup ng the helical arrangement of the guide is
between nt 6 and 7 (Fig. ??B). Base paring to the target, therefore, requires a shi of the
helix-7 that clashes with the incoming target. A er pairing of nt 2-4, hAgo2 undergoes a
conforma onal change leading to a 4Å displacement of the helix-7 loop and allowing base
pairing of nt 6–8 (Fig. ??C). It was hypothesized that the sharp increase in the me bound
between having 6 and 7 nt matching is caused by the conforma onal change of the helix-7
mo f [? ]. We here suggest that Ago makes a change from a weak binding (search) mode
using nt 2- 4 to a strong binding (recogni on) mode using a full seed through the confor-
ma onal change of the helix-7.
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Figure 4.4: Seed of miRNA and hAgo2-helix7. (A) Nucleo des 2–4 (green) of the guide RNA are well exposed
by residues in the PIWI domain (golden surface) possibly for ini al target recogni on (snapshot of the structure
4W5N taken in pymol). (B) (B) The access to nt 5–7 of the guide (green) is blocked by the helix-7 mo f (red).
The base paring of target to guide nt 5–7 would require displacement of helix-7 (snapshot of the structure 4W5N
taken in pymol). (C) Upon base paring with the target (grey) the helix-7 mo f is displaced by 4 Å compared to
guide-only structure. The displacement of helix-7 removes the constraints from nt 6 and 7 (yellow) compared to
guide only structure (green) making nt 6 and 7 available for base paring (see the close-up view in the right panel).
(snapshot of the structures 4W5N (guide only) and 4W5O (guide and target) taken in pymol).

4.3.3. The experimental evidence for additional binding modes of
Ago-miRNA

In addi on to the helix-7 movement, more conforma onal changes take place a er seed
pairing is achieved, and before the bound Ago-miRNA complex becomes cleavage compe-
tent. First, binding of the supplementary region (nt 13-16) ensuing the seed pairing en-
hances the binding stability of Ago-miRNA [? ]. But the pairing beyond nt 8 is restricted by
a physical constraint [? ](Fig. ??A). Widening up of a channel between PAZ and N-terminus
domains allows for a rearrangement of the disordered supplementary region (nt 13-16) of
the miRNA into a helical A-form, preparing it for pairing with the target RNA (Fig. ??B)[? ].
It remains to be seenwhether target recogni on is enhanced by this addi onal checkpoint.
Second, biochemical and single-molecule studies have shown that the base paring in the
mid region is necessary for cleavage of target RNA [? ? ]. But Jo et al also observed that a
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A B

C

Figure 4.5: Cleavage competent state. (A) Structure showing the base pairing between a guide strand (green)
and a target strand (red). The base pairing beyond nt 8(g8) is blocked by a residue F811 in a helix of the PIWI
domain (snapshot of the structure 4W5O taken in pymol). (B) A binary structure of hAgo2-miRNA showing the
disordered 3’ supplementary region of guide RNA (green) passing through a channel between N domain (blue)
and PAZ domain (purple) (snapshot of the structure 4W5N taken in pymol). (C) A ternary structure of hAgo2-
miRNA and its target showing an A-form helical arrangement of the 3’ supplementary region of guide (green) in
ternary structure (snapshot of the structure 4W5O taken in pymol). sites

significant por on of Ago-miRNAs were not able to cleave the target RNAs in spite of their
perfect complementarity [? ? ]. The unsuccessful cleavage of perfect complementary
target might be the resultant of a failure to induce an addi onal conforma onal change
needed for cleavage that involves posi oning of Ago’s cataly c residues residing near nt
9-10 of the miRNA.
Third, Ago uses its PAZ domain to precludemiRNA from being ghtly associated with target
RNA. An earlier biochemical study reported that bare RNA as short as 12bp is long enough
for stable hybridiza on ( a year of life me) [? ]. But it was observed that Ago-miRNA (or
Ago-guide DNA) o en dissociated from its target within seconds to minutes a er binding
[? ]. This reversible binding, which is speculated to reduce off-targe ng [? ], is possible be-
cause the 3’ end of guide RNA is anchored to the PAZ domain and this lowers the binding
affinity of Ago-miRNA (especially at the 3’ end) to target RNA [? ? ? ? ? ? ].

In addi on to the complex interac ons between Ago and a guide strand, a direct inter-
ac on between Ago and target RNA also contributes to the target selec on. Schirle et al
[? ] showed that hAgo2 interacts with the adenine nucleo de of the target when it is op-
posite to the 1st nucleo de of the guide. Through a water network, the residues in the
MID domain (Fig. ??A) specifically recognize the t1A anchoring the Ago-miRNA complex to
the target. Using a single-molecule assay they showed that t1A does not influences ini al
target recogni on but increases the residence me of Ago-miRNA on to the target RNA,
which might enhance its cleavage efficiency [? ].
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4.4. Energy landscape of miRNA target search
Having discussed the evidence that a series of conforma onal changes are needed to ini-
ate stable binding and cleavage of target mRNA, we now discuss how conforma onal

changes effect the binding-energy landscape. When Ago ini ally scans the target RNA it
exposes only nucleo des 2-4 of the miRNA, termed the sub-seed. In this search mode it
does not discriminate strongly based on RNA sequence, and lateral diffusion is likely rapid.
A complete match of the sub-seed stabilizes a conforma onal change that exposes the re-
mainder of the seed (nt 2-8) for base pairing, and, once paired, it slows down the diffusion
in this recogni on mode (Fig. ??A). Upon encountering a sequence bearing complemen-
tarity to the en re seed, the helix-7 is displaced to allowmiRNA to fully pair with the target,
and the Ago-miRNA complex arrives in this more stable recogni on state (Fig. ??A and B).
We suggest that the func on of these various states is analogous to the func on of internal
states in transcrip on-factor search (Fig. ??D).
In figure ??B we sketch a free-energy landscape of the dominant configura on at varying
degrees of base pairing for a perfect match. Transi ons requiring conforma onal changes
cost energy, increasing barriers to further base pairing. We construct a sketch of the land-
scape based on a single-molecule study that reported the existence of various pathways
even when the full sequence of miRNA matches with a target [? ]: a significant frac on
of the popula on showed transient binding ( 10%) and stable binding with no cleavage
( 30%). Assuming that the largest barrier to further basepairing originates from the re-
quired movement of helix-7, the substan al frac on of transiently binding proteins indi-
cates that this barrier must come close to the barrier to unbind. Further, the even larger
frac on of stable but non-cleaving complexes indicates that the average binding energy
past helix-7 is strong, and that the cleavage rate is slow compared to experimental mes,
but fast compared to unbinding.

With these general considera ons, we conclude that the free-energy landscape of Fig. ??B
captures at least one search mode (pre-seed pairing) and at least one recogni on mode
(post-seed pairing). These two modes could be further split up, e.g. the seed pairing
into sub-seed and full seed pairing. S ll, the general principle behind resolving the speed-
stability paradox should apply. To determine the quan ta ve effects of this energy land-
scape will require addi onal theore cal work accoun ng for gradual base pairing and a
series of conforma onal changes. Using single-molecule techniques and high resolu on
structural studies, it will also be possible to test the effect of Ago’s conforma onal changes
on target search by analysing mutated proteins or directly observe conforma onal switch-
ing (for instance by using FRET such as done for Cas9 in [? ]).

4.5. Outlook
We have reviewed the principles behind facilitated diffusion and the speed-stability para-
dox in general target search processes, as well as the experimental evidence for facilitated
diffusion in miRNA target search. We further discussed the evidence for mul ple search
states in theAgo-miRNA search complex, which could help resolve the speed-stability paradox—
simultaneously enabling the search to be fast and the binding to the target to be strong.
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Figure 4.6: Target search process by hAgo2. (A)A model summarizing conforma onal changes during target
search by hAgo2-miRNA. In light of the search-stability paradox discussed in Fig. ??we iden fy a two searchmodes
(pink + green) and a recogni on mode (blue). Alterna ng between search and recogni on modes is enabled
through themovement of the helix-7mo f (orange). (B) Schema c free-energy diagram for Ago-microRNA target
recogni on. Forming bonds between target and guide (horizontal axis) makes the complex more stable (ver cal
axis). In light of the search-stability paradox, as proposed by Slutsky andMirny and discussed in Fig. ??, we iden fy
at least 1 searchmode (pre-seed pairing, green arrow) and at least one recogni onmode (post-seed pairing, blue
arrow). To resolve the paradox, Argonaute can use the movement of its helix-7 mo f to switch between search
and recogni on modes (orange arrow). Poten ally, addi onal modes can be dis nguished, such as sub-seed
pairing (pink arrow).
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4.5.1. Further insight into Ago-miRNA target search can improve
microRNA target prediction algorithms

Due to the complex nature of the mRNA targe ng process, it is far from straigh orward
to predict what genes are silenced by a par cular miRNA. Experimentally, mRNA targets
have been found by analysing the effect of miRNA expression on protein produc on or by
performing binding assays [? ]. For such approaches to work, one needs to know what tar-
get gene should be considered from the outset. Using bioinforma cs algorithms, poten al
target sites are scored, and high scoring targets are subsequently tested in experiment.
Simple sequence homology between the mRNA to the guiding miRNA does not by itself
give an accurate predic on of targets. Presently, typical predic on algorithms are largely
phenomenological in nature, for example, assigning higher scores to sequences that fully
match the seed of the miRNA and/or are evolu onary conserved. Addi onally, account-
ing for the secondary structure of mRNA and the sequence outside of the targeted 3’-UTR
further improves predic ons [? ? ]. A recent combined bioinforma cs and in vivo study
showed that there are at least 14 addi onal sequence features (for example the length 3’-
UTR region and the predicted structural accessibility of the RNA) of themRNA that improve
microRNA target predic on algorithms [? ]. Yet, despitemuch effort, predic on algorithms
o en point to many target sites that cannot be validated experimentally or fail to pick out
targets that have been previously validated. Single-molecule studies allow one to study
how Ago-miRNA’s interac on with RNA binding proteins effects target affinity. Synthe-
sising such molecular level understanding into the free-energy landscapes that we have
discussed in this review should help improving the scoring func ons of target predic on
algorithms by taking the non-equilibrium features of the system into account. Addi onally,
predic on algorithms can poten ally be improved by taking sequences neighbouring the
target into account [? ? ? ? ]. Chandradoss et al. showed that, when two iden cal targets
are neighbouring each other, the total reten on me was substan ally larger than what
can be expected on theore cal grounds for two non-interac ng targets [? ]. This synergis c
effect might also be observed when a target is neighboured by sub-seed sequences. It will
be interes ng to determine whether this puta ve effect exists in vivo. Possibly, modelling
the physical interac on with neighbouring sites, and accordingly assigning higher scores
to those mRNA sequences with a high-density of sub-seed sequences, could then improve
target predic on algorithms.

4.5.2. Implications for other target search systems
In the cell, mul ple nucleic acid-mediated target search processes take place. Among them,
RecA-mediated target search is the most thoroughly studied system. Qi et al. [? ] se-
lec vely observed stable interac ons between a RecA-ssDNA homologue and DNA in a
DNA curtain experiment, in which single-molecule signals were only observed when ss-
DNA and dsDNA matched with each other for at least 8 nucleo des. Furthermore, using
singlemolecule FRET, Ragunathan et al. [? ] observed short-lived interac ons (1-10 s)
between RecA-ssDNA and target DNA that had 5-7 matching nucleo des. The difference
between having 7 or 8 matches suggests there exists a rate limi ng step hampering RecA-
ssDNA filaments to extend base pairing beyond the 7th nucleo de (similar to the barrier
represen ng the movement of the helix-7 mo f in Figure ??B).
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Recently, great a en on has been brought to the CRISPR/Cas system, an adap ve im-
mune system in bacteria, which uses RNA as a guide to target foreign DNA or RNA [? ].
CRISPR’s target search involves a protein- DNA interac on (recogni on of a 3-nt sequence,
so-called PAM sequence) and RNA-DNA interac ons. Biochemical studies suggested that
it is the PAM recogni on that occurs prior to the seed recogni on [? ? ? ]. Recently, a
structural study showed that the first 8 nucleo des of Cas9’s guide are pre-organized in a
helical Aform, similar to the seed sequence of microRNA in Argonaute [? ]. A recent FRET
study indicated that there is another mode that follows binding of the seed recogni on
[? ]. The authors showed that only when the guide RNA of Cas9 makes extensive base
pairing ( 16nt out of the 20nt guide), a nuclease domain (HNH) migrates towards the target
DNA. Altogether, the findings imply that CRISPR/Cas9, similar to Argonaute, usesmore than
two binding modes to overcome the speed-stability paradox (‘PAM only’ to ‘PAM+seed’ to
‘cleavage competent’). Whereas a DNA curtain assay ruled out long distance lateral dif-
fusion, it will be interes ng to find out whether the CRISPR-Cas system makes any local
lateral excursions when searching for the PAM sequence. Similarly, no large scale lateral
diffusion has been observed for RecA/Rad51 systems using DNA curtain assays (>100nm
resolu on) [? ], while short-range lateral diffusion was observed in single-molecule FRET
experiments (nanometer resolu on) [? ] .

Finally, itwill be interes ng tofindout howmuch the searchmechanismof humanArgonaute-
2 is shared with other target search systems such as those men oned in this review and
different classes of Ago proteins that use DNA to target DNA [? ? ] and RNA to target DNA
[? ] as well as PIWI proteins [? ].
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5
Argonaute bypasses cellular
obstacles without hindrance

during target search

Argonaute (Ago) proteins are key players in both gene regulation (eukaryotes) and
host defense (prokaryotes). Acting on single-stranded nucleic-acid substrates,
Ago relies on base pairing between a small nucleic-acid guide and its comple-
mentary target sequences for specificity. To efficiently scan nucleic-acid chains
for targets, Ago diffuses laterally along the substrate and must bypass secondary
structures as well as protein barriers. Using single-molecule FRET in conjunc-
tion with kinetic modelling, we reveal that target scanning is mediated through
loose protein-nucleic acid interactions, allowing Ago to slide short distances over
secondary structures, as well as to bypass protein barriers via intersegmental
jumps. Our combined single-molecule experiment and kinetic modelling ap-
proach may serve as a novel platform to dissect search process and study the
effect of sequence on search kinetics for other nucleic acid-guided proteins.

This chapter has been published as: Cui, T.J., Klein, M., Hegge, J.W., Chandradoss, S.D., van der Oost, J., Depken,
M., and Joo, C. Argonaute bypasses cellular obstacles without hindrance during target search. Nature Communi-
ca ons 10-4390 (2019)
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5.1. Introduction

Target recogni on by oligonucleo de guides is essen al in cellular development, differen-
a on and immunity [? ? ]. Argonaute (Ago) proteins are key mediators of the target

interference process, u lizing short oligo-nucleo des ( 20-30 nt) as guides for finding com-
plementary target sequences [? ? ]. The guide-target interac on ini ates at the 5’ end of
the guide, and progresses throughWatson-Crick base pairing at the “seed” segment, which
propagates along the guide, resul ng in target interference upon comple on [? ]. While
eukaryo c Argonautes use RNA guides to target RNA, prokaryo c Agos (pAgo) have been
demonstrated to use a variety of guides and targets [? ? ? ]. Depending on the pAgo type,
it uses either DNA or RNA guides to target single-stranded (ss) DNA, ssRNA or both2. The
ability of pAgos to cleave ssDNA but not double stranded DNA (dsDNA) suggests a physi-
ological role as a host defense system against ss mobile gene c elements6–8. Recently, a
new family of CRISPR-Cas systems that targets ssDNA—not dsDNA—have been discovered
in archaea, sugges ng that these defense systems may be more widespread than previ-
ously thought [? ]. The number of poten al targets encoded in cellular DNA/RNA is vast
[? ? ? ] and Ago needs to search long stretches of polymer before finding a canonical
target. Single-molecule studies have shown that a mixture of excursions into solu on and
one-dimensional movements results in a search that is orders of magnitude more efficient
than is possible without lateral diffusion [? ? ]. In a previous biophysical study we sug-
gested that human Argonaute 2 (hAGO2) uses lateral diffusion along RNA for target search
[? ]. Yet, the degree of lateral diffusion remains unclear, as excessive usage of 1D diffusion
would lead to redundant re-sampling of poten al target sites and to problems at various
roadblocks present on the target nucleic acids [? ? ]. In addi on to complete dissocia on
into solu on, intersegmental jumping, in which a protein transfers between two spa ally
close-by segments, has been shown to occur for DNA binding proteins such as restric on
enzyme EcoRV [? ]. A er binding to DNA non-specifically from solu on, the protein diffu-
sively scans only a limited sec on [? ? ? ? ], and dissociates into solu on before rebinding
to a new sec on. Use of such a mechanism would lead to reduced sampling redundancy,
and the possibility to circumvent obstruc ons when proteins search for their targets.

Previous studies have shown that certain DNA/RNA-guided proteins interact with DNA
through non-specific electrosta c interac ons [? ? ? ], but the strength of these inter-
ac ons and their behaviour on roadblocks and secondary structures is not understood.
Since these interac ons are typically short-ranged [? ? ? ] and short-lived [? ? ? ? ? ?
? ], a method offering high spa o-temporal resolu on is required to study these interac-
ons. Here we make use of single molecule Förster Resonance Energy Transfer (FRET) to

elucidate the mechanism of ssDNA target search by a mesophilic Ago from the bacterium
Clostridium butyricum (CbAgo). We show that CbAgo does not remain in ght contact
with the DNA backbone, enabling it to bypass secondary structures along the nucleic-acid
chain—all while retaining the ability to recognize its target. A er sliding locally, the protein
is able to reach distant sites (>100 nt) along the DNA through intersegmental jumps and
then resumes sliding. These different modes of facilitated diffusion allow Ago to rapidly
search through nucleic acid segments, as well as to bypass substan al obstacles during
target scanning.



5.2. Results

5

113

5.2. Results
5.2.1. Single-molecule kinetics of CbAgo binding
To elucidate the complexity of the target search mechanism, we made use of the high spa-
al sensi vity of single-molecule FRET. We studied a minimal Argonaute complex that con-

sists of CbAgo, loaded with a 22-nt DNA guide (small interfering DNA, siDNA) [? ]. By us-
ing total internal reflec on fluorescence (TIRF) microscopy, we recorded the interac ons
of CbAgo-siDNA with target DNA. Target DNA was immobilized on a PEG-coated quartz
surface in a microfluidic chamber through bio n-streptavidin conjuga on. Guide-loaded
CbAgo was introduced to the microfluidic chamber by flow. The target was embedded
within a poly-thymine sequence and labelled with an acceptor dye (Cy5) (Figure ??a). The
guide construct was labelled at nt 9 from the 5’-end with a donor dye (Cy3) (Figure ??b).
A 532-nm laser excita on resulted in donor excita on when the protein loaded with the
guide DNA interacted with the target DNA. Once the CbAgo-siDNA complex became bound
to the target, the proximity of the donor dye to the acceptor dye on the target resulted in
high FRET efficiency. This was followed by a sudden disappearance of the signal, indica ng
that the complex dissociated from the target and diffused into the free solu on. Freely
diffusing molecules move too rapidly (∼ 𝜇s) in and out of the evanescent field for the cur-
rent me resolu on of the experimental setup (100 ms) and were therefore not recorded.
We found that CbAgo is not able to target dsDNA directly (Figure ??a-b). Likewise, when
a ssDNA target with one base pair complementarity to the seed mo f of the guide was
used, only transient interac ons (∼0.45 s) were detected (Figure ??c-d), and no accurate
binding profile could be extracted from the FRET histogram (Figure ??e). To observe target
search that involves intrinsically transient interac ons, we determined the op mal target
mo f for recording binding events. The op malmo f should provide binding events longer
than our detec on limit of 100 ms, but s ll lead to dissocia on events within the me of
our measurement (200 s). To determine the op mal mo f, the complementarity between
guide and target was incrementally extended from nt 2 to 8 of the guide, showing a gradu-
ally increasing dwell me of the Ago-siDNA complex. We found that increasing the number
of complementary base pairs above 6 resulted in stable binding beyond the photobleach-
ing me (Figure ??c). To maintain weak interac ons, we con nued our experiments using
a siDNA with three-base complementarity (N=3) with the target (nt 2-4) (Figure ??f). This
gives a well-defined FRET popula on in the FRET histogram (Figure ??h), unlike one base-
pair complementarity. Our es ma on of the photobleaching rate (1.4 x 10 s ) (Figure
??d) was an order of magnitude lower than the dissocia on rate (2.7 x 10 s ) (Figure
??g), indica ng that photobleaching does not affect our es ma on of the dissocia on rate.

