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Summary

The Deployable Space Telescope Project (DST) was started at Delft University of Technology in 2014. The pro-
ject aims to develop an ultra-high resolution Earth Observation telescope with a resolution of 0.25m, but with
a much lower mass and volume than its competitors currently in operation. In order to meet the stringent
mass requirements, a deployable primary and secondary mirror are used. However, it is expected that the
deployment of the optics will introduce severe aberrations in the system, limiting the performance. This the-
sis project investigated the implementation of phase diversity algorithms as a method for correction of these
aberrations that does not add additional mass and complexity to the system. Phase diversity algorithms origi-
nate from the field of ground-based astronomy and are rarely used in space systems. Even less is known about
their behavior in Earth Observation telescopes, which typically suffer from larger aberrations than ground-
based telescopes. Also, Earth Observation telescopes image extended scenes instead of point objects. FORTA,
a ray tracing application developed ir. D. Dolkens specifically for simulation of the Deployable Space Teles-
cope Optics, was used for the simulation of the telescope imaging process. A MATLAB toolbox, developed
during this project, was then used for simulation of a broad range of phase diversity algorithm configura-
tions. These algorithm configurations numerous methods from the field of imaging, including an effective
method for mitigating wrap-around effects resulting from the application of the Fast Fourier Transform. First,
the set of algorithm parameters resulting in the optimum configuration in the context of the DST project was
determined through a large number of parametric studies. After that, it was found through simulations that
by using a novel method for the selection of the subframe to which phase diversity is applied a significant
performance increase could be obtained. An analysis of the open-loop performance of the algorithm sho-
wed that the wavefront error in the exit pupil could be estimated to within a Root Mean Square (RMS) error
of 0.07λ0 in over 75% of simulations, where λ0 = 450nm is the smallest wavelength accepted by the pan-
chromatic channel, and that a Strehl ratio (SR) of above 0.8 was achieved in over 80% of cases. Through the
development of an innovative post-processing method that exploits a priori knowledge of the expected error
shape, both these percentages could be increased to above 85%. Deconvolution using a Wiener filter subse-
quently resulted in the reconstruction of details of smaller than 0.25m, in accordance with requirements. In
addition, an analysis of the closed-loop performance was done, in which the wavefront error estimates were
used for iterative control of the active optics. This analysis showed that for initial Strehl ratios of higher than
0.6, the method would consistently increase the Strehl ratio to a value of around 0.8 or above. However, after
an optimum was reached the method would diverge again. For the reliable implementation of phase diver-
sity in a closed-loop configuration, an effective termination criterion should be developed. Phase Diversity
methods show potential for implementation in the DST project, and it is recommended that further studies
are performed. These studies should focus on making the method more reliable through identification of
inaccurate estimations, as well as on the joint implementation of phase diversity with other calibration met-
hods so that the strengths of phase diversity can be exploited and its weaknesses compensated.

Keywords: Phase Diversity, Aberration Correction, Deployable Optics, Earth Observation, Gradient-Based Op-
timization, Imaging, Space Systems Engineering
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1
Introduction

The possibility to observe the Earth from space using satellite imagery has opened many doors in myriad
fields. Nowadays, more than fifty years after the launch of the first Earth observation satellite, the first of
a series of seven weather monitoring satellites aptly named "Nimbus", sectors like farming, environmen-
tal monitoring and defense depend heavily on remote sensing for many of their operations [12]. Where the
availability of satellite imagery once shook each of these sectors to its foundations, the tables have now tur-
ned and businesses, institutes and governments are driving the development of remote sensing technology
toward even higher resolutions and broader coverage.

Currently setting the standard in high-resolution Earth imaging, is the WorldView-4 satellite developed
and operated by DigitalGlobe [13]. With a spatial resolution of 0.31m the WorldView-4 has the highest reso-
lution of all commercial earth imaging satellites currently in operation. However, as outlined by Dolkens [9],
the current generation of high-resolution Earth imaging systems are all very large in terms of both mass and
volume, in the order of thousands of kilograms. Consequently, they are very expensive to build and launch.
In addition, these systems often have small swath widths, which results in the need for large constellations
of ultra-high resolution satellites if a high temporal resolution or broad coverage is required. Because of the
combination of the high unit costs and the limited coverage, the costs of ultra-high resolution Earth observa-
tion (EO) imagery is currently very high.

This chapter will introduce a proposed solution to this problem in the form of the Deployable Space Te-
lescope, currently developed at Delft University of Technology. The DST is an ultra-high resolution space
telescope with a low mass and deployable optics that can be folded into a small volume for launch. After the
context of the project, the project mission and the current state of the project are discussed, elaboration will
be provided on the main topic of this thesis project. The topic is improvement of the image quality using a
class of algorithms called Phase Diversity (PD) algorithms. The main thesis goal relating to this topic can be
expressed as: To determine whether the implementation of Phase Diversity algorithms is a suitable strategy for
aberration correction for the Deployable Space Telescope.

First, section 1.1 will present a short analysis of the current Ultra-high resolution EO satellite market.
After that, section 1.2 provides an overview of the DST mission. Section 1.3 will present the current state of
the optical design. Section 1.4 will present the current state of the aberration correction strategy and finally
1.5 will present the thesis goal and research questions that will be answered in this report.

1.1. Ultra High Resolution Earth Observation Market
An overview of satellites capable of taking images with a ground resolution below 10m taken from the work
of Dolkens is presented in table 1.1 [10]. A scatter plot of the same data is presented in figure 1.1. From the
data, it can observed that the WorldView-4, which has a ground sampling distance (GSD) of 30cm currently
provides the highest resolution of all systems in operation. The Worldview-4 image presented in figure 1.2,
shows that such a resolution even makes it possible to distinguish individual humans.

However, this resolution comes at a cost. Table 1.1 also shows that with a mass of over 2000kg and di-
mensions as shown in figure 1.3, the telescope is one of the heaviest in operation. The high volume and mass
lead to very high launch costs. It is estimated that expenses for the WorldView-4, including launch, amount
to USD 835M including the costs of upgrading the DigitalGlobe ground station network [14]. High capital ex-
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Table 1.1: List of high resolution Earth observation satellites currently in operation, as presented by Dolkens [9].

Mission Launch Year
Mass
[kg]

Altitude
[km]

GSD
[m]

GS @ 500 km
[px/m]

Swath Width
[km]

Swath Width
[1000 pixels]

Worldview-4 2016 2485 617 0.31 3.98 13.1 42
Worldview-3 2014 2800 620 0.31 4 13.1 42
Worldview-2 2009 2800 770 0.46 3.35 16.4 36
GeoEye-1 2008 1955 770 0.46 3.35 15.2 33
Pleiades 1A / 1B 2011 / 2012 970 695 0.5 2.78 20 40
Worldview-1 2007 2500 496 0.46 2.16 17.6 38
Ikonos 1999 726 681 0.82 1.66 11.3 14
CartoSat-2 2010 694 630 0.8 1.58 9.6 12
QuickBird 2001 1100 482 0.65 1.48 16.8 26
EROS B 2006 350 506 0.7 1.45 7 10
SSTL DMC3 2014/2015 440 650 1 1.3 24 24
DubaiSat-2 2013 300 600 1 1.2 12.2 12
SkyBox - SkySat-1 2013 100 450 0.9 1 8 9
Spot 6/7 2012 / 2014 800 694 1.5 0.93 60 40
Formosat-2 2004 760 888 2 0.89 24 12
EROS A 2000 240 523 1.2 0.87 14 12
Gaofen-1 2013 1080 645 2 0.65 69 35
Rapideye 2008 150 620 6.5 0.19 77 12
Planetlabs - Flock-1 2013 5 410 4.4 0.19 25 6

Figure 1.2: The Louvre in Paris, as captured by DigitalGlobe’s WorldView-4 satellite[2].
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Figure 1.3: Schematic representation of the volume of the WorldView-4 telescope and some of its competitors. This image was created
by DigitalGlobe [3].

penses like this have to be compensated for by high prices for imagery and limit the possibility of launching
large constellations.

It can be concluded that to achieve a reduction in the price of high resolution satellite imagery and enable
a broader coverage and increased temporal resolution it is necessary to decrease the mass and volume of high
resolution Earth observation satellites. This necessity is the driving force behind the DST project.

1.2. Project Mission
This section will provide a short introduction to the motivation for the Deployable Space Telescope project
and the inherent challenges of building earth observation telescopes with low mass and volume. The section
will start with an introduction to the diffraction limit, a law of nature that is the main factor dictating the large
dimensions of high-resolution EO satellites.

1.2.1. The Diffraction Limit
The attainable spatial resolution of an ideal optical instrument is still limited by the effects of diffraction.
Through research in the field of optics performed by Christiaan Huygens and later by Augustin-Jean Fresnel
it was discovered that every point on the wavefront of a light wave acts as a point source emitting spherical
wavelets[15] [16]. When a light wave passes to a finite aperture, this behavior leads to scattering of the light
wave around the edges. This effect is not uniquely affiliated with light waves, but can also be observed in other
types of waves. Figure 1.4 shows a schematic representation of diffraction as well as a real-world example of
the diffraction of ocean waves. Due to this diffraction effect, light entering the optical system originating
from a single point on the object is "smeared out" onto the image plane. A typical example of this smearing is
the Airy disk, an intensity pattern that arises when a single point source is imaged using a circular aperture,
shown in figure 1.5 [17].

This blurring caused by diffraction effects leads to an irreversible loss of small details in the imaging pro-
cess, consequently limiting the aberration-free resolution that can be achieved. The diffraction limited reso-
lution is the minimum ground distance at which two distinct point objects can be resolved by the imaging
system. For the particular case of the circular aperture, this is when in the image plane the center lobe of
the Airy disk resulting from the imaging of the first point coincides with the first dark ring of the Airy disk
resulting from the imaging of the second point and two distinct peaks can be observed. This is called the
Rayleigh criterion and is shown in figure 1.6 [18]. A mathematical representation of this criterion is provided
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Figure 1.4: 2D visualization of diffraction effects for a lightwave passing through a finite aperture [left] and a real world example from
ocean waves passing between two islands [right]. Photograph taken from [4].

in equation (1.1). While apertures are generally not circular the Rayleigh criterion has been shown to give
accurate results even for non-circular apertures [5]. The representation of the criterion provided here has
already been slightly rewritten to represent the specific case of an Earth observation satellite in orbit. In this
equation the variable ∆l is the ground resolution, Hor bi t is the orbital height, λ is the wavelength of the light
and D is the aperture diameter, all measured in meters. As can be observed the resolution is inversely propor-
tional to the aperture diameter. If, for example, one requires a resolution of 0.25m, similar to the resolution
of WorldView-4, flying at an orbital height of 550km and assuming a wavelength of λ = 550nm, one would
require an aperture diameter of at least D = 1.48m.

∆l = 1.220Hor bi t
λ

D
(1.1)

Diffraction provides an aperture size dependent upper limit to the resolution and therefore dictates a hard
lower limit for the aperture size if a certain resolution is to be achieved. The large aperture diameter required
to achieve a resolution of 0.25m, however, also requires a large platform to support. This leads to the large
volumes and high masses that can be observed in table 1.1.

A space telescope with deployable optics could potentially be a solution to this problem because it would
reduce the launch volume of the spacecraft. In addition, it is hypothesized that enabling relaxation of the
otherwise stringent mechanical requirements on the deployment mechanisms through the use of state-of-
the-art active aberration correction methods and image post-processing can lead to a great reduction in mass
relative to existing systems.

Due to the potential reduction in the cost of ultra-high satellite imagery and increase in the coverage, the
DST project was initiated with the goal of developing:

a deployable space telescope on a microsatellite platform with a resolution equal to the highest
resolution achieved by a satellite currently in operation and a significantly lower volume and mass
than other ultra-high-resolution satellites [19].

However, deployable optics require the use of hinges. The use of moving parts in combination with re-
laxed mechanical requirements is expected to lead to aberrations in the system. Aberrations are blurs in the
image plane that result from irregularities, misalignments and vibrations in the optical elements. A more in-
depth of the effects and origins of aberrations is provided in section 1.4.1. If a high resolution is to be achieved,
these aberrations have to be corrected. The focus of this MSc thesis project will be on the topic of aberration
correction for the DST using phase diversity methods. The motivation for this topic will be presented later in
this report.

Before the report will elaborate on the goal the goal of this thesis project is presented, first an in-depth
discussion of the DST project is provided, starting with the mission requirements.

1.2.2. Mission Requirements
For the DST project the following mission requirements were defined and justified by Dolkens [9]:

REQ-1 The Ground Sampling Distance of the instrument shall be equal to 25 cm in the panchromatic band
from an orbital altitude of 500 km
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Figure 1.5: Airy disk pattern, caused by diffraction effects, resulting from the imaging of a single point using a circular aperture.

Figure 1.6: 1D representation of the Rayleigh criterion. The red and blue intensity distributions result from the imaging of the first and
second point respectively. It can be observed that their peaks align with the first dark ring of the other distribution.
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REQ-2 The swath width of the instrument shall be wider than 1 km (threshold) / 5 km (goal)

REQ-3 The system shall have one panchromatic channel and four multispectral bands with the wavelength
ranges and GSD indicated in Table 1.2

REQ-4 The Signal-to-Noise Ratio (SNR) of the instrument shall be higher than 100 for a reflectance of 0.30 and
a sun Zenith angle of 60 degrees

REQ-5 The nominal Modulation Transfer Function (MTF) at both the Nyquist frequency and half the Nyquist
frequency shall be higher than 5% (threshold) / 15% (goal)

REQ-6 After calibration, the residual Strehl ratio of the system shall be higher than 0.80.

REQ-7 The mass of the instrument shall be lower than 100 kg (threshold) / 50 kg (goal)

REQ-8 In the stowed configuration, the volume of the instrument shall not exceed 1.5 m3 (threshold) / 0.75 m3

(goal)

Table 1.2: Ground Sampling Distances for the different optical channels [9].

Channel GSD at 500 km [m]
Panchromatic (450−650nm) 0.25
Blue (450−510nm) 1
Green (518−586nm) 1
Yellow (590−630nm) 1
Red (632−692nm) 1

One concept central to aberration correction is the Strehl ratio that is mentioned in REQ-6. The Strehl
Ratio is a measure of the severeness of the optical aberrations in the optical system. An optical system with
a Strehl ratio above 0.8 is generally considered to be diffraction-limited, i.e. the performance of the optics is
limited by diffraction effects instead of aberration effects. A mathematical explanation of this concept will be
presented in section 2.1.4.

To design a system that meets these mission requirements, a project organization has been set-up that
will be introduced in the next section.

1.2.3. Project Organization
The Deployable Space Telescope project was conceived at the Delft University of Technology in 2014 by dr. ir.
J.M. Kuiper. A preliminary design has been made by ir. Dolkens, who performed his MSc thesis project on the
subject of the DST, and is currently still working on the design of the telescope as part of his Ph.D. research
under the supervision of dr. Kuiper. For the past years, a team consisting of several MSc and Ph.D. students
has been working continuously on the design of the telescope. An overview of the project team, including
both present as well as past members, is shown in figure 1.7.

While the contributions made by the thermo-mechanical team will be introduced briefly, the optical part
of the DST design will be the main focus of this thesis. The optical design was primarily developed by Dolkens
and extended by van Marrewijk and will be discussed in the next section. While the design has seen several
iterations since its inception, only the most recent configuration will be presented here.

1.3. Optical Design
A render of the complete design is presented in its deployed state is presented in figure 1.8. This section
will focus on the optical design of the telescope in particular. The design of the optics will be discussed in
two parts. The first part discusses the ideal design of the optical channel including the shapes, dimensions,
and positions of all the optical elements. The second part discusses the tolerance budgets. These are the
allowable deviations from the ideal design. The discussion treats their impact on the optical performance
and the design of mitigation strategies to counteract the detrimental effect of these tolerances.
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Figure 1.7: Overview of the Deployable Space Telescope team.

Figure 1.8: Render of the current DST design in its deployed state
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1.3.1. Main Optical Elements and Deployability
It has been decided in an early phase of the design to avoid the use of refractive elements, lenses, in the de-
sign and exclusively use reflective elements, mirrors. This is because the use of lenses produces chromatic
aberrations, i.e. aberrations that are wavelength dependent. Because the panchromatic channel of the DST
spans virtually the entire visible wavelength spectrum, from 450nm to 650nm, it is expected that the use of
refractive elements would result in large chromatic aberrations. Chromatic aberrations are difficult to correct
during post-processing without the loss of detail in the image [20]. It has also been found by Dolkens that
to effectively minimize the three most common aberrations, i.e. spherical aberration, coma and astigmatism
a configuration consisting of a minimum of three mirrors is required. It has therefore been decided include
exactly three mirrors in the design so that the three main aberrations can be mitigated without adding unne-
cessary complexity and weight to the system. Such a three-mirror configuration is aptly called a three-mirror
anastigmat. For the design, a trade-off has been made between a full field Korsch 3 mirror Anastigmat and an
annular field Korsch 3 mirror Anastigmat [21]. Eventually, the latter has been selected, because it can support
a wide field of view (FOV), as required by REQ-2, with significantly less stringent alignment tolerances for the
mirrors, and no reduction in contrast, when compared to the full field Korsch configuration. A side view and
a 3D view of the current optical design are presented in figures 1.9 and 1.10. The color of each set of rays cor-
responds to the field angle in the along-track direction from which these rays originate. They are not related
to the actual color of the light.

It can be observed that the volume of the telescope is primarily determined by two key dimensions:

1. The radius of the primary mirror M1

2. The distance between the primary mirror M1 and the secondary mirror M2

In order to meet requirement REQ-8 it is therefore imperative to reduce these two dimensions mentioned
above during launch. Based on this reasoning two critical design choices have been made:

1. The primary mirror M1 design has been divided into four identical segments that can be folded outward
against the sides of the instrument housing during launch.

2. The secondary mirror M2 will be mounted on four identical booms that can be folded during launch so
that the distance between M1 and the bus can be greatly reduced during launch.

A schematic representation of the M1 mirror including the dimensions is provided in figure 1.11, a repre-
sentation of the deployment of the mirror is provided in figure 1.12.

Extensive work on the M1 deployment hinges has been done by van Putten, Corvers, and Pepper during
their MSc graduation projects [22] [23] [24]. Work on the M2 support structure and deployment mechanisms
has been done by students Lopes Baretto, Krikken, and Voorn [25] [26] [27]. During the publication of this
thesis, MSc students Leegwater, van Wees, Korhonen and Arink and Ph.D. student Villalba Corbacho are wor-
king on the (thermo-)mechanical design of the telescope. A further elaboration of the structural, mechanical
and thermal design of the telescope will not be provided here since for this thesis project it is only relevant to
known the tolerances in terms positioning and alignment errors. Not how these tolerances requirements are
met in the mechanical design. For conciseness, readers are thus referred to the theses mentioned above in
case of questions about the mechanical and structural design.

1.3.2. Image Plane and Deformable Mirror
Zooming in on the right part of figure 1.9, shown here in figure 1.13, it can be observed that the rays from
different field angles arrive at different detectors. The rays from the smallest field angles, colored blue and red,
are guided towards the TDI-1 and TDI-2 detectors. Because the detectors are placed next to each other in the
along-track direction, a certain scene is first imaged by TDI-1 and after a certain time delay depending on the
field separation, TDI-2 images the same scene. The rays originating from higher field angles, indicated with
greed and turquoise, arrive at the wavefront sensor/sharpness sensing location and the multispectral channel
respectively. While the design of the panchromatic and multispectral channel is already at an advanced stage,
the exact form of wavefront sensing is still under consideration.

Under ideal circumstances, this system should be able to achieve diffraction limited performance and
consequently meet the optical performance requirements. However, due to finite manufacturing accuracies,
vibrations, and thermal effects during operation, the performance of the system is expected to be significantly
impeded by the presence of optical aberrations. To push the system performance to meet the lower limit set
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Figure 1.9: Final annular field Korsch telescope design of the DST [10]

Figure 1.10: 3D view of the optical design of the DST, rays of different color indicate different field angles.
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Figure 1.11: The four segment primary mirror selected for the DST.

Figure 1.12: Visual representation of the deployment of the telescope.

Figure 1.13: Detector configuration for the DST [10]
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by the requirements, an optical aberration correction strategy should be implemented. While a final decision
on the aberration correction system still has to be made, it is intended that the results of this thesis will pro-
vide a rigorous basis for making this decision, possible strategies can be roughly classified in two categories:
passive aberration correction and active aberration correction. While passive aberration correction aims to
increase the image quality through post-processing, active aberration correction corrects wavefront errors in
the optical channels through control of the active optics. The active optics consist of the optical elements
of which either shape, position or orientation can be changed in order to manipulate the light and reduce
aberrations. Due to the stringent requirements on the weight and complexity of the design, it is anticipated
that a combination of passive and active aberration correction methods is required for achieving diffraction
limited performance. Therefore a deformable mirror (DM) for active aberration correction has been added to
the design, in between M3 and the detectors. The location of the DM has been indicated in figure 1.9. A more
elaborate discussion on aberration correction strategy and active correction using the DM will be discussion
in section 1.4. First, a discussion on the mechanical tolerances for the primary, secondary and tertiary mirror
is provided.

1.3.3. Design Budgets
Based on the performance requirements listed in Section 1.2 and the preliminary design work done a list of
tolerance budgets has been determined for the design presented in the previous section [10]. These bud-
gets take into account the Deployment and Coarse Alignment tolerances, the In-Orbit Drifts and the Stability
budgets and are presented in table 1.3. In addition to these budgets, a budget was also determined for the
primary mirror actuator control resolution. This budget was set to 10nm. This was done to make sure that
the control resolution does not noticeably impact the image quality.

Table 1.3: Top-down tolerance budgets for the primary, secondary and tertiary mirrors [10].

Element
Position [µm] Tilt [µrad]

Radius [%] Shape Error [nm]
X Y Z X Y Z

Deployment and Coarse Alignment Tolerances
M1 2 2 2 2 4 50 1 ·10−3 50
M2 15 15 10 100 100 100 1 ·10−2 25
M3 4 4 4 10 10 50 1 ·10−3 10

In-Orbit Drifts
M1 2 ·10−2 2 ·10−2 2 ·10−2 1 ·10−2 2 ·10−2 5 1 ·10−4 5
M2 4 4 2 6 6 12 1 ·10−4 5
M3 1 ·10−1 1 ·10−1 1 ·10−1 1 1 5 1 ·10−4 5

Stability Budget
M1 5 ·10−3 5 ·10−3 5 ·10−3 2.5 ·10−3 1 ·10−2 5∗10−1 n/a n/a
M2 1 1 5 ·1−1 1.5 1.5 3 n/a n/a
M3 2.5 ·10−2 2.5 ·10−2 2.5 ·10−2 2.5 ·10−1 2.5 ·10−1 1.25 n/a n/a

It was found by Dolkens that, because complying with these budgets alone does not lead to diffraction
limited imaging by itself, additional aberration correction is required. The rationale behind these budgets is
based on the assumption of an operational strategy that involves the following steps:

1. After deployment all errors should be within the tolerances listed under "Deployment and Coarse Alig-
nment Tolerances". At this point, the primary mirror segments are still expected to be misaligned and
a phasing step is performed to correct the position and alignment of the four mirror segment. Each
individual mirror segment control actuator has three degrees of freedom: the controller can move the
mirror up and down (piston) and correct the angle of the mirror around the two axes perpendicular
to the optical axis of the system. A design for the controller was developed by Pepper [24] during his
MSc graduation project. The performance that can be acquired using this M1 phasing system will be
presented later in this chapter. In addition, calibration using the DM will also be performed, altough
the final calibration method has yet to be determined.

2. Between the M1 phasing events, changes will occur in the positions and shapes of the mirror com-
ponents. The reason for this is that the system will be subject to both thermal as well as mechanical
loads during operation, which cause the optical components to deviate from their original positions.
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Figure 1.14: Schematic representation of an ideal lens where light from an object converges to a single point.

These deviations are covered by two separate budgets, the Drift budgets, and the Instability budgets.
The Drift budgets are the tolerance budgets for all deviations that do not change noticeably during
the acquisition of a single image, the Instability budgets are all deviations that do vary throughout the
acquisition of a single image. While the Instability budgets have been chosen such that their impact on
imaging will be very small, the Drift budgets are less stringent. The budgets have been chosen such that
it is expected that they allow the system to meet the mass requirements, but stringent enough to allow
a well-designed aberration control system to push the system performance to the level of diffraction-
limited performance

All the design work done for the DST is done taking into account these engineering budgets to ensure that
the final design will be able to achieve diffraction-limited resolution over the entire FOV. In the next section,
a short introduction to the concept of aberrations is provided, including the work done by van Marrewijk and
Dolkens on wavefront estimation and correction.

1.4. Aberration Correction Strategy
Aberrations have been described as anomalies resulting from unwanted mechanical characteristics of the
optics of the system in turn resulting from nonzero tolerances such as the mechanical tolerances presented in
table 1.3. To understand the aberration correction strategies presented here a slightly deeper understanding
of aberrations is required.

1.4.1. Aberrations in Geometrical Optics
This understanding can be achieved through the use of geometrical optics, the branch of optics that describes
light as rays, perpendicular to the wavefront of the light wave. Neglecting diffraction for a moment, it can be
stated that light coming from a single point source that goes through an idealized lens converges in a single
point as is shown in figure 1.14. In this image, the symbol f indicates the focal point of the lens. If all the rays
converge to the same location, the result is a single point in the image. In practice, light rays never converge to
exactly the same point let alone a point that lies exactly on the image plane. This deviation from convergence
to a single point, caused by light rays following a different path than their theoretical ideal path, causes a blur.
These different ’blurs’ are called aberrations and are caused by myriad phenomena.

Aberrations are conveniently classified into several types, which are in turn classified in orders. The higher
the order of an aberration the more complex its cause and resulting blur are. As an example, a few of the most
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Figure 1.15: Schematic representation of the defocus aberration and the resulting blur. The red dot indicates the aberration-free pro-
jection of the point on the image plane.

common aberration types, all low order aberrations, are discussed here. The most common of all aberrations
is defocus, which is the result of a mismatch between the point of convergence of the rays and the image
plane. This is shown in figure 1.15. As can be observed in the figure defocus leads to smearing out of the
point in all directions. However, not all aberrations cause blurs that are (approximately) equal in all direction.
An example of an aberration that acts in only a single in-plane direction is astigmatism. Astigmatism is an
aberration caused by differences in the lens radius of curvature along the horizontal axis and the radius of
curvature along the vertical axis. In figure 1.16 an example of astigmatism is shown. In this example, the rays
moving through the vertical plane converge to a point on the image plane, while the rays moving through
the horizontal plane converge to a point behind the image plane, resulting in a blur in only the horizontal
direction. The presentation of these two types of aberrations serves to convey a basic understanding of the
nature of aberrations. While other aberrations will not be discussed here, the wavefront error shapes related
to several aberrations are presented in the discussion on Zernike polynomials provided in section 2.1.3.

