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Abstract—The problem of single-snapshot direction of arrival
(DoA) estimation with antenna arrays has been considered. A
sectorized approach based on Bayesian Compressive Sensing
(BCS) has been proposed. In this method, the angular space
is discretized, defining many non-overlapping small grids which
cover the desired large angular space. First, a BCS estimation is
run in each of the sectors to estimate the DoA of the signals. Then,
a second stage is performed to correct the inconsistencies at the
edges due to signal leaking between sectors. The performance
of the method has been analyzed via extensive Monte-Carlo
simulations in which the number of targets, their Radar Cross
Section (RCS), and their location have been varied in a large
extent, and the targets were observed by a Frequency Modulated
Continuous Wave (FMCW) radar with an 86-element Uniform
Linear Array (ULA). The results are compared with state-of-
the-art methods in terms of estimation accuracy and resolution.
Moreover, an analysis of the computational time, critical for many
real-time applications, is presented, which shows a reduction
of 20 times in the computational time compared with the
standard BCS. Finally, the method has also been validated using
experimental data collected with a commercial automotive radar.

Index Terms—Bayesian compressive sensing (BCS), direction-
of-arrival estimation (DoA), antenna arrays.

I. INTRODUCTION

The estimation of the Direction of Arrival (DoA) of signals
impinging on an antenna array is a widely explored topic, and
it is essential in fields such as wireless communications and
remote sensing. In general, the accuracy and the resolution of
the DoA estimation are directly related to the array aperture.
For a uniform linear array (ULA), the performance is related to
the number of array elements. However, in many applications
such as automotive radar, the size of the system is a critical
constraint [1]. For this reason, efficient methods for DoA
estimation with a limited number of elements are needed.

Many algorithms have been developed in the last decades,
where the most commonly used ones are the multiple signal
classification (MUSIC) or the signal estimation parameter via
rotational invariance technique (ESPRIT). However, one of the
main drawbacks of these algorithms is the need for the a priori
knowledge of the number of signals impinging on the array,
and the need for multiple snapshots of the same scene for
an accurate covariance matrix estimation. From an automotive
radar perspective, both constraints present a problem. First,
the number of targets (i.e., signals) present on the scene is

unknown and stochastic. Second, targets can move at high
velocities; thus, coherently processing multiple snapshots is
not always possible. In this single-snapshot scenario, the
estimation of the inverse of the noise covariance matrix cannot
be computed since the estimate is rank deficient.

In recent years, a new family of approaches in DoA
estimation has been explored, which exploits the fact that
the signals are intrinsically sparse in the spatial domain, i.e.,
only a few signals or targets are present in the scene. These
methods use the compressive sensing (CS) theory [2]-[4].
However, the main drawback of these methods is that the
sensing matrix they use must satisfy the restricted isometry
property (RIP) [5] to guarantee the correct estimations. In
practice, the sensing matrix for the DoA estimation problem
depends on the physical array topology, and the satisfaction
of the RIP is usually not achieved. Hence, a new family of
algorithms has been developed, which cast the deterministic
problem in a Bayesian probabilistic framework, leading to the
so-called Bayesian compressive sensing (BCS) [6]. BCS is
usually solved efficiently with the relevance vector machine
(RVM) and has been proved effective in DoA estimation, using
both the standard BCS and the multi-task BCS (MT-BCS)
[7] by processing multiple snapshots. In any CS-based DoA
estimation algorithm, the estimation performance depends on
how fine the space discretization is done: the finer the grid,
the better the performance, until a point where the sensing
matrix starts to be coherent, and the performance degrades.
However, increasing the search space also greatly impacts the
computational cost of the algorithms, since most of them have
an exponential computational complexity with respect to the
grid size. Thus, different strategies have been proposed to over-
come this limitation. For example, in [8], the authors propose
a multi-scaling approach, where a coarse grid is defined first.
Then, by using the estimation uncertainty provided by BCS,
a refined grid is formed in the regions of interest.

Many applications require a very fast DoA estimation; for
example, current automotive radars provide a whole radar
cube (range, Doppler, and angle estimation) every 50ms. The
current trend in automotive radars is to include more and
more antennas to increase the angular resolution; thus, the
discretization grid for DoA estimation needs to become finer.
Moreover, the DoA estimation must be implemented in em-
bedded hardware with low computational resources. For this
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reason, the computational complexity of the DoA algorithms
should not be overlooked, and new low-complexity methods
are needed to deal with the increasing number of antennas.

This paper proposes a low complexity DoA estimation
method based on BCS by using multiple non-overlapping
small grids. The proposed method is verified using simulated
and measured data, analyzing the estimation accuracy, the
resolution capabilities, and the computational cost. Moreover,
the performance is compared with different state-of-the-art
methods, namely Fourier beamformer, single snapshot MUSIC
algorithm [9], and the BCS implementation from [10].