5.2.2. Lateral diffusion of CbAgo
It was previously shown that an Ago-guide complex does not directly bind a specific target
site from solu on, but rather binds non-specifically to random posi ons along a surfaced-
immobilized nucleic acid construct [? ]. Such non-specific interac ons of CbAgo-siDNA
along target DNA are too short-lived to resolve in the absence of a canonical target mo f
(Figure ??c), and in the presence of such a mo f there was s ll no lateral diffusion visible
(Figure ??f). As we were unable to resolve lateral diffusion by CbAgo from non-specifically
bound regions to the target, we ques oned whether the observed stable signal for three
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Figure 5.1: Single molecule imaging of target binding by siDNA:CbAgo complex. a, Immobiliza on scheme of the
Argonaute-guide DNA complex. ssDNA is immobilized on a PEGylated quartz slide surface. Presence of the Ago-
siDNA complex is detected by specific binding to target site (light yellow) resul ng in high FRET. b, Sequences of
guide (green) and target DNA. Guide is labelled on the 9th nucleo de posi on from the 5’ side. c, Representa ve
FRET trace of a single molecule experiment at 100 mM NaCl showing a transient interac on between CbAgo and
a poly-T strand. Time resolu on is 100 ms. d, Dwell me distribu on of the Argonaute in absence of target mo f.
e, FRET values of the transient interac ons of (d). f, Representa ve FRET trace of a single molecule experiment
showing the interac onbetweenCbAgo and a 2-4 nt (N=3)mo f. g, Dwell medistribu onDwell medistribu on
of N=3 binding events with the mean dwell me of 37 s. h, FRET histogram of binding events, showing a single
FRET popula on for N=3 at E=0.78.

complementary base pairs is due to stable binding to the target or contains lateral excur-
sions away from the target but below our me resolu on. In case of the la er, measured
apparent dwell mes (Figure ??g) would consist of the combined dwell mes of many tar-
get escapes through lateral diffusion, each followed by rapid recapture below the detec on
limit, before CbAgo eventually unbinds from the DNA (Figure ??g). We show that such a
process of repeated recapturewould result in an exponen al distribu on of apparent dwell
mes, in accordance with Figure ??g (see S.I.). To overcome the temporal resolu on limit,

we adopted a tandem target assay [? ? ]. While lateral diffusive excursions from a trap are
too short-lived to be resolved in the presence of only a single target, a second target can
trap an excursion for long enough to be observed. We placed two iden cal op mal targets
(site 1 and site 2) separated by 22 nt (Figure ??a) along the DNA construct. Both targets
base pair only with the first three nucleo des (nt 2-4) of the guide bound by CbAgo. As
the second target is located further away from the acceptor dye, binding the second tar-
get results in a lower FRET efficiency than binding the first target. This difference in FRET
values allows us to determine which of the two targets CbAgo-siDNA is bound to (Figure
??b). The respec ve distance and FRET efficiency between the first binding site (site 1)
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and the acceptor dye (Cy5) remained the same as for the single target assay (E 0.78), while
an addi onal peak appeared at a lower FRET efficiency for the second target (E 0.43, Fig-
ure ??c). A er binding to one of the target sites, a majority of the binding events (87.8%)
resulted in CbAgo-siDNA shu ling to the other target without loss of FRET signal. Under
our standard experimental condi on (100 mM NaCl), an average of 13.5 shu ling events
occur per binding event (Figure ??d). When the experiment was repeated for guides and
targets with complementary increased to N=6 (nt 2-7), only 15.1% of the traces showed
the shu ling signature within our me window (Figure ??f). This shows that the shu ling
signature is controlled by interac ons between CbAgo-ssDNA and the target mo f. With a
6-nt match, the target is strongly bound, and we are less likely to observe a shu ling event
within our observa on window.
Interes ngly, the average dwell me of the first target (Figure ??g) decreased from 37 s
to 1.7 and 1.8 s a er adding a second target in its vicinity (Figure ??e). This observa on
is in agreement with our lateral diffusion model, since with close-by targets, each sub-
resolu on diffusive excursion has some probability to be caught at the opposing target.
To further test our claim that the transi on between targets occur through lateral diffu-
sion, we use single-molecule analysis so ware [? ] to extract the average me between
shu ling events (Δ𝜏shu le) from traces (Figure ??).

5.2.3. Kinetic modelling of lateral diffusion
To determine how lateral diffusion contributes to the shu ling, we kine cally model how
Δ𝜏shu le depends on the distance between traps. The DNA construct is modelled as a series
of binding sites along which CbAgo will perform an unbiased random walk by stepping to
neighboring nucleo des. The rate of stepping away from the target is 𝑘esc in both direc-
ons, while at non-specific sites (poly-T), stepping is assumed to be near instantaneous—an

approxima on jus fied by the fact that lateral excursions are never resolved in the exper-
iments. The me needed for FRET transi ons to occur (named “shu ling me”, Δ𝜏shu le)
is equivalent to the apparent dwell me at a single FRET state. In the S.I. we construct a
diffusive model capturing the effect of Ago’s repeated retrapping before shu ling to the
other trap. The model shows that the shu ling me from the target grows linearly with
the separa on 𝑥target between the targets

Δ𝜏shu le(𝑥target) =
𝑥target
𝑘esc

(5.1)

The linear dependence of the shu ling me with trap separa on might seem puzzling at
first, given that diffusive mescales usually show a quadra c dependence on distances.
Here though, it is not the diffusive steps themselves that directly contributes to the shut-
tling me, but rather the changing probability to ge ng retrapped before shu ling. In
support of this model, we observed that the apparent shu ling me Δ𝜏shu le(𝑥target) in-
creases approximately linearly when the distance between the targets increases through
11, 15, 18 and 22 nt (Figure ??). A fit to Equa on 1 reveals that CbAgo-siDNA complexes
escape the target site at a rate of 15.8 mes per second (𝑘esc = 15.8𝑠 ) in either direc-
on.
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Figure 5.2: Shu ling signature of CbAgo appears in presence of two targets. a, In the top right corner the DNA
sequence of guide and target for 22 nt separa on between targets. Here the distance is defined as the distance
from beginning of a target to the beginning of the next target. The placement of the second target (site 2) results
in the appearance of an addi onal FRET signal, with lower FRET efficiency. b, (Top) Representa ve shu ling trace
of a 22 nt separa on tandem target at 100 mMNaCl for N=3. (Bo om) The corresponding FRET states (blue) with
the fi ed HMM trace on top (red). (Right) FRET histogram of the respec ve me trace. Time resolu on is 100ms.
c, FRET histograms of respec ve states, with peaks at 0.43 and 0.78. d, Shu ling event distribu on for the same
condi ons (n=309). Bin size = 10. On average 13.5 shu ling events take place before dissocia on. The grey bar
(n=33) marks binding events followed by dissocia on (no shu ling). e, Dwell me distribu ons of respec vely
the transi ons from low FRET state to high FRET state (top) and vice versa (bo om).

5.2.4. Ago probes for targets during lateral diffusion
Next, we placed a third target on the tandem construct (Figure ??a), keeping the distance
between each set of neighboring targets well within the regime for which we find good
agreement to Equa on 1 using the assay discussed above (i.e. at 11 nt trap separa on,
see Figure ??). We observed three different FRET levels, corresponding to CbAgo get-
ng trapped at the three different targets (Figure ??b). Using Hidden Markov Modelling

(HMM), states can be assigned (Figure ??b) and transi on probabili es can be extracted
(Figure ??c). If CbAgo returns to solu on between binding targets, transi ons between
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any pair of targets will be equally probable, resul ng in equal effec ve rates between all
targets. However, if lateral diffusion dominates, transi ons between adjacent sites will be
favored. The transi on probabili es (Figure ??c) indicate that over 90% of the transi ons
between the two outer targets (from state A to C, or from C to A) proceed through the
intermediate target site (state B). The rate to transfer from B to C and B to A is twice as
much as that of the opposite path (A to B or C to B). Using the fi ed escape rate from
above, 𝑘esc = 15.8𝑠 , we predict similar shu ling mes based on our theore cal model
for lateral diffusion (Figure ??d, S.I.). With no more free-parameters remaining for this
predic on, we take this experimental agreement with our predic on as further evidence
of lateral diffusion. It is noteworthy that there are about 10% direct transi ons from A
to C and C to A without any intervening dissocia on. The exponen al distribu on of the
dwell mes (Figure ??b) suggests that at our current me resolu on this 10%may be either
due to missed events or due to the existence of an addi onal transloca on mode through
which Ago is able to bypass the intermediate target.

5.2.5. Ago target search is unhindered by structural and protein
barriers

Secondary structures are commonly found in mRNA and are also predicted to exist in sin-
gle stranded viruses [? ? ]. It is not known whether CbAgo is able to bypass the numerous
junc ons it encounters upon scanning a DNA segment. To examine this, a Y-fork structure
(DNA junc on) was introduced as a road block between two targets (Figure ??a), while
keeping their separa on (11 nt) the same as in the tandem target variant (Figure ??f). The
construct was designed such that the labelled target was par ally annealed at the stem
with a bio nylated target, thus only annealed constructs were observable on the surface
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of the microfluidic device. When CbAgo binds to either of the two targets, it can reach the
other target only by crossing the junc on. Our measurement showed that there was no
significant difference in shu ling me between the standard tandem-target construct and
the Y-fork construct (Figure ??b-c), indica ng that the Y-fork does not impede any of the lat-
eral diffusionmodes present. We have previously observed that the CbAgo-siDNA complex
is not able to stably bind to dsDNA31, demonstra ng that the protein cannot simply track
the backbone of dsDNA (Figure ??a-b). Thus, our result suggests that the Ago-siDNA com-
plex does not maintain ght contact with DNA during lateral diffusion. Maintaining a weak
interac on with the DNA molecule allows CbAgo-siDNA to move past the junc on. Next,
we ques oned whether CbAgo is also able to overcome larger barriers, such as proteins
which cannot reasonably be traversable through sliding alone. Lin28, a sequence-specific
inhibitor of let-7 miRNA biogenesis, has been found to associate sequence specifically to
RNA and DNA [? ]. His-tagged Lin28 was immobilized on the surface of the microfluidic
chamber (Figure ??d) a er which a fluorescent ssDNA fragment was added containing a
central Lin28 binding mo f and an Ago target mo f on either side (Figure ??d & Figure
??g). The presence of the protein blockade did not preclude Ago from reaching the dis-
tal site (Figure ??e) but no ceably broadened the FRET peak (Figure ??f), possibly due to
protein-protein interac ons. Although the shu ling rate was lowered from 0.60𝑠 to
0.27𝑠 (Figure ??g & Figure ??e), Ago is able to bypass the obstacle. Since short-range
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lateral movement is now blocked by the protein barrier, Ago’s ability to move between tar-
gets demonstrates that the target search process also allows for intersegmental jumps, in
accordance with our observa on that the middle target is some mes skipped when tran-
si oning between the outer targets in Figure ??c.

5.2.6. Ago relies on flexibility of DNA segments of bypassing block-
ades

SinceAgowas observed to be able to bypass junc ons andproteins, weques onedwhether
Ago could bypass other large-profile barriers. Previously, we observed that Ago only inter-
acts transiently with dsDNA (Figure ??a-b) and thus we repurposed dsDNA as an extended
blockade. We made a construct analogous to the tandem target construct used in Fig-
ure ??a, but the targets were separated by 36 nt and complementary strands of 17 nt, 21
nt, and 25 nt were annealed to the region in between the targets (Figure ??h-i). For the
construct with a 17-nt blockade we observed a large number of shu ling events (shu ling
probability 65.3% upon binding) indica ng that a dsDNA blockade does not prohibit CbAgo
from reaching the other site (Figure ??j and Figure ??l black squares). Upon extending the
length of the dsDNA blockade, to 21 nt and 25 nt, we no ced a drop in the percentage of
shu ling events (63.1% and 40.4% respec vely) although shu ling s ll persisted (Supple-
mentary Fig ??). Since the s ff segment of dsDNA decreases the shu ling probability, we
conclude that Ago relies on the flexibility of segments for lateral diffusion. To further inves-
gate the contribu on of DNA flexibility, we used another construct which was shortened

(by 15 nt from 19 nt) from the 5’ side (Figure ??h bo om sequence). Here, ssDNA coiling
was no longer possible from the 5’ side of the DNA construct (Figure ??k). We measured a
significant decrease ( 50%) in shu ling probability for all three blockades compared to the
untruncated construct (Figure ??l), which supports that Ago relies on the flexibility of DNA
segments when transferring between them.

5.2.7. Ago uses hops to access distant DNA segments
Sliding is not expected to dominate across large distances, as the linear increase in shu ling
me (Equa on ??) would render the search process prohibi vely slow. However, when

CbAgo was studied with tandem targets that were separated 36 nt or more, we observed
that the shu ling s ll persisted across larger distances (Figure ??, green region, Supple-
mentary Table 1 and Figure ??). Together with the evidence of intersegmental jumping
above, and the fact that the ssDNA can easily be coiled back to bring the second target
close to the Ago protein [? ], we speculate that there is a second mechanism of lateral
diffusion: a er local scanning for the target through sliding, the CbAgo complex jumps to a
different part of the segment that has looped back into proximity of the complex. From this
point on, we refer to these hops as intersegmental transfers in accordance with the current
literature (Figure ??) [? ? ]. This intersegmental jumping mechanism would enable CbAgo
to travel to new sites without fully dissocia ng, and rescanning of the same sec ons would
be minimized [? ? ]. Based on the dependence of the single-target off-rate on the ionic
strength (Figure ??f), we expect the rate of the intersegmental jumps to also be dependent
on salt concentra on, while sliding should only be moderately effected since it has no net
effect on the ion condensa on along the substrate. In order to test the hypothesis that
short-ranged lateral diffusion is governed by sliding and long-range diffusion is governed



5

120 5. Clostridium butyricum Argonaute Target search

a b 

Tandem construct Y-fork construct

0 204 8 12 16

Time (s)

In
te

n
s
it
y
 (

a
.u

.)

0

200

100

e
Lin28 blockade

Lin28b

Antibody

11 nt

0

S
h

u
tt
lin

g
 t
im

e
 (

s
)

0.1

0.2

0.3

0.4

0.5

dsDNA blockade

3’

5’

5’

3’

0

100

200

300

400

0 10 20 30 40 50

In
te

n
si

ty
 (

a
.u

.)

Time (s)

17 bp blockade

Tandem construct

c 

d 

f 

h 

i l 

Tandem

S
h

u
tt
lin

g
 t
im

e
 (

s
)

 Tandem target

 Lin28 assay

0

1

2

3

4

64 nt
0 0.5 1.0

FRET (E)

0

50

100

C
o

u
n

ts
In

te
n

s
it
y
 (

a
.u

.)

0 10 20

0

100

200

300

0 10 20

0
100
200

Y-fork

0

0.5

1.0

Blockade length (bp)

0 17 21 25P
ro

b
a

b
ili

ty
 o

f 
sh

u
tt

lin
g

 

dsDNA block

 Truncated flank

j 

64 nt

g 
Time (s)

11 nt

11 nt

3’-TGG TTG TCG CCC ATG CCG ACA CG AT -5’

3’-G TTG TCG CCC ATG CCG ACA CG -5’

 3’-TG TCG CCC ATG CCG ACA -5’   17 nt

21 nt

25 nt

5’- T
14 
A CTA C CTC T CGG ACC AAC AGC GGG TAC GGC TGT GC TA CTA C CTC T

32
-3’biot

Truncated flank

5' – CTA C CTC T CGG ACC AAC AGC GGG TAC GGC TGT GC TA CTA C CTC T
32
-3’biot

Truncated flank

dsDNA block

k 

dsDNA block

5’

5’
3’ 3’

400
300

Figure 5.5: Argonaute can overcome structural and protein barriers. a, Schema c drawing tandem target assay
(le ) and the Y-fork assay (right) with 11 nt separa on between targets. b, Representa ve shu ling traces of the
tandem target assay (top) and Y-fork assay. c, The shu ling me of the Y-fork junc on (blue bar) compared with
the tandemassay (white bar). The experimental data of both setswere taken on the samedays. Error bars indicate
the 95% confidence interval acquired from 105 bootstraps d, Schema c drawing of the His-Lin28b blockade assay,
where targets are separated by 64 nt. Immobiliza on happens through a bio n-an -His an body. e, Example of a
shu ling tracewith Lin28b located in between two targets. Exposure me is 100ms. f, FRET histogram (molecules
n = 46) fit with two Gaussian func ons (E=0.64 for red fit and E=0.95 for dark blue fit). g, The shu ling me of the
Lin28 assay compared with the tandem target assay for 64 nt separa on between targets. h, Sequences used for
the dsDNA block assay, indica ng the base pairing between a 17 nt, 21 nt and a 25 nt long blockade and the target
strand. The dsDNA block construct has a 19 nt flank on the 5’ side, whereas the “truncated flank” has a 4 nt flank.
i, Schema c of a dsDNA block assay, where the CTC targets are highlighted with orange. j, Representa ve trace of
binding and shu ling of CbAgo on a 17 bp blockade DNA construct. k, (le ) Schema c of dsDNA block construct
with full length flanks. (right) schema c of the truncated version where the flank on the 5’ side is removed. The
thickness of the arrows indicate the observed shu ling probability. l, The probability of shu ling upon binding to
a CTC target plo ed versus the blockade length (none, 17 nt, 21 nt and 25 nt) for full length flanks (black squares)
and for the truncated flanks (red circles). Error bars are given by the 95% confidence interval acquired from 10
bootstraps
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Figure 5.6: The rela ve change in shu ling me of two constructs from Figure ??, 64 nt separa on (dark blue
circles) and 15 nt separa on (light blue squares), normalized against at 200 mM NaCl. Errors of the
ra o were determined through bootstrapping 10 mes the ra o of / 200 mM NaCl

by intersegmental jumps, we altered the ionic strength of the buffer solu on from 10 mM
NaCl to 200 mM NaCl. Here, we expect the degree of DNA coiling not to be significantly
affected by the change in salt concentra on, since the persistence length is only expected
to vary between 20 and 14 when exchanging the buffers, and in both buffers it is smaller
than the contour length of the constructs [? ]. We used dual-target constructs with 15-nt
separa on and 64-nt separa on (Figure ??), taken from the two different regions in Figure
?? (indicated by blue and green shading). At a separa on of 64 nt, we observed a 13-fold
increase of the shu ling rate when increasing the salt concentra on from 10 mM NaCl
to 200 mM NaCl. In contrast, we observed that for the dual-target construct with 15-nt
separa on, the shu ling me changed roughly only two-fold for the same change in ionic
strength (Figure ??)—a modest change compared to 13-fold of the dual-target constructs
with 64-nt separa on. We take the rela ve ionic-strength insensi vity of shu ling mes for
15-nt trap separa on as evidence of transloca on being dominate by sliding over short dis-
tances. In contrast, given the rela ve ionic-strength sensi vity for the 64-nt construct, the
Ago complex is here unlikely to first reach the distal site through sliding only, and requires
par al dissocia on from the DNA strand. In conclusion, lateral diffusion during CbAgo tar-
get search is governed by two dis nct modes. For short distances, lateral diffusion takes
place through a sliding process characterized by loose contact with the DNA strand. This
allows the protein to “glide” past secondary structures. To traverse larger distances, CbAgo
is able to take advantage of the fact that the so ness of the substrate allows it to bend back
on itself to enable frequent intersegmental jumps between nearby segments (Figure ??).

