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Signal Processing for Radio Astronomy

Alle-Jan van der Veen, Stefan J. Wijnholds, and Ahmad Mouri Sardarabadi

Abstract Radio astronomy is known for its very large telescope dishes but is
currently making a transition towards the use of a large number of small antennas.
For example, the Low Frequency Array, commissioned in 2010, uses about 50
stations each consisting of 96 low band antennas and 768 or 1536 high band anten-
nas. The low-frequency receiving system for the future Square Kilometre Array is
envisaged to initially consist of over 131,000 receiving elements and to be expanded
later. These instruments pose interesting array signal processing challenges. To
present some aspects, we start by describing how the measured correlation data
is traditionally converted into an image, and translate this into an array signal
processing framework. This paves the way to describe self-calibration and image
reconstruction as estimation problems. Self-calibration of the instrument is required
to handle instrumental effects such as the unknown, possibly direction dependent,
response of the receiving elements, as well a unknown propagation conditions
through the Earth’s troposphere and ionosphere. Array signal processing techniques
seem well suited to handle these challenges. Interestingly, image reconstruction,
calibration and interference mitigation are often intertwined in radio astronomy,
turning this into an area with very challenging signal processing problems.
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1 Introduction

Astronomical instruments measure cosmic particles or electromagnetic waves
impinging on the Earth. Astronomers use the data generated by these instruments
to study physical phenomena outside the Earth’s atmosphere. In recent years,
astronomy has transformed into a multi-modal science in which observations at
multiple wavelengths are combined. Figure 1 provides a nice example showing the
lobed structure of the famous radio source Cygnus A as observed at 240 MHz with
the Low Frequency Array (LOFAR) overlaid by an X-Ray image observed by the
Chandra satellite, which shows a much more compact source.

Such images are only possible if the instruments used to observe different parts
of the electromagnetic spectrum provide similar resolution. Since the resolution is
determined by the ratio of observed wavelength and aperture diameter, the aperture
of a radio telescope has to be 5 to 6 orders of magnitude larger than that of an optical
telescope to provide the same resolution. This implies that the aperture of a radio
telescope should have a diameter of several hundreds of kilometers. Most current
and future radio telescopes therefore exploit interferometry to synthesize a large
aperture from a number of relatively small receiving elements.

An interferometer measures the correlation of the signals received by two
antennas spaced at a certain distance. After a number of successful experiments
in the 1950s and 1960s, two arrays of 25-m dishes were built in the 1970s: the
3 km Westerbork Synthesis Radio Telescope (WSRT, 14 dishes) in Westerbork, The
Netherlands and the 36 km Very Large Array (VLA, 27 movable dishes) in Socorro,
New Mexico, USA. These telescopes use Earth rotation to obtain a sequence of

Fig. 1 Radio image of Cygnus A observed at 240 MHz with the Low Frequency Array (showing
mostly the lobes left and right), overlaid over an X-Ray image of the same source observed by the
Chandra satellite (the fainter central cloud) [65] (Courtesy of Michael Wise and John McKean)
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correlations for varying antenna baselines, resulting in high-resolution images via
synthesis mapping. A more extensive historical overview is presented in [52].

The radio astronomy community has recently commissioned a new generation of
radio telescopes for low frequency observations, including the Murchison Widefield
Array (MWA) [38, 53] in Western Australia and the Low Frequency Array (LOFAR)
[24, 58] in Europe. These telescopes exploit phased array technology to form a
large collecting area with ∼1000 to ∼50,000 receiving elements. The community
is also making detailed plans for the Square Kilometre Array (SKA), a future radio
telescope that should be one to two orders of magnitude more sensitive than any
radio telescope built to date [18]. Even in its first phase of operation, the low-
frequency receiving system of the SKA (SKA-low) is already envisaged to consist
of over 131,000 receiving elements [17, 56].

The individual antennas in a phased array telescope have an extremely wide
field-of-view, often the entire visible sky. This poses a number of signal processing
challenges, because certain assumptions that work well for small fields-of-view
(celestial sphere approximated by a plane, homogenous propagation conditions over
the field-of-view), are no longer valid. Furthermore, the data volumes generated by
these new instruments will be huge and will have to be reduced to manageable
proportions by a real-time automated data processing pipeline. This combination of
challenges led to a flurry of research activity in the area of array calibration, imaging
and RFI mitigation, which are often intertwined in the astronomical data reduction.

The goal of calibration is to find the unknown instrumental, atmospheric and
ionospheric disturbances. The imaging procedure should be able to apply appropri-
ate corrections based on the outcome of the calibration process to produce a proper
image of the sky. In this chapter, we review some of the array processing techniques
that have been proposed for use in standard calibration and imaging pipelines, many
of which are already being used in data reduction pipelines of instruments like
LOFAR.

2 Notation

Matrices and vectors will be denoted by boldface upper-case and lower-case
symbols, respectively. Entries of a matrix A are denoted by aij , and its columns
by ai . Overbar (·) denotes complex conjugation. The transpose operator is denoted
by T , the complex conjugate (Hermitian) transpose by H and the Moore-Penrose
pseudo-inverse by †. For matrices A of full column rank, i.e., AH A invertible, this
is equal to the left inverse:

A† = (AH A)−1AH . (1)

The expectation operator is denoted by E{·}.
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We will multiply matrices in many different ways. Apart from the usual
multiplication AB, we will use A�B to denote the Hadamard product (element-wise
multiplication), and A ⊗ B to denote the Kronecker product,

A ⊗ B =
⎡
⎢⎣

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

⎤
⎥⎦ .

We will also use the Khatri-Rao or column-wise Kronecker product of two matrices:
let A = [a1, a2, · · · ] and B = [b1, b2, · · · ], then

A ◦ B = [a1 ⊗ b1, a2 ⊗ b2, · · · ] .

Depending on the context, diag(·) converts a vector to a diagonal matrix with the
elements of the vector placed on the main diagonal, or converts a general matrix to
a diagonal matrix by selecting its main diagonal. Further, vec(·) converts a matrix
to a vector by stacking the columns of the matrix.

Properties of Kronecker products are listed in, e.g., [43]. We frequently use

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (2)

vec(ABC) = (CT ⊗ A)vec(B) (3)

vec(A diag(b) C) = (CT ◦ A)b . (4)

Property (3) is used to move a matrix B from the middle of an equation to the right
of it, exploiting the linearity of the product. Property (4) is a special case of it, to
be used if B is a diagonal matrix: in that case vec(B) has many zero entries, and we
can omit the corresponding columns of CT ⊗ A, leaving only the columns of the
Khatri-Rao product CT ◦ A. A special case of (3) is

vec(aaH ) = ā ⊗ a (5)

which shows how a rank-1 matrix aaH is related to a vector with a specific
“Kronecker structure”.

3 Basic Concepts of Interferometry; Data Model

The concept of interferometry is illustrated in Fig. 2. An interferometer measures the
spatial coherency of the incoming electromagnetic field. This is done by correlating
the signals from the individual receivers with each other. The correlation of each
pair of receiver outputs provides the amplitude and phase of the spatial coherence
function for the baseline defined by the vector pointing from the first to the second
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Fig. 2 Schematic overview of a radio interferometer

receiver in a pair. In radio astronomy, these correlations are called the visibilities. In
this section, we describe the data acquisition in detail and construct a suitable data
model.

3.1 Data Acquisition

Assume that there are J receiving elements. Depending on the context, a receiving
element can be a telescope dish, a single antenna within a subarray (usually referred
to as a station) or a beamformed subarray. The RF signal from the j th telescope,
x̃j (t) is first moved to baseband where it is denoted by xj (t), then sampled and split
into narrow subbands, e.g., of 100 kHz each, such that the narrowband condition
holds. This condition states that the maximal geometrical delay across the array
should be fairly representable by a phase shift of the complex baseband signal, and
this property is discussed in more detail in the next subsection. The resulting signal
is called xj (n, k), for the j th telescope, nth time bin, and for the subband frequency
centered at RF frequency fk . The J signals can be stacked into a J × 1 vector
x(n, k).

For each short-term integration (STI) interval m and each subband k, a covariance
matrix estimate is formed by integrating (summing or averaging) the cross-
correlation products x(n, k)xH (n, k) over N subsequent samples,

R̂m,k = 1

N

mN−1∑
n=(m−1)N

x(n, k)xH (n, k) , (6)

This processing chain is summarized in Fig. 3.
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Fig. 3 The processing chain to obtain covariance data

The duration of an STI depends on the stationarity of the data, which is limited
by factors like Earth rotation and the diameter of the array. For the LOFAR, a
typical value for the STI is 1–10 s. A complete observation can last from a few
minutes to a full night, i.e., more than 12 h. The resulting number of samples N in a
snapshot observation is equal to the product of bandwidth and integration time and
typically ranges from 103 (1 s, 1 kHz) to 106 (10 s, 100 kHz) in radio astronomical
applications.

3.2 Complex Baseband Signal Representation

Before we can derive a data model, we need to include some more details on the RF
to baseband conversion. In signal processing, signals are usually represented by their
low pass equivalents, which is a suitable representation for narrowband signals in a
digital communication system, and also applicable in the radio astronomy context.
A complex valued bandpass signal, also called the complex baseband signal, with
center frequency fc may be written as

s̃(t) = s(t)ej2πfct (7)

Suppose that the bandpass signal s̃(t) is delayed by a time τ . This can be written
as

s̃τ (t) := s̃(t − τ) = s(t − τ)ej2πfc(t−τ) = s(t − τ)e−j2πfcτ ej2πfct .

The complex envelope of the delayed signal is thus sτ (t) = s(t − τ)e−j2πfcτ . Let B

be the bandwidth of the complex envelope (the baseband signal) and let S(f ) be its
Fourier transform. We then have
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s(t − τ) =
∫ B/2

−B/2
S(f )e−j2πf τ ej2πf tdf ≈

∫ B/2

−B/2
S(f )ej2πf tdf = s(t)

where the approximation e−j2πf τ ≈ 1 is valid if |2πf τ | � 1 for all frequencies
|f | ≤ B

2 . Ignoring a factor π , the resulting condition Bτ � 1 is called the
narrowband condition. The quantitative interpretation of “much less than one”
depends on the SNR of the received signals [67] and the sensitivity loss considered
acceptable [9]. Under this condition, we have for the complex envelope sτ (t) of the
delayed bandpass signal s̃τ (t) that

sτ (t) ≈ s(t)e−j2πfcτ for Bτ � 1 .