1.4.2. Aberrations in the DST
The main causes for aberrations in the Deployable Space Telescope after phasing of the M1 segments are ex-
pected to be structural vibrations due to on-board excitations and thermal loads. It is anticipated that without
correction of these aberrations after phasing the satellite will not be able to achieve diffraction limited per-
formance, characterized by a Strehl Ratio above 0.8 as specified in the requirements. The deployment of the
primary and secondary mirrors, in particular, is expected to cause large misalignment errors at the locations
of the deployment hinges. For that reason, a calibration strategy has been designed by Dolkens for correction
of the position and alignment errors in the M1 mirror segments from within the limits of the Deployment and
Coarse Alignment Budgets to a point where diffraction limited imaging is possible. This method relies on four
piston cams, located at the four gaps between the M1 segments respectively, that measure the wavefront error
at the gaps while the mirror segments are displaced to find the positions where the wavefront error is mini-
mum. To quantify the Strehl Ratio increase that can be achieved using this calibration system, a set of Monte
Carlo simulations was executed by Dolkens for four different scenarios. The uncalibrated scenario, the cali-
brated scenario the calibrated scenario including the drift tolerances and the calibrated scenario including
the stability tolerances. The figure showing the results of the simulations is presented in figure 1.17. While
it should be noted that a significant performance increase is achieved through calibration of the M1 mirror
segments, it can also be observed that degradation due to drift and instability - especially the combined de-
gradation which is not shown here - still results in a Strehl Ratio of less than 0.8 in most of the simulations.
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Figure 1.16: Schematic 3D representation of astigmatism due to differences in horizontal and vertical lens radius of curvature.

Thus, additional correction of aberrations is required to meet the requirement that the Strehl Ratio should be
consistently above 0.8.

In order to provide an overview of the requirements that the aberration correction system has to comply
with, the relevant optical requirements are repeated here:

REQ-1 The Ground Sampling Distance of the instrument shall be equal to 25 cm in the panchromatic band
from an orbital altitude of 500 km

REQ-5 The nominal Modulation Transfer Function (MTF) at both the Nyquist frequency and half the Nyquist
frequency shall be higher than 5% (threshold) / 15% (goal)

REQ-6 After calibration, the residual Strehl ratio of the system shall be higher than 0.80.

To this list of optical requirements, another relevant requirement has been added by van Marrewijk:

REQ-9 The Root Mean Square error of the wavefront error shall be lower than 0.07λ0, where λ0 = 450nm is the
smallest wavelength accepted by the panchromatic channel

The rationale for this requirement is that a RMS error of < 0.07λ0 typically corresponds to a diffraction
limited system with a Strehl ratio of > 0.8, as found by Smith [28]. This second, independent figure of merit,
has been added for robustness. The reason that these two figures of merit are complementary is explained
later in section 2.1.4.

Several possibilities for aberration correction have already been studied in the context of the DST project.
These aberration correction strategies can be roughly divided into two categories, methods based on the use
of sensors and sensorless methods that estimate aberrations directly from the images. Some research has
been done in the field of Shack-Hartmann sensors, a type of sensor that uses an array of lenslets to measure
the local error at several locations in the aperture and uses these measurements to construct an estimate
of the wavefront error [29] [30] [31] [32]. The wavefront error is a measure of the aberrations in the system.
It describes the shape error in the light wave wavefront at the exit of the chain of optical elements. An in-
depth discussion on the wavefront is provided in section 2.1.1. A study into the possibility of implementing
Shack-Hartmann sensors in the context of the DST has been performed by student Radakrishnan as a part of
his MSc graduation project [33]. However, Shack-Hartmann sensors generally have considerable complexity,
volume, and mass. Therefore it has been decided by Dolkens to invest resources into the development of
aberration correction strategies based on sensorless methods due to the stringent requirements on weight
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Figure 1.17: Results of the Monte Carlo simulations performed by Dolkens for four different scenarios. Both the central field, light
entering the telescope from a cross-track field angle of 0 degrees, as well as the extreme field, light entering the telescope from a cross-
track field angle of 0.3 degrees, are shown.

and complexity, the use of sensors would considerably add to both. Following the same reasoning, it was
also decided not to use an on-board light source for in-orbit calibration of the instrument. From a trade-off
performed by van Marrewijk two general concepts for sensorless aberration sensing have emerged.

1. Performanc-Based Metrics: The first concept involves performance metrics that directly assess the
quality of the images. An example would be a sharpness metric that judges the quality of the image
by the sharpness of the edges. The objective of such a method would be to find the deformable mirror
setting that maximizes the performance metric. This type of methods does not directly produce an
estimate of aberrations but an estimate can be derived from the DM settings at the maximum metric
position

2. Phase Diversity Algorithms: The second concept is aberration sensing using a phase diversity algo-
rithm. Phase diversity algorithms originate from the field of ground-based astronomy telescopes and
have not been researched extensively in the context of space systems. Even less is known about the
performance of these algorithms in the context of EO. EO systems typically involve larger initial aberra-
tions and the imaging of extended scenes instead of point objects such as in astronomy. Phase diversity
algorithms use measurements from one or more additional detectors located in the same channel as
the primary detector, ideally suffering from exactly the same aberrations. A known aberration, gene-
rally defocus, is then added to each of the additional detectors. A phase diversity metric can then be
calculated using the detector measurements and an estimate of the wavefront error. Ideally, the value of
this metric is independent of the scene under consideration and minimum when the actual wavefront
error is used as an input. An optimization algorithm can then aim to find the wavefront error for which
the metric value is minimum. The wavefront error can then be used to control a DM, to deconvolute the
image in post-processing or a combination of both. The concept of phase diverse wavefront sensing
will be further elaborated in section 2.2

A detailed analysis and simulation of multiple performance metric-based methods has already been per-
formed by van Marrewijk.
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Figure 1.18: Results of a Monte Carlo analysis of the performance of the parallel pertubation stochastic gradient optimization algorithm
developed by van Marrewijk using both the MDM and PDM deformable mirror types. Simulations include the effect of the deployment
and coarse alignment tolerance budget but not the effect of the drift tolerance budgets.

1.4.3. Parallel Perturbation Stochastic Gradient Optimization
In van Marrewijk’s master thesis it is concluded that, based on simulations, it is probable that a center field
Strehl ratio of about 0.9 and an extreme field Strehl ratio of 0.8 can be achieved in most cases using sharpness
metrics combined with a Stochastic Gradient Descent algorithm for control of the deformable mirror, even
when taking into account the [19] [34]. This parallel perturbation stochastic gradient optimization algorithm
(SGD) is called SharpScan, and relies on adding small stochastic perturbation to the deformable mirror in the
time interval between the imaging of a particular scene by TDI-1 and the imaging of the same scene by TDI-2.
For each image, a sharpness metric is evaluated. The difference between the sharpness metric values is used
to determine the next stochastic perturbation step. The Strehl ratios resulting from a Monte Carlo analysis
of the performance of the algorithm starting from the Deployment and Coarse Alignment tolerance budgets
but not the stability and drift tolerance budgets, all listed in table 1.3, are shown in figure 1.18. The terms
MDM and PDM indicate two different Deformable Mirror types. As can be observed, the PDM type mirror
shows great promise in particular. Figure 1.19 shows the degradation in performance for the MDM mirror
type when the drift tolerances are added to the simulation.

However, while the method can be used to achieve diffraction-limited imaging, the method also has the
disadvantage that convergence can be rather slow, with some simulations requiring over 5 minutes of active
run time for convergence. This time does not include the time the satellite is flying over low contrast regions
where the algorithm has been shown to be ineffective.

While the results of the SGD sharpness optimizations do show that it is a good candidate for aberration
correction and can even be used as initial calibration algorithm after deployment, it would be useful to com-
pare its performance with the performance of phase diversity algorithms, as was suggested by both Dolkens
and van Marrewijk. Based on insights gained through studying phase diverse wavefront sensing in the context
of the DST, a decision can then be made to either implement SGD sharpness optimization, phase diversity
algorithms or a combination of both methods. It is for that reason that phase diverse wavefront sensing for
the DST was selected as the subject for this MSc thesis project. The next section will deal with the research
questions that this report aims to answer.

1.5. Research Questions
Phase diverse wavefront sensing has been selected as the topic for this thesis project since it could possibly
provide a reasonable alternative or addition to the Stochastic Gradient Descent algorithm described by van
Marrewijk. Providing an accurate estimate of the increase in performance that can be achieved by imple-
menting a phase diversity algorithm is necessary before a trade-off can be performed between the different
aberration correction strategies. Based on this reasoning, the following goal has been formulated:

The goal of this thesis project is to determine whether the implementation of Phase Diversity algo-
rithms is a suitable strategy for aberration correction for the Deployable Space Telescope
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Figure 1.19: Results of a Monte Carlo analysis of the performance of the parallel pertubation stochastic gradient optimization algorithm
developed by van Marrewijk. These simulations include the effect of the drift and stability tolerance budgets on top of the deployment
and coarse alignment tolerance budgets.

Based on this project goal, several research questions have been formulated that this thesis project will
aim to answer.

1.5.1. Primary Research Questions
The primary research question that will be answered in this projects presented here. The question is divided
into two subquestions.

1. What is the achievable performance increase when phase diverse wavefront sensing is implemented
for the Deployable Space Telescope?

(a) What is the achievable performance increase in terms of Strehl ratio, resolution, root mean square
optical path difference (OPD) and run time when an open-loop phase diversity algorithm is im-
plemented?

(b) What is the achievable performance increase in terms of Strehl ratio, resolution, root mean square
optical path difference and run time when a closed-loop phase diversity algorithm is implemen-
ted?

Two key concepts in this project are "open-loop configuration" and "closed-loop configuration". In the
context of this thesis, an open-loop configuration is a configuration in which the phase diversity algorithm
is executed only once to estimate the wavefront error in the system. The estimate is then used for post-
processing of the results, i.e. correcting the images so that details lost through the imaging process can be
restored. An open-loop configuration is a configuration in which the estimate of the wavefront error is used
to control the active optics, i.e. the DM and the primary mirror segment control mechanism, so that the
wavefront error can be actively corrected. This process can be executed in an iterative fashion in order to
further reduce the wavefront error in the system [35] [36] [37] [38].

The primary research question represents the engineering dimension of this project, contributing towards
the design of an aberration control strategy for the Deployable Space Telescope that is optimum in terms of
performance, and cost, and enables the system to meet the optical performance requirements. Answering
this question is, therefore, the main goal of this thesis.

1.5.2. Secondary Research Questions
In addition to answering this primary research question, the project also aims to answer two secondary rese-
arch questions which focus more on the scientific side of phase diversity algorithms:

1. Can the phase diversity algorithm performance be increased by including multispectral channel mea-
surement data in the estimation?
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2. Can the phase diversity algorithm performance in the context of Earth Observation be increased by
implementing a subframe selection algorithm for determination of the subframe to which the PD algo-
rithm is applied?

Since this project is done at an academic institution, the author has decided to explicitly include an aca-
demic dimension, represented by the secondary research questions. These questions cover novel topics in
the field of phase diversity, as far as the author is aware, and could provide useful insights not just for the DST
but also for other scientific and engineering teams working on phase diversity algorithms for Earth Obser-
vation. The motivation behind secondary research question 1 is the presence of the multispectral channels
in the DST design. These channels are present regardless of the form of aberration correction that will be
implemented. It is therefore interesting to see if the measurements acquired using these channels can be ex-
ploited for better PD algorithm performance. Secondary research question 2 has been formulated while the
project was already underway. Through preliminary test simulations performed it has been discovered that
the phenomena most detrimental to the performance of the phase diversity algorithm are the effects around
the edges of the subframe to which the algorithm is applied. These phenomena are explained later in this
report. It is hypothesized that the impact of these edge effects can be reduced by selecting a subframe with
low intensity at the edges of the frame relative to the intensity at the frame’s center.

Since hardware for testing is still unavailable and very expensive, this project aims to find an answer to
the research question through end-to-end simulation of the imaging and phase diversity processes. Based on
optical and imaging theory a software tool was developed for estimation of the phase diversity performance.

1.6. Chapter Summary
This chapter has outlined the need for the Deployable Space Telescope as well as the project mission and the
current state of the design. To increase the temporal resolution and coverage of ultra-high resolution satelli-
tes, larger constellations are required. To achieve this the cost of a unit satellite should be reduced. The DST
project, a project conceived at TU Delft that involves, students and academic staff members, aims to build
a low mass telescope with deployable optics to reduce its launch volume. An optical design for this system
has been made by Dolkens [9]. To keep mass and complexity low, the mechanical tolerance budgets are re-
laxed to such extent that additional correction aberration correction is required in order to meet the optical
performance requirements. It was decided that the use of sensors would add too much mass to the system
so it has been decided to use sensorless wavefront error estimation. An indirect method based on assessing
the relative sharpness of scenes after correction with a DM was developed by van Marrewijk [19]. Although
this method shows promise, convergence time is long and it is suggested by Dolkens and van Marrewijk that
additional methods are studied as well. Either as an alternative to SGD or as an addition to the method. Anot-
her candidate method for wavefront estimation is using either an open-loop or a closed-loop phase diversity
algorithm, a method borrowed from the field of ground-based astronomy. Investigating this possibility is the
topic of this thesis, which aims to determine whether the implementation of Phase Diversity algorithms is a
suitable strategy for aberration correction for the Deployable Space Telescope through performing a series of
end-to-end simulations of the system. Before the simulation tool and the simulation strategy will be discus-
sed, a summary of the optical theory necessary for understanding phase diversity algorithms is provided in
the next chapter.





2
Theory

The last chapter established the need and setup for the DST project, as well as the need and goal for this
thesis project. Before the work done is discussed, a summary of the underlying theory will be provided. To
understand the concept of phase diversity it is necessary to first understand the imaging process. While it
is not required to understand the entire optical chain it is important to understand the relation between the
wavefront shape of the light wave in the exit pupil of the system, which is the location of the output of the
chain of optical elements, and the intensity distribution in the image plane. To get a better understanding of
this relation, a short introduction to Fourier Optics, the branch of optics that deals with the wave nature of
light, is given in section 2.1. After a basic understanding is established the discussion moves on to the topic
of phase diversity algorithms, the main focus of this project, in section 2.2.

2.1. Fourier Optics
To explain the concept of Fourier Optics, an explanation drawing extensively from the book Introduction to
Fourier Optics by Goodman is provided [5]. Even though phrasing, order, and symbols may differ, all of the
concepts explained in this section are taken from this book except when another source is explicitly mentio-
ned. Images are provided by the author of this report unless mentioned otherwise.

2.1.1. Imaging
As a starting point, a general schematic representation of an optical channel is presented in figure 2.1. In this
figure, the box represents an arbitrary chain of reflective and/or refractive optical components that together
make up the optical channel manipulating the incoming light waves. As can be observed from the figure
there are four planes that are of interest. The first plane is the object plane where the object that is being
imaged is located. Positions in the object plane are indicated with the (ξ,η) coordinates. Light waves enter
the optical channel via the entrance pupil and leave the optical channel via the exit pupil. These pupils are
the images of the aperture as seen from the object plane and the image plane respectively. Since both pupils
are an image of the same aperture, only a single set of coordinates (x, y) is needed to indicate the position in
the pupil plane. After leaving the exit pupil of the system light is captured by a detector located in the image
plane. Image plane position is indicated with the (u, v) coordinates.

First, to obtain a basic understanding of the imaging process, a monochromatic light source, i.e. emitting
light at a single wavelength, of wavelength λ is assumed, with all incident light rays approximately parallel
to the optical axis. The optical axis is the axis perpendicular to the pupil plane, going through the center
point of the pupil. When this is the case there is a time-invariant phase difference between any two points
in the electromagnetic field. This type of light, schematically represented in figure 2.2 is called coherent
light. For light to be coherent it should satisfy the condition of spatial coherence, a constant phase difference
between any two points along the transverse directions of a wave, and temporal coherence, a constant phase
difference between any two points along the propagation direction of a wave. The latter is satisfied when the
light is monochromatic.

If the light is coherent and consequently the phase differences are invariant, the EM field can be descri-
bed in terms of just the amplitude distribution U at each point in space. Assuming an amplitude distribution

21
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Figure 2.1: Schematic representation of an optical channel. Adapted from Goodman [5].

Uo(ξ,η) in the object plane, the amplitude distribution in the focal plane can be expressed as shown in equa-
tion (2.1).

Ui (u, v) =
Ï ∞

−∞
h(u, v ;ξ,η)Uo(ξ,η)dξdη (2.1)

In this equation the function h(u, v ;ξ,η) is called the Coherent Point Spread Function (PSF) that describes
how the field strength originating from object plane coordinates (ξ,η) is spread out over the image plane. For
an aberration-free and space invariant imaging system, meaning aberrations and distortions are independent
of the light source location (ξ,η) in the object plane, with magnification M this coherent point spread function
is described by equation (2.2).

h(u, v ;ξ,η) = h(u −Mξ, v −Mη) = 1

λ2zo zi

Ï ∞

−∞
P (x, y)exp

[
−i

2π

λzi
[(u −Mξ)x + (v −Mη)y]

]
dxdy (2.2)

Here P (x, y) is the pupil function related to the shape of the aperture. P (x, y) has a value of 1 at locations in
the pupil plane where light passes through and 0 at locations where light does not pass through. Furthermore,
i indicates the imaginary unit. To simplify this relation, the entity Ug (u, v) presented in equation (2.3) can be
introduced, which is the amplitude distribution in the image plane predicted by aberration-free geometrical
optics.

Ug (u, v) = 1

|M |Uo

( u

M
,

v

M

)
(2.3)

Then, using the changes of variables provided in equation (2.4) and substituting (2.3) into equation (2.1)
equation (2.5) is acquired.

ξ̄= Mξ ; η̄= Mη ; x̄ = x

λzi
; ȳ = y

λzi
(2.4)

Ui (u, v) =
Ï ∞

−∞
h(u − ξ̄, v − η̄)

[
1

|M |Uo

(
ξ̄

M
,
η̄

M

)]
dξ̄dη̄=

Ï ∞

−∞
h(u − ξ̄, v − η̄)Ug

(
ξ̄,η

)
dξ̄dη̄ (2.5)

Note that the scaling factor |M | has been omitted here since in most application only the shape of interest
and not the exact scaling. For the same reason, the scaling factor 1

λ2zo zi
will be omitted for the Coherent
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Figure 2.2: Schematic representation of coherence in light waves.

PSF h(u, v) from now on. That the shape is irrelevant, is also true in the case of thesis project. It can be
observed that the expression provided in equation (2.5) is the convolution between the coherent Point Spread
Function h(u, v) and the amplitude distribution in the image plane as predicted by geometric optics Ug (u, v).
A shorthand notation of this expression using the convolution operator is provided in equation (2.6).

Ui (u, v) = h(u, v)∗Ug (u, v) (2.6)

It is convenient to express the coherent PSF h(u, v) in the spatial frequency domain, since the convolution
from equation (2.6) can be solved by multiplication in the frequency domain, as observed in equation (2.7).

Gi ( fX , fY ) = H( fX , fY )Gg ( fX , fY ) (2.7)

Here Gi and Gg indicate the Fourier transforms of Ui and Ug respectively. The variables fX and fY indicate
the image plane spatial frequencies in the u and v directions, respectively. It should be noted that he Coherent
Point Spread Function h(u, v) is simply a Fourier transform of a scaled version of the Pupil function. Therefore
the Fourier transform H( fX , fY ) =F {h(u, v)}, called the Coherent Transfer Function (CTF), is simply a scaled
version of the pupil function as shown in equation (2.8). This makes the calculation of the CTF from the pupil
shape very convenient process.

H( fX , fY ) =F {h(u, v)} = P (−λzi fX ,−λzi fY ) ⇒ P (λzi fX ,λzi fY ) (2.8)

It is also assumed that the pupil is symmetric in both the X and Y directions so that the minus signs can
be dropped, an assumption that is true for the aperture of the DST.

So far the light has been assumed to be coherent. While some light, most notably lasers or light origi-
nating from bright, far away point sources like the sun, is approximately coherent, most light sources are
not. Especially extended scenes like the ones imaged by earth observation satellites display very low levels
of coherence. In incoherent light, the correlation between the phases at different locations breaks down, and
interference patterns cannot be observed anymore. In these cases, it is only possible to measure the intensity
of the light. Any information about the phase of the wavefront in the pupil is lost. The intensity point spread
function s(u, v) can be expressed in terms of the coherent PSF as shown in equation (2.9).

s(u, v) = |h(u, v)|2 = |F {H( fX , fY )}|2 (2.9)
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Figure 2.3: Noisy image of Delft taken from wikipedia, photograph taken by Remi Jouan [6].

The Fourier transform of the PSF S( fX , fY ) =F {s(u, v)} is called the Optical Transfer Function (OTF) and
can be expressed as the autocorrelation of the coherent transfer function H( fX , fY ) as shown in equation
(2.10).

S( fX , fY ) = H( fX , fY )?H( fX , fY ) (2.10)

The intensity distribution in the image plane can then be expressed as shown in equation (2.11) (image
domain) and equation (2.12) (frequency domain).

ii (u, v) = s(u, v)∗ ig (u, v) (2.11)

Ii ( fX , fY ) = S( fX , fY )∗ Ig ( fX , fY ) (2.12)

Here, ig denotes the intensity distribution as predicted by aberration-free geometrical optics and ii the
actual intensity distribution in the image plane taking into account diffraction.

Up until now, the assumption was made that the optical channel was free of aberrations and noise. In
real-world applications, the imaging process is always degraded by noise. An example of an image degraded
by Gaussian distributed imaging noise is presented in figure 2.3. Imaging noise can originate from many
different sources and is not necessarily Gaussian distributed. This will be further elaborated on in section
3.1.2. The incoherent imaging of an object using a detector suffering from additive noise can be expressed as
shown in equation (2.13).

i (u, v) = s(u, v)∗o(u, v)+ni (u, v) = g (u, v)+n(u, v) (2.13)

It must be noted that here, and from now on i (u, v) is used to indicate an intensity measurement in the
image plane, o(u, v) is the ideal geometric projection of the object on the image plane and n(u, v) is the
measurement noise. g (u, v) = s(u, v)∗o(u, v) is then used to indicate the noiseless but aberrated projection
of the object on the detector. In the Fourier domain, this can be expressed as shown in equation (2.14).

I ( fX , fY ) = S( fX , fY )O( fX , fY )+N ( fX , fY ) (2.14)

This concludes the discussion of aberration-free imaging, the next section will return to the topic of aber-
rations and the modeling of an optical channel degraded by aberration using Fourier optics.
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(a) Ideal optical system.

(b) Optical system in which a defocus aberration is present.

Figure 2.4: Schematic 2D representation of the wavefront in an ideal system and the wavefront in a system in which a defocus aberration
is present.

2.1.2. Optical Path Difference
Up to this point, aberrations have only been discussed in the context of geometrical optics. Geometrical
optics describe aberrations in terms of the locations where light rays hit the image plane. In contrast, Fourier
optics describes aberrations in terms of the wavefront error in the exit pupil of the system. This is shown in
figure 2.4. In this figure, two scenarios are presented. Figure 2.4a shows an unaberrated system where the
wavefront is perfectly spherical with a radius such that the wave converges into a single point on the focal
plane of the system. Note that the direction of propagation is perpendicular to the wavefront at every point.
Figure 2.4b shows a system in which a defocus aberration is present. While the wavefront is still spherical
the radius of the wavefront is too small resulting in convergence to a point which is located in front of the
focal plane. In general, Fourier optics describes aberrations as deviations from the ideal spherical wavefront
that converges to a single point on the image plane. For convenience, aberrations are usually defined as the
optical path difference in the exit pupil of the system. As an example the peak-to-valley (PV) OPD value for
the defocus aberration is presented on the left side in figure 2.4b.

In order to include the effect of aberrations into the Coherent Transfer Function, Optical Transfer Function
and Point Spread Function, the OPD should first be expressed in the form of a wavelength-dependent phase
difference θ(x, y), called the wavefront error. The relation between this phase difference and the OPD is pro-
vided in equation (2.15)

θ(x, y) = 2π

λ
OPD(x, y) (2.15)

in this equation, the OPD is expressed in metres. The aberrated CTF can then be determined by multi-
plying the pupil function with a complex term exp[ jθ(x, y)] containing the wavefront error θ(x, y) expressed
in radians. This leads to the coherent transfer function shown in equation (2.16).

H( fX , fY ) = P (λzi fX ,λzi fY )exp[ jθ(λzi fX ,λzi fY )] (2.16)

For the remainder of this report, a capital letter variable indicates the Fourier transform of a lower case
variable unless indicated otherwise. For conciseness, the dependency of the variables described above will
often be omitted. In summary, the intensity PSF can be calculated when the wavefront error is known. Ho-
wever, due to the incoherence of the light, phase information is lost in the process. This means that it is
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often difficult or impossible to estimate the original wavefront error when just the PSF is known since several
wavefront errors can correspond to the same PSF.

2.1.3. Zernike Polynomials
For computational convenience and efficiency, it is generally desired to express the wavefront error θ(x, y) as
a sum of basis functions rather than as a collection of individually defined data points. (2.17). A proper set of
basis functions meets two criteria:

1. It can describe the distribution of interest with as little parameters as possible.

2. It is robust to overfitting of the data. Overfitting means that the all small peaks and troughs caused by
noise or other perturbations are fitted as well, resulting in a loss of accuracy.

A set of basis function that is particularly well suited for the construction of wavefront errors is the set of
Zernike polynomials, developed by Frits Zernike [39] [7]. The reason for this is that the shapes of the most
common wavefront aberration types all have a corresponding Zernike polynomial that describes their shape.
This significantly limits the number of basis functions required for an accurate wavefront error construction
if the amount of higher order aberrations in the system is limited, as is the case in most imaging systems.
Using Zernike polynomials, the wavefront error can be expressed using a set of wavefront coefficients {α j }. A
construction of the wavefront error can be produced with these coefficients as shown in equation (2.17).