5.3. Discussion
Within a vast number of poten al targets, Ago-guide complexes have to minimize the me
spent unproduc vely diffusing through solu on or redundantly checking off-targets, as
mely regula on is crucial for both cell development and host defense [? ]. Our single-
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molecule study shows that Argonaute from C. butryicum (CbAgo) uses a loose slidingmode
to bypass junc ons and relies on intersegmental jumps to cover larger distances and to by-
pass substan al barriers.

We have shown that bacterial Ago binds DNA loosely and slides along the DNA to locally
scan for complementary targets. While such sliding mechanism has been characterized
for several proteins [? ? ? ? ], li le was previously known for DNA/RNA-guided target
searchers like Ago. Proteins searching along nucleic acids with secondary structures may
be blocked from sliding further. However, this does not seem to be true for Ago. Instead,
the loose interac on with the substrate allows the protein to slide past junc ons while s ll
probing poten al target sequence through base pairing. To the best of our knowledge, this
mode of loose-contact sliding has not been reported for any nucleic-acid guided proteins.
In addi on, we show that the loose binding further allows Ago to move to a new segment
via intersegmental jumps, reducing redundant scanning of the same segment and allowing
Ago to bypass large-profile roadblocks.

The ability of CbAgo to target specifically ssDNA but not dsDNA [? ] (Figure ??a-b) suggests
a role as host defense againstmobile gene c elements and ssDNA viruses. In environments
where ssDNA viruses can be abundant, such as in sea water, fresh water, sediment, terres-
trial, extreme, metazoan-associated and marine microbial mats [? ? ? ], pAgo’s targe ng
ssDNAwould be very beneficial for the host. Upon entry in the infected cell, ssDNA binding
and recombina on proteins may associate with the invading nucleic acid, and DNA poly-
merasewill start to generate the second strand. In addi on, it is an cipated that secondary
structures will be formed in the ssDNA viral genome [? ]. This will generate road blocks
that may affect scanning by defense systems such as restric on enzymes but—as shown
here—not Argonaute. Likewise, inser on of transposons in prokaryotes o en proceeds
via a ssDNA-intermediate state [? ? ? ], and pAgos may here encounter the same type of
obstacles. In case of ssRNA, both in prokaryotes and in eukaryotes, it is well known that
complex secondary structures can be formed by base pairing different an -parallel RNA
segments [? ? ? ? ]. The presence of secondary structures suggests that it is necessary
for Agos to “glide”—the type of loosely bound sliding we report—past such roadblocks to
enable search along ssRNA. Based on the func onal and structural similari es of prokary-
o c Agos and eukaryo c Agos [? ? ], we expect eAgo to also slide past RNA secondary
structures, minimizing me spent trapped at such structures.

The effect of lateral diffusion on the total target search me is dependent on the rough-
ness of the energy landscape that the DNA binding protein encounters once it binds non-
specifically. We have shown how to determine the escape me for a 3-nt complementary
target. This can be extended to es mate the escape me for any complementarity and
consequently the diffusion constant on DNA with any base composi on [? ]. Here we have
inferred a 15.8 s escape rate from the 3-nt CTC guide sequence (Figure ??), indica ng
that if a target strand were to consists only of GA in repea ng order, the effec ve diffu-

sion 𝐷 = = nt
( ⋅ esc)

= nt 𝑘esc = 15.8 nt . Changing the number of base-paring

nucleo des as well as the iden ty of nucleo des in the guide/target could provide insights
into how sequence varia on would affect the rate of diffusion for other nucleic acid pro-



5.4. Methods

5

123

teins. Since the guide strand only provides the specificity needed for accurate targe ng, lat-
eral diffusion could be reliant on the non-specific surface interac ons with the protein. We
envision that the posi ve surface charge distribu on inside the Ago cle could orient Ago
with the guide towards the nega vely charged nucleic acid strand (Figure ??), thereby pro-
mo ng target interroga on while traveling along the target strand. It is unknown whether
Ago is able to scan each base during this process or whether it skips over nucleo des. For
our triple-target construct, we have observed that 90% of the me the middle target traps
Ago. It will be of interest to inves gate whether this level of effec ve target trapping is
achieved by a low trapping efficiency offset by repeated passes over the target.

For a longer range target search, wehave observed that at distances >100 nt separa on, the
shu ling me remains well belowwhat would be expected for sliding (Figure ??). We show
that coiling of the ssDNA (persistence length ∼ 1 nm) may bring distant segments in close
proximity, allowing intersegmental jumps over longer distances (beyond 30 nt target sepa-
ra on), and so speeding up lateral diffusion. Interes ngly, Ago cannot use intersegmental
jumps to cover shorter distances, as implied by the sudden increase in shu ling me when
the trap separa on goes below 30 nt (Figure ??). Experimentally, one could further in-
ves gate the nature of intersegmental jumps through a combined tweezer-fluorescence
single-molecule assay, where forces strong enough to pull on entropically coiled ssDNA
can be applied [? ? ]. Furthermore, theore cal modelling and addi onal experiments are
required in order to establish to what extent par oning the search modes on different
length scales will allow nucleic acid guided proteins to op mize the search process [? ? ?
] since the absence of coopera ve binding was recentley reported for another Ago system
[? ].

We hypothesize that similar target search strategies may be used by Agos from different
families, which are structurally and func onally similar [? ]. For example, in RNA induced
transcrip onal silencing (RITS), guide-loaded AGO1 binds to a transcript a er which other
proteins are recruited for heterochroma n assembly [? ? ]. Similarly, in the piRNA path-
way PIWI proteins associate with piRNA in germline cells to bind and cleave transposon
transcripts in the cytoplasm [? ? ? ] or to nascent RNA in the nucleus in order to in-
duce heterochroma n forma on [? ]. In each of these func ons, the reliance on guide-
complementary for sequen al target search likely necessitates the usage of facilitated dif-
fusion strategies to op mize the search me for proper regula on of cell development or
gene stability.

5.4. Methods
5.4.1. Purification of CbAgo
The CbAgo gene was codon harmonized for E.coli Bl21 (DE3) and inserted into a pET-His6
MBP TEV cloning vector (Addgene plasmid # 29656) using liga on independent cloning.
The CbAgo proteinwas expressed in E.coli Bl21(DE3) Rose a 2 (Novagen). Cultureswere
grown at 37 °C in LB medium containing 50µg ml-1 kanamycin and 34µg ml-1 chloram-
phenicol ll an OD600nm of 0.7 was reached. CbAgo expression was induced by addi on
of isopropyl 𝛽-D-1-thiogalactopyranoside (IPTG) to a final concentra on of 0.1mM. Dur-
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ing the expression cells were incubated at 18∘C for 16 hours with con nues shaking. Cells
were harvested by centrifuga on and lysed, through sonica on (Bandelin, Sonopuls. 30%
power, 1s on/2s off for 5min) in lysis buffer containing 20mMTris-HCl pH 7.5, 250mMNaCl,
5mM imidazole, supplemented with a EDTA free protease inhibitor cocktail tablet (Roche).
The soluble frac on of the lysate was loaded on a nickel column (HisTrap Hp, GE health-
care). The column was extensively washed with wash buffer containing 20mM Tris-HCl pH
7.5, 250mM NaCl and 30mM imidazole. Bound protein was eluted by increasing the con-
centra on of imidazole in the wash buffer to 250mM. The eluted protein was dialysed at
4oC overnight against 20mM HEPES pH 7.5, 250mM KCl, and 1mM dithiothreitol (DTT) in
the presence of 1mg TEV protease (expressed and purified according to Tropea et al.63)
to cleave of the His6-MBP tag. Next the cleaved protein was diluted in 20mM HEPES pH
7.5 to lower the final salt concentra on to 125mM KCl. The diluted protein was applied to
a heparin column (HiTrap Heparin HP, GE Healthcare), washed with 20mM HEPES pH 7.5,
125mM KCl and eluted with a linear gradient of 0.125-2M KCl. Next, the eluted protein
was loaded onto a size exclusion column (Superdex 200 16/600 column, GE Healthcare)
and eluted with 20mM HEPES pH 7.5, 500mM KCl and 1mM DTT. Purified CbAgo protein
was diluted in size exclusion buffer to a final concentra on of 5uM. Aliquots were flash
frozen in liquid nitrogen and stored at -80°C.

5.4.2. Purification of His-tagged Lin28b
The protein was prepared following the protocol of Yeom et al. [? ].Briefly, recombinant
Lin28b was prepared by subcloning cDNA with BamHI and XhoI into pET28-a vector (No-
vagen). Subsequently, the strain was transformed to E. coli BL21-RIL strain. The expression
and purifica on of recombinant Lin28b was performed according to the manufacturer’s
protocol.

5.4.3. Single molecule experimental setup
Single molecule FRET experiments were performed with an inverted microscope (IX73,
Olympus) with prism-based total internal reflec on. Excita on of the donor dye Cy3 is
done by illumina ng with a 532nm diode laser (Compass 215M/50mW, Coherent). A 60X
water immersion objec ve (UPLSAPO60XW, Olympus) was used for collec on of photons
from the Cy3 and Cy5 dyes on the surface, a er which a 532 nm long pass filter (LDP01-
532RU-25, Semrock) blocks the excita on light. A dichroic mirror (635 dcxr, Chroma) sep-
arates the fluorescence signal which is then projected onto an EM-CCD camera (iXon Ultra,
DU-897U-CS0-#BV, Andor Technology). All experiments were performed at an exposure
me of 0.1 s at room temperature (22 ± 0.1 °C)

5.4.4. Fluorescent dye labeling of nucleic acid constructs
All DNA constructs were ordered from ELLA Biotech. Nucleic acid constructs that have an
internal aminomodifica onwere labeledwith fluorescent dyes based on the CSHL protocol
65.1 uL of 1 mM of DNA/RNA dissolved in MilliQ H20 is added to 5 uL labeling buffer of
(freshly prepared) sodiumbicarbonate (84 mg/10mL, pH 8.5). 1 uL of 20 mM dye (1 mg in
56 uL DMSO) is added and incubated overnight at 4°C in the dark, followed by washing and
ethanol precipita on. Concentra on of nucleic acid and labeling efficiencywas determined
with a Nanodrop spectrophotometer.
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5.4.5. Single molecule chamber preparation
Quartz slideswere coatedwith a polyethylene-glycol through theuse of amino-silane chem-
istry. This is followed by assembly of microfluidic chambers with the use of double sided
scotchtape. For a detailed protocol, we refer to 66. Further improvement of surface qual-
ity occurs through 15 min incuba on of T50 and 5% Tween20 67 a er which the channel
is rinsed with 100 𝜇L T50 buffer. Streptavidin (5 mg/mL) was diluted in T50 to 0.1 mg/mL.
50 𝜇L of this solu on is then flowed inside the chamber. This is followed by incuba on for
1 min followed by rinsing with approximately 10-fold the volume of the chamber with T50
(10mMTris-HCl [pH 8.0], 50mMNaCl). 100 pM of DNA/RNA target with bio n construct is
then flushed in the chamber, followed by 1 min incuba on. This is followed subsequently
by rinsing with T50. The chamber is subsequently flushed with CbAgo buffer, containing
50 mM Tris-HCl [pH 8.0], 1 mM Trolox, 1 mMMnCl2, 100 mM NaCl. Guide-loading of apo-
CbAGO occurs by incuba on of the protein (10 nM) with 1 nM guide construct in a buffer
containing 50mMTris-HCl [pH 8.0], 1mMTrolox, 1mMMnCl2, 100mMNaCl, 0.8% glucose
at 37°C for 30min. Following incuba on, glucose oxidase and catalase is added (0.1mg/mL
glucose oxidase) a er which the sample is flushed in the microfluidic chamber containing
the DNA targets.

5.4.6. Lin28 assay
Immobiliza on of Lin28b occurred in the following way: 50 𝜇l of streptavidin (0.1 mg/mL)
in T50 is flowed inside the chamber and incubated for 1 minute. A er this, the chamber
is rinsed with approximately 100 𝜇L of T50. 1 𝜇l of An -6X His tag® an body (Bio n) di-
luted 100-fold in T50 and subsequently flowed inside the chamber. A er 5 minutes, the
chamber is rinsed with 100 𝜇L of T50. Stock of Lin28b (100 𝜇M) is diluted to 100 nM and
incubatedwith the target DNA (10 nM) and 10mMMgCl2 for 5minutes, a er which the so-
lu on is flushed inside the chamber, followed by incuba on of 5minutes. Lastly, the CbAgo
buffer is flushed inside the chamber. Guide-loading of apo-CbAgo occurs in the same way
as described above (Single molecule chamber prepara on) a er which the CbAgo:siDNA
complex is also flushed inside the chamber.

5.4.7. QUANTIFICATION AND STATISTICAL ANALYSIS
Fluorescence signals are collected at 0.1-s exposure me unless otherwise specified. For
7-nt target separa on, 30-ms exposure me is used. Time traces were subsequently ex-
tracted through IDL so ware using a custom script. Prior to data collec on, the loca on of
targets (Cy5 labeled) are found by illumina ng the sample with the 637nm laser. Through
a mapping file, it subsequently collects the individual intensity hotspots in both the donor
and acceptor channel and pairs them up through the mapping file, a er which the traces
are extracted. During the acquisi on of themovie, the green laser is used. Only at the end,
the red laser is turned on once more to check for photobleaching of the red dye. Traces
containing the fluorescence intensity from the donor and acceptor signal aremanually pre-
selected occurs through the use of MATLAB (Mathworks), disregarding artefacts caused by
non-specific binding, addi onal binding to neighboring regions and photobleaching.
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Figure S5.1: Single molecule interac ons of CbAgo:siDNA (2-4 nt) at different condi ons. (a) Representa ve
trace single-molecule interac on of CbAgo-siDNA (let7) with full target dsDNA target immobilized on the surface
( 300 per FoV). Exposure me is 100 ms. (b) Dwell me distribu on of CbAgo-guide 3-dsDNA target interac ons.
Number of molecules recorded n = 540. Number of datapoints n = 12 (c) Average dwell me of protein bound
to target versus guide length for N=1 to N=8. The error bars are taken from the 95% confidence interval of boot-
strapped dwell mes (20,000 empirical bootstraps). The striped red line indicates the observa on me, limited
by photobleaching. (d) Survival plot of donor only (Cy3) constructs in standard experimental condi ons (100 mM
NaCl, 50 mM Tris-HCl pH 8.0). Mean donor bleaching me was obtained by a single exponen al fit to the survival
probability plot. (e) Binding rate for different salt concentra ons for N=3 (nt 2-4) between guide and single tar-
get. (f) Dwell me of CbAgo and a single-stranded single target DNA construct (N=3) at 10, 50, 100, 150 and 200
mM NaCl concentra on. Total measurement me = 250 s. Error bars are indica ng the 95% percen le of 20,000
empirical bootstraps of the mean dwell me. (G) Schema c image indica ng the dynamic escape and recapture
events of CbAgo.
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Figure S5.3: Example of HMM so ware applied to data trace. (Top) An example shu ling trace of CbAgo in the
user interface of ebFRET. The donor and acceptor intensi es plo ed versus me. The donor intensity is enhanced
ar ficially in absence of any signal, resul ng in an extra zero FRET state (upper subfigure). (Bo om) The donor,
acceptor and FRET intensi es overlaid with states resul ng from the HiddenMarkovModeling. The HMManalysis
program recognizes the unbound state as an extra state (light blue), while low FRET and high FRET are respec vely
assigned dark blue and purple.
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Figure S5.6: Example shu ling traces for 11 nt, 15 nt, 18 nt, 22 nt, 29 nt, 36 nt, 50 nt and 120 nt target separa on.
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Hopping 

Sliding

Neighbouring 

DNA segment

Intersegmental transfer via hopping

Figure S5.7: Cartoon representa on of target search mechanisms. Sliding: Proteins that undergo sliding make
a well-correlated movement along the contour of the nucleic acid substrate. There is no net displacement of
counterions (grey circles). Hopping: Proteins alternate quickly between a bound and unbound state with respect
to DNA and there is counterion condensa on upon dissocia on of the protein. The method of diffusion is similar
to 3D search, but its movements are correlated along the contour of the strand. Intersegmental transfer: This
mechanism is a specialized form of hopping where segments appear transiently close by allow the protein to
transfer to this new segment.
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Intersegmental transfer allow Ago 

to bypass protein barriers

and access distant DNA/RNA segments

Local scanning 

Target cleavage of 

target strand

Subseed match

Argonaute is weakly associated 

with the DNA strand
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RNA

hAGO2

DNA

DNA binding protein

RNA binding protein

CbAgo

Figure S5.8: Cartoon representa on of Ago search model. The Ago complex u lizes short transient interac ons
with nucleic acid strands to rapidly sample the adjacent (tens of nucleo des away) sites for possible targets. Loose
interac on with the nucleic acid strand persists. Obstacles can be overcome through intersegmental jumps.
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Figure S5.9: Coulombic surface coloring of Clostridium butyricum Argonaute (CbAgo). The crystal structure of
CbAgo (PDB 6qzk) (3.23 Å resolu on) reveals the charge distribu on. The cle that contains the guide DNA and
the target DNA is highly posi vely charged (blue).
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5.5.1. Binding times single-target including recapture events fol-
low single-exponential distribution

We here build a kine c model for the lateral diffusion by CbAgo. Since Argonaute can in
principle bind to any sequence along the DNA, we imagine the binding sites to be located
a nucleo de apart. Further, we shall here only explicitly take sliding into account, which
is represented as an unbiased random walk with unit step length. Assuming sliding should
be a good approxima on when considering only short distances traveled. If the protein
is bound at the designed 3-nt sub-seed ’target’ it can move to either of its neighbors at
a rate of 𝑘esc or unbind from the ssDNA at a rate of 𝑘ub. When bound elsewhere move-
ment and dissocia on are assumed to happen instantaneously. To establish the manner in
which these undetectable movements contribute to the observed dwell me distribu on
(𝑝bound(Δ𝑡)) we count all possible paths that the protein can take to dissociate follow-
ing ini al associa on to the sub-seed. In Laplace space the unbinding- me distribu on,
𝑃ub(𝑠) = ℒ {𝑝bound(Δ𝑡)}, can be calculated as a product of the distribu ons of individ-
ual transi ons (rather than their convolu ons), summed over the possible paths towards
unbinding. With an exponen al distribu on of stepping/escape mes from the sub-seed
trap,

𝑝esc(𝑠) =
2𝑘esc

𝑠 + 2𝑘esc + 𝑘ub
(S5.1)

, an unbinding me distribu on from the trap

𝑝ub(𝑠) =
𝑘ub

𝑠 + 2𝑘esc + 𝑘ub
(S5.2)

and a probability to return, get recaptured at the trap, from either flank without unbinding
𝑃retrap we can write

𝑃ub(𝑠) = ∑ (𝑝esc(𝑠)𝑃retrap) [𝑝ub(𝑠) + 𝑝esc(𝑠)(1 − 𝑃retrap)]

=
𝑘ub + 2𝑘esc(1 − 𝑃retrap)

𝑠 + 𝑘ub + 2𝑘esc(1 − 𝑃retrap)

(S5.3)

The sum on the le hand side of Equa on ?? therefore accounts for the protein escap-
ing from, and ge ng recaptured at the target an arbitrary amount of mes (see Figure ??
below). The two terms outside the sum represent the probability distribu ons to unbind
from either the target directly or a er having escaped one final me respec vely (Figure
?? below). Taking the inverse Laplace transform, we derive the observed dwell me distri-
bu on.