The conclusion is that, for narrowband signals, time delays smaller than the inverse
bandwidth may be represented as phase shifts of the complex envelope. Phased array
processing heavily depends on this step. For radio astronomy, the maximal delay τ

is equal to the maximal geometric delay, which can be related to the diameter of the
array. The bandwidth B is the bandwidth of each subband fk in the RF processing
chain that we discussed in the previous subsection.

3.3 Data Model

We return to the radio astronomy context. For our purposes, it is convenient to
model the sky as consisting of a collection of Q spatially discrete point sources,
with sq(n, k) the signal of the qth source at time sample n and frequency fk .

The signal received at the j th antenna is a sum of delayed source signals, where
the delays are geometric delays that depend on the direction under which each of the
signals is observed. In the previous subsection, we saw that under the narrowband
condition a delay of a narrowband signal s(t, k) by τ can be represented by a phase
shift:

sτ (t, k) = e−j2πfkτ s(t, k)

which takes the form of a multiplication of s(t, k) by a complex number. Let
zj = [xj , yj , zj ]T be the location of the j th antenna. Further, let lq be a unit-length
direction vector pointing into the direction of the qth source.

The geometrical delay τ at antenna j for a signal coming from direction lq can be
computed as follows. For a signal traveling directly from the origin of the coordinate
system used to specify the antenna locations to antenna j , the delay is the distance
from the origin to the j th antenna divided by c, the speed of light. For any other
direction, the delay depends on the cosine of the angle of incidence (compared to
the baseline vector) at observing time n, and is thus described by the inner product
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of the location vector with the direction vector, i.e., τq,j (n) = zj · lq(n)/c. Overall,
the phase factor representing the geometric delay is

aj,q(n, k) = e−j2πfkτq,j (n) = e
− 2π jfk

c
zT
j lq (n)

. (8)

The coordinates of source direction vectors lq are expressed as1 (�,m, n), where
�, m and n are direction cosines and n = √

1 − �2 − m2 due to the normalization.
There are several conventions and details regarding coordinate systems [52], but
they are not of concern for us here.

Besides the phase factor aq,j (n, k), the received signals are also affected by the
direction dependent response of the receiving element bj (l, n, k) and the direction
independent complex valued receiver path gain gj (n, k). The function bj (l, n, k) is
referred to as the primary beam to distinguish it from the array beam and the point
spread function or dirty beam that results from beamforming over a full synthesis
observation (more about this later). The general shape of the primary beam is known
from (electromagnetic) modelling during the design of the telescope. If that model
is not sufficiently accurate, it needs to be calibrated. Together with the tropospheric
and ionospheric propagation conditions, the primary beam determines the direction
dependent gain gd

j,q(n, k) of the j th receiving element. The signal xj (n, k) received
by the j th receiving element can thus be described by

xj (n, k) = gj (n, k)

Q∑
q=1

gd
j,q(n, k)aj,q(n, k)sq(n, k) + nj (n, k), (9)

where nj (n, k) denotes the additive noise in the j th receive path.
We can stack the phase factors aj,q(n, k) into an array response vector for each

source as

aq(n, k) = [
a1,q (n, k), · · · , aJ,q(n, k)

]T
. (10)

In a similar way, we can stack the direction independent gains gj (n, k) into a
vector g(n, k), stack the direction dependent gains gd

j,q(n, k) into a vector for each

source gd
q(n, k) and stack the additive noise signals in a vector n(n, k). With these

conventions, we can formulate the data model for the array signal vector as

x(n, k) = g(n, k) �
Q∑

q=1

gd
q(n, k) � aq(n, k)sq(n, k) + n(n, k). (11)

For convenience of notation, we introduce the gain matrix

1With abuse of notation, as m, n are not related to the time variables used earlier.
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G(n, k) =
[
g(n, k) � gd

q(n, k), · · · , g(n, k) � gd
Q(n, k)

]
.

As we will see in Sect. 5, this gain matrix may have a specific structure depending
on a priori knowledge about the direction independent gains and the direction
dependent gains. This structure can then be exploited during calibration. We can
also stack the array response vectors into an array response matrix A(n, k) =[
a1(n, k), · · · aQ(n, k)

]T . These conventions allow us to write Eq. (11) as

x(n, k) = (G(n, k) � A(n, k)) s(n, k) + n(n, k), (12)

where s(n, k) = [
s1(n, k), · · · sQ(n, k)

]T .
For convenience of notation, we will in future usually drop the dependence on the

frequency fk (index k) from the notation. Previously, in (6), we defined correlation
estimates R̂m as the output of the data acquisition process, where the time index
m corresponds to the mth STI interval, such that (m − 1)N ≤ n ≤ mN . Due
to Earth rotation, the vectors aq(n) change slowly with time, but we assume that
within an STI it can be considered constant and can be represented, with some abuse
of notation, by aq(m). In that case, x(n) is wide sense stationary over the STI, and
a single STI covariance matrix is defined as

Rm = E{x(n) xH (n)} , m = ⌈ n

N

⌉
(13)

where Rm has size J × J . Each element of Rm represents the interferometric
correlation along the baseline vector between the two corresponding receiving
elements. It is estimated by STI sample covariance matrices R̂m defined in (6), and
our stationarity assumptions imply E{R̂m} = Rm.

We will model the source signals sq(n, k) and the noise signals nj (n, k) as zero
mean white Gaussian random processes sampled at the Nyquist rate. We will also
assume that the source signals and noise signals are mutually uncorrelated. With
these assumptions, we find, by substituting Eq. (12) into Eq. (13), that

Rm = E
{
(Gm � Ams(n) + n(n)) (Gm � Ams(n) + n(n))H

}

= (Gm � Am) E
{

s(n)sH (n)
}

(Gm � Am)H + E
{

n(n)nH (n)
}

= (Gm � Am) �s (Gm � Am)H + �n, (14)

where �s = diag (σ s) with σ s = [σ 2
1 , · · · , σ 2

Q]T is the source covariance matrix

and �n = diag (σ n) with σ n = [σ 2
n,1, · · · , σ 2

n,J ]T is the noise covariance matrix. In
radio astronomy, the covariance data model described in Eq. (14) is usually referred
to as the measurement equation.
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3.4 Radio Interferometric Imaging Concepts

Under ideal circumstances, the array response matrix Am is not perturbed by the
gain matrix Gm, i.e., we have Gm = 11H where 1 denotes a vector of ones of
appropriate size. The columns of Am are given by Eq. (8). Its entries represent
the phase shifts due to the geometrical delays associated with the array and source
geometry. By adding the gain matrix Gm, we can introduce directional disturbances
due to non-isotropic antennas, unequal antenna gains and disturbances due to
ionospheric effects.

Assuming ideal conditions and ignoring the additive noise, a single element of
the array covariance matrix, usually referred to as a visibility, can be written as

(Rm)ij =
Q∑

q=1

ai,qaj,qσ 2
q =

Q∑
q=1

I
(
lq

)
e−j 2π

λ (zi (m)−zj (m))
T lq . (15)

where I (lq) = σ 2
q is the brightness (power) in direction lq . The function I (l) is

the brightness image (or map) of interest: it is this function that is shown when
we refer to a radio-astronomical image like Fig. 1. It is a function of the direction
vector l: this is a 3D vector, but due to its normalization it depends on only two
parameters. We could e.g., show I (·) as function of the direction cosines (�,m), or
of the corresponding angles.

For our discrete point-source model, the brightness image is

I (l) =
Q∑

q=1

σ 2
q δ(l − lq) (16)

where δ(·) is a Kronecker delta, and the direction vector l is mapped to the location
of “pixels” in the image (various transformations are possible). Only the pixels lq
are nonzero, and have value equal to the source variance σ 2

q .
The vector zi (m) − zj (m) is the baseline: the (normalized) vector pointing

from telescope i to telescope j . In radio astronomy, it is usually expressed in
coordinates denoted by uij = (u, v,w) and normalized by the wavenumber, i.e.,
uij (m) = (2π/λ)(zi (m) − zj (m)). The objective in telescope design is often to
have as many different baselines as possible. In that case the entries of Rm are
different and non-redundant. As the Earth turns, the baselines also turn, thus giving
rise to new baseline directions. We will see later that the set of baselines during an
observation determines the spatial sampling function by which the incoming wave
field is sampled, with important implications on the quality of the resulting image.

Equation (15) describes the relation between the visibility model and the desired
image, and it has the form of a Fourier transform; it is known in radio astronomy
as the Van Cittert-Zernike theorem [49, 52]. Image formation (map making) is
essentially the inversion of this relation. Unfortunately, we have only a finite set
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of observations, therefore we can only obtain a dirty image: if we apply the inverse
Fourier transformation to the measured correlation data, we obtain

ÎD(l) :=
∑
i,j,m

(
R̂m

)
ij

e
juT

ij (m)lq (17)

In terms of the measurement data model (15), the “expected value” of the image is
obtained by replacing R̂m by Rm, or

ID(l) :=
∑
i,j,m

(Rm)ij e
juT

ij (m)l

=
∑
i,j,m

∑
q

σ 2
q e

juT
ij (m)(l−lq )

=
∑
q

I (lq)B(l − lq)

= I (l) ∗ B(l), (18)

where the dirty beam is given by

B(l) :=
∑
i,j,m

e
juT

ij (m)l
. (19)

The dirty image ID(l) is the desired “true” image I (l) convolved with the dirty
beam B(l): every point source excites a beam B(l − lq) centered at its location lq .
The effect of this is that the true image gets blurred, thus limiting its resolution. Note
that B(l) is a known function: it only depends on the locations of the telescopes, or
rather the set of telescope baselines uij (m) = (2π/λ)(zi (m) − zj (m)).

Note that Eq. (17) has the form of a Fourier transform, although it has been
defined on (u, v,w) samples that are non-uniformly spaced. To be able to use
the computationally efficient fast Fourier transform (FFT), astronomy software first
applies a gridding operation that interpolates and resamples the visibilities onto a
regular grid, after which the FFT can be used to obtain the dirty image [49, 52]. This
essentially implements a non-uniform FFT as used in other science communities
[19].