θ(x, y) =
J∑

j=1
α j Z j (x, y) (2.17)

In this equation the Z j terms amounting to J terms in total are the individual Zernike polynomials, the
index j refers to the Noll index of each polynomial [40]. Each individual Zernike polynomial can be expressed
as shown in equation (2.18), where m is the azimuthal frequency of the Zernike polynomial and n is the radial
order of the Zernike polynomial.

Z m
n (r,θ) = Rm

n (r )cos(mθ) for m ≥ 0

Z−m
n (r,θ) = Rm

n (r )sin(mθ) for m < 0
(2.18)

The expression for Rm
n is then given by Equation (2.19).

Rm
n (r ) =

n−m
2∑

l=0

(−1)l (n − l )!

l !
[ 1

2 (n +m)− l
]
!
[ 1

2 (n −m)− l
]
!
r n−2l (2.19)

The relation between the Noll term used in equation (2.17) and the m and n terms used in equation
(2.18) is presented in tabular form in table 2.1. The Zernike modes up to radial order 10 are shown in Figure
2.5. This figure also provides some of the names of the most common types of phase aberration associated
with specific Zernike polynomials. Overfitting of the wavefront error can be prevented by using only Zernike
polynomials up to the highest order that corresponds to types of aberrations present in the wavefront error.

Table 2.1: Relation between n and m indices and Noll indices.

n,m 0,0 1,1 1,-1 2,0 2,-2 2,2 3,-1 3,1 3,-3 3,3
j 1 2 3 4 5 6 7 8 9 10
n,m 4,0 4,2 4,-2 4,4 4,-4 5,1 5,-1 5,3 5,-3 5,5
j 11 12 13 14 15 16 17 18 19 20

2.1.4. Strehl ratio and RMS error
One concept from Fourier optics that is used for assessing the quality of a certain optical system of optical
algorithm performance is the Strehl ratio [41]. The Strehl ratio is a measure of the severity of the blur caused
by aberrations in an optical system and is calculated by taking the ratio between the peak value of the actual
PSF of the system and the peak value of the diffraction-limited PSF of a system with the same aperture, but
no aberrations. This is mathematically expressed in equation (2.20)
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Figure 2.5: The Zernike modes up to order 8. Adapted from [7].

SR = max[s(u, v)]

max[saber r ati on− f r ee (u, v)]
(2.20)

A graphic representation of the Strehl ratio is presented in figure 2.6. Generally, when the Strehl ratio of
a system is above 0.8 aberration effects do not noticeably affect the quality of the images, and the system is
thus considered to be diffraction-limited. This is also from which REQ-6 listed in section 1.2 is derived. The
Strehl ratio is as an important figure of merit throughout this report.

A second figure of merit that is used throughout this project is the Root Mean Square of the wavefront er-
ror. The RMS value is computed by calculating the square of the wavefront error at every location after which
all squares are summed and subsequently divided by the number of data points. The last step in calculating
the RMS is taking the root of the mean of the squares resulting in the Root Mean Square. This is presented
mathematically in equation (2.21).

RMS =
√√√√ 1

N

N∑
n=1

x2
n (2.21)

In this equation, N is the number of data points and xn is the function value at the n-th data point.
The Strehl ratio and the RMS are complementary figures of merit. The Strehl ratio, which is a measure of
the amount of energy concentrated in the center of the PSF, is strongly correlated with the resolution and
sharpness of the image. However, the Strehl ratio is not necessarily a perfect measure of the accuracy of the
wavefront estimation, since multiple wavefronts can result in similar Strehl ratios. The RMS is a very accurate
measure of the accuracy of the wavefront estimation, but a wavefront with a high RMS error might still result
in acceptable image quality since not all aberration shapes cause large image blurs. In summary, the SR
measures the PSF quality and the RMS measures the wavefront estimation accuracy.

Taking the concepts from Fourier optics described above, it is now possible to present a quantitative des-
cription of phase diversity algorithms.

2.2. Phase Diversity Algorithms
Determining the Point Spread Function of an optical channel when a small object, approximating a point
source is imaged, is relatively straightforward. One just has to look at the blur resulting from the imaging of
the single point, which directly provides the PSF of the system. This PSF can then be used to deconvolve any
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Figure 2.6: Graphical representation of the Strehl ratio calculation using the aberration-free PSF and the actual, aberrated PSF of the
optical system.

subsequent images with the intention of constructing a more accurate estimate of the object that is being
imaged. In the case of Earth observation, however, extended scenes are being imaged instead of point sour-
ces. The detailed composition of these scenes is unknown and therefore cannot be used for derivation of the
PSF. A possible solution to this would be calibration with a phase retrieval algorithm using a point source like
a star [42]. This would, however, require the satellite to rotate, which would require additional complexity in
the design and possibly introduce additional misalignments and inaccuracies in the positions of the optical
elements due to the movement. Therefore, this strategy is determined to be infeasible in the case of the DST,
and thus a different method is required to determine the exact shape of the image blur.

To solve the problem of the unknown object, Robert Gonsalves proposed 1982 to use a second, out-of-
focus, detector image to obtain an out of focus "diversity image" of the same object using the same optical
channel [43]. These images would then suffer from the same aberrations, except for a known defocus aber-
ration found in the diversity image. Gonsalves’ work shows that it is possible to then find a Least-Squares
objective metric that is independent of the object and depends only on the aberration coefficients. Using an
optimization routine this metric can then be used to estimate the phase aberrations. While the out of focus
image could be a time delayed image of the same scene taken with the same detector after it is displaced
by a known distance along the optical axis, a technique called sequential diversity imaging, this is often im-
practical if not impossible for Earth Observation satellites that take images at high speed [44] [45]. Therefore,
from now on it will be assumed that the second image is produced by a separate detector located in the same
optical channel.

2.2.1. Reduced Gaussian Metric
To derive such an objective metric, one should first obtain some knowledge of the dominant type of noise
affecting the detector signal. In an imaging system, this is usually either Poisson distributed Shot noise or
Gaussian white noise. The method developed by Gonsalves can be adapted for both systems with Gaussian
noise as well as systems with Poisson noise. However, as described by Dolkens the noise present in the case
of the DST can safely be approximated using a Gaussian white noise model [46]. The reason for this is that
extended scenes are imaged in daylight conditions. This leads to very high signal values at the detector. Even
if Poisson noise would be dominant in this situation, for high signal values a Poisson distribution is virtu-
ally identical to a Gaussian distribution. The Gaussian noise version of the phase diversity algorithm allows
for much easier computation of the gradients than the Poisson version, which makes the optimization pro-
cess much less computationally intensive [47]. Therefore the following discussion will focus on the Gaussian
metric.

Gonsalves’ originally derived an object independent metric for the case of a two detector system with
a single in-focus image and a single out-of-focus diversity image. Later, through the work of James Fienup
and Richard Paxman, this metric was generalized to incorporate an arbitrary number of diversity images
[48]. The derivation of the metric below is based on the derivation presented by Fienup and Paxman. In
case of K detector planes corrupted by Gaussian noise, the probability of obtaining a specific set of intensity
measurements {ik (u, v)} can be expressed as shown in equation (2.22).
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Pr ob({ik (u, v)};o(u, v);α) =
K∏

k=1

∏
u,v

1√
2πσ2

n

exp

[
(ik (u, v)− gk (u, v))2

2σ2
n

]
(2.22)

In this equation σ2
n indicates the variance of the noise, the other variables are explained in section 2.1.1.

Also, note that the coordinates u and v are not continuous in this case, instead they are integers indicating
the pixel indices. If the natural logarithm of equation (2.22) is taken one arrives at equation (2.23).

L({ik (u, v)};o(u, v);α) =−
K∑

k=1

∑
u,v

1

2
ln[2πσ2

n]+ 1

2σ2
n

[ik (u, v)− gk (u, v)]2 (2.23)

The inconsequential addition term that does not depend on the wavefront error and an inconsequential
factor that does not influence the shape of the metric function can be omitted. Additionally writing gk (u, v) =
sk (u, v)∗o(u, v) one arrives at the least squares estimator shown in equation (2.24).

L =
K∑

k=1

∑
u,v

[ik (u, v)− ŝk (u, v)∗ ô(u, v)]2 (2.24)

In this equation and for the remainder of this report, a hat above a variable indicates an estimate of a
parameter. Using Parseval’s theorem this equation can be rewritten to a Fourier domain expression as shown
in equation (2.25).

L =
K∑

k=1

∑
fX , fY

[
Ik ( fX , fY )− Ŝk ( fX , fY )Ô( fX , fY )

]2
(2.25)

To arrive at an object independent metric, this metric can be minimized with respect to the ideal object
projection estimate Ô by differentiating with respect to Ô and setting the derivative to zero. This leads to an
expression for Ô shown in equation (2.26). For convenience, all dependencies have been omitted.

ÔM =


∑
fX , fY

∑K
k=1 Ik Ŝ∗

k∑K
l=1 |Ŝk |2 ,

∑K
l=1 |Ŝl |2 6= 0

0,
∑K

l=1 |Ŝl |2 = 0
(2.26)

The subscript M indicates that this expression minimizes the least squares expression. The superscript ∗
indicates the complex conjugate. The final step in the derivation of the metric is substituting equation (2.26)
back into equation (2.25) which leads to equation (2.27).

LM = ∑
( fX , fY )∈χ

K∑
k=1

|Ik |2 −
∑

( fX , fY )∈χ

|∑K
l=1 Il Ŝ∗

l |2∑K
m=1 |Ŝm |2 (2.27)

In this equation χ indicates the set of frequency pairs ( fX , fY ) at which the term
∑K

m=1 |Ŝm |2 does not sum
to zero. Omitting the frequencies where the sum of the absolute values of the OTFs sum to zero also has the
added benefit of regularizing the metric, i.e. nothing but noise is expected at those spatial frequencies and
omitting these spatial frequencies effectively filters noise out of the summation.

As can be observed, this metric only depends on the detector measurements and the set of OTF estimates
{Ŝk } for the K detectors, which makes this metric much more useful for imaging unknown, extended objects
as is the case in earth observation applications. This particular form of the Gonsalves metric, unregularized
except that frequencies where all squared OTF moduli sum to zero are omitted, is called the Reduced Gaus-
sian (RG) metric. As can be observed, the LM metric will reduce to zero if either K = 1 or if the Optical Transfer
Functions and consequently the measurements are identical for the different detectors. Therefore a known
error φk , different for each individual detector k, has to be introduced. As a result, the Coherent Transfer
Function of each detector can be expressed as shown in equation (2.28).

Hk ( fX , fY ) = P (λzi fX ,λzi fY )exp[ j [θ(λzi fX ,λzi fY )+φkλzi fX ,λzi fY ]] (2.28)

Typically, this additional, known aberration is a defocus error generated by slightly displacing each detec-
tor along the optical axis. In most applications, two detectors are used for phase diversity algorithms, which
means K = 2, where for one detectorφk = 0 and for the other detectorφk 6= 0. This will also be the case for the
Deployable Space Telescope project. Since the relationship between the different OTFs {Sk } is solely dictated
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by the known errors {φk }, they do not have to be estimated independently. Only a single wavefront error, usu-
ally the OTF of the in-focus image with φk = 0, is estimated and all other wavefront errors are calculated from
this wavefront by adding the known errors. Estimation is done by estimating the coefficients corresponding
to a set of basis functions, usually a set of Zernike polynomials.

Now that a first version of the optimization objective function is derived, it is interesting to take a closer
look at the properties of the RG metric. In the next subsection, a method will be shown to derive an analytic
expression for the gradient that can be used as an input for gradient-based optimization methods.

2.2.2. Gradient of the Reduced Gaussian metric
An analytic method for calculation of the gradient of the Reduced Gaussian method is presented by Paxman et
al. [48]. Given a set of measurements and a set of basis functions, the goal of the optimization is to minimize
the value of the RG metric provided in Equation (2.27) by finding the right weights α j for the basis functions
Z j that together make up the phase aberration as shown in equation (2.17). It is thus interesting to find the
gradients of L with respect to these parameters α j . This is expressed mathematically in Equation (2.29).

∂

∂α j
LRG

M = ∂

∂α j

∑
( fX , fY )∈χ

K∑
k=1

|Ik |2 −
∂

∂α j

∑
( fX , fY )∈χ

|∑K
l=1 Il Ŝ∗

l |2∑K
m=1 |Ŝm |2 (2.29)

Since only the estimates of the Optical Transfer Functions Ŝk depend on the parameters α j , the first term
can be omitted, which leaves only the second term. In the following derivation, only a few important steps
are shown, the rest can be found in the article by Paxman et al. [48]. The derivative of the second term can be
expressed as shown in Equation (2.30) using elementary calculus of complex numbers.

− ∂

∂α j

∑
( fX , fY )∈χ

|∑K
l=1 Il Ŝ∗

l |2∑K
m=1 |Ŝm |2 =

(
− ∑

( fX , fY )∈χ
Ck Ŝ′

k

)
+ c.c. (2.30)

Here the apostrophe indicates the derivative with respect to α j . The variable c.c denotes the complex
conjugate of the first term. The variable Ck is given by Equation (2.31).

Ck ( fX , fY ) ≡


[∑K

l=1 |Ŝl |2
(∑K

m=1 Im Ŝ∗
m

)
I∗k −

∣∣∑K
n=1 In Ŝ∗

n

∣∣2
Ŝ∗

k

]
(∑K

q=1 |Ŝq |2
)2 , ( fX , fY ) ∈χ

0, ( fX , fY ) ∉χ
(2.31)

Here, dependency on u has been dropped for convenience of notation. The next step in determining the
gradient is finding an expression for the derivative of Ŝk with respect to α j . Noticing that Sk can be written
as the discrete autocorrelation of the Coherent Transfer Function H as was shown in equation (2.10) and Ĥk

can be written as shown in Equation (2.32).

Hk ( fX , fY ) = P (λzi fX ,λzi fY )exp

[
j

(
φkλzi fX ,λzi fY +

J∑
j=1

α j Z j (λzi fX ,λzi fY )

)]
(2.32)

Using these equations the derivative can be written as shown in Equation (2.33).

∂

∂α j
Ŝk ( fX , fY ) = j

N 2

∑
f ′

X , f ′
Y ∈χ

Z j (λzi f ′
X ,λzi f ′

Y )[Hk ( f ′
X , f ′

Y )H∗
k ( f ′

X − fX , f ′
Y − fY )−H∗

k ( f ′
X , f ′

Y )Hk ( f ′
X + fX , f ′

Y + fY )]

(2.33)
Here the term N is the number of samples/pixels in a single dimension assuming a square grid. The term

originates from the expression of the discrete representation of the autocorrelation operation. Substituting
equation (2.33) back into Equation (2.30) and performing some rearrangements and substitutions of varia-
bles, an analytic expression for the gradient is found, which is shown in Equation (2.34).

∂

∂α j
LRG

M = 4

N 2

∑
f ′

X , f ′
Y ∈χ

Z j (λzi f ′
X ,λzi f ′

Y )Im

[
K∑

k=1
Hk ( f ′

X − fX , f ′
Y − fY )(Ck ∗H∗

k )( f ′
X , f ′

Y )

]
(2.34)

This expression for the gradient provides the basis for the use of gradient-based optimization strategies
for finding the minimum of the RG metric.
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Since the concept was invented by Gonsalves, myriad research has been performed in the field of phase
diversity algorithms. However, the fundamental theory behind these algorithms has not changed. Therefore,
no additional examples of phase diversity metrics are presented here. However, in chapter 3 an elaborate
discussion on the metric used in this project will be presented.

2.3. Chapter Summary
In this chapter, the necessary theory for understanding the working principles of phase diversity algorithms
as well as an early example of a phase diversity algorithm was discussed. It was shown that using Fourier
optics a quantitative description of the relation between the wavefront error in the exit pupil and the PSF,
which describes the image blur shape, can be established. The larger the wavefront error differences along
the wavefront of the light wave the larger the resulting blur in the image plane. While the PSF can be calcu-
lated from the wavefront error, phase information is lost in the process in the light source incoherent. In the
case of EO the light source is always incoherent. Therefore calculating the wavefront error from the PSF is
often difficult or impossible since typically, several wavefront errors could result in the same PSF. Typical wa-
vefront error shapes are called wavefront aberrations. An efficient way of describing the wavefront error is in
terms of Zernike polynomials, a set of 2D shape functions that correspond very well to the shape of wavefront
aberrations commonly encountered in optical systems. Two effective ways of estimating the severeness of a
wavefront error are introduced. The first is the Strehl ratio, which compares the severity of the blur to that
of an ideal system. The second is the wavefront error RMS which is a measure of how much the error shape
deviates from a flat wavefront. Phase Diversity algorithms, first described by Gonsalves, exploit the relation
between the wavefront error and image blur [43]. Phase Diversity algorithms aim to find a wavefront error
shape that minimizes a particular phase diversity metric, which is calculated based on a single in-focus de-
tector measurements and a set of diversity detector measurements from the same channel to which know
wavefront aberrations, typically defocus aberrations, have been added. Theoretically, the wavefront error
that minimizes the metric corresponds to the actual wavefront error in the exit pupil of the system. For most
phase diversity metrics an analytic gradient expression exists, which allows for the application of gradient-
based optimization methods for finding the minimum. Now that the necessary theory has been established,
the next chapter will discuss the end-to-end simulation tool that will be used for simulation of the phase di-
versity algorithms. The chapter will discuss both how simulation of the system will be performed and which
phenomena will be taken into account, as well as the possible phase diversity algorithm configurations that
will be integrated into the tool.





3
Phase Diversity Simulation Tool

The previous chapter discussed the theory behind Fourier optics and phase diversity algorithms necessary
to understand the thesis topic. This chapter elaborates on the software that was used to answer the research
questions. To obtain an estimate of the performance increase that can be achieved for the Deployable Space
Telescope through the implementation of Phase Diversity, an end-to-end simulation tool was developed to
be used as a test bench. Using this tool a large number of Phase Diversity algorithm configurations, borro-
wing features from a broad range of methods in the field of imaging theory, were tested in order to asses their
performance in the context of the DST design. A schematic overview of the tool architecture is presented in
figure 3.1. As can be observed the simulation tool consists of two distinct subroutines. The first subroutine si-
mulates the imaging process on board the Telescope, taking hyperspectral image data as input and providing
a detector measurement data array for every simulated detector as output. These simulated measurements
are then used as an input for the second subroutine, the Phase Diversity algorithm. The PD algorithm con-
sists of a gradient-based optimization routine that estimates the wavefront error present in the pupil of the
panchromatic channel, and a deconvolution algorithm that aims to reconstruct the original scene imaged by
the DST using the final estimate of the wavefront error.

The simulation tool was implemented in MATLAB since simulation of the DST optics is performed using
the Fast Optical Ray Trace Application (FORTA) tool developed at Delft University of Technology by Dennis
Dolkens [10]. The FORTA ray-tracing tool, which includes a complete geometric model of all the DST op-
tical channels, was also implemented in MATLAB. This allowed for a convenient interface between the two
software tools. In section 3.1 and section 3.2 respectively, the two subroutines are discussed in more detail.

3.1. Simulating Imaging for the DST
To maximize the accuracy of the tool the imaging simulation takes into account as many real-world physical
phenomena that could influence the imaging process as possible without driving computation time to an
unacceptable level. The most significant phenomena that were selected for implementation are:

1. A polychromatic light source

2. The field separation between the detectors

3. An unknown error in the exact amount of TDI-2 defocus

4. Shot noise and Gaussian distributed noise

5. Undersampling of the image

6. Dead pixels

7. Variation in the type of scene being imaged

8. Aberrations due to nonzero mechanical tolerances

33
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Figure 3.1: Schematic overview of the simulation tool architecture.

To realistically implement a polychromatic light source, a data set should be used that contains multis-
pectral earth observation data, with a small spacing between the wavelength samples. It was therefore deci-
ded to use the hyperspectral AVIRIS (Airborne Visible/ Infrared Imaging Spectrometer) data set collected by
NASA, which is freely available to the public [49]. The AVIRIS data samples the part of the spectrum that is
received by the DST panchromatic channel, 450nm to 650nm, at 21 wavelengths. To simulate the imaging
process of the scene represented by the AVIRIS hyperspectral image, two operations are performed on the
data:

1. Projection of the scene on the image plane by convolving the AVIRIS data with the Pixel Point Spread
Function. This takes into account:

(a) Diffraction effects related to the aperture size and shape

(b) Aberration effects primarily related to pointing, positioning and shape errors and instabilities in
the optical components

(c) Discrete sampling of the scene taking into account the finite, nonzero size of the pixels

2. Detector measurement simulation by addition of measurement noise and possibly dead pixels. In this
particular case noise is modeled using two terms:

(a) Poisson distributed Shot noise

(b) A Gaussian distributed noise term to account for other noise sources

Note that there is no direct correlation between the actual resolution of the AVIRIS images and the simu-
lated resolution of the DST. The side length of each pixel on the TDI detectors is assumed to correspond to
25cm on the ground. This will also be the case during operations at an orbital height of 550km if the pixel
size remains at 5µm. Below, each individual step within the Imaging Simulation subroutine - as shown in 3.1
- is explained in greater detail.
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3.1.1. Projection onto Image Plane
The first step, projecting the scene onto the image plane taking into account diffraction and aberration, is
performed using the FORTA ray tracing application which contains the end-to-end model of the DST. FORTA
is used to calculate the Point Spread Function of the DST panchromatic channel optics at each of the sam-
pled wavelengths, taking into account the known defocus error for each of the detectors. The PSFs are all
calculated on a common grid with spacing ∆u using a constant pupil sampling distance ∆x so that discrete
convolution can be applied. This is achieved through zero-padding of the calculated wavefront error before
applying the Discrete Fourier Transform and squaring the magnitude to obtain the PSF. Zero-padding indi-
cates increasing the grid size of a 2D array in all four dimensions by adding an equal amount of zeros on all
sides. The amount of zero padding required at each wavelength can be determined using the relation shown
in (3.1) presented by Seldin et al. [50].

∆u = λz f

N∆x
(3.1)

Since the sample size N must be an integer and the distance between the image plane and exit pupil z f

is fixed, calculation of the PSFs can only be performed at wavelengths that result in an integer sample size N .
As a result of this slight adjustments have to be made to the AVIRIS sample wavelengths, which slightly alters
the original scene. However, for large sample size N the magnitude of these adjustments is negligible.

While the PSFs calculated using FORTA take into account diffraction and aberration effects caused by
the telescope optics, they do not account for the negative effects resulting from sampling of the image by
the detectors. A detector does not have an infinite resolution but instead integrates the image intensity over
each of its pixels, which have a finite nonzero dimension. This can potentially lead to further deviation of
the image from the ideal aberration-free image predicted by geometrical optics. This effect is accounted for
in the model by calculation of a pixel PSF. This updated form of the optical PSF takes into account both
diffraction and aberrations resulting from the optics, as well as effects due to the sampling by the detector.
The expression for calculating this PSF is provided in equation (3.2). Proof in the form a derivation of the Pixel
PSF is presented in appendix .

spi x (∆u,∆v,u, v) =
Ï ∞

−∞
Π(∆u,∆v,u′, v ′)s(u −u′, v − v ′)du′dv ′ (3.2)

In this equation, ∆u and ∆v are the sampling distances in both directions. For this tool, square pixels are
assumed which means ∆u = ∆v . A pixel PSF has to be calculated for each of the Λ wavelengths for each of
the K detectors in the panchromatic channel, resulting in a set ofΛ×K PSFs. The calculation of these PSFs is
graphically summarized in figure 3.2. Once these K PSFs are calculated for each of theΛ sample wavelengths
the PSFs are convolved with the scene corresponding to their respective wavelength resulting in a set ofΛ×K
images. For each detector, the aberrated images from all wavelengths are summed which eventually results in
a set of K noiseless panchromatic detector images. To derive a set of noiseless detector measurements from
these images, each of the K detector images is simply sampled at the locations of the pixel centers.

The tool also includes the possibility of calculating the measurements taken by the multispectral chan-
nels, so that the effect of including this data into the phase diversity algorithm can be determined. These
measurements are calculated in exactly the same way as the panchromatic measurements. A pixel size four
times the pixel size of the panchromatic pixels is assumed. This is in accordance with the design specifica-
tion that the resolution of the multispectral channels should is four times lower than the resolution in the
panchromatic channel, found in section 1.3.

3.1.2. Noise Addition
The second and last step in the DST imaging simulation is the addition of noise to the measurements. There
are many imaging noise types, the most common noise types are listed below:

• Gaussian noise: A collection of all Gaussian distributed noise sources primarily related to the detector
and amplifier circuitry, including the generally dominant Johnson-Nyquist noise [51]. Since modeling
of the electronics is not a goal of this thesis project, all Gaussian noise sources are represented by a
single Gaussian noise term with an arbitrary Noise Power [52]. The signal to Noise Ratio of the Gaussian
noise is assumed to be 100 in accordance with values used by Dolkens and van Marrewijk [9] [19].

• Poisson distributed Shot Noise: Shot noise arises due to the particle nature of light [53]. The SNR for
Poisson distributed Shot noise is equal to

p
N , where N is the number of photons per pixel. As will be
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Figure 3.2: Graphical representation of the Pixel PSF calculation process. Here the colors of the PSFs correspond to the different wave-
lengths.

discussed in section 4.1, the average photon count per pixel is expected to be around 104 which would
result in a SNR of about 100, the same as the SNR for the Gaussian distributed noise [46].

• Salt-and-pepper noise: impulsive noise that mostly arises in analog-to-digital conversion and bit er-
rors during transmission causing random light pixels in dark areas and dark pixels in light areas [54].
Since the electronics and communication design is still at a very early stage with no details available
and since it is likely that data will be processed on board, salt-and-pepper noise is not taken into ac-
count in the simulation. However, to quantify the effect of missing single pixel data, the simulation of
dead pixels has been implemented so that a sensitivity analysis can be performed.

• Quantization Noise: Resulting from the quantization of an analog input signal. Typical TDI detectors

quantize images from 8 bits to 16 bits. Since the quantization noise variance is N 2
Q = q2

12 where q is the
quantization step, the quantization noise is expected to be negligibly low for high signal earth observa-
tion applications using a TDI detector [55].

• Periodic Noise: Noise that is usually generated through electromagnetic interference. The shape of
periodic noise has a very high dependence on its source and therefore virtually impossible to predict
without knowledge of interference sources. It is therefore assumed that the telescope, bus, and baffle
designs will be such that the imaging electronics are shielded from electromagnetic interference from
outside sources [54]. However, at a later stage of the project when more is known about the system and
environment possible periodic noise sources should be identified and if necessary simulated.