𝑝bound(Δ𝑡) = ℒ {
𝑘ub + 2𝑘esc(1 − 𝑃retrap)

𝑠 + 𝑘ub + 2𝑘esc(1 − 𝑃retrap)
}

= (𝑘ub + 2𝑘esc(1 − 𝑃retrap))𝑒 ( ub esc( retrap))
(S5.4)

Hence, despite themul tude of possible bound states along theDNA the protein can reside
in, the observed distribu on remains single-exponen al. The apparent dissocia on rate
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Figure S5.10: This figure illustrates how to construct Equa on ??. Star ng from the sub-seed, Ago can either
unbind directly (probability ub) or slide onto the non-specific binding sites flanking the trap (probability esc).
When non-specifically bound, Ago can either laterally diffuse back into the sub-seed (probability retrap), or un-
bind (probability retrap)

follows

𝑘observedub = 𝑘ub + 2𝑘esc(1 − 𝑃retrap) (S5.5)

Given the assay selects for events that get (re-)captured, the observed rate is greater than
its intrinsic value.

5.5.2. Shuttling rate due to sliding alone
We seek to explain to what extend sliding contributes to the observed shu ling rate from
the tandem-target assay. Givenunder the current experimental condi ons about 13 shu le
events occur prior to unbinding, we shall ignore unbinding in the following analysis (𝑘ub ≪
𝑘esc). To get the distribu on of shu le mes (𝑝(Δ𝑡shuttle)) we count all possible paths that
lead the protein from one sub-seed to the other. If the two 3-nt nucleo de long sub-seeds
are separated by 𝑥poly T thymine nucleo des, the shu le mes are distributed as (se ng
𝑥target = 𝑥poly T + 3 ≥ 3) (see Figure ?? below).

𝑃shu le(𝑠, 𝑥target) = ∑ (𝑝esc(𝑠) (
1
2 × 1 +

1
2 × 𝑃R(𝑥target))) 𝑝esc(𝑠)𝑃S(𝑥target)

=
𝑘esc𝑃S(𝑥target)

𝑠 + 𝑘esc𝑃S(𝑥target)
(S5.6)
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5.5.3. Shuttling rate triple-target construct
For the assay using three sub-seed targets, we can now predict both the me needed to
slide from any of the outer ones to the inner (𝐶 → 𝐵) and the average me needed to slide
along the opposite path (𝐵 → 𝐶). The former is equal to the memeasured on the tandem
target construct, denoted above as Δ𝑡shuttle (Equa on ??, Δ𝜏CB = Δ𝑡shuttle). We obtain
Δ𝜏BC, via the distribu on of life mes in the middle trap

𝑃(leave 𝐵|arrive at 𝐶)(𝑡) = 𝑃(leave 𝐵)(𝑡)
𝑃(arrive at 𝐶(and not 𝐴)) (S5.7)

Using that the distance between 𝐴 and 𝐵 is equal to that in between 𝐵 and 𝐶, in Laplace
space, the me spent at target 𝐵 is distributed as (𝑃B(𝑡) ≡ 𝑃(leave 𝐵)(𝑡))

𝑃B(𝑠, 𝑥target, 𝑘esc) = ∑ (12𝑝esc(𝑠) × 2 × 𝑃R(𝑥target))
1
2𝑝esc(𝑠)𝑃S(𝑥target) (S5.8)

The sum accounts for all paths that return to target 𝐵. Given the equal distances between
all targets on the construct the probability to not make it across to either 𝐴 or 𝐶 are equal,
which gives rise to the factor of two. The factor outside the sum accounts for the fact that
the protein must eventually leave B and make it across to either 𝐴 or 𝐶. Using the same
technique as shown above, the average me spent in 𝐵 equals

𝜏B(𝑥target) =
𝑥target
4𝑘esc

(S5.9)

Using that half of the mes the protein arrives at 𝐴, rather than 𝐶, results in the average
dwell me/shu ling me condi oned on moving from 𝐵 to 𝐶 (using eq. ??):

Δ𝜏BC(𝑥target) = 2𝜏B(𝑥target) =
𝑥target
2𝑘esc

(S5.10)

5.5.4. error estimates using bootstrapping
Fi ng the data from the tandem target assay to Equa on ?? provides the es mate of 𝑘esc.
We bootstrapped the dwell me distribu ons acquired using the original tandem target
assay (distances of 11nt, 15nt, 18nt and 22nt). For each of the 10 bootstrap samples we
calculated new values for the associated Δ𝑡shuttle’s and repeated the fit to Equa on ?? to
obtain an error es mate in the fi ed value of the escape rate.
A er using the data from the tandem target assay to es mate 𝑘esc there are no more free
parameters remaining when predic ng the data for the triple-target assay. Performing the
bootstrap procedure for 𝑘esc, and using Equa ons ?? and ?? results in the 95% confidence
intervals shown in figure 4D in the main manuscript.
An error es mate for the experimental values of Δ𝜏BC and Δ𝜏CB were obtained using 10
bootstrap samples of the dwell me distribu ons measured using the triple-target assay.
All analysis was performedwith a custom codewri en in Python. The two termswithin the
sum shown above represent recapture events at the ini al trap via either the the flanking
sequence (from which it always returns) or the poly-T stretch in between the traps (from
which it returns with a probability 𝑃R(𝑥target) without shu ling) (Figure ?? shown below).
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Finally, the term outside the sum accounts for successful shu ling events (which occurs
with probability 𝑃S(𝑥target) = 1 − 𝑃R(𝑥target)). Once the protein has le the ini al trap
𝑃R(𝑥) and 𝑃S(𝑥) denote the distribu ons for either returning back to the ini al trap or
shu ling/making it across to the other, if the two traps are 𝑥 nucleo des apart (see Figure
?? below)). Inver ng the Laplace transforma on of Equa on ?? we obtain

𝑝(Δ𝑡shuttle) = ℒ {
𝑘esc𝑃S(𝑥target)

𝑠 + 𝑘esc𝑃S(𝑥target)
}

= 𝑘esc𝑃S(𝑥target)𝑒 ( esc S( target) shuttle)
(S5.11)

Hence, the observed dwell me distribu ons are indeed single exponen al. In terms of
the microscopic model the average me is set by the escape rate from the trap modified
by the probability to make it across once outside of it (𝑃S(𝑥target)).
The probabili es 𝑃R and 𝑃S, for a given inter-trap distance 𝑥target follow (see Figure ?? be-
low)

𝑃R(𝑥target) = ∑ (12𝑃R(𝑥target − 1))
1
2 (S5.12)

𝑃S(𝑥target) = ∑ (12𝑃R(𝑥target − 1))
1
2𝑃S(𝑥target − 1) (S5.13)

- from which we can write the recurrence rela on

𝑃S(𝑥target) = 𝑃R(𝑥target)𝑃S(𝑥target − 1) (S5.14)

Using (𝑃S(𝑥target) = 1 − 𝑃R(𝑥target)) the above can be re-wri en as

𝑃S(𝑥target) =
𝑃S(𝑥target − 1)

𝑃S(𝑥target − 1) + 1
(S5.15)

which subjected to the boundary condi on 𝑃S(1) = 1 - signifying that if the traps are
placed adjacent to each other, the shu le is complete once the protein escaped the ini al
trap - has the simple solu on

𝑃S(𝑥target) =
1

𝑥target
(S5.16)

Taken together, the observed shu ling me equals

Δ𝜏shuttle =
1

𝑘esc𝑃S(𝑥target)
=
𝑥target
𝑘esc

(S5.17)

Note that 𝑥target ≥ 3, as the two sub-seeds cannot overlap. A fit of Equa on ?? to the ex-
perimental data for 𝑥target of 11nt, 15nt, 18nt and 22nt in Figure ?? of themainmanuscript
were used to es mate the value of 𝑘esc for CbAgo.
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Figure S5.11: This figure illustrates how to construct Equa on ??. Ago slides to either of its neighboring sites with
equal probability. Every shu le event starts with Ago bound to one of the sub-seed sequences. A er residing
there for a me distributed as esc( ), half of the mes Ago moves onto the flank (from which it always returns
by assump on), while the other half of the mes the protein slid onto the poly-T sequence in between the two
sub-seeds. All movements along these intermediate sites occur too fast to observe, which is why we only take
into account to probability S( target) of comple ng the shu le event when target sites separate Ago from the
second sub-seed.
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Figure S5.12: This figure illustrates how to construct Equa ons ?? and ??. Let S( ) denote the probability to
complete the shu le when sites separate Ago from the second sub-seed. Ago walks to either of its neighboring
sites with equal probability. Therefore, when situated next to the first sub-seed, Ago gets recaptured half of the
mes it makes a move, while the other half has a probability of S( ) to result in a completed shu le event.
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5.5.5. Supplementary Tables

Table S1: Dwell mes of different two target DNA constructs for several distances. The upper bound and lower
bound are es mated through 20000 bootstraps of the acquired dwell mes.

Target distance (nt) Life me (sec) Lower bound life me (sec) Upper bound life me (sec) Shu ling rate (sec-1) Lower bound shu ling rate (sec-1) Upper bound shu ling rate (sec-1)
11 0.47 0.46 0.49 2.11 2.04 2.19
15 0.83 0.81 0.87 1.19 1.15 1.24
18 1.17 1.11 1.24 0.85 0.81 0.90
22 1.79 1.74 1.86 0.56 0.54 0.57
29 1.36 1.30 1.42 0.73 0.7 0.77
36 1.19 1.16 1.23 0.84 0.81 0.86
50 1.52 1.46 1.57 0.66 0.64 0.68
64 1.65 1.59 1.71 0.61 0.59 0.63
92 1.94 1.85 2.02 0.52 0.49 0.54
120 2.11 2.03 2.19 0.47 0.46 0.49

Table S2: Oligonucleo des used for this study

Name Oligo Sequence 5’->3’ Length (nt)
GUIDE

Guide 3nt (2-4)
5- /5Phos/CGA GTA TT/iAmMC6T/ TTT TTT TTT TTT
T – 3’ 22

Guide 4nt (2-5)
5’-/5Phos/CGA GGA TT/iAmMC6T/ TTT TTT TTT TTT
T - 3’ 22

Guide 5nt (2-6)
5’- /5Phos/CGA GGT TT/iAmMC6T/ TTT TTT TTT
TTT T - 3’ 22

Guide 6nt (2-7)
5’- /5Phos/CGA GGT AT/iAmMC6T/ TTT TTT TTT
TTT T - 3 ’ 22

Guide 7nt (2-8)
5’- /5Phos/CGA GGT AGA /iAmMC6T/TT TTT
TTT TTT T -3’ 22

Guide 8nt (2-9)
5’- /5Phos/ CGA GGT AG/iAmMC6T/ TTT TTT TTT
TTT T - 3 ’ 22

TARGET

8nt tandem target 7nt separa on
5’ - TTT TTT TTT TTT TTT TTT CTC TTT TCT CT/iAmMC6T/
TTT TTT TTT TTT TTT TTT TTT TTT TTT T/bio n/ -3’ 58

8nt tandem target 11nt separa on
5’ - TTT TTT TTT TTT TTT TTT CTC TTT TTT TT CT
CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT TTT TTT
TTT T/bio n/ -3’

62

8nt tandem target 15nt separa on
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT TA CTA CCT
CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT TTT
TTT TTT T/bio n/ -3’

66

8nt tandem target 18nt separa on
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT TTT TA CTA
CCT CT/iAmMC6T/ TTT TTT TTT TTT TTT TTT
TTT TTT TTT T/bio n/ -3’

69

8nt tandem target 22nt separa on
5’ - TTT TTT TTT TTT TAC TAC CTC TTT TTT /iAmMC6T/TT
TTT TTA CTA CCT CTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT T/bio n/ -3’

73

8nt tandem target 29nt separa on
5’ –TTT TTT TTT TTT TA CTA CCT CTT TT TTT
TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TT/bio n/-3’

81

8nt double target 36nt separa on
5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TT/bio n dT//Phos/-3’

89
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8 nt tandem target 50nt separa on

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TT TTT TTT TT/iAmMC6T/ TTT TTT TTT TTA CTA
CCT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bio n dT//Phos/-3’

104

8 nt tandem target 64 nt separa on

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT T/iAmMC6T/T TTT
TTT TTT TTT ACT ACC TCT TTT TTT TTT TTT TTT TTT
TTT TTT TTT TT/bio n-dT/ /Phos/-3’

117

8 nt tandem target 92 nt separa on

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT T TTT TTT TTT TTT TTT TT
TTT TTT TTT TTT TTT TTT TTT T/iAmMC6T/T TTT TTT TTT
T ACT ACC TCT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bio n-dT/ /Phos/-3’

145

8nt double target 120nt separa on

5’ –TTT TTT TTT TTT TTA CTA CCT CTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TT/iAmMC6T/ TTT TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT TTT TTT TTT TTT TT/bio n dT//Phos/-3’

171

11nt Y-fork
5’ – TTT TTT* TTT TTT TTT TTT TTT TTT CTC TT TGG CGA
CGG CAG CGA GGC – 3’ 47

11nt Y-fork bio n
5’ - /bio n/GCC TCG CTG CCG TCG CCA TTT TTT CTC TTT
TTT TTT – 3’ 36

50nt
Y-fork

5‘- TTT TTT TTT TTT* TTT TTT TAC TAC CTC TTT TTT TTT
TTT TTT TT TTT TGG CGA CGG CAG CGA GGC – 3‘ 65

Y-fork stem (not for Y11)
5’ – /bio n/GCC TCG CTG CCG TCG CCA TTT TTT
TTT TTT TTT TTT TTT TAC TAC CTC TTT TTT TTT – 3’ 57

36nt dsDNA target
5’ – TTT TTT TTT TTT T TA CTA C CTC T CGG ACC AAC
AGC GGG /T-bio n/AC GGC TGT GC TA CTA CCT CTT
TTT TTT TTT TTT TTT TTT - 3’

78

36nt dsDNA block v2 3’ bio n

5’ –TTT TTT TTT TTT T TA CTA C CTC T CGG ACC AAC AGC
GGG TAC GGC TGT GC TA CTA CCT CTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT
TT/bio n dT/- 3’

91

36nt dsDNA block 5’end truncated
5’ –CTA C CTC T CGG ACC AAC AGC GGG TAC GGC TGT GC
TA CTA CCT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TT/bio n dT/- 3’

75

36nt
25nt block 5’ - TA GC ACA GCC GT* A CCC GCT GTT GGT- 3’ 25

36nt
21nt block

5’- GC ACA GCC
GT* A CCC GCT GTT G- 3’ 21

36nt
17nt block 5’ -ACA GCC GT* A CCC GCT GT- 3’ 17
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Triple target
5’ – T/iAmMC6T/ TTT TTT TTT TAC CTC TTT TTT ACC TCT TTT
TTA CCT C TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT/bio n/ -3’

69

No target DNA
5’- TTT TTT TTT TTT TTT TTT TTT TTT TTT /iAmMC6T/TT
TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT
TTT TTT TGG CGA CGG CAG CGA GGC -3’

90

8nt single target
5’ - TTT TTT TTT TTT TTT TTT TTT TTT TTT
/iAmMC6T/TT TTT TTA CTA CCT CTT TTT TTT TTT TTT TTT
TTT TTT TTT TTT T/bio n/-3’

73

3’ bio n stem 5’ - GCC TCG CTG CCG TCG CCA bio n – 3’ 18

Lin28 double target

5’- TTT TTT TTT TTT TTT TTT
TAC TAC CTC TTT TTT TTT TTT TTT TTT TTG CGC TAT GCG
GTT GTA TAG TTT TAG GGT CAC ACC CAC CAC TGG GAG
ATA ACT ATA CAA TCG CAT AGC GCT TTT TTT TTT TTT TTT
TTT TTT T/iAmMC6T/T TTT TTT TTA CTA CCT CTT TTT
TTT TTT TTT TTT-3’

174
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6
Optimal DNA/RNA target

search using frequent
skip-n-slides

The timed action of target searching proteins at specific DNA or RNA sequences
plays a vital role in the cell. A special class of such target searchers, amongst
which Argonaute and CRISPR-Cas9, use small RNA or DNA guides to define
their target site. These guides can readily be synthesized, enabling the repur-
posing of the target searching proteins for genome engineering. Here we employ
a combination of single-molecule FRET and theoretical modeling to understand
the microscopic kinetics underlying the target search. We show both a prokary-
otic and an eukaryotic Argonaute only sparsely interrogate their ssDNA/mRNA
substrates, using a mixture of sliding to neighboring sites and frequent skipping
to interrogate distant sites. Next, we show such a mixture minimizes the time
needed to locate the target. Hence, we suggest Argonaute seems to operate at
near optimal conditions using a mechanism likely applicable to other (guided
and non-guided) target searchers.
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6.1. Introduction

Amul tude of cellular processes, including gene regula on, DNA repair, and immune re-
sponse rely on proteins binding to specific DNA or RNA sequences. Even if the protein

interacts only with the correct target sequence, the sheer size of the intracellular volume
restricts the rate at which it can be found through diffusive collisions alone [? ? ? ? ].
S ll, measured search speeds can exceed the upper limit for diffusive collisions with up
to two orders of magnitude [? ]. To reach the observed speeds, target searching proteins
can reduce the effec ve size of their search space by spending some frac on of me non-
specifically associated and diffusively sliding along the DNA—par ally replacing excursions
into the solu on (3D mo on) as a means of reaching new sites to interrogate [? ? ? ? ].
Theore cal work [? ] showed that an equal split of me spent sliding along theDNAand dif-
fusing through solu on would minimize the search me. While experiments have indeed
confirmed such facilitated diffusion (a mix of 1D and 3D mo on) for a variety of proteins
[? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ], in vivo studies suggested the system spends considerably
more than half the me associated to DNA [? ? ].

Repeated transfer between 1D sliding mo on and 3D diffusion through solu on and re-
binding at an uncorrelated site is beneficial, as the sliding mo on by itself will inevitably
double back on itself and wastes me interroga ng sites already visited. Early theore cal
work recognized that this scanning redundancy could be further reduced if the non-specific
interac ons allow for intersegmental transfers [? ? ? ? ], where the protein quickly moves
between close by DNA segments without fully returning to the solu on state [? ? ? ].
If the search process is op mized for me, and the total me spent transferring between
segments is assumed negligible, we expect intersegmental transfers to minimize search re-
dundancy (and so search me) by occurring as frequently as the geometry of the substrate
allows. It has been shown theore cally that allowing for a (small) fixed amount of rapid in-
tersegmental transfers shi s the op mal par oning between 1D and 3D diffusion toward
spending more me associated with the DNA [? ].

However, when such transfers occur frequently the total me spent transi oning between
segments cannot be neglected. For instance, we expect this to be the case for proteins
searching along single-stranded (ss) RNA or DNA with persistence lengths on the order of
one nucleo de (nt) [? ]. We may expect similar behavior for proteins that bind genomic
targets, due to the strongly compacted double-stranded (ds) DNA within the nucleus or
bacterial nucleoid. Furthermore, cellular RNA or DNA is typically occupied by various other
(non-)specific binding proteins [? ? ], or can form secondary structures (i.e. plectonemes
on dsDNA, or hairpins on ssRNA), all forming roadblocks along the target searcher’s path.
Bypassing such obstacles is o en impossible through sliding, thereby necessita ng the fre-
quent use of some form of base-skipping, such as intersegmental transfers in case of suffi-
ciently flexible substrates. Irrespec ve of the par cular mechanism used, bases along the
substrate are not interrogated, and we will simply refer to this process as ‘skipping’. Li le
is known of the effect the frequent skips have on the search me.

Here we use Argonaute (Ago) as a model system for searches along flexible ss substrates.
Ago belongs to a par cular class of target searchers that pair with a small non-coding RNA
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(or DNA) guide, and then targets its complementary sequence [? ]. The common usage of
the CRISPR-Cas9 and CRISPR-Cas12a as next-genera on genome edi ng tools [? ], further
highlights the importance of understanding also how such guided target searchers operate
[? ? ? ? ? ? ]. A recent study showed the prokaryo c Clostridium butyricum Argonaute
(CbAgo) uses a ssDNA guide to cleave ssDNA or dsDNA at moderate temperatures (∼ 37
∘C) [? ], making it a suitable candidate as a genome-edi ng tool. In a previous study [?
] (Chapter ??) we demonstrated CbAgo can bypass roadblocks while diffusing along its
substrate. Here, we start by establishing the generality of this base-skipping behavior by
confirming its existence also for the eukaryo c human Argonaute 2 (hAgo2), using single-
molecule (sm) Förster resonance energy transfer (FRET).