As an example, the antenna configuration for the six stations forming the core
of the LOFAR and the resulting single-STI dirty beam is shown in Fig. 4. The dirty
beam has heavy sidelobes as high as −10 dB. A resulting dirty image (in dB scale)
is shown in Fig. 5. In this image, we see the complete sky, in (�,m) coordinates,
where the reference direction is pointing towards zenith. The strong visible sources
are Cassiopeia A and Cygnus A, also visible is the Milky Way. The image was
obtained by averaging 259 STIs, each consisting of 1 s data in a single frequency
channel of 195 kHz wide at a central frequency of 58.9 MHz.
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Fig. 4 (a) Coordinates of the antennas in the LOFAR Superterp, which defines the spatial
sampling function, and (b) the resulting dirty beam in dB scale
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Fig. 5 Dirty image following (18), using LOFAR Superterp data

The dirty beam is essentially a non-ideal point spread function due to finite and
non-uniform spatial sampling: we only have a limited set of baselines. The dirty
beam usually has a main lobe centered at l = 0, and many side lobes. If we
would have a large number of telescopes positioned in a uniform rectangular grid,
the dirty beam would be a 2-D sinc-function (similar to a boxcar taper in time-
domain sampling theory). The resulting beam size is inversely proportional to the
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aperture (diameter) of the array. This determines the resolution in the dirty image.
The sidelobes of the beam give rise to confusion between sources: it is unclear
whether a small peak in the image is caused by the main lobe of a weak source,
or the sidelobe of a strong source. Therefore, attempts are made to design the array
such that the sidelobes are low. It is also possible to introduce weighting coefficients
(“tapers”) in (18) to obtain an acceptable beamshape.

Another aspect is the summation over m (STI intervals) in (19), where the
rotation of the Earth is used to obtain essentially many more antenna baselines.
This procedure is referred to as Earth rotation synthesis as more (u, v,w) sampling
points are obtained over time. The effect of this is that the sidelobes tend to get
averaged out, to some extent. Many images are also formed by averaging over a
small number of frequency bins (assuming the σ 2

q are constant over these frequency
bins), which enters into the equations in exactly the same way: Replace zi (m) by
zi (m, k) and also sum over the frequency index k.

4 Image Reconstruction

The goal of image reconstruction is to obtain an estimate of the true image I (l).
Many approaches to this problem have been proposed, which can be divided
into two classes. The first is a non-parametric approach that starts from the dirty
image. Since the dirty image is the convolution of the true image by the dirty
beam, this reduces the image reconstruction problem to a deconvolution problem.
Deconvolution is the process of recovering I (l) from ID(l) using knowledge of
the dirty beam and thus to obtain the high-resolution “clean” image. A standard
algorithm for doing this is CLEAN [27] and variants; however, many other
algorithms are possible, depending on the underlying model assumptions and on
a trade-off between accuracy and numerical complexity.

The second class of approaches is to consider image reconstruction as an
estimation problem in which an unknown set of parameters describing I (l) need
to be extracted from the measured visibilities collected in the measured array
covariance matrices R̂m. This “model matching” approach is discussed in more
detail in Sect. 4.4.

After a telescope has been designed and built, algorithms for image formation
are the most important topic for signal processing. Careful techniques can increase
the dynamic range (ratio between powers of the strongest and the weakest features
in the image) by several orders of magnitude. However, the numerical complexity
is often large, and high-resolution images require dedicated hardware solutions
and sometimes even supercomputers. In this section, we will describe some of the
algorithms. Additional overviews are available in [13, 14, 33, 36], as well as in the
books [4, 52].
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4.1 Constructing Dirty Images

4.1.1 Beamforming Formulation

Previously (Eq. (17)), we formulated the dirty image as the inverse Fourier transform
of the measured correlations. Here, we will interpret this process as beamforming.
Once we have this formulation, we may derive many other dirty images via
beamforming techniques. For simplicity of notation, we assume from now on that
only a single STI snapshot is used in the imaging, hence we also drop the time index
m from the equations. The results can easily be extended.

The imaging process transforms the covariances of the received signals to an
image of the source structure within the field-of-view of the receivers. In array
processing terms, it can be described as follows [33]. Assume a data model as in (12)
with all gain factors equal to unity, and recall the definition of the array response
vector a(l) in (8) and (10) (using yet another change of notation to emphasize now
that a is a function of the source direction l). There are J antennas. To determine
the power of a signal arriving from a particular direction l, a weight vector

w(l) = 1

J
a(l) = 1

J
e−j 2π

λ
ZT l, (20)

where Z = [z1, · · · , zJ ], is applied to the array signal vector x(n). The operation
y(n) = wH x(n) is generally called beamforming. The choice w = a precisely
compensates the geometric phase delays so that the antenna signals are added in-
phase. This can be regarded as a spatially matched filter, or conjugate field match.
The (often omitted) scaling by 1/J ensures the correct scaling of the output power.
Indeed, the output power of a beamformer is, generally,

E{|y|2} = wH E{xxH }w = wH Rw .

For a data model consisting of a single source with power σ 2 arriving from direction
a(l), i.e., x(n) = a(l)s(n), we have, with w = 1

J
a(l),

E{|y|2} = wH (aσ 2aH )w = σ 2 aH a
J

aH a
J

= σ 2 . (21)

Thus, the matched beamformer corrects precisely the signal delays (phase shifts)
present in a(l), when w matches a(l), i.e. the beamformer is pointed into the same
direction as the source. If the beamformer is pointed into other directions, the
response is usually much smaller.

Using the beamformer to scan over all pixels l in an image, we can create an
image via beamforming as

ÎBF (l) = w(l)H R̂w(l) (22)
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and the corresponding model for this image is

IBF (l) = w(l)H Rw(l) . (23)

The matched filter corresponds to weights w(l) defined as in (20). Except for a
factor J 2, the image IBF (l) is identical to the dirty image ID(l) defined in (18) for
this choice! Indeed, starting from (18), we can write

ID(l) =
∑
i,j

Rij e
juT

ij l =
∑
i,j

ai(l)Rij aj (l) = a(l)H Ra(l)

which is the beamforming image obtained using w(l) = a(l). The response to a
single source at the origin is

B(l) = a(l)H a(0)a(0)H a(l)

= a(l)H 11H a(l)

= 1H [a(l)a(l)H ]1
=

∑
i,j

e
juT

ij l

which is the dirty beam defined in (19), now written in beamforming notation. It
typically has a spike at l = 0, and many sidelobes, depending on the spatial sampling
function. We have already seen that these sidelobes limit the resolution, as they can
be confused with (or mask) other sources.

So far, we looked at the response to a source, but ignored the effect of the noise
on an image. In the beamforming formulation, the response to a data set which only
consists of noise, or R = �n is

In(l) = w(l)H �nw(l) .

Suppose that the noise is spatially white, �n = σ 2
n I, and that we use the matched

beamformer (20), we obtain

In(l) = σ 2
n

a(l)H

J

a(l)
J

= σ 2
n

‖a(l)‖2

J 2 = σ 2
n

J
, (24)

since all entries of a(l) have unit magnitude. As this is a constant, the image will
be “flat”. For a general data set, the responses to the sources and to the noise will
be added. Comparing (21)–(24), we see that the noise is suppressed by a factor
J compared to a point source signal coming from a specific direction. This is the
array gain. If we use multiple STIs and/or frequencies fk , the array gain can be
larger than J .
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4.1.2 Constructing Dirty Images by Adaptive Beamforming

Now that we have made the connection of the dirty image to beamforming, we
can apply a range of other beamforming techniques instead of the matched filter,
such as the class of spatially adaptive beamformers. In fact, these can be considered
as 2D spatial-domain versions of (now classical) spectrum estimation techniques
for estimating the power spectral density of a random process (viz. [26]), and the
general idea is that we can obtain a higher resolution if the sidelobes generated by
strong sources are made small.

As an example, the “minimum variance distortionless response” (MVDR)
beamformer is defined such that the response towards the direction of interest l is
unity, but signals from other directions are suppressed as much as possible, i.e.,

w(l) = arg min
w

wH Rw , such that wH a(l) = 1.

This problem can be solved in various ways. For example, after making a transfor-
mation w′ := R1/2w, a′ := R−1/2a, the problem becomes

w′(l) = arg min
w′

‖w′‖2 , such that w′H a′(l) = 1.

To minimize the norm of w′, it should be aligned to a′, i.e., w′ = αa′, and the
solution is w′ = a′/(a′H a′). In terms of the original variables, the solution is then

w(l) = R−1a(l)
a(l)H R−1a(l)

, (25)

and the resulting MVDR dirty image can thus be described as

IMV DR(l) = w(l)H Rw(l) = 1

a(l)H R−1a(l)
. (26)

For a point-source model, this image will have a high resolution: two sources that
are closely spaced will be resolved. The corresponding beam responses to different
sources will in general be different: the beamshape is spatially varying. While we
may represent IMV DR(l) as a convolution of the true image with a dirty beam, this
is now a spatially varying convolution (viz. the convolution in a linear time-varying
system). Deconvolution is still possible but has to take this into account.

Another consequence of the use of an adaptive beamformer is that the output
noise power is not spatially uniform. Consider the data model R = A�sAH + �n,
where �n = σ 2

n I is the noise covariance matrix, then at the output of the
beamformer the noise power is, using (25),

In(l) = w(l)H Rnw(l) = a(l)H R−1(σ 2
n I)R−1a(l)

[a(l)H R−1a(l)]2 = σ 2
n

a(l)H R−2a(l)
[a(l)H R−1a(l)]2 .

Thus, the output noise power is direction dependent.
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As a remedy to this, a related beamformer which satisfies the constraint
w(l)H w(l) = 1 (and therefore has spatially uniform output noise) is obtained by
using a different scaling of the MVDR beamformer:

w(l) = μR−1a(l) , μ = 1

[a(l)H R−2a(l)]1/2 .

This beamformer is known as the “Adapted Angular Response” (AAR) [8]. The
resulting image is

IAAR(l) = w(l)H Rw(l) = a(l)H R−1a(l)
a(l)H R−2a(l)

.

It has a high resolution and suppresses sidelobe interference under the white noise
constraint.

Example MVDR and AAR dirty images using the same LOFAR stations as
before are shown in Fig. 6. Comparing to Fig. 5, we observe that, as predicted, the
sidelobe suppression in the MVDR and AAR dirty images is much better than the
original matched beamformer dirty image. The images have a higher contrast and
it appears that some additional point sources emerge as the result of lower sidelobe
levels. This is especially true for the AAR dirty image.

4.2 Deconvolution

Having obtained a dirty image, we then attempt to recover the true image via
deconvolution: inverting the effect of the (known) dirty beam.

4.2.1 The CLEAN Algorithm

A popular method for deconvolution is the CLEAN algorithm [27]. It was proposed
for the classical, matched beamformer dirty image ID(l) defined in (17). From ID(l)
and the known dirty beam B(l), the desired image I (l) is obtained via a sequential
Least Squares fitting method. The algorithm is based on the assumption that the sky
is mostly empty, and consists of a set of discrete point sources. The brightest source
is estimated first, its contribution is subtracted from the dirty image, then the next
brightest source is subtracted, etc.

