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1
Introduction

In this thesis scenarios are generated for time series by modelling the future based on the past events
of this time series. This is done by using neural networks to estimate the distribution at the next time
step. Before delving into the details of this approach, the necessity and usefulness of an approach to
generate (possibly multivariate) scenarios is justified.

When looking at the global financial crisis around 2007-2009, it is often considered that lack of market
consistent valuation within banking and insurance was a contributing factor to this crisis [1]. After
this crisis the Solvency II directive and IFRS 9 framework were implemented to take future economic
scenarios into account for banks and insurers to ensure that they keep enough capital on hand to handle
different economic scenarios. So, in essence, economic scenario generation is a component of preventing
a potential future crisis and thus a part of the stability of the financial system. Under the IFRS 9
framework banks and insurers are required to compute their Expected Credit Loss (ECL) based on the
current state of the economy but it should be forward looking. This means that they have to base
their estimates for the probability of default of customers on different future scenarios. These different
scenarios are now commonly generated based on expert judgement, which obviously has flaws such as
bias and incompleteness.
Not only economic scenarios are being generated, there are many other fields in which scenario gen-
eration is useful. Scenario generation is a broad term: trying to sketch scenarios for Brexit is also
generating scenarios and it is dependent on time. However, in this thesis the focus will be on mathe-
matical time series: measurable quantities that are ordered in time.

Scenario generation is clearly linked to uncertainty, if there were no uncertainty the result is determin-
istic and although this does not guarantee that the outcome is known, it makes modelling it much easier
in general. Consider the situation where the temperature has been 15 degrees Celcius for the last three
days and the goal is to generate scenarios for what happens to the temperature tomorrow. If we were
to predict a 40% probability of 14 degrees, 40% probability of 15 degrees and a 20% probability of 16
degrees and it turns out to be 16 degrees tomorrow.

An analogy to the problem at hand is trying to predict tomorrow’s weather based on the information
of today and the past few days. If it has been hot in the past few days the probability that it is hot
tomorrow is larger than usual. It is evident that the current state of the atmosphere and weather
influences what the weather tomorrow will be, which can be observed in the measured temperatures.

Finally, from a mathematical perspective scenario generation is interesting. First let us focus on the
difference between forecasting and generation.

Now that the base of reasoning as to why scenario generation is useful is given, let us consider how to
generate these scenarios. To this end there are several approaches which will be given in this section.
By giving examples the value of using distributions to forecast will be shown.

1



2 1. Introduction

Before the elaboration on these methods there is a focus on scenario generation and future prediction
in general. For example consider the simple random walk 𝑋፭ with 𝑋፭ዄኻ = 𝑋፭+𝐷፭ዄኻ where 𝐷፭ = ±1 each
with probability ኻ

ኼ . Suppose 𝑋፭ = 0 and we try to predict the value at the next time step 𝑋፭ዄኻ. Clearly
at the next time step we will have 𝑋፭ዄኻ = ±1. If we were to forecast the expectation we would predict
0 at the next time step. This is obviously a prediction that always will be wrong. So using the expec-
tation as a prediction can result in values that can never materialize. Furthermore, the mean does not
have to be a typeical situation which we would expect. This can also be seen in the example given below.

One possible solution to ensure we do not predict a value that can never occur is to take the most likely
event as the prediction. This has its flaws as will be described in the following example.

Consider the asymmetric random walk 𝑌፭ with 𝑌፭ዄኻ = 𝑌፭ + 𝐷፭ዄኻ where

𝐷፭ = {
99 with probability ኻ

ኻኺኺ ,

−1 with probability ዃዃ
ኻኺኺ

.

Suppose 𝑌፭ = 0 and we try to predict the value at the next time step 𝑌፭ዄኻ. If we were to forecast the
expectation we would predict 0 at the next time step, just like in the example before. If we take the
most likely event as a prediction we will get a rising 𝑌፭ for every time step. In the long run we can
see that this is clearly not desirable since the time series would forever increase, while its expectation is 0.

Note also that the two methods of taking the mean or mode at every time step only give the same
result every time instead of generating different possible scenarios. Doing this over and over gives the
same result, which is not what we are looking for when generating scenarios.

Another approach would be to give a confidence interval for the forecast. While this might work and
give some extra insight next to the point estimation, it does not necessarily tell us much about the shape
or symmetry. Therefore, a method which shows what could happen in the future is desirable. This is
also the reason that forecasting distributions makes sense. We are not certain what is going to happen,
thus we try to predict with what probability each event can occur. This gives the possibility for better
understanding than a point estimator. We can see how spread out the possibilities are, which values are
much more likely than others and what is the inherent uncertainty in the process. Now this is all for
considering prediction. Note that point estimators are inherently bad at generation of scenarios, since
they give little understanding of the uncertainty of the process. Note that from the distribution we can
still compute the expected value and the most likely event, thus this is a more informative prediction,
in fact it contains all the information that can be used to compute properties of the random variable.

So how do we generate a time series? A logical approach is to consider all possible events that could
happen at the next time step and take this into account for our prediction. If we do this at each
(future) time step we can see all possible scenarios. To put this in a more mathematical formulation:
if we estimate the distribution at the next time step we can generate a scenario by simply taking a
draw from the distribution. Essentially, we are doing Monte Carlo simulation by repeatedly predicting
distributions based on the past and sampling. This allows us to generate scenarios, but also to indirectly
approximate the distribution several time steps ahead.

Many methods currently used in forecasting as described in the previous section are based on distribu-
tions. The only notable exception is expert judgment. This boils down to asking an expert question
on what (s)he expects to happen. Note that the phrasing plays a role on this from a psychological
perspective already and it is hard to extract the views of several experts and reach a clear consensus.
Expert judgement has another drawback; experts can be just as wrong as models. If you asked experts
on interest rates around 15 years ago whether the interest rate between banks and for the central banks
could become negative they would have said this is not going to happen. This has however happened
in the past few years.
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Another aspect to consider is that scenarios should not only depend on the empirical historical distribu-
tion. In almost all fields where scenario generation is used it is possible for more extreme events to take
place. Think of a new warmest day record, highest amount of precipitation but also new highs/lows in
the stock market. So, the scenario generation method must be able to produce extreme scenarios.

However, it also needs to be realistic. For example, if we are predicting temperatures in some physics
experiments the temperatures can approach 0 degrees Kelvin. If a scenario is generated which goes
below the 0 degrees Kelvin, it defies the laws of physics and therefore is unrealistic. This balance is
clear in the physics sense but is less clear in economics. How does one judge whether a scenario is
realistic?

Note that the approach used in this thesis could be used for distributional forecasting in general. This
has the advantage that it is more widely applicable and more interesting for future research. Having
the information about all possible events at the next time step gives you much more information than
solely a confidence interval and the mean and can be used in practice in situations such as financial
trading and energy load forecasting.

Thus predicting a distribution is useful both for generation of scenarios and insight into inferences. The
method of forecasting distributions is not present in all areas where predictions are based since most
rely on point estimates. However the fields in which most research is done with regard to distributional
forecasting are numerical weather prediction [2], Natural Language Processing [3], reinforcement learn-
ing [4], image classification [5] and energy load forecasting [6].

Scenario generation is a hard task in general, but when considering multivariate time series it becomes
especially involved. Consider the example of macroeconomic variables: there is surely a dependence
between the interest rate, unemployment rate, GDP and other variables. In which way these variables
exactly depend on each other is not entirely clear. Therefore choosing a flexible model is required, that
accommodates the unknown dependence structure. Not only should the model thus be able to incorpo-
rate different dependence structures and allow for a multivariate approach, it should also be able to be
dependend on historic values in several different ways and incorporate randomness. Due to this flexi-
ble requirements it is chosen not to pursue a parametric model for this, as further explained in Chapter 3.

An investigation into different scores for probabilistic forecasts is done and it is also based on another
distinction. If we would have five events 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 that can happen and they are equally likely it
is straightforward to forecast the probability for all of them. However, does it make a difference if you
care about being close to the result as well. So do we only care about predicting the right probability
for each part? The answer to this question depends on the context of the events meaning in which way
are they linked. If we are talking about the temperature as in case of the weather earlier and we predict
event 𝐵 while the realization is event 𝐸, we would prefer to be closer to the realization than further
away, so 𝐷 would have been a better prediction even though not being correct. A thorough analysis is
presented in chapter 3.

To investigate time series we use neural networks to learn to predict a distribution instead of the more
common point estimate. From the estimated distribution we draw a sample to generate a possible
future event. This is done repeatedly to obtain a possible future realization. Furthermore, the issue of
generating in higher dimensions is addressed.

In the recent years advances in computing and neural networks have reached a new height. After com-
puters started outperforming humans on chess, the game of Go, which has now been fully dominated
by computers. The best performing project on Go is made by Google and named AlphaGoZero. It is
a machine which makes its decisions based on a neural network. This is not the only field in which
neural networks shine, they also achieve state-of-the-art performance in areas such as image recognition,
computer games [4] and natural language processing. However, in the field of time series they do not
always have the best performance. Great progress was made by Google Deepmind on the generation of
audio using WaveNet [7].



4 1. Introduction

Artificial Neural Networks (mostly referred to as neural networks) represent a machine learning tech-
nique. They are modelled after the human brain, hence the term neural network. The idea is that
as input we have certain neurons that activate with an energy level. This information is then passed
onto other neurons, and based on the combination of the previous input it activates in a certain way.
This chain continues until eventually a conclusion is drawn. Think of recognizing an image of a cat.
How does one recognize a cat? In the image you see color, context, edges, etc. The combination of
these things makes one confirm: this is a cat. A neural network tries to make inference by recognizing
patterns in the data. The neural network learns the weights and functions from examples, data for
which the realization of the prediction is known. By training on these examples they learn to identify
patterns which will allow them to distinguish between different objects. In practice, they serve in many
applications. The recommendations seen online are often based on predictions from neural networks,
such as when listening to Spotify recommended music or similar items in the webshops that are shown
often come from predictions by neural networks.

Historically, predictions were often made using analytical methods. These analytical methods have the
benefit of producing mathematically consistent solutions to these problems and can often be used for a
range of problems due to generalization. With the decrease in the cost of computing power and advances
in modelling and machine learning approaches, simulation has become a standard tool in finance.
Statistical models such as ARIMA are able to generate distributions and are used often in time series
analysis. A downside is that they assume a linear stochastic model which is also Gaussian. Note that
in reality this might not be the case, so we would be restricting the model for ease of computation
and expressibility. ”Literature in time series forecasting is rich and has a long history in the field of
econometrics which makes extensive use of stochastic models such as AR, ARIMA and GARCH ... .
In practice, one can notice that these models ‘over-fit’ on financial time series: their parameters are
unstable and out-of-sample performance is poor.”[8]. This is a problem since the goal is to use the pre-
dictions out of the sample. Note also that in reality the stochasticity might not be linear or Gaussian.
The ARIMA model can capture this but then we have to estimate its parameters, which is another
problem to which there is not a clear solution.

Neural networks have achieved state-of-the-art performance in classification tasks. Predicting a distri-
bution is also a classification task but with a (perhaps) more complicated dependence structure between
the classes. Since neural networks are good at classifying it is interesting to see if they are also good at
predicting distributions and there has been not much research into this as stated before.

It is important to understand that a neural network is only trained on data. Although the network
architecture (the amount of layers, activation functions, amount of neurons, etc.) is usually chosen
specifically for the problem, the neural network boils down to a function approximator. There are
theoretical results that certain setups of neural networks are able to approximate arbitrary non-linear
functions [9]. However, if the data is not representative or of bad quality or there is a change in the
underlying dynamics over time, the neural network will not be able to perform well. Where a model is
(usually) based on a theoretical principle, the predictions of a neural network could lead to unrealistic
results at times if not properly trained or supplied with bad data. This is important to keep into account.

When finally time series are generated and we have a framework to forecast distributions, the issue of
measuring the performance of this rises. It is clear that it is a hard task to assess the goodness of the
forecasted distribution for a single realization. If the underlying distribution of the data is known it
is workable to evaluate the forecasted distribution. When the underlying distribution is not known,
this is much harder. To this end a new method is introduced to assess how uniformly distributed the
realizations are with regards to the expected distribution.

In Chapter 2, the more elaborate problem description and outline of the thesis are given as well as a the-
oretical background on the most common time series modelling approaches, such as ARIMA, Bayesian
methods and machine learning approaches. In chapter 3 the methodology of this thesis to approach
the problem is explained and motivated based on the information given in Chapter 2. In chapter 4
the set-up for the numerical experiments is given and explained, whereas the results from these are
presented and discussed in chapter 5. In chapter 6 the conclusions are drawn and finally in chapter 7
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further research recommendations are discussed and drawbacks of the approach used are highlighted.





2
Problem description

This chapter will give a more in depth view into the problem of generating multivariate time series. The
main question to answer is: How can multivariate time series be generated without explicitly knowing
how these different series depend on each other or how they are distributed? This question will be
answered by first considering which well known time series forecasting approaches there are to choose
from. Furthermore, their advantages and disadvantages will be discussed including how they handle
multiple dimensions.

First, a brief overview of time series is given. A time series is a collection of data points ordered in
time. In most cases the size of the time step is constant, for example a day, or an hour or a week. A
simple example of a time series is the daily temperature outside at noon in Amsterdam. The temporal
structure is what makes the difference between most other parts of statistics since it is often the idea
that the future is in some way dependent on the past.

Time series analysis is applied in many different research areas due to the broadness of the applicability
of temporal datapoints. Examples are: statistics, pattern recognition, econometrics, finance, weather
forecasting, earthquake prediction. Usually a model is not readily available or known to accurately
describe the behaviour.

It was notable in the literature that the score or error metrics were always given, but not compared
to naive methods or tested for statistical significance. Often it seemed that a time series modelling
approach would work well on one problem but perform terrible on other problems or datasets. This
of course makes sense, some methods are excellent at one specific task but underperforming in other
tasks. Since it is unclear what the underlying dynamics are in economic time series this thesis will seek
a method which works well on different types of datasets and assess performance on different series to
assess robustness.

The three main classes to time series analysis and forecasting are given below and will be disucssed in
their own section:

1. ARIMA models

2. Bayesian time series models

3. Machine learning approaches.

2.1. ARIMA models overview
In this thesis only discrete time series will be discussed, this means that the time steps are discrete.
The definitions and notation used here are similar to those used in general books on time series such
as [10–12]. Mathematically we have the collection

{𝑋(𝑡, 𝜔) ∶ 𝑡 ∈ ℤ, 𝜔 ∈ Ω}.

7



8 2. Problem description

We denote the stochastic process by 𝑋፭ ∶= 𝑋(𝑡, 𝜔) for ease of notation and since it is clear we are dealing
with a random variable we can omit the 𝜔. When working with time series, a criteria that is often used
is stationarity.

Definition 2.1.1 (Strongly stationary process). A stochastic process {𝑋፭ ∶ 𝑡 ∈ ℤ} is strongly stationary
if the distribution of

(𝑋፭ , 𝑋፭ዄኻ, … , 𝑋፭ዄ፡)
is independent of 𝑡 for any ℎ ∈ ℕ.
Simply said, a time series is strongly stationary (sometimes called strictly stationary) if for all sets of
indexed time series, so for any length, the distribution stays the same when applying any size of time
shift. This means that no matter at what time we look at the time series, the distribution behaves the
same. Furthermore, if the mean exists it is also constant over time. This definition is too strict for
most useful applications. Moreover it is difficult to assess from a dataset whether or not the time series
is strictly stationary. Therefore a slightly weaker but in practice more useful definition of stationarity
will be used. Before this is introduced some measures of dependence have to be explained.
The mean of a time series 𝑋፭ with density 𝑓ፗᑥ is given by 𝜇፭ = 𝔼 (𝑋፭) = ∫

ጼ
ዅጼ 𝑥𝑓ፗᑥ(𝑥)d𝑥. Another aspect

of time series that is often used is the autocovariance. It is defined as

𝛾ፗ(𝑠, 𝑡) = Cov(𝑋፬ , 𝑋፭) = 𝔼 [(𝑋፬ − 𝜇፬) (𝑋፭ − 𝜇፭)] (2.1.1)

for all 𝑠, 𝑡 ∈ ℤ. If it is clear which time series we are referring to we will notate 𝛾(𝑠, 𝑡) instead of 𝛾ፗ(𝑠, 𝑡).
Note that covariance is symmetric and by the definition so is the autocovariance.
These are used in the definition of a weakly stationary process:

Definition 2.1.2 (Weakly stationary process). A stochastic process {𝑋፭ ∶ 𝑡 ∈ ℤ} is weakly stationary if
the following conditions are met.

1. The mean 𝔼(𝑋፭) = 𝜇፭ does not depend on 𝑡 and is thus constant over time.

2. The autocovariance function 𝛾(𝑡, 𝑡+ℎ) = 𝐶𝑜𝑣(𝑋፭ , 𝑋፭ዄ፡)may depend on time solely by the absolute
difference |ℎ|.

3. The variance of 𝑋፭ is finite for all 𝑡 ∈ ℤ.
When in this thesis a series is referred to as (non) stationary, the term weakly stationary is meant.
Note that any strongly stationary process that has a finite variance automatically is also stationary in
the weak sense.
Several examples of stationary processes will now be given that are often used. A series {𝑋፭} is white
noise if the random variables are uncorrelated with zero mean and finite and constant variance 𝜎ኼ. This
means that 𝜇፭ = 0 for all 𝑡 ∈ ℤ and

𝛾(𝑠, 𝑡) = { 𝜎
ኼ if 𝑠 = 𝑡
0 else

Clearly this is a stationary process. If we have a series of i.i.d. normally distributed variables with zero
mean and variance 𝜎ኼ this is a white noise series.

2.1.1. AutoRegressive model
In this section the AutoRegressive (AR) model will be introduced. The autoregressive model has an
associated order 𝑝 with it. Autoregressive means that the future is a function of the past value; it
regresses on itself. Mathematically this means

𝑋፭ =
፩

∑
።዆ኻ
𝜑።𝑋፭ዅ። + 𝜖፭ .

Here 𝜖፭ is white noise and the 𝜑። are parameters with 𝜑፩ ≠ 0.
This assumes that the mean 𝜇 of 𝑋፭ is 0. If this is not the case we can use a transformation of 𝑋፭ − 𝜇
and achieve a similar representation. For ease of notation this is now omitted.
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Consider the AR(1) model. The model equation is given by

𝑋፭ = 𝜑ኻ𝑋፭ዅኻ + 𝜖፭ .

This series can be rewritten as

𝑋፭ = 𝜑ኻ𝑋፭ዅኻ + 𝜖፭ = 𝜑ኻ (𝜑ኻ𝑋፭ዅኼ + 𝜖፭ዅኻ) + 𝜖፭

= 𝜑፤ኻ𝑋፭ዅ፤ +
፤ዅኻ

∑
።዆ኺ
𝜑።ኻ𝜖፭ዅ።

By letting 𝑘 go to infinity, we can see, if |𝜑ኻ| < 1 and sup፭ 𝑉𝑎𝑟(𝑋፭) < ∞, that

𝑋፭ =
ጼ

∑
።዆ኺ
𝜑።ኻ𝜖፭ዅ። .

Clearly,
𝔼 (𝑋፭) = 𝜑𝔼(𝑋፭ዅኻ) = 𝜑፭ኻ𝔼(𝑋ኺ) = 0.