The rest of the paper is organized as follows. In Section II,
the mathematical formulation of the problem is provided, the
BCS theory is briefly introduced, and the proposed method
is presented. In Section III, the performance of the proposed
method and state-of-the-art methods are analyzed using 7000
scenes simulated in a Monte Carlo approach with varying
targets’ characteristics, and a case study with experimentally
measured data is presented. Finally, conclusions are presented
in Section IV.

II. MATHEMATICAL FORMULATION
A. Signal Model

The basic principle of DoA estimation relies on the extra
distance a signal must travel to reach different elements in the
antenna array. Consider K narrowband signals impinging on
a ULA with n = 1,..., N elements with d spacing between
them. Without loss of generality, the single snapshot baseband
received signal can be written in matrix form as:

y=A0)T +e, ()
where y € CV*1 is the complex sample vector, z € CK*1 is
a vector that accounts for all channel losses, antenna radiation
pattern and target radar cross section (RCS), e € CN*1 is
the additive complex Gaussian noise, and A(f) € CVN*¥ s
the measurement matrix formed by the virtual steering vectors
pointing to K targets as:

A0) = [v(61), ..., v(0k)], )
U(Gk) _ [1,8j¥ sinek’ '“’ej¥(N71)sin9k]7 (3)

being A the signal wavelength, and 6, the DoA correspond-
ing to the k™ signal and the variable to be estimated. In
classical signal processing, A and 7 are unknowns, and the
goal is to estimate them with the information contained in
the measurement y. Note that (2) is nonlinear, since the
unknowns 6, are present in the exponential terms of the
steering vectors. However, this problem can be tackled from
another perspective, discretizing the angular space in a grid of
M cells and assuming the DoA of the signals lie on the grid.
Thus, a new measurement matrix A € CV*M can be formed
with M steering vectors pointing to the grid, the unknowns in
this case being the coefficients of the sparse vector . Knowing
that only a few signals are present in the scene (i.e., M > K)
and that the problem is now linear, it can be solved with CS

techniques. Thus, a sparse estimate of x can be found solving
the following constrained optimization problem:

min||z||; st Az =y. 4)

Different CS-beamforming algorithms have been developed
to solve (4), and in [11], the performance of many of them
is analyzed in terms of estimation accuracy, detection, and
resolution capabilities. However, in order to guarantee reliable
estimations, the measurement matrix A must satisfy the re-
stricted isometry property (RIP). In this case, A is defined by
the array topology; thus, the fulfillment of RIP is not always
guaranteed. To overcome this limitation, some researchers
have proposed BCS-based DoA estimation.

B. Bayesian Compressive Sensing

It is not the aim of this paper to present a comprehensive
explanation of the underlying theory of BCS, and a mathemat-
ical formulation of BCS-based DoA principles can be found
in [10]. The core concept relies on a new formulation of the
problem from a probabilistic approach, where the full posterior
density function for z is sought. To do this, a hierarchical
sparseness-promoting prior is imposed on z, and the posterior
is found by means of the relevance vector machine (RVM).
Following [10], the BCS estimate can be written as:

-1

! (A(G)TA(Q) A@)"9,  ©)

ZTpes = = = + diag(a)>

being A(6), #gcs, § the commonly used real and imaginary
expansions of A(6),xpcs,y to yield a real-valued problem
suitable for BCS [12]. Notice that two hyperparameters, o
and «, have to be estimated before obtaining xpcs, usually by
means of an expectation maximization algorithm such as:

1 T
Lo, a) = —5[2M10g 27 + log |Ches| + 97 Cpest],  (6)

where Cpcs = 021 + A(0)diag(a) ' A(0)T.

In [7] a sequential method is derived from the fast RVM
algorithm [13]. This algorithm works in a constructive manner,
adding, deleting or re-estimating a relevant vector in each
iteration. Thus, the complexity of the algorithm is related to
the number of relevant vectors m (i.e., the number of targets
present in the scene), and it is proved to be O(Mm?). This
algorithm is the one used in the rest of the paper.

C. Sectorized BCS

Automotive radars need to perform many DoA estimations
per second, usually in relative low resource hardware. Thus,
very low complexity algorithms are required without reducing
the performance in angular resolution. This work proposes an
adaptation of the fast BCS developed in [7], where the entire
angular space is divided into smaller sections, and independent
BCS estimations are performed. Then, a common stage is
used to combine the estimations per sector into a global DoA
estimate, where signal leakage between sectors is resolved.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 09:20:15 UTC from IEEE Xplore. Restrictions apply.