The algorithm further uses the fact that B(l) has its peak at the origin. Inside
the loop, a candidate location lq is selected as the location of the largest peak in
ID(l), the corresponding power σ̂ 2

q is estimated, and subsequently a small multiple
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Fig. 6 Dirty images corresponding to the (a) MVDR and (b) AAR beamformers
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of σ̂ 2
q B(l − lq) is subtracted from ID(l). The objective is to minimize the residual,

until it converges to the noise level:

q = 0
while ID(l) is not noise-like:⎡
⎢⎢⎢⎣

q = q + 1
lq = arg maxl ID(l)
σ̂ 2

q = ID(lq)/B(0)

ID(l) := ID(l) − γ σ̂ 2
q B(l − lq) , ∀l

Iclean(l) = ID(l) + ∑
q γ σ̂ 2

q Bsynth(l − lq), ∀l .

The scaling parameter γ ≤ 1 is called the loop gain; for accurate convergence
it should be small because the estimated location of the peak is at a grid point,
whereas the true location of the peak may be in between grid points. Bsynth(l) is a
“synthetic beam”, usually a Gaussian bell-shape with about the same beam width as
the main lobe of the dirty beam; it is introduced to mask the otherwise high artificial
resolution of the image.

In current imaging systems, instead of the subtractions on the dirty image, it is
considered more accurate to do the subtractions on the sample covariance matrix R̂
instead,

R̂ := R̂ − γ σ̂ 2
q a(lq)a(lq)H

and then to recompute the dirty image. Computing a dirty image is the most
expensive step in this loop, therefore usually a number of peaks are estimated from
the dirty image together, the covariance is updated for this ensemble, and then the
residual image is recomputed.

4.2.2 CLEAN Using Other Dirty Images

Instead of the matched beamformer dirty image ID(l), we can use other beamformed
dirty images in the CLEAN loop, for example the MVDR dirty image. Due to its
high resolution, the location of sources is better estimated than using the original
dirty image (and the location estimate can be further improved by searching for
the true peak on a smaller grid in the vicinity of the location of the maximum). A
second modification to the CLEAN loop is also helpful: suppose that the location
of the brightest source is lq , then the corresponding power αq should be estimated
by minimizing the residual ‖R − αa(lq)a(lq)H ‖2. This can be done in closed form:
using (5) we find

‖R − αa(lq)a(lq)H ‖ = ‖vec(R) − α[ā(lq) ⊗ a(lq)]‖ .
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The optimal least squares solution for α is, using (1), (3) and (2) in turn,

αq = [ā(lq) ⊗ a(lq)]†vec(R)

= [ā(lq) ⊗ a(lq)]H vec(R)

[ā(lq) ⊗ a(lq)]H [ā(lq) ⊗ a(lq)]

= a(lq)H Ra(lq)

[a(lq)H a(lq)]2

= a(lq)H Ra(lq)

J 2 ,

which is the power estimate of the matched filter. In the CLEAN loop, R should
be replaced by its estimate R̂ minus the estimated components until q, and also a
constraint that αq is to be positive should be included. This method was proposed in
[3].

Using the AAR dirty image in the CLEAN loop is also possible, and the resulting
CLEANed image was called LS-MVI in [3].

4.3 Matrix Formulations

Because our data model is linear, it is beneficial to represent the covariance
model and all subsequent operations on it in a linear algebra framework. In this
more abstract formulation, details are hidden and it becomes easier to recognize
the connection of image formation to standard formulations and more generic
approaches, such as matrix inversion and parametric estimation techniques.

4.3.1 Matrix Formulation of the Data Model

Let us start again from the data model given by Eq. (12) assuming an ideal situation,
in which all gain factors are unity. For simplicity, we consider only a single
frequency bin and STI interval, but all results can be generalized straightforwardly.
The model for the signals arriving at the antenna array is thus

x(n) = As(n) + n(n)

and the covariance of x is (viz. (14))

R = A�sAH + �n .
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We have available a sample covariance matrix

R̂ = 1

N

∑
n

x(n)x(n)H

which serves as the input data for the imaging step. Let us now vectorize this data
model by defining

r̂ = vec(R̂) , r = vec(R)

where r has the data model (using (4))

r = (Ā ◦ A)σ s + vec(�n) .

If �n is diagonal, we can write vec(�n) = (I◦I)σ n, where σ n is a vector containing
the diagonal entries of �n. Define Ms = Ā ◦ A and Mn = I ◦ I. Then

r = Msσ s + Mnσ n = [Ms Mn]
[

σ s

σ n

]
= Mσ . (27)

In this formulation, several modifications can be introduced. E.g., a non-diagonal
noise covariance matrix �n will lead to a more general Mn, while if �n = σ 2

n I, we
have Mn = vec(I) and σ n = σ 2

n . Some other options are discussed in [47]. Also, if
we have already an estimate of σ n, we can subtract it and write the model as

r′ := r − Mnσ n = Msσ s (28)

The available measurements r̂ should be modified in the same way. This model is
similar to (27), with the advantage that the number of unknown parameters in σ is
smaller.

We can further write

r̂ = r + w = Mσ + w , (29)

where r̂ is the available “measurement data”, r is its mean (expected value), and
w is additive noise due to finite samples. It is not hard to derive that (for Gaussian
signals) the covariance of this noise is [47]

Cw = E(r̂ − r)(r̂ − r)H = 1

N
(R̄ ⊗ R)

where N is the number of samples on which R̂ is based. We have thus written our
original data model on x as a similar data model on r̂. Many estimation techniques
from the literature that are usually applied to data models for x can be applied to
the data model for r. Furthermore, it is straightforward to extend this vectorized
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formulation to include multiple snapshots over time and frequency to increase the
amount of measurement data and thus to improve the imaging result: Simply stack
the covariance data in r̂ and include the model structure in M; note that σ remains
unchanged. Similarly, assuming a diagonal noise covariance matrix, astronomers
often drop the autocorrelation terms (diagonal of R̂), rather than attempting to do
the subtraction in (28); this corresponds to dropping rows in M and corresponding
rows in Ms , and leads to a model similar to (28) but without the autocorrelation
terms.

The unknown parameters in the data model are, first of all, the powers σ . These
appear linear in the model. Regarding the positions of the sources, we can consider
two cases:

1. We consider a point source model with a “small” number of sources. In that
case, A = A(θ) and M = M(θ), where θ is some parameterization of the
unknown locations of the sources (the position vectors lq for each source). These
enter in a nonlinear way into the model M(θ). The image I (l) is constructed
following (16), usually convolved with a synthetic beam Bsynth(l) to make the
image look nicer. The resulting estimation techniques are very much related to
direction of arrival (DOA) estimation in array signal processing, with a rich
literature.

2. Alternatively, we consider a model where, for each pixel in the image, we assume
a corresponding point source: the source positions lq directly correspond to the
pixels in the image. This can lead to a large number of sources. With the locations
of the pixels predetermined, M is a priori known and not a function of θ , but M
will have many columns (one for each pixel-source). The image I (l) has a one-
to-one relation to the source power vector σ s , we can thus regard σ s as the image
in this case.

We need to pose several requirements on M or M(θ) to ensure identifiability.
First of all, in the first case we must have M(θ) = M(θ ′) → θ = θ ′, otherwise we
cannot uniquely find θ from M. Furthermore, for both cases we will require that M
is a tall matrix (more rows than columns) and has full column rank, so that it has a
left inverse (this will allow to estimate σ ). This puts a limit on the number of sources
in the image (number of columns of M) in relation to the number of observations
(rows). If more snapshots (STIs) and/or multiple frequencies are available, as is the
case in practice, then M will become taller, and more sources can be estimated thus
increasing the resolution. If M is not tall, then there are some ways to generalize this
using prior knowledge on the image, e.g. via the context of compressive sampling
where we can have M wide as long as σ is sparse [59], which we will briefly discuss
in Sect. 4.5.5.

For the moment, we will continue with the second formulation: one source per
pixel, fewer pixels than available correlation data.
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4.3.2 Matrix Formulation of Imaging via Beamforming

Let us now again interpret the “beamforming image” (22) as a linear transformation
on the covariance data r̂. We can stack all image values I (l) over all pixels lq into
a single vector i, and similarly, we can collect the weights w(l) over all pixels into
a single matrix W = [w(l1), · · · , w(lQ)]. From (3), we know that wH Rw = (w ⊗
w)H vec(R̂), so that we can write

îBF = (W ◦ W)H r̂ . (30)

We saw before that the dirty image is obtained if we use the matched filter. In this
case, we have W = 1

J
A, where A contains the array response vectors a(l) for every

pixel lq of interest. In this case, the image is

îD = 1

J 2 (Ā ◦ A)H r̂ = 1

J 2 MH
s r̂ . (31)

The expected value of the image is obtained by using r = Mσ :

iD = 1

J 2 MH
s Mσ = 1

J 2 (MH
s Ms)σ s + 1

J 2 (MH
s Mn)σ n .

The quality or “performance” of the image, or how close îD is to iD , is related to its
covariance,

cov(îD) = E{(îD − iD)(îD − iD)H } = 1

J 4 MH
s CwMs

where Cw = 1
N

(R̄ ⊗ R) is the covariance of the noise on the covariance data. Since
usually the astronomical sources are much weaker than the noise (often at least by a
factor 100), we can approximate R ≈ �n. If the noise is spatially white, �n = σ 2

n I,
we obtain for the covariance of îD

cov(îD) ≈ σ 4
n

J 4N
MH

s Ms .

The variance in the image is given by the diagonal of this expression. From this and
the structure of Ms = (Ā◦A) and the structure of A, we can see that the variance on
each pixel in the dirty image is constant, σ 4

n /(J 2N), but that the noise on the image
is correlated, possibly leading to visible structures in the image. This is a general
phenomenon. Similar equations can be derived for the MVDR image and the AAR
image.
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4.4 Parametric Image Estimation

In Sect. 4.2, we discussed various deconvolution algorithms based on the CLEAN
algorithm. This algorithm uses a successive approximation of the dirty image using
a point source model. Alternatively, we take a model-based approach. The imaging
problem is formulated as a parametric estimation problem where certain parameters
(source locations, powers, noise variance) are unknown and need to be estimated.
Although we start from a Maximum Likelihood formulation, we will quickly arrive
at a more feasible Least Squares approach. The discussion was presented in [45]
and follows to some extent [47], which is a general array processing approach to a
very similar problem and can be read for further details.