Furthermore,

Cov(𝑋፭ , 𝑋፭ዅ፡) = 𝔼(𝜑ኻ𝑋፭ዅኻ ⋅ 𝑋፭ዅ፡) + 𝔼(𝜖፭ዅኻ ⋅ 𝑋፭ዅ፡)
= 𝔼(𝜑፡ኻ𝑋፭ዅ፡ ⋅ 𝑋፭ዅ፡) = 𝜑፡ኻ𝔼 (𝑋ኼ፭ዅ፡)

= 𝜑፡ኻVar(𝑋፭ዅ፡) = 𝜑፡ኻ𝔼([
ጼ

∑
።዆ኺ
𝜑።ኻ𝜖፭ዅ፡ዅ።]

ኼ

)

= 𝜑፡ኻ𝔼(
ጼ

∑
።዆ኺ
𝜎ኼ𝜑፣ኻ𝜑፣ኻ) = 𝜑፡ኻ𝜎ኼ

ጼ

∑
፣዆ኺ
𝜑ኼ፣ኻ

= 𝜑፡ኻ𝜎ኼ
1

1 − 𝜑ኼኻ
The last equality holds since |𝜑ኻ| < 1 thus we have convergence. Clearly this shows that this is a
stationary time series since the mean is constant zero and the autocovariance is a function of the
difference in time.
Consider the AR(1) process with 𝜑ኻ=1. This process is also known as a random walk or the discrete
Brownian motion. This is not a stationary as can be seen from the autocovariance.

2.1.2. Moving Average model
In this section the Moving Average (MA) model will be introduced. The moving average model has an
associated order 𝑞 with it. The moving average model is based on a weighted sum of previous values of
random variables. Mathematically, this means

𝑋፭ = 𝜖፭ +
፪

∑
።዆ኻ
𝜃።𝜖፭ዅ። .

Here 𝜖፭ is white noise and the 𝜃። are parameters with 𝜃፪ ≠ 0.
This is similar to the AR process but here it is based on a weighted sum of random previous values and
not on the value of 𝑋፭ዅኻ. Taking the MA(1) process we get

𝑋፭ = 𝜖፭ + 𝜃ኻ𝜖፭ዅኻ,

which has

𝛾(𝑡, 𝑡 + ℎ) = {
(1 + 𝜃ኼኻ )𝜎ኼ ℎ = 0,
𝜃ኻ𝜎ኼ ℎ = ±1,
0 |ℎ| > 1.
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2.1.3. ARMA model
An obvious combination of the previous two models is the AutoRegressive Moving Average (ARMA)
model. A process is called an ARMA(p,q) process, if we can write

𝑋፭ = 𝜖፭ +
፩

∑
።዆ኻ
𝜑።𝑋፭ዅ። +

፪

∑
።዆ኻ
𝜃።𝜖፭ዅ። .

This is a combination of the previous two models and allows for a greater flexibility of processes to be
modelled.

2.1.4. ARIMA model
The ARIMA model can be seen as an ARMA model on the 𝑑 times differenced original series. So. an
ARIMA(p,d,q) model has

𝑌፭ = 𝑋፭ −
፝

∑
።዆ኻ
𝑋፭ዅ። .

Then the ARMA component becomes

𝑌፭ = 𝜖፭ +
፩

∑
።዆ኻ
𝜑።𝑌፭ዅ። +

፪

∑
።዆ኻ
𝜃።𝜖፭ዅ። .

The main strength of the ARIMA is that even if the original time series is not stationary, it can often be-
come stationary by differencing a number of times. This allows an even greater class of possible models.

2.1.5. Box-Jenkins methodology
The ARIMA model was popularised for time series by Box and Jenkins in the 1970s for their flexibility.
A problem with this was the choice of the orders 𝑝, 𝑑 and 𝑞 and estimating the corresponding parameters.
For this purpose they developed the Box-Jenkins methodology which gives guidelines on how to fit an
ARIMA type model to a time series. It follows these steps:

• Determine stationarity. If non-stationary, then take a one step time difference of the series to
obtain the new series 𝑋፭ − 𝑋፭ዅኻ and repeat this step until a stationary series is obtained. The
stationarity is determined by looking at the data for seasonal patterns and observing the Au-
toCorrelation Function (ACF) at different lags as well as the Partial AutoCorrelation Function
(PACF) at different steps.

• Propose a model for the (possibly differenced) time series based on the ACF and PACF. Estimate
the parameters corresponding to these models using regression or maximum likelihood.

• Check for goodness of fit of the model by testing whether the residuals are white noise.

The maximum likelihood techniques used as well as the (non-linear) least squares approach are often
used for parameter estimation. This is one of the challenges using these types of models due to the
wide range of possible order choices and parameter choices to be made.

The ARIMA model is often used to predict the mean and under the assumption of weak stationarity
will provide the best linear predictor in terms of the Mean Squared Error (MSE), which is an attractive
property. However, in this thesis we are not interested in solely predicting the mean of the next time
step but instead interested in the full distribution. This is a problem since only knowing that a series
is white noise is not enough to know the distribution at the next time step. Therefore, a choice has to
be made into modeling the error term which might not be desirable. Moreover, according to [8] they
over-fit on financial time series and their out-of-sample performance is poor.

The ARIMA model is a type of model that works well in a single dimension but when expanding to
multiple dimensions we arrive at Vector AutoRegression (VAR) type models for which we also have to
specify the dependence structure. More on the dependence structure and multivariate forecasting will
be stated later.
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2.2. Bayesian Time series forecasting
The Bayesian approach to statistics in general is based on the following global steps

1. Formulate a prior distribution using the available information;

2. Obtain new data;

3. Find posterior distribution based on the new data;

4. Update the prior distribution;

5. Repeat from step 2.

This is opposed to the frequentist approach where these parameters are estimated (for example using
maximum likelihood). These parameters are assumed to be fixed but not known. In opposite of the
frequentist approach, in the Bayesian approach parameters are assumed to have some distribution and
the beliefs about these parameters are updated when more information becomes available.
Mathematically, this means

𝑝(𝜃|𝑦ኻ∶፭) ∝ 𝑝(𝑦ኻ∶፭|𝜃)𝑝(𝜃).
Now applying this to a time series scenario is more involved and is most often done in Hidden Markov
models, see [13]. Before the Hidden Markov Model is explained, some more information about Markov
Chains and Markov Chain Monte Carlo (MCMC) methods have to be given.

2.2.1. Markov Chains
A Markov chain is a discrete-time stochastic process 𝑋ኻ, 𝑋ኼ, … taking values in an arbitrary state space
that has the Markov property of order 𝑚: the future is independent of the past given the information
in the last 𝑚 states. In mathematical terms: the distribution of 𝑋፭ዄኻ depends on 𝑋፭ , 𝑋፭ዅኻ, … , 𝑋፭ዅ፦ዄኻ
but not on anything of the time before that. A Markov chain has two properties that fully describe its
behaviour: an initial state and the transition probabilities. Here we will assume that the distribution
of 𝑋፭ዄኻ depends on 𝑋፭ , 𝑋፭ዅኻ, … , 𝑋፭ዅ፦ዄኻ in the same way for all 𝑡. With induction it is now clear that
we have the full distribution for all future time steps.
Applying Markov chains in practice means that we do not know the transition probability beforehand.
A stationary Markov chain 𝑋ኻ, 𝑋ኼ, … is a stationary stochastic process, but it does not need to be
real-valued. If 𝑔 is a real-valued function on the state space of the Markov chain, then 𝑔(𝑋ኻ), 𝑔(𝑋ኼ), …
forms a stationary real-valued stochastic process. Note that it is not necessarily a Markov chain,
since conditioning on 𝑔(𝑋፭) instead of 𝑋፭ may not give the Markov property. However, the process
𝑔(𝑋ኻ), 𝑔(𝑋ኼ), … has many attractive properties. It is called a “functional” of the original chain.
The general notion of a Markov Chain Monte Carlo (MCMC) method is to estimate probabilities or
expectations by simulating a Markov chain and averaging over the simulations. The probabilities or
expectations calculated are those for functionals 𝑔(𝑋።) of the stationary chain, thus they are probabilities
or expectations with respect to the invariant distribution.
The most often used MCMC algorithm is the Metropolis-Hastings algorithm which is very flexible. The
Metropolis–Hastings algorithm works by generating a sequence of sample values in such a way that, as
more and more sample values are produced, the distribution of values more closely approximates the
desired distribution 𝑃(𝑥). These sample values are produced iteratively, with the distribution of the
next sample being dependent only on the current sample value (thus making the sequence of samples
into a Markov chain). Specifically, at each iteration, the algorithm picks a candidate for the next sample
value based on the current sample value. Then, with some probability, the candidate is either accepted
(in which case the candidate value is used in the next iteration) or rejected (in which case the candidate
value is discarded, and the current value is reused in the next iteration)—the probability of acceptance
is determined by comparing the values of the function 𝑔(𝑥) of the current and candidate sample values
with respect to the desired distribution 𝑃(𝑥). This acceptance probability is chosen in such a way that
the limiting distribution of the Markov Chain is the desired distribution 𝑃(𝑥). An algorithmic overview
is given below.
Now in the Hidden Markov Model the states of the Markov chain are not observable (hence the name
hidden). This makes it difficult to assess in which state the model currently is and therefore inference
becomes harder. Using a Bayesian approach ensures that based on the information available the belief
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Algorithm 1 Metropolis - Hastings algorithm

1: procedure Initialization
2: Pick an initial state 𝑋ኺ.
3: Have the transition probabilities as 𝑃(𝑥ᖣ|𝑋፭).
4: 𝑡 = 0
5: procedure Iterate
6: Generate candidate 𝑥ᖣ according to 𝑔(𝑥ᖣ|𝑋፭).
7: Compute the acceptance probability 𝐴(𝑥ᖣ|𝑋፭) = min (1,

ፏ(፱ᖤ|ፗᑥ)
ፏ(ፗᑥ|፱ᖤ)

፠(ፗᑥ|፱ᖤ)
፠(፱ᖤ|ፗᑥ)

).
8: Generate 𝑢 uniformly from [0, 1].
9: if 𝑢 ≤ 𝐴(𝑥ᖣ, 𝑋፭) then
10: New state accepted!
11: 𝑋፭ዄኻ = 𝑥ᖣ
12: else
13: New state rejected!
14: 𝑋፭ዄኻ = 𝑋፭
15: 𝑡 = 𝑡 + 1

about the current state can be updated and this can then be used to compute the posterior and thus
drawing from this the next state. The MCMC algorithm provides a way of finding the correct parameters
for the model.

2.3. Machine learning approaches
Machine learning is an approach of not specifying a specific parameteric assumption on the model or
data, such as priors or normal distributions, which is often done in other types of models. These machine
learning methods extract information about the data in order to use on new data.
Before delving into the machine learning approaches for time series we will focus on neural networks
and their basic approaches.
First, the basics are introduced with the most simple network. Second, the main neural network
approaches are discussed. Thirdly, an investigation is made on the different loss functions. Finally, a
roundup of other important features and considerations is given.
Artificial Neural Networks (ANNs) are computer systems that resemble the biological workings of our
brains. These computer systems are said to learn tasks from examples, often without specifically being
told what to look for. A research area where these networks are often used is image recognition and a
task might be recognizing if an image contains a cat or does not contain a cat. The network learns from
images which contain cats and images where there are no cats. This is all without any prior knowledge
of what a cat looks like or other properties of cats.
The term artificial will be omitted for the rest of this thesis as it refers to the fact that we are not talking
about a biological neural network, the original basis for the computing structure now referred to as neural
networks. A neural network works by taking a combination of inputs, giving them an adjustable weight
and applying a function to this as an output signal. Neural networks work by specifying a structure
from the input to the output with neurons and connections between these neurons. Usually this is
done by grouping the neurons in layers. The weights in the connections between these neurons are then
learned by examples to produce the desired output.

2.3.1. Feedforward Neural Network
One of the most simple version of a neural network is the Feedforward Neural Network. This neural
network starts with the input and a layer of 𝐾 neurons. These 𝐾 neurons are all connected to the input
and all these connections have their own weights. Every neuron also has its own bias. An activation
is applied to the weighted sum combined with the bias to produce the output for that neuron. It is
possible to stack several layers by simply using the output just described as input for the next layer.
Eventually, the output of the network is computed.
To formulate this mathematically we get an input x = (𝑥ኻ, … 𝑥ፎ)) and have a network with 𝐿 layers
and 𝑀፥ neurons for layer 𝑙 ∈ {1, … , 𝐿}. We want to predict 𝑌 based on this. The activation 𝑎 in the first
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layer for neuron 𝑖 becomes:

𝑎ኻ(𝑖) =
፭

∑
፣዆ኻ
𝑤ኻ(𝑖, 𝑗)𝑥፣ + 𝑏ኻ(𝑖)

where 𝑤ኻ is the weight matrix of dimension ℝፌᎳ×፭ with bias 𝑏ኻ ∈ ℝፌᎳ . This is visualized in Figure 2.3.1.
Now the activation function comes in. These outputs are transformed using the activation function 𝑔:

Figure 2.3.1: Visualization of the basic workings of neurons in neural networks.

𝑓ኻ(𝑖) = 𝑔(𝑎ኻ(𝑖))

Now all these different outputs of the first layer are again inputs for the second layer. So, in layer
𝑙 ∈ {2, … , 𝐿 − 1} we have

𝑓፥(𝑖) = 𝑔(
ፌᑝᎽᎳ
∑
፣዆ኻ

𝑤፥(𝑖, 𝑗)𝑓፥ዅኻ(𝑗) + 𝑏፥(𝑗))

This is done for every layer and the result of this from the final layer is simply the output of the
network. So �̂�(𝑡 + 1) = 𝑓ፋ = 𝑔 (∑

ፌᑃᎽᎳ
፣዆ኻ 𝑤ፋ(𝑗)𝑓ፋዅኻ(𝑗) + 𝑏ፋ(𝑗)). This means that every neuron in a layer is

connected to all the neurons in the previous layer and to the next layer, often called a fully connected
layer. Stacking these together yields a network that is visualized in 2.3.2.
The architecture of a neural network refers to the setup of the neural network and comprises the input
size, output size, internal connections from the inputs to internal nodes and to the outputs as well as
the functions used in these parts.
A mathematical definition of the network architecture will now be given. Let 𝑓 ∶ ℝ → ℝ be the activation
function. Let the input 𝐼 ⊆ ℝ፝Ꮃ where 𝑑ኻ is the dimension of the input. Let the output 𝑂 ⊆ ℝ፝Ꮄ where
𝑑ኼ is the dimension of the output. Let 𝑉 be the nodes of a graph, usually referred to as the hidden
units. Let 𝐸 be the directed edges corresponding to the graph with nodes 𝑉, 𝐼 and 𝑂. Each edge in 𝐸
has a corresponding activation function with its own parameters.
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Figure 2.3.2: Image overview of a feedforward neural network with a single hidden layer.

In practice all of the hidden nodes 𝑁 are divided into several layers 𝑁ኻ, 𝑁ኼ, etc. where 𝐼 is only connected
to the inputs in 𝑁ኻ, the edges from 𝑁ኻ go to 𝑁ኼ up to the last 𝑁ፌ which connects to 𝑂. This ensures
that the network is a so called feed-forward network and does not contain any cycles. In recurrent
neural networks this is not the case.
By stacking several layers such as in Figure 2.3.2 a so called deeper neural network is created. This has
multiple layers of neurons before the output is reached.

2.3.2. Activation functions
The architecture just described only shows how the neurons are connected. Up to this point no activation
functions were introduced. Hence we can in that case only use sums and weights of the inputs (and
sums and weights of these) we can essentially reduce this via a linearity argument to a weighted sum
of the input. Thus we get a linear function as an end result. Since, in general, it is desirable to be
able to model more complex non-linear behaviour activation functions are required. In the construction
of a neural network the use of non-linear functions is essential to allow the network to learn arbitrary
non-linear functions.
There is a myriad of available activation functions. The ones that are most used in practice are the
Rectified Linear Unit (ReLU), softmax and the hyperbolic tangent function. Note that these functions
are differentiable (almost everywhere), making it easy to as to compute the gradients of the loss function
with respect to the parameters.
An activation function in a neural network is any function 𝑔 ∶ ℝ → ℝ. To ensure that networks are
capable of being trained, we require the activation functions to be continuous and differentiable almost
anywhere.

ReLU
The Rectified Linear Unit (ReLU) is a function 𝑔 ∶ ℝ → ℝ given by:

𝑔(𝑥) = max(0, 𝑥).



2.3. Machine learning approaches 15

The ReLU is a very simple function that has an intuitive explanation in machine learning. Only if the
input passes a certain threshold does it activate, this can be used as a trigger for certain events and
can thus be very useful. Note that it is not differentiable at 𝑥 = 0 but the derivative is very simple at
all other points, as it is 0 when 𝑥 < 0 and 1 if 𝑥 > 0. This makes computation of the gradients during
the training fast and ensures that the network does not suffer from vanishing or exploding gradients.
This will be explained in more detail in Chapter 3.

Softmax
The softmax is a function 𝑔 ∶ ℝፊ → ℝፊ given for 𝑗 = 1,… , 𝐾 by:

𝑔፣(x) =
𝑒፱ᑛ

∑ፊ፤዆ኻ 𝑒፱ᑜ
.

The softmax function has the property that the sum of the entire output adds up to one, which is very
useful for probabilities and classification tasks.
Its derivative with respect to 𝑥፦ is

𝜕𝑔፣(x)
𝜕𝑥፦

= 𝜕
𝜕𝑥፦

( 𝑒፱ᑛ
∑ፊ፤዆ኻ 𝑒፱ᑜ

)

=
𝑒፱ᑛ (−𝑒፱ᑞ + 𝛿፣,፦𝑒፱ᑞ ∑

ፊ
፤዆ኻ 𝑒፱ᑜ)

(∑ፊ፤዆ኻ 𝑒፱ᑜ)
ኼ .

Since we are dealing with exponentials here it is easy to see that this is infinitely often differentiable.
Before the ReLU was widely used the most used activation functions were the softmax function and
the hyperbolic tangent, which is now given.

Hyperbolic tangent - tanh
The hyperbolic tangent is a function 𝑔 ∶ ℝ → ℝ given by:

tanh(𝑥) = 𝑒፱ − 𝑒ዅ፱
𝑒፱ + 𝑒ዅ፱ .

The hyperbolic tangent rescales the input to the range of −1 and 1 and is often used in LSTM networks
which will be introduced in section 2.3.4.

2.3.3. Time series forecasting using machine learning
There are two main approaches to time series forecasting in machine learning:

• Recurrent Neural Networks

• Convolutional Neural networks

Although there are more approaches available such as feed-forward neural networks [14], copula networks
[15] and Generative Adversarial Networks (GANs) [16], the recurrent neural networks and convolutional
neural networks are the most prevalent and have achieved the best results to date. For more approaches
or details on neural networks one may consult books such as [17].

2.3.4. Recurrent Neural Network
The idea of the recurrent neural network is that we have a state (comparable to a Markov chain) and
we plug in the output of the previous timestep. This is of course why it is called recurrent. Essentially,
the past inputs and activations of the network have an impact on the new input. This greatly increases
the training complexity since when you update your parameters the output for the previous step would
also change. An example of a RNN is the Long-Short Term Memory (LSTM) approach introduced
by Hochreiter and Schmidhuber [18]. The main difference between Feedforward-Neural Networks and
Recurrent Neural Networks is that in the latter some part of the activations or output are passed on to
the next time step. So the input at time 𝑡 has an effect from the previous input at time 𝑡 − 1. This is
clearly demonstrated in Figure 2.3.3.
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Figure 2.3.3: An unrolled recurrent neural network.