Next, we ask under what condi ons skips can speed-up the target search process. To this
end, we draw inspira on from established models [? ? ? ? ] and consider the search
as consis ng of three parts, but crucially allow all parts to take a finite me to complete:
(i) interroga on of off-targets through sliding, (ii) base skipping, and (iii) diffusion through
solu on, followed by rebinding at an uncorrelated site. Through our modeling we discover
the existence of two op mal par oning between the three search modes: one coinciding
with the known op mum of an equal me-split between 1D and 3D diffusion through so-
lu on when no skipping is allowed [? ], and one novel op mumwhere skipping and sliding
coexist during lateral diffusion. We fully characterize the search op ma, and show that as
a general rule, the system can never spend more me in solu on than on the substrate
when op mized, in accordance with experimental results [? ? ].
Using the presented smFRET data, we conclude by arguing that Ago operates far from the
sliding-only op mum, and that its search characteris cs are consistent with the skip-and-
slide op mum. Ourwork suggests that any search involvingmany skips soon becomes ben-
eficial over using only sliding, and thus raises the ques on whether skip-and-slide search
could also be the preferred search mode for other searchers.

6.2. Results
6.2.1. Single-molecule FRET assay to probe lateral diffusion
Diffusive mo on is o en characterized by measuring the mean square displacement as a
func on of me [? ? ? ? ? ? ? ? ]. Even in the best of scenarios, when considering
a stretched and uncoiled substrate, direct observa on of lateral diffusion would require
us to track target searchers over several hundreds of nucleo des. Such long trajectories
would imply very redundant scanning by Ago, and might therefore not be performed by
the protein [? ]. In an a empt to capture also short diffusive excursions [? ? ? ? ? ], we
u lized the high spa al resolu on of smFRET [? ].
The experimental procedure has been described in detail elsewhere [? ? ], and we here re-
state only the core components. To trap any diffusive excursions for long enough to detect
it (>100 ms), and have it complete before photobleaching (<700s), we design ss thymine
(CbAgo [? ]) and uracil (hAgo2, present study) repeats that contain two3-nt targets and two
4-nt targets respec vely (Figures ??A and ??). In order to accurately determine whether
the protein is binding to one target as opposed to the other, one of the traps is labeled
with an acceptor fluorophore (Cy5), while the guide is labeled with the donor fluorophore
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Figure 6.1: Single-molecule FRET experiment to probe lateral diffusion. (A) Schema c of assay. DNA/RNA con-
structs, containing the two trapping sequences (shown in red) are passivated to the microscope slide via a 3’
bio n-streptavadin linker and are labelled with the acceptor die. The Ago-guide complex is labelled with the
donor die. (B) Representa ve trace for hAgo2 at a trap separa on of 50nt. Top shows donor (green) and acceptor
(red) signals. Bo om shows corresponding FRET efficiency and side panel shows histogram of all FRET efficiency
values obtained for the popula on of molecules. (C) Shu ling me versus trapping distance (average ± sem) for
CbAgo. Solid lines represent linear fits to data points at 11 nt ,15 nt ,18 nt ,22 nt (ini al slope) and 64 nt ,92 nt ,120
nt (final slope). Shaded regions represent 95% confidence interval obtained using bootstrapping (see Methods).
(D) Same as C for hAgo2. Data points at 7 nt ,11nt ,15 nt (ini al slope) and 80 nt ,120 nt ,160 nt (final slope) are
used for linear fits.

(Cy3) (Figures ??A and ??). High FRET efficiency is observed when the protein binds to the
site in close proximity of the acceptor dye, whereas lower FRET efficiency is obtained when
Ago is trapped at the target far away from the dye (Figure ??B). To reduce the background
fluorescence, traces were recorded using total internal reflec on (TIRF) microscopy.

6.2.2. Ago slides over short distances
As shown in Figure ??B, the FRET efficiency shi s almost instantaneously between those
corresponding to the two trap loca ons. Though smFRET solves the problem of spa al res-
olu on, the total me spent diffusing now seems to have fallen below our me resolu on
(30-100ms). In a recent paper [? ] we showed both experimentally and theore cally that
for small trap separa ons, the average shu ling me is directly propor onal to the trap
separa on

𝑇shu le(𝑑trap < 25nt) ≈ 𝑑trap𝜏trap (6.1)

with 𝜏trap being the one-sided escape rate from the trapping sequence. The linear increase
in shu ling me with trap separa on is consistent with Ago performing rapid lateral diffu-
sion (undetected), with numerous escape and re-trapping events before eventually making
it across to the other trap (Figure ??A). In Figure ??C we show data for CbAgo [? ], and in
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Figure 6.2: Modeling skip-and-slide search (shu ling events). (A) Schema c of shu ling event. Star ng from
the le most trap, the protein uses a combina on of single-nucleo de steps (sliding) and larger steps (skipping)
to reach the opposite trap a er possibly ge ng recaptured at the ini al traps several mes. (B) single-step distri-
bu on of randomwalk defining our model. The protein either slides to a neighboring site or skips to sites located
at ±( skip ± skip). (C) Distribu on of visited sites condi oned on skips. (top) The protein covers a rms distance

slide between consecu ve skips. (middle) The first skip takes the protein skip away (in either direc on) with an
uncertainty of skip in the landing site. (bo om) Repeated skip-and-slide (sNs) cycles result in a distribu on that
resembles a simple randomwalk (top panel) with an adjusted effec ve step length of sNs. (D) Representa ve nu-
merical solu ons (S.I.) for shu ling me versus trapping distance. (E) Final slope versus scanning density. Inset
shows equivalent versus skipping length (see S.I. for values in parameter sweep).

Figure ??Dwe confirm that the ini al propor onality (Equa on ??) reported for CbAgo also
holds for hAgo2 (new data).

6.2.3. Ago uses a mixture of skipping and sliding over larger dis-
tances

As the distance between traps grows beyond the ini al linear regime, the shu ling me
drops, before it eventually se les into a gentler linear increase over large trap separa ons
(Figures ??C and D). The drop in shu ling me suggests that a new avenue for traversing
the gap between traps has opened up, while the shu ling me’s eventual linearity with re-
gard to trap separa on suggests that also this avenue is governed by lateral diffusion and
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repeated re-trapping to the original trap, before reaching the second trap.To explain the
linear long-range behavior, we consider the fact that CbAgo has previously been shown to
bypass both protein roadblocks and secondary structures [? ]. Exactly how such obstacles
are traversed is not fully understood, but it is clear that bases would be skipped (i.e. not
interrogated) in any process able to bypass roadblocks, and we will therefore simply refer
to this process as skipping.

In Figure ??A we show a schema c of the skip-and-slide dynamics, and in Figure ??B we
show the single step distribu on such a randomwalker has within ourmodel. In Figure ??C
we show the cumula ve step distribu on condi oned on skipping. Measuring all lengths
in nucleo des, Ago has diffused the average root-mean square (rms) distance 𝑙slide a er
taking 𝑙slide sliding steps between consecu ve skips (see S.I. for deriva on). A er having
slid the 𝑙slide steps, Ago skips on average 𝜇skip nucleo des away in either direc on, with a
standard devia on of𝜎skip nucleo des in the length of every skip (Figures ??B and C). In the
S.I. we calculate the average shu ling me for such a system numerically using a master-
equa on formula on. In Figure ??Dwe show the resul ng shu ling me for a fixed sliding
length 𝑙slide = 12nt, while the average skip distance and its standard devia on is either
𝜇skip = 36nt and 𝜎skip = 0nt (green curve) or 𝜎skip = 36nt and 𝜇skip = 0nt (orange curve).
Both have the same rms skipping length, 𝑙skip = √𝜇skip + 𝜎skip = 36nt, with the𝜎skip = 0nt
case represen ng skips of definite length that take the protein to a loca on not reachable
in a single round of sliding (𝑙skip ≫ 𝑙slide). Contrarily, the protein may (likely) skip to a site
already interrogated when 𝜇skip = 0nt – deple ng the ‘gap’ shown in the middle panel
of Figure ??C causes the distribu ons shown in the middle panel to overlap with that of
the top panel. We note a clear resemblance of our numerical solu ons to the empirical
curves (Figures ??C and D), including the possibility of non-monotonic behavior when the
skip length distribu on is ght enough that there is a central gap in the cumula ve step
distribu on just a er the first skip (middle panel Figure ??C).
From the central-limit theorem it follows that the distribu on of Ago posi ons a er re-
peated skip-and-slide (sNs) cycles will approach that of simple diffusive mo on with aver-

age mean squared step length 𝑙sNs = √𝑙slide + 𝑙skip between each unbinding cycle (bo om

panel Figure ??C), where 𝑙skip = 𝜇skip+𝜎skip is the variance added to the cumula ve translo-
ca on by one skip. In the S.I.we use a descrip on condi oned on skips to construct scaling
arguments showing that for large trap separa ons (Figure ??D)

𝑇shu le(𝑑trap≫ 𝑙sNs) ≈ const.+𝜌scan𝜏trap𝑑trap with 𝜌scan = slide/ sNs (6.2)

Here we have introduced the scanning density 𝜌scan as the frac on of unique bases inter-
rogated by Ago within a single skip-and-slide cycle. Having used our numerical approach
to obtain 𝑇shu le(𝑑trap) curves for a wide range of 𝑙slide, 𝜇skip and 𝜎skip (S.I.), the resul ng
final slopes from those curves indeed coincide with the deriva ve of Equa on ??, thereby
valida ng our scaling arguments (Figure ??E).
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6.2.4. Ago skips straight into the second trap for intermediate trap
separations

In between the two linear regimes, the shu ling me varies non-monotonically (Figures
??C,D and ??D). At short distances, when only sliding, the protein’smo on is well described
by a simple random walk, with consecu ve steps being uncorrelated (Equa on ??). Using
the scaling arguments leading up to Equa on ??, a similar uncorrelated mo on over seg-
ments of length 𝑙sNs is expected at large trap separa ons. Although we expect said scaling
arguments to fail (i.e. ignoring the constant in Equa on ??) within the intermediate (non-
monotonic) regime, preven ng us from es ma ng the corresponding shu ling mes, we
can s ll es mate the trap separa on at which we expect a local minimum shu ling me.
If the trap is not the outermost sequence on the construct, as is the case in our experiment
(Figure ??), the ini al sliding induces no average shi in posi on, and it stands to reason
that the local minimum in shu ling mes appears at a trap separa on 𝜇skip, from where
Ago typically slides straight into the second trap a er the first skip. Below, we shall use this
reasoning to es mate 𝑙slide and 𝑙skip from the data. Note that our numerical calcula ons
have been performed for traps placed as the most outer sequence on the construct. For
such a system Ago dri s an approximate distance 𝑙slide towards the other trap before skip-
ping, which is why Figure ??D shows a curve with its minimum around a trap separa on of
𝜇skip + 𝑙slide = 48nt (orange curve).

6.2.5. Ago skips over two thirds of all bases

Applying the above arguments to our experimental data, we es mate the trapping me
𝜏trap by fi ng Equa on ?? to the ini al linear part of the shu ling me dependence on
trap distance (le most line in Figures ??C and D, 𝜏trap = 0.062 ± 0.003s for CbAgo and
𝜏trap = 0.057 ± 0.002sfor hAgo2)(see Methods). Next, we can determine the scanning
density 𝜌scan by fi ng Equa on ?? to the final linear part of the data (right most line in
Figures ??C and D). The resul ng scanning densi es (𝜌scan = 0.38 ± 0.03 for CbAgo and
𝜌scan = 0.31 ± 0.04 for hAgo2) indicate that only approximately one in three bases are
checked by Ago while moving along its substrate.

We can further give rough es mates of the sliding distance and skip length as follows.
As we see a dip in the shu ling me we know that skipping can only be a viable avenue
of transloca on above a certain trap separa on, and thus there should be a gap in the
posi on distribu on of a skip-and-slide cycle just a er the first skip (middle panel Figure
??C). For there to be a substan al gap in this distribu on we need a clear separa on be-
tween the distribu ons shown in the first two panels of Figure ??C. In mathema cal terms,
𝜎skip + 𝑙slide ≪ 𝜇skip, implying that 𝑙sNs ≈ 𝑙skip ≈ 𝜇skip, and that the dip visible in the shut-
tling me (Figures ??C and D) essen ally reports on this quan ty. With a dip for both sys-
tems occurring around trap-separa ons of 30 nt, this implies a skipping distance of around
𝑙skip ≈ 30nt. With a scanning density of a third, this skip distance in turn suggests that
both sliding distances are around 𝑙slide ≈ 10nt, or equivalently, Ago takes around 100 slid-
ing steps between skips.
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scanning density of 0.3 (approx. the value es mated for both Ago). Arrows represent direc ons of increasing
skip, protein copy number (concentra on) and substrate persistence length.

6.2.6. The total search time
Having shown that both hAgo2 and CbAgo skip over a significant number of bases—about
double the number of bases it actually scans in any skip-and-slide cycle—we now turn to
the ques on why both Argonaute – from different kingdoms of life – behave so similarly.
Under what condi ons does skipping speed up a protein’s search for a single target in the
genome ormRNA pool? To answer this ques on, we now theore cally consider what com-
bina ons of the number and length of skipping and sliding steps – and thereby scanning
density – lead to minimal overall search mes.

We consider a target searcher that a er diffusing through solu on, binds its substrate ran-
domly and non-specifically to perform a lateral excursion consis ng of both skipping and
sliding before unbinding (or finding the target). In a lateral excursion that endswith unbind-
ing, we take the protein to undergo an average of 𝑁skip skips, and 𝑁slide slides. Note that
𝑁slide does not equal the previously defined 𝑙slide, as the la er is the number of sliding steps
between consecu ve skips, while the former equals 𝑙slide mul plied by the number of skips
prior to unbinding (see S.I.). To es mate the total me to find the target, we first deter-
mine the average number𝑁rnd of search rounds (‘rnd’) (binding-skip-and-slide-unbinding)
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needed before the target is found, and then the average me 𝑇rnd of each search round [?
? ? ]. In what follows, we express both 𝑁rnd and 𝑇rnd for target searchers using a mixture
of skipping and sliding corresponding to a scanning density 𝜌scan, a er which we shall pro-
ceed to minimize the search me in terms of the frequency of skipping and sliding steps
taken. To properly model the skip-and-slide process between unbinding events, we must
cover the scenario presented in Figure ??A: even though the target sits in between the
binding and unbinding loca ons, it might s ll be skipped over. In the S.I. we show that
the average frac on of bases checked at least once over the rms lateral diffusion distance
𝑙1D = √𝑁skip𝑙sNs between binding and unbinding can be es mated using the scanning den-
sity and the typical number of skips prior to unbinding as (see Figures ??A and B)

𝑝check(𝑥) = 1 −
log (1 + 2𝑥)

2𝑥 , with 𝑥 = 𝜌scan
1 − 𝜌scan

√𝑁skip (6.3)

The total number of checked sites at a fixed scanning density increases with increasing
number of skips per binding event. The logic being that an increased number of skips al-
lows for repeated rescanning of the same region of DNA sites, with the protein every me
interroga ng about 𝜌scan of these sites. Figure ??B shows that if the Argonaute proteins
(𝜌scan ≈ 0.3) are to skip on average 100 mes before unbinding, they s ll interrogate only
about 60% of all sites spanned within its lateral excursion (dashed lines). Hence, a er cor-
rec ng for repeated scanning due to skipping, Ago likely s ll leaves a significant por on
of the RNA/DNA unseen. We validated Equa on ?? (solid line in Figure ??B) using Monte
Carlo simula ons (colored data points,Methods).
Each lateral diffusion event checks on average 𝑝check𝑙1D dis nct bases, and with a single
target on a substrate of 𝐿 nucleo des, it will take on average 𝑁rnd = / check 1D cycles be-
fore the target is found.

Each search round can be split between base interroga on through 1D lateral diffusion
and 3D diffusion through solu on. The 1D lateral diffusion me 𝜏1D = 𝑇slide+𝑇skip can fur-
ther be split into the total me spent interroga ng off-targets a er a sliding step 𝑇slide =
𝑁slide𝜏slide, and the total me spent comple ng skips and interroga ng the landing site
𝑇skip = 𝑁skip𝜏skip. The mescales for interroga ng off-targets a er a sliding event 𝜏slide,
execu ng skips 𝜏skip (including the me to interroga ng the site of arrival), and execu ng
excursions into solu on 𝜏3D (including the me to interroga ng the site of binding), to-
gether with the average number of rounds to find the target, leads us to the total search
me

𝑇search = 𝑇rnd𝑁rnd = (
1D

⏜⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏜𝑁slide𝜏slide⏝⎵⎵⏟⎵⎵⏝
slide

+𝑁skip𝜏skip⏝⎵⏟⎵⏝
skip

+𝜏3D)
𝐿

𝑙1D𝑝check
(6.4)

We will seek the minima of the search me, but before proceeding wemust consider what
variables evolu on could act upon to create a balance between skipping, sliding, and un-
binding.
From the defini on of themicroscopic mescales we immediately have 𝜏skip, 𝜏3D > 𝜏slide as
the sliding mo on itself costs negligible me by assump on, and both skipping and excur-
sions into solu on are ended by interroga ng the base at arrival (𝜏slide). Further, we only
ever expect to find an op mum with a balance between skipping and unbinding when the
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me to complete a skip is shorter than the me to return from solu on. If returning from
solu on would be faster than comple ng a skip, skipping would always be eliminated and
unbinding favored because it has both lower redundancy and is completed quicker. Fur-
ther, decreasing any of the microscopic mescales associated with different search modes
will clearly speed it up. Therefore, we assume these mes to already be reduced as far as
possible, and ordered as 𝜏3D > 𝜏skip > 𝜏slide.
Apart from the three microscopic mescales, there are three more independent parame-
ters evolu on could act upon. These are the total number𝑁skip of skips𝑁skip in one search
round, the number 𝑁slide of off-targets checked a er sliding in one search round, and the
rms skip distance 𝑙skip (or equivalently 𝑁skip, 𝑁slide and 𝜌scan, see S.I.). Increasing only the
rms skipping distance 𝑙skip will always reduce the scanning redundancy, and so will always
reduce the search me. Since we observe skips of finite length, we also assume these to
be externally limited, and take also 𝑙skip to be fixed. We are le with two independent pa-
rameters, and in Figure ??C we plot the search me as a func on of 𝑁skip and 𝑁slide when
𝑙skip = 30nt and 𝜏3D = 10𝜏skip = 100𝜏slide.
Minimiza on of the search me over our remaining two independent variables – the num-
ber of skips 𝑁skip and the scanning density 𝜌scan (defined in Equa on ??) – results in two
condi ons that need to be sa sfied at any op mum (see S.I.). We present the general con-
di ons in the S.I., and here present solu ons valid in regimes of both high and low scanning
densi es to determinewhen skip-and-slide search, of the kind observed for Ago, is favored.

6.2.7. Sliding is optimal for scanning densities above /
One local minimum exists in the densely scanned region (1−𝜌scan≪ / ) and corresponds
to the protein using sliding as its only lateral diffusion mode, elimina ng skips en rely. The
minimum is defined by, 𝜌slidingscan = 1, and (see S.I.)

𝑁sliding
skip = 0, 𝑁sliding

slide = 𝜏3D
𝜏slide

⇒ 𝑇slide =
1
2𝑇rnd (6.5)

This minimum corresponds to the known minimum when a priori assuming that there are
no skips [? ? ]. Namely, the protein spends half its me diffusing through solu on and
the other half of the me sliding (the rightmost iden ty in Equa on ?? is equivalent to
𝜏1D = 𝜏3D). The search me at this minimum equals (see S.I.)