4.4.1 Weighted Least Squares Imaging

The image formation problem can be formulated as a maximum likelihood (ML)
estimation problem, and solving this problem should provide a statistically efficient
estimate of the parameters. Since all signals are assumed to be i.i.d. Gaussian
signals, the derivation is standard and the ML estimates are obtained by minimizing
the negative log-likelihood function [47]

{σ̂ , θ̂} = arg min
σ ,θ

ln |R(σ , θ)| + tr
(

R−1(σ , θ)R̂
)

(32)

where | · | denotes the determinant. R(σ , θ) is the model, i.e., vec(R(σ , θ)) = r =
M(θ)σ , where θ parameterizes the source locations, and σ their intensities.

We will first consider the overparameterized case, where θ is a (known) list of all
pixel coordinates in the image, and each pixel corresponds to a source. In this case,
M is a priori known, the model is linear, and the ML problem reduces to a Weighted
Least Squares (WLS) problem to match r̂ to the model r:

σ̂ = arg min
σ

‖C−1/2
w (r̂ − r)‖2

2 = arg min
σ

(r̂ − Mσ )H C−1
w (r̂ − Mσ ) (33)

where we fit the “data” r̂ to the model r = Mσ . The correct weighting is the inverse
of the covariance of the residual, w = r̂ − r, i.e., the noise covariance matrix Cw =
1
N

(R̄ ⊗ R). For this, we may also use the estimate Ĉw obtained by using R̂ instead
of R. Using the assumption that the astronomical sources are much weaker than
the noise we could contemplate to use R ≈ �n for the weighting. If the noise is
spatially white, �n = σ 2

n I, the weighting can then even be omitted.
The solution of (33) is obtained by applying the pseudo-inverse,

σ̂ = [C−1/2
w M]†C−1/2

w r̂ = (MH C−1
w M)−1MH C−1

w r̂ =: M−1
d σ̂ d (34)



Signal Processing for Radio Astronomy 335

East ← l → West

S
ou

th
←

 m
 →

 N
or

th

WLS image estimate

Cas A

Cyg A
loop III

NPS
Vir A

Sun
−0.500.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 7 Image corresponding to the WLS formulation (34)

where

Md := MH C−1
w M , σ̂ d := MH C−1

w r̂ .

Here, we can consider the term σ̂ d = MH C−1
w r̂ as a “dirty image”: it is comparable

to (31), although we have introduced a weighting by C−1
w and estimate the noise

covariance parameters σ n as well as the source powers in σ s (the actual image).
The factor 1/J 2 in (31) can be seen as a crude approximation of M−1

d .
Figure 7 shows an example WLS image for a single LOFAR station. The image

was obtained by deconvolving the dirty image from 25 STIs, each consisting of 10 s
data in 25 frequency channels of 156 kHz wide taken from the band 45–67 MHz,
avoiding the locally present radio interference. As this shows data from a single
LOFAR station, with a relatively small maximal baseline (65 m), the resolution is
limited and certainly not representative of the capabilities of the full LOFAR array.
The resolution (number of pixels) in this image is kept limited (about 1000) for
reasons discussed below.

The term M−1
d = (MH C−1

w M)−1 is a deconvolution operation. This inversion
can only be carried out if the deconvolution matrix Md = MH C−1

w M is not rank
deficient. This requires at least that M is a tall matrix (“less pixels than observations”
in case we take one source per pixel). Thus, high resolution WLS imaging is only
possible if a limited number of sources is present. The condition number of Md , i.e.,
the ratio of the largest to the smallest eigenvalue of Md , gives important information
on our ability to compute its inverse: LS theory tells us that the noise on σ̂ d could, in
the worst case, be magnified by this factor. The optimal (smallest) condition number
of any matrix is 1, which is achieved if Md is a scaling of the identity matrix, or if
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the columns of C−1/2
w M are all orthogonal to each other. If the size of M becomes

less tall, then the condition number of Md becomes larger (worse), and once it is a
wide matrix, M is singular and the condition number will be infinite. Thus, we have
a trade-off between the resolution (number of pixels in the image) and the noise
enhancement.

The definition of Md shows that it is not data dependent, and it can be
precomputed for a given telescope configuration and observation interval. It is thus
possible to explore this trade-off beforehand. To avoid numerical instabilities (noise
enhancement), we would usually compute a regularized inverse or pseudo-inverse
of this matrix, e.g., by first computing the eigenvalue decomposition

Md = UΛUH

where U contains the (orthonormal) eigenvectors and Λ is a diagonal matrix
containing the eigenvalues, sorted from large to small. Given a threshold ε on the
eigenvalues, we can define Λ̃ to be a diagonal matrix containing only the eigenvalues
larger than ε, and Ũ a matrix containing the corresponding eigenvectors. The ε-
threshold pseudo-inverse is then given by

M†
d := ŨΛ̃

−1
ŨH

and the resulting image is

σ = ŨΛ̃
−1

ŨH σ d . (35)

This can be called the “Karhunen-Loève” image, as the rank reduction is related to
the Karhunen-Loève transform (KLT). It corresponds to selecting an optimal (Least
Squares) set of basis vectors on which to project a certain data set, here σ d .

An example KLT image is shown in Fig. 8. In this image, the number of pixels
is much larger than before in Fig. 7 (about 9000), but the rank of the matrix Md

is truncated at 1/200 times the largest eigenvalue, leaving about 1300 out of 9000
image components. The result is not quite satisfactory: the truncation to a reduced
basis results in annoying ripple artefacts in the image.

Computing the eigenvalue decomposition for large matrices is complex. A
computationally simpler alternative is to compute a regularized inverse of Md , i.e.,
to take the inverse of Md + εI. This should yield similar (although not identical)
results.

If we use the alternative sky model where we assume a point source model with
a “small” number of sources (M = M(θ)), then the conditioning of Md , and thus
the performance of the deconvolution, is directly related to the number of sources
and their spatial distribution.

The performance of the method is assessed by looking at the covariance of the
resulting image (plus noise parameters) σ̂ in (34). It is given by
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Fig. 8 Image corresponding to the KLT solution (35)

Cσ = (MH C−1
w M)−1MH C−1

w (Cw)C−1
w M(MH C−1

w M)−1

= (MH C−1
w M)−1 = M−1

d .

This again shows that the performance of the imaging method follows directly
from the conditioning of the deconvolution matrix Md . If Md is sufficiently well
conditioned, the noise on the image is limited, otherwise it may be large. The
formulation also shows that the pixels in the image are correlated (Md is in general
not diagonal), as we obtained before for the dirty image.

Similarly, if we use the pseudo-inverse M†
d = ŨΛ̃

−1
ŨH for the deconvolution,

then we obtain Cσ = M†
d . In this case, the noise enhancement depends on the chosen

threshold ε. Also, the rank of Cσ depends on this threshold, and since it is not full
rank, the number of independent components (sources) in the image is smaller than
the number of shown pixels: the rank reduction defines a form of interpolation.

Using a rank truncation for radio astronomy imaging was already suggested in
[10]. Unfortunately, if the number of pixels is large, this technique by itself is not
sufficient to obtain good images, e.g., the resulting pixels may not all be positive,
which is unplausible for an intensity image. Thus, the overparameterized case
requires additional constraints; some options are discussed in Sects. 4.5.4 and 4.5.5.

4.4.2 Estimating the Position of the Sources

Let us now consider the use of the alternative formulation, where we write A = A(θ)

and M = M(θ), where θ captures the positions of the limited number of sources in
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the image. In this case, we have to estimate both σ and θ . If we start again from the
ML formulation (32), it does not seem feasible to solve this minimization problem in
closed form. However, we can again resort to the WLS covariance matching problem
and solve instead

{σ̂ , θ̂} = arg min
σ ,θ

‖C−1/2
w [r̂ − r(σ , θ)]‖2

= arg min
σ ,θ

[r̂ − M(θ)σ ]H C−1
w [(r̂ − M(θ)σ ] . (36)

It is known that the resulting estimates are, for a large number of samples, equivalent
to ML estimates and therefore asymptotically efficient [47].

The WLS problem is separable: suppose that the optimal θ is known, so that
M = M(θ) is known, then the corresponding σ will satisfy the solution which we
found earlier:

σ̂ = (MH C−1
w M)−1MH C−1

w r̂ .

Substituting this solution back into the problem, we obtain

θ̂ = arg min
θ

r̂H [I − M(θ)(M(θ)H C−1
w M(θ))−1M(θ)H C−1

w ]H ·

· C−1
w · [I − M(θ)(M(θ)H C−1

w M(θ))−1M(θ)H C−1
w ]r̂

= arg min
θ

r̂H C−1/2
w (I − Π(θ))C−1/2

w r̂

= arg max
θ

r̂H C−1/2
w Π(θ)C−1/2

w r̂

where Π(θ) = C−1/2
w M(θ)

(
M(θ)H C−1

w M(θ)
)−1M(θ)H C−1/2

w .

Π(θ) is an orthogonal projection: Π2 = Π, ΠH = Π. The projection is onto
the column span of M′(θ) := C−1/2

w M(θ). The estimation of the source positions θ

is nonlinear. It could be obtained iteratively using a Newton iteration (cf. [47]). The
sources can also be estimated sequentially [47], which provides an alternative to the
CLEAN algorithm.

4.4.3 Preconditioned WLS

WLS imaging can be improved using preconditioning, and this has an interesting
relation to the adaptive beamforming techniques discussed earlier. From this point
forward we assume that an estimate of the noise has been subtracted from the images
as in (28) such that M = Ms and σ = σ s .
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If M has full column rank then HLS := MH M and HWLS := MH C−1
w M are

non-singular and there exists a unique solution to LS and WLS. For example the
solution to the LS imaging becomes

σ = H−1
LS σ̂D (37)

where σ̂D = MH r̂ is the estimated dirty image. Unfortunately, if the number
of pixels is large then HLS and HWLS become ill-conditioned or even singular.
Generally, we need to improve the conditioning of the deconvolution matrices and
to find appropriate regularizations.