One of the appeals of RNNs is the idea that they are able to connect previous information to the present
task. The downside of this approach is that sometimes we may need more information then just the
previous state. Consider trying to predict the last word in the text “I grew up in France so I speak
fluent ____.” Recent information suggests that the next word is probably the name of a language,
but if we want to narrow down which language, we need the context of France, from further back.
Sometimes, the only information necessary was just given. For example, consider a language model
trying to predict the next word based on the previous ones. If we are trying to predict the last word in
“the clouds are in the ____,” no further context is needed; it’s clear that the next word is going to
be sky. In such cases, where the gap between the relevant information and the place that it’s needed
is small, RNNs can learn to use the past information. For larger gaps this is harder due to vanishing
gradients over time.

LSTM
Long Short Term Memory networks (LSTMs) are a type of Recurrent Neural Network that are capable
of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber in 1997 [18].
They work tremendously well on a large variety of problems, and are now widely used in practice.
Recurrent neural networks are based on a chain of repeating modules of a neural networks. In the
standard RNN this repeating system has a simple structure such as a single activation layer, e.g. a
ReLU or tanh layer. The main idea behind the LSTM is to have a certain state that can be updated
based on every new input. There are so called gates that influence what information goes in and out.

A multidimensional approach for the cells, the input and output of an LSTM is possible, but for ease
of understanding a one-dimensional version will be presented. The first step in developping an LSTM
is deciding which information will be deleted from the cell state and is decided by the first gate. This
is a softmax function 𝜎 from the output of the previous time step ℎ፭ዅኻ and the new input 𝑥፭.

𝑓፭ = 𝜎(𝑤፟ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏፟),

where 𝑏፟ is the bias and 𝑤፟ is the weight matrix, which here only has two entries. Note that the term
𝑤፟ ⋅ [ℎ፭ዅኻ, 𝑥፭] is simply the inner product. A higher activation implies more information is kept. The
next step is choosing which information goes into the state 𝐶፭ and is composed of two parts. Another
softmax 𝜎 is used to decide which values to update. This is

𝑖፭ = 𝜎(𝑤። ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏።).

Now a tanh layer is used to give potential values to add to the state and this is �̃�፭:

�̃�፭ = tanh(𝑤ፂ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏ፂ).

Now the state is updated using what came before

𝐶፭ = 𝑓፭ ⋅ 𝐶፭ዅኻ + 𝑖፭ ∗ �̃�፭ .
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Finally, the output of the state is generated and then multiplied by the tanh of the state. This gives us
the final two equations

𝑜፭ = 𝜎(𝑤ኺ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏ኺ)
ℎ፭ = 𝑜፭ ⋅ tanh(𝐶፭).

So altogether the following equations are used iteratively.

𝑓፭ = 𝜎(𝑤፟ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏፟),
𝑖፭ = 𝜎(𝑤። ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏።),
�̃�፭ = tanh(𝑤ፂ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏ፂ),
𝐶፭ = 𝑓፭ ∗ 𝐶፭ዅኻ + 𝑖፭ ⋅ �̃�፭ ,
𝑜፭ = 𝜎(𝑤ኺ ⋅ [ℎ፭ዅኻ, 𝑥፭] + 𝑏ኺ),
ℎ፭ = 𝑜፭ ∗ tanh(𝐶፭).

2.3.5. Convolutional Neural Networks
The convolutional neural network (CNN) is a different approach to the previous networks. The easiest
way to explain the technique behind a convolutional neural network is to look at images. An image
has pixels, each of which has a color that can be represented by three color channels: Red, Green and
Blue (RGB). The image is thus specified by many pixels each of which have three values corresponding
to the RGB colors and these values range between 0 and 255. When looking at only a single pixel it is
hard, if not impossible, to say that this pixel is part of a tree. It is important to look at the context.
The idea behind convolutional networks is to extract so called features from the image. This is done
by taking a small square of the image and using a filter on this producing an output. This filter is
often referred to as the kernel or feature detector. The filter takes an area around a certain pixel and
uses weights to compute a value. This filter is then slided over the entire image to give every part a
value. These filters are constructed in such a way as to detect certain features. As an example, when
considering images take a filter that gives a high value for edges, which are useful in detecting shapes.
On a higher level, we can use a combination of edges to get the contours of a shape, and use this to
classify what is actually in the image. Note that like in the previously described networks a non-linear
function is applied to the outcome of the layers. An example of this can be seen in Figure 2.3.4.

These convolutions are learnable, the weights they apply to each of their inputs is optimized during
training. A choice for the filter size has to be made.
When talking about a discrete convolution ∗ between 𝑢 = (𝑢ኺ, … , 𝑢ፍዅኻ) and 𝑣 = (𝑣ኺ, … , 𝑣ፍዅኻ) we define

(𝑢 ∗ 𝑣)(𝑖) =
ፍዅኻ

∑
፣዆ኺ

𝑢፣𝑣።ዅ፣

for 𝑖 ∈ {0, 1, … , 𝑁 − 1}.
This leaves the problem of the values that were not defined. Taking 𝑖 = 1 will leave us with values that
are not defined such as 𝑣ዅ኿. In practice this is solved by filling these values in with zeros, a technique
often called padding.
Convolutional layers have a filter size and an amount of filters. Suppose we have the same input
𝑥 = (𝑥ኺ, … , 𝑥ፍዅኻ) again. Let us have the ReLU activation function 𝑔(𝑥) = max(𝑥, 0) and weight vector
𝑤 ∈ ℝኻ×፤×ኻ with 𝑘 the filter size. By convolving every weight of the filter with the input we obtain:

(𝑤ኻ ∗ 𝑥) (𝑖) =
ፍዅኻ

∑
፣዆ኺ

𝑤።𝑥።ዅ፣

Afterwards a non-linear function is applied and this becomes the output of the convolutional layer. In
practice there are multiple filters, ensuring that 𝑤 becomes a matrix instead of a vector.
The convolutional layer has learnable filters. We decide on a filter size beforehand and slide this filter
over the image. The output becomes the inner product between the input and the weights. This is
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Figure 2.3.4: Overview of the way a convolutional neural network recognizes images by [19].

usually described as learning a certain feature, because in an image we have many edges. To detect
them we do not always need the entire image, a small part will do. The same can hold for time series,
we do not always need the global picture, the combining of local effects may be sufficient. There are
significantly less parameters when using convolutional layers, this is usually an advantage over the fully-
connected layers. Furthermore due to the reduced dimensionality convolutional neural networks suffer
less from overfitting [20].

Dilated convolutions and WaveNet
In this section the WaveNet approach used in [7, 21] is introduced that uses dilated convolutions to
process a long input sequence with relatively little computational cost.
Take a one-dimensional time series (𝑋፭)ፍ፭዆ኻ. Suppose there is a model with parameters 𝜃 and the goal
is to predict the density at the next time step. By Bayes Theorem, we can rewrite this to:

𝑝(𝑋ፍ , 𝑋ፍዅኻ, … , 𝑋ኻ|𝜃) = 𝑝(𝑋ፍ , 𝑋ፍዅኻ, … , 𝑋ኼ|𝑋ኻ, 𝜃)𝑝(𝑋ኻ|𝜃)
= 𝑝(𝑋ፍ , 𝑋ፍዅኻ, … , 𝑋ኽ|𝑋ኼ, 𝑋ኻ, 𝜃)𝑝(𝑋ኼ|𝑋ኻ, 𝜃)𝑝(𝑋ኻ|𝜃)

=
ፍ

∏
፭዆ኻ

𝑝(𝑋፭|𝑋ኻ, …𝑋፭ዅኻ, 𝜃)

Since the data has a time component and it is undesirable to have a model which depends on future
realizations causal convolutions are used. A benefit of this method as opposed to a RNN is that for a
longer sequence these models are much faster to train due to the lack of the recurrent connection. A
problem when using causal convolutions is that many layers are required, or large filters, to increase
the receptive field size.
To this end, dilated convolutions are used to increase the receptive field without significantly increasing
the computational cost. A dilated convolution is a convolution where the filter is applied over an area
larger than its filter length by skipping input values with a certain step size. Its equivalent is a convo-
lution with a larger filter with zeros for the steps skipped, but in practice this is less efficient. Dilated
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Figure 2.3.5: Visualization of a causal convolution with a kernel/filter size of three.

convolutions allow a neural network to have a larger receptive field than with normal convolutions. The
dilated convolutions were introduced by Yu in [22]. Note that a dilation of 1 produces the standard
convolution. When increasing the dilation per layer an interesting pattern can be seen. Let us take 4
layers where the first layer has dilation 1, the second layer has dilation 2, the third layer has dilation 4
and the fourth layer has dilation 8.
It is clear that when we have 𝐿 layers with filter size 𝑘 we obtain a receptive field 𝑟 with the size of
𝑟 = 𝑘ፋ. In almost all cases a filter size of 2 is used. In the WaveNet paper [7] they take a filter size of
2 and double this dilation of every layer up to 512. This gives a receptive field of 1024 with only 10
layers. This can clearly be seen in Figure 2.3.6.
Mathematically we can represent the dilated filter as

(𝑤 ∗፝ 𝑥)(𝑖) =
ፍዅኻ

∑
፣዆ኺ

𝑤፣𝑥።ዅ፝⋅፣ .

2.3.6. Data dependence
Since neural networks are fully trained on the input data and loss corresponding to their output, it is
very important to have good data quality that is representative of what is happening. A shift in the
underlying behaviour in the dataset will likely have disastrous results for the outcome of the network.
This is represented in the popular statement: ”garbage in is garbage out”.
The goal is to eventually generate economic time series. To generate a time series using neural networks
we must train the network on data. But if the network is not able to learn the actual underlying
distribution we do not want to generate a scenario from this. So, t we test the network on several types
of artificially crafted data sets.
The idea is to see what kind of dependence structures the network is able to capture. We will look at
deterministic non-linear functions, independent random variables, dependent random variables and a
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Figure 2.3.6: Visualization of stacked dilated convolutions with dilations ኻ, ኼ, ኾ, ዂ and filter size 2.

combination of these. The goal of this is twofold. Firstly, it is desirable to see in which situations the
neural network is able to learn the structure and perform well. Currently neural networks are known
as “black-box” methods. This could gain more insight as to how and why neural networks perform.
Secondly, if the network is not able to perform well on these datasets for which we know the dependence
structure, we cannot expect it to do well on the economic time series, since we have even less knowledge
and information about these. Also note that it will be interesting and important to check whether the
generated economic time series are realistic and not take impossible values.

2.3.7. Forecasting and error metrics
Note that the distribution we forecast has only one realization for each time step. It is desirable to
assess the quality of the forecast based on a score or metric. This is also necessary in the neural network,
it requires a loss function which is to be minimized. The idea is that the lowest loss is given for the
best fitting distribution. This is similar to the point forecast. For point forecasts we usually define
the loss function as the Mean Square Error (MSE). For an unbiased estimator, minimizing the MSE
is equivalent to minimizing the variance of the estimate. There are many other loss metrics available
and they are applicable or desired in certain cases. The loss or error function which is to be minimized
depends on the purpose of the optimization. Sometimes the variance can be the most important part,
but in other cases (for example when not all observations have equal variance) other measures can be
more suitable.
The same holds for distributions. When considering a prediction in which category an image falls it is
important to get the class exactly right. Suppose we have an image of a cat. If our method categorizes
this as a cat with 90% probability and 10% as a tree, or as a cat with 90% probability and 10% as a
bicycle it makes little difference to us. But when predicting the stock market returns split into different
intervals, there is a significant difference between predicting a gain of 0.5 with 90% probability and
a loss of 20 with 10% probability, or a gain of 0.5 with 90% probability and a gain of 20 with 10%
probability. In the first case distance is not important, while in the second case it is.
The main loss function used in neural networks for distributions , primarily used for classification
tasks is the cross-entropy loss. Since this thesis is about economic scenarios it is clear that distance is
important. Therefore we will focus on a measure that takes this into account: the Ranked Probability
Score. This was first introduced in numerical weather prediction, precisely because a way to incorporate
distance into the evaluation of their forecasts was needed. More details and derivations will be given in
chapter 3.



2.4. Multivariate generation 21

2.4. Multivariate generation
When multivariate generation of a random variable or time series is required it becomes more involved
than for the univariate case. Note that we cannot simply see two time series as independent and gener-
ate from them disjointly. This can only be done if they are independent, which is a major assumption.
We would need the joint distribution function. Since in the one-dimensional case we were trying to
estimate this, this means we would have to simulate a two-dimensional distribution. If we have 𝑁 bins,
in one dimension, this would mean we get 𝑁ኼ bins in two dimensions. It is clear that this implies that
for larger dimensions the amount of bins blows up. Since we need to estimate the probability of it being
in this bin, we would require sufficient data for this, which means that the data required also grows
exponentially. This is also known as the curse of dimensionality.

There are two main approaches to solving this problem. The first is using copulas. This consists of two
parts, the first part is that we can transform a continuous random variable to a uniform distribution
with the inverse of its cumulative distribution function. The copula approach works by taking univariate
uniform random variables and describing the dependence structure in a copula. This is essentially the
multivariate distribution function. An attractive property about this is that the dependence structure
and the marginals can be estimated separately. However, in practice, the copula has a parametrization
and should be chosen beforehand and fitted correspondingly.

The second method is predicting the univariate distributions and sampling from this for one variable
at a time. This means that if we have 2 time series 𝑋፭, 𝑌፭ and estimate the distribution from 𝑋፭ዄኻ
from 𝑋፭ዅፌ , … , 𝑋፭ and estimate the distribution of 𝑌፭ዄኻ from 𝑌፭ዅፌ , … , 𝑌፭. We now take a sample from
the predicted distribution and call this sample 𝑋፭ዄኻ. TWe then obtain the sample for 𝑌፭ዄኻ by predict-
ing the distribution based on 𝑋፭ዅፌዄኻ, … , 𝑋፭ , 𝑋፭ዄኻ and 𝑌፭ዅፌ , … , 𝑌፭. Thus we iteratively generate a value.
Note that this means that if there is a dependence between 𝑋፭ዄኻ and 𝑌፭ዄኻ this dependence is preserved
here. This is commonly known as Gibbs sampling, a special variant of the Markov Chain Monte Carlo
framework. The downside of this method is that it is not possible to directly find the joint distribution.

When using copulas the shape of the dependence structure is already prescribed. Since we do not know
exactly how the economic variables interact or are dependent, this is not desirable. Furthermore we
would have to perform an extra optimization routine apart from the neural network optimization to
determine the parameters. Note also that we specifically choose neural networks as a method because
of their flexibility, choosing copulas would counter this somewhat. These downsides of copulas and the
attractive alternative of Gibbs sampling leads to the decision to use Gibbs sampling to generate paths
in this thesis. Note that the downside of not being able to directly find the joint distribution is not a
problem, since that was not the goal of this thesis. If desired, this could still be found using Monte
Carlo simulation, but this would be computationally intensive.





3
Methodology

Based on the methods described in Chapter 2, the method used in this thesis to generate scenarios is
presented as well as a motivation behind the choices made. As with any model, assumptions must be
made. First an overview is presented on the methodology. In the second section the assumptions made
will be described as well as their advantages and disadvantages.
The goal is to have an approach that can generate scenarios based on a given time series. This approach
must be able to incorporate randomness, effects over long and short term and multidimensional inter-
action without knowing these effects beforehand. Therefore a flexible approach is required that adapts
the model based on the given time series.

3.1. Overview of model approach and assumptions
In this section a total overview of the methodology used in generating scenarios and the motivation for
the choices made is given.

This approach will depend on the following four components:

1. Time series model approach that works based on distributions for each time step.

2. Procedure for fitting/optimizing this model approach to a given, possibly multivariate, time series.

3. Generation procedure to produce scenarios and that can handle multivariate problems, this is
interlinked with the previous time series model.

4. Method of assessing whether the produced model output and scenarios make sense.

The need for a distribution based approach is clear due to the purpose of generation instead of only
predicting the mean, as described before. Once a certain model type is chosen, it has to be cali-
brated/trained/optimized to fit the data set at hand. This approach should thus be broad since the
underlying dynamics of the data set are not known nor are the dependence relations available. Then
a procedure should be available to eventually produce different scenarios from this model, which is the
final goal. Finally, the goodness of fit of the model has to be tested by comparison to known properties
of data sets and other methods.
Note that these components are not completely standalone. The optimization or fitting procedure
that has to be done clearly is dependent on the choice made for the time series model. Likewise, the
generation procedure has to work with the time series model. Therefore it is important that the choices
made are able to perform all tasks and satisfy the requirements.

3.1.1. Time series model
First of all a time series X፭ ∈ ℝ፝ is required. The method of forecasting the distribution is linked to
the type of time series model being used. In Chapter 2, the most common approaches to time series
forecasting have been discussed.

23
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Since the underlying dynamics of the time series are not considered to be known beforehand or clearly
visible from inspection, the ARIMA type models are not chosen. Furthermore, these models would not
properly be able to forecast a distribution without assuming a certain shape on the distribution which
is not the chosen way, since the underlying dynamics and distributions were assumed to be unknown.
Moreover when forecasting in the multivariate sense, we would either need to fit multivariate versions
of the ARIMA model which have other disadvantages or use copulas. This essentially means that a
choice for the dependence would have to be made, which is opposite to the flexible approach sought in
this thesis.

Therefore, a machine learning method is chosen. Due to the need of both a short term as well as a
long term dependence on the history, a choice is made between the LSTM and the WaveNet approach.
Currently the state-of-the-art approach is of the latter and is able to handle conditional input well.
Therefore a WaveNet type approach is used.
The biggest assumption we make is that the distribution of the future 𝑋፭, conditionally on the last 𝑁
realizations, is fully specified as a function of these realizations and independent of the time 𝑡. This
can be univariate or multivariate. In mathematical terms:

𝐹ፗᑥ(𝑋፭|𝑋፭ዅኻ, …𝑋፭ዅፍ) = 𝑔(𝑋፭ዅኻ, …𝑋፭ዅፍ),

for all 𝑡.
The assumption that is made here allows the flexibility to allow all kinds of distributions and does not
describe a parametric approach while still allowing some structure. Note that this approach allows us
to model any polynomial up to order 𝑁 but also allows advanced random structures.

The model will not be effective if the underlying dynamics will change over time. Note that if the
underlying dynamics change over time, and this is known, there is often already information available
about this change of dynamics thus this could perhaps be accounted for.
The goal in the used approach is to estimate the function 𝑔 with a neural network by training on data
where the realization is known.

Now there are several methods of producing a distribution from the data, but the method used here is
to approximate the distribution in certain fixed bins. The easiest way to look at this is a histogram.
Fix the locations of the bins and estimate the probability that the realization will fall into that bin. We
are taking 𝑀 bins [𝑥ኺ, 𝑥ኻ), [𝑥ኻ, 𝑥ኼ), … , [𝑥ፌዅኻ, 𝑥ፌ) and aim to predict the categorical distribution.

Now suppose that the neural network (or any other method for this matter) is able to correctly establish
the probabilities for each bin. We can see this as having a set of points {𝑥ኻ, 𝑥ኼ, … , 𝑥ፌ} for which we have
the value of the cumulative distribution function 𝐹ፗᑥ(𝑥ኻ), 𝐹ፗᑥ(𝑥ኼ), …, 𝐹ፗᑥ(𝑥ፌ).