𝑇slidingsearch = 2𝐿√𝜏slide𝜏3D (6.6)

The non-skip minimum is the only minimum in the densely scanned regime (𝜌scan > / )
(Figure ??C, minimum coinciding with horizontal axis), sugges ng that it might be hard to
evolve away from the it by incremental steps.

6.2.8. A mix of skipping and sliding is optimal for scanning densi-
ties below /

For the skipping to be beneficial, skips must be large enough (𝑙skip ≫ 𝑙slide or equivalently
𝜌scan≪ / ) to get the system beyond the barrier visible in Figure ??C. In the S.I. we show
that a er recognizing

𝜏slow = 𝜏slide𝑙skip (6.7)
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as the me needed to traverse the length of a skip purely through sliding (diffusion with 1
nt steps) – a measure of the added benefit of using skipping – we obtain the loca on of the

skip-n-slide op mum corresponding to a scanning density of 𝜌sNsscan = 𝑙skip√ sNs
slide/ sNs

skip < 0.5,
with (see S.I.)

𝑁sNs
slide =

𝜏3D
𝜏slide

(𝜏slow𝜏3D
) , 𝑁sNs

skip =
𝜏3D
𝜏skip

(1 + (𝜏slow𝜏3D
) ) ⇒ 𝑇skip =

1
2𝑇rnd (6.8)

Note the final iden ty shown in Equa on ?? says that at the skip-and-slide op mum, the
protein spends half of its me skipping, and the other half on a combina on of sliding and
diffusing through solu on. In agreement with experimental studies [? ? ], this indicates
the protein spendsmore me diffusing along the DNA then it does through solu on (𝜏1D >
𝜏3D). The search me at this skip-and-slide op mum equals (see S.I.)

𝑇sNssearch =
2𝐿√𝜏skip𝜏3D

𝑙skip

√1+( slow
3D
)

𝑝check(( slow
3D
) )

(6.9)

6.2.9. Global optimal search strategy
As there are local minima in both the sparsely and densely scanned regions (Equa ons ??
and ??), the global op mal search strategy is defined by which of these two minima have
the smallest search me. The condi on for the slip-and-slide minimum being the global
minimum (𝑇sNssearch < 𝑇slidingsearch ) can be wri en as (see S.I.)

𝜏skip
𝜏slow

<
𝑝check(( slow

3D
) )

1+( slow
3D
)

< 1 (6.10)

Figure ??D shows the corresponding phase diagram – in {𝜏slow, skip

3D
}-space – showingwhen

the skip-and-slide minimum is the global minimum. We previously argued that if 𝜏3D <
𝜏skip there will be no skip-and-slide minimum. Now we see that for 𝜏3D > 𝜏skip we can al-
ways find an 𝑙skip long enough that the skip-and-slide op mum is also the global op mum
(upward arrow in Figure ??D). Logically, the skip-and-slide op mum is only preferred over
the sliding-only one for 𝜏slow > 𝜏skip, indica ng the typical return me of a skip may not
exceed the me needed to cover the same distance by just sliding, and Equa on ?? gives
the more stringent condi on that must be sa sfied.

We conclude by no ng both of the Argonaute proteins considered above have 𝜌scan ≈ 0.3
(yellow dashed line in Figure ??D), pu ng the system above the line separa ng the sparse
and dense scanning regimes (Figure ??C). Certainly, hAgo2 and CbAgo operate far from the
sliding-only op mum, and, as we shall discuss further below, are working in the regime
where the skip-and-slide op mum is found (crossing point Figure ??D).
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6.3. Discussion
Site-specific DNA or RNA binding proteins must find a single sequence amongst megabase
(prokaryotes) to gigabase (eukaryotes) pools of off-targets. Here we have shown that facil-
itated diffusion with a mixture of sliding (single-nucleo de steps) with frequent and large
skips (mul -nucleo de steps) is capable of reducing the overall search me beyond using
sliding by itself. Interes ngly, pure sliding is a possible op mal strategy, and the search
me for skips shorter than the sliding length is minimal only a er elimina ng skips en rely

as their temporal cost is no longer accompanied by the benefit of visi ng off-targets not
encountered before (Figure ??C). Contrarily, skips greater than the sliding length reduce
the probability of redundantly sampling off-targets, and we find another op mum where
the search me is minimal if skips are used so frequently that the system spends half of
the me skipping. We further showed how single-molecule FRET experiments (Figure ??)
can be used to extract what we termed the scanning density, a measure of the frac on
of bases directly interrogated during a skip-and-slide cycle (Figure ??). Our experiments
performed on a prokaryo c (CbAgo) and eukaryo c (hAgo2) Argonaute revealed both to
have scanning densi es around 0.3 (Figures ??C and ??D)—well within the sparse scanning
regime (Figure ??C).

As shown in Figure ??C, the scanning densi es of the Argonaute proteins are consistent
with having skip-n-slide search as an op mal strategy. However, according to Figure ??D
it appears at this the system just touches the separa ng line determining the global op-
mum. One might speculate what other factor, not taken into account in our modeling,

could have driven Ago away from the sliding only op mum. As shown in reference [? ],
skips are needed to surpass roadblocks present on any physiological substrate. Typical 3’-
UTR substrates are 40-80% with proteins [? ] and about one protein for every 30-100 nt is
bound to cellular DNA [? ? ]. We therefore hypothesize that if one limits the sliding length
to be less than the typical separa on between other (high affinity) binding proteins it to
always be beneficial to include skips (𝑇sNssearch < 𝑇slidingsearch ).

Based on our results, for a low scanning density to be preferred, the binding rate from
solu on should not exceed the return rate a er skipping (Figure ??D). As binding rates
scale linearly with concentra ons (before reaching satura ng levels), we thus expect bind-
ing proteins present at lower copy numbers to be prone to use more frequent skips (arrow
in Figure ??D). For example, E.coli cells express about 1-10 copies of the lac repressor [? ]
and experiments have indeed seen signatures of a skipping-and-sliding mixture [? ].
Instead of increasing (reducing copy number), a reduc on in 𝜏skip is to be expected onmore
flexible substrates, such as single-stranded DNA or RNA. We therefore deem it likely that
skip-n-slide search to also be used by sequence specific single-stranded binding proteins
other than Argonaute, such as ribosomes searching for the transcrip on start site. We
hope to mo vate future experiments u lizing different DNA binding proteins to inves -
gate whether they belong to the “sliding only” (𝜌scan ≫ / ) or the “skipping-and-sliding”
(𝜌scan≪ ) class (Figure ??C).

Within our analysis of the total search me we have decoupled the return me from a skip
(𝜏skip) from the average length thereof (𝑙skip). Hence, fixing the me, there is no penalty for
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ever increasing skipping distances. In fact, for large enough skipping distances we can al-
ways reach a situa on where the skip-and-slide op mum is the global op mum (provided
𝜏skip < 𝜏3D)(Figure ??D). In our previous work [? ] we demonstrated the dura on of skips
to be limited by the me needed to escape the bound site – rather than the me needed
to find the distant loca on – jus fying our assump on for Argonaute. However, skips lim-
ited by the rate of rebinding – for instance through diffusion – couple 𝜏skip to 𝑙skip and we
expect an op mal 𝑙skip to exist. As we here focused on the coupling between search me
and the experimentally measurable 𝜌scan, we deem such an analysis beyond the scope of
the presented research, but an interes ng future direc on.

A previous study [? ] has pointed out that speeding up the lateral diffusion – by reduc-
ing the varia on in binding strengths along the genome – comes at the cost of reducing
the protein’s specificity. The authors proposed that in order to overcome this apparent
‘search-stability paradox’ the protein must switch between two conforma ons – one with
higher affinity (for specificity) and one with a lower one (for speed) – and detail the ght
constrains on the binding energies for such a solu on to exist [? ? ](Chapter ??). Se-
lected target searchers – including selected RNA guided nucleases [? ? ? ? ? ] – indeed
adopt mul ple conforma ons during target interroga on [? ? ? ]. The necessity for two
protein conforma ons, however, arises from assuming the protein is only capable of slid-
ing, thereby forcing the protein to sample every site along the genome. We hypothesize
that using the different skip-and-slide scheme described here could provide a complemen-
tary/alterna ve route to being both fast and specific –allowing for wider spreads in binding
energies – especially for proteins that are not known to exhibit mul ple conforma ons.

The experiments performed here – together with our theore cal analysis – are in principle
applicable to other DNA binding proteins. Proteins not guided by non-coding DNA/RNA
should be labeled with the donor dye directly. Moreover, both Ago proteins examined
here bind single-stranded nucleic acids, which have close to nucleo de persistent lengths
[? ] and thereby offer a clear possible mechanism of introducing frequent skips – Ago can
skip to distant sequences as they can come close together in space. Yet, the presented
analysis and experiment do not rely on such, and proteins binding double-stranded DNA –
persistence lengths ∼50 nt– can similarly be inves gated for the presence of (presumably
larger and less frequent) skips, without prior knowledge of a possible microscopic mecha-
nism for skipping.

In conclusion, a search strategy combining skipping and sliding can significantly increase
the rate of associa on to the cognate target – which is of cri cal importance for proper
func oning of the cell – and Argonaute proteins adopt scanning densi es consistent with
their mixture being op mal.

6.4. Methods
6.4.1. Monte Carlo simulations for validating 𝑃check
To test the validity of Equa on ??, we set up Monte Carlo simula ons (code wri en in
Python). The proteins are assigned a unity step rate to either side, as well as an unbinding
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rate 𝑢. Hence in every move, the protein diffuses to one of its neighboring site with a
probability / and unbinds with a probability / . Before every move, the protein
interrogates the site currently located at with a fixed probability of 𝜌scan. Each of the 1000
runs ends when the protein unbinds. The corresponding value of 𝑥 is evaluated using the
distance between binding and unbinding sites (see defini on of 𝑥 above Equa on ??). We
es mate the value of𝑝check as the frac on of sites visited that are interrogated. Error bars in
Figure ??B show 95% confidence intervals for both 𝑥 and 𝑝check. Simula ons we repeated
for in [10 , 10 ,10 ,...,10 , 0.9,0.8,...0.1], and 𝑢 in [10 ,...,10 ] as indicated in
Figure ??B.

6.4.2. Bootstrapping for error estimation and based on smFRET
data

Fi ng the data from the tandem target assay to Equa on ?? provides the es mate of 𝜏trap.
We bootstrapped the dwell me distribu ons acquired using the original tandem target
assay (distances of 11 nt, 15 nt, 18 nt and 22 nt (CbAgo) and 7 nt, 11 nt, and 15 nt (hAgo2)).
For each of the 10 bootstrap samples we calculated new values for the associated 𝑇shu le’s
and repeated the fit to Equa on ?? to obtain an error es mate in the fi ed value of the
escape rate. In similar fashion, we used Equa on ??, together with the es mate of 𝜏trap
from the original dataset, to determine 𝜌scan (distances of 64 nt, 92 nt and 120 nt (CbAgo)
and 80 nt, 120 nt, 160 nt (hAgo2)). All analysis was performed with a custom code wri en
in Python. Shaded areas in Figures ??C and D represent 95% confidence intervals.

6.4.3. protein purification
CbAgo was purified according to Hegge et al, 2019 [? ]. hAgo2 was purified according to
Chandradoss et al, 2015 [? ].

6.4.4. Nucleic acid preparation
RNA constructs with a single amine-C6-uridine modifica on were ordered from STPharm.
A er labelling with Cy5 according to [? ], the constructs were precipitated. The RNA con-
structs were subsequently annealed to a DNA splint (specific for RNA and U40 mer), a sec-
ond DNA splint (for liga ng U40 mers) and a U40 mer (in the ra o 1:2:3:3). A er liga on
with T4 RNA ligase II (NEB), the ligated constructs were run on a 10%PAGE. Different ligated
popula ons are created through this process (for example, TGT- U40 or TGT-U40-U40 etc)
and these are then excised from the gel and concentrated through ethanol precipita on.
The concentrated and ligated RNA constructs were again annealed to a DNA construct and
an RNA target with bio n on the 3’ end. Liga onwas again performedwith T4 RNA ligase II.
DNA oligos with a single amine-C6-thymine modifica on were ordered from ELLA Biotech
GmbH and labeled in the same way as the RNA.

6.4.5. Sample preparation
Quartz slides were prepared according to [? ]. Briefly, quartz slides were cleaned with
detergent, sonicated and treated with acetone and subsequently KOH. Coverslips were di-
rectly sonicatedwith KOH. Piranha cleaningwas done followedby treatmentwithmethanol
and incuba on of (3-Aminopropyl)triethoxysilane (APTES) for both coverslips and quartz
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slides. PEGyla on took place overnight and slides and coverslips were stored at -20 ∘C. Be-
fore single-molecule experiments, an extra round of PEGyla on took place with MSPEG-4.
The quartz slide was then assembled with scotch tape and epoxy glue and the chamber
is flushed in T50 and 1% Tween-20 for >10min to further improve the surface quality of
the single-molecule chambers [? ]. Channels were thoroughly washed with T50 before
adding in streptavidin (0.1 mg/mL) for 1 min. Subsequently, DNA or RNA was immobilized
on the surface through bio n-streptavidin conjuga on. 10 nM CbAgo or hAgo2 was incu-
bated with 1 nM guide in (100 mM NaCl for CbAgo, 50 mM NaCl for hAgo2), 50 mM Tris, 1
mM Trolox, 0.8% glucose for 30 min. Lastly, glucose oxidase (0.1 mg/mL final conc.) and
catalase (17 μg/mL final conc.) were added and introduced in the chamber.

6.4.6. Experimental setup

Single-molecule experimentswere performed on a custombuilt invertedmicroscope (IX73,
Olympus) using prism-TIRF and a 60X water immersion objec ve (UPLSAPO60XW, Olym-
pus). The Cy3 dye was excited using a 532 nm diode laser Compass 215M/50mW, Coher-
ent) and the Cy5 dye was excited using a 637 nm diode laser (OBIS 637 nm LX 140 mW).
The sca ered light was blocked by a 532 nm notch filter (NF03-532E-25, Semrock) and a
633 nm notch filter (NF03-633E-25, Semrock) a er which the remaining signal from the
fluophores was separated into two separate channels. Lastly, the light is projected on a
EM-CCD camera (iXon Ultra, DU-897U-CS0-# BV, Andor Technology). Before each experi-
ment, a reference movie was taken with the red laser to excite the Cy5 dyes on the nucleic
acid molecules of interest. A er that, a movie is taken with the green laser. The single-
molecule experiments were taken at room temperature (20± 0.1 ∘C).

6.4.7. Analysis of raw data

The raw data was analysed using custom wri en code in IDL, where the reference movie
is used to take into account only the regions of interest (i.e. the regions that contain a
Cy5). The resul ng me traces where further analysed in MATLAB (Mathworks) where the
shu ling rates were extracted through the use of Hidden Markov so ware called ebFRET
(h p://ebfret.github.io/) and custom wri en code in Matlab.
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6.7. Supplemental Information
6.7.1. Determining shuttling times using a mixture of skipping

and sliding
We here build a kine c model for the lateral diffusion by target searching proteins capable
of explaining the experimental data shown in Figure ??.

modeling skipping-and-sliding lateral diffusion
Given the protein can in principle (a empt to) bind any sequence along theDNAor RNA,we
imagine binding sites to be a nucleo de apart. When bound to site 𝑖, the protein diffuses
away (in either direc on) at a rate

𝑘move(𝑖) = {
𝑘trap at trap

𝑘ns at non-specific site
(S6.1)

We assume the binding energy at the trap is significantly greater than at any non-specific
site, with both s ll being significantly more stable than the unbound state. As a result,
the (average) shu ling me measured in our in vitro experiments - the system contains
two stronger binding traps and a limited amount of remaining off-targets - is governed by
movements from the trap.

𝑘ns ≫ 𝑘trap (S6.2)

Ignoring any temporal contribu on from the non-specific sites reflects the lack of any di-
rectly observable FRET signal corresponding to the protein being at these loca ons (Figure
??). Furthermore, given the TIRF microscopy assay ensures we are tracking laterally diffus-
ing proteins that did not unbind - proteins diffusing through solu on move in and out of
the evanescent field too fast to be detected - we shall ignore the protein’s intrinsic unbind-
ing rate at all sites for now - an assump on that is further jus fied by no ng that typically
more than 10 shu le events occur prior to unbinding.

In every move, taking an average me of 𝑘move, the protein can either slide - step to its
neighbors - or skip - step further.We let the rate to step away from site 𝑖 s ll be set by
Equa on ?? and assign a probability that such a step is of definite length |𝑙| (in nucleo des).
Le ng 𝛿 , denote the Kronecker delta,

𝑃(𝑙, 𝑙slide, 𝑙skip) =
𝑛slide(𝑙slide)

1 + 𝑛slide(𝑙slide)
𝛿| |, +

1
1 + 𝑛slide(𝑙slide)

𝑠(|𝑙|, 𝑙skip) (S6.3)

, with∑ 𝑃(𝑛) = 1. The weight of a skip of length |𝑙| as a func on of the typical skipping
length 𝑙skip, is denoted by 𝑠(|𝑙|, 𝑙skip). Further, 𝑛slide is the typical number of sliding steps
taken between two consecu ve skips. Given a sliding step displaces the protein by a sin-
gle nucleo de, the stochas c variable Δ𝑛 represen ng the number of nucleo des moved
during one such step follows

Δ𝑛 = {+1 nt 𝑝 = /
−1 nt 1−𝑝 = / (S6.4)
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Hence, the mean squared displacement a er 𝑛slide of such steps equals

(1 nt) 𝑙slide = ⟨(
slide

∑ Δ𝑛 ) ⟩

=
slide

∑
slide

∑ ⟨Δ𝑛 Δ𝑛 ⟩

=
slide

∑ ⟨(Δ𝑛 ) ⟩ +∑⟨Δ𝑛 ⟩ ⟨Δ𝑛 ⟩

= 𝑛slide × ⟨(Δ𝑛 ) ⟩
= 𝑛slide (1 nt)

(S6.5)

, where in the third line we have used the independence of individual steps. We define
the ’sliding length’, 𝑙slide = √𝑛slide, as the typical number of nucleo des covered sliding
between two consecu ve skips - the rms displacement of a simple randomwalk with 𝑛slide
steps. Rewri en in terms of the now defined sliding length 𝑙slide, the probability of taking
a step of length |𝑛| reads

𝑃(𝑛, 𝑙slide, 𝑙skip) =
𝑙slide

1 + 𝑙slide
𝛿| |, +

1
1 + 𝑙slide

𝑠(|𝑛|, 𝑙skip) (S6.6)

The (effec ve) rate from 𝑖 to 𝑗 then equals

𝜅(𝑖, 𝑗|𝑙slide, 𝑙skip) = 𝑘move(𝑖)𝑃(|𝑖 − 𝑗|, 𝑙slide, 𝑙skip) (S6.7)

As we will show below, the behavior of the resul ng shu ling mes both at short and long
distances is independent of the choice of the distribu on 𝑠. Yet, all numerical results are
obtained using

𝑠(𝑛, 𝜇skip, 𝜎skip) = ∫
/

/
[𝐺(𝑛|𝜇skip, 𝜎skip) + 𝐺(𝑛| − 𝜇skip, 𝜎skip)]d𝑛 (S6.8)

with

𝐺(𝑥, 𝜇skip, 𝜎skip) =
1

√2𝜋𝜎skip
𝑒

( skip)

skip (S6.9)

deno ng the Gaussian distribu on with average 𝜇skip and standard devia on 𝜎skip. Hence,
the length of each skip is normally distributed, with a typical (rms) skipping length of

𝑙skip = √𝜇skip + 𝜎skip (S6.10)
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numerical method to solve for shuttling time

Every shu ling event starts with the protein bound at one of the two trapping sites (𝑡 = 0)
and ends the first me it reaches the other (𝑡 = 𝑇shu le), located 𝑑trap sites away. Using the
transi on rates of Equa on ??, le ng 𝑃i(𝑡) denote the probability for the protein to reside
at site 𝑖 at me 𝑡, and defining the vector

�⃗�(𝑡) = [𝑃1(𝑡), 𝑃2(𝑡), ..., 𝑃 trap
(𝑡)] (S6.11)

(for ease of nota on we omit the sites flanking either trap 𝑖 < 1 and 𝑖 > 𝑑trap, but note
the approach men oned here is applicable also if the traps are not the outermost sites on
the construct)

the following set of Master Equa ons determine the evolu on of the occupancies at every
site during a shu ling event with the first trap at site 1 and the second at 𝑑trap.