One way to improve the conditioning of a matrix is by applying a preconditioner.
The most widely used and simplest preconditioner is the Jacobi preconditioner [1]
which, for any matrix M, is given by [diag(M)]−1. Let DWLS = diag(HWLS), then
by applying this preconditioner to HWLS we obtain

[D−1
WLSHWLS]σ = D−1

WLSσ̂WLS (38)

where σ̂WLS = MH C−1
w r̂. We take a closer look at D−1

WLSσ̂WLS. For a single STI

HWLS = (Ā ◦ A)H (R̂−T ⊗ R̂−1)(Ā ◦ A)

= (AT R̂−T Ā) � (AH R̂−1A)

and

D−1
WLS =

⎡
⎢⎢⎢⎣

1
(aH

1 R̂−1a1)
2

. . .
1

(aH
Q R̂−1aQ)2

⎤
⎥⎥⎥⎦ , (39)

where we have assumed that ai is normalized by a factor 1/
√

J such that aH
i ai = 1.

This means that

D−1
WLSσ̂WLS = D−1

WLS

(
(R̂−T ⊗ R̂−1

1 )(Ā ◦ A)
)H

r̂

= (R̂−T ĀD−1/2
WLS ◦ R̂−1AD−1/2

WLS )H r̂

which is equivalent to a dirty image that is obtained by applying a beamformer of
the form

wi = 1

aH
i R̂−1ai

R̂−1ai (40)
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to both sides of R̂ and stacking the results, σ̂i = wH
i R̂wi , of each pixel into a vector.

This beamformer is the MVDR beamformer which we have introduced before! This
shows that the Preconditioned WLS (PWLS) image (motivated from its connection
to the maximum likelihood) is expected to exhibit the features of high-resolution
beamforming associated with the MVDR. The PWLS was introduced in [45].

4.5 Constraints on the Image

Another approach to improve the conditioning of a problem is to introduce
appropriate constraints on the solution. Typically, image formation algorithms
exploit external information regarding the image in order to regularize the ill-posed
problem. For example maximum entropy techniques [21] impose a smoothness
condition on the image while the CLEAN algorithm [27] exploits a point source
model wherein most of the image is empty, and this has recently been connected to
sparse optimization techniques [59].

4.5.1 Non-negativity Constraint

A lower bound on the image is almost trivial: each pixel in the image represents the
intensity at a certain direction, hence is non-negative. This is physically plausible,
and to some extent already covered by CLEAN [41]. It is an explicit condition in a
Non-Negative Least Squares (NNLS) formulation [10], which searches for a Least
Squares fit while requiring that the solution σ has all entries σi ≥ 0:

min
σ

‖r̂ − Mσ‖2

subject to 0 ≤ σ
(41)

4.5.2 Dirty Image as Upper Bound

A second constraint follows if we also know an upper bound γ such that σ ≤ γ ,
which will bound the pixel intensities from above. We will propose several choices
for γ .

By closer inspection of the ith pixel of the matched beamformer dirty image σ̂D,
we note that its expected value is given by

σD,i = aH
i Rai .

Using normalization aH
i ai = 1, we obtain

σD,i = σi + aH
i Rrai , (42)
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where

Rr =
∑
j �=i

σj aj aH
j + Rn (43)

is the contribution of all other sources and the noise. Note that Rr is positive-
(semi)definite. Thus, (42) implies σD,i ≥ σi which means that the expected value of
the matched beamformer dirty image forms an upper bound for the desired image,
or

σ ≤ σD . (44)

We can extend this concept to a more general beamformer wi . The output power of
this beamformer, in the direction of the ith pixel, becomes

σw,i = wH
i Rwi = σiwH

i aiaH
i wi + wH

i Rrwi . (45)

If we require that

wH
i ai = 1 (46)

we have

σw,i = σi + wH
i Rrwi . (47)

As before, the fact that Rr is positive definite implies that

σi ≤ σw,i . (48)

We can easily verify that the matched filter weights wD,i as given in (20) satisfy
(46) and, hence, that the resulting dirty image σD,i is a specific upper bound.

4.5.3 Tightest Upper Bound

The next question is: What is the tightest upper bound for σi that we can construct
using linear beamforming?

We can translate the problem of finding the tightest upper bound to the following
optimization question:

σopt,i = min
wi

wH
i Rwi (49)

s.t. wH
i ai = 1
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where σopt,i would be this tightest upper bound. This optimization problem is
exactly the same as the one used in Sect. 4.1.2 to obtain the MVDR beamformer.
Hence

wi = 1

aH
i R−1ai

R−1ai .

This means that for a single STI the MVDR image is the tightest upper bound that
can be constructed using beamformers.

Note that wD,i also satisfies the constraint in (46), i.e. wH
D,iai = aH

i ai = 1, but

does not necessary minimize the output power wH
i Rwi , therefore the MVDR dirty

image is smaller than the matched beamformer dirty image: σMVDR ≤ σD. This
relation also holds if R is replaced by the sample covariance R̂.

For multiple snapshots the tightest bound can be obtained by taking the minimum
of the individual MVDR estimates [44]. The bound becomes

σopt,i = min
m

1

am,iR
−1
m am,i

.

One problem with using this result in practice is that σopt,i depends on a single
snapshot. Actual dirty images are based on the sample covariance matrix R̂ and
hence they are random variables. If we use a sample covariance matrix R̂ instead of
the true covariance matrix R, this bound would be too noisy without any averaging.
Hence we would like to find a beamformer that exhibits the same averaging behavior
as the matched beamformer while being as tight as possible. Sardarabadi [44] shows
that a modified multi-snapshot MVDR image can be defined as

σMVDR,i = 1
1
M

∑
m aH

m,iR
−1
m am,i

, (50)

which satisfies σi ≤ σMVDR,i ≤ σD,i and produces a very tight bound.

4.5.4 Constrained WLS Imaging

Now that we have lower and upper bounds on the image, we can use these as
constraints in the LS imaging problem to provide a regularization. The resulting
constrained LS (CLS) imaging problem is

min
σ

‖r̂ − Mσ‖2

s.t. 0 ≤ σ ≤ γ
(51)

where γ can be chosen either as γ = σD for the matched beamformer dirty image
or γ = σMVDR for the MVDR dirty image.



Signal Processing for Radio Astronomy 343

The extension to constrained WLS leads to the problem formulation

min
σ

‖C−1/2
w

(
r̂ − Mσ

) ‖2

s.t. 0 ≤ σ ≤ γ .
(52)

It is also recommended to include a preconditioner which, as was shown in
Sect. 4.4.3, relates the WLS to the MVDR dirty image. However, because of the
inequality constraints, (52) does not have a closed form solution and it is solved by
an iterative algorithm. In order to have the relation between the WLS and MVDR
dirty image during the iterations we introduce a change of variables of the form
σ̌ = Dσ , where σ̌ is the new variable for the preconditioned problem and the
diagonal matrix D is given in (39). The resulting constrained preconditioned WLS
(CPWLS) optimization problem is

σ̌ = arg min
σ̌

‖C−1/2
w

(
r̂ − MD−1σ̌

)
‖2

s.t. 0 ≤ σ̌ ≤ Dγ
(53)

and the final image is found by setting σ = D−1σ̌ . Here we used that D is a positive
diagonal matrix so that the transformation to an upper bound for σ̌ is correct. As
mentioned, the dirty image that follows from the (unconstrained) Weighted Least
Squares part of the problem is given by the MVDR image σ̂MVDR.

These problems are convex and their solutions can be found using various
numerical optimization techniques such as the active set method, as discussed in
more detail in [45]. Some experimental results using non-negative constraints are
shown in [23, 37, 51].

4.5.5 Imaging Using Sparse Reconstruction Techniques

Compressive sampling/sensing (CS) is a “new” topic, currently drawing wide
attention. It is connected to random or non-uniform sampling, and as such, it has
been used in radio astronomy for a long time. In the CS community, the recovery
of full information from undersampled data is the central problem, and to regularize
this problem, the main idea has been to exploit the sparsity of the solution: the
number of nonzero entries in the solution is supposed to be small. This is measured
by the �0-norm: ‖σ‖0 is the number of nonzero entries in σ . Optimizing using this
norm is difficult, and therefore as a surrogate, the �1-norm is used.

To introduce this, let us start from the Least Squares formulation, and consider
the KLT regularization. This constrains the solution image to lie on a basis
determined by the dominant column span of M (possibly giving rise to artefacts).
It is straightforward to show that this regularization is connected to adding a
regularization term

min
σ

‖r̂ − Mσ‖2
2 + λ‖σ‖2
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where λ is related to the truncation threshold used in the KLT. The used norm on σ

is �2, the sum of squares, or the total “energy” of the image.
An alternative to this is to use a regularization term ‖σ‖1 based on the �1 norm

of σ , or the sum of absolute values [35, 59]. The resulting problem is

min
σ

‖r̂ − Mσ‖2
2 + λ‖σ‖1

An alternative formulation of this problem is

min
σ

‖σ‖1 subject to ‖r̂ − Mσ‖2
2 ≤ ε

where ε is threshold on the residual noise. Like for KLT, the results depend on the
chosen noise threshold ε (or regularization parameter λ).

Minimizing the �1-norm is known to promote the sparsity of the solution
vector. The implied sparsity assumption in the model poses that the sky is mostly
empty. Although it has already long been suspected that CLEAN is related to �1-
optimization [41] (in fact, it is now recognized as a Matching Pursuit algorithm
[39]), CS theory states the general conditions under which this assumption is likely
to recover the true image [35, 59]. Extensions are needed in case of extended
emissions [37]. As images may consist of sources with different source structures,
different sources may be best represented, i.e., best compressible, by different bases.
This is the basic idea behind the Sparsity Averaging Reweighted Analysis (SARA)
algorithm, which aims to find the sparsest representation using an overdetermined
dictionary composed of multiple complete bases [11, 12].

4.5.6 Comparison of Regularization Techniques

In this section, we discussed a number of constraints to regularize the ill-posed
inverse imaging problem: non-negativity, upper bound, and sparsity of the image.
This can be combined into a single problem,

min
σ̌

‖C−1/2
w

(
r̂ − MD−1σ̌

) ‖2 + λ‖D−1σ‖
s.t. 0 ≤ σ̌ ≤ Dγ

(54)

where D is an optional preconditioner, the resulting image is σ = D−1σ̌ , and the
norm is either �1 or �2. Many variations on this problem are possible. Taken by
itself, the non-negativity constraint is already known to be a strong constraint for
regularization. It can even be shown that, when certain conditions are satisfied, the
non-negativity constraint alone already promotes a sparse solution [20]. In cases
where there is a combination of sparse and extended structures in the image, an �2
regularization might be more appropriate.
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Fig. 9 Solutions for different algorithms with and without regularization; (a) Unconstrained LS.
(b) Unconstrained PWLS. (c) Constrained LS. (d) Constrained PWLS

To illustrate the effects of regularization, constraints, and preconditioning, we
consider a 1D “image” reconstruction example. A uniform linear array (ULA) with
20 receivers is simulated. The array is exposed to two point sources with magnitudes
5 and 2 and an extended rectangular source with a magnitude of 1. Because it is a
ULA, rank(M) = 2J − 1 = 39, while the number of pixels is Q = 245. This shows
that HLS = MH M is singular. We use �2-norm regularization with a regularization
coefficient λ = 1/

√
N where N = 1000 is the number of samples in a single STI.