In this thesis the goal is to generate scenarios. This is done by approximating the underlying distri-
bution using a neural network. The neural network gives the probability of being in a certain bin.
MWe choose a set 𝑥ኺ, … , 𝑥ፍ such that 𝑃(𝑍 ∈ [𝑥።ዅኻ, 𝑥።)) = 𝑝። for 𝑖 ∈ {1, … , 𝑁}. These 𝑝። are what the
neural network produces as a function of the past. We can also describe this in terms of the Cumulative
Distribution Function (CDF) for the points 𝑥። and see that 𝐹ፙ(𝑥።) = ∑

።
፣዆ኺ 𝑝፣.

This methodology does not give us information about the distribution within these bins. So we know
that 𝑃(𝑥።ዅኻ ≤ 𝑍 < 𝑥።) = 𝑝። but we do not know 𝐹ፙ(𝑦) for 𝑦 ∈ (𝑥።ዅኻ, 𝑥።) When generating scenarios this
will be a problem.

We can choose between assuming that the distribution in the bin [𝑥ኻ, 𝑥ኼ) is a certain shape and work
with this or assuming that we do not know the distribution on this interval and approximate it. If we
approximate the distribution in any bin [𝑥። , 𝑥።ዄኻ) with the uniform distribution, the result is a linear
interpolation between (𝑥። , 𝐹ፗᑥ(𝑥።)) and (𝑥።ዄኻ, 𝐹ፗᑥ(𝑥።)). Since the cumulative distribution function is a
monotonically increasing function some convergence results are available.

It is chosen to set the distribution in these bins to uniform, especially since the edges are flexible in the
sense that they can be chosen by hand if desired. When looking at the CDF it could be seen as that
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we have the points 𝐹(𝑥።) and linearly interpolate between these points. Since the CDF is a monotonic
increasing function adding points will ensure that if predicting 𝑝። in 𝑁 bins is as good quality as in 2𝑁
bins, the error will decrease.

When the distribution of 𝑋፭ is discrete, with a finite amount of possibilities, it is straightforward to see
that if we set the amount of bins to the amount of possibilities this approach should work. If however,
the distribution is continuous or countably infinite, we can split any bin in 2 and since the cumulative
distribution function is monotonic, we can have the same or a better result. If we let 𝑁 → ∞ the
approximation will converge in distribution to 𝐹ፗᑥ . Thus, using the uniform distribution on these bins
is a valid approach.

If we let 𝑁 → ∞ we can approximate 𝐹ፙ arbitrarily close, however, in practice this is unfeasible. Since
the neural network trains on these bins we would have an ever increasing amount of bins which would
decrease the performance of the prediction for each bin since there would be so many. Therefore, care
should be taken when deciding on the amount of bins used in the approximation within the neural
network. Too few bins and the approximation of 𝐹ፙ will be bad, too many and the approximation of
the 𝑝። will suffer.
Another assumption currently in use is the boundedness of the time series, e.g. there will not be a more
extreme value then the values that have already been observed and used for the training. Note that this
is not a restriction of this model, but rather a choice to deal with the more extreme scenarios easily.

This is not necessarily a model restriction, as this model could be adapted to incorporate the more
extreme events by taking the bins at the two bounds and defining a distribution such as the pareto or
exponential distribution between the bounds and positive and negative infinity. One could choose to
fit a distribution for this or a different model for the extremes and this would be fine with all other
assumptions. In practice extreme scenario generation is already done with separate models and this
approach allows for this flexibility.

As described in Chapter 2 the architecture consists of stacked dilated convolutions. This means the
receptive field grows exponentially when more layers are used, allowing a large receptive field for rel-
atively few parameters. The filter size in the original paper [7] is chosen to be two, but in this thesis
also filter sizes 𝑘 of 3 and 4 are investigated for the convolution to see if there is an impact on the
performance. If we have 𝐿 layers the dilation in layer 𝑖 is 𝑓።.
With this time series a neural network is used to forecast the distribution at the next time step. The
neural network is based on stacked layers of dilated convolutions ensuring a rapidly expanding receptive
field. On an intuitive level, this means that filters are applied to detect patterns over several time
distances. So first on a local level with the time series entries next to it and then combining these
patterns over bigger distances. In the end, a score is produced for each bin, one can see this as the
likelihood of being in this bin. This is transformed to a probability using the softmax function, which
corresponds to multinomial regression. The output of the network is thus the probability of being in
each bin. From these probabilities we essentially have the CDF at several points. This means that
we can sample from the distribution by inverse transform sampling: generating a standard uniform
sample and translating this back to the inverse of this CDF by using linear interpolation. This linear
interpolation means that the distribution on each bin is uniform. From this the sample is obtained.
This means that based on the realizations on (𝑡 − 𝑁, 𝑡 − 𝑁 + 1,… , 𝑡) we have generated a sample at
𝑡 + 1. This sample is then used to forecast the distribution for 𝑡 + 2 based on (𝑡 − 𝑁 + 1,… 𝑡) and the
generated sample at 𝑡 + 1.
The architecture similar to [7] will be used as described in Chapter 2. This means stacks of dilated
convolutions will be used to process the input. Each of these layers will have ReLU activation functions.
The final layer consists of the softmax function which produces a distribution. The softmax function
𝜎 transforms a 𝑑−dimensional input into a 𝑑−dimensional output, where for dimension 𝑗 ∈ {1, … , 𝑑}m
we have

𝜎፣(x) =
𝑒፱ᑛ

∑፝።዆ኻ 𝑒፱ᑚ
.
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This ensures that we have 𝜎፣(x) ≥ 0 ∀𝑥 ∈ ℝ and

፝

∑
፣዆ኻ
𝜎፣(x) =

፝

∑
፣዆ኻ

𝑒፱ᑛ
∑፝።዆ኻ 𝑒፱ᑚ

=
∑፝፣዆ኻ 𝑒፱ᑛ

∑፝።዆ኻ 𝑒፱ᑚ
= 1.

Thus the total of the outputs sums up to one and is non-negative which is sufficient to state that
it is a (discrete) probability distribution. Essentially this produces a categorical distribution where
the probabilities here are dependent on the history and on the parameters in the neural network. The
network is trained by optimizing the parameters such that the probability corresponds to the underlying
distribution. More details on how this distribution is optimized will be given in section 3.3.
A filter size of 2 is chosen as in the literature. This is also compared to larger filter sizes of 3 and 4 in
the results chapter to see if this has an impact.
The method can be seen in Figure 3.1.1 This approach allows the network to distinguish between

Figure 3.1.1: Overview of the neural network architecture used in this thesis.

useful and irrelevant information, is efficient to train and outputs a distribution. The parametrized skip
connections were first introduced for neural networks by He [23]. These parametrized skip connections
are a very simple structure, they are simply a 1×1 convolution, yet they are able to improve performance
in many networks by learning identity mappings. In this thesis when working with multivariate series,
the input length of the multivariate series will be the same as the other input, while this is not strictly
necessary for this set-up. More details on the multivariate approach are given in section 3.4.

3.2. Scoring rules and error measures
In this section the difficulties of evaluating the performance of a forecast are discussed and theoretical
properties of forecasts and scoring rules are introduced. A difficulty with the method of estimating
a distribution is that the underlying distribution is not the same at each point in time, otherwise it
would be identically distributed and we could use simpler methods such as the empirical distribution
to estimate the actual distribution. Since we estimate a full distribution at each point in time and we
have only one realization for this predicted distribution, it is not trivial to asses how good the forecast
is. For example, suppose we try to predict the probability that it will rain tomorrow. If we say it is 70%
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and it rains, how good is our estimate? How do we measure this? The difficulty of this question will
have an impact on training the network, but also makes comparing this method with point forecasts
harder. This was only for the binary event of rain or no rain, but in this thesis we will focus on a
wider range. The realization will be a numerical value, but since it is hard to numerically approximate
a continuous distribution, we will make the estimated distribution discrete by only considering a finite
amount of bins for which to predict the probability.

Scoring rules provide a measure of the performance of a probabilistic forecast by giving a numerical
score based on the forecast and the realization. In order to train the neural network we must choose
a loss function. This choice has a large influence on the result since there is a link between what we
are trying to optimize and which loss function is used. Note that during training we will attempt to
minimize the loss function, thus we must understand what this means in terms of the data and output
of the network. Think of the MSE and the variance for unbiased estimators. We define scoring rules
as negatively oriented values that are given for a certain forecast and we want to minimize, similar
to Gneiting [24] who provides a thorough overview of the field of probabilistic forecast evaluation and
scoring rules.

For a distributional forecast p for the next time step with realization 𝑥 the score becomes 𝑆(p, 𝑥) ∈
ℝ ∪ {−∞} ∪ {∞}. Consider the distribution q (possibly different from p) for the value at the next time
step. Then we write 𝔼q(𝑆(p, 𝑥)) for the expected value of 𝑆(p, ⋅) under the distribution q. Now assume
that q is the true underlying distribution. Clearly we would like to have that the lowest score is achieved
if the forecast is identical to the true distribution. A scoring rule for which 𝔼q(𝑆(q, 𝑥)) ≤ 𝔼q(𝑆(p, 𝑥))
for all p and q is called a proper scoring rule. If the equality only holds when p = q the scoring rule is
strictly proper. Note that this means that if we want to minimize the expected score, the best way to
do this is to forecast the true distribution.

Since we are trying to generate time series based on the distribution, we wish to sample from the true
distribution. Therefore a strictly proper scoring rule is desired. In this thesis we will focus on two
scoring rules, the cross-entropy loss and the Ranked Probability Score.
Choosing a proper scoring rule for the evaluation of a forecast is like choosing the error function for a
deterministic forecast. The loss function should be dependent on the desired goal.

3.2.1. Cross-entropy loss
The cross entropy loss, also known as Shannon entropy, or logarithmic score, for a distribution p =
(𝑝ኻ, 𝑝ኼ, … , 𝑝ፍ) is defined as:

𝑆(p, 𝑗) = −
ፍ

∑
።዆ኻ
𝛿።፣ log 𝑝፣

where 𝛿።፣ is the Kronecker delta ensuring that it is 1 if 𝑖 = 𝑗 and 0 otherwise. Under the actual dis-
tribution q = (𝑞ኻ, 𝑞ኼ, … , 𝑞ፍ) the expectation is 𝔼 [𝑆(p, ⋅)] = −∑ፍ።዆ኻ 𝑞። log(𝑝።). This is closely related to
the Kullback-Leibler divergence which is sometimes used in statistics to describe the difference between
two distributions. It is quite easy to see that this score is a strictly proper scoring rule. The score
has the possibility of being infinite, which can lead to numerical problems in computing if there is zero
probability assigned to a forecast bin where the realization lies.

The cross-entropy loss is without doubt the most widely used loss function in neural networks when
working with distributions, especially in categorical forecasts.
Note that the cross-entropy loss is not symmetric, this is not a required property for a proper scoring
rule. It can be shown that minimizing this loss function is equivalent to maximizing the likelihood,
which is an attractive property since maximum likelihood estimation is done often in statistics.

As is shown in [25] this scoring rule behaves differently for likely and unlikely events. If we have events
that are unlikely, it assigns a higher score to a forecast which gives a higher probability than a lower
probability. If 𝑝 is small and equal to the true probability and 𝜖 << 𝑝 we have a higher score for 𝑝 + 𝜖
then 𝑝 − 𝜖. This works the other way around for the more likely events.



28 3. Methodology

The reason this score might not be the best for the goal of forecasting time series is that location can
matter. To illustrate this, consider the following example.

Let q = (𝑞ኻ, … , 𝑞ኻኺ) be the true distribution for the next time step. Let f and g be two different
forecasts for the next time steps, or equivalently estimators of q. Let f = (0.1, … , 0, 0.8, 0.1) and
g = (0,… , 0.1, 0.8, 0.1). The forecasts only differ in the first and 8ዸዬ bin. Now suppose the realization
𝑥∗ falls into bin 9.

𝑆(f , 𝑥∗) = − log(0.8) = 𝑆(g, 𝑥∗)

Clearly, the cross entropy loss assigns the same score to both forecasts. If the distribution is for
categories, this can make sense, the category next to the realization might is likely not to be similar
to the realization. If we consider weather forecasts or stock returns this is an entirely different story.
Therefore we might want to consider a scoring rule which takes the location into account.

3.2.2. Ranked Probability Score
The ranked probability score was first introduced by Epstein [26] in 1969. The score or loss functions
used at that moment would not take the distance of the forecast with respect to the observation into
account but only the forecasted probability and whether or not this event happened. This makes sense
if the forecast is made on images, we do not (necessarily) want to distinguish between how close a cat
is to a dog. When forecasting the weather, being off 1 degree is better than being off 15 degrees. The
cross-entropy loss does not take this into account. This is the reason this forecast score was introduced
and is still in use today for numerical weather forecasting.

We define the Ranked Probability Score for the forecast p = (𝑝ኻ, 𝑝ኼ, … 𝑝ፍ) with realization in bin 𝑗 as:

RPS፣ =
1

𝑁 − 1

ፍዅኻ

∑
።዆ኻ

(
።

∑
፤዆ኻ

𝑝፤ − 𝛿፤፣)

ኼ

where 𝛿፤፣ is the Kronecker delta which is 1 if 𝑘 = 𝑗 and 0 for all other values of 𝑘 and 𝑗. Note that the
score is zero when 𝑞። = 𝑝። for all 𝑖. The proof that the RPS is a proper scoring rule was not directly
given for the definition we use in this thesis, but only for a different form by [27]. Therefore a proof for
the strict properness of the Ranked Probability Score will be derived here, where we follow the line of
the original proof but first rewrite many of the sums.

Consider the probabilistic forecast as p = (𝑝ኻ, … , 𝑝ፍ) where 𝑁 is the amount of bins used for the
forecast. Furthermore let 𝑞። denote the actual probability of the event being in bin 𝑖, resulting in the
vector q = (𝑞ኻ, … , 𝑞ፍ). Define the Ranked Probability Score (RPS) as

𝔼q(𝑆(p, 𝑥)) =
1

𝑁 − 1

ፍ

∑
።዆ኻ
(

።

∑
፣዆ኻ
𝑝፣ −

።

∑
፣዆ኻ
𝑞፣)

ኼ

,

Notice that the terms inside the first sum are the cumulative distribution functions of respectively the
forecast and the actual distribution.
We will rewrite the expressions to obtain a form for which we can determine the derivative of the
expectation more easily. Given a realization in bin 𝑗 we get (with dirac delta function for 𝑞):

𝑆፣ =
1

𝑁 − 1

ፍዅኻ

∑
።዆ኻ

(
።

∑
፤዆ኻ

𝑝፤ − 𝛿፤፣)

ኼ
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Note that

(
።

∑
፤዆ኻ
(𝑝፤ − 𝛿፤፣))

ኼ

= {
(∑።፤዆ኻ 𝑝፤)

ኼ
𝑖 < 𝑗

(1 − ∑።፤዆ኻ 𝑝፤)
ኼ
𝑖 ≥ 𝑗

= {
(∑።፤዆ኻ 𝑝፤)

ኼ
𝑖 < 𝑗

(∑ፍ፤዆።ዄኻ 𝑝፤)
ኼ
𝑖 ≥ 𝑗

.

This gives us

𝑆፣ =
1

𝑁 − 1

ፍዅኻ

∑
።዆ኻ

(
።

∑
፤዆ኻ

𝑝፤ − 𝛿፤፣)

ኼ

= 1
𝑁 − 1 [

፣ዅኻ

∑
።዆ኻ
(

።

∑
፤዆ኻ

𝑝፤)

ኼ

+
ፍዅኻ

∑
።዆፣

(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] .

Using the equalities of the sums

፣ዅኻ

∑
።዆ኻ

።

∑
፤዆ኻ

𝑝፤ =
፣ዅኻ

∑
።዆ኻ
(𝑗 − 𝑖)𝑝። and

ፍዅኻ

∑
።዆፣

ፍ

∑
፤዆።ዄኻ

𝑝፤ =
ፍ

∑
።዆፣ዄኻ

(𝑖 − 𝑗)𝑝። ,

we obtain

𝑆፣ =
1

𝑁 − 1 [
፣ዅኻ

∑
።዆ኻ
(

።

∑
፤዆ኻ

𝑝፤)

ኼ

+
ፍዅኻ

∑
።዆፣

(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

]

= 1
𝑁 − 1 [

፣ዅኻ

∑
።዆ኻ
(

።

∑
፤዆ኻ

𝑝፤)

ኼ

+
ፍዅኻ

∑
።዆፣

(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] + 1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ
(𝑗 − 𝑖)𝑝። −

1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ

።

∑
፤዆ኻ

𝑝፤

+ 1
𝑁 − 1

ፍ

∑
።዆፣ዄኻ

(𝑖 − 𝑗)𝑝። −
1

𝑁 − 1

ፍዅኻ

∑
።዆፣

ፍ

∑
፤዆።ዄኻ

𝑝፤

= 1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ
[(

።

∑
፤዆ኻ

𝑝፤)

ኼ

−
።

∑
፤዆ኻ

𝑝፤] +
1

𝑁 − 1

ፍዅኻ

∑
።዆፣

[(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

−
ፍ

∑
፤዆።ዄኻ

𝑝፤]

+ 1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ
(𝑗 − 𝑖)𝑝። +

1
𝑁 − 1

ፍ

∑
።዆፣ዄኻ

(𝑖 − 𝑗)𝑝። .

Since we are dealing with probabilities we can rewrite the sums again:

1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ
[(

።

∑
፤዆ኻ

𝑝፤)

ኼ

−
።

∑
፤዆ኻ

𝑝፤] +
1

𝑁 − 1

ፍዅኻ

∑
።዆፣

[(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

−
ፍ

∑
፤዆።ዄኻ

𝑝፤]

= 1
𝑁 − 1

፣ዅኻ

∑
።዆ኻ
[12 (

።

∑
፤዆ኻ

𝑝፤)

ኼ

+ 12 (1 −
።

∑
፤዆ኻ

𝑝፤)

ኼ

− 12] +
1

𝑁 − 1

ፍዅኻ

∑
።዆፣

[12 (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

+ 12 (1 −
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

− 12] .
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So, we get

𝑆፣ = −
1
2 +

1
2(𝑁 − 1)

፣ዅኻ

∑
።዆ኻ
[(

።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (1 −
።

∑
፤዆ኻ

𝑝፤)

ኼ

] + 1
2(𝑁 − 1)

ፍዅኻ

∑
።዆፣

[(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

+ (1 −
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

]

+ 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝።

= −12 +
1

2(𝑁 − 1)

፣ዅኻ

∑
።዆ኻ
[(

።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] + 1
2(𝑁 − 1)

ፍዅኻ

∑
።዆፣

[(
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

+ (
።

∑
፤዆ኻ

𝑝፤)

ኼ

]

+ 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝።

= −12 +
1

2(𝑁 − 1)

ፍዅኻ

∑
።዆ኻ

[(
።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] + 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝። .

We want to minimize the expected score. Thus, we write

𝔼(𝑆) =
ፍ

∑
፣዆ኻ
𝑞፣𝑆፣

=
ፍ

∑
፣዆ኻ
𝑞፣ {−

1
2 +

1
2(𝑁 − 1)

ፍዅኻ

∑
።዆ኻ

[(
።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] + 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝።}

= −12 +
1

2(𝑁 − 1)

ፍዅኻ

∑
።዆ኻ

[(
።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

] +
ፍ

∑
፣዆ኻ
𝑞፣

1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝። .

Finally, we can also rewrite the sum, looking at all pairs

ፍዅኻ

∑
።዆ኻ

[(
።

∑
፤዆ኻ

𝑝፤)

ኼ

+ (
ፍ

∑
፤዆።ዄኻ

𝑝፤)

ኼ

]

=
ፍ

∑
።዆ኻ

ፍ

∑
፤዆ኻ

((𝑁 − 1) − |𝑖 − 𝑘|) 𝑝።𝑝፤ .

So we obtain the expression

𝔼(𝑆) = −12 +
1

𝑁 − 1

ፍ

∑
።዆ኻ

ፍ

∑
፤዆ኻ

((𝑁 − 1) − |𝑖 − 𝑘|) 𝑝።𝑝፤ +
1

2(𝑁 − 1)

ፍ

∑
፣዆ኻ
𝑞፣

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝። .

We want to minimize the score. Directly taking the derivative and setting it to zero will not work here,
so the Lagrange multiplier is used. To do this the constraint function 𝐺(𝑝ኻ, … , 𝑝ፍ) = ∑።዆ኻᑅ 𝑝። − 1 is
introduced. It is clear that for any viable set of probabilities we must have 𝐺 = 0. The function to
minimize will be

𝐻(𝑝ኻ, … , 𝑝ፍ) = 𝔼(𝑆) − 𝜆𝐺(𝑝ኻ, … , 𝑝ፍ)
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We take the derivative with respect to 𝑝፧ :

𝜕𝐻
𝜕𝑝፧

= 1
2(𝑁 − 1)

𝜕
𝜕𝑝፧

(
ፍ

∑
።዆ኻ

ፍ

∑
፤዆ኻ

((𝑁 − 1) − |𝑖 − 𝑘|) 𝑝።𝑝፤) +
1

𝑁 − 1
𝜕
𝜕𝑝፧

(
ፍ

∑
፣዆ኻ
𝑞፣

ፍ

∑
።዆ኻ
|𝑖 − 𝑗|𝑝።) − 𝜆

= 1
𝑁 − 1

ፍ

∑
።዆ኻ
((𝑁 − 1) − |𝑛 − 𝑖|) 𝑝። +

1
𝑁 − 1

ፍ

∑
፣዆ኻ
𝑞፣|𝑛 − 𝑗| − 𝜆

= 1
𝑁 − 1

ፍ

∑
።዆ኻ
(𝑁 − 1)𝑝። −

1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑛 − 𝑖|𝑝። +

1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑛 − 𝑖|𝑞። − 𝜆

= − 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑛 − 𝑖|(𝑝። − 𝑞።) + 1 − 𝜆 for 𝑛 = {1, 2, … , 𝑁}.

Since we are minimizing we set this equal to zero and obtain:

− 1
𝑁 − 1

ፍ

∑
።዆ኻ
|𝑛 − 𝑖|(𝑝። − 𝑞።) + 1 − 𝜆 = 0 for 𝑛 = {1, 2, … , 𝑁}.

This means that we have the equality

ፍ

∑
።዆ኻ
|𝑛 − 𝑖|(𝑝። − 𝑞።) = (1 − 𝜆)(𝑁 − 1).

Now let 𝑟። = 𝑝። − 𝑞። and 𝐶 = (1 − 𝜆)(𝑁 − 1) and clearly we must have that for 𝑛 ∈ {1, 2, … , 𝑁}
ፍ

∑
።዆ኻ
|𝑛 − 𝑖|𝑟። = 𝐶.

We now prove that the above equation is satisfied if, and only if, 𝑟። = 0 for all 𝑖 ∈ {1, 2, … , 𝑁}. To do
this we take 𝑛ኻ ∈ {1, 2, … , 𝑁 − 1} and 𝑛ኼ = 𝑛ኻ + 1. From the previous equation we must have that

ፍ

∑
።዆ኻ
|𝑛ኻ − 𝑖|𝑟። = 𝐶 =

ፍ

∑
።዆ኻ
|𝑛ኼ − 𝑖|𝑟። =

ፍ

∑
።዆ኻ
|𝑛ኻ + 1 − 𝑖|𝑟። .

Rewriting the sums:

ፍ

∑
።዆ኻ
|𝑛ኻ − 𝑖|𝑟። =

፧Ꮃ
∑
።዆ኻ
(𝑛ኻ − 𝑖)𝑟። +

ፍ

∑
።዆፧Ꮃዄኻ

(𝑖 − 𝑛ኻ)𝑟። ,

and
ፍ

∑
።዆ኻ
|𝑛ኼ − 𝑖|𝑟። =

ፍ

∑
።዆ኻ
|𝑛ኻ + 1 − 𝑖|𝑟።

=
፧Ꮃ
∑
።዆ኻ
(𝑛ኻ − 𝑖 + 1)𝑟። +

ፍ

∑
።዆፧Ꮃዄኻ

(𝑖 − 𝑛ኻ − 1)𝑟። .

Taking the difference between these sums yields the equality

፧Ꮃ
∑
።዆ኻ
𝑟። =

ፍ

∑
።዆፧Ꮃዄኻ

𝑟። .
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Now again using the property that ∑ፍ።዆ኻ 𝑟። = ∑
ፍ
።዆ኻ 𝑝። − 𝑞። = 1 − 1 = 0 we get

ፍ

∑
።዆ኻ
𝑟። = 2

፧Ꮃ
∑
።዆ኻ
𝑟። = 0

for all 𝑛ኻ ∈ {1, 2, … , 𝑁 − 1} thus we must have that 𝑟። = 0 for all 𝑖. We can conclude that the expected
score is minimized if and only if the forecast is unbiased. Note that we know that this is the minimum
and not the maximum by noting that the second derivative with respect to 𝑝፧ is positive. Therefore we
have now shown that the Ranked Probability Score is a strictly proper scoring rule.

Note that a continuous equivalent of the RPS exists and is actually the limit of the RPS when taking
the limit of the bin size to 0.
Another attractive property of the RPS is that we can decompose the score in three parts which all
have an interpretation. This is comparable to the MSE. We can decompose the MSE into the sum of
the squared bias and the variance. We can rewrite the RPS as a sum of Brier scores [28]. The Brier
score is a scoring rule for binary events and is decomposable into the uncertainty, the resolution and
the reliability. Since we are talking about sums of these parts we can simply write the sum of the
uncertainties as the uncertainty of the RPS to achieve an interpretable result. This is not done in this
thesis since this is not within the scope of the research.
The original goal was to compare the results of the cross-entropy loss and the RPS. However, when
experimenting it seemed that the RPS as a loss function did not perform well. After thorough checking
of the implementation, it became apparent that even for simple cases it did not perform well. There
were several possible explanations for this. The first explanation is that taking a sample and taking
the gradients from this sample leads to biased gradients. This is a known problem for the Wasserstein
divergence, as described in [29] and it leads to problems in the optimization routine due to steps in the
wrong direction or size with the gradients. This is however not the case for the RPS as it is a discrete
version of the Cramèr distance. Another possibility is that the objective function for the minimization
becomes too complex for the optimization algorithm to achieve good results on. A final possibility is
that while technically the RPS is a strictly proper scoring rule, in practice there are many local minima
which have scoring values similar to the true minimum and therefore it is very hard to find the true
minimum.

3.3. Parameter optimization
In order to achieve a good result with the network the parameters are trained to minimize the loss
function, which has the goal of achieving the best outcome of the network. Training the network is
done by updating its parameters.
The simplest way of training parameters is by considering the gradients of the loss function with respect
to the parameters. This is called backpropagation.
Almost all methods that are used in practice when training a neural network are based upon computing
the gradients for the weights with backpropagation. With these gradients, the parameters such as
weights and biases are updated by going into the direction of that gradient multiplied by a factor,
which is called the learning rate. Note that all methods here are described for a single input sample
and output sample, but in practice we use more than one input sample. To account for this we simply
take the loss (usually the sum or average) of the multiple inputs and compute the gradient of this with
regard to the parameters. An algorithmic overview is given in 2.

Algorithm 2 Backpropagation

1: procedure Training with learning rate 𝜂
2: Let 𝜃፭ be the (possibly multi-dimensional) parameter values at training iteration 𝑡. Furthermore
let 𝑓 be the cost function for a given input and desired output. This cost depends on 𝜃፭.

3: 𝑔፭ ← ∇᎕ᑥᎽᎳ𝑓(𝜃፭ዅኻ)
4: 𝜃፭ ← 𝜃፭ዅኻ − 𝜂𝑔፭
5: 𝑡 ← 𝑡 + 1

This method is simple and quite effective in simple cases. When the dimensions get large and the sign
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of gradients switches a lot this is less effective. A solution to the switching of gradients and small steps
is to use momentum.
The momentum method was introduced by Polyak in 1964 [30]. The idea is that this speeds up
backprogagation by gradient descent by taking a momentum or velocity in a certain direction. Note

Algorithm 3 Momentum gradient descent
ht
1: procedure Momentum
2: 𝑔፭ ← ∇᎕ᑥᎽᎳ𝑓(𝜃፭ዅኻ)
3: 𝑚፭ ← 𝜇𝑚፭ዅኻ + 𝑔፭
4: 𝜃፭ ← 𝜃፭ዅኻ − 𝜂𝑚፭
5: 𝑡 ← 𝑡 + 1

the momentum parameter 𝜇.
A more sophisticated version of momentum was introduced by Nesterov. It was shown by [31] that
this is useful in a machine learning setting. It has theoretically superior properties in non-random
optimization problems but performs better than backpropagation and regular momentum in practice
for stochastic cases.
Both momentum methods compute a velocity by applying a correction to the previous velocity vector
based on a gradient. Regular momentum does this by computing the gradient update from the current
value of 𝜃 while Nesterov momentum first produces an estimate for 𝜃፭ and computes the gradient from
this to correct this estimate.

Algorithm 4 Nesterov momentum gradient descent

1: procedure Nesterov Momentum
2: 𝑔፭ ← ∇᎕ᑥᎽᎳ𝑓(𝜃፭ዅኻ − 𝜂𝜇𝑚፭ዅኻ)
3: 𝑚፭ ← 𝜇𝑚፭ዅኻ + 𝑔፭
4: 𝜃፭ ← 𝜃፭ዅኻ − 𝜂𝑚፭
5: 𝑡 ← 𝑡 + 1

So while the regular momentum updates the parameters by moving in the direction of the momentum
and taking the gradient of the reached point, the Nesterov method makes a move in the direction of
the momentum (since we are going in that direction regardless) and computes a correction from that
point.

There is a different method called Adam [32]. This method uses both momentum and adaptive step
sizes. It computes the first and second moment and corrects for variance. Whereas the momentum
methods discussed before work with a decaying sum of the gradients, the Adam method estimates the
exponentially moving average of the gradient and the squared gradient. The squared gradient is used
as in RMSProp [33] to adapt the learning rate for a specific parameter based on the size of the previous
gradients. Furthermore it incorporates bias correction to ensure that the intial steps are not biased
towards the starting guess 0 for the first and second moment estimates. The exponentially moving
average of the gradient and squared gradients both have a momentum parameter. As before we have
𝜇, but we now also have the 𝜈 parameter for the squared gradients.
So, Adam combines regular momentum with adaptive learning rates based on past gradient sizes. Its
name Adam is derived from adaptive moment estimation, which is essentially what it does by combining
the previously mentioned components. The algorithm is given below.
Since Adam uses regular momentum it is an obvious attempt to improve it by using Nesterov momentum.
The algorithm stays almost the same, the only change is that we use updated momentum for the
computation of the next parameter. So we replace �̂�፭ with (1−𝜇፭)

፠ᑥ
ኻዅ∏ᑥᑚᎾᎳ ᎙ᑚ

+𝜇፭ዄኻ�̂�፭ to obtain Nadam.

This method was introduced in [34] and similar to the regular and Nesterov momentum, the Nadam
outperforms the Adam method in practice.
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Algorithm 5 Adam optimizer

1: procedure Adam given a batch. Note that 𝑡 is the amount of training steps already taken.
2: 𝑔፭ ← ∇᎕ᑥᎽᎳ𝑓(𝜃፭ዅኻ)
3: 𝑚፭ ← 𝜇𝑚፭ዅኻ + (1 − 𝜇)𝑔፭.
4: �̂�፭ ←

፦ᑥ
ኻዅ∏ᑥᎼᎳᑚᎾᎳ ᎙ᑚ

.

5: 𝑛፭ ← 𝜈𝑛፭ዅኻ + (1 − 𝜈)𝑔ኼ፭
6: �̂�፭ ←

፧ᑥ
ኻዅ᎚ᑥ

7: 𝜃፭ ← 𝜃፭ዅኻ − 𝜂
፦̂ᑥ

√ ̂፧ᑥዄᎨ
8: 𝑡 ← 𝑡 + 1

Algorithm 6 Nadam optimizer

1: procedure Nesterov Momentum with Adam given a batch. Note that 𝑡 is the amount of training
steps already taken.

2: 𝑔፭ ← ∇᎕ᑥᎽᎳ𝑓(𝜃፭ዅኻ)
3: �̂�፭ ←

፠ᑥ
ኻዅ∏ᑥᑚᎾᎳ ᎙ᑚ

4: 𝑚፭ ← 𝜇𝑚፭ዅኻ + (1 − 𝜇)𝑔፭.
5: �̂�፭ ←

፦ᑥ
ኻዅ∏ᑥᎼᎳᑚᎾᎳ ᎙ᑚ

.

6: 𝑛፭ ← 𝜈𝑛፭ዅኻ + (1 − 𝜈)𝑔ኼ፭
7: �̂�፭ ←

፧ᑥ
ኻዅ᎚ᑥ

8: �̄�፭ ← (1 − 𝜇፭)�̂�፭ + 𝜇፭ዄኻ�̂�፭
9: 𝜃፭ ← 𝜃፭ዅኻ − 𝜂

፦̄ᑥ
√ ̂፧ᑥዄᎨ

10: 𝑡 ← 𝑡 + 1

3.4. Gibbs sampling and multivariate generation
To generate multivariate scenarios we will use the technique known as Gibbs sampling. In essence it
comes down to sampling from several conditional distributions instead of a multivariate one which give
the same distribution for the variables in the end. This will now be shown.

Suppose we have a 2-dimensional time series {𝑌፭} and {𝑍፭}. Now we want to generate a realization
𝑌፭ዄኻ, 𝑍፭ዄኻ. For the reasons explained in this thesis we will only focus on whether the variable is in a
certain bin rather than the actual value. Suppose we have bins 𝑦ኺ, … , 𝑦ፍ and 𝑧ኺ, … , 𝑧ፌ. Note that the
model uses that the time series is autoregressive.
First the samples will be generated using inverse transform sampling. If we have a random variable
𝑋 with Cumulative Distribution Function (CDF) 𝐹ፗ which is invertible and a standard uniformly dis-
tributed variable on [0, 1], it can be seen that 𝐹ዅኻፗ (𝑈) is distributed as 𝐹ፗ. So generating a sample of 𝑋
is done in the following steps:

1. Generate a random number 𝑢 from the standard uniform distribution in the interval [0, 1].

2. Compute the value 𝑥 such that 𝐹ፗ(𝑥) = 𝑢 .

3. Take 𝑥 to be the random number drawn from the distribution described by 𝐹ፗ.

Note that the correctness is shown by taking the procedure, applying 𝐹ፗ to both sides in the probability
and using the property of the uniform distribution.

ℙ(𝐹ዅኻፗ (𝑈) ≤ 𝑥) = ℙ (𝑈 ≤ 𝐹ፗ(𝑥))
= 𝐹ፗ(𝑥)

This will now be applied to the multivariate generation problem by combining it with Gibbs sampling.
Let

�̃�፭ዄኻ = 𝐹ዅኻፘᑥᎼᎳ|ፘᑥ ,…ፘᑥᎽᑅ ,ፙᑥ ,…,ፙᑥᎽᑅ(𝑈)
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be a realization for 𝑌፭ዄኻ. Now it is assumed that 𝑌፭ዄኻ is a categorical distribution so we are only
interested in what bin our realization lies. Suppose �̃�፭ዄኻ ∈ 𝑦።. Next, a realization for 𝑍፭ዄኻ is generated
by generating conditional on 𝑌፭ , … 𝑌፭ዅፍ , 𝑍፭ , … , 𝑍፭ዅፍ and on �̃�፭ዄኻ. This realization will be �̃�፭ዄኻ and lies in
bin 𝑧፣. So what is the probability of this happening?

ℙ (𝑌፭ዄኻ ∈ 𝑦።|𝑌፭ , … 𝑌፭ዅፍ , 𝑍፭ , … , 𝑍፭ዅፍ) ℙ (𝑍፭ዄኻ ∈ 𝑧፣|𝑌፭ , … 𝑌፭ዅፍ , 𝑍፭ , … , 𝑍፭ዅፍ , 𝑌፭ዄኻ ∈ 𝑦።)
=ℙ (𝑌፭ዄኻ ∈ 𝑦። , 𝑍፭ዄኻ ∈ 𝑧፣|𝑌፭ , … 𝑌፭ዅፍ , 𝑍፭ , … , 𝑍፭ዅፍ)

This is due to Bayes’ theorem and it shows that sampling from the multivariate time series in this way
is equivalent to taking a draw from the multivariate conditional distribution, which is more involved.
Thus the dependence structure is kept intact. This procedure is now repeated by increasing 𝑡 by 1. An
algorithmic overview of this is shown in algorithm 7.

Algorithm 7 Generation

1: procedure Network workings from input x = (𝑥፭Ꮃ , … 𝑥፭ᑅ) to output y = (𝑦ኻ, … 𝑦ፌ).
2: It is assumed that the neural network(s) is/are trained. It outputs a probability for being in each
bin for the next realization, based on the time series history. This is represented in the function 𝑓 .
Its output is multidimensional and corresponds to the probability of 𝑋፭፝ being in that specific bin.
So the output is 𝑀 dimensional where 𝑀 is the number of bins.

