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ABSTRACT As a part of energy transition, the shift from internal combustion engines (ICEs) to electric
vehicles (EVs) has accelerated the development of the EV charging infrastructure (EVCI). EVCI rely
heavily on information and communication technologies (ICTs) and the Internet of Things (IoT). As a
result, the susceptibility to cyber attacks increases. However, although EVCI are strongly intertwined with
cyber-physical power systems (CPPSs), the consequences of such a cyber attack on the power grid are not
widely researched. In this paper, we present a comprehensive cyber-physical system architecture of the EV
charging infrastructure based on the industry practice in The Netherlands, which is applicable to European
distribution systems. We present a survey of work on EVCI cyber security and CPPS resilience. We combine
unique industrial insights with the academic state-of-the-art. We show that although cyber security of EVCI
is researched, the state-of-the-art inadequately covers the consequences for CPPSs, especially distribution
networks. We survey the current work on CPPS resilience and conclude that while cyber attacks are often
recognized as high impact low probability (HILP) disturbances of CPPSs, the resilience-related research on
cyber attacks on EVCI is lacking. Therefore, we present a novel method to model the stochastic EV charging
behaviour based on probability density functions (PDFs). We validate the method using PowerFactory
models of distribution networks supplied by a Dutch distribution system operator (DSO). We demonstrate
the effects of cyber attacks on EVCI on distribution networks voltages. Under the investigated operational
scenario, the impact is not significant. However the results do underline the importance of researching cyber
attacks on EVCI from a CPPS resilience perspective. Research into future scenarios of energy transition is
essential for future resilient operation of power grids.

INDEX TERMS Electric vehicle charging, power distribution networks, cyber security, resilience.

I. INTRODUCTION
Energy transition is a radical shift in the paradigm of power
generation and usage, shifting from fossil fuel-based to
renewables in order to limit the enhanced greenhouse effect.
Several sectors contribute significantly to greenhouse gas
(GHG) emissions, consequently warming up of the planet,
and transportation is an important example. Thus, electric
mobility is being adopted at an accelerating rate for its

The associate editor coordinating the review of this manuscript and
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clean propulsion [1]. However, while being beneficial for the
environment, a household’s load can easily be doubled by an
electric vehicle (EV) and their collective impact on power
systems can be vast.

EVs and their impact on power grids is, amongst others,
researched in the context of cyber security of smart grids [2].
As a complex network of stakeholders and systems is required
to operate EV charging infrastructure (EVCI), a strong
dependency on information and communication technologies
(ICTs) and the Internet of Things (IoT) is apparent. The
operation of charge points (CPs) and administration of
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charging transactions is but a small part of the extensive
task list of EVCI. It is widely recognised that ICTs and the
IoT are susceptible to cyber attacks [3], [4]. Moreover, the
close coupling of ICTs and operation of CPs, and the direct
connection between EVCI and power systems have thinned
the line between information and operational technology (IT,
respectively OT). As a result, cyber attacks may not only
impact digital systems, but also have consequences for the
physical world [5]. Therefore, cyber security research should
focus on the analysis of the entire cyber-physical system
(CPS).

For instance, vulnerabilities of EV systems, including
charging infrastructure are presented in [2]. A cyber attack
on an American EVCI leading to power grid instabilities has
been shown in [6] by Acharya et al. As an extension to EVCI,
internal components of EVs are also at risk, as demonstrated
in [7] and [8]. How cyber attacks may spread through EVCI
is shown in [9]. Finally, vulnerabilities of ICTs used in EVCI
are highlighted in [10] and [11].
Possible mitigations of the risk of cyber attacks in EVCI

are also proposed in literature. However, as no system can
be perfectly safe, research also needs to focus on cyber
resilience. There appears to be no clear consensus on the
definition of (cyber) resilience of power systems [12], but
most definitions include the ability of the system to withstand
high impact low probability (HILP) disturbances and quickly
return to a stable state of operation afterwards.

A. RESEARCH OBJECTIVE
Cyber security and resilience research in EVCI should be
two sides of the same coin. Whereas, the interconnected CPS
should have an integral focus on cyber-securing systems.
Thus, minimizing the potential for a successful cyber attack
on its subsystems. However, residual risks and the worst-
case scenario of a successful cyber attack have to be
included in power grid planning procedures. Especially in
the advent of widespread integration of EVCI and power
CPSs (CPPSs).

Therefore, a survey on the combinations of these two
topics is presented in this work. To the best of our
knowledge this combination has not yet been presented in
literature. The state-of-the-art of cyber security of EVCI,
looking at vulnerabilities and attack scenarios, is investigated.
Furthermore, the available body of work on power and
distribution system resilience is surveyed. An overview of
definitions, metrics and improvement strategies is presented.
Finally the two topics are combined to address the impact of
cyber attacks in EVCI on distribution systems.

The specific focus of this work is on distribution systems.
However, as was found that the bulk of work is on
transmission systems, literature search was extended to
power systems. To perform the literature survey presented
in this work, literature was found through IEEE Xplore and
Scopus. Search terms are presented in Table 1. A very strong
preference was given to papers presented in journals.