The application of noise to the measurements is therefore performed in two steps. The first step is ap-
plying Poisson distributed, signal-dependent Shot noise to the noiseless measurement data. Because of the
arbitrary scaling of the PSF, Shot noise is calculated by assuming a mean photon per pixel number for the
detector measurement. The measurements are scaled such that the mean of all the photon per pixel values
is equal to the desired mean. Because not much is known about the final detector choice and consequently
the real photon per pixel count, a sensitivity analysis will be performed for this parameter. The second step in
the noise simulation is the addition of zero mean Gaussian distributed, signal independent noise to the me-
asurement. The signal-to-noise ratio of the Gaussian noise is set as an input parameter as it is dependent on
the electronics. Making it adjustable allows simulation of different imaging electronics configurations, given
that the noise statistics of the configurations are known.
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The resulting set of K noisy TDI measurements plus the noisy multispectral measurements are the final
output of the imaging simulation subroutine and is the input to the Phase Diversity algorithm.

3.2. Simulating the Phase Diversity Algorithm
The second subroutine consists of the phase diversity algorithm which aims to produce an accurate estimate
of the wavefront error in the pupil based on the set of in-focus and phase-diverse detector measurements.
The subroutine can be divided into the following steps:

1. Calculation of the basis functions for constructing the wavefront error estimate in the pupil. Since the
basis functions are the same regardless of the input data, they can be stored in the satellite’s on-board
memory module. This means in operation, they do not have to be calculated every time the phase
diversity algorithm is executed

2. In case apodization or other methods are used to mitigate the detrimental influence of edge effects
on the wavefront error estimate, the image domain measurement is first pre-processed - e.g. through
multiplication with an apodization window reducing the weight of pixels near the edges of the subframe
in the case of apodization. This has to be done only once per optimization run.

3. Taking the (pre-processed) subframe and basis functions as inputs, a gradient-based optimization rou-
tine is executed that aims to find a set of wavefront error parameters that minimizes a broadband phase
diversity metric. The set of parameters that minimizes the metric is then used to construct a final esti-
mate of the wavefront error in the pupil.

4. The final estimate of the phase error is used to construct a broadband Point Spread Function. An ite-
rative deconvolution algorithm is then executed to deconvolute the detector measurement and the
estimated broadband Point Spread Function to obtain an estimate of the original scene that is being
imaged

Again, a detailed overview of the above steps is provided in the following sections.

3.2.1. Construction of Basis Functions
As discussed in section 2.1.3, Zernike polynomials are well suited for expressing a wavefront error since Zer-
nike polynomial shapes correspond to typical aberration shapes present in optical systems. Van Marrewijk
found that to accurately fit all the minima and maxima of a typical wavefront error expected in the DST system
during operation, Zernike polynomials up to and including 7 are required, which corresponds to 36 Zernike
functions [19]. While using Zernike polynomials up to order 7 would thus be a logical starting point for the
set of basis functions, a few adaptions are made to the standard set. A notable property of the Deployable
Space Telescope is that it has a segmented primary mirror with segments of which piston, tip, and tilt can be
adjusted separately. As a result, unwanted segment piston, tip, and tilt will also be introduced due to control
inaccuracy, non-ideal hinges, thermal effects and compliance of support structures. In order to allow for ef-
fective wavefront error fitting, the three global piston, tip, and tilt Zernike basis functions are thus replaced
by twelve basis functions accounting for the piston, tip, and tilt of each of the four primary mirror segments
individually. The set of Global Zernike basis functions used is presented in figure 3.3, only polynomials up
to order 4 are shown here for conciseness. The set of Segment Zernike basis functions is shown in figure 3.4.
Removal of the global piston, tip and tilt basis functions is justified if it is noted that each of these modes can
be easily reconstructed using the twelve segment piston, tip, and tilt modes.

3.2.2. Image Domain Pre-processing
The performance of phase diversity algorithms is generally reduced by two different types of edge effects:

1. Fourier domain artifacts due to the fact that the Discrete Fourier Transform (DFT) assumes the image
is periodic and repeats itself at the frame’s edges. This causes abrupt jumps at the edges in turn leading
to artifacts that are detrimental to performance

2. Pixel illumination due to parts of the scene that fall outside of the subframe, but influence the measu-
rements as a result of being smeared out by the PSF
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Figure 3.3: A graphical representation of the global Zernike basis functions used as a starting point for the phase diversity algorithm
design.

Figure 3.4: A graphical representation of the segment Zernike basis functions used as a starting point for the phase diversity algorithm
design.
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For the first of these two points an effective mitigation strategy, not used in the context of phase diversity
algorithms before, was implemented in this tool, based on the method described by Mahmood et al. [56].
This method decomposes the Fourier transform of the image into two parts. A periodic part ip that captures
the essence of the image and a smoothly varying background is that captures the edge discontinuities. The
periodic part, which is the part of interest, can be calculated as shown in equation (3.3)

Ip (p, q) = I (p, q)− Is (p, q) (3.3)

In this equation the indices n and m are the indices of the frequency domain arrays running from (p, q) =
(0,0) to (p, q) = (N −1, N −1). The smooth term S can be calculated as shown in equation (3.4)

Is (p, q) = B(p, q)

2cos 2πp
N +2cos 2πq

N −4
(3.4)

In this equation dependency on the indices is dropped. Term B is the Fourier transform of the edge
discontinuities calculated as shown in equation (3.5)

b(n,m) = r (n,m)+ c(n,m) (3.5)

Here r and c are calculated as shown in equation (3.6). A visual representation of smooth decomposition
is provided in figure 3.5.

r =
{

i (N −1−n,m)− i (n,m) , for n = 0 and n = N −1

0 , otherwise
(3.6)

c =
{

i (n, N −1−m)− i (n,m) , for m = 0 and m = N −1

0 , otherwise
(3.7)

The periodic term Ip calculated using equation (3.3), from which the edge artifacts are removed, is then
used as the Fourier Transform of the image subframe during execution of the phase diversity optimization
routine.

The second detrimental edge effect, the influence of parts of the scene that fall outside of the subframe on
the measurement, is less straightforward to correct. One commonly used strategy is the application of image
domain apodization to the subframe, which gradually reduces the pixel weight towards the frame edges with
the aim of reducing the impact of ’corrupted’ measurements at the boundaries. This is achieved by multi-
plication of the subframe with a 2D window function with values in the range [0,1]. The window function
typically has higher values in the proximity of its center and gradually lower values towards its edges. Two
examples of windows used for apodization in phase diversity algorithms are the Hamming window and the
Paxman window. The Hamming window mathematically described in equation (3.8), a 1D represenation of
the window is provided in figure 3.6a [57]. An adapted version window has been implemented in the context
of phase diversity by Lofdahl and Scharmer [58]. The apodization window that they use consists of an una-
podized square in the center of the frame with Hamming window apodization at the edges, as illustrated in
figure 3.6b. This window was initially described by Luhe [59].

w(n) = 0.54−0.46cos

[
2πn

N −1

]
for n = 0,1, ..., N −1 (3.8)

The possibility of applying apodization to phase diversity has also been investigated by Paxman et al [60].
Instead of applying the apodization only at the edges, Paxman applies a window that apodizes the entire
image. A mathematical description of the window used is provided by equation (3.9). A 1D graphic represen-
tation of the window is provided in figure 3.6c.

w =


[

1−
(

r
rc

)2
]2

, for r ≤ rc

0, for r > rc

(3.9)

Since one of the high-level requirements for the DST is a ground resolution of below 25cm, it is impor-
tant that an apodization method preserves detail in the image. It was therefore decided to implement the
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Figure 3.5: Example of smooth decomposition showing the original image in the top left corner, the central part of the Fast Fourier
Transform (FFT) of the image in the top left corner, the FFT of the periodic term in the lower left corner and the FFT of the periodic term
in the lower right corner. The painting shown is Rembrandt van Rijn’s Nachtwacht, taken from the website of Het Rijksmuseum [8].

(a) The Hamming Window. (b) The modified Hamming Window
[58].

(c) The window used by Paxman.

Figure 3.6: 1D representation of multiple apodization windows
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approach as described by Lofdahl and Scharmer, which leaves most of the image unapodized. It was then
determined through simulation if apodization increases the accuracy of the estimation.

A final method for mitigating the detrimental impact of edge effects is careful selection of the detector
subframe to which the phase diversity algorithm is applied. The testing and comparison of several algorithms
for selection of subframes was done. The results are further discussed in section 4.3.

3.2.3. Metric Calculation
The core of the phase diversity algorithm is the optimization routine that attempts to minimize the value of
the phase diversity metric function in order to produce an accurate estimate of the wavefront error. The first
step in setting up the optimization was the selection of the most suitable type of phase diversity metric. The
TDI detectors in the panchromatic channel are sensitive to nearly all wavelengths in the visible spectrum.
Because the performance of phase diversity algorithms that assume a monochromatic light source quickly
degrade as the bandwidth of the light sources increases, it was decided to use the phase diversity optimization
metric described by Seldin et al. [50], a method that was applied successfully by Bolcar as well [61]. Both
have implemented the method in the context of ground-based-astronomy. This metric takes into account
the broadband nature of the source. The form of the metric - shown in equation (3.10) - is the same as the
’Reduced Gaussian’ metric discussed in section 2.2

LM = ∑
( fX , fY )∈χ

K∑
k=1

|Ik |2 −
∑

( fX , fY )∈χ

|∑K
l=1 Il Ŝb∗

l |2∑K
m=1 |Ŝb

m |2 (3.10)

The only difference between the two metrics is that for the broadband metric the set of monochromatic
OTFs {Sk } is replaced by the set of polychromatic or broadband OTFs {Sb

k }. The broadband PSFs are calculated
by summing the monochromatic PSFs at each sample wavelength as shown in equation (3.11)

sb
k (u) =

Λ∑
l=1

Tkl skl (u) (3.11)

In this equation, the subscript l denotes the index of the sample wavelength. Central to the broadband
phase diversity method described by Seldin is the gray world assumption. This assumption states that the
spectral distribution of the light is identical for all pixels, which allows for the calculation of a single bro-
adband PSF per detector. While this may seem like a bold assumption, it was found by Seldin that the as-
sumption of a uniform spectrum bears a good resemblance to the real-world situation. Implementation of
this assumption leads to the use of the Tkl terms in equation (3.11), which represent the product between
the intensity and detector responsivity at a certain wavelength l , normalized so that the set {Tkl } sums to 1.
Two different settings for the set of scaling terms {Tkl } have been implemented in the tool. The first option
assumes a spectral distribution that is uniform over the part of the spectrum accepted by the panchromatic
channel. The second option estimates the factor Tkl at each wavelength through cubic interpolation between
the sums of the intensity received at each of the multispectral channel detectors. The results of a comparison
between the performance achieved with each method are presented in chapter 5.

Due to the fact that the diffraction and aberration effects depend on wavelength, the {skl } terms must be
scaled by a known factor at each wavelength l . The first step is the scaling of the magnitude of the Coherent
Transfer Function at each wavelength according to equation (3.12).

Hkl ( f ) = |Hkl |exp

[
i
λ̄

λ

(
θ( f ; {α})+φk ( f )

)]
(3.12)

The parameter λ̄, from now on called the base wavelength, is the wavelength in terms of which the wa-
vefront error is defined. The parameter N is the one-dimensional size of the wavefront error array.

As stated before in section 3.1.1, to arrive at the wavelength dependent PSF the grid size on which the
wavefront error is defined must be adapted before performing the Fourier Transform to achieve correct sca-
ling of the PSF. The scale change resulting from the application of the Fourier transform is obtained by the
relation shown in equation (3.13)

∆u = λz f

N∆x
(3.13)

The z f is a physical design parameter of the system and is therefore fixed. The pupil sampling distance
∆x is also constant because all PSFs are calculated from the same wavefront error estimate which has a fixed
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array size. The image plane sampling distance ∆u is required to be the same at all wavelengths so that the
monochromatic PSFs can be conveniently summed on the same grid. This leaves the ratio λ

N as a parameter
that can be used to control the scaling of the PSFs. Two factors are important in the selection of the values:

1. The set of sample wavelengths {λ} should provide near uniform sampling of the panchromatic channel
wavelength spectrum for accurate calculation of the broadband PSF

2. The sample size N has to be integer-valued

To find a set of wavelengths that adheres to these two requirements the following calculation steps are
performed by the algorithm:

1. Generation of a preset number of wavelengths {λ} uniformly sampled over the bandwidth accepted by
the panchromatic channel and calculation of the corresponding set of array sizes {Nkl } using equation
(3.13)

2. Rounding of the array sizes Nkl to the nearest integer

3. Recalculation of the new corresponding set of wavelengths {λkl } by inserting {Nkl } into equation (3.13)
again

4. Calculation of the PSFs at the adjusted wavelengths

The individual monochromatic PSFs can then be calculated by taking the Fourier transform of the Cohe-
rent Transfer function as shown in (3.14) and zero padded as shown in equation (3.15)

skl (u, v) =
∣∣∣∣∣hkl (u, v)|2 = |

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u〉

]∣∣∣∣∣
2

(3.14)

skl (u, v) =
{
|hkl (u, v)|2 for − Nkl

2 ≤ u and v ≤ Nlk
2

0 for − N
2 ≤ u or v <−Nkl

2 and N
2 > u or v ≥ Nkl

2

(3.15)

3.2.4. Gradient Based Optimization
The next step in designing the optimizer was the selection of the optimization strategy, in particular whether
to use a gradient-based optimization method or a non-gradient-based method. Since the gradient provides
additional information about the function it is expected that gradient-based methods generally converge
faster than non-gradient based-methods, but if the computation time per iteration is higher gradient-based
methods might still be slower. A few factors should be considered in the trade-off between gradient based
and non-gradient-based optimization:

1. Is an analytic expression available for the gradient?

2. What is the computational cost for calculation of the gradient?

3. How smooth is the function?

The first two of these questions are related. The cost of calculating an analytic gradient is generally lower
than the cost of calculating the numerical gradient since the latter requires at least one metric evaluation
for each individual parameter that is optimized. However, depending on the form of the expression analy-
tic gradients could also be costly to calculate. As with the original phase diversity algorithms developed by
Gonsalves, Fienup, and Paxman, Seldin also provides an analytic expression for the analytic gradient of the
broadband phase diversity algorithm. Although the expression for the gradient provided by Seldin contains
some fundamental errors resulting in highly erronous values, a similar expression was derived by the aut-
hor based on some of the elements and descriptions in the paper by Seldin. This expression is provided in
equation (3.16)

∂

∂α j
LM =−4λ̄

N−1∑
f ′=0

K∑
k=1

Λ∑
l=1

1

N 2λl
Z j l×Im

Hkl ( f ′)
N
2 −1∑

u′=− N
2

h∗
kl (−x ′)

N−1∑
f ′′=0

C b
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
(3.16)
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In this equation the term λ̄ is the base wavelength at which the wavefront error is estimated. the boldface
term Hkl ( f ) is the (discrete) Fourier transform of hkl (u) after zero padding to the size N ×N , mathematically
expressed in equation (3.17)

Hkl ( f ) =
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
(3.17)

Furthermore, expressions for the terms C b
k ( f ) and Znl are provided in equations (3.18) and (3.19) respecti-

vely.

C b
k ( f ) =

∑K
j=1 |Sb

j ( f )|2 (∑K
l=1 Il ( f )Sb∗
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The full derivation of the expression for the analytic gradient is provided in Appendix B. Observing this
analytic expression for the gradient, it can be observed that all the Fourier transforms and convolutions that
have to be performed are independent of the wavefront error parameter for which the gradient is calculated.
This means that these operations have to be performed only once per phase diversity algorithm iteration.
Since the number of Zernike basis functions used for description of the wavefront estimation error will be
>> 1, it is likely that calculation of this analytic gradient will be much faster than calculation of the numerical
gradient, which has to perform multiple Fourier transforms for each of the Zernike basis functions.

The remaining question is then whether the function is sufficiently smooth to allow for efficient use of
gradient based optimization. Several studies already proved that phase diversity algorithms using gradient
based optimization can lead to good results. Some examples can be found in the references [48] [62] [61] [63].
It was therefore decided to use gradient based optimization for the tool. This decision is also retrospectively
supported by results presented in chapter 5.

Concerning the choice of gradient based algorithms, an extensive comparison was performed by Ruder
[64] who found that the adam gradient based optimization algorithm achieves the best general performance
and adam was consequently selected as the optimization strategy for the phase diversity simulation tool. The
algorithm, which originates from the scientific field of neural networks, was first presented by Kingma and Ba
[11]. The acronym Adam stands for "adaptive moment estimation". The algorithm is a specific form of a Sto-
chastic Gradient algorithm that updates its first and second moment estimates at every iteration. This results
in a flexible, continuously updating learning parameter that adapts to the problem at hand. A representation
of the algorithm in pseudo code, taken from [11] is provided in table 3.1. As a start the hyperparameter set-
tings used in the original paper, i.e. β1 = 0.9, β2 = 0.999, ε = 10−8 and κ = 0.001 were selected. Results of a
sensitivity analysis performed for the learning rate κ are presented later in chapter 5. Due to a large number
of tunable parameters in this thesis project, it was decided to only change the learning rate κ and not the β1

and β2 hyperparameters, based on the fact that the original article also uses the learning rate as the primary
means for tuning of the algorithm.

As a last step in the preliminary optimizer design, a stopping criterion for the optimizer was selected. A
first attempt was made to use the step size as the stopping criterion. However, sudden jumps in the step size
near the point of convergence, albeit small, resulted in unstable convergence behavior. Through trial-and-
error the following stopping criterion was eventually found to be the most stable:

1. Subtract the metric value from iteration i ter −2 from the metric value at the current iteration i ter

2. Normalize the result by dividing by the metric value at the start of the optimization: i.e. i ter = 0

3. Compare the result to the (positive) stopping criterion

4. If the result is higher than the criterion, terminate the optimization

It was decided to use i ter −2 instead of the value at the last iteration i ter −1 because it was found that the
metric value often oscillates slightly when near the point of convergence, and using i ter −2 has been found
to prevent false positive convergence due to this oscillation.
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Table 3.1: Pseudo Code representation of the Adam algorithm taken from [11].

Adam: An algorithm for stochastic optimization. g 2
t indicates the element-wise square

of g t . Good default settings for the tested machine learning problems are κ= 0.001,
β1 = 0.9, β2 = 0.999 and ε= 10−8. All operations on vectors are element-wise.
With βt

1 and βt
2, β1 and β2 to the power t are denoted respectively

Require: κ: stepsize
Require: β1,β2 ∈ [0,1): Stochastic objective function with parameters eta
Require: f (θ): Stochastic objective function with parameters theta
Require: θ0: Initial parameter vector
m0 ← 0 (initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t ← 0 (Initialize timestep)
while thetat not converged do
t ← t +1
g t ←∆θ ft (θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ←β1 ·mt−1 + (1−β1) · g t (Update biased first moment estimate)
vt ←β2 ∗ vt−1 + (1−β2) · g 2

t (Update biased second raw moment estimate)
m̂t ← mt /(1−βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt /(1−βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 −κ ·m̂t /(

√
v̂t +ε) (Update parameters)

end while
return θt (Resulting parameters)

3.2.5. Deconvolution
The last step in the reconstruction of the original scene is the deconvolution of the detector with the final
estimate of the Point Spread Function. Deconvolution is the inverse of convolution and could be seen the
"deblurring" of the image using an estimate of the PSF. A mathematical image domain expression of the
deconvolution problem could be expressed as finding the object estimate ô that satisfies the convolution
equation shown in equation (3.20).

s ∗ ô = i (3.20)

However, as with all measurement processes the imaging process also involves the unavoidable addition
of measurement noise to the measurement, which complicates the deconvolution problem. A generic mea-
surement process such as imaging can be written as shown in equation (3.21)

~i = A~x +~n (3.21)

In this equation,~i is the vectorized detector measurement array, ~x is the vectorized object to be measu-
red and ~n is the vectorized additive noise matrix. A is the measurement matrix that in the case of imaging
would include the effects of diffraction, aberrations, and sampling. Since every measurement system has a
finite cut-off frequency, the matrix A acts as a low pass filter filtering out the frequencies beyond the cut-off
frequency of the system. If this is applied to imaging specifically: the aim of the phase diversity algorithm
is to estimate the OTF of the system, which would thus approximately provide A. A logical first approach
for deconvolution would then be right multiplying the measurment vector ~i with the matrix A−1. In case
the noise vector ~n is equal to~0, the original scene should indeed be retrieved. However, in practice noise is
present. Since left multiplying with A acts as a low pass filter, right multiplying with A−1 acts as a high pass
filter, amplifying exactly those frequencies at which nothing but noise can be expected. Therefore regulariza-
tion methods should be applied for deconvolution to regulate noise amplification while preserving the high
spatial frequencies in the signal and consequently fine details.

Two deconvolution approaches that involve regularization were studied for implementation: blind de-
convolution using iterative algorithms and deconvolution using a Wiener deconvolution filter [65] [66]. A
practical Wiener deconvolution filter such as the multiframe filter described by Yaroslavsky and Caulfield [67]
uses an estimation of the object spectrum combined with knowledge of the noise power to apply a weight to
each spatial frequency during deconvolution. The weights correlate positively with the SNR of the detector
measurement at that frequency. This means that frequencies at which the SNR is low and noise is dominant,
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are suppressed during deconvolution. Frequencies at which the SNR is higher, which contain a lot of detail,
are preserved. The mathematical formulation of the Wiener filter for a single frame as described by Wiener
is provided in equation (3.22) [65], the expression for the set of multiframe Wiener filters {Fk } - one for each
channel k - as described by Yaroslavsky and Caulfield is provided in equation (3.23) [67]

F = 1

S

SNR

1+SNR
(3.22)

Fk = 1

Sk

SNRk

1+∑K
k=1 SNRk

(3.23)

Two distinct advantages of this method are:

1. If the estimation of the Point Spread Function is accuracte this method can lead to an accurate recon-
struction of the original object.

2. If any a priori data on the noise and object spectra is known, this information can be effectively incor-
porated to suppress noisy frequencies while preserving frequencies with significant signal components

After a few preliminary tests it was concluded that too little information about the object spectrum shape
was available to produce an accurate object spectrum estimate, and consequently, no accurate frequency
dependent SNR estimates {SNRk } could be found. In addition, it was found that the OTFs of the defocused
detectors {Sk 6=1} degrade much faster with increasing frequency than the OTF Sk=1 due to the additional,
known, aberrations. As a result, using them for calculation of the Multiframe Wiener Filter decreased the
quality of the restoration rather than increasing it. It has therefore been decided to use only a single Frame
Wiener filter as shown in equation (3.22) and to assume a constant SNR across all frequencies. The decon-
vwnr() algorithm from the MATLAB imaging toolbox provides this functionality and was therefore selected as
one of the possible algorithms for deconvolution.

An alternative to Wiener deconvolution is blind deconvolution. Blind, iterative, deconvolution algorithms
do use an initial estimate of the PSF as a starting point for deconvolution but update the PSF estimate at every
iteration. A blind deconvolution method that is particularly popular is the Richardson-Lucy blind deconvo-
lution algorithm, developed by Richardson and Lucy and presented in equation (3.24) [68] [69].

on+1(u) =
[(

i (u)

on(u)∗ s(u)

)
∗ i (−u)

]
on(u) (3.24)

This method has two clear advantages and one clear disadvantage:

• Advantages:

1. The smoothing properties of the algorithm are robust against incorrect lobes or spikes in the esti-
mation of the Point Spread Function

2. The algorithm is robust against noise if the number of iterations is restricted

• Disdvantage: Due to the smoothing properties described above, the algorithm is not very good at re-
storing fine details in case of an accurate Point Spread Function estimate

It was decided to implement the Richardson-Lucy algorithm through the use of the MATLAB algorithm
deconvblind(). This algorithm is based upon a version of the Lucy-Richardson algorithm described by [70]
which accelerates the algorithm to speed up convergence.

The difference in performance between the two algorithms was assessed during simulations in order to
determine the preferred deconvolution method for the final design of the phase diversity algorithm. The
results of this study are presented in chapter 5.

3.3. Chapter Summary
In this chapter, the simulation tool that was used for the end-to-end simulations of the system and phase
diversity algorithms was presented. The simulation tool, of which the architecture is described in figure 3.1,
consists of two distinct subroutines. The first subroutine simulates the imaging process on board the te-
lescope and a second subroutine simulates the phase diversity algorithm that uses the simulated detector
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measurements to estimate the wavefront error. The first subroutine is built around the MATLAB based ray
tracing tool FORTA that was developed by Dolkens specifically for simulation of the DST. FORTA simulates the
optical system based on the mechanical tolerance budgets that are given as input and provides a set of Point
Spread Functions, dependent on the detector, wavelength, and field angle. These PSF’s are convolved with
hyperspectral imaging data from NASA’s AVIRIS dataset, acting as the scene, at several sample wavelengths to
simulate the optical channel. Measurement noise is then added to the image to simulate the detector measu-
rement at each detector. The added noise consists of Gaussian noise as well as Poisson distributed Shot noise.
The second subroutine then applies pre-processing of these measurements in the image domain trough edge
treatment and possibly apodization, after which gradient-based optimization is used to minimize a broad-
band phase diversity metric described by Seldin [50]. The gradient descent algorithm used for this is called
Adam and is borrowed from the field of machine learning. As a final step, the estimated wavefront is used
for deconvolution of the original measurement to produce a reconstruction of the original scene that was
imaged. Most system and optimizer parameters are included as settings that can be changed so that a large
number of configurations could be simulated and their performance compared.

A strategy for this comparison, so that the optimum configuration could be found and its performance
analyzed, is described in the next chapter. This chapter will discuss how the software tool described was used
to find answers to the research questions posed in section 1.5.
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Simulation Strategy

The simulation tool discussed in chapter 3 provides the computational infrastructure for the comparison
of different phase diversity algorithms. This chapter will describe the simulation strategy that was used for
finding answers to the research questions posed in chapter 1. The strategy for obtaining relevant results that
provide a definitive answer to the research questions can be divided into five steps:

1. First, a number of parametric studies were performed to determine the sensitivity of the algorithm’s
performance to design and environmental parameters as well as the optimum combination of optimi-
zer settings. This was done through a set of Monte Carlo analyses. Each Monte Carlo analysis corre-
sponded to a single parameter for which different settings were tested. The phase diversity algorithm
was executed in an open-loop configuration which means that for each simulation the optimization
was only executed once to produce a wavefront error estimate, no iterative approach based on a defor-
mable mirror was used. At this stage, the performance of each of the simulations was expressed using
the original and residual Strehl ratios as well as the iteration count and run times of the optimizations.