3: while 𝑚 ≤ 𝑀 do
4: while 𝑡 ≤ 𝑇 do
5: while 𝑑 ≤ 𝐷 do
6: 𝑢 ←Draw from random uniform [0, 1] distribution.
7: Input is D dimensions, last N timepoints and extra points: 𝑥[𝑡, 1], … 𝑥[𝑡, 𝑑].
8: Produce 𝑓 (𝑥[𝑡 − 𝑁, 1], … , 𝑥[𝑡 − 1, 1], 𝑥[𝑡 − 𝑁, 2], … , 𝑥[𝑡 − 1, 2], … 𝑥[𝑡 − 𝑁,𝐷]
9: Take cumulative values of the above.
10: Interpolate this to find the value that corresponds to 𝑢. This is 𝑥[𝑡, 𝑑]
11: 𝑑 = 𝑑 + 1
12: 𝑡 = 𝑡 + 1
13: 𝑑 = 1
14: 𝑚 = 𝑚 + 1
15: 𝑡 = 1

In Algorithm 7 the in depth explanation of the workings of the neural network is not explained. This
is done for clarity reasons. Furthermore, the generation approach only depends on the outputted
distribution. If we have another procedure that outputs probabilities in the same way and takes the
same input the generation approach is identical.
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The neural network is chosen to model the time series and the multivariate generation procedure has
been described in general. However, the multivariate modelling approach with the neural network has
not been presented. In the simplest sense the multivariate approach is to condition on the other series
to take the possible dependence into account and these series will thus be added as input. Note that this
means that a network has to be configured and trained for every dimension conditional on the others,
together with an ordering of the conditioning as just described. However this makes our one-dimensional
time series problem more complex for the neural network so the architecture has to be revised. This is
done by augmenting the first layer.
This approach is similar to the ones in [7, 21]. Suppose we have two time series 𝑥 = (𝑋፭)ፍ፭዆ኻ and
𝑦 = (𝑌፭)ፍ፭዆ኻ. The conditioning is now done by computing the activation function 𝑓 in the first layer:

𝑓(𝑤ኻ፡ ∗፝ 𝑥 + 𝑏) + 𝑓(𝑣ኻ፡ ∗፝ 𝑦 + 𝑏)

for the filters ℎ = 1,… ,𝑀ኻ. The idea is that if conditioning or part of the extra input does not give
more information, this will be ignored in the end due to the optimization. The skip connections and
the original convolution should have the same dimension, so if more than one filter is used, a 1 × 1
convolution is used.
IMAGE OF DIFFERENT ARCHITECTURE WITH CONDITIONING

3.5. Distribution goodness-of-fit testing
In order to test if a model can be used to study a given data set, it is wise to check if this data satisfies
the assumptions of the model. One can argue that one of the most important assumptions to test is
whether the data is really distributed as the model specifies. This can be verified by conducting a
goodness of fit test with null- and alternative hypothesis given by:

• 𝐻ኺ : The sample was generated by the assumed distribution 𝐹ኺ.
• 𝐻ኻ : The sample was not generated by the assumed distribution.

When testing a hypothesis we either reject the null hypothesis or we do not reject it. Not rejecting the
null hypothesis is not the same as accepting the null hypothesis, there is merely a lack of evidence to
reject it.
When testing the hypothesis there are two types of errors that can be made:

• Type I error: Rejecting the null hypothesis while the null hypothesis is true.

• Type II error: Not rejecting the null hypothesis while the null hypothesis is false.

Note that there is a link between these two effects. If we were to always accept the null hypothesis the
Type I errors would never happen, but our statistical test would not be useful, since the Type II error
would be large.

In this section the methodology is presented on measuring the goodness of fit of the predicted distri-
bution against the actual distribution. This is an essential piece of the picture, since a bad fit is sure
to give bad results. In testing the goodness of fit of distributions there are several approaches. There
are tests available for certain types of distributions: e.g. whether a random variable is normally or uni-
formly distributed. There are also tests available against more general families of distributions, these
are usually based on the Empirical Cumulative Distribution Function (ECDF). These tests assume a
random variable that is i.i.d. which is not necessarily the case in this thesis. It is however vital to check
whether the approach taken in this thesis works for i.i.d. variables before moving on to more involved
series. First distribution specific tests will be described, followed by distribution-free tests and finally a
novel approach for non-i.i.d variables.

3.5.1. Distribution goodness-of-fit testing for known distributions
Hypothesis testing is done by choosing a null hypothesis and an alternative hypothesis. These hy-
potheses are compared by computing how likely the observation is given that the null hypothesis is
true. When the probability of this event or a more extreme realization happening is very low, the null
hypothesis is rejected. Before the test takes place, a threshold is chosen at which certainty level, or
significance level, the null hypothesis will be rejected. Often this is chosen at 5%.
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Jarque-Bera test
The Jarque-Bera test [35] is a test which takes a random sample 𝑥ኻ, … , 𝑥ፍ and uses the skewness and
kurtosis of the sample to see if this matches a normal distribution. The test statistic is based on the
skewness 𝑆 and kurtosis 𝐶 of the sample:

𝑆 =
ኻ
ፍ ∑

ፍ
።዆ኻ(𝑥። − �̄�)ኽ

( ኻፍ ∑
ፍ
።዆ኻ(𝑥። − �̄�)ኼ)

Ꮅ
Ꮄ

𝐶 =
ኻ
ፍ ∑

ፍ
።዆ኻ(𝑥። − �̄�)ኾ

( ኻፍ ∑
ፍ
።዆ኻ(𝑥። − �̄�)ኼ)

ኼ

When the sample is drawn from a normal distribution it can be shown that the test statistic 𝐽𝐵
asymptotically converges to a chi-squared distribution with two degrees of freedom. The statistic can
now be used to test the hypothesis that the data is generated by a normal distribution. The statistic is
computed as:

𝐽𝐵 = 𝑆ኼ
𝑐ኻ
+ (𝐶 − 𝑐ኼ)

ኼ

𝑐ኽ
where the 𝑐ኻ, 𝑐ኼ and 𝑐ኽ are correction factors for small sample size. In this thesis we do not consider
such small sample sizes and can neglect the factors to constants and get the statistic

𝐽𝐵 = 𝑁
6 (𝑆

ኼ + 14(𝐶 − 3)
ኼ) .

Essentially this tests jointly whether the sample data has skewness 0 and excess kurtosis of 0 as does
the normal distribution.

Anderson-Darling test
The Anderson-Darling test is a statistical test to assess whether a given sample was drawn from a
given, specified distribution. One of the properties of this test statistic is that its critical values are
distribution free and no parameters have to be estimated when computing the statistic. For the normal
distribution this means that it assesses whether or not the empirical distribution function is similar
enough to the hypothesized distribution without estimating the mean or standard deviation. The main
idea is that when using the CDF of the random variable the distribution follows a uniform distribution
on [0, 1]. The test statistic 𝐴ኼ is usually given in terms of the empirical and hypothesized distribution:

𝐴ኼ = 𝑛∫
ጼ

ዅጼ

(𝐹፧(𝑥) − 𝐹ኺ(𝑥))
ኼ

𝐹(𝑥)(1 − 𝐹(𝑥)) .

The idea is based on a property of continuous distributions. When the data comes from the hypothesized
distribution, the CDF of the data follows a uniform distribution. The Anderson-Darling test assesses
whether or not this is true by ordering the data as described in [36]. The the data is ordered {𝑌ኻ < ⋯ <
𝑌ፍ} to compute

𝑆 =
፧

∑
።዆ኻ

2𝑖 − 1
𝑛 (logΦ(𝑌።) + log (1 − Φ(𝑌፧ዄኻዅ።))) ,

where Φ is the CDF under the null hypothesis.
Then the test statistic is

𝐴ኼ = −𝑛 − 𝑆.

The critical values for this depend on the CDF Φ. For the normal distribution at the 95% confidence
level this becomes 0.787.
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3.5.2. Goodness of fit when dynamics unknown
To be able to assess the performance of this methodology on a dataset where the underlying dynamics
are not known the dataset is split in two parts: the training set and test set. The training set will
be used to train the neural network on, whereas the test set is used to measure the performance and
check if the network has learned to recognize patterns and perform on data it has not yet seen instead
of overfitting on the training set.

An important problem in this thesis is how to assess the goodness of a probabilistic forecast when
only a single realization is available. If the underlying distribution is known or the distribution is the
same at every point in time the problem simplifies but is still non-trivial. When this is not the case
the realizations can be aggregated and based on the assumptions, there are still ways to quantify the
performance of the probabilistic forecasts.

Here, a new method to assess a probabilistic forecast is introduced. Suppose for each realization we
want to know where every 10% percentile is. So we want to find the 𝑧 such that 𝐹ፗᑥ(𝑧) = 0.1. We not
only do this for 0.1 but also for 0.2, 0.3, … , 0.9. This might span several of the bins we defined, and
might fall in the middle of a bin. For each realization we count in which of these areas it lies. If we look
at all the 10 different areas we would expect them to all get approximately 10% of the realizations.

Therefore we can use a statistical test whether or not this is distributed uniformly over these bins.
Note that the values of 𝑧 can be different for every single time step, since the shape of the distribution is
a function of past values of the time series. For the uniform distribution there are several tests available
to assess whether or not a sample comes from the uniform distribution. In this thesis the Pearson 𝜒ኼ
test will be used.

Suppose that 𝑍 ∼ 𝑁(0, 1) is a standard normal random variable. Let us define a new random variable
𝑌 = 𝑍ኼ. 𝑌 is a chi-squared distributed random variable with one degree of freedom 𝜒ኼኻ. If the amount of
samples increases, so do the degrees of freedom. The 𝜒ኼ distribution is most often used for hypothesis
testing.

The primary reason that the chi-squared distribution is used extensively in hypothesis testing is its
relationship to the normal distribution. Most hypothesis tests use a test statistic. For these hypothesis
tests, by the Central Limit Theorem, the sampling distribution of the test statistic approaches the
normal distribution. Because the test statistic is asymptotically normally distributed the distribution
used for hypothesis testing may be approximated by a normal distribution. Testing hypotheses using
a normal distribution is relatively easy. Once again, the simplest chi-squared distribution is the square
of a standard normal distribution. So wherever a normal distribution could be used for a hypothesis
test, a chi-squared distribution could also be used.

Another reason that chi-squared tests are widely used is the fact that they belong to the class of
Likelihood Ratio Tests. These have the attractive property that they provide the highest power to
reject the null hypotheis (by the Neyman-Pearson lemma) asymptotically. This means that a large
sample size is required.
The method presented below should be used with care, there was no method found in literature that
uses the same approach on random variables that are non-i.i.d. distributed. This method is about
hypothesis testing of the predictions over the entire dataset and thus not about the soundness of the
forecast on a single time step basis. Since the distribution is not known for a single observation, a
higher level approach must be taken to make an informed and useful judgment.

The test statistic is

𝜒ኼ =
፧

∑
።዆ኻ

(𝑂። − 𝐸።)
ኼ

𝐸።

where 𝑂። is the observed frequency of the variable in the cell and 𝐸። the expected frequency. In our ex-
ample above 𝑛 = 10 and 𝐸። =

ፍ
ኻኺ . Now the null hypothesis can be tested whether or not the frequencies
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correspond to the uniform distribution. We test

H0: The observed frequency for all bins is distributed as a categorical distribution with 𝑝። =
ኻ
፧ for

all 𝑖.
This asymptotically becomes a chi-squared distribution with 𝑛 − 1 degrees of freedom. Note that this
does not necessarily prove that the predicted distribution is correct, but if this is done at several quantile
levels it should give a good indication whether or not the method is sensible overall. A counterexample
when the forecast is not perfect but the chi-squared test does not help is now given.
For example suppose we have a distribution with fixed 𝑎, 𝑏 ∈ ℝ and 𝑏 > 𝑎 and 𝑈 denoting the uniform
distribution such that

𝑋፭ = {
𝑈([𝑎, ፛ኼ ]) if 𝑡 odd
𝑈([፛ኼ , 𝑏]) if 𝑡 even

Suppose that the forecast �̂�፭ = 𝑈[𝑎, 𝑏] is made at every time step. Clearly this forecast is not very
good since it assigns half of the probability to an event that will certainly not happen at that time
step. With our uniform forecast �̂�፭ we expect to find as many observations in each quantile (ignoring
the possibility of one more even or odd realizations) at every time step 𝑡. However, it is clear that
this prediction is not that good at all. The methodology described above basically checks whether the
realizations are biased towards a certain side of the distribution. This is worthwhile to investigate but
it is important to know that the outcome does not imply that the predicted distribution is the actual
underlying distribution.
The null-hypothesis cannot be rejected. This shows that the chi-squared test described in this section
tests whether the aggregated probabilistic forecasts are skewed towards a certain side. The chi-squared
approach does not take the historical dependence into account. When looking at the approach this
might appear to be a problem. However, during the training/optimization procedure assures that these
very uninformative predictions get a higher error than better predictions and thus minimizing the cross-
entropy loss in practice prevents this problem from happening since its expected loss is minimized for
the true underlying distribution.
A combination of the informativeness of the forecast and this test could be a promising way to evaluate
probabilistic forecasts on series where the dynamics are unknown.

A practical problem in using the binned approach to estimate the distribution is that when a certain bin
has a large probability it can span several quantiles. For example, if the prediction for events 𝐴, 𝐵, 𝐶, 𝐷
and 𝐸 is [0.1, 0.1, 0.6, 0.1, 0.1] and we are interested in estimating the quantiles with the above method
where we take the percentile by halves we see that this falls for two quantiles we are interested in. This
poses a problem for the counting since it is unclear in which quantile the realization lies and how it
should be counted.

This method can work on problems where the underlying distribution is not known but has no other
literary background and has some flaws. The flaws are that this method determines the uniformness
of the realizations with regard to the prediction as aggregated, thus allowing a switching approach as
with the uniform counterexample. In practice this should not be a problem since the optimization
routine ensures that not such a broad forecast is made. Another issue is predictions in bins with a high
probability. There will be several of the splits made in that bin, which makes it a challenge to be solved.
This method can however provide an indication of the spread on a dataset where we do not know the
underlying dynamics, which is better then no method at all.

3.6. Comparison Feedforward Network
In this section we compare the previous results of the WaveNet against a Feedforward Neural Network.
This is to show the difference in the architecture of the network on the performance.
When going to random variables the difference becomes very clear. Looking at the normal distribution
as in Figure 3.6.1 it is easy to see that the Feedforward Network performs worse. We train on the
normal distribution.
What is also interesting to see is that the Feedforward network suffers from overfitting whereas the
WaveNet based model does not. This can be seen in Figure 3.6.2.
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Figure 3.6.1: Density forecast for the normal distribution for WaveNet (left) and the Feedforward Neural Network (right).

Figure 3.6.2: The loss function value on the Y-axis per training epoch on the X-axisfor both training (in blue) and test set (in
orange) for WaveNet (left) and a FeedForward Neural Network (right).



4
Numerical Experiments Setup

In this chapter the setup for testing how the methodology in this thesis compares against different
classical methods is described as well as the performance with respect to different parameter choices.
A motivation is given to understand why each of the tests and datasets used to asses this performance
is useful, how they work and what insights we can gain from each dataset or test. The actual numerical
results of these tests will be presented afterwards in chapter 5.

When predicting a distribution it is hard to assess how well this estimates the actual underlying distri-
bution, since only a single realization is known for an entire distribution. There are several cases that
make this generally hard problem easier. If the underlying distribution is known beforehand there are
several statistical tests we can perform. Likewise, if the distribution at each time step is independent
and identically distributed, naive estimators can perform very well. However, if the underlying distri-
bution is not known it can be much harder to assess the performance. Since it is hard to assess the
goodness of fit of the distribution in the more complex cases, it is logical to first look at simpler cases
and build on these to gain insight into the more involved problem. Therefore the approach of this thesis
is to first generate artificial time series for which the underlying dynamics are known, which ensures
that we are able to assess the performance of the methodology.

The simpler patterns are subdivided into deterministic time series in which the ability of learning non-
linear dynamics as well as time dependence is tested. These will be further subdivided into deterministic
series which show a certain pattern over time but no randomness and stochastic series where no time
pattern is shown but randomness is prevalent.

Later on, these two test sets are combined to assess the performance of the combination of those series.
This means that there can be a time effect as well as randomness and possible non-linearity. Finally,
conditional forecasting is considered which is used for multivariate forecasting of time series.
In the following sections more detail will be provided on which series are used in their respective category,
what are properties of these series and which metrics are used to measure the performance.

4.1. Deterministic time series
The deterministic series are used to assess whether the WaveNet approach can pick up patterns based
on the time series history. Furthermore, since we are dealing with a deterministic series, there is no
randomness involved and the realization on the next time step should be perfectly predictable. There-
fore, we know the value of the event beforehand with probability 1 and expect to see a single peaked
value at one of the bins for the probability, so all bins having almost zero probability except for one
bin with a probability of almost one.

If the network is not able to predict the next time step well this should be seen in either one of the
assessment metrics or the spread of the distribution over several bins. The cross-entropy loss, which is
used for training the neural network, gives a better score to more peaked distributions thus we should
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be able to see this. The ranked probability score on the other hand does not only look at which bin the
realization was in and with what probability this was predicted, it also takes into account how close it
was in predicting. For a continuous series, such as the sine wave, this is an important aspect as well.

The one step ahead forecast based on the true underlying series will be investigated as well as the
iterative mean forecast. This entails taking the mean of the predicted distribution and plugging this in
as part of the input for the next time step.

The error metric used to assess the performance of the neural network prediction on the paths of these
series is the Mean Squared Error (MSE) between the mean of the predicted distribution and the real-
ization.

These metrics will be evaluated as well for different settings for the neural network:

• the amount of bins used for the forecasted distribution

• the size of the dataset

• the amount of historical values used as input for forecasting: the lookback range

• kernel size of the filter

• amount of filters used

• training epochs and batch size

Evaluating the metrics for all of these at once would not give a clear overview so the changes are taken
from a baseline setting and the adjusted settings are evaluated on a case by case basis.

For completeness, the naive estimator of taking the same value as the previous time step is also consid-
ered.

In this thesis two different deterministic series will be studied. The first series is a sine wave which only
exhibits a seasonal component and is periodic. The sine wave has a period of 100. Since the series is
clearly periodic the input of the historical values should be enough to predict the next time step. An
interesting insight can be gained by looking at how many historical values are necessary to be able to
predict well. In other words, how far does one need to look back to predict. A graphical representation
of the sine wave can be seen in Figure 4.1.1

Figure 4.1.1: First 1000 time steps of the sine wave with a period of 100. On the x-axis the time is given and on the y-axis the
value of the sinus.



4.1. Deterministic time series 43

The second series is the Lorenz system of differential equations. This is known to be a chaotic series so
a small deviation from the starting value will have a large impact over time. The Lorenz system is a
system of coupled differential equations in three dimensions, given by (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)), satisfying the
following equations:

𝜕𝑋
𝜕𝑡 = 𝜎 (𝑌 − 𝑋)
𝜕𝑌
𝜕𝑡 = 𝑋 (𝜌 − 𝑍) − 𝑌
𝜕𝑌
𝜕𝑡 = 𝑋𝑌 − 𝜌𝑍

The parameters that are usually associated with this system are used: 𝜎 = 10, 𝜌 = 28 and 𝛽 = ዂ
ኽ with

starting values (𝑋(0), 𝑌(0), 𝑍(0)) = (0, 1, 1.05). This series is interesting since it exhibits linear and
non-linear relationships and it is important to assess whether the methodology can pick this up.

For this series it is also interesting to see if there is a difference between the short term and long term
predictions. Since we are dealing with a chaotic series the expectation is that the predictions break
down over time, but the setup of the network might have an impact on how long this takes and how
well it models the dynamics.

Figure 4.1.2: First 1000 time steps of the Lorenz system. This image shows the dynamics between the different coordinates.
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Figure 4.1.3: First 1000 time steps of the Lorenz system for the X coordinate. On the horizontal axis the time is shown and on
the vertical axis the value of the X coordinate for the Lorenz system.

4.2. Stochastic time series
The main reason for using distributions in this methodology is clearly to deal with randomness. To
assess how well the methodology handles randomness stochastic time series are generated. These series
will be generated from several different distributions which will be explained in more detail below.
For each distribution, there are several criteria that should be monitored to evaluate the soundness.
A path will be generated, so iteratively drawing samples and using them as input, to see if the time
series generation picks up non-existing patterns. Secondly, multiple paths are generated to determine
whether or not the distribution is biased at each time step. Furthermore, the generated paths are
used to perform statistical tests to determine whether or not we can confirm that the samples come
from the actual underlying distribution with a specific confidence level. For i.i.d. samples such as the
normal distribution, it is also interesting to check whether there is a bias in the historic part of the series.