A(6)

61 ) 05 04 Or—3|O0m—2|O0m—1| Om
91 9% 0%+1 92_‘% Q%Jrl 0M
Ai(0) A (6) A3(0)

Fig. 1. Schematic of the DoA angle discretization. In the upper part, a large
grid covers the M possible DoAs in a conventional approach. In the lower
part, three non-overlapping smaller grids cover the same M possible DoAs
with the proposed approach.

The first step of the proposed approach is to build W
new sensing matrices A, being W the number of sectors
covering the same angular space. A visual representation of
these sensing matrices can be seen in Fig. 1. Then, W BCS
algorithms are run in parallel, and the output of each of them
is concatenated to form a single output. The reduction in
computation cost in this step comes from two main reasons.
First, because of the quadratic dependency of the complexity
with the number of targets and knowing that the sum of
squares is less than the square of sums. Thus:

O(mi+mj +... +miy) < O((m1+ma+...+mw)?), (7)

where m; is the number of targets in sector ¢. Second, due
to the sparse nature of the scene (i.e., there are only a few
targets in each range-Doppler cell), many sectors will contain
no targets, leading to a speed-up in the processing. However,
signals cannot be physically separated in sectors, and thus,
leakage between sectors may happen when the DoA to be
estimated are close to the edge between sectors. As an example
of this phenomenon, Fig. 2 and Fig. 3 are presented. In this
case, the discretization grid is 0.5°, and the sectors are defined
such as the last cell of one of them is located at -0.5°, and the
first cell of the adjacent one is at 0°. Two cases are analyzed,
where the targets are placed on-grid and off-grid (i.e., at 0° and
at -0.2°). As can be seen in the upper plot of both figures, many
targets (i.e., relevance vectors) are generated due to the signal
leaking. Thus, a correction stage is needed to compensate for
this effect.

After the W BCS estimations have been performed, a new
BCS algorithm is run but in this case using the full A(6).
However, only those relevance vectors generated from the
previous stage are used as candidate basis vectors. This implies
that only the conditions in step 7 and 8 of the algorithm in
[13] need to be evaluated, to asses if a relevance vector should
be removed. Therefore, the computational cost of this step is
very small. The middle plots of Fig. 2 and Fig. 3 show the
DoA estimation after the proposed correction step, while the
lower plots show the estimation with the standard BCS for
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Fig. 2. DoA estimation for the on-grid case at the boundary between sectors.
On the upper plot, the estimation before the correction stage. The middle plot
shows the result after the correction stage, and the lower plot the standard
BCS for comparison.

comparison. As it can be seen, both estimations are very close,
but with the proposed method being much faster.

It is important to note that, unlike for BCS, this approach
cannot be applied to most of the DoA estimation methods
since their computational complexity is related with the grid
size (e.g., the complexity of an FFT is O(MlogM) while
the complexity of the MUSIC algorithm is O(M?3)). The
next section presents an analysis to quantify the reduction
in computational complexity, as well as some performance
analysis.

III. RESULTS
A. Simulation Results

To evaluate the performance of the proposed approach,
a ULA with \/2 separation between elements has been
simulated, with isotropic radiation patterns for the y > 0
half-plane. Seven thousand scenes have been generated in a
Monte Carlo fashion, where a different number of point targets
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Fig. 3. DoA estimation for the off-grid case at the boundary between sectors.
On the upper plot, the estimation before the correction stage. The middle plot
shows the result after the correction stage, and the lower plot the standard
BCS for comparison.

TABLE I
MONTE CARLO SIMULATION PARAMETERS
Number of scenes 7000
Number of targets per scene X ~U(1,10)
Position of the targets [o] X ~U(-T70,70)
RCS of each target [dBsm] X ~U(0,10)
SNR in the scene [dB] X ~ (-5,0,5,10,15, 20, 25)
Number elements in array 86

have been placed at different azimuth angles. The RCS and
location of these targets have been sampled from a uniform
distribution. Table I summarizes the parameters of the Monte
Carlo simulation.

First, an evaluation of the estimation accuracy has been
performed. To this end, several DoA estimators are compared:

1) The single-snapshot MUSIC (SS-MUSIC) estimator
from [9] with a grid size of 0.5°.

2) The conventional Fourier beamforming with a 0.5° grid.

3) The standard BCS with a grid size of 0.5° [7].

x10°°

Angle MSE vs SNR

7.5 T
] —*—FFT
—%— 8S-MUSIC
r BCS 7
—%— Sectorized BCS

-5 0 5 10 15 20 25
SNR (dB)
Fig. 4. MSE for the different DoA estimators as a function of the SNR.