2. After the optimum settings were determined, these settings were applied to the algorithm and anot-
her Monte Carlo analysis was performed. The aim of this analysis was to compare two configurations
for the optimizer, one configuration that assumed a uniform grey world spectrum and a second con-
figuration that assumed a spectrum calculated based on the averaging of the multispectral channel
measurements. This was done to test the hypothesis that the algorithm performance can be increased
by including the multispectral channel data in the optimization. The residual Strehl ratio was used as
the figure of merit for determining performance.

3. In the third step, the subframe selection algorithm that was developed was implemented to test whet-
her performance can be increased by careful selection of the subframe to which the phase diversity al-
gorithm is applied. This was tested by performing a Monte Carlo analysis comparing the performance
of the optimum algorithm configuration without the subframe selection algorithms to the performance
of the algorithms that used subframe selection. Again the Strehl ratio was used as the figure of merit

4. After the final configuration of the algorithm was selected, including decisions on using multispectral
data and/or subframe selection, a more thorough analysis of the algorithm was performed by assessing
not just the residual Strehl ratio, but also the RMS of the wavefront error as well as the quality of the
image reconstruction obtained through deconvolution

5. Finally, the phase diversity algorithm was tested with a deformable mirror in the loop to see if the al-
gorithm can be used for active control of the wavefront aberrations in the Deployable Space Telescope.
Performance was measured using the residual Strehl ratio and the RMS value of the wavefront error

The next sections will elaborate on the steps presented above, with section 4.1 explaining the strategy for
the parameter studies, 4.2 explaining the strategy for the multispectral data inclusion analysis, 4.3 elabora-
ting on the strategy for the subframe selection algorithm analysis, section 4.4 setting out the strategy for the
final Open-Loop performance analysis and section 4.5 dictating the strategy for the final Closed-Loop per-
formance analysis. An overview of the MATLAB files that the toolbox consists of can be found in appendix
D

47
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4.1. Parametric Studies
To be able to draw conclusions that can aid in determining the optimum design of the system, the impact of
critical system design parameters, as well as optimization settings on the performance of the phase diversity
algorithm, have to be determined. To achieve this, a sequence of parametric studies was performed for the
following system design parameters;

1. Number of Detectors

2. Pixel pitch

3. TDI-2 defocus

4. Along track field separation between TDI-1 and TDI-2

5. Mechanical tolerances

6. Unknown TDI-2 defocus error

7. Gaussian Signal to Noise ratio

8. Contrast in terms of mean photons per pixel

9. Chance of a dead pixel

10. Type of scene being imaged

In addition to the system design parameters, several setting parameters were tested for the phase diversity
algorithm with the aim of finding the optimum configuration. These are:

1. Number of Zernike orders used

2. Optimizer learning rate η

3. Number of wavelength samples

4. Size of the subframe

5. Apodization ratio

To ensure the results could be effectively compared, a set of baseline settings was determined as a starting
point for the parametric studies. These standard setting values are presented in table 4.1.

For each parametric study, a single parameter was changed while all the other settings remained constant.
Based on the results the relation between the parameter values and the algorithm performance could then
be established. An overview of the parameters that were studied including the parameter values for which
simulations were run is provided in table 4.2. For each step of the Monte Carlo analysis, the wavefront error
was calculated based on the mechanical tolerance settings. A wavefront estimation was then produced for
each of the parameter values through optimization with the phase diversity tool. This was repeated many
times for each of the parameter studies. Performing a large number of runs with varying wavefront errors
mitigates the effects of accidental peaks or troughs in performance for configurations that generally perform
poorly or very good, respectively. In a trade-off between statistical power and computational efficiency, it was
decided to run 50 simulations for every parameter.

During earth observation, several types of scenes with significantly different landscapes could be encoun-
tered. In order to simultaneously study the performance of the algorithm for different types of scenes, five
scenes were selected for imaging simulation from the AVIRIS dataset. The 50 runs that were performed for
each Monte Carlo analysis were evenly distributed over the five scenes, resulting in 10 runs per scene. The
scenes and their names are presented in figure 4.1

As stated earlier the performance of the method was measured by recording the original and residual
Strehl ratios of each of the simulations. The original Strehl ratio was simply be calculated as explained in
section 2.1. For calculation of the residual Strehl ratio, the estimated wavefront error was subtracted from the
actual wavefront error as shown in equation (4.1).

θr es (x, y) = θact (x, y)−θest (x, y) (4.1)
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Table 4.1: Table of standard settings for the parametric studies.

Parameter Value Unit
Number of detectors 2 -
Pupil Sampling Distance FORTA 1.02 mm
Tolerance Type Drift (see table 1.3) -
Number of Discrete Field Angles for PSF calculation 3 -
TDI 2 defocus 0.5 wavelengths
Phase Diversity Subframe Size 128 pixels
Detector Pixel Pitch 5 µm
Average photon count per pixel 104 -
Gaussian Noise SNR 100 -
Zernike Polynomials 36 (= 45 basis functions) -

Apodization ratio 0
pi xel sapodi zed

pi xel sunapodi zed

Learning Rate κ 0.001 -
Max Number of Iterations 1000 -
Defocus Error 0 µm
Step Tolerance (Fraction of initial Metric Value) 1 ·10−7 -

Table 4.2: Parameters for which a parameter study has been performed and the corresponding values for these parameters.

Parameter Values Unit
Number of Detectors [2,3] -
Pixel pitch [5,8,11] µm
TDI-2 defocus [0.01,0.25,0.5,0.75,1] mm
Field separation between TDI-1 and TDI-2 [1,1.5,2,2.5] x normal separation
Mechanical tolerances [1,1.5,2,2.5] x nominal
Unknown TDI-2 defocus error [0,1,2,3,5] µm
Gaussian Signal to Noise ratio [100,75,50,10] -
Contrast in terms of mean photons per pixel [1e2,5 ·102,1 ·103,5 ·104,1 ·104] photons/pixel
Chance of a dead pixel without correction [0%,0.1%,1%,10%] %
Chance of a dead pixel with correction [0.1%,1%,10%] %
Type of scene being imaged [Farm, Sea, Storm, Mountains, City] Type
Number of Zernike orders used [1,2,3,4,5,6,7,8] -
Optimizer learning rate [1 ·10−4,5 ·10−4,1 ·10−3,5 ·10−3,1 ·10−2] -
Number of wavelength samples [1,3,7,11,15] -
Size of subframe [64,128,256] pixels

Apodization ratio [0.0,0.25,0.5,0.75,1.0]
pi xel sapodi zed

pi xel sunapodi zed
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(a) Farm (image taken above Michigan).

(b) Storm (image taken above Arizona). (c) Sea (image taken above Gulf of Mexico).

(d) Mountains (image taken above New Mexico). (e) City (image taken above San Diego).

Figure 4.1: Scenes used for the imaging simulation.
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The residual wavefront error was then used to calculate the residual PSF, of which the peak value was then
divided by the peak value of the aberration-free PSF to arrive at the residual Strehl ratio as shown in equation
(4.2)

SRr es = max[sr es (x, y)]

max[saber r ati on− f r ee (u, v)]
(4.2)

The results of the parametric studies are presented in section 5.1.

4.2. Multispectral Data
To test whether the inclusion of the multispectral channel measurement data can increase the performance
of the phase diversity algorithm, another Monte Carlo analysis was performed. Again 50 runs were execu-
ted, divided equally over the five scene types. For each of the 50 wavefront errors that were generated using
FORTA, the phase diversity algorithm was run twice. Once with the assumption that the grey world spectrum
of the scene was uniform, i.e. all Tkl coefficients are equal. This was already implicitly assumed in all the
previous simulation runs executed in the parametric studies done up until this point. The second time the
algorithm was run values for the coefficients Tkl were calculated by simulating the multispectral channel
measurements of the multispectral channels defined in table 1.2. Simulation of the measurements was per-
formed using the following steps:

1. First the Multispectral channel PSFs were simulated by convolving the TDI-1 PSFs at each wavelength
with a pixel with dimensions that are four times the dimensions of the TDI-1 pixel dimensions. The
assumption of a multispectral channel pixel with four times the size of a panchromatic channel pixel
was made based on the fact the resolution of the multispectral channels will also be four times lower
than the resolution of the panchromatic channel

2. After that, the multispectral pixel PSF at each sample wavelength was convolved with the image at the
same wavelength and then added to the measurement corresponding to that sample wavelength as
indicated by table 1.2

3. As the last step in simulating the measurements the intensity measurement array in each of the chan-
nels was divided by the number of sample wavelengths in that band to compensate for the fact that
some of the multispectral channels contain more sample wavelengths than others

4. To arrive at the set of Tkl values, each of the intensity measurement arrays was summed to arrive at a
non-normalized value for Tkl and subsequently divided by the sum of these non-normalized Tkl values
to enforce the requirement that

∑Λ
l=1 Tkl = 1

This calculation implicitly assumes that the wavefront errors in the multispectral channel and panchro-
matic channel are identical. This will not be the case during operation. However, since the point spread
function influences only the spatial distribution of the intensity in the image plane and not the spectral con-
tent, the effect of this assumption on the result was expected to be negligible.

Comparison of the two configurations was again done using the residual Strehl ratio as the figure of merit.
The results of the study are presented in section 5.2.

4.3. Subframe Selection
Preliminary runs of the phase diversity tool showed that edge effects are prime contributor to estimation er-
rors. While image domain pre-processing was already implemented to mitigate edge artifacts resulting from
the application of the FFT algorithm, it was expected that the influence of edge effects on the estimation
could also be decreased by careful selection of the subframe to which the phase diversity algorithm is app-
lied. It was expected that better performance would be achieved if the ratio of intensity in the middle of the
subframe over intensity around the boundaries of the subframe was maximum. To find a subframe with a
high center intensity over boundary intensity, two different selection algorithms were proposed:

1. The Bright Peak algorithm. This algorithm simply searches for the point in the image with the highest
intensity and selects this point as the center of the subframe.
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Figure 4.2: Schematic representation of the three subframe selection methods.

2. The Dark Borders algorithm. This algorithm convolves the image with a square array of a slightly larger
size than the subframe. The has value 1 around the edges of the subframe and value 0 in the center. The
result is then cropped to remove the convolution results at the boundaries. The last step is the selection
of the point of minimum intensity in the convoluted array, which corresponds to the point where the
sum of the intensity in the region around the boundaries of the subframe is minimum. This point is
then selected as the center point for the subframe.

Through simulation, these two algorithms were tested against each other and against the standard center
frame selection approach, i.e. selecting the central frame of the image as the frame to which phase diversity
is applied without taking into account the intensity distribution over the image. A schematic representation
of these three selection methods is presented in figure 4.2. A comparison was done through a Monte Carlo
analysis. The figure of merit was once again the residual Strehl ratio.

4.4. Open-Loop Performance
After the final configuration of the algorithm was determined based on the parametric studies, the multis-
pectral measurement inclusion studies and the subframe selection studies, a final set of open loop tests was
executed to assess the performance of the algorithm. The performance was more extensively analyzed than
in the previous studies so that a more complete overview of the strong points and flaws of the algorithm was
obtained. The figures of merit that were used are:

1. The residual Strehl ratio

2. The RMS OPD in terms of wavelengths of 450nm

3. A qualitative comparison of the original scene, the TDI-1 measurements and the deconvolution results

The reason for the selection of these figures of merit was that they allow for convenient verification with
respect to the functional system requirements presented at the beginning of this report. In addition, assessing
a wavefront error in terms of both RMS as well as Strehl ratio is robust since Strehl ratio focuses more on the
image quality, and RMS focuses more on the wavefront shape estimation accuracy.

While sufficient discussion on the topic of the residual Strehl ratio has already been provided earlier in
this report, it is necessary to elaborate a bit further on the topic of the Root Mean Square calculation. While
the basic concept was already discussed in section 2.1, an additional pre-processing step was included in the



4.5. Closed-Loop Performance 53

calculation of the RMS value after the residual wavefront error was calculated by subtraction of the wavefront
error estimate from the actual wavefront error. The residual wavefront error still contains global tip/tilt and
piston terms that will add to the RMS value. However, a global piston error in the wavefront error is inconse-
quential in the calculation of the resulting image since it will not cause any blur or shift. While global tip/tilt
does cause distortion of the image, it does not cause a blur and the resulting loss of information. To ensure
that the RMS value is an actual measure of the optical performance of the system, it is therefore important to
remove the global tip/tilt and piston terms from the residual wavefront error before calculating the RMS, this
was done during the algorithm’ open-loop performance assessment.

After the open-loop algorithm results were assessed in terms of the residual Strehl ratio and RMS error, a
qualitative analysis of the simulations that resulted in a poor wavefront error estimate was performed. Based
on this analysis the algorithm was updated and a second assessment of the results was performed.

Finally, the qualitative comparison of the deconvolution results was performed by comparing the original
scene, the TDI-1 measurements, the Richardson-Lucy reconstructions and the Wiener Filter reconstructions
for four representative cases.

4.5. Closed-Loop Performance
Finally, after the optimum design parameters and optimizer parameters were established, a closed-loop
phase diversity algorithm was simulated that includes a deformable mirror in the loop for active correction
of the wavefront error. The active optics elements that were used for control of the wavefront error in the
simulations are:

1. The M1 segment control system which controls the tip, tilt, and piston of each of the four primary
mirror segments. The control position for these four controllers is derived from the estimated segment
tip, tilt and piston terms.

2. An ideal deformable mirror located at the position indicated in figure 1.9 that is controlled using a mo-
dal control scheme. A set of global Zernike coefficients is provided as input, resulting in a mirror shape
that is a weighted linear combination of Zernike polynomials. The input coefficients are determined
from the global shape parameters estimated by the phase diversity algorithm.

The simulations were executed by Dolkens using FORTA in combination with the PD toolbox developed
in this project. Three distinct configurations were modeled:

Configuration 1: A configuration in which the mechanical tolerance budgets presented in table 1.3
were assumed as a starting point. This means that the performance of the first iteration was expected
to be similar to the performance predicted by the open-loop performance analysis results in section
5.4.

Configuration 2: A configuration similar to configuration 1. in all aspects, except that a different, up-
dated set of mechanical tolerance budgets was assumed. This set of tolerance budgets is presented in
table 4.3. The value that has been changed with respect to the old Drift tolerance budgets is the tilt
around Z for the M1 mirror.

Configuration 3: A configuration in which a calibrated system is assumed. Such a system is generated
in two steps. First the Deployment and Coarse Alignment budgets from table 1.3 are assumed for gene-
ration of the wavefront error. After that calibration using a quick phasing algorithm based on the use
of the piston camera measurements is executed. This phasing method is described by Dolkens [71].
Finally, the Drift tolerances as presented in table 4.3 are added. The resulting system will then form the
starting point for the closed-loop performance simulations. This configuration is fundamentally dif-
ferent from the other configurations since simulation starts from a situation in which the deformable
mirror and primary mirror segments are already set at a nonzero position.

For each of these configurations, 100 simulations will be run, and each simulation will count seven itera-
tions, i.e. seven PD algorithm executions and subsequent active optics reconfiguration steps. Performance
of the closed-loop simulations was measured in terms of the RMS error and the residual Strehl ratio. A com-
parison will be made between:

1. The initial performance of the optical system
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Table 4.3: Overview of the updated mechanical tolerance budgets used for configuration 2 in the closed-loop performance simulations.

Element
Position [µm] Tilt [µrad]

Radius [%] Shape Error [nm]
X Y Z X Y Z

Deployment and Coarse Alignment Tolerances
M1 2 2 2 2 4 50 1 ·10−3 50
M2 15 15 10 100 100 100 1 ·10−2 25
M3 4 4 4 10 10 50 1 ·10−3 10

In-Orbit Drifts
M1 2 ·10−2 2 ·10−2 2 ·10−2 1 ·10−2 2 ·10−2 51̇0−2 1 ·10−4 5
M2 4 4 2 6 6 12 1 ·10−4 5
M3 1 ·10−1 1 ·10−1 1 ·10−1 1 1 5 1 ·10−4 5

Stability Budget
M1 5 ·10−3 5 ·10−3 5 ·10−3 2.5 ·10−3 1 ·10−2 5∗10−1 n/a n/a
M2 1 1 5 ·1−1 1.5 1.5 3 n/a n/a
M3 2.5 ·10−2 2.5 ·10−2 2.5 ·10−2 2.5 ·10−1 2.5 ·10−1 1.25 n/a n/a

2. The performance of the optical system after the seven iterations have been completed

3. The performance at the iteration where performance was optimum

4.6. Chapter Summary
This chapter established the strategy that was used for answering the research questions using the simulation
tool described in chapter 3. This strategy can be separated into five distinct steps. The first step was deter-
mining the sensitivity of the algorithm performance to environmental parameters such as noise and contrast
as well as design parameters such as the pixel size. In addition, a broad range of settings parameters for the
algorithm was tested so that the optimum configuration for the algorithm could be determined. These first
studies are called parametric studies.

The second step and third step were aimed towards answering the secondary research questions. Step
two compared the performance between a configuration in which the grey world spectrum of the image was
assumed to be uniform to a configuration which calculated a grey world spectrum based on the measurement
data from the multispectral channels. Step three compared several methods for selection of the subframe to
which the phase diversity algorithm is applied.

Based on the results from the first three steps a final open-loop PD algorithm configuration was deter-
mined of which a more in-depth performance analysis was performed in step four, including assessment
of the quality of deconvolution results. This performance analysis involved a second iteration in which the
performance was reassessed after the application of a post-processing algorithm.

Finally, a closed-loop configuration was simulated in which the wavefront error estimate was used as in-
put for the deformable mirror after which the algorithm was executed again. This was done for five iterations
after which the final system performance was assessed.

The next chapter will present the results of the simulation steps described in this chapter.
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Results and Discussion

In the last chapter, a simulation strategy for answering the research questions was outlined. In this chapter,
the results of these simulations are presented. The results are presented and discussed in five parts. Section
5.1 treats the results of the parametric studies, section 5.2 discusses the results of the multispectral data in-
clusion study, section 5.3 presents the results of the subframe selection study, section 5.4 will deal with the
results of the open-loop performance analysis and section 5.5 deals with the results of the closed-loop perfor-
mance analysis. The results are all presented graphically in this chapter, but the reader is referred to Appendix
C for tabulated results including information about the run times and iteration counts, the latter indicates the
number of iterations it took the algorithm to converge.

5.1. Parametric Studies
In the following sections, the results of the parametric studies are presented, accompanied by a discussion
on the implications the results have for the system design and optimizer settings. The results are tabulated in
appendix section C.1.

5.1.1. Number of Detectors
Two different configurations were compared. A three detector configuration and a three detector configura-
tion. The defocus errors used in these configurations are presented in table 5.1. Details on the performance
of the simulations are graphically represented in figure 5.1, which show a histogram plot of the Strehl ratio
and the Strehl ratio increase for each of the configurations.

From the results, it is apparent that the addition of a third detector does slightly increase the overall per-
formance of the algorithm, albeit at the cost of additional computation time. A closer look at table C.1 shows
that the larger run time for the 3 detector configuration is the result of the additional time it takes for calcula-
tion of the metric and gradient.

It can be observed that both the absolute performance of both configurations as well as the performance
relative to the other configuration also changed depending on the type of scene. For the Farm and Mountains
scenes, scenes that could be classified as colorful and smooth natural landscapes, the performance for both
configurations was around 0.8 on average. This indicates diffraction-limited imaging, and the difference bet-
ween their performance seems to be negligible. For the Storm scene the overall performance of the algorithm
was less, resulting in a significantly lower residual Strehl ratio, only marginally better than the original Strehl
ratio. Two possible causes of this are:

1. Due to the uniform nature of the scenes differences in measured values between adjacent pixels is

Table 5.1: Known detector defocus errors.

Configuration
Known Defocus Errors [mm] Relative Field Angle [mr ad ]
Detector 1 Detector 2 Detector 3 Detector 1 Detector 2 Detector 3

2 Detectors 0 0.5 - 0.3479 0.3778 -
3 Detectors 0 0.5 0.25 0.3479 0.3778 0.3178
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Figure 5.1: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.

smaller than in other scene types. The ratio between the average difference between two pixels over
the image noise is thus effectively smaller. This increases the impact of noise

2. Distinct features in a scene make it easier to identify the Point Spread Function footprint. As an exam-
ple, the limit case of individual bright starts against a dark background is taken. In these images, the
shape of the Point Spread Function is very recognizable.

In general, it can be observed that the better overall performance of the 3 detector configuration was
mostly the result of the superior performance for the urban area and ocean type scenes. The performance
increase comes at the cost of a higher computational load, weight, volume, and complexity of the design, in
discussions with Dolkens it was decided that the addition of the third detector is therefore not feasible.

5.1.2. Pixel Pitch
The three different pixel pitches that were simulated are 5µm, 8µm and 11µm. Figure 5.2 presents a histo-
gram representation of the residual Strehl ratio and Strehl ratio increase distributions per configurations.

It can be observed that the time per iteration was approximately the same for each of the simulated pixel
pitches, which was expected since the size of the subframe to which the phase diversity algorithm is applied
remains the same in terms of pixel number. It can be observed that on average the 8µm pitch configuration
took fewer iterations to converge, but the run time of the other two configurations was only about 6s or 6.7%
higher.

In line with expectations, the smaller pixel pitch performed better than the larger pixel pitches, because
the extent to which the image was undersampled is less. The decrease in Strehl ratio was very steep with a
decrease in the average residual Strehl ratio of 0.15 when the pitch was increased from 5µm to 8µm. It should
be noted that the Sea scene presents an interesting anomaly, for this scene the largest pixel pitch, 11µm,
outperformed the 5µm configuration. It is expected that this is coincidental and caused by a different noise
distribution. Due to the limited time available and the low urgency of this particular question, no further
studies will be performed to investigate this phenomenon.

5.1.3. TDI-2 Defocus
The performance of the configuration, with TDI-2 defocus varying from 0.01mm to 1mm is presented graphi-
cally in figure 5.3.

It can be observed that the performance was highest for the 0.25mm and 0.5mm configurations, which
both showed an average residual Strehl ratio of 0.69. The 0.25mm showed better performance for the Sea
scene type, but the 0.5mm showed superior performance on the storm scene type. While performance in
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Figure 5.2: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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Figure 5.3: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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terms of average residual Strehl ratio was similar for both configuration the 0.25mm showed better perfor-
mance when the run time is also taken into accounts. Convergence for the 0.25mm configuration was about
102s on average which is 10s faster than the 0.5mm configuration. This is due to the fact that the 0.25mm
defocus configuration takes fewer iterations to converge. The difference is small and the exact reason for this
is difficult to determine due to the complexity of the algorithm.

5.1.4. Field Separation
Simulations were performed for the nominal field separation between the detectors in the along-track di-
rection, 1.5 times the nominal separation, 2 times the nominal separation and 2.5 times the nominal separa-
tion between detectors. The results are presented in figure 5.4.

Figure 5.4: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.

From these results, it can be observed that increasing the field separation between the detectors in the
along track direction up to a factor of 2.5 did not noticeably affect the performance in terms of residual Strehl
ratio or run time. This indicates that the wavefront error could be considered field independent within the
interval tested. Therefore the field separation can be changed if desired for decreasing weight, volume, com-
plexity or manufacturability of the system.
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5.1.5. Mechanical Tolerances
For this analysis, the Mechanical Drift tolerance budgets were multiplied by a factor 1, 1.5, 2 and 2.5 respecti-
vely. The results of this analysis are presented in figure 5.5.

Figure 5.5: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.

While, as expected, the average residual Strehl ratio decreased steeply with the relaxation of the mecha-
nical tolerance budgets for all scene types, it is interesting to note that the average increase in Strehl ratio
achieved through the application of phase diversity did not noticeably decrease. The average Strehl ratio in-
crease is actually higher for the cases of 1.5 and 2 times the nominal tolerances, and slightly higher for the
2.5 case. This could be explained by the fact that Strehl ratio does not increase linearly with decreasing wa-
vefront aberrations, but increases more slowly with RMS error as the RMS error becomes smaller. However,
the increase in Strehl ratio, even for relaxed tolerances, has interesting implications for a possible closed-loop
aberration correction system where phase diversity is used to estimate a wavefront error that is then used as
a control input for the DM. Since an increase in Strehl ratio can still be achieved if the tolerance budgets are
multiplied by at least 2.5, it might be possible to achieve a stepwise increase in the Strehl ratio up until a high
residual Strehl ratio, starting from a low original Strehl ratio. However, a few test runs showed that no incre-
ase in Strehl ratio is achieved on average if the Deployment and Coarse Alignment budgets from table 1.3 are
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applied, which suggest the algorithm performs poorly when wavefront errors are very large.
With regard to convergence, it can be observed from the number of simulations that converged in less

than 1000 iterations that convergence becomes slightly slower for higher tolerances.

5.1.6. Unknown TDI-2 Defocus Error
Performance is again presented graphically in 5.6 for configurations that include an unintended TDI-2 defo-
cus error ranging from 0µm tot 5µm.

From these results, it can be observed that an error in the position of the TDI-2 detector up to 5µm is
unlikely to have any significant detrimental effect on the performance of the phase diversity algorithm. The
run times listed also show no noticeable differences between the time required for the algorithm to converge.
This means that the positioning tolerance of the TDI-2 detector does not have to be tighter than 5µm. At a
later stage, this study should be repeated for even larger error values than 5µm, because pixel pitch generally
correlates negatively to the price of a detector.

5.1.7. Gaussian Signal to Noise Ratio
An overview of the performance for configurations with Signal to Noise ratios of 100, 75, 50 and 10 is presented
in figure 5.7.

Quite surprisingly, figure 5.7 shows no significant reduction when the SNR was reduced from 100 to 75
and 50 and only a slight reduction in the residual Strehl ratio when the SNR was further reduced to 10. No
significant differences in the run times for the different configurations could be observed.

However, it can be observed that the impact of a reduction of the SNR is dependent on the type of scene
that is being imaged. The performance was similar for most scenes. For the Farm scene type the low SNR case
even outperformed the higher SNR case, although this seems to be due to an incidental spike in performance.
The SNR = 10 residual Strehl ratios, however, were consistently and significantly lower than those of the other
three cases for the Storm scene. A possible explanation is the smaller variation per pixel in terms of signal due
to the relatively uniform nature of the scene. Because variations are small, its harder to differentiate noisy
variation from actual details. The effective SNR of the scene could thus be considered lower.

5.1.8. Contrast
Results of the Monte Carlo analysis for the contrast in terms of the mean photon count per pixel are presented
graphically in 5.8.