The score used in the training, the cross-entropy loss, will also be reported as well as the accuracy and
the Ranked Probability Score (RPS). The RPS does not only take the accuracy into account but also
how close one is to the observation. It is a strictly proper scoring rule, so its expected score is mini-
mized only for the actual distribution. The score is both applied to the realizations and the underlying
distribution to show the difference here.

Furthermore, basic properties of the distribution are analyzed. The sample mean, variance, skewness
and kurtosis are reported against the values for the true distribution. A comparison is made against
the naive density estimator on the same bins. This means that if we have realizations 𝑌ኻ, … , 𝑌ፌ on the
training set and the bins 𝐵ኺ, 𝐵ኻ, … , 𝐵ፍ the density estimator becomes:

̂𝑓(𝑥) = {
ኻ
ፌ ∑

ፌ
፣዆ኻ 𝟙(𝑌፣ ∈ (𝐵። , 𝐵።ዄኻ]) if 𝑥 ∈ (𝐵። , 𝐵።ዄኻ]

0 elsewhere
.

Note that for a time series where the entries are independent and identically distributed we cannot
expect to beat the naive estimator. Therefore it is a good benchmark to analyze how close we get.
The following four distributions will be used: Bernoulli distribution, uniform distribution, Gaussian
distribution and the lognormal distribution. The Bernoulli distribution is very simple and can only take
two values. The uniform and Gaussian distributions are often used in practice and should therefore
be forecasted correctly. The lognormal distribution is not symmetric and has a heavy tail and is the
exponential of a normally distributed variable. So, if we take the logarithm of a lognormal variable, we
get a normal distributed random variable.
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4.3. Mixture of deterministic and stochastic time series
Once the performance on the deterministic and stochastic series has been evaluated, it is important
to consider what happens if we combine these. Standalone effects might be easier to be recognized
and learned by neural networks, but a combination could be more of a challenge. Therefore, in this
section the setup for a combination between deterministic and stochastic parts is explained. It should
be stressed that performance on a combination of patterns over time and randomness is very important
since almost all time series in the real world have a deterministic and noise component.

Varying the amount of noise (e.g. adding a normal distribution with different variances) will be used to
investigate if the network is able to pick up a pattern over time even when there is randomness involved.

To do this the sine wave from before has a normally distributed random variable added to it.
The same tests as for the stochastic time series are considered, with the extension of the best estimate
(mean) at every time step procedure for the deterministic series.

4.4. Conditional and multivariate time series
When considering multivariate time series, the problem gets another, extra, dimension. Next to the
combination of deterministic and stochastic parts of time series, dependence between two series also
plays a role. For each dimension a different neural network will be trained as explained in the Gibbs
sampling section. This means that for every time step that is taken, a sample is drawn for the next time
step for one dimension and this sample has an impact on the sampling of all the different dimensions
on the same time step.

Measuring multivariate performance is possible but not the most straightforward approach. It is easier
and more insightful to measure the results per dimension. A further benefit is that a comparison can
be made by looking at the unconditional forecast of the series, as in the setup in the previous sections.

In this thesis the goal is to see how well we can learn correlation and non-linear dependence. For the
correlation we use correlated normally distributed random variables. By varying the correlation it can
be tested whether this has a significant impact in the ability to predict.

However, correlation is not the only aspect, it is also necessary to investigate effects over time and non-
linear effects. These are both found in the Lorenz system as described before. Instead of forecasting one
of the dimensions, we couple all three of them and can thus compare it to the one-dimensional method.
An improvement is to be expected since more information is available.
The assessment metrics are the same as in the previous sections.
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Numerical Results

Based on the setup explained in the previous chapter the results of these experiments are presented
here and discussed. Furthermore the settings for the neural network that were used are given for
reproducibility.
Note that the focus in the experiments is laid on correctly predicting the distribution for the next time
step. This is due to several reasons. If we were to evaluate a generated scenario it is much harder to
assess how likely such a scenario is. For distributions metrics are available to test statistical significance.
Furthermore, when generating a scenario, if the distribution that is predicted is predicted perfectly the
scenario generation is automatically applied correctly.

5.1. Settings to obtain the results
For the WaveNet we use 5 filters per layer, with 5 layers and a kernel size of 2. This means that we
have stacked 5 layers where each time the dilation increases by a factor of 2. Every time ኼ

ኽ of the data
is the training set and ኻ

ኽ is the testing set. Note that we do not use a validation set yet, since the
hyperparameters are not being optimized. The amount of datapoints used are either 20, 000 with 75
total training epochs. The batch size is increased at ኼ

ኽ as preliminary testing and research by [37] show
that this improves the performance. The batch size is set to 150 and later on increased to 500. As
he filter size is set to 2 and 5 dilated convolutional layers are stacked, the receptive field is 2኿ = 32.
Furthermore, the goal is to predict the density in a similar way to a histogram. This is done in 100
bins.
For all problems the Adam optimizer is used with learning rate 0.002, momentum for the average
gradient 0.9 and momentum for the squared gradients 0.999.
When the neural network has been fit, based on the last points in the training set, scenarios are generated
for the future. For every dataset 100 paths are generated each with 1000 steps ahead of those points in
the training set.
For clarity in the results the error scores and meanings are given here:

p = (𝑝ኻ, 𝑝ኼ, … , 𝑝ፍ)

CE − loss ∶ 𝑓(p, 𝑥፣) = −
ፍ

∑
።዆ኻ
𝛿።፣ log 𝑝፣

RPS ∶ = 1
𝑁 − 1

ፍዅኻ

∑
።዆ኻ

(
።

∑
፤዆ኻ

𝑝፤ − 𝛿፤፣)

ኼ

MSE pathwise mean: 100 Paths 𝑌፭ዄኻ, 𝑌፭ዄኼ, … , 𝑌፭ዄኻኺኺኺ are generated with random sampling. The mean
of these 100 paths is taken every time step as an indication of where the true mean will lie. These
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values are now used to compute the MSE with the realizations.
MSE distr. mean: One path 𝑌፭ዄኻ, 𝑌፭ዄኼ, … , 𝑌፭ዄኻኺኺኺ is generated by taking the mean of the predicted
distribution and plugging this into the input to predict the distribution of the next time step. These
values are now used to compute the MSE with the realizations.
MSE distr. median: One path 𝑌፭ዄኻ, 𝑌፭ዄኼ, … , 𝑌፭ዄኻኺኺኺ is generated by taking the median of the predicted
distribution, so the 𝑧 where 𝐹ፘᑥᎼᑙ(𝑧) = 0.5 and plugging this into the input to predict the distribution
of the next time step. These values are now used to compute the MSE with the realizations.

The Naive approach differs between the deterministic and stochastic case. In the deterministic case the
previous value is used with perfect information, thus the outcomes are merely shifted a time step. In
the stochastic case, the empirical density estimator is used by simply looking at how often a realization
falls into a bin on the training set.

For each dataset the metrics are computed for different settings. The baseline approach has been
described previously, the following parameter changes are made to test for robustness and influence of
these parameters. Unless specified, the rest of the settings are the same as for the baseline approach.

• 7 layers LB*4 This means that two extra layers with dilated convolutions were added, yielding
a receptive field, or look back (LB) in this case that is four times as large.

• 3 layers LB/4 This means that two fewer layers with dilated convolutions, yielding a receptive
field, or look back (LB) in this case that is four times as small.

• 50 bins This means that the probability is being predicted in only 50 bins, half the amount of
the baseline.

• 150 bins This means that the probability is being predicted in 150 bins, 50 more than the
amount of the baseline.

• 40k datapoints This means that the dataset has 40,000 datapoints, double the baseline case.

• 10k datapoints This means that the dataset has 10,000 datapoints, half of the baseline case.

• Kernel 3, LB=27 This means that the dilated convolutions have a kernel/filter size of 3 and we
use three layers of these to obtain a look back (LB) of 27.

• Kernel 4, LB=16 This means that the dilated convolutions have a kernel/filter size of 4 and we
use two layers of these to obtain a look back (LB) of 16.

• Kernel 4, LB=16 This means that the dilated convolutions have a kernel/filter size of 4 and we
use three layers of these to obtain a look back (LB) of 64.

Due to the nature of the probabilistic forecast it is hard to visualize useful information in a clear and
comprehensible manner. Therefore most results are presented in tables.

5.2. Deterministic series
The first step is to analyze whether we can pick up non-random patterns. If the method works well it
should give peaked values at the correct bin and 0 probability elsewhere. If the probability estimated
is not 0 it could indicate that it is unable to correctly observe the pattern.
It is to be expected that predicting a distribution for this is less accurate than predicting an actual
value since it is redundant to compute a distribution here. Simply said, there is more complexity in
computing a distribution which is unnecessary for this task.
First we see if we can “forecast” a deterministic function. This is to see if the network is able to
approximate an arbitrary non-linear function. We start off with a simple sinoid function:

𝑦 = 1.3 + sin ( 𝜋𝑁𝑥
50(𝑁 + 1)) .

This is chosen such that the period is 100 steps. In Figure 5.2.1 an example is given of the predicted
probabilities for each bin. As can be seen the there is a single peak predicted which indicates the bin



5.2. Deterministic series 49

with the next value for the sinoid. This image gives an idea of what the prediction probability vector
looks like. It is clear that the network is able to predict the location, but not fully yet since there is
not a peak with probability one.
For the deterministic series the naive method is repeating the value at the previous time step. Obviously
this is not a great strategy for a sinoid series.

Figure 5.2.1: One step ahead probability prediction for each bin. On the x-axis we have the function value at the next time step
and on the y-axis the corresponding probability forecast.

If we look several steps ahead it can be seen that the inference done leads to the result in Figure 5.2.2.

Figure 5.2.2: One step ahead sinus wave estimation.

In Table 5.2.1 we can see the different error measures on the test set. It can be seen that the perfor-
mance is relatively stable to parameter changes. It can be seen that having a longer look back has a
positive effect on the performance. This makes sense since more information about the series is avail-
able to predict upon. This also holds for having a bigger dataset, more examples are available thus the
performance increases. The network outperforms the naive strategy for this approach.
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CE-loss Naive CE loss RPS ⋅E-5 Naive RPS ⋅ E-5
Baseline 0.6214 14.8320 4.867 28.0
7 layers LB*4 0.3300 14.8328 2.653 28.4
3 layers LB/4 1.2505 14.8269 9.2145 27.9
50 bins 0.400 12.2573 3.006 23.2
150 bins 0.9745 15.4750 7.477 29.2
40k datapoints 0.5693 14.8303 2.248 14.0
10k datapoints 1.0549 14.8354 16.04 56.3
Kernel 3, LB=27 1.1700 14.8305 8.801 28.0
Kernel 4, LB=16 1.5575 14.8253 10.84 27.9
Kernel 4, LB=64 0.6076 14.8257 4.664 28.1

Table 5.2.1: Numerical results for the losses on the test set for the sine wave

Variations in the Naive scores are due to the different look back distances which make sure that the set
sizes are always slightly different, resulting in small differences.
Since the performance not only depends on the one-step ahead forecast with perfect information, we
look into longer term performance. To do this paths are generated in several ways. First, we take a
single path with at every time step the mean of the predicted density. This is compared with generating
100 paths and taking the mean of these paths at every time step. Finally, the most likely event is taken
at each time step and then used to predict the value at the next time step. It should be noted that
this approach is not the idea behind the use of this methodology but it is important to compare the
performance against other methods.

MSE naive MSE Network MSE pathwise mean MSE distr. mean MSE distr. median
Baseline 1.97 E-3 1.33 E-4 0.27860 0.5591 0.9486
7 layers LB*4 1.97 E-3 1.38 E-4 0.00019 0.0106 0.0187
3 layers LB/4 1.97 E-3 1.28 E-4 0.48150 1.0736 1.2902
50 bins 1.97 E-3 1.70 E-4 0.31350 0.4916 0.5834
150 bins 1.97 E-3 1.88 E-4 0.34070 0.7313 0.7007
40k datapoints 1.97 E-3 1.37 E-4 0.35780 0.5602 0.6089
10k datapoints 1.98 E-3 2.40 E-4 0.33110 0.3142 0.6006
Kernel 3, LB=27 1.97 E-3 2.08 E-4 0.26290 0.5735 0.8476
Kernel 4, LB=16 1.97 E-3 1.64 E-4 0.43170 0.8733 0.9920
Kernel 4, LB=64 1.97 E-3 1.47 E-4 0.02250 0.3658 0.2061

Table 5.2.2: Numerical results for the Mean Squared Error (MSE) for the naive approach and other approaches. The first two
columns represent the score on the test set and are based on the perfect information from the previous timesteps. The other
approaches are on a step by step basis and are thus expected to perform worse. The pathwise mean has a different size set
than the other approaches and is based on the first 1000 points of the test set.

As can be seen from Table 5.2.2 the MSE of all approaches for the network to generate greatly improves
with a longer lookback. This makes sense since the sinoid is periodic with a period of 100, thus this
should give the best results. This can also be seen in the approaches for different kernel sizes. The
lookback is a more important indicator than the kernel size for the quality of the prediction.
For time series models usually the goal is to minimize the Mean Squared Error and give a point forecast
for the next timestep. This would often be the most likely value or the expected value. Both approaches
are given in Table 5.2.2 and it is interesting to see that if we generate paths and take the average of
these paths at every time step a lower MSE is obtained in almost all cases. This shows the value of the
proposed methodology.
It can be seen that the performance increases if the amount of datapoints increases as well as when we
have a larger receptive field. The MSE is more susceptible to parameter changes than the cross entropy
loss and the RPS as reported in Table 5.2.1. This is to be expected since multiple steps ahead are
forecasted instead of only one every time. This is a more difficult problem and thus the performance
can be expected to vary more.
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5.2.1. Lorenz curve
For the Lorenz curve the results are expected to be worse due to the chaotic nature of the series.
Furthermore there is not enough information in only a single variable (the 𝑋 variable is chosen) to
accurately predict the series. Note that the cross-entropy loss and RPS for two different datasets
cannot be compared effectively, therefore a comparison with the values to a problem such as the sinoid
previously makes no sense for these scores. This will be done afterwards in terms of the MSE.
It can be seen in Table 5.2.3 that the performance on the cross-entropy loss and the RPS is quite robust
as in the sinoid setting.

CE-loss Naive CE loss RPS Naive RPS
Baseline 0.902 8.549 7.15 E-5 1.62 E-4
7 layers LB*4 1.133 8.529 8.70 E-5 1.64 E-4
3 layers LB/4 1.089 8.547 8.29 E-5 1.61 E-4
50 bins 0.336 5.051 2.39 E-5 9.54 E-5
150 bins 1.198 10.488 8.91 E-5 1.98 E-4
40k datapoints 0.652 9.123 2.58 E-5 8.60 E-5
10k datapoints 1.517 9.833 2.05 E-4 3.73 E-4
Kernel 3, LB=27 1.083 8.550 8.49 E-5 1.61 E-4
Kernel 4, LB=16 1.357 8.552 1.00 E-4 1.61 E-4
Kernel 4, LB=64 0.993 8.546 7.90 E-5 1.62 E-4

Table 5.2.3: Numerical results for the losses on the test set for the Lorenz map

The difference in the MSE is much larger for different approaches. Note that the range of these variables
is different from the sinoid by approximately a factor 20, so the MSE can be expected to be much larger
than in the case of the sinoid and thus should not be compared. It is notable that the MSE hugely
increases for the approach with seven layers. Since the system is chaotic a small influence can propagate
to a huge difference over time and the longer look back distance is of no value. It can be seen that the
approaches with a shorter receptive field perform better for the test set in the column ”MSE Network”.
Surprisingly the approach with fewer datapoints performs better than the one with more datapoints.
This might be due to more chaotic behaviour after a certain time.

MSE naive MSE Network MSE pathwise mean MSE distr. mean MSE distr. median
Baseline 0.1719 0.0331 92.23 60.14 123.29
7 layers LB*4 0.1727 8.8407 80.97 69.73 107.01
3 layers LB/4 0.1715 0.0277 119.35 70.32 95.91
50 bins 0.1719 0.2646 106.71 67.33 147.76
150 bins 0.1719 0.0493 135.01 62.25 107.96
40k datapoints 0.1808 0.0582 146.15 63.50 120.54
10k datapoints 0.1879 0.8795 85.71 95.68 92.28
Kernel 3, LB=27 0.1718 0.0394 101.30 61.32 139.72
Kernel 4, LB=16 0.1716 0.0676 129.54 64.75 122.07
Kernel 4, LB=64 0.1724 0.0344 133.46 63.74 81.92

Table 5.2.4: Numerical results for the MSE on the test set for the Lorenz map

5.3. Randomness
Performance on deterministic series is necessary, but predicting probabilities is important if there is
randomness. In this section several random variables are shown and predicted. Note that these variables
are generated i.i.d. so the neural network cannot be expected to beat the naive kernel density estimator.
This is included for comparison.
It is important to realize that the naive strategy in the randomness section is different from the deter-
ministic case since we can develop a better naive approach than using the previous realization. If the
time series is generated as i.i.d. random variables the best naive approach can be seen as the histogram
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with the same amount of bins as the network. It is not expected to beat the performance of this, but
it gives a good indication of how close the methodology of this thesis can get.

5.3.1. Normal distribution
In Table 5.3.1 the results of the numerical experiments can be found.

CE-loss Naive CE loss RPS Naive RPS RPS (True) Naive RPS (True)
Baseline 3.929 3.929 1.49 E-4 1.49 E-4 8.46 E-9 8.26 E-9
7 layers LB*4 3.929 3.929 1.51 E-4 1.51 E-4 9.78 E-9 8.63 E-9
3 layers LB/4 3.929 3.930 1.48 E-4 1.48 E-4 9.68 E-9 8.25 E-9
50 bins 3.180 3.179 1.45 E-4 1.45 E-4 13.5 E-9 10.5 E-9
150 bins 4.355 4.356 1.50 E-4 1.50 E-4 11.6 E-9 11.3 E-9
40k datapoints 3.932 3.932 7.42 E-5 7.42 E-5 2.99 E-9 2.66 E-9
10k datapoints 3.948 3.950 2.99 E-4 2.99 E-4 44.7 E-9 42.5 E-9
Kernel 3, LB=27 3.929 3.929 1.49 E-4 1.49 E-4 11.8 E-9 8.20 E-9
Kernel 4, LB=16 3.930 3.930 1.48 E-4 1.48 E-4 9.79 E-9 8.22 E-9
Kernel 4, LB=64 3.931 3.930 1.49 E-4 1.49 E-4 13.5 E-9 8.56 E-9

Table 5.3.1: Numerical results for the losses on the test set for the normal distribution.

As can be seen from Table 5.3.1, the reported losses and scores are quite robust to parameter changes.
It makes sense that the cross-entropy loss increases for more bins since the probabilities get smaller
the logarithm term becomes more negative resulting in a larger loss. When not looking at the different
amount of bins it can be seen that the best result is achieved when there is more data available. This
holds for both the network score as well as the naive density estimator approach. This is to be expected
due to the law of large numbers. The scores for the naive approach and the network approach are
very similar. This indicates that the network does a good job at forecasting the correct distribution.
Furthermore the error scores do not wildly vary with different parameter settings which indicates that
the used methodology is robust.
To measure this in another way, a step is taken to statistical hypothesis testing. Many different paths are
generated to assess this. By choosing a confidence level of 95% we expect to reject the null hypothesis
in only 5% of these cases. Generating 100 paths and looking at how many times we reject gives the
following results for the Jarqu-Bera test and the Anderson-Darling test in Table 5.3.2.