𝜕�⃗�
𝜕𝑡 = −𝐾�⃗�(𝑡) (S6.12)

with the elements in rate matrix 𝐾 given by

𝐾 = {−𝜅(|𝑗 − 𝑖|, 𝑙slide, 𝑙skip) ∀𝑖 ≠ 𝑗
∑ 𝜅(|𝑖 − 𝑗|, 𝑙slide, 𝑙skip) ∀𝑖 = 𝑗 (S6.13)

The shu le event starts with the protein located at the first trap,

𝑃1(0) = 1, 𝑃i(0) = 0 ∀𝑖 ≠ 1 (S6.14)

, and ends when the second trap is reached, whose corresponding outgoing rates are set
to zero (𝑗 = 𝑑trap in Equa on ??). The probability of comple ng a shu le within the me
interval [𝜏, 𝜏+Δ𝑡] should be propor onal to the change in occupancy at the des na on trap
(𝑃

trap
(𝜏 + Δ𝑡) − 𝑃

trap
(𝜏)). Le ng 𝑝shu le(𝜏) denote the probability density of comple ng

the shu le at me 𝜏, (𝑝shu le(𝜏)Δ𝑡 = 𝑃 trap
(𝜏 + Δ𝑡) −𝑃

trap
(𝜏), for small enough Δ𝑡. Taking

Δ𝑡 → 0, we recognize the rate of change of the second trap’s occupancy ( trap ( ) | )
as the instantaneous probability that the shu ling me equals 𝜏 (𝑝shu le(𝜏)). Deno ng the
basis vectors 𝑝j as 𝑝0 = [1, 0, 0, .....0] , 𝑝1 = [0, 1, 0, .....0] , 𝑝2 = [0, 0, 1, .....0] and so on,
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the shu le mes are distributed as

𝑝shu le(𝜏) =
𝜕𝑃

trap
(𝑡)

𝜕𝑡 |

= − ∑
trap

𝜕𝑃 (𝑡)
𝜕𝑡 |

≡ − ∑
trap

𝑝j
𝜕�⃗�(𝑡)
𝜕𝑡 |

= + ∑
trap

𝑝j 𝐾�⃗�(𝜏)

= + ∑
trap

𝑝j 𝐾𝑒 �⃗�(0)

(S6.15)

In the second line we have used that any addi onal occupancy at the trap must come from
somewhere else on the RNA/DNA (𝑃

trap
(𝑡) = 1 − ∑

trap
𝑃j). The next lines makes use of

Equa on ?? together with the basis vectors to write the elements of �⃗� as its projec ons,
and the Master Equa on, Equa on ??, to work in the rate matrix 𝐾 and its matrix expo-
nen al.The desired average shu ling me (𝑇shu le) is the first moment of the distribu on
𝑝shu le(𝜏),

𝑇shu le(𝑑trap) = ∫ 𝜏𝑝shu le(𝜏)d𝜏

= ∫ 𝜏 ∑
trap

𝑝j 𝐾𝑒 �⃗�(0)d𝜏

= ∑
trap

𝑝j (∫ 𝜏𝐾𝑒 d𝜏) �⃗�(0)

= ∑
trap

𝑝j 𝐾 �⃗�(0)

(S6.16)

Using the values of 𝑙slide, 𝜇skip and 𝜎skip (thereby knowing 𝑙skip via Equa on ??) and the
distance between traps 𝑑trap, we construct the rates in Equa on ??, build the matrix 𝐾,
invert it and compute 𝑇shu le(𝑑trap) as the inner product shown in Equa on ??. Note that
if the trap located at 𝑑trap is not the outermost binding site on the construct, Equa on ??
is s ll valid a er subs tu ng matrix 𝐾 for the sub-matrix with its 𝑑trap-th row and column
removed.

6.7.2. Shuttling times scales with square of scanning density at
large trap separations

Given movements along the non-specific parts of the substrate occurred too fast to be ob-
served, 𝑇shu le should be propor onal to the me needed to escape the ini al trap towards
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the region in between traps (𝜏trap = 𝑘trap) mul plied by the number of re-trapping events.

𝑇shu le(𝑑trap) = 𝑛return𝜏trap (S6.17)

A er sufficient rounds of skipping and sliding, the protein’s excursion is well described by
a random walk with basic step length (Figure ??, ’sNs’:’skip-N-slide’):

𝑙sNs = √𝑙slide + 𝑙skip = √𝑙slide + 𝜇skip + 𝜎skip (S6.18)

The protein slides - covering 𝑙slide nucleo des - before skipping to the next segment of
length 𝑙sNs. For this coarse-grained system, we once again expect the escaping of the trap
to be rate limi ng, resul ng again in a linear increase of the shu ling me with inter-trap
distance, similar to the case of diffusion purely by sliding (Equa on ??),

𝑇shu le(𝑑trap) = const.+ �̂�return𝜏trap (S6.19)

Here we are concerned only with 𝑇shu le(𝑑trap)’s scaling with 𝑑trap, for which it is only the
term propor onal to 𝜏trap that has to be taken into account. In the coarse-grained system

�̂�return = (# returns to segment that contains the first trap)
× (# returns to trap when in first segment)
≡ �̂�segment × �̂�retrap

(S6.20)

To get the average number of re-entries to the first segmentwemust derive its correspond-
ing probability. First, given a skip translocates the protein to an adjacent segment of 𝑙sNs
nucleo des, and 𝑙slide steps are taken within each segment

𝜌scan =
𝑙slide
𝑙sNs

= 𝑙slide
√𝑙slide + 𝑙skip

(S6.21)

denotes the typical frac on of interrogated sites along the substrate, or ’scanning density’.
In other words, any par cular site within a 𝑙sNs-long region of DNA/RNA has a probability
of 𝜌scan to be interrogated prior to the protein moving beyond this segment. Equivalently,
the protein visits a segment without checking (all) the sites within it with a probability
of 1 − 𝜌scan. Next, let 𝑃shu le(�̂�) denote the probability of traversing/shu ling across �̂�
segmentswithout entering the previous segment. We shall derive𝑃shu le(𝑑) below. Having
entered the first of the �̂�trap = trap/ sNs segments that lie between the traps, the probability
of returning to the segment that contains the ini ally bound trap equals (Figure ??).

𝑃segment = (1 − 𝑃shu le(�̂�trap))

+ 𝑃shu le(�̂�trap) ∑ ((1 − 𝜌scan) (1 − 𝑃shu le)) (1 − 𝜌scan) 𝑃shu le(�̂�trap)

(S6.22)
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The first term is the probability of immediately going back to the segment the protein
started from, while the sum accounts for the probability of all paths that reach the seg-
ment that contains the second trap, do not get captured by it, and eventually return back
to the first trap (Figure S2). For instance, the 𝑚 = 0 term (𝑃shu le(1 − 𝜌scan)𝑃shu le) rep-
resents the path that walks to the opposite side of the construct, does not interrogate the
final trap and walks back across the construct to arrive back at the segment with the ini-
ally bound trap.

Using a similar type of ’path coun ng’, we find the probabili es 𝑃shu le and 𝑃no shu le =
1 − 𝑃shu le, for a given inter-trap distance �̂�trap to equal (Figure ??)

𝑃no shu le(�̂�trap) = ∑ (12 (1 − 𝑃shu le(�̂�trap − 1)))
1
2 (S6.23)

𝑃shu le(�̂�trap) = ∑ (12 (1 − 𝑃shu le(�̂�trap − 1)))
1
2𝑃shu le(�̂�trap − 1) (S6.24)

- from which we can write the recurrence rela on

𝑃shu le(�̂�trap) = 𝑃no shu le(�̂�trap)𝑃shu le(�̂�trap − 1) (S6.25)

The above can be re-wri en as

𝑃shu le(�̂�trap) =
𝑃shu le(�̂�trap − 1)

𝑃shu le(�̂�trap − 1) + 1
(S6.26)

, which subjected to the boundary condi on 𝑃shu le(1) = 1 - signifying that if the traps are
placed in adjacent segments, the shu le is complete once the protein escaped the trap for
the first me - has the simple solu on

𝑃shu le(�̂�trap) =
1
�̂�trap

(S6.27)

Given the probability of re-entering the first segment, the average number of mes this
occurs prior to eventually shu ling across equals

�̂�segment = ∑𝑛𝑃segment(1 − 𝑃segment) =
𝑃segment

1 − 𝑃segment
(S6.28)

Using Equa on ??wefind that the protein on average re-enters the segmentwith the ini al
trap

�̂�segment =
𝑑trap
𝑙sNs

+ 𝑙sNs
𝑙slide

− 2 (S6.29)

mes prior to comple ng the shu ling event. Once arrived back within the first segment,
wemust count the (average) number of mes the protein gets recaptured by the actual trap
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(�̂�retrap). Assuming sufficient ’skip-and-slide cycles’ have taken place, the protein’s posi on
is uniformly spread throughout the 𝑙sNs-long segment (Figure ??C). Hence, every step taken
within the segment has a probability of / sNs to lead to the trap. Given there are typically
𝑛slide = 𝑙slide steps taken prior to a skip (that moves the protein outside of the 𝑙sNs-long
region),

�̂�retrap =
𝑛slide
𝑙sNs

= 𝑙slide
𝑙sNs

(S6.30)

Taken together, Equa ons ?? and ?? - by virtue of Equa on ??:

�̂�return =
𝑙slide
𝑙sNs

× [
𝑑trap
𝑙sNs

+ 𝑙sNs
𝑙slide

− 2] ≡ const.+ 𝑙slide𝑙sNs
𝑑trap (S6.31)

Hence, when placed sufficiently far apart, the shu ling me (Equa on ??),

𝑇shu le(𝑑trap) = const.+ 𝜌scan𝜏trap𝑑trap = ( 1
1+( skip

slide
)
)𝑑trap (S6.32)

grows linearly with a slope that scales quadra cally with the scanning density (Equa on
??) from which we obtain the ra o between sliding and skipping lengths.

6.7.3. parameter sweep and estimation of slopes
To construct Figure 2E, we evaluate Equa on ?? for 𝑙slide ∈ [1 nt, 6 nt, 12 nt, 18 nt, 24 nt,
30 nt, 36 nt, 42 nt], 𝜇skip ∈ [0 nt,6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt] and 𝜎skip ∈
[0.01 nt, 6 nt, 12 nt, 18 nt, 24 nt, 30 nt, 36 nt, 42 nt]. The distance between traps varied
from 1-250 nt. The values of 𝑙slide, 𝜇skip and 𝜎skip where chosen such that at the largest trap
separa on of 250 nt the system is always in the regime for which we expect Equa on ??
to hold.
For every 𝑇shu le vs 𝑑trap curve, we use the first two points (1 nt , 2 nt) to es mate 𝜏trap
(Equa on ??) and the final two points (249 nt, 250 nt), together with the es mate of 𝜏trap,
to es mate 𝜌scan (Equa on ??).

6.7.4. Search time using skipping and sliding shows two optima
Here we connect the scanning density (𝜌scan) that we can extract from experiments to the
me needed for a protein to locate a single target embedded within a larger pool of 𝐿

binding sites. Following [? ],
𝑇search = 𝑁rnd𝑇rnd (S6.33)

with 𝑇rnd the (average) me each round of facilitated diffusion takes and 𝑁rnd the number
of such rounds (’rnd’) needed to find the target. As men oned in the main text, we seek to
find the minimum search me with respect to the number skips (𝑁skip) and slides (𝑁slide)
within every round (binding - lateral diffusion - unbinding).

The length of a skip (𝑙skip), as well as the mes to interrogate (slide past) a binding site
(𝜏slide), execute a skip and interrogate the landing site (𝜏skip), and the me spent on 3D
diffusion and interroga ng the landing site (𝜏3D) are all kept constant. The me per round
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consists of the me spent on the DNA performing lateral diffusion and the me spent in
solu on performing 3D diffusion.

𝑇rnd = 𝜏1D + 𝜏3D (S6.34)

We further write the me spent on lateral diffusion as the me spent interroga ng off-
targets either by sliding or skipping,

𝜏1D = 𝑇slide + 𝑇skip (S6.35)

For ease of calcula on, we define the following variables with respect to which we have
minimized the search me

𝑥 = 𝜌scan
1 − 𝜌scan

√𝑁skip (S6.36)

𝑦 = 𝜌scan
1 − 𝜌scan

(S6.37)

Wri en in terms of 𝑥 and 𝑦 (Equa ons ?? and ??), the total mes spent either on sliding
or skipping become

𝑇slide = 𝑁slide𝜏slide = (𝑥𝛿𝑙) 𝜏slide (S6.38)

𝑇skip = 𝑁skip𝜏skip = ( / ) 𝜏skip (S6.39)

Here we have introduced the variable 𝛿𝑙 = 𝑙sNs − 𝑙slide = skip

√
for ease of nota on.

To complete Equa on ?? we need the average number of search rounds (binding-lateral
diffusion-unbinding) needed to locate a single target amongst 𝐿 poten al binding/target
sites,

𝑁rnd =
𝐿

𝑙1D𝑝check(𝑥)
(S6.40)

In here, we set the typical length of a lateral excursion to span 𝑙1D sites, out of which a frac-
on 𝑝check(𝑥) have been interrogated (slid past) at least once prior to unbinding (deriva on

shown below) (see Figure 3A). Further, 𝑙1D represents the (rms) distance between binding
and unbinding sites

𝑙1D = √𝑁slide + 𝑁skip𝑙skip

= √𝑁skip𝑛slide + 𝑁skip𝑙skip

= √𝑁skip𝑙slide + 𝑁skip𝑙skip

= √𝑁skip𝑙sNs = (
𝑦 + 1
𝑦 )𝑥𝛿𝑙

(S6.41)

In the second line of Equa on??wehave rewri en the total number of sites visited through
sliding as the product of the number of skip-n-slide cycles (𝑁skip) and the number of slid-
ing steps between two skips (𝑛slide). The la er is related to the sliding length as we have
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defined it above (𝑙slide = 𝑛slide, Equa on ??). In the last line, we recognize the rms length

covered in a skip-n-slide cycle (𝑙sNs = √𝑙slide + 𝑙skip). We note that 𝑙1D is what can be deter-
mined experimentally as the span of a lateral excursion, which is not equal to the variable
𝑙slide - even when the protein only performs sliding. Namely, as we have defined 𝑙slide to
be the rms between consecu ve skips, this quan ty becomes much greater than 𝑙1D if on
average less than a skip occurs per search round (𝑛slide ≫ 1 when 𝑁skip ≪ 1).

Taken together, the search me can be wri en as

𝑇search = 𝑁rnd𝑇rnd = 𝑁rnd [𝑇slide + 𝑇skip + 𝜏3D]

= 𝐿 × 𝑦
(𝑥𝛿𝑙) 𝜏slide + ( / ) 𝜏skip + 𝜏3D

(1 + 𝑦)𝑥𝑝check(𝑥)𝛿𝑙(𝑦)
(S6.42)

In what follows, we shall first derive 𝑝check, and proceed to show 𝑇search has minima
both for large scanning densi es (sliding only) and low scanning densi es (skip-n-slide).

Probability to interrogate all sites within a given section of sequence space
As discussed in the deriva on leading up to Equa on ??, a er sufficient ’skip-and-slide cy-
cles’ the protein’s mo on is approximately described by a simple random walk with basic
step length 𝑙sNs and a probability 𝜌scan to check all the bases within each segment per visit.
Here, we derive an approximate equa on for 𝑝check for which we used Monte Carlo sim-
ula ons to show it has the correct scaling with the model parameters (see main text and
Figure ??) - thereby valida ng our analysis of the search me done below.

Let the protein bind to the DNA at segment 1 and leave it at ̂𝑙1D = 1D/ sNs. Towards calcu-
la ng the probability to check all sites along its path at least once, we first pick a segment
̂𝑙 between start- and endpoints and determine the probability to visit/interrogate all sites
in this segment at least once prior to making it to segment ̂𝑙1D for the first me (Figure
??A). Assuming the protein does not visit any other segments outside the interval [1, ̂𝑙1D],
the probability to reach ̂𝑙1D a er having checked the sites within ̂𝑙 equals the probability of
making it from ̂𝑙 to ̂𝑙1D,
𝑃(1 → ̂𝑙1D|check ̂𝑙) = 𝑃(1 → ̂𝑙) × 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙) = 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙), (S6.43)

as the proteinwill always return from the first segment to the intermediate (with orwithout
checking sites in between) (𝑃(1 → ̂𝑙) = 1). The probability of making it from 1 to ̂𝑙
without checking the intermediate site equals (Figure ??A)

𝑃( ̂𝑙 → ̂𝑙1D|no check ̂𝑙) =
1
2(1 − 𝜌scan)𝑃no shu le( ̂𝑙1D − ̂𝑙)

× ∑ (12(1 − 𝜌scan) [𝑃no shu le( ̂𝑙) + 𝑃shu le( ̂𝑙) + 𝑃no shu le( ̂𝑙1D − ̂𝑙)])

= 1
1+ scan( 1̂D ̂)

scan

,

(S6.44)
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with 𝑃shu le(𝑑) given by Equa on ??. The common term in Equa on ?? represents the
path that leads directly from segment ̂𝑙 to the final one at ̂𝑙 without having checked the
intermediate site. The first set of terms within the sum are all paths that a empt to reach
segment 1, but do not make it (Figure ??A). The middle terms within the sum count all
paths that do make it to the first segment and return with unit probability. The final term
within the sum represents all paths that a empt to walk to the final segment, but do not
make it across. From this we derive

𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙) = 1−𝑃( ̂𝑙 → ̂𝑙1D|no check ̂𝑙) = ( ̂𝑙1D − ̂𝑙)
( ̂𝑙1D− ̂𝑙)+ scan

scan

(S6.45)

As this holds for any segment within [1, ̂𝑙1D], we get the probability of interroga ng all
sites/segments by averaging over all posi ons of ̂𝑙,

𝑝check(𝜌scan, 𝑙1D) ≈
1
̂𝑙1D

1̂D

∫ 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙

= 1 − 1 − 𝜌scan
2𝜌scan𝑙1D/𝑙sNs

log [1 + 2𝜌scan𝑙1D/𝑙sNs1 − 𝜌scan
] ,

(S6.46)

for which we assumed large enough distances ̂𝑙1D such that
1̂D

1̂D
∑
̂
𝑃( ̂𝑙 → ̂𝑙1D|check ) ≈

1̂D

1̂D

∫ 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙 ≈
1̂D

1̂D

∫ 𝑃( ̂𝑙 → ̂𝑙1D|check ̂𝑙)d ̂𝑙.