There was virtually no difference in performance between the configuration with a mean photon per pixel
count of 104 and the configuration with a mean photon per pixel count of 5×103. However, when the photon
count was decreased to 103 there was an observable decrease in performance, albeit small. This is expected
to be due to a decreased SNR and thus a higher impact of noise on the estimation. At this stage, not enough
analyses have been performed to provide an accurate estimate of the expected mean photon count that will
be experienced during operation. However, when such an estimate is available at a later stage of the project,
the result of this parameter study should be reviewed. If the mean photon per pixel count is well above 103

no mitigation strategy is required. However, if the mean photon per pixel count is 103 or lower it might be
necessary to implement a mitigation strategy to prevent a reduction in performance.

5.1.9. Dead Pixels
Although dead pixels are not included in the general simulation tool due to the fact that nothing is known
yet about the TDI detectors that will be selected, a sensitivity analysis was performed in the form of a Monte
Carlo analysis. During each simulation step, the residual Strehl ratio was calculated for seven distinct cases.
A preset probability of a pixel being dead, different for each case, was used to simulate the dead pixels. The
cases that have been simulated are 0%, 0.1%, 1% and 10% chance of a pixel being dead. For the 0.1%, 1%
and 10% cases additional simulations were run where all zero valued pixels were replaced by the mean of
their four direct neighbors. The former simulations are called the uncorrected cases, the simulations that
implement averaging of neighbors are called the corrected cases. An overview of the performance of each of
the configurations is presented in figures 5.9 and 5.10.

It can be seen that the performance of the algorithm deteriorated quickly with increasing probability of
dead pixels. A 0.1% chance of a dead pixel already resulted in a significant decrease in residual Strehl ratio.
However, the graphs on the right side of the figure show that performance using the measurements corrected
through interpolation at the locations of dead pixels was virtually identical to the performance of the 0% dead
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Figure 5.6: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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Figure 5.7: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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Figure 5.8: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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Figure 5.9: Residual strehl ratio resulting from the simulations for both uncorrected as well as corrected dead pixels (plot 1 of 2).
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Figure 5.10: Residual strehl ratio resulting from the simulations for both uncorrected as well as corrected dead pixels (plot 2 of 2).

pixel case up until a 0.1% change of a dead pixel. Even for a 1% probability, the decrease in average residual
Strehl ratio was only about 0.1 compared to the 0% case. This means that the performance of the algorithm
is not significantly impacted when the percentage chance of a dead pixel is below 1%. If the chance of a dead
pixel is found to be higher than 1% in a later stage of the design, this analysis should be repeated to quantify
the loss in performance.

5.1.10. Scene Type
The results of the comparison study for the Farm, Sea, Storm, Mountains and City scene types are presented
in histogram form in figure 5.11.

From these results it can be observed that the phase diversity algorithm performed best for Farm and
Mountains scene types and worst for the Sea and Storm scene types. This suggests that the algorithm works
better when smooth but colorful scenes with several distinct features are being imaged. The reasons for this
might be the same as the reasons discussed in subsection 5.1.1, repeated here:

1. Due to the uniform nature of the scenes differences in measured values between adjacent pixels is
smaller than in other scene types. The ratio between the average difference between two pixels over
the image noise is thus effectively smaller. This increases the impact of noise

2. Distinct features in a scene make it easier to identify the Point Spread Function footprint. As an exam-
ple, the limit case of individual bright starts against a dark background is taken. In these images, the
shape of the Point Spread Function is very recognizable.

The poor performance for the City scene type is attributed to the fact that the subframe selected for the ap-
plication of phase diversity has very bright borders and therefore suffers from severe edge effects. It can also
be seen that convergence was also significantly slower for the the Storm, Sea and City scene types compared
to the natural Mountains and Farm scene types. It is therefore expected that the highest system performance
is achieved if the phase diversity algorithm is applied to smooth natural scenes as much as possible. This
should be considered in the final design of the aberration correction strategy.

However, in the case of the Sea, Storm and City scene types the algorithm still achieved a residual Strehl
ratio that is higher than the original Strehl ratio on average.

5.1.11. Zernike Order
The performance for the configurations that use Zernike polynomials up to order 8, 7, 6, 5, 4, 3, 2 and 1
respectively for estimation of the wavefront error are presented in figures 5.12 and 5.13.

Looking at these results, it can be seen that there were significant differences in performance between the
different configurations, with a peak at Zernike order 4. It is expected that using Zernike polynomials up to
order 4 provides a good trade-off between achieving enough fitting accuracy and prevention of overfitting.
It would thus be a logical choice to use Zernike polynomials up to order 4 for construction of the wavefront
error. However, looking at the optical system requirements it can be seen that one of the requirements for the
system is that the RMS of the wavefront error in terms of the Optical Path Difference expressed in wavelengths
λ0 = 450nm, should be below 0.07. Therefore, it should be verified that the fitting error when using Zernike
polynomials up to order 4 is well below 0.07λ0.

In order to check this, a decomposition algorithm was constructed that uses a gradient-based optimiza-
tion scheme to find the set of Basis functions that lead to the lowest Least Squares fitting error. Once this set
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Figure 5.11: Residual strehl ratio and strehl ratio increase distribution resulting from the simulations.
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Figure 5.12: Residual strehl ratio resulting from the simulations for the number of Zernike polynomials (plot 1 of 2).
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Figure 5.13: Residual strehl ratio resulting from the simulations for the number of Zernike polynomials(plot 2 of 2).

of Basis functions was found, a fitting was constructed and the residual error between the actual wavefront
which measured in terms of RMS error expressed in λ0. The basis functions used for decomposition were the
same as the basis functions for the phase diversity algorithm, i.e. global Zernike polynomials with the global
tip/tilt and piston terms replaced by tip, tilt and piston terms for each of the individual M1 segments.

Using FORTA, 50 different wavefront errors were generated. For each of these wavefront errors, the de-
composition algorithm was executed twice. Once using Zernike polynomials up to order 5 and once using
Zernike polynomials up to order 4. The resulting RMS distributions are presented in figure 5.14. As can be
observed from the figure the residual error after fitting was well below a factor 20 smaller than 0.07λ0 in all
cases. It can even be observed that the error was lower when using Zernike polynomials up to order 4 than
when using Zernike polynomials up to order 5. However, this must be a result of the performance of the
fitting algorithm, which apparently performs better when fewer basis functions are used, since the configu-
ration with polynomials up to order 5 should by definition result in an equal or lower fitting error if a perfect
fitting algorithm is used.

Figure 5.14: RMS in terms of λ0 = 450nm of the residual wavefront error after fitting using Zernike polynomials up to order 5 (left) and
up to 4 (right).

Finally, it was decided that using Zernike polynomials up to order 4 is the preferred setting for the algo-
rithm. This was verified later in the combined parameter tests in section 5.1.16

5.1.12. Learning Rate
The average residual Strehl ratios that have resulted from the Monte Carlo analysis with varying learning rate
κ, which is defined in section 3.2.4. The results for learning rates 1×10−4, 5×10−4, 1·10−3, 5×10−3 and 1×10−2

are presented in histogram form in figure 5.15.
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Figure 5.15: Residual strehl ratio resulting from the simulations for the learning rate.



5.1. Parametric Studies 71

It can be observed that the performance in terms of Strehl ratio was similar for most learning rates, with
the exception of κ = 1× 10−4 and κ = 1× 10−3 for which a significantly lower average residual Strehl ratio
can be observed. The difference becomes apparent when looking at the run times for the different learning
rates. It can be seen that the configuration with a learning rate of 1×10−2 had a convergence time that was
on average more than 6 times faster than the average convergence time of all the other configurations. This is
attributed to the more aggressive convergence behavior resulting from a higher learning rate. It was therefore
decided to use this learning rate during further analysis of the phase diversity algorithm.

5.1.13. Number of Wavelength Samples
The numbers of wavelength samples that were simulated are 1, 3, 7, 11 and 15. Information about the perfor-
mance of the configuration is once again represented graphically in figure 5.16.

It was expected that increasing the number of wavelength samples used would increase the accuracy of
the estimate at the cost of a linear increase of the computation time with the sample number. This is due to
the fact that a gradient term has to be calculated for every wavelength sample. Looking at the run times an
expected pattern can be observed, computation time per iteration increased more or less linearly with the
number of sample wavelengths used. With respect to iterations, it can be seen that the configuration that
used only a single wavelength sample required slightly more iterations to converge on average than the other
four configurations. Among the other four configurations, there was no significant difference in terms of the
number of iterations required.

Looking at the performance in terms of the residual Strehl ratio, the same pattern can be observed. While
the single sample configuration was significantly outperformed by the other four configurations, only a slight
difference was found among the other four in terms of performance. This was contrary to the expectations.
This seems to suggest that using a broadband phase diversity algorithm does indeed make a significant dif-
ference in performance, but increasing the number of wavelength samples beyond three does not result in a
further increase in performance. It was therefore decided to set the number of wavelength samples to 3 since
it provides the optimum balance between performance in terms of Strehl ratio and convergence speed.

5.1.14. Subframe size
The Monte Carlo analysis done for the subframes with side lengths of 256, 128 and 64 pixels resulted in the
performance presented in figure in figure 5.17.

While it can be observed from the table that the time per iteration was much higher for the larger subframe
size, increasing the size of the subframe did have a noticeable positive effect on the performance of the al-
gorithm. It can be seen that the configuration using a subframe with a side length of 256 pixels consistently
outperformed the configurations with smaller side lengths. It is hypothesized that using a larger subframe
reduces the impact of edge effects.

Because of the stringent requirements on the Strehl ratio and maximum RMS value for the wavefront
error it was decided to further investigate the effect of increasing the subframe size to 256×256 pixels, which
is further discussed later in this section. Due to the limited size of the images taken from the AVIRIS dataset,
testing for even larger subframe size lengths was not possible, but it is possible that a further increase in the
subframe size could lead to even higher performance at the cost of extra computation time.

5.1.15. Apodization
Five configurations have been simulated for configurations with apodization ratios of 0.0, 0.25, 0.5, 0.75. The
results can be found in figure 5.18.

Looking at the average run times of the configurations it can be observed that, except for the poor conver-
gence behavior of the 0.25 apodization ratio configuration, convergence behavior and iteration count were
similar between the different configurations. In terms of residual Strehl ratio, it can be observed that both
the 0.0 as well as the 1.0 ratio configuration stand out among the rest due to superior performance. It is sus-
pected that the reason for this is the absence of sharp edges in both configurations since edge effects due
to the implicit assumption of continuity by MATLAB’s 2D FFT (fft2) algorithm are actively removed for the
0.0 ratio configuration using the method described in section 3.2.2. The 1.0 ratio configuration has no sharp
edges due to the low steepness in the edges of the apodization window.

Since the performance of the 0.0 and 1.0 ratio configurations is very similar, it was decided to continue wit-
hout apodization applied to the subframe. The reason for this is that a series of preliminary, non-documented
tests showed the optimum apodization ratio to be very dependent on the settings parameters, while the edge
treatment method developed by Mahmood showed excellent performance in all cases.
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Figure 5.16: Residual strehl ratio resulting from the simulations for the number of wavelength samples.
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Figure 5.17: Residual strehl ratio resulting from the simulations for the subframe size.
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Figure 5.18: Residual strehl ratio resulting from the simulations for the apodization ratio.
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Table 5.2: Configurations that are simulation in the combined parametric study.

Configuration no. d (TDI-2 defocus in mm) N (subframe side length in pixels) L (no. of wavelength samples) κ (Learning rate)
1 0.25 128 7 1 ·10−3

2 0.25 256 7 1 ·10−3

3 0.25 256 3 1 ·10−3

4 0.25 256 7 1 ·10−2

5 0.25 256 3 1 ·10−2

6 0.25 256 7 1 ·10−3

7 0.25 256 3 1 ·10−3

8 0.25 256 7 1 ·10−2

9 0.25 256 3 1 ·10−2

5.1.16. Combined
Up until now the parametric studies only studied the impact that changing a single parameter had on the
overall performance of the algorithm. Since testing every possible combination of parameters was not vi-
able due to the vast computational time that would be required, a selected number of configuration was
compared through a Monte Carlo analysis with the aim of finding the parameter set that yields the optimum
performance. The criteria for selection of these parameters were as follows:

1. The parameter study results show that performance is sensitive to changes in the parameter

2. The parameter changes lead to a design that could potentially meet the non-optical requirements as
well (this is why the 3 detector configuration was left out for example)

3. The parameter changes are known to be realistic (for example, because of this criterion pixel pitch
values of below 5µm and increasing the SNR budget were left out)

Based on these criteria the following parameters were selected:

1. The TDI-2 defocus (measured in mm). Changing this parameter does not add additional cost and has
no consequence for any other subsystem.

2. The maximum Zernike order. A software setting that does not require any changes to the design.

3. The learning rate. Also, a software setting that requires no changes.

4. The number of wavelength samples. Software setting.

5. The size of the subframe to which the algorithm is applied. Software setting.

Several combinations of the optimum values found in the parametric studies were selected for the si-
mulations. An overview is provided in table 5.2. Apart from the parameters mentioned here, all parameters
values were identical to the values used for the baseline configuration described in table 4.1. It can be ob-
served that for this first round of combined parametric simulations the TDI-2 defocus was kept constant at
0.25mm, which is the optimum value found in the TDI-2 defocus study performed earlier. The configurations
listed in the table were compared through a Monte Carlo analysis with the same set up as for the individual
parameter studies: 50 runs were executed per configuration, distributed evenly over the five scene types. The
performance for each of the configurations is presented graphically in figures 5.19 5.20.

It can be seen from these results that the highest performance in terms of residual Strehl ratio was achie-
ved by configuration number 9. Results of this combined study were compared to the results of the learning
rate study presented in figure 5.15, the subframe size study presented in figure 5.17 and finally the Zernike
order study presented in figures 5.12 and 5.13. It was noted that the results do not show a noticeable impro-
vement compared to the best results from these individual parameter studies. It was therefore decided to
take the configurations with the best performance, configuration 9, and run a second Monte Carlo analysis
in which the TDI-2 defocus was varied. The configurations that were tested in this analysis are presented in
table 5.3. Results of this second combined study are presented in table C.16.

From these results two interesting observations can be made from these results:

1. The 0.5mm TDI-2 defocus configuration with subframe size n = 256 provided the best performance
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Figure 5.19: Residual strehl ratio resulting from the simulations for the combined configurations (plot 1 of 2).
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Figure 5.20: Residual strehl ratio resulting from the simulations for the combined configurations (plot 2 of 2).

Table 5.3: Configurations that are simulation in the second combined parametric study.

Configuration no. d (TDI-2 defocus in mm) N (subframe side length in pixels) L (no. of wavelength samples) κ (Learning rate)
1 0.25 128 3 1 ·10−2

2 0.25 256 3 1 ·10−2

3 0.5 256 3 1 ·10−2

4 0.75 256 3 1 ·10−2

5 1 256 3 1 ·10−2



78 5. Results and Discussion

Figure 5.21: Residual strehl ratio resulting from the simulations for the combined configurations.
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2. Performance of the Baseline configuration came in a close second in terms of Strehl ratio. However,
when it came to run times, the baseline configuration with 0.25mm and n = 128 outperformed the
other configurations by a factor of approximately 2

It was therefore decided to select two configurations for further analysis. An overview of both selected
configurations is provided in tables 5.4 and 5.5 respectively.

Table 5.4: Parameter settings for phase diversity algorithm configuration 1.

Parameter Value Unit
Number of detectors 2 -
TDI-2 defocus 0.5 wavelengths
Phase Diversity Subframe Size 128 pixels
Detector Pixel Pitch 5 µm
Zernike Polynomials 15 (= 24 basis functions) -

Apodization ratio 0
pi xel sapodi zed

pi xel sunapodi zed

Learning Rate κ 0.01 -
Max Number of Iterations 1000 -
Step Tolerance (Fraction of initial Metric Value) 1 ·10−7 -
Number of wavelength samples 3 -

Table 5.5: Parameter settings for phase diversity algorithm configuration 2.

Parameter Value Unit
Number of detectors 2 -
TDI-2 defocus 0.5 wavelengths
Phase Diversity Subframe Size 256 pixels
Detector Pixel Pitch 5 µm
Zernike Polynomials 15 (= 24 basis functions) -

Apodization ratio 0
pi xel sapodi zed

pi xel sunapodi zed

Learning Rate κ 0.01 -
Max Number of Iterations 1000 -
Step Tolerance (Fraction of initial Metric Value) 1 ·10−7 -
Number of wavelength samples 3 -

5.2. Multispectral Data
The effect of inclusion of multispectral data on performance was estimated by using the setup described
in section 4.2. A Monte Carlo Simulation analysis was performed comparing four configurations, the two
configurations described in the previous section without using multispectral data and the same two configu-
rations but with the inclusion of multispectral data in the algorithm. Information about the performance can
be found in figure 5.22. The results are tabulated in appendix section C.2.

From the results of the Monte Carlo analysis, it can be seen that on average the performance of the phase
diversity algorithm slightly decreased, although negligible, when the multispectral data was included in the
calculation. While this may seem improbable, it must be noted that the broadband phase diversity metric is
based on the grey world assumption. It might be possible that the theoretical optimum grey world spectrum
that would lead to the best performance is not correlated with the average spectrum of the image. Due to
time constraints, it was decided that this correlation would not be investigated further within the scope of
this project.

Based on the results of this study it was concluded that performance cannot be increased by using just the
multispectral measurement averages to estimate the grey world spectrum, although further research might
indicate a different way in which multispectral data can be used for improving the phase diversity algorithm
performance.



80 5. Results and Discussion

Figure 5.22: Residual strehl ratio resulting from the simulations for the Multispectral channel in-the-loop.
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5.3. Subframe Selection
While two configurations were selected based on the results of the parametric studies, the limited size of the
AVIRIS pictures made application of the subframe selection algorithms to a frame of size 256×256 infeasible.
It was therefore decided to test the algorithms using only configuration 1, which applied phase diversity to a
subframe of size 128×128. The average residual Strehl ratios as well as the run times and iteration counts for
the simulations of subframe selection algorithms Center Frame, Bright Peak and Dark Borders can be found
in figure 5.23. The results are tabulated in appendix section C.3.

Figure 5.23: Residual strehl ratio resulting from the simulations for the selection algorithm.

Run times and iteration counts were virtually identical for all subframe selection algorithms. However,
large differences can be observed between the residual Strehl ratios the three subframe selection algorithms.
While both the Bright Peak and Dark Borders algorithms performed better than the original Central Frame
algorithm, the Bright Peak performed significantly better than the Dark Borders algorithm. It is expected that
this is due to the fact that selecting a point of high intensity at the center directly increases the ratio of the
center intensity over border intensity for every point near the image borders. The Dark Borders algorithm
however, minimizes the average intensity at the image borders. It could very well be that while the average
intensity is low, some local peaks are present close to the borders, which would negatively impact perfor-
mance.

It was decided to use the Bright Peaks algorithm for subframe selection during the closed-loop and open-
loop performance tests.

5.4. Open-Loop Performance
To assess the performance of the final two configurations, which are the configurations presented in tables
5.4 and 5.5 without the inclusion of multispectral data in the estimation process and with the Bright Peaks
algorithm for selection of the subframe, a Monte Carlo analysis of 400 simulation runs was executed. The
results of the analysis are presented in the form of histograms that show the residual Strehl ratio as well as
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the Strehl ratio increase in figure 5.24. A histogram representation of the residual Root Mean Square error as
well as the RMS error decrease is presented in figure 5.24. In these two figures, the lower and upper limit for
the residual Strehl ratio and residual RMS error respectively, dictated by requirements, have been plotted as
a solid red line. In addition to these results it was found that for configuration 1 and 2 the percentage of si-
mulation runs that resulted in an estimation accuracy compliant with requirements are = 85.2% and = 82.8%
respectively in terms of residual Strehl ratio, and = 79.4% and = 75.6% in terms of the residual RMS error. The
values for the residual Strehl ratio were on average higher than in earlier simulations, this is expected to be
due to the extra zero padding that was used for the calculation of the PSFs in this case in order to increase the
accuracy of estimation. The absolute values of the Strehl ratios presented here are thus expected to be more
accurate than the Strehl ratios presented earlier. The results are tabulated in appendix section C.4.

Figure 5.24: Histogram plots of the residual Strehl ratio and the Strehl ratio increase for the Open Loop performance analysis with 500
runs. The dashed black line indicates the average while the solid red line indicates the lower limit set by the requirements.

Figure 5.25: Histogram plots of the residual RMS error and the RMS decrease for the Open Loop performance analysis with 500 runs. The
dashed black line indicates the average while the solid red line indicates the lower limit set by the requirements.
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While it can be seen that the majority of cases resulted in an estimate well within the limits set by the
requirements, in both the histogram representations of the residual Strehl ratios as well as in the histogram
representations of the residual RMS errors a significant amount of runs with a low-quality result can be ob-
served. To establish the reason for the poor performance of these estimations a large number of these results
were inspected and compared to their corresponding simulated wavefront error. A typical example of such
a case is presented in figure 5.26. As can be seen, the wavefront error estimate roughly resembles the actual
wavefront error. However, at the top segment, a segment piston offset can be observed with respect to the
actual wavefront shape. A similar estimation error, i.e. a segment piston offset on one or two segments, could
also be observed in virtually all other estimates characterized by a low residual Strehl ratio and a high residual
RMS error. It is hypothesized that the reason for these errors is the presence of local minima at locations of
these inaccurate estimates.

Figure 5.26: Example of a simulation resulting in a poor estimate (SR = 0.659 and RMS = 0.251).

To correct this, a mitigation strategy was proposed. The strategy is based on the observation that the cur-
rent set of mechanical tolerance budgets generally leads to a simulated wavefront error with small differences
in values between segments near the center, but with large differences in values between the segments near
the outermost edges. The novel post-processing strategy employed uses the individual segment piston terms
as well as the segment longitudinal tilt terms, around the axis parallel to the width dimension of each seg-
ment. A schematic representation of these basis functions is presented in figure 5.27. The post-processing
method constructs a simplified wavefront error from the estimate, which is constructed solely from the seg-
ment piston and longitudinal tilt terms of the wavefront error. A line is drawn for each segment of this sim-
plified wavefront error, running tangentially to the segment surface from the edge to the mid-point of the
wavefront error. For each of the lines, the height of the point where the line crosses the center point is com-
pared to the heights of the points where the other lines cross the center, resulting in a set of height differences
{∆}. This is graphically represented in figure 5.28. If the height of the point of crossing of one or two segments
differs significantly from the height of the point of crossing of the other segments, it is assumed that an erro-
neous segment piston term is estimated for this segment. If this is the case segment piston is added to these
segments until the heights of all points of crossing are within a certain margin.

This corrected wavefront error is then used as the initial condition for a second PD algorithm execu-
tion. This post-processing algorithm was executed for all of the Monte Carlo analysis results to see if post-
processing using a priori information about the expected wavefront error shape could indeed lead to impro-
ved performance. The results of the simulation are presented in figures 5.29 and 5.30.

As a result of the data post-processing, a slight increase in the average residual Strehl ratio could be obser-
ved for both configurations. The real improvement, however, can be observed when looking at the average
residual RMS error, which is greatly reduced. This is mainly the result of the elimination of poor estimation,
which can be seen when looking at the tails of the residual RMS error histograms. The size of the tails has
been reduced significantly. In terms of percentages the fraction of configuration 1 and 2 estimation within
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Figure 5.27: Relevant segment basis functions used by the post-processing algorithm.

Figure 5.28: Visual description of the working principle of the post-processing algorithm.
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Figure 5.29: Histogram plots of the residual Strehl ratio and the Strehl ratio increase for the Open Loop performance analysis with 500
runs after correction. The dashed black line indicates the average while the solid red line indicates the lower limit set by the requirements.

Figure 5.30: Histogram plots of the residual RMS error and the RMS decrease for the Open Loop performance analysis with 500 runs after
correction. The dashed black line indicates the average while the solid red line indicates the lower limit set by the requirements.
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the limits of the requirements is now 87.6% and 86% in terms of residual Strehl ratio and 86% and 85.6% in
terms of residual RMS error. Inspection of the corrected estimates that previously showed a poor accuracy
now indeed shows that segment piston estimation errors have been corrected in many cases. As an exam-
ple the same wavefront error presented earlier in figure 5.26 is showed again in figure 5.31 for comparison.
One curious thing to note here is that while the RMS decreased, the residual Strehl ratio of the estimation is
slightly lower than for the uncorrected case. This happened only for a small number of simulations. In most
cases, the Strehl ratio remained the same or increased, as can be observed from the average residual Strehl
ratios provided in figure 5.29. The expected cause for the Strehl ratio decrease is that the value at the PSF peak
is relatively insensitive to a segment piston error. Therefore, the slight decrease in Strehl ratio might be the
result of incidentally poorer convergence behavior of the algorithm during the second optimization run. This
could potentially result in a net decrease in the residual error terms.

Looking at the results it can be concluded that post-processing of the estimation using a priori knowledge
about the expected wavefront error shape significantly improves performance. It should be noted, however,
that if the mechanical tolerance budgets are changed at a later stage of the design the post-processing method
has to be reassessed if it can still be applied in its current form. It could be possible that in the casing of
different tolerance values a different shape property has to be exploited in post-processing or even that using
a priori knowledge of the error shape will not result in any improvement at all.

Figure 5.31: The new wavefront error estimate after the correction algorithm is run (SR = 0.595 and RMS = 0.108).

As a final assessment of the open-loop performance of the algorithm, a selection of the deconvolution
results was analyzed. As described earlier in this report in section 3.2.5 deconvolution was performed using
a Wiener deconvolution filter as well as an accelerated Richardson-Lucy algorithm. Because there is no ro-
bust method that can be used to quantitatively compare deconvolution results, a qualitative comparison was
performed for four representative cases. These four cases, characterized by their original and residual Strehl
ratios, are presented in figure 5.32. The top two rows show two cases with a similar original Strehl ratio while
the bottom two rows show cases with a similar residual Strehl ratio. For each case, four images are presented:
The original scene, the TDI-1 detector measurement, the result of deconvolution using a Wiener filter, and the
result of deconvolution using the Accelerated Richardson-Lucy algorithm. The four cases are taken from the
Sea scene type results because small details in the clouds are convenient for comparison. A few observations
can be made:

1. The application of a deconvolution algorithm significantly increased the image quality in both cases

2. Wiener deconvolution significantly outperformed the Richardson-Lucy algorithm as can be observed
from small gaps between clouds and the resolution of small details on the water

3. Gaps between clouds that could be resolved with the Richardson-Lucy are about one pixel, and smaller
than one pixel for the Wiener algorithm. A single pixel corresponds to a distance of 25cm



5.4. Open-Loop Performance 87

4. Both a higher original Strehl ratio as well as a higher residual Strehl ratio aid towards obtaining a better
image quality through deconvolution

A final observation that can be made is the presence of some small artifacts after reconstruction through
a Wiener filter. This is due to an intentional, slight underestimation of the Noise to Signal (NSR) ratio since
it was found through trial and error that underestimation of the NSR to a reasonable extent allows for the
preservation of small details.