Correlation Jarque-bera Anderson-Darling
Baseline 0.95 0.95
7 layers LB*4 0.93 0.95
3 layers LB/4 0.94 0.95
50 bins 0.95 0.96
150 bins 0.95 0.95
40k datapoints 0.97 0.96
10k datapoints 0.92 0.97
Kernel 3, LB=27 0.93 0.94
Kernel 4, LB=16 0.93 0.94
Kernel 4, LB=64 0.94 0.94

Table 5.3.2: Numerical results for the hypothesis testing for the normal distribution

It can be seen that the values are close to the expected 0.95 for the normal distribution. This shows
that there is a lack of evidence to reject the null hypothesis that the generated paths are normally
distributed and we thus choose to accept the null hypothesis.
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5.3.2. Lognormal distribution
Similarly to the normal distribution, the scores are computed and compared. In Table 5.3.3 the cor-
responding values can be found. The same patterns as for the normal distribution can be seen: More
datapoints improves the prediction while less data points decrease performance. The scores are again
not very sensitive to parameter changes indicating robustness. Furthermore the amount of bins used in
prediction has an impact on both the naive scores and actual scores. Finally the results for the approach
used and the naive approach are very comparable while it cannot be expected to beat the naive score.

CE-loss Naive CE loss RPS Naive RPS RPS (True) Naive RPS (True)
Baseline 3.836 3.837 1.484 E-4 1.484 E-4 1.284 E-8 1.084 E-8
7 layers LB*4 3.811 3.813 1.505 E-4 1.505 E-4 1.420 E-8 1.144 E-8
3 layers LB/4 3.877 3.878 1.480 E-4 1.480 E-4 1.368 E-8 1.194 E-8
50 bins 3.094 3.094 1.441 E-4 1.441 E-4 1.374 E-8 1.129 E-8
150 bins 4.307 4.309 1.498 E-4 1.498 E-4 1.270 E-8 1.177 E-8
40k datapoints 3.787 3.787 7.390 E-5 7.391 E-5 3.154 E-9 2.740 E-9
10k datapoints 3.841 3.841 2.982 E-4 2.982 E-4 6.454 E-8 5.750 E-8
Kernel 3, LB=27 3.810 3.810 1.482 E-4 1.482 E-4 1.619 E-8 1.233 E-8
Kernel 4, LB=16 3.849 3.85 1.481 E-4 1.481 E-4 1.448 E-8 1.250 E-8
Kernel 4, LB=64 3.879 3.879 1.493 E-4 1.493 E-4 1.271 E-8 1.008 E-8

Table 5.3.3: Numerical results for the losses on the test set for the lognormal distribution

The test statistics are computed using the logarithm of the values generated, since we are dealing with
the lognormal distribution. The rate of not rejecting the null hypothesis with 𝛼 = 0.05 is given in Table
5.3.4. Once again, these values indicate that the methodology is able to generate from the underlying
distribution.

Jarque-bera Anderson-Darling
Baseline 0.94 0.95
7 layers LB*4 0.93 0.97
3 layers LB/4 0.93 0.95
50 bins 0.93 0.95
150 bins 0.94 0.95
40k datapoints 0.97 0.96
10k datapoints 0.91 0.98
Kernel 3, LB=27 0.93 0.95
Kernel 4, LB=16 0.93 0.95
Kernel 4, LB=64 0.93 0.94

Table 5.3.4: Numerical results for the hypothesis testing using the Anderson-Darling and Jarque-Bera test on the lognormal
distribution
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5.3.3. Uniform distribution
For the uniform distribution the same approach is taken as before. The cross-entropy loss and the RPS
are computed and presented in Table 5.3.5.

CE-loss Naive CE loss RPS Naive RPS RPS (True) Naive RPS (True)
Baseline 4.559 4.559 1.51 E-4 1.51 E-4 9.49 E-9 8.92 E-9
7 layers LB*4 4.559 4.559 1.53 E-4 1.53 E-4 9.40 E-9 9.24 E-9
3 layers LB/4 4.559 4.559 1.50 E-4 1.50 E-4 9.42 E-9 8.80 E-9
50 bins 3.819 3.819 1.49 E-4 1.49 E-4 1.07 E-8 1.04 E-8
150 bins 4.984 4.981 1.51 E-4 1.51 E-4 1.33 E-8 1.07 E-8
40k datapoints 4.555 4.554 7.51 E-5 7.51 E-5 2.82 E-9 2.51 E-9
10k datapoints 4.566 4.559 3.03 E-4 3.03 E-4 8.54 E-8 3.89 E-8
Kernel 3, LB=27 4.559 4.559 1.51 E-4 1.51 E-4 9.30 E-9 8.86 E-9
Kernel 4, LB=16 4.562 4.559 1.50 E-4 1.50 E-4 1.36 E-8 8.89 E-9
Kernel 4, LB=64 4.559 4.559 1.51 E-4 1.51 E-4 9.69 E-9 8.89 E-9

Table 5.3.5: Numerical results for the losses on the test set for the uniform distribution

For hypothesis testing the Anderson-Darling test statistic is used. Once again this indicates that we
reject the null hypothesis at the same rate as the actual theoretical distribution would have.

Anderson-Darling no reject rate
Baseline 0.95
7 layers LB*4 0.96
3 layers LB/4 0.95
50 bins 0.95
150 bins 0.95
40k datapoints 0.97
10k datapoints 0.97
Kernel 3, LB=27 0.95
Kernel 4, LB=16 0.95
Kernel 4, LB=64 0.93

Table 5.3.6: Numerical results for the losses on the test set for multivariate correlated normal distribution

As can be seen the null hypothesis that the data comes from the uniform distribution is rejected
approximately 5% of the times, which would be the same for the actual uniform distribution. This
indicates that there is no strong evidence against the null hypothesis and it is chosen to be accepted so
this methodology is able to generate uniform random variables.
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CE-loss Naive CE loss RPS Naive RPS RPS (True) Naive RPS (True)
Baseline 3.064 15.152 1.44 E-4 2.86 E-4 6.61 E-7 6.95 E-6
7 layers LB*4 2.997 15.174 1.45 E-4 2.91 E-4 3.23 E-7 7.30 E-6
3 layers LB/4 3.169 15.174 1.44 E-4 2.86 E-4 1.62 E-6 6.98 E-6
50 bins 2.334 14.137 1.35 E-4 2.67 E-4 1.17 E-6 1.45 E-5
150 bins 3.464 15.486 1.47 E-4 2.93 E-4 3.81 E-7 4.60 E-6
40k datapoints 3.000 15.140 7.15 E-5 1.43 E-4 2.40 E-7 3.58 E-6
10k datapoints 3.096 15.228 2.90 E-4 5.78 E-4 1.44 E-6 1.36 E-5
Kernel 3, LB=27 3.053 15.198 1.44 E-4 2.87 E-4 5.86 E-7 6.90 E-6
Kernel 4, LB=16 3.161 15.194 1.44 E-4 2.86 E-4 1.17 E-6 6.75 E-6
Kernel 4, LB=64 3.030 15.213 1.44 E-4 2.89 E-4 3.81 E-7 6.98 E-6

Table 5.4.1: Numerical results for the losses on the test set for the sinoid with noise

5.4. Combination of a deterministic function and randomness
Since in practice there is often noise in series combined with an actual pattern it is vital to be able
to pick up on this. The noise can come from measurement errors in a process without actual noise or
patterns which depend on the past but are not fully deterministic. To this end a combination of the
normal distribution and a sinoid is investigated. When we know the underlying distributions it is not
that difficult to test whether or not the generated series corresponds to the underlying dynamics and
distribution.
The function chosen is the same as in the deterministic function setting. The noise is applied to the
final result and not to the input of the function. This can be seen in Figure 5.4.1.

Figure 5.4.1: Noisy sinoid with inference on the expected value of the distribution and the underlying wave.

The MSE is taken against the unnoised signal. The results are comparable to the sinoid wave from
before. The same patterns can be seen: more data improves the score, the same holds for a larger
receptive field. This means that a combination of a deterministic and noisy signal is picked up on.
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MSE naive MSE Network MSE pathwise MSE distr. mean MSE distr. median
Baseline 0.0465 0.002475 0.7111 0.14847 1.039658136
7 layers LB*4 0.0466 0.000676 0.0180 0.00081 0.010079466
3 layers LB/4 0.0460 0.010697 1.1697 0.51314 0.830097513
50 bins 0.0468 0.002478 0.4277 0.12107 0.658091446
150 bins 0.0459 0.002032 1.0249 0.15530 1.053485299
40k datapoints 0.0466 0.001713 0.8667 0.08819 0.358403665
10k datapoints 0.0467 0.002297 0.6186 0.18647 1.104765408
Kernel 3, LB=27 0.0469 0.002424 1.1591 0.09892 0.927703215
Kernel 4, LB=16 0.0476 0.006493 0.8697 0.44825 1.061506135
Kernel 4, LB=64 0.0470 0.001220 0.3407 0.02263 0.384152328

Table 5.4.2: Numerical results for the losses on the test set for the noisy sine wave

5.5. Multivariate normal distribution

CE-loss CE-loss 2 RPS RPS 2 Naive RPS RPS (True) RPS (True) 2 Naive RPS (True)
1D 3.929 3.929 1.49 E-4 1.49 E-4 1.49 E-4 8.46 E-9 8.46 E-9 8.26 E-9
᎞ ዆0 3.883 3.933 1.49 E-4 1.49 E-4 1.49 E-4 6.37 E-3 6.39 E-3 6.37 E-3
᎞ ዆ ±0.1 3.898 3.933 1.49 E-4 1.49 E-4 1.49 E-4 6.45 E-3 6.47 E-3 6.45 E-3
᎞ ዆ ±0.3 3.942 3.890 1.49 E-4 1.49 E-4 1.49 E-4 6.59 E-3 6.59 E-3 6.59 E-3
᎞ ዆ ±0.5 3.965 3.799 1.49 E-4 1.48 E-4 1.49 E-4 6.19 E-3 6.21 E-3 6.19 E-3
᎞ ዆ ±0.7 3.930 3.608 1.49 E-4 1.47 E-4 1.49 E-4 6.44 E-3 6.45 E-3 6.44 E-3
᎞ ዆ ±0.9 3.955 3.126 1.49 E-4 1.44 E-4 1.49 E-4 6.63 E-3 6.63 E-3 6.63 E-3
᎞ ዆ ±1 3.931 0.800 1.49 E-4 6.21 E-5 1.49 E-4 6.31 E-3 6.39 E-3 6.31 E-3

Table 5.5.1: Numerical results for the losses on the test set for multivariate correlated normal distribution

As expected the cross entropy loss for the second series decreases if the correlation increases. There
is more information available. If 𝑋, 𝑌 are distributed 𝑁(0, 𝜎ኼ) with correlation 𝜌 and we know the
realization of the first series 𝑋 then the second series 𝑌 is distributed 𝑁(𝜌𝑋, (1−𝜌ኼ)𝜎ኼ). Since −1 ≤ 𝜌 ≤ 1
the variance decreases the farther away from 0 the correlation gets. This is evident in the CE loss as
well as in the RPS. For comparison the univariate normal distribution as described earlier is reported.
It can be seen that when we have no correlation, so the random variables are independent since they
are normally distributed, there is essentially no useful information in the second series. Conditioning
on this second series does however not decrease the performance, which means the network is able to
distinguish useful from useless information.

Correlation Jarque-bera 1 Jarque-Bera 2 Anderson-Darling 1 Anderson-Darling 2
0 0.96 0.95 0.99 0.96
±0.1 0.96 0.95 0.98 0.96
±0.3 0.97 0.94 0.98 0.93
±0.5 0.97 0.93 0.96 0.90
±0.7 0.94 0.96 0.98 0.93
±0.9 0.93 0.95 0.96 0.93
±1 0.95 0.98 0.98 0.94

Table 5.5.2: Numerical results for the losses on the test set for multivariate correlated normal distribution

Apart from the scores it is important to check whether generating with this approach provides samples
that are normally distributed or close enough that it is indistinguishable. In Table 5.5.2 the frequency
of non-rejection of the null hypothesis is reported. These are in line with the expected frequency of the
normal distribution which is 0.95. Therfore there is no clear evidence to reject the hypothesis that the
generated distribution with this methodology is the normal distribution. This means we can generate
and sample from multivariate distributions with and without dependence using the methodology.
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Conclusion

In this thesis scenario generation with the help of neural networks is investigated. First a background
was given on other ways to generate scenarios including ARIMA type models and Bayesian time series
models. A justification for economic scenario generation was presented to establish that this has been
an extension of previous modelling to possibly prevent a future financial crisis and is therefore taken
into regulatory frameworks such as IFRS 9 and Solvency II.

By choosing not to go for a parametric model and apply many assumptions, the choice was laid upon
neural networks as a basis for the scenario generation. The neural network framework was based upon
the previous WaveNet by [7] and [21]. A novelty in this research was trying to apply a different loss
function to this network for scenario generation.

For multivariate forecasting there were several approaches available: copulas, multivariate distribution
and Gibbs sampling. The multivariate distribution was not chosen since it would suffer heavily from
the curse of dimensionality. Copulas were dismissed since they would imply a less flexible dependence
structure or a non-parametric copula. The Gibbs sampling approach was preferred over this, especially
since the focus of this thesis is on scenario generation.

Afterwards research on the Ranked Probability Score was performed and coupled to the issue of generat-
ing scenarios and forecasts. It was proven that the Ranked Probability Score is a strictly proper scoring
rule. This means that the expected score is minimized when the forecasted/predicted distribution is
the actual underlying distribution. This also holds for the cross-entropy loss. The reason the RPS was
looked into was that the cross-entropy loss lacked dependence on distance. For economic scenarios it
can be valuable to be close to the realization, a property that the cross-entropy loss does not have whilst
the RPS does.

Initially the idea was to also use the RPS as the error score in the neural network. However, optimizing
this showed that there was no convergence to a good solution. Thorough checking with different simple
datsets or giving the optimal initial solution showed that the RPS was not desirable as a loss function.
This is due to the added complexity of the function taking distance into account which makes the
optimization problem more complex and empirically getting stuck in local minima.

From this the methodology used in this thesis was chosen to have stacked dilated convolutions based on
the WaveNet approach. This allowed for conditional forecasting. Combining these with Gibbs sampling
it was possible to generate multivariate series.

A diverse series of data sets were constructed to assess the performance and robustness of the method-
ology on different characteristics. It could be seen that the performance was not sensitive to parameter
changes for all models which was desired. The performance on long term dependence could be seen in
the sinoid series and it was clear that the model was able to outperform the naive approaches here.
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For the stochastic series the results showed that the WaveNet type approach is able to learn the shape
of these distributions and able to generate samples from them that cannot be rejected with statistical
tests. Therefore this method might be very suitable for modelling or sampling from distributions for
which the exact properties are not known.

The approach also works for some tested combinations of deterministic and stochastic series, as well
as multivariate generation. The only series tested upon which the results were under performing was
the Lorenz system. This was specifically chosen and it could beforehand already be seen that this
approach is not optimal for the Lorenz map time series, since it is chaotic thus ensuring no long term
dependencies, no randomness and the necessity of very accurate measurements. Due to the binning
approach the predictions or scenarios generated can never be as accurate for such a system.

A short comparison was also made to Feed Forward Neural Networks, which were overfitting strongly
whereas the neural network used in this thesis did not.

The consideration for the optimizers was especially relevant due to the failure of the RPS as a loss
function. After thorough evaluation, the conclusion is drawn that while the RPS might be a promising
way to measure the difference between distributions, especially when taking the distance into account,
it is a function that is hard to optimize. When comparing to the cross-entropy loss, the computation is
more involved and that is most likely why the optimization methods did not converge to a promising
solution, even for relatively simple problems.

The further research recommendations and relevant drawbacks of the methodology are discussed in
chapter 7.



7
Discussion and research

recommendations

As a possible extension the inference can be sped up using similar methods as [38]. At the moment
training is fast but inference is slow. This method introduced by Google Deepmind researchers con-
structs another network which can be seen as dual or adjoint to the original network that trains slow
but does fast inference. This will of course be very efficient when generating many different scenarios,
especially when taking many time steps into the future.

A potentially interesting research area is anomaly detection. Since the method used in this thesis pro-
duces probabilities, it can be used to assess whether extreme events or anomalies take place when the
realization falls into a bin with very low probability. This could be researched in the future for a wide
range of data sets, the power of the method used here is its flexibility and robustness.

A downside to the method of forecasting the distribution is that it is hard to assess whether the predicted
distribution follows the same shape as the actual underlying distribution. This is especially true since
there is a single observation every time.
In the methodology in this paper the assumption is made that the behaviour of the past N observa-
tions fully determines the probability distribution for the next time step. While this is often a realistic
scenario, it is also assumed that this does not change over time. In reality that may not be true, there
may be trends over time that are not incorporated into this methodology. This is something that holds
generally for modelling: if the assumptions are not met the results are not guaranteed to make sense.

For future research it may be interesting to investigate the performance of the neural network forecasts
with a copula. A combination of this appraoch with the Dynamic Copula theory by Eban [15] might
be promising. This would mean that instead of using the Gibbs sampling to get multivariate scenarios
the copulas can be used. This is especially useful if there is knowledge available about the dependence
structure.

A note is that the bin sizes in this thesis are set to be the same width. As shown they are allowed to
be flexible. It is even possible to have a probability distribution over this bin specified. This allows one
to reconstruct any possible distribution. This could incorporate aspects such as rare events by taking
the final tail bins with either a different model or for instance a generalized extreme value distribution.
Furthermore if the knowledge about the range of the dynamics is available it may be interesting to
investigate a certain area more closely. This could easily be done by decreasing the bin size in this part
giving more information there. All methodologies used in this thesis can still easily be applied this way.
These more generalized applications can be interesting for further research.

Once again the data quality and how representative it is should be stressed. If the data on which
training happens does not accurately describe the behaviour for the entire set, good results are less
likely to happen since one of the fundamental assumptions of the modelling approach has been violated.
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Another future research recommendation is to test on chaotic series such as a double pendulum. These
systems are highly sensitive to small disturbances.
Another possibility that has not been applied in practice here is to have different distributions over the
bins.
An important note is that while these methods can produce very good results they are often not easily
comprehensible. This is one of the points critics focus on with neural networks, they can be labelled as
black box methods. On the other hand, if we choose a specific model and know that the assumptions
do not hold in reality the model might also be inappropriate.
The framework used in this thesis could also be applied to Generative Adversarial Networks wherein
two different networks compete, one network that generates instances, the generator, and one network
that assesses whether or not the instance is real or fake. The generating part of the network could be
done in a way similar to the WaveNet approach in this thesis.
When looking at a model it is interesting to see if there are connections to other approaches as perhaps
similar results could be proven or be useful. It is possible to describe the setup as above in terms of a
Markov chain. The easiest way to see this is to look at the bins of the distribution as the states of the
Markov chain.
More research can be done in applying this methodology to a wider array of time series, deterministic,
stochastic, mixtures of these and multivariate series. Once the performance is known for several prop-
erties, they can be compared to other modelling and generation approaches and finally compared on
data sets of which the underlying dynamics are not known.
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