Figure 9 shows the result of the various estimation techniques with and without
bound constraints and regularization. Figure 9a shows the result of standard LS
with and without regularization, Fig. 9b shows similar results for unconstrained
Preconditioned WLS, Fig. 9c incorporates the bound constraints for the LS problem,
and Fig. 9d shows the results for CPWLS.
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The figures show the following:

• Both standard LS and PWLS are unable to recover the point sources and suffer
from high sidelobe levels. The regularization does not seem to affect the LS
solution while it improves the sidelobe behavior in the PWLS solution at the
cost of less accurate estimates for the extended structure.

• Both Constrained LS and Constrained PWLS without regularization attempt
to model the extended structure using a series of point sources. This is the
consequence of the non-negativity constraint which tends to promote sparsity.

• For CLS and CPWLS an �2-norm regularization helps with the recovery of the
extended structure. The value of λ = 1/

√
N seems to be a good balance for both

extended and point sources.

5 Calibration

5.1 Non-ideal Measurements

In the previous section we showed that there are many options to make an
image from radio interferometric measurements. However, we assumed that these
measurements were done under ideal circumstances, such that the gain matrix in our
data model given by (14) only contains ones. In practice, there are several effects
that make matters more complicated causing G �= 11H (where we omitted the STI
index m for convenience of notation as we will initially consider calibration on a per-
STI basis). These effects need to be estimated and corrected for in a process called
calibration. For this, some reference information is needed. In this section, we will
assume that the locations and powers of Q reference sources are known, where Q

can be small (order 1 to 10) or large (up to a complete image). In practice, calibration
is an integral part of the imaging step, and not a separate phase as we will see in
Sect. 6. The model given by (14) is not identifiable in its generality unless we make
some assumptions on the structure of G (in the form of a suitable parameterization)
and describe how it varies with time and frequency, e.g., in the form of (stochastic)
models for these variations.

The effects captured by the gain matrix G can be subdivided in instrumental
effects and propagation effects. We start by describing a few basic effects as
understanding those will help to establish a suitable representation of the gain
matrix.

5.1.1 Instrumental Effects

The instrumental effects consist of the directional response of the receiving ele-
ments (antennas) and the direction-independent electronic gains and phases of the
receivers.
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The directional response or primary beam of the receiving elements in the
array can be described by a function bj (l), where we have assumed that this
function is constant over the time and frequency span of the STI. It is generally
assumed that the primary beam is equal for all elements in the array. With Q point
sources, we will collect the resulting samples of the primary beam into a vector
b = [b(l1), · · · , b(lQ)]T . These coefficients are seen as gains that (squared) will
multiply the source powers σ 2

q . The general shape of the primary beam b(l) is known
from electromagnetic modeling during the design of the telescope. If this is not
sufficiently accurate, then it has to be calibrated, which is typically done off-line in
the lab.

Next, each receiver element in the array is connected to a receiver chain
(low-noise amplifier, bandpass filter, down-modulator), and initially the direction-
independent electronic gains and phases of each receiver chain are unknown and
have to be estimated. They are generally different from element to element. We thus
have an unknown vector g (size J × 1) with complex entries that each multiply the
output signal of each telescope. As the direction independent gains are identical for
all Q sources while the direction dependent response is identical for all elements,
the gain matrix can be factored as G = gbH . By introducing the diagonal matrices
Γ = diag(g) and B = diag(b), we can write G � A = Γ AB.

Also the noise powers of each element are unknown and generally unequal to
each other. We will still assume that the noise is independent from element to
element. We can thus model the noise covariance matrix by an (unknown) diagonal
�n.

For instrumental calibration, we can thus reformulate our data model in (14) to

R = (Γ AB)�s(BH AH Γ H ) + �n (55)

Usually, Γ and B are considered to vary only slowly with time m and frequency k.

5.1.2 Propagation Effects

Ionospheric and tropospheric turbulence cause time-varying refraction and diffrac-
tion, which has a profound effect on the propagation of radio waves. In the simplest
case, the ionosphere is modeled as a thin layer at some height (say 100 km) above the
Earth, causing delays that can be represented as phase shifts. At the low frequencies
used for LOFAR, this effect is more pronounced. Generally it is first assumed that
the ionosphere is “constant” over about 10 km and about 10 s. A better model is to
model the ionospheric delay as a “wedge”, a linear function of the distance between
piercing points (the intersection of the direction vectors lq with the ionospheric
phase screen). As illustrated in Fig. 10, this modifies the geometric delays, leading
to a shift in the apparent position of the sources. For larger distances, higher-order
functions are needed to model the spatial behaviour of the ionosphere, and if left
uncorrected, the resulting image distortions are comparable to the distortions one
sees when looking at lights at the bottom of a swimming pool.
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Fig. 10 A radio interferometer where stations consisting of phased array elements replace
telescope dishes. The ionosphere adds phase delays to the signal paths. If the ionospheric electron
density has the form of a wedge, it will simply shift the apparent positions of all sources

Previously, we described the array response matrix A as a function of the
source direction vectors lq , and we wrote A(θ) where the vector θ was a suitable
parameterization of the lq (typically two direction cosines per source). If a linear
model for the ionospheric disturbance is sufficient, then it is sufficient to replace
A(θ) by A(θ ′), where θ ′ differs from θ due to the shift in apparent direction of each
source.

The modified data model that captures the above effects is thus

R = (Γ A(θ ′)B)�s(BH A(θ ′)H Γ H ) + �n . (56)

In the next subsection, we will first describe how models of the form (55) or (56)
can be identified. This step will serve as a stepping stone in the identification of a
more general G.
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5.2 Calibration Algorithms

5.2.1 Estimating the Element Gains and Directional Responses

Let us assume a model of the form (55), where there are Q dominant calibration
sources within the field of view. For these sources, we assume that their positions
and source powers are known with sufficient accuracy from tables, i.e., we assume
that A and �s are known. We can then write (55) as

R = Γ A�AH Γ H + �n (57)

where � = B�sB is a diagonal matrix with apparent source powers. With B
unknown, � is unknown, but estimating � is precisely the problem we studied in
Sect. 4 when we discussed imaging. Thus, once we have estimated � and know �s ,
we can easily estimate the directional gains B. The problem thus reduces to estimate
the diagonal matrices Γ , � and �n from a model of the form (57).

For some cases, e.g., arrays where the elements are traditional telescope dishes,
the field of view is quite narrow (degrees) and we may assume that there is only a
single calibrator source in the observation. Then � = σ 2 is a scalar and the problem
reduces to

R = gσ 2gH + �n

and since g is unknown, we could even absorb the unknown σ in g (it is not
separately identifiable). The structure of R is a rank-1 matrix gσ 2gH plus a diagonal
�n. This is recognized as a “rank-1 factor analysis” model in multivariate analysis
theory [32, 40]. Given R, we can solve for g and �n in several ways [6, 7, 64].
For example, any submatrix away from the diagonal is only dependent on g and is
rank 1. This allows direct estimation of g. This property is related to the gain and
phase closure relations often used in the radio astronomy literature for calibration
(in particular, these relations express that the determinant of any 2 × 2 submatrix
away from the main diagonal will be zero, which is the same as saying that this
submatrix is rank 1).

In general, there are more calibrator sources (Q) in the field of view, and we have
to solve (57). A simple idea is to resort to an Alternating Least Squares approach.
If Γ would be known, then we can correct R for it, so that we have precisely the
same problem as we considered before, (33), and we can solve for � and �n using
the techniques discussed in Sect. 4.4.1. Alternatively, with � known, we can say we
know a reference model R0 = A�AH , and the problem is to identify the element
gains Γ = diag(g) from a model of the form

R = Γ R0Γ
H + �n
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or, after applying the vec(·)-operation,

vec(R) = diag(vec(R0))(g ⊗ g) + vec(�n) .

This leads to the Least Squares problem

ĝ = arg min
g

‖vec(R̂ − �n) − diag(vec(R0))(g ⊗ g)‖2 .

This problem cannot be solved in closed form. Alternatively, we can first solve an
unstructured problem: define x = g ⊗ g and solve

x̂ = diag(vec(R0))
−1vec(R̂ − �n)

or equivalently, if we define X = ggH ,

X̂ = (R̂ − �n) � R0.

where � denotes an element-wise matrix division. After estimating the unstructured
X, we enforce the rank-1 structure X = ggH , via a rank-1 approximation, and find
an estimate for g. The element-wise division can lead to noise enhancement; this
is remediated by only using the result as an initial estimate for a Gauss-Newton
iteration [22] or by formulating a weighted least squares problem instead [61, 64].

With g known, we can again estimate � and �n, and make an iteration.
Overall we then obtain an alternating least squares solution. A more optimal
solution can be found by solving the overall problem (57) as a covariance matching
problem with a suitable parameterization, and the more general gradient descent
algorithms (e.g., Gauss-Newton and Levenberg-Marquardt) presented in [47] lead
to an asymptotically unbiased and statistically efficient solution.

For large arrays, Gauss-Newton iterations or weighted least squares approaches
become computationally expensive as they scale cubicly with the number of
receiving elements in the array. Several people have therefore proposed an iterative
alternating direction implicit (ADI) method [25, 42, 50], which was demonstrated
to have robust convergence and to be statistically efficient for typical scenarios
encountered in radio astronomy in which the noise powers dominate over the source
powers and are very similar for all elements in the array [50].

The resulting calibration algorithms are one step in the classical self-calibration
(SelfCal) algorithm [15, 48] widely used in the radio astronomy literature, in
particular for a single calibrator source. In the calibration step of SelfCal, R0 is
a reference model, obtained from the best known map at that point in the iteration.
Next, in the imaging step of SelfCal, the calibration results are used to correct the
data R̂ and the next best image is constructed. This leads to a new reference model
R0, etc.



Signal Processing for Radio Astronomy 351

5.2.2 Estimating the Ionospheric Perturbation

The more general calibration problem (56) follows from (55) by writing A = A(θ ′)
where θ ′ are the apparent source locations. This problem can be easily solved in
quite the same way: in the alternating least squares problem we solve for g, θ ′, σ s

and σ n in turn, keeping the other parameters fixed at their previous estimates. After
that, we can relate the apparent source locations to the (known) locations of the
calibrator sources θ .