We can rewrite Equa on ?? using 𝑥 = 1D
sNs

scan
scan

(which is equal to Equa on ??, by virtue
of Equa on ??),

𝑝check(𝑥) = 1 −
log(1 + 2𝑥)

2𝑥 ≈ {𝑥 − 𝑥 𝑥 ≪ 1
1 𝑥 ≫ 1 (S6.47)

Conditions for optimal search time
We now proceed to find the op ma of Equa on ?? in terms of 𝑥 and 𝑦. Its deriva ve with
respect to 𝑥 equals

𝜕 log𝑇search =
2
𝑥

𝜏1D
𝜏1D + 𝜏3D

− 1𝑥 − 𝜕 log𝑝check (S6.48)

Se ng it equal to zero results in the following condi on

2𝜏1D
𝜏1D + 𝜏3D

= 1 + 𝑥𝜕 log𝑝check (S6.49)

Similarly, se ng 𝜕 log𝑇search equal to zero results in

2 [ 𝑦
1 + 2𝑦

𝑇slide
𝑇rnd

+
𝑇skip
𝑇rnd

] = 1 + 𝑦
1 + 2𝑦 −

𝑦
1 + 𝑦 (S6.50)
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In what follows it is our goal to prove the existence of (at least) two minima - sets of co-
ordinates in {𝑁slide, 𝑁skip}-space, or equivalently {𝑥, 𝑦}-space, that simultaneously sa sfy
Equa ons ?? and ??.

high scanning densities: sliding-only optimum
Here, we seek a localminimumof Equa on ?? - - sa sfying both Equa ons ?? and ?? - in the
’densely scanned’ regime (𝜌scan ≫ 0.5). For sufficiently large scanning densi es, 𝑦 ≫ 1,
for which Equa ons ?? and ??make the second term on the le hand side of Equa on ??
vanish, and we are le with

𝑇slide =
1
2𝑇rnd (S6.51)

If we addi onally assume (close to) no skipping takes place (𝑁skip → 0), or 𝑦 ≫ 𝑥 (Equa on
??), this condi on simplifies further to

𝜏1D = 𝜏3D (S6.52)

We see that at (close to) unit scanning density it is most beneficial to spend half of the me
searching laterally along the substrate and the other half using excursions through solu ons
to reach distant sites. This result was obtained by Slutsky and Mirny [Slutsky and Mirny,
Biophysical Journal 2004], whose model does not allow for skips to take place. Hence, our
model coincides with theirs when shu ng down skipping. Using Equa on ?? in ?? yields

𝑥𝜕 𝑝check = 0 (S6.53)

As this equa on is sa sfied both for 𝑥 ≫ 1 (Equa on ??), and for 𝑥 = 0 (using the 𝑥 ≪ 1
case in Equa on ??), we iden fy the sliding-only case,

𝑁sliding
skip → 0, 𝑁sliding

slide = 𝜏3D
𝜏slide

, 𝑙slidingslide ≫ 𝑙slidingskip , 𝜌slidingscan → 1, (S6.54)

as a (local) op mal search strategy. Recognizing that 𝑙1D = √𝑁slide for𝑁skip = 0 (Equa on
??), and using Equa ons ??, ?? and ?? results in a search me (Equa on ??) at the ”sliding-
only” op mum of

𝑇slidingsearch = 2𝐿√𝜏slide𝜏3D (S6.55)

Hence, the search me can be minimized by elimina ng skips altogether and adop ng a
scanning density of 1 (𝑙slide ≫ 𝑙skip).

low scanning densities: skipping-and-sliding optimum
Next, we seek to find an op mal search strategy that involves (frequent) skips. Returning to
the 𝑦-deriva ve shown in Equa on ??, we now explore the opposite limit of low scanning
densi es (𝜌scan ≪ 0.5, 𝑙slide ≪ 𝑙skip), 𝑦 ≪ 1, for which

𝑇skip =
1
2𝑇rnd (S6.56)

We see that at low scanning densi es, it is most beneficial for the protein to spent half of
its me interroga ng sites following skips. Before proceeding, we introduce

𝜏slow = 𝜏slide𝑙skip (S6.57)
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as the me required to travel a full skipping length purely through sliding. That is, skip/ slow <
1 indicates, a er having taken into account the temporal cost of performing the skip, it
remains beneficial to skip instead of just using sliding to reach the same region of the
DNA/RNA. Having defined this variable, Equa on ?? results in

(𝑦sNs) =
𝜏skip
𝜏slow⏟

(𝑥sNs)
(𝑥sNs) + 3D

slow⏟
= 𝑦 ( sNs/ )

1+ ( sNs/ )
, (S6.58)

where we have introduced 𝑥 and 𝑦 for nota onal convenience. Using this 𝑦-coordinate
reduces Equa on ?? into a condi on for the 𝑥-coordinate only

𝑥𝜕 log𝑝check| sNs = ( sNs/ )
1+ ( sNs/ )

(S6.59)

Both sides of Equa on ?? are monotonic func ons in 𝑥 (Figure ??B). Hence, there is an
op mal 𝑇sNssearch at {𝑥sNs, 𝑦sNs} corresponding to small scanning densi es (𝜌scan < 0.5).

To obtain the corresponding value of the search me (𝑇sNssearch), we proceed to solve Equa-
on ??. Although we are unable to solve Equa on ?? for general 𝑥, we can however obtain

an approximate solu on by assuming 𝑥 ≪ 1, for which (using Equa on ?? to simplify the
le hand side of Equa on ??)

(𝑥sNs)
2𝑥 + 𝑥sNs = 3

8 (S6.60)

If we further assume 2𝑥 ≪ 1, or equivalently, 𝜏3D ≪ 𝜏slow,

𝑥sNs ≈ (34)
/
𝑥 / ≈ 𝑥 / = ( 𝜏3D𝜏slow

)
/

(S6.61)

To demonstrate the validity of this assump on we compared the numerical solu on to
Equa on ?? to the above approxima on thereof (Equa on ??). Figure ??C shows these
to differ less than a factor 3 over a range in 3D/ slow that spans 20 orders of magnitude.
We therefore deem Equa on ?? to be valid also outside the 3D/ slow ≪ 1 taken to obtain it
ini ally (further allowing us to ignore the factor of ( / ) / ≈ 0.91). Using the𝑥-coordinate,
we obtain the following 𝑦-coordinate (Equa on ??)

𝑦sNs = 𝑦 √
1

1 + 𝑥 /
(S6.62)

Next, using that 𝛿𝑙 ≈ 𝑙skip for 𝑦 ≪ 1 (the limit already taken), we find the following number
of skipping and sliding steps taken in every search round (Equa ons ?? and ??)

𝑁sNs
slide = 𝑥

/ 𝑙skip =
𝜏3D
𝜏slide

(𝜏slow𝜏3D
)
/

(S6.63)

𝑁sNs
skip =

𝑥 /

𝑦 (1 + 𝑥 / ) = 𝜏3D
𝜏skip

(1 + (𝜏slow𝜏3D
)
/
) (S6.64)
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Combining Equa ons ?? and ?? together with the skip-n-slide op mum set by Equa ons
??, ??, ?? and ?? , results in a search me (Equa on ??)

𝑇sNssearch = 2𝐿√
𝜏skip𝜏3D
𝑙skip

⎛

⎝

√1+( slow
3D
)
/

𝑝check(𝑥sNs)
⎞

⎠

(S6.65)

In conclusion, the search me is minimized both at a maximum scanning density of 1
(𝜌slidingscan ≈ 1) - with a search me of 𝑇slidingsearch (Equa on ??) - and at a lower scanning density

(𝜌sNsscan = skip
√ sNs

slide/ sNs
skip < 0.5) - with a search me 𝑇sNssearch (Equa on ??).

Global Optimum
Having found two local op ma, the more favorable search strategy is the one correspond-
ing to the lowest search me. Hence, a combina on of skipping and sliding is preferred
(over just sliding) when 𝑇sNssearh < 𝑇slidingsearch . Using Equa ons ?? and ??

𝑇sNssearch

𝑇slidingsearch

= √
𝜏skip
𝜏slow

⎛

⎝

√1+( slow
3D
)
/

𝑝check(𝑥sNs)
⎞

⎠

< 1 (S6.66)

This can be rewri en as
𝜏skip
𝜏slow

< 𝑝check(𝑥sNs)
1+( slow

3D
)
/ < 1 (S6.67)

The second inequality (’less than 1’) follows fromno cing that𝑝check(𝑥) ≤ 1 for any x as it is
a probability, and ( slow

3D
)
/
> 0 as all 𝜏’s are posi ve, together making the middle iden ty

always less than 1. As expected, skip

slow
< 1, for skipping to be beneficial. However, Equa on

?? refines this statement and gives the exact boundary shown in the phase diagram of
Figure 3D.
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3’-biotin - U30 CUC CAU CAU UUU UUU U Ux CUC CAU CAU UUU UUU UU - 5’ 

5'-p U GAG GAU UuU UUU UUU UUU UUU-3'

3’-biotin - U30 CUC CAU CAU UUU UUU U Ux CUC CAU CAU UUU UUU UU - 5’ 

5'-p U GAG GAU UuU UUU UUU UUU UUU-3'

Figure S6.1: related to Figure ??. construct design hAgo2. ssRNA constructs (red) are passivated to the micro-
scope slide using a 3’-bio n-streptavadin linkage. The two trapping sequences, 4 nt sequences that are comple-
mentary to the corresponding guide nucleo des (green), are highlighted in yellow. Top figure represents the ‘high
FRET’ configura on, while the bo om figure displays Ago bound to the trap resul ng in ‘low FRET’. The distance
between traps is varied by adding Uracil nucleo des (Ux reads: ‘x mes a U’). To embed the traps within the
sequence, as opposed to them being the outermost sites, poly-U sequences flank both traps.
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+
walk straight back into segment 
containing the �rst trap

“or...”

make it to segment containing the destina-
tion trap 

without interrogating the trap itself make it 
out of the segment. 

walk back to the destination segment.
repeat m times. 

Without interrogating the trap itself make 
it out of the segment and walk back into 
initial trap’s segment

“and..”

“and...”

 trap 1  trap 2 

Figure S6.2: related to Figure ??. path coun ng to derive scaling of shu ling me with distance. A graphical
explana on of Equa on ??. Subsequent figures will only show the equivalent of the bo om shown here.
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 trap 1  trap 2 

Figure S6.3: related to Figure ??. Shu ling me simple diffusion scales linearly with trap. Illustra on of recur-
sion rela on dicta ng probability to shu le shu le (or get recaptured no shu le) in terms of number of binding
sites separa ng the two traps. Relates to Equa ons ?? and ??.

A

C

B

start end

Figure S6.4: related to Figure ??.deriva on of search me at given scanning density. (A) Illustra on of paths (and
corresponding probabili es) that lead the protein from segment 1 to 1̂D (size sNs) without having interrogated
all binding sites within segment ̂. Relates to Equa on ??. (B) At low scanning densi es, the search me exhibits
a unique minimum. Colored lines show right hand side of Equa on ?? for varying values of 3D/ slow and black line
shows the le hand side. Intersec ons (red dots) our found numerically and –together with Equa on ?? -indicate
the loca on in { , }-space the skip-and-slide op mum can be found at (Equa on ??). (C) Approximate loca on
of skip-and-slide op mum ( -coördinate) from Equa on ?? versus numerical solu on to Equa on ??.
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Summary

The past decade has witnessed a revolu on in genome-engineering. Using CRISPR-Cas9
DNA sequences can be marked, detected and cleaved. Rewri ng life’s instruc ons in such
a fashion paves theway towards numerous scien fic, agricultural andmedical applica ons.
Without proper quan fica on of the associated risks we face the danger of applying treat-
ments without knowing its consequences. Most notable concern lies in Cas9’s specificity.
Although Cas9 targets DNA complementary to any designed 20nt guide RNA, it notoriously
also acts on non-fully matching sequences. This thesis describes work towards a physical
understanding of howCas9 and similar RNA/DNAguided systems locate and recognize their
target. Chapter 1 introduces the reader to life’s most important molecules (DNA, RNA and
protein) as well as to the RNA guided CRISPR and Argonaute (Ago) systems. The chapter
also provides an introduc on to the main modeling techniques used in subsequent chap-
ters.
In Chapters 2 and 3 we model the physics governing target selec on. Our current under-
standing of binding and cleavage specificity is reflected in a set of rules of thumb used to
design the 20nt target. Chapter 2 shows said rules are a direct consequence of having a
unidirec onal binding process, as assumed to be the case for both Cas9 and Argonaute.
At the core of the presented model lies the free-energy landscape underlying the protein-
guide-target interac ons. Chapter 2 uses a simple landscape in which the addi on of a
matching base pair to the guide-target hybrid kine cally (as well as energe cally) favors
cleavage, while a mismatch makes rejec on of the (off-)target more likely. With a single
gain/penalty for every match/mismatch between guide and target we highlight the bene-
fit of using a kine c modeling approach. In Chapter 3, the parameteriza on is expanded
to allow for posi on dependent (mis-)match biases, which are extracted from a series of
high-throughput experimental datasets to elucidate in more detail the free-energy land-
scape of spCas9-sgRNA-DNA. The determined landscape directly explains what off-target
sites are expected to lead to stable binding on mescales much shorter than cleavage, ex-
plaining the previously reported discrepancy between binding and cleavage specifici es.
Moreover, the free-energy landscape is consistent with single-molecule fluorescence ex-
periments probing the conforma onal dynamics of Cas9 during target binding, thereby
showing how Cas9’s major conforma onal change couples to the hybrid-forma on pro-
cess. Finally, this chapter demonstrates how our kine c model improves upon exis ng
target predic on tools.
Chapters4-6 describe a protein’s search for a single target site embeddedwithin the genome.
Chapter 4 reviews literature describing how target searching proteins use a combina on
of three-dimensional diffusion through solu on with (effec ve) one-dimensional diffusion
along the contour of the DNA. Furthermore, using the human Argonaute 2 protein as an
example, Chapter 4 hypothesizes how coupling structural changes to hybrid forma on, as
we also show for spCas9 in Chapter 3, can balance search me and specificity. Chapters
5 and 6 present a collabora on with experimentalist from the lab of Chirlmin Joo. First,
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Chapter 5 shows a prokaryo c Argonaute can bypass other DNA bound proteins when lat-
erally scanning the DNA. As a model in which Ago is forced to interrogate all binding sites
during a lateral excursion cannot account for themeasured diffusion rates, basesmust have
been skipped when moving past the protein blockades. Next Chapter 6 describes a model
allowing for such base skipping, resul ng in only a frac on of the DNA enclosed within
a lateral excursion being interrogated. Addi onal single-molecule experiments show that
also human Ago uses such base-skipping. Although both Ago only interrogate all DNA a er
many repeated rounds of lateral diffusion, we show such a mechanism helps to speed up
the search for the cognate target.



Samenvatting

In het afgelopen decennium hee zich een revolu e in de genoombewerkingstechnolo-
gie voltrokken. Gebruikmakend van CRISPR-Cas9 kan DNAworden opgespoord en geknipt,
waarmee verschillende wetenschappelijke, agrarische en medische toepassingen een stap
dichterbij zijn. Als demogelijke risico’s van deze krach ge techniek niet worden gekwan fi-
ceerd bestaat de angst datmedische behandelingen plaatsvinden zonder dat allemogelijke
gevolgen bekend zijn. Het grootste risico zit in de specificiteit van Cas9. In principe wordt
Cas9 geprogrammeerd om DNA te knippen met een sequen e van 20nt complementair
aan een aan de proteïne meegegeven ‘gids’ RNA. Helaas knipt Cas9 ook DNA-sequen es
die niet compleet complementair zijn aan de gids. Het werk omschreven in dit proefschri
draagt bij aan fysisch inzicht in de manier waarop Cas9, en soortgelijke RNA/DNA gepro-
grammeerde systemen, hun doelwit DNA vinden en herkennen. Hoofdstuk 1 maakt de
lezer bekent met de meest belangrijke biomoleculen (DNA, RNA en eiwi en) en de CRISPR
en Argonaute (Ago) systemen die in dit proefschri uitvoerig bestudeerd zijn. Tevens be-
vat dit hoofdstuk een introduc e tot de wiskundige technieken die gebruikt zijn voor het
opstellen van de modellen verderop in het proefschri .
Hoofdstukken 2 en 3 presenteren een fysisch model dat omschrij hoe Cas9 en Ago hun
doelwit herkennen. Ons huidig begrip van de specificiteit van dit soort systemen kan wor-
den samengevatmet een aantal vuistregels die in acht worden genomen bij het ontwerpen
van het gis RNA. Hoofdstuk 2 laat zien dat deze regels een direct gevolg zijn van een bin-
dingsproces dat aan een kant van de gids begint, zoals aangenomen wordt het geval te
zijn voor zowel Cas9 als Ago. In het model staat het vrije-energielandschap dat interac-
es tussen gids RNA, doelwit DNA en het eiwit omschrij centraal. In Hoofdstuk 2 wordt

er een simpel landschap gebruikt waarin de toevoeging van een complementair basepaar
aan de gids-doelwit hybride een kine sch (alsmede een energe sch) voordeel oplevert.
De toevoeging van een non-complementair basepaar verhoogt de waarschijnlijkheid dat
de proteïne ontbindt. Dit simpele landschap, met een enkel voordeel/nadeel voor een
correct/incorrect basepaar belicht het voordeel van het gebruik van een kine sch model.
In Hoofdstuk 3 wordt de parameteriza e uitgebreid. Gebruikmakend van experimentele
datasets, worden de posi ea ankelijke voordelen/nadelen voor correcte/incorrecte base-
paren geëxtraheerd, waaruit een meer gedetailleerd vrije-energielandschap van spCas9-
sgRNA-DNA volgt. Dit landschap verklaard hoe bij sommige non-complementaire DNA
doelwi en Cas9-gids stabiel bindt, lang voordat er geknipt wordt. Hiermee geven wij een
verklaring voor het verschil in de schijnbare specificiteit van het binden van inac ef Cas9 en
het knippen van ac ef/inac ef Cas9. Het vrije-energielandschap is tevens consistent met
fluorescen e experimenten die de eiwitconforma e van Cas9 jdens het bindingsproces
bestuderen, waardoor het gepresenteerde landschap direct laat zien hoe de grootste ver-
andering van conforma e koppelt aan het bindingsproces tussen gids en DNA. Ten slo e
laat dit hoofdstuk zien hoe ons kine sch model een verbetering over bestaande modellen
biedt.
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Hoofdstukken 4-6 beschrijven de zoektocht van een eiwit naar een enkel correct doelwit
binnen een vele malen groter genoom. Hoofdstuk 4 biedt een beschouwing van de li-
teratuur waarin beschreven wordt dat eiwi en hun doelwit vinden doormiddel van een
combina e van driedimensionale diffusie door oplossing en (effec eve) eendimensionale
diffusie langs de contour van het DNA. Hoofdstuk 4 brengt tevens het idee naar voren dat
een koppeling tussen eiwitconforma e en het bindingsproces gebruikt kan worden om het
doelwit zowel snel als specifiek te herkennen. Het hoofdstuk gebruikt het menselijke Ar-
gonaute 2 als zo een systeem met een dergelijke koppeling, net als Hoofdstuk 3 eenzelfde
soort koppeling suggereert voor Cas9.
Hoofdstukken 5 en 6 zijn uitgevoerd in samenwerking met experimentalisten uit het lab
van Chirlmin Joo. Hoofdstuk 5 laat zien dat een prokaryo sche Argonaute andere aan het
DNA gebonden eiwi en kan omzeilen. De experimenten laten zien dat Ago sneller langs
het DNA diffundeert, dan een model waarin Ago iedere sequen e langs het DNA verge-
lijkt met zijn gids voorspelt. Hieruit concluderen we dat Ago sequen es langs het DNA
overslaat om zo obstakels langs het DNA te vermijden. Hoofdstuk 6 bouwt hierop voort
door een model op te stellen waarin Ago ook sequen es kan overslaan, waardoor slechts
een frac e van het DNA waarlangs diffundeert wordt daadwerkelijk vergeleken wordt met
de gids. Aanvullende enkel-molecuul experimenten laten zien dat ook het menselijke Ago
DNA sequen es overslaat. Ondanks dat vele rondes van laterale diffusie nodig zijn alvo-
rens Ago alle mogelijke DNA sequen es kan hebben vergelijkenmet de gids, laat dit laatste
hoofdstuk zien dat dit eigenlijk helpt om het correcte doelwit sneller te vinden.
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