4) The proposed approach, sectorized BCS with W = 10
sectors covering 18° each, with a grid size of 0.5°.

Fig. 4 shows the mean square error (MSE) for the four
different estimators. As it can be seen, the sectorized BCS
slightly outperforms the classical BCS, while the SS-MUSIC
and the Fourier beamformer have the worst performance.

In addition to the MSE, it is important to analyze the
resolution capabilities of the proposed method. To this end,
the same approach as in [14] is used, where the following
random inequality is defined as:

01 + 6,
2

With this, two signals are said to be resolvable if the
inequality holds, and to be irresolvable otherwise. Therefore,
the probability of resolution can be written as a binary decision
problem as:

v(61,02) = =[£(01) + £(02)] — &( )>0. (8)

DO =

P..s = Pr{v > 0}. 9

Fig. 5 shows the probability of resolution for the DoA
estimators mentioned above as a function of the true angular
separation of the targets. As it can be seen, the proposed
approach follows the same trend as the standard BCS, with
a very similar performance. Moreover, it can be seen how
the BCS-based methods have much higher P,.; than the SS-
MUSIC and the Fourier beamformer. Furthermore, in Fig. 6,
the probability of resolution for different SNRs can be seen,
where the methods behave similarly to the previous result.

From the results presented in this section it is clear that
the proposed sectorized BCS has similar estimation accuracy
and resolution capabilities with respect to the standard BCS,
overperforming the Fourier beamformer and the Single Snap-
shot MUSIC algorithm. However, as explained in the previous
section, the more considerable improvement is in the compu-
tational cost of the method. To analyze this improvement, the

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 09:20:15 UTC from IEEE Xplore. Restrictions apply.



Pres vs Signal Separation

0.9 T T T
k
k

0.8

0.7 [
c
k<]
=
© 06
[
O
14
G051
2
] o4l
Q
<)
o

0.3 —*—FFT

—%— SS-MUSIC
02 BCS 1
. —%— Sectorized BCS (Proposed Method)
|

0.1 :
0.5 1 1.5 2 25

Signals separation (°)
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TABLE II
COMPUTATIONAL TIME FOR DIFFERENT DOA ESTIMATORS
Method Time (ms)
SS-MUSIC [9] 16.3
FFT 0.035
BCS [10] 101.5
Sectorized BCS (Proposed Aproach) 5.0

average computational time over the 7000 scenes for each DoA
estimator has been calculated, and results are shown in Table
II. As it can be seen, the proposed method can perform the
DoA estimation in only Sms, which is approximately 20 times
faster than the standard BCS (68% of the time is spent in the
first step of the method, and 28% on the following correction
stage).

Fig. 7. Placement of the corner reflectors with 13cm between their centers,
leading to 1.3° separation at 5.6m distance from the radar.
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Fig. 8. DoA estimation results of two corner reflectors with 1.3° separation
between them. The proposed sectorized BCS as well as the standard BCS can
resolve the two targets. The FFT beamformer and SS-MUSIC only show one
peak.

B. Experimental Results

A field experiment has been carried out with a 77GHz
FMCW radar with an 86 virtual ULA to evaluate the perfor-
mance of the proposed method with experimental data. Two
corner reflectors have been placed at a range of 5.6m with a
distance of 13cm (equivalent to approximately 1.3°) between
the centers, as shown in Fig. 7. A single snapshot has been
captured, and the same estimators mentioned in the previous
section have been applied. As seen in Fig. 8, both BCS-based
methods can resolve two peaks, while the FFT and SS-MUSIC
fail to do so. Notice that the targets are placed in the boundary
of two sectors, so the example shown is the most challenging
case for the proposed method. The estimation is as good as
the standard BCS, but with significantly less computational
complexity.
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Finally, it is important to mention that the estimation
accuracy cannot be evaluated due to the lack of an accurate
ground truth. The experimental results are shown only as an
example, and future work will perform a statistical analysis
with additional data.

IV. CONCLUSIONS

This paper presents a low-complexity single-snapshot DoA
estimation method that uses a sectorized approach to exploit
the advantages of Bayesian Compressive Sensing. The perfor-
mance of the proposed method has been analyzed in terms
of estimation accuracy, resolution capabilities, and computa-
tional cost. To this end, a Monte Carlo simulation has been
performed with 7000 runs, simulating different scenarios with
a varying number of targets with different characteristics.
Results prove that the proposed method can perform as well
as the standard BCS in terms of accuracy and resolution but
with a significant reduction of 20 times the computational
cost. Moreover, the method’s performance has been verified
experimentally using commercially available radar, proving
that the proposed method can work well with measured data.
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