The resulting phase corrections A′ to relate A(θ ′) to A(θ) via A(θ ′) = A(θ)�A′
give us an estimate of the ionospheric phase screen in the direction of each source.
These “samples” can then be interpolated to obtain a phase screen model for the
entire field of view. This method is limited to the regime where the phase screen can
be modeled as a linear gradient over the array. An implementation of this algorithm
is called Field-Based Calibration [16].

Other techniques are based on “peeling” [42]. In this method of successive
estimation and subtraction, calibration parameters are obtained for the brightest
source in the field. The source is then removed from the data, and the process is
repeated for the next brightest source. This leads to a collection of samples of the
ionosphere, to which a model phase screen can be fitted.

5.2.3 Estimating the General Model

In the more general case (14), viz.

R = (G � A)�s(G � A)H + �n ,

we have an unknown full matrix G. We assume A and �s known. Since A element-
wise multiplies G and G is unknown, we might as well omit A from the equations
without loss of generality. For the same reason also �s can be omitted. This leads
to a problem of the form

R = GGH + �n ,

where the J × Q matrix G and �n (diagonal) are unknown. This problem is known
as a rank-Q factor analysis problem. Note that if the noise would be spatially white
(�n = σ 2

n I), then G can be solved from an eigenvalue decomposition of R, up to a
unitary factor at the right.

The more general Factor Analysis problem is a classical problem in multivariate
statistics that has been studied since the 1930s [32, 40]. Currently, FA is an
important and popular tool for latent variable analysis with many applications in
various fields of science [2]. However, its application within the signal processing
community has been surprisingly limited. The problem can be regarded as a special
case of covariance matching, studied in detail in [47]. Thus, the problem can be
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solved using Gauss-Newton iterations. The current algorithms are robust and have a
computational complexity similar to that of an eigenvalue decomposition of R [44].

It is important to note that G can be identified only up to a unitary factor V at the
right: G′ = GV would also be a solution. This factor makes the gains unidentifiable
unless we introduce more structure to the problem. To make matters worse, note
that this problem is used to fine-tune earlier coarser models (56). At this level of
accuracy, the number of dominant sources Q is often not small anymore, and at
some point G is not identifiable: counting number of equations and unknowns, we
find that the maximum factor rank is limited by Q < J − √

J .
As discussed in [46] and studied in more detail in [55], more structure needs to be

introduced to be able to solve the problem. Typically, what helps is to consider the
problem for a complete observation (rather than for a single snapshot R) where we
have many different frequencies fk and time intervals m. The directional response
matrix Am,k varies with m and k in a known way, and the instrumental gains g
and b are relatively constant. The remaining part of G = gbH � A′ is due to the
ionospheric perturbations, and models can be introduced to describe its fluctuation
over time, frequency, and space using some low order polynomials. We can also
introduce stochastic knowledge that describe a correlation of parameters over time
and space.

For LOFAR, a complete calibration method that incorporates many of the above
techniques was recently proposed in [28]. In general, calibration and imaging need
to be considered in unison, leading to many potential directions, approaches, and
solutions. Once calibration reaches the stage of full image calibration at the full
resolution, we basically try to identify a highly detailed parametric model using
gradient descent techniques. The computational complexity can be very high. To
limit this, SAGEcal [31] clusters parameters into non-overlapping sets associated
with different directions on the sky, solves the “independent” problems separately,
and then combines in a parameter-fusing step. Distributed SAGEcal [66] also
exploits parallelism such as continuity over time and frequency, again solving
“independent” problems separately in parallel, followed by a fusion step.

6 A Typical Signal Processing Pipeline

To conclude this chapter, we discuss how calibration and imaging techniques are
put together to form an imaging pipeline. We do this using a pipeline developed
to guide the design of the SKA computing systems [29, 30] as an example. If the
receiving elements of such a system are phased array stations, as is the case for
the low-frequency system of the SKA, an end-to-end imaging pipeline consists of
three stages of processing: Station Beamforming, processing in the Central Signal
Processor (CSP), and the Science Data Processor (SDP). Block diagrams for each
stage are shown in Figs. 11, 12 and 13.

Figure 11 shows a typical block diagram for signal processing within a phased
array station. The signals from the receiving elements within a station are digitized
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Fig. 11 Typical block diagram for signal processing within a phased array station [29, 30]

and combined into a single beamformed output, providing a well-defined beam
on the sky. This is usually done by a standard delay beamformer by applying
weights as described in (20). As the delays are represented by phase shifts, the
signals need to be narrowband with respect to this delay. This is ensured by splitting
the digitized signal of each receiver path into multiple coarse frequency channels
(typically order (a few) 100 kHz wide) by a polyphase filter bank. The time series
produced for each of these coarse channels can also be fed into a correlator to
produce array covariance matrices for the station. These covariance matrices can
be used to perform calibration. Usually, this only concerns direction independent
gain calibration as described in Sect. 5.2.1. Those calibration solutions can be used
to adapt the beamformer weights to correct for complex valued gain differences
between receive paths. The beamformed output of each phased array station is sent
to the CSP for further processing.

Figure 12 shows the block diagram for the signal processing within the CSP
of the SKA. The goal of the CSP is to combine data from the receiving elements
of the SKA interferometer by correlating its input signals. As the signals can be
integrated after correlation, this step can significantly reduce the data volume using
relatively simple operations. The input signals are either beamformed signals from
phased array stations or coarsely channelized signals from reflector dishes. As
the longest baselines of the SKA interferometer are much longer than the size of
an individual station, much narrower frequency channels are required to satisfy
the narrowband assumption discussed in Sect. 3.2. This is achieved by a second
polyphase filter bank, which splits the coarse frequency channels further into fine
channels (typically order 1 kHz wide). Any residual time delay across the array
remaining after the coarse delay correction done by shifting time series with respect
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Fig. 12 Block diagram for data processing in the Central Signal Processor (CSP) of the SKA
[29, 30]

to each other before the polyphase filter bank, is then corrected by applying an
appropriate phase rotation. As the power received in individual frequency channels
may vary significantly across frequency due to the intrinsic spectrum of most
astronomical sources and the gain characteristics of the instrument, a bandpass
correction is applied to equalize the power across frequency before the signals are
correlated. After correlation, the data is integrated into STIs and data corrupted by
radio frequency interference (RFI) is flagged before the data is transferred to the
SDP.

A block diagram for an imaging pipeline within the SDP is shown in Fig. 13.
After some pre-processing, consisting of demixing, integration and initial calibra-
tion, a self-calibration and imaging cycle is started.
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We first discuss the pre-processing steps. A few exceptionally bright astronom-
ical radio sources, like Cas A and Cyg A, are so bright that their signature can
be detected in the data even in observations on fields that are at a considerable
distance from these sources. This is mitigated by applying phase rotation (effectively
applying beamforming weights to the visibilities without adding them together)
towards these sources, estimating and subtracting their response, and undoing the
phase rotation again. This process is called demixing. After demixing, further
integration is possible, which reduces the computational burden in further stages of
the pipeline. Initial calibration usually consists of direction independent calibration
of the complex valued gains of the individual receive paths in the interferometer
array. The algorithms used here are very similar to those exploited in the station
calibration mentioned before.

After initial calibration, the self-calibration and imaging cycle is entered, which
is the main part of the SDP imaging pipeline. It starts by computing the residual
visibilities obtained after subtracting the best available model for the visibilities
based on the current best knowledge of calibration parameters and sky model from
the measured visibilities. A dirty image is made from the residual visibilities. The
required operations (17) are essentially a Fourier transform, but on non-uniformly
sampled data. To be able to use the fast Fourier transform (required because this
step is the most expensive in the entire processing pipeline), the residual visibilities
are gridded onto a uniform grid, after which the inverse FFT is applied. Other
computationally efficient implementations for non-uniform fast Fourier transforms
may be considered. As this processing step is similar in many other image formation
instruments (e.g., geophysics [19] and MRI), the available literature is rich.

Iterative algorithms such as CLEAN are used to find and subtract new sources
in the residual image. This is referred to as the minor cycle. The new source
components are added to the sky model, which is then used in the next iteration
of the self-calibration and imaging cycle, the major cycle. Once this process has
converged sufficiently, the sky model (deconvolved image) is added to the residual
image, which should ideally only contain noise at this stage. That result is then
presented as the final image. Since the major cycle is very expensive, the usual
approach is to detect thousands of sources in each minor cycle, and to run the major
cycle less than 10 times.

7 Concluding Remarks and Further Reading

In this chapter, we presented a signal processing viewpoint on radio astronomy. We
showed how, with the right translations, the “measurement equations” are connected
to covariance matrix data models used in the phased array signal processing
literature. In this presentation, the resulting data models are very compact and clean,
in the sense that the most straightforward covariance data models, widely studied in
the signal processing literature as theoretical models, already seem valid. This is
because far field assumptions clearly hold, and the propagation channels are very
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simple (no multipath), in contrast to other array processing applications such as
seismology, synthetic aperture radar, or biomedical tomography.

However, this does not mean that radio astronomy is a “simple” application: data
volumes are massive, and the requirements on resolution and accuracy are mind-
boggling. Current telescopes, developed in the 1970s, start with signals sampled
at 1–2 bits accuracy (because anyway the signals are mostly noise), and after data
reduction and map making routinely end up with images with a dynamic range of
105.

So far, radio astronomy has done very well without explicit connection to
the array signal processing literature. However, we expect that, by making this
connection, a wealth of new insights and access to “new” algorithms can be
obtained. This will be beneficial, and possibly essential, for the development of new
instruments like LOFAR and SKA.

For further reading we suggest, first of all, the classical radio astronomy
textbooks, e.g., by Thompson et al. [52] and by Perley et al. [49]. The August
2009 issue of the Proceedings of the IEEE was devoted to the presentation of new
instruments. The January 2010 issue of IEEE Signal Processing Magazine gave a
signal processing perspective. For general insights into imaging and deconvolution,
we suggest Blahut [4].

Challenges for signal processing lie in (1) imaging, (2) calibration, (3) interfer-
ence suppression. These problems are really intertwined. It is interesting to note that,
especially for calibration and interference suppression, factor analysis is an essential
tool. Our contributions in these areas have appeared in [3, 6, 33, 34, 36, 55, 57, 62–
64] and are summarized in the PhD theses [5, 44, 54, 60], which should provide
ample details for further reading.
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