These results show that phase diversity algorithms can significantly improve the resolution of the teles-
cope, even if just passive reconstruction of the object through post-processing is applied.

Figure 5.32: Comparison between the original scene, the TDI-1 measurement, the scene reconstructed using deconvblind with the esti-
mated PSF as the kernal and lastly with the diffraction-limited PSF as the Kernel for four cases.
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5.5. Closed-Loop Performance
The algorithm settings used for the closed-loop simulation has been adapted slightly from the open-loop
algorithm settings by trial and error. These settings are presented in table 5.6. Two differences should be
noted. The first is that in this simulation only the Farm scene type is used. The goal of these simulations is
to provide an upper limit for the closed-loop configuration performance. Since only 100 simulations can be
executed due to time constraints, it was decided to perform them all using the scene type that showed the best
performance in the open-loop simulations. Using the same scene type allows convenient comparison of all
100 results per configuration. The second change in settings is that only one field is simulated instead of three
fields. This is due to the fact that this decreases the time taken up by the imaging simulation by nearly a factor
three. This is desirable due to time constraints. To test the sensitivity to this parameter change, 50 open-
loop simulation runs were performed. No post-processing was used. This was done for a configuration that
simulated three fields as well as a configuration that simulated a single field. Regardless of the fact that every
of these 100 simulations was performed with a different wavefront error, the average original and residual
Strehl ratios were still very similar as shown in table 5.7. It was therefore concluded that the simulations are
insensitive to a reduction of the number of simulated fields from three to one. The results are tabulated in
appendix section C.5.

Table 5.6: Table of settings for the closed-loop peformance studies.

Parameter Value Unit
Scene type Farm -
Number of detectors 2 -
Pupil Sampling Distance FORTA 1.02 mm
Tolerance Type [Drift, New Drift, Calibrated] -
Number of Discrete Field Angles for PSF calculation 1 -
TDI 2 defocus 0.5 wavelengths
Phase Diversity Subframe Size 128 pixels
Detector Pixel Pitch 5 µm
Average photon count per pixel 104 -
Gaussian Noise SNR 100 -
Zernike Polynomials 15 (= 24 basis functions) -

Apodization ratio 0
pi xel sapodi zed

pi xel sunapodi zed

Learning Rate κ 0.001 -
Max Number of Iterations 2000 -
Defocus Error 0 µm
Step Tolerance (Fraction of initial Metric Value) 1 ·10−7 -
Post-processing algorithm enabled Yes -

Table 5.7: Average original and residual Strehl ratios of 50 simulation runs for a configuration simulating 1 field and a configuration
simluation 3 fields. Simulation runs are independent, i.e. different wavefront errors were calculated for each configuration.

No. of Fields Original Strehl Ratio Residual Strehl Ratio
1 0.53 0.82
3 0.58 0.85

The results of the Monte Carlo simulations for the three configurations are presented in figures 5.33, 5.34
and 5.35. Each of the figures shows the Strehl ratio and the RMS error of the system in its initial state, after
seven iterations of the closed-loop method, and at the iteration where the system performance is maximum.
Both the performance at a field angle of 0.0 degrees, the center field, as well as at 0.3 degrees, the extreme
field, is provided. For completeness, additional histogram plots are presented of the Strehl ratio values before
and after calibration for configuration 3. While the calibration will not be treated at length, these histograms,
presented in figure 5.36, serve to give the reader a feeling for the performance increase that is expected to be
obtained through calibration. After the calibration shown here, the drift budgets are added resulting in the
Strehl ratio that can be observed on the left side of figure 5.35.
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In addition to these histograms, a scatter plot of the original Strehl ratio vs the Strehl ratio at the iteration
where performance is maximum, is provided for each of the configurations in figure 5.37.

Figure 5.33: Resulting Strehl ratio and RMS error values from the Monte Carlo analysis of configuration 1. The solid red line indicates the
limit set by the requirement, the dashed black line indicates the average of the results.

From figure 5.33 it can be observed that after seven iterations there is a significant improvement in both
the Strehl ratio as well as the RMS error. However, it can also be observed that the average values of the
RMS and Strehl ratio are still well below the minimum set by the requirements. Looking at the histograms
to the right of the figure, it can be seen that if the Strehl ratio and RMS are plotted at the iteration where
performance is maximum, the averages are very close to the limit set by requirements. In 62% of cases the
center field Strehl ratio is above 0.8 and in 58% the extreme field Strehl ratio is above 0.8. For the RMS these
percentages are lower, 37% and 26% respectively. While these percentages are low, it must be noted that the
RMS value is 0.12λ0 on average, which is less than twice the allowable wavefront error RMS. In addition, the
Strehl ratio has a stronger correlation with the image quality than the RMS error, as is explained in section
2.1.4.

From figure 5.37 it can be observed that the original Strehl ratio of the simulation has a strong impact on



90 5. Results and Discussion

Figure 5.34: Resulting Strehl ratio and RMS error values from the Monte Carlo analysis of configuration 2. The solid red line indicates the
limit set by the requirement, the dashed black line indicates the average of the results.
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Figure 5.35: Resulting Strehl ratio and RMS error values from the Monte Carlo analysis of configuration 3. The solid red line indicates the
limit set by the requirement, the dashed black line indicates the average of the results.
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Figure 5.36: Strehl ratio for the 0 degree and 0.3 degree fields for configuration 3 before and after the application of the calibration trategy
described in section 4.5.

Figure 5.37: Scatter plots showing the original Strehl ratio vs the Strehl ratio at the iteration at which performance is maximum for the
center fields of configurations 1, 2 and 3.
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the accuracy of the estimate. Up until an original Strehl ratio of about 0.6, there is a large spread in the quality
of the wavefront estimate. However, it can be seen that for simulations in which the original Strehl ratio was
above 0.6, the residual Strehl ratio was almost always around 0.8 or higher. This is expected to be due to
the fact that simulations with a lower original Strehl ratio are more likely to converge towards estimates that
contain erroneous segment terms, as was discussed in section 5.4. It also interesting to see that the Strehl
ratio and RMS error results obtained in the closed-loop simulation are less accurate than the results obtained
in the open-loop simulation. However, this can be easily explained by the fact that in the assessment of
the open-loop performance, virtual Strehl ratio and RMS values were used. These values were calculated
by subtracting the estimated wavefront error from the actual wavefront error. This was done just to express
the quality of the estimate. The Strehl ratio and RMS in the closed-loop simulations are the actual system
parameters calculated after adaption of the active optics. The reduction in accuracy is due to the degradation
caused by imperfect fitting of the estimation error by the active optics. When segment tip, tilt, and piston
are corrected using the M1 segment controls, the control mechanism also causes parasitic movement in the
plane perpendicular to the optical axis, introducing additional error terms. The DM is not able to adequately
correct all of these aberrations, which introduces additional higher order aberrations into the system. These
higher order aberrations decrease the optical performance and are also expected to cause the closed-loop
phase diversity algorithm to diverge after a few iterations.

After the Monte Carlo analysis of configuration 1, which assumes the old Drift budgets, a Monte Carlo
analysis of configuration 2, which assumes the new Drift budgets, was performed. As can be seen from fi-
gure 5.34, the new budgets significantly improved optical performance in general. The performance after
seven iterations was, in terms of both Strehl ratio as well as RMS, worse than the initial performance of the
system before the PD algorithm was executed. This poor performance is attributed to the fact that compared
to configuration 1, the simulations reached an optimum at an earlier iteration on average, after which they
started to diverge. After seven simulations the cumulative decrease in performance with respect to the initial
performance was thus larger than for configuration 1. However, the SR and RMS values at the iteration were
performance was maximum, showed significant improvement. The center field and extreme field Strehl ra-
tios were above 0.8 in 94% and 87% of cases respectively. The center field and extreme field RMS errors were
within the limits set by the requirements in 73% and 56% of cases. From figure 5.37 it can be seen that for the
relatively lower original Strehl ratios, there was still a significant spread in results. However, in accordance
with the results for configuration 1, resulting Strehl ratios were almost all around 0.8 or higher for simulations
with an original Strehl ratio of 0.6 or higher.

Finally, a Monte Carlo analysis was done for configuration 3. The were expected to be different from the
results of configuration 2 due to two reasons. First, the initial system performance was expected to be lower
as the Drift budgets were added after a calibration step instead of to an ideal system. Second, due to the
calibration step the active optics were already in adapted state, instead of in their default state, which was
expected to lead to some higher order aberrations at the start of the first iteration. For these two reasons,
performance was expected to be worse than for configuration 2. While figure 5.35 shows that performance
was indeed worse, it was still much better than for configuration 1. Running the algorithm for seven iterations
again resulted in a decrease in the performance. However, looking at the optimum performance a significant
increase could indeed be seen. The Strehl ratios were compliant with requirements in 81% and 60% of cases
for the center field and extreme field respectively. These percentages were 45% and 22% for the RMS error.
Looking at the scatter plot in figure 5.37 a similar distribution can be witnessed as for configuration 2. Again,
simulations in which the original Strehl ratio was above 0.6 typically showed an optimum performance of
around or above 0.8. The slightly larger spread in the residual Strehl ratio resulting from simulations with
a high original Strehl ratio is attributed to the presence of the higher aberrations resulting from parasitic
movement of the segments during calibration.

It can be concluded from these Monte Carlo analyses that for a system with an initial Strehl ratio of larger
than 0.6, a closed-loop configuration could deliver reliable performance. However, the number of iterations
after which the method reached an optimum and started to diverge varied among simulations. No method
has yet been developed to determine whether the algorithm has reached an optimum. Because of this, a
closed-loop configuration is not reliable enough for implementation yet.

5.6. Chapter Summary
In this chapter, the results of the simulations were presented and discussed. Based on the parametric studies,
two configurations were selected for further analysis. It was found, for both configurations, that calculating
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a grey world spectrum based on the multispectral channel measurement data did not noticeably improve
the performance of the phase diversity algorithm when compared to the assumption of a uniform grey world
spectrum. This means that the answer to secondary research question 1, presented in section 1.5.2, is: no,
performance cannot be increased by including multispectral channel measurement data in the PSF estima-
tion. Comparison of the different subframe selection algorithms, however, did find that performance of the
algorithm could be increased in all nearly all cases using either the Bright Peak or the Dark Borders algo-
rithm for selection of the subframe instead of applying phase diversity to a random subframe. The randomly
selected subframe was, in this case, the central subframe. Since the Bright Peak algorithm performance was
superior to the performance of the Dark Borders algorithm, it was adopted as the standard subframe selection
method. The answer to secondary research question 2 is thus: yes, performance can be significantly increa-
sed by actively selecting the subframe to which phase diversity is applied. This finding is expected to apply
to EO phase diversity methods in general and could be beneficial for the development of phase diversity al-
gorithms for other EO instruments. The open-loop performance analysis found that both configuration 1, as
well as configuration 2, would converge to a solution which meets the Strehl ratio requirement in over 80% of
cases, and to a solution that meets the RMS requirement in over 75% of cases. Configuration 1, which used
a subframe of only 128×128, showed both much shorter run times as well as slightly superior performance.
Poor estimations were found to be characterized by an erroneous segment piston term of about a wavelength
at one or two segments. Post-processing the data with an algorithm that exploited a priori knowledge of the
expected error shape resulted in increased performance. After post-processing, over 85% of cases converged
to a solution that met the Strehl ratio requirement and over 85% of cases converged to a solution that met
the RMS error requirement. In most cases, the segment piston errors were removed. This novel approach
shows promise and further development might result in additional improvement. Finally, it was found that
Richardson-Lucy deconvolution resulted in a reconstruction with details as small as 25cm. Wiener decon-
volution, which uses the estimate of the wavefront error, outperformed Richardson-Lucy deconvolution and
resulted in a reconstruction that showed details of even smaller than 25cm.

With regard to the closed-loop performance of the system, it was found that a closed-loop PD method
could potentially be effective for active correction of systems with an original Strehl ratio of higher than 0.6.
However, two issues that limit the open-loop performance were encountered. The first is the fitting error due
to parasitic movement resulting from control of the M1 segments for segment piston, tip, and tilt correction.
This parasitic movement likely resulted in higher order aberrations in the system which are the expected
cause of the lower performance of the closed-loop method compared to the virtual Strehl ratio and RMS
values found in the open-loop performance analysis. In addition, these higher order aberrations are expected
to be the cause of the divergence of the algorithm after it reaches an optimum after a several iterations. The
number of iterations before an optimum was reached and divergence started differed among simulations. No
reliable method has yet been found for determining when the algorithm has reached an optimum.

The final chapter of this report will present the conclusions that were drawn from these results and will
present the recommendations for future research that are made based on these conclusions.
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Conclusions and Recommendations

The previous chapter presented the results of the simulations and discussed the performance of the phase
diversity algorithms. This final chapter of the report will present conclusions based on these results and
reflect on the thesis goal, the research questions and the mission requirements of the DST project. First,
section 6.1 discusses the conclusions. Afterwards, section 6.2 will present the recommendations.

6.1. Conclusions
The goal of the thesis project was expressed earlier in this report as:

The goal of this thesis project is to determine whether the implementation of Phase Diversity algo-
rithms is a suitable strategy for aberration correction for the Deployable Space Telescope

A corresponding primary research question was proposed, which focuses on the engineering dimension
of this project. In addition, two secondary research questions were stated, related to two topics of scientific
interest. First, the conclusions with respect to the primary research question will be discussed. Afterwards,
the conclusions with respect to the secondary research questions will be presented

6.1.1. Conclusion Regarding Performance
The primary research question of the project was expressed as found in section 1.5. The primary research
question concerns the achievable performance of phase diversity in the context of the DST project. The
question was subdivided into two subquestions. The first concerns the performance of an open-loop phase
diversity configuration in which an estimate is generated and deconvolution is subsequently applied to im-
prove resolution and recover details lost during the imaging process. The second subquestion concerns the
performance of an open-loop phase diversity configuration in which the estimation of the wavefront error is
used for control of the systems active optics in an iterative fashion.

With regard to the first subquestion, it was found that the average performance of open-loop configu-
ration 1 in terms of residual Strehl ratio was 0.88 and the average performance in terms of RMS was 0.077,
which could be increased through post-processing to 0.89 and 0.05 respectively. Using a Wiener deconvolu-
tion filter in combination with the PSF estimate produced using phase diversity, sub-pixel details could be
reconstructed in all observed cases, even when the Strehl ratio was below 0.8. This corresponds to a resolu-
tion of 25cm. Comparing this figure to DST mission requirement REQ-1 it can be observed that according to
the simulation results the system should be able to meet the main mission requirement, a ground resolution
of 25cm. Comparing the achieved residual Strehl ratio to the lower limit of 0.8 set by requirement REQ-6, it
can be concluded that after post-processing over 85% of simulations converge to an estimate with a residual
Strehl ratio of higher than 0.8%. Comparing the RMS error to the RMS error requirement of 0.07λ0 set by
REQ-9 also shows that estimations meet the requirement in over 85% of cases. While care must be taken that
these values for the Strehl ratio and RMS are not the actual residual values for the optical system, since the
open-loop configuration does not involve re-configuring the active optics, it does show the high estimation
accuracy that can be achieved using phase diversity algorithms. Implementation of the novel post-processing
algorithm resulted in significant improvement in the number of simulation converging to an accurate esti-
mate. The author considers it likely that a further increase in the number of converging simulations can
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be achieved if more post-processing or pre-processing methods that exploit shape characteristics of the ex-
pected wavefront error are implemented. This is also addressed in the recommendations. From discussions
with Dolkens it was determined that requirement REQ-5 concerning the MTF is an outdated requirement
that should be revised. Therefore, performance was not assessed in term of the MTF curve value at the Ny-
quist and half the Nyquist frequency.

The average run time of the algorithm was around 20 seconds. Since the wavefront error does not change
much during this interval, it is expected that regular execution of the phase diversity algorithm can continu-
ously keep the system at diffraction-limited performance [19]. Furthermore, scientific literature was found
demonstrating that using an FPGA for image convolution, one of the most demanding operations performed
by the phase diversity algorithm, a speed increase of nearly 4 times could be achieved. Using GPU’s it has
been shown that a speed of almost 70 times the speed of MATLAB convolution can be achieved [72]. There-
fore the 20 seconds seen in this project can be considered a very conservative estimation.

However, it should be noted that the simulations assumed a perfectly calibrated system to which the Drift
tolerance budgets were added. In reality, a state of perfect calibration will not be reached, which means that
the initial Strehl ratio will be lower than in the simulations. This might mean that in practice the open-loop
RMS residual Strehl ratio and residual RMS could be slightly lower than in these simulations. Even in the
case that the residual Strehl ratio and RMS are not lower, the resolution achieved with Wiener deconvolution
might still decrease. This is because Wiener deconvolution performance positively correlates with the initial
Strehl ratio as well. This should be further investigated.

With respect to the closed-loop simulations, it was found that the method was able to consistently incre-
ase the Strehl ratio to around or even above 0.8 for simulations in which the original Strehl ratio was at least
0.6, even for simulations that included simulation of the calibration step. For simulations were the original
Strehl ratio was lower, an increase in the Strehl ratio was seen but the residual Strehl ratio was often lower than
0.8. As was mentioned earlier, it can be concluded that a closed-loop method can only be reliably implemen-
ted if two issues are solved. The issue of higher order aberrations caused by parasitic movement of the M1
segment and the related issue of determining at what iteration the algorithm should be terminated for opti-
mum performance. Due to time constraint developing such a method could not be done within the scope of
this thesis. However, it is expected that a termination criterion could be developed based on exploiting shape
characteristics of the estimated wavefront error in a similar fashion as the post-processing algorithm descri-
bed in this report. In addition, it could be possible that using the edge sensors which are currently included
in the design for development of a termination criterion could be a feasible solution. These edge sensors are
located at the edges between the M1 segments. Another possibility would be to mitigate the root cause of the
divergence behavior of the algorithm, which are the higher order aberrations originating from the parasitic
movement of the segments. The impact of these aberrations could perhaps be reduced if additional higher
order Zernike basis functions are used for wavefront estimation in the closed-loop configuration.

6.1.2. Scientific Conclusions
The two secondary research question for this thesis project were on the topic of including multispectral data
in the wavefront estimation, and on the topic active selection of the subframe, respectively.

The simulations have provided clear answers to both these research questions. With respect to the first
question, it was found that no performance improvement was achieved when the multispectral channel me-
asurements were used for the estimation of the grey world spectrum. It is hypothesized that this is due to the
fact that there is no strong correlation, or even no correlation at all, between the average pixel color spectrum
and the grey world spectrum.

However, with respect to research the second question it was found that active selection of the subframe
to which the phase diversity is applied makes a very significant difference. Especially the performance of the
Bright Peak algorithm resulted in a large increase in performance. It is expected that increasing the intensity
in the center of the frame relative to the intensity just outside of the frame decreases the negative influence
of parts of the scene that fall outside of the subframe but still influence the measurement through their PSF
signature. It is expected that selection of the subframe could not just improve performance in the context of
the DST but also for other EO instruments that rely on phase diversity algorithms.

Two other innovations of scientific relevance, are the implementation of the smooth decomposition met-
hod developed by Mahmood et al., and the post-processing method developed in this project. The former
was used to treat Fourier Domain artifacts resulting from the Fast Fourier Transform’s implicit assumption
of periodicity. In the literature on phase diversity, these artifacts are often mitigated through the application
of apodization. Section 5.1.15 shows that the method developed by Mahmood proved superior to most apo-
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dization schemes applied, and showed comparable performance to the full apodization configuration. Un-
documented test runs showed that the apodization ratio required for optimum performance differs strongly
depending on the algorithm settings. While full apodization using an apodization ratio of 1.0 did show the
best performance for the particular study presented in section 5.1.15, lower apodization ratios were more
effective for other configuration methods. The smooth decomposition method, however, showed excellent
performance regardless of algorithm settings. Because of this, it is considered to be more robust than apodi-
zation.

Phase diversity algorithms sometimes have the tendency to convert to local minima that do not corre-
spond to the actual wavefront error shape. It proved very effective to exploit characteristics of the expected
wavefront shape to identify erroneous points of convergence, and subsequently correct the wavefront shape.
While the post-processing method implemented in this project already resulted in a significant improvement
in performance, it is expected that further analysis of the error shapes using statistics could result in even
more powerful post-processing algorithms. While shape characteristics are different in every optical system,
the insights gained in this project might serve as a starting point for the development of post-processing
algorithms for other systems as well.

6.2. Recommendations
While the conclusions presented in the previous section provide an answer to the research questions posed in
this report. Based on these conclusions this report presents a number of recommendations for the DST pro-
ject. These will be presented in this section. The list of recommendations contains both recommendations
with respect to the design of the DST, as well as recommendations for further research topics.

If it is decided to implement phase diversity as either a stand-alone aberration correction method or as
part of a hybrid correction strategy, the following design parameter settings are recommended:

• A two detector configuration. The field separation between these detectors is irrelevant for the perfor-
mance of the PD algorithm.

• For addition of the known defocus aberration to the TDI-2 measurement, a 0.5mm displacement of
TDI-2 is advised. Whether the defocus displacement is in the direction of the exit pupil or away from
the exit pupil is not relevant for performance.

• The accuracy of the TDI-2 defocus displacement should be maximum 5µm. If this is found to result in
a high price for the detectors, studies should be performed to see if this number can be further relaxed.

• A requirement for the max chance of a pixel going dead during operation should be added to the list of
subsystem requirements. Suggested values are 0.5% (goal) and 1% (threshold).

In addition, it is recommended that further research is done on several topics. It is advised that additional
simulations are performed that combine calibration with phase diversity. This is especially true for the case
of the open-loop configuration, for which no simulations including calibration have been performed yet.
However, also for the closed-loop configuration only a single Monte Carlo analysis including calibration has
been performed. It would be interesting if a broader range of configurations, including different algorithm
settings as well as different calibration methods were simulated. A configuration that would be interesting to
simulate is a joint implementation with the Parallel Perturbation Stochastic Gradient Optimization algorithm
developed by van Marrewijk. One possible configuration for aberration correction would be the use of van
Marrewijk’s SGD method, supported by phase diversity for checking whether the SGD algorithm converged
to the correct point. Another would be the combination of using SGD until a Strehl ratio of about 0.6 is rea-
ched after which a closed-loop phase diversity algorithm is executed for further improvement of the system
performance. One challenge which has to be solved for such a calibration, however, is determining when a
Strehl ratio of 0.6 is reached.

Further possibilities for post-processing should be researched to prevent the erroneous piston error es-
timations that occur in about 15% of the open-loop simulations after the current post-processing algorithm
has been used for correction. An interesting opportunity would be to not just exploit obvious shape characte-
ristics of the expected wavefront error, but also employ machine learning to discover exploitable patterns in
the occurring wavefront errors. In addition, it could be studied if the edge sensor measurements can be used
to validate the wavefront error estimation produced using phase diversity. It should then also be investiga-
ted whether the application of these two methods can be extended to the case of closed-loop phase diversity
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methods for development of a termination criterion. Such a criterion would make a closed-loop phase diver-
sity method a good candidate for active aberration control. If further research is done on the implementation
of phase diversity in the DST, the author would suggest that either the use of machine learning or use of the
edge sensors is selected as the main topic.

An additional improvement would be to research the topic of image power spectrum estimation. If a
better estimate of the image power spectrum could be produced, this could be used to produce a frequency
dependent SNR estimate. This SNR estimate could, in turn, be used for calculation of a Wiener filter that
suppresses noise more selectively and preserves high frequencies that carry significant amounts of signal.
This could further increase the resolution that is obtained through deconvolution.

Furthermore, it is advised to re-run some of the simulations when more is known about the choice of the
detectors, as well as the environmental parameters, such as the expected average photon count per pixel or
the noise types and magnitudes. This could either confirm the rationale for the design changes proposed
above or lead to new insights regarding the optimum phase diversity algorithm design.

Lastly, it is advised that an experimental breadboard setup is created in the future so that the results obtai-
ned in this study through simulation can be validated using empirical data.
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A
Pixel PSF Derivation

To prove that the value of each individual detector pixel can be determined by convolving the ideal geometric
projection of the object o(u) with the Pixel PSF, it is convenient to start with the most general expression for
the measured intensity at a single square pixel in the image plane with center coordinates uc as shown in
equation (A.1). Note that u is a 2-dimensional position vector that denotes the position in the image plane.
∆u is the 2-dimensional vector indicating the side lengths of the square pixel.

p(uc ,∆u) =
Ï uc+ ∆u

2

uc− ∆u
2

Ï ∞

−∞
o(u′)s(u −u′)du′du (A.1)

For a space invariant PSF this equation can be rewritten to the expression presented in equation (A.2).

p(uc ,∆u) =
Ï ∞

−∞
o(u′)

Ï uc+ ∆u
2

uc− ∆u
2

s(u −u′)dudu′ (A.2)

The limits of the inner integral complicate the further analysis of the relation and can be removed by
defining a 2-dimensional square pulse signal, shown in equation (A.3).

Π(∆u,u) =
{

1 if − ∆u
2 < u < ∆u

2

0 otherwise
(A.3)

Using this square pulse equation (A.2) can be rewritten to the expression shown in equation (A.4).

p(uc ,∆u) =
Ï ∞

−∞
o(u′)

Ï ∞

−∞
Π(∆u,u −uc )s(u −u′)dudu′ (A.4)

Introducing a change of variable from u′ to u′+uc the expression in equation (A.5) is derived.

p(uc ,∆u) =
Ï ∞

−∞
o(u′+uc )

Ï ∞

−∞
Π(∆u,u −uc )s(u −u′−uc )dudu′ (A.5)

Due to the fact that the integral runs from −∞ to ∞, the constant uc term can be dropped for the inner-
most terms without consequence, resulting in equation (A.6).

p(uc ,∆u) =
Ï ∞

−∞
o(u′+uc )

Ï ∞

−∞
Π(∆u,u)s(u −u′)dudu′ (A.6)

The innermost term can now be recognized as a convolution between a square pulse with the dimensions
of the pixel and the PSF of the optical channel. This expression can be exploited if a pixel PSF is now defined
as spi x as shown in equation (A.7).

spi x (∆u,u′) =
Ï ∞

−∞
Π(∆u,u)s(u′−u)du (A.7)

Due to the symmetric nature of the square pulse Π equation (A.6) can be rewritten to the expression
shown in equation (A.8) if the pixel PSF spi x is substituted in.
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p(uc ,∆u) =
Ï ∞

−∞
o(u′+uc )spi x (∆u,−u′)du′ (A.8)

The direction in which the variable du′ runs when calculating this integral is inconsequential, which me-
ans that this equation can be rewritten to the expression shown in equation (A.9).

p(uc ,∆u) =
Ï ∞

−∞
o(uc −u′)spi x (∆u,u′)du′ (A.9)

This expression can be recognized as a simple convolution between the projection of the object predicted
by ideal geometric optics and the pixel PSF spi x , shown in equation (A.10).

p(uc ,∆u) = (o ∗ spi x (∆u))(uc ) (A.10)

The value at each pixel in the complete set of pixels {p} can therefore be calculated by convolving o(u)
with the pixel PSF spi x and then sampling at the location of the pixel centers {uc }.



B
Analytic Gradient for Broadband Metric

This appendix provides the derivation of the analytic gradient of the broadband phase diversity metric des-
cribed by Seldin [50]. To calculate this gradient one should start from the expression for a single Coherent
Transfer Function calculated at a sample wavelength index l . This expression is shown in equation (B.1).

Hkl ( f ) = |H( f )|exp

[
i
λ̄

λ
(φ( f ,α)+θk ( f ))

]
(B.1)

Note that throughout this derivation f will be used as the 2-dimensional vector containing the spatial fre-
quency coordinates and u will be used as the 2-dimensional vector containing the image plane coordinates.
In this equation, the parameter λ̄ is the base wavelength in terms of which the Optical Path Difference is ex-
pressed. The monochromatic Coherent PSF hkl (u) can be calculated from this CTF by appropriately adding
or removing zeros and subsequently applying the inverse Fourier transform, as shown in equation (B.2).

hkl (u) =
Nkl−1∑

f =0
Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u〉

]
(B.2)

The method that is used to derive the analytic gradient is analogous to the method used by Paxman et al.
[48] to compute the analytic gradient of the metric proposed by Gonsalves [43], which relies on the fact that
the Optical transfer function of the Optical Transfer Function Sk ( f ) can be written as the autocorrelation of
the CTF Hk ( f ). However, performing this calculation at all sample wavelengths would result in a different
sampling interval for every monochromatic OTF Skl ( f ) which makes the calculation of the analytic gradient
impossible. It is, therefore, worthwhile to see if an analogous autocorrelation expression could be found that
results in a common grid size for all OTFs, containing the arbitrary function Hkl ( f ). Such an expression is
shown in equation (B.3).

Slk ( f ) = 1

N 2

N−1∑
f =1

Hkl ( f ′)H∗
kl ( f ′− f ) (B.3)

It has been found by the author that such an expression exists when Hkl ( f ) is defined as shown in equa-
tion (B.4) and (B.5).

Hkl ( f ′) =
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
(B.4)

Hkl ( f ′− f ′′) =
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

]
(B.5)

The partial derivative of each monochromatic OTF Skl ( f ) with respect to an arbitrary basis function coef-
ficient α j can then be expressed as shown in equation (B.6).
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∂

∂α j
Skl ( f ) = 1

N 2

N−1∑
f ′=0

[
H∗

kl ( f ′− f ′′)
∂

∂α j
Hkl ( f )+Hkl ( f ′)

∂

∂α j
H∗

kl ( f ′− f ′′)
]

(B.6)

Expanding this by substituting (B.4) and (B.5) into this expression then results in equation (B.7).

∂

∂α j
Skl ( f ) = 1

N 2

N−1∑
f ′=0

 N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

H∗
kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

i
λ̄

λl
φn( f )Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

−
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

i
λ̄

λl
Z j ( f )H∗

kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

] (B.7)

Defining the variable f ′′′ = f ′− f ′′ and taking the summation
∑N−1

f ′=0 into the brackets, this expression can

be rewritten to equation (B.8).

∂

∂α j
Skl ( f ) = 1

N 2

N−1∑
f ′=0

N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

H∗
kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

i
λ̄

λl
Z j ( f )Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

−
N−1∑
f ′′′=0

N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′′′〉

]
exp

[
−i

2π

N
〈u′, f ′′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

i
λ̄

λl
Z j ( f )H∗

kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′′′〉

] (B.8)

Applying the convolution theory twice to the second terms of both the first as well as the second mul-
tiplication, the Z j ( f ) and Hkl ( f ) terms can be separated and the former can be moved out of the brackets,
resulting in equation (B.9). It should be noted that in this expression the term f ′′′ has been discarded and
replaced by f ′′ for readability.
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∂

∂α j
Skl ( f ) = i

N 2

λ̄

λl

N−1∑
f ′=0

N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Z j ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

×
 N

2 −1∑
u′=− N

2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

H∗
kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

]

−
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

H∗
kl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

×
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Hkl ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
−i

2π

N
〈u′, f ′′〉

] (B.9)

In a way analogous to the derivation by Paxman, the overall derivation of the metric LM can be expressed
as shown in equation (B.10).

∂

∂α j
LM =

N−1∑
f ′′=0

K∑
k=1

C b
k

∂

∂α j
Sb

k + c.c =
N−1∑
f ′′=0

K∑
k=1

C b
k

Λ∑
l=1

∂

∂α j
Skl + c.c (B.10)

In this equation, the term C b
k is defined as shown in equation (B.11), similar to the definition used by

Paxman.

C b
k ( f ) =

∑K
j=1 |Sb

j ( f )|2 (∑K
l=1 Il ( f )Sb∗

l ( f )
)

I∗k ( f )−|∑K
j=1 I j ( f )Sb∗

j ( f )|2Sb∗
k ( f )(∑K

j=1 |Sb
j ( f )|2

)2 (B.11)

Inserting equation (B.9) into (B.10) results in the expression shown in equation (B).

∂

∂α j
LM =

N−1∑
f ′′=0

K∑
k=1

Z b
k ( f ′′)

Λ∑
l=1

i

N 2

λ̄

λl

N−1∑
f ′=0

N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Z j ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

×
Hkl ( f ′)

N
2 −1∑

u′=− N
2

h∗
kl (−u′)exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
i

2π

N
〈u′, f ′′〉

]

−H∗
kl ( f ′)

N
2 −1∑

u′=− N
2

hkl (u′)exp

[
−i

2π

N
〈u′, f ′〉

]
exp

[
−i

2π

N
〈u′, f ′′〉

]+ c.c (B.12)

Note that during application of the Fourier and inverse Fourier transforms to arrive at equation it has
been taken into account that when the complex conjugate of a function is transformed, the rule presented in
equation (B.13) should be applied.

F {x∗( f )} = X ∗(− f ) (B.13)

The function C b
k can then be moved into the brackets to arrive at equation (B.14).
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∂

∂α j
LM = i λ̄

N−1∑
f ′=0

K∑
k=1

Λ∑
l=1

1

N 2λl

N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Z j ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
Hkl ( f ′)

N
2 −1∑

u′=− N
2

h∗
kl (−u′)

N−1∑
f ′′=0

C b
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

−H∗
kl ( f ′)

N
2 −1∑

u′=− N
2

hkl (u′)
N−1∑
f ′′=0

C b
k ( f ′′)exp

[
−i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]+ c.c (B.14)

For conciseness and readability, the wavelength dependent basis function Z j l can be introduced, expres-
sed as shown in equation (B.15).

Z j l =
N
2 −1∑

u′=− N
2

1

N 2
kl

Nkl−1∑
f =0

Z j ( f )exp

[
i

2π

Nkl
〈 f ,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
(B.15)

Inserting this into equation (B.14) yields equation (B.16). In this equation another change of variable has
been introduced: f ′′′ =− f ′′.

∂

∂α j
LM = i λ̄

N−1∑
f ′=0

K∑
k=1

Λ∑
l=1

1

N 2λl
Z j l

Hkl ( f ′)
N
2 −1∑

u′=− N
2

h∗
kl (−u′)

N−1∑
f ′′=0

C b
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

−H∗
kl ( f ′)

N
2 −1∑

u′=− N
2

hkl (u′)
N−1∑
f ′′′=0

C b
k (− f ′′′)exp

[
i

2π

N
〈 f ′′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]+ c.c (B.16)

As explained by Paxman, the function C b
k is Hermitian. Which means that C b

k (− f ′′′) =C b∗
k ( f ′′′). Applying

this to the second term in equation (B.16) and subsequently substituting f ′′ for f ′′′ for readability one arrives
at equation (B.17).

∂

∂α j
LM = i λ̄

N−1∑
f ′=0

K∑
k=1

Λ∑
l=1

1

N 2λl
Z j l

Hkl ( f ′)
N
2 −1∑

u′=− N
2

h∗
kl (−x ′)

N−1∑
f ′′=0

C b
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]

−H∗
kl ( f ′)

N
2 −1∑

u′=− N
2

hkl (u′)
N−1∑
f ′′=0

C b∗
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]+ c.c (B.17)

Noting that the second term is the complex conjugate of the first term this can be further simplified to the
expression shown in equation (B.18).

∂

∂α j
LM = 2i λ̄

N−1∑
f ′=0

K∑
k=1

Λ∑
l=1

1

N 2λl
Z j l Hkl ( f ′)

N
2 −1∑

u′=− N
2

h∗
kl (−u′)

N−1∑
f ′′=0

C b
k ( f ′′)exp

[
i

2π

N
〈 f ′′,u′〉

]
exp

[
−i

2π

N
〈u′, f ′〉

]
+c.c

(B.18)

Finally, noting that because of the combination of the i term in front of the equation and the summation
of with its complex conjugate the imaginary part is multiplied by two while the real part cancels out, one
arrives at a practical final expression for the analytic gradient of the broadband metric presented in equation
(B.19)
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C.1. Parametric Study Results

Table C.1: Information about the performance for the 3 and 2 detector configurations.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

3 Detectors 915 0.166 152.41 23
2 Detectors 973 0.114 110.66 11

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
3 Detectors 0.54 0.82 0.66 0.56 0.8 0.78 0.72
2 Detectors 0.54 0.81 0.58 0.6 0.79 0.65 0.69
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Table C.2: Information about the performance for the 5µm, 8µm and 11µm pixel pitch configurations.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

5 µm pitch 964 0.101 96.57 15
8 µm pitch 928 0.098 91.26 12
11 µm pitch 952 0.102 97.1 15

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
5 µm pitch 0.57 0.8 0.57 0.58 0.87 0.63 0.69
8 µm pitch 0.56 0.79 0.56 0.31 0.52 0.54 0.54
11 µm pitch 0.56 0.56 0.67 0.24 0.57 0.52 0.51

Table C.3: Information about the performance for the 0.01mm, 0.25mm , 0.5mm, 0.75mm and 1mm TDI-2 defocus configurations.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

0.01mm defocus 824 0.119 98.11 30
0.25mm defocus 866 0.118 101.95 27
0.5mm defocus 950 0.118 112.09 12
0.75mm defocus 996 0.118 117.34 3
1mm defocus 997 0.118 117.98 1

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
0.01mm defocus 0.59 0.52 0.41 0.34 0.49 0.52 0.46
0.25mm defocus 0.59 0.8 0.74 0.46 0.7 0.72 0.69
0.5mm defocus 0.59 0.8 0.6 0.6 0.76 0.7 0.69
0.75mm defocus 0.59 0.75 0.53 0.6 0.65 0.51 0.61
1mm defocus 0.59 0.59 0.52 0.49 0.64 0.33 0.51
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Table C.4: Information about the performance for the nominal field separation and the 1.5×, 2× and 2.5× nominal field separation.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

nominal separation 946 0.112 106.16 12
1.5x nominal 956 0.112 106.7 12
2x nominal 958 0.112 107.49 12
2.5x nominal 948 0.112 105.78 14

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
nominal separation 0.55 0.69 0.6 0.52 0.77 0.72 0.66
1.5x nominal 0.55 0.7 0.59 0.49 0.78 0.72 0.66
2x nominal 0.55 0.74 0.59 0.52 0.79 0.72 0.67
2.5x nominal 0.55 0.73 0.59 0.5 0.78 0.73 0.67

Table C.5: Information about the performance for the nominal field separation and the 1.5×, 2× and 2.5× nominal mechanical drift
tolerances.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

nominal drift tolerances 968 0.118 114.3 9
1.5x nominal drift 985 0.117 114.87 5
2x nominal drift 991 0.117 115.86 3
2.5x nominal drift 987 0.116 114.09 4

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
nominal drift tolerances 0.54 0.68 0.58 0.64 0.77 0.68 0.67
1.5x nominal drift 0.36 0.66 0.44 0.51 0.64 0.52 0.55
2x nominal drift 0.25 0.46 0.37 0.44 0.56 0.48 0.46
2.5x nominal drift 0.2 0.35 0.26 0.43 0.45 0.28 0.35



110 C. Simulation Results

Table C.6: Information about the performance for 0, 1, 2, 3 and 5 µm of unknown defocus error in TDI-2.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

0 µm error 951 0.103 97.62 16
1 µm error 953 0.102 96.95 14
2 µm error 954 0.102 97.64 16
3 µm error 957 0.102 97.58 14
5 µm error 948 0.103 97.48 16

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
0 µm error 0.56 0.76 0.57 0.56 0.84 0.69 0.69
1 µm error 0.56 0.76 0.57 0.56 0.85 0.7 0.69
2 µm error 0.56 0.76 0.57 0.56 0.85 0.7 0.69
3 µm error 0.56 0.76 0.57 0.56 0.85 0.7 0.69
5 µm error 0.56 0.76 0.57 0.56 0.85 0.7 0.69

Table C.7: Information about the performance for Gaussian Noise Signal to Noise ratios of SNR = 100, SN R = 75, SN R = 50 and SN R = 10.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

SNR = 100 974 0.135 131.49 8
SNR = 75 970 0.135 131.22 12
SNR = 50 971 0.134 130.41 11
SNR = 10 949 0.134 126.82 12

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
SNR = 100 0.56 0.75 0.58 0.54 0.8 0.64 0.66
SNR = 75 0.56 0.74 0.58 0.55 0.8 0.64 0.66
SNR = 50 0.56 0.74 0.58 0.49 0.81 0.64 0.65
SNR = 10 0.56 0.8 0.56 0.41 0.77 0.64 0.64
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Table C.8: Information about the performance for 104, 7 ·103, 5 ·103 and ·103 average photon/pixel values.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

1×104 photons average 973 0.104 101.31 10
7×103 photons average 965 0.104 99.94 12
5×103 photons average 966 0.103 99.91 16
1×103 photons average 958 0.103 99.06 16

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
1×104 photons average 0.55 0.8 0.58 0.59 0.85 0.67 0.7
7×103 photons average 0.55 0.79 0.57 0.59 0.85 0.67 0.69
5×103 photons average 0.55 0.8 0.58 0.56 0.85 0.66 0.69
1×103 photons average 0.55 0.8 0.54 0.42 0.84 0.66 0.65

Table C.9: Information about the performance for 0%, 0.1%, 1% and 10% chance dead pixels, both with and without correction.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

0% chance 973 0.152 147.52 8
0.1% chance (uncorrected) 944 0.151 142.15 15
0.1% chance (corrected) 978 0.151 147.42 9
1% chance (uncorrected) 913 0.151 137.36 21
1% chance (corrected) 946 0.151 143.4 16
10% chance (uncorrected) 854 0.151 128.76 30
10% chance (corrected) 965 0.15 144.42 8

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
0% chance 0.53 0.75 0.5 0.59 0.79 0.64 0.65
0.1% chance (uncorrected) 0.53 0.48 0.4 0.33 0.6 0.63 0.49
0.1% chance (corrected) 0.53 0.75 0.5 0.59 0.79 0.64 0.65
1% chance (uncorrected) 0.53 0.34 0.32 0.22 0.5 0.52 0.38
1% chance (corrected) 0.53 0.74 0.5 0.44 0.78 0.64 0.62
10% chance (uncorrected) 0.53 0.27 0.24 0.27 0.3 0.31 0.28
10% chance (corrected) 0.53 0.55 0.42 0.29 0.69 0.6 0.51
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Table C.10: Information about the performance for the Farm, Sea, Storm, Mountains and City scenes.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Farm 962 0.105 101.27 25
Sea 1000 0.105 105.46 0
Storm 984 0.105 102.97 6
Mountains 887 0.106 93.69 33
City 998 0.105 104.84 1

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Overall
Farm 0.56 0.78
Sea 0.56 0.57
Storm 0.56 0.59
Mountains 0.56 0.84
City 0.56 0.68
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Table C.11: Information about the performance for simulations including Zernike polynomials up to degree 8, 7, 6, 5, 4, 3, 2 and 1
respectively.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

up to order 8 972 0.11 106.71 13
up to order 7 964 0.099 95.99 12
up to order 6 979 0.09 88.51 7
up to order 5 984 0.082 80.69 10
up to order 4 977 0.075 73.16 8
up to order 3 991 0.068 67.83 4
up to order 2 993 0.064 63.58 3
up to order 1 1000 0.06 60.27 1

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
up to order 8 0.55 0.76 0.56 0.54 0.81 0.64 0.66
up to order 7 0.55 0.76 0.58 0.53 0.83 0.67 0.68
up to order 6 0.55 0.78 0.61 0.64 0.85 0.72 0.72
up to order 5 0.55 0.8 0.57 0.63 0.86 0.79 0.73
up to order 4 0.55 0.79 0.59 0.71 0.83 0.8 0.75
up to order 3 0.55 0.7 0.61 0.67 0.74 0.75 0.69
up to order 2 0.55 0.69 0.59 0.61 0.71 0.76 0.67
up to order 1 0.55 0.67 0.56 0.57 0.57 0.64 0.6
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Table C.12: Information about run time and iteration counts for simulations using a learning rate κ fo 1 ·10−4, 5 ·10−4, 1 ·10−3, 5 ·10−3

and 1 ·10−2.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

κ= 1×10−4 1000 0.131 130.77 0
κ= 5×10−4 1000 0.134 134.25 0
κ= 1×10−3 964 0.133 128.27 13
κ= 5×10−3 1000 0.173 172.83 0
κ= 1×10−2 166 0.13 21.55 50

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
κ= 1×10−4 0.55 0.62 0.64 0.63 0.61 0.61 0.62
κ= 5×10−4 0.55 0.75 0.68 0.66 0.77 0.74 0.72
κ= 1×10−3 0.55 0.79 0.58 0.53 0.83 0.67 0.68
κ= 5×10−3 0.55 0.75 0.68 0.66 0.77 0.74 0.72
κ= 1×10−2 0.55 0.8 0.63 0.66 0.8 0.73 0.72

Table C.13: Information about the performance for the configurations using 1, 3, 7, 11 and 15 sample wavelengths to sample the detector
band respectively.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

1 Sample 993 0.028 27.77 5
3 Samples 966 0.058 56.37 14
7 Samples 964 0.121 116.59 13
11 Samples 972 0.185 180.17 10
15 Samples 973 0.253 246.77 14

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
1 Sample 0.55 0.75 0.55 0.51 0.8 0.64 0.65
3 Samples 0.55 0.79 0.59 0.55 0.83 0.68 0.69
7 Samples 0.55 0.79 0.58 0.53 0.83 0.67 0.68
11 Samples 0.55 0.79 0.58 0.54 0.84 0.67 0.68
15 Samples 0.55 0.79 0.58 0.54 0.85 0.67 0.69
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Table C.14: Information about the performance for suframe sizes of 256×256, 128×128 and 64×64.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

256×256 pixels 848 0.267 228.13 34
128×128 pixels 969 0.104 100.93 11
64×64 pixels 905 0.034 30.84 22

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
256×256 pixels 0.55 0.76 0.75 0.65 0.82 0.7 0.74
128×128 pixels 0.55 0.75 0.58 0.56 0.84 0.64 0.67
64×64 pixels 0.55 0.66 0.66 0.38 0.66 0.35 0.54

Table C.15: Information about the performance for configurations with apodization ratios of 0.0, 0.25, 0.5, 0.75 and 1.0 respectively.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

apodization ratio = 0.0 959 0.105 100.62 16
apodization ratio = 0.25 996 0.107 106.57 4
apodization ratio = 0.5 965 0.107 103.25 15
apodization ratio = 0.75 948 0.106 100.48 14
apodization ratio = 1.0 949 0.106 100.59 17

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
apodization ratio = 0.0 0.56 0.8 0.57 0.56 0.8 0.69 0.68
apodization ratio = 0.25 0.56 0.65 0.53 0.29 0.75 0.72 0.59
apodization ratio = 0.5 0.56 0.77 0.6 0.45 0.77 0.72 0.66
apodization ratio = 0.75 0.56 0.82 0.58 0.46 0.82 0.72 0.68
apodization ratio = 1.0 0.56 0.82 0.58 0.53 0.8 0.71 0.69
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Table C.16: Information about the performance for the combined simulations.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Configuration 1 847 0.108 91.18 23
Configuration 2 695 0.288 199.72 40
Configuration 3 729 0.183 133.4 34
Configuration 4 125 0.387 47.98 50
Configuration 5 123 0.2 24.47 50
Configuration 6 900 0.233 209.72 17
Configuration 7 917 0.111 102.04 14
Configuration 8 176 0.223 39.12 50
Configuration 9 178 0.115 20.5 50

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.57 0.79 0.64 0.4 0.68 0.76 0.65
Configuration 2 0.57 0.77 0.63 0.57 0.66 0.79 0.68
Configuration 3 0.57 0.76 0.62 0.58 0.66 0.79 0.68
Configuration 4 0.57 0.75 0.59 0.59 0.65 0.78 0.67
Configuration 5 0.57 0.75 0.58 0.58 0.66 0.78 0.67
Configuration 6 0.57 0.78 0.61 0.54 0.65 0.83 0.68
Configuration 7 0.57 0.79 0.62 0.54 0.65 0.82 0.68
Configuration 8 0.57 0.78 0.59 0.6 0.65 0.81 0.69
Configuration 9 0.57 0.8 0.61 0.6 0.65 0.81 0.69
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Table C.17: Information about the performance for the combined defocus simulations.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Configuration 1 186 0.055 10.08 50
Configuration 2 176 0.116 20.44 50
Configuration 3 235 0.116 27.22 50
Configuration 4 261 0.116 30.26 50
Configuration 5 278 0.117 32.33 50

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.55 0.79 0.79 0.54 0.82 0.86 0.76
Configuration 2 0.55 0.72 0.77 0.68 0.74 0.81 0.75
Configuration 3 0.55 0.77 0.78 0.65 0.82 0.83 0.77
Configuration 4 0.55 0.78 0.8 0.6 0.81 0.79 0.76
Configuration 5 0.55 0.75 0.71 0.51 0.75 0.77 0.7

C.2. Multispectral Study Results

Table C.18: Information about the performance for the simulation without multispectral data in the loop and for the simulation with
multispectral data in the loop.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Configuration 1 No Multispectral 265 0.042 11.08 50
Configuration 1 Multispectral 263 0.038 9.9 50
Configuration 2 No Multispectral 256 0.105 26.95 50
Configuration 2 Multispectral 257 0.111 28.35 50

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Configuration 1 No Multispectral 0.53 0.86 0.66 0.7 0.88 0.86 0.79
Configuration 1 Multispectral 0.53 0.85 0.68 0.71 0.89 0.85 0.79
Configuration 2 No Multispectral 0.53 0.8 0.79 0.66 0.78 0.79 0.77
Configuration 2 Multispectral 0.53 0.79 0.77 0.66 0.78 0.8 0.76
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C.3. Subframe Selection Results

Table C.19: Information about the performance for the simulation comparing different subframe selection algorithms.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Center Frame 254 0.033 8.43 50
Bright Peak 249 0.033 8.08 50
Dark Borders 245 0.033 7.99 50

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Center Frame 0.56 0.9 0.53 0.64 0.92 0.8 0.76
Bright Peak 0.56 0.94 0.76 0.7 0.88 0.88 0.83
Dark Borders 0.56 0.92 0.7 0.59 0.86 0.86 0.79
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C.4. Open-Loop Performance Results

Table C.20: Performance of the two Open Loop configurations in terms of run time, iteration count, Strehl ratio and RMS error.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Configuration 1 242 0.084 20.19 500
Configuration 2 237 0.205 45.26 500

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.41 0.95 0.85 0.74 0.92 0.95 0.88
Configuration 2 0.4 0.94 0.88 0.69 0.93 0.94 0.88

Configuration

Average
Original
RMS
[-]

Average Residual RMS [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.63 0.046 0.104 0.112 0.071 0.049 0.077
Configuration 2 0.628 0.044 0.1 0.125 0.066 0.047 0.076
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Table C.21: Performance of the two Open Loop configurations in terms of run time, iteration count, Strehl ratio and RMS error after
correction.

Configuration

Average
Iteration
Count
[#]

Average
Time per
Iteration
[s]

Average
Run
Time
[s]

Simulations
<1000
Iterations
[#]

Configuration 1 257 0.082 20.86 500
Configuration 2 254 0.205 47.69 500

Configuration

Average
Original
Strehl
Ratio
[-]

Average Residual Strehl Ratio [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.41 0.95 0.87 0.76 0.93 0.95 0.89
Configuration 2 0.4 0.95 0.91 0.72 0.95 0.95 0.89

Configuration

Average
Original
RMS
[-]

Average Residual RMS [-]

Farm Sea Storm Mountains City Overall
Configuration 1 0.63 0.034 0.057 0.083 0.042 0.032 0.05
Configuration 2 0.628 0.032 0.043 0.088 0.034 0.032 0.046

C.5. Closed-Loop Performance Results

Table C.22: Results of the closed-loop performance analysis

Parameter Configuration 1 Configuration 2 Configuration 3
field angle 0 0.3 0 0.3 0 0.3

Average original SR [-] 0.5 0.51 0.83 0.83 0.76 0.74
Average residual SR [-] 0.69 0.66 0.75 0.71 0.71 0.64
Average optimum SR [-] 0.77 0.75 0.9 0.88 0.86 0.8
cases SR above 0.8 [%] 62 58 94 87 81 60
Average original RMS [λ0] 0.24 0.24 0.09 0.09 0.11 0.11
Average residual RMS [λ0] 0.31 0.32 0.15 0.16 0.21 0.23
Average optimum RMS [λ0] 0.12 0.12 0.06 0.07 0.08 0.1
Cases RMS below 0.07 [%] 37 26 73 56 45 22
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