II. RELATED WORK
In order to manage increasingly complex power systems, dig-
itization has received significant attention in both academia
and industry. With the emergence and growing adoption
of electric mobility this has resulted in more research on
cyber security in EVCI. On the other hand, resilience of
power systems is most often researched in the context of
extremeweather conditions, or, in the case of cyber resilience,
cyber attacks on power system components. Table 2 gives an
overview of the six topics chosen for the literature survey in
this work. These topics were selected to cover the two main
themes – EVCI cyber security and CPPS resilience – in its
entirety.

1) Vulnerabilities covers the exploitable components in
EVCI physical and digital systems, ranging from
internal EV components, physic CPs and charging
locations, CP management systems (CPMSs) and
EVCI ICT, IoT and protocols.

2) Cyber attack scenarios deal with how the vulnera-
bilities of topic 1 might be exploited to conduct cyber
attacks. This category addresses where the cyber attack
originates from and what proportion of EVCI may be
affected.

3) Impact analysis comprises the consequences of cyber
attack scenarios on EVCI for distribution networks,
including methods for modelling and mitigation.

4) Modelling of CPPS includes metrics and methods for
modelling, quantifying and simulating resilience of
distribution systems.

5) The enhancing category covers literature on different
methods for improving the resilience of distribution
systems against different HILP disturbances.

6) Finally, cyber resilience addresses power system
resilience with cyber attacks as HILP events specifi-
cally.

Several surveys of literature in these categories can be
found through the search terms found in Table 1.
The authors in [2] present an overview of EVCI physical

and digital systems. They present different vulnerabilities and
how they may lead to cyber attacks targeting the operational
stability of power systems. In their work they highlight the
potential effect to power system resilience, but do not dive
into particular details of the topic. Reference [7] focusses on
onboard components and how vulnerabilities in EV internal
systems may be abused by cyber attackers. However, other
subsystems of EVCI are not discussed, nor the potential
impact on power systems. In [14] the Open Charge Point
Protocol (OCPP) is of specific interest. Vulnerabilities and
cyber security measures are presented. While OCPP is an
extensively used protocol in EVCI worldwide, the survey
includes limited insights in components of EVCI beyond
protocols or the effects on power systems. Sayed et al. present
a comprehensive overview of vulnerabilities in EVCI CPSs
in [15]. They formulate potential cyber attacks that may
affect power grid operational stability, presenting a case study
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TABLE 1. Literature survey search terms.

that looks at the potential effects on voltage and frequency
stability. While the stability part of resilience is included
in the overview, post-disturbance performance of the power
system is not. A comprehensive analysis of vulnerabilities
in EVCI is presented in [16]. The authors use the Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service and Elevation of privilege (STRIDE) threat model
to identify the risks, focussing on the first step of the
resilience: anticipate. The following steps – identify, absorb,
adapt and recover – are not discussed in detail. In [17] a
review of digital systems of EVCI and their vulnerabilities
is presented. The work doesn’t cover other components,
nor how vulnerabilities may lead to cyber attacks and the
consequences on power system resilience. The authors of [18]
give an outlook on cyber security of DERs, of which EVs
are an important example. They present vulnerabilities, attack
scenarios, power system impact, and mitigations, but the
specific focus on EVs is limited. Metrics for power system
resilience are discussed, but not analysed in the light of cyber
attacks on EV CPSs.

Several reviewing or surveying works on power system
resilience have been published. Most often resilience of
power systems is analysed under natural disasters [29], giving
specific attention to evaluating, measuring or quantifying,
and improving resilience [20], focusing on different time
horizons [23] and different ways of formalizing evaluation
models [24]. Fragility curves have received special attention
as a way to quantify and forecast power system resilience [27]
fragility curves. A technique for improving power system
resilience that has received specific attention is networked
microgrids (NMGs) [21], including distribution system
resilience [22], energy storage [29], and even including EV
scheduling as part of the enhancement strategy [22]. Finally,
cyber resilience has significantly gained attention over the
past years [19], [26]. In [25] EVCI are mentioned as the
potential origin of cyber attacks.

Other works have presented methods for modelling EV
charging behaviour. In [30] the authors model EV charging
according to data obtained from the Alternative Fuels Data
Center [31]. The authors assign a static peak charging power
demand to each load bus in Manhattan, NY based on the
number of chargers and distribution of cars. In [6] the same
dataset is combined with usage patterns obtained by crawling
the ChargePoint smartphone application. This results in
average power consumption per CP type (Type 2 and 3, see
Section III-B) per hour.
While the focus of this work is on the vulnerabilities in

EVCI, the potential for cyber attacks in EVCI and eventual
impact on power systems; the potential effects on internal EV

power electronic components cannot be ignored. For more
on that topic, the reader is directed to the excellent work of
Ronanki and Karneddi [13].

A. CONTRIBUTIONS
Considering the previous sections, it can be concluded that
EVCI pose significant risks for cyber attacks of which
the impact on power systems might be vast. However,
as cyber attacks should be considered as HILP disturbances,
the body of work that combines EVCI cyber security and
CPPS resilience is limited. This work aims to contribute to
mitigating that research gap.

In this survey, the current state-of-the-art of EVCI cyber
security is analysed. Secondly, resilience of power systems is
investigated. We conclude that research on cyber resilience
of power systems often focusses on cyber attacks originating
from the power system components, not a sub-system such
as EVCI. A recent example of this is presented in [32]
where cyber resilience of EVCI is researched but the actual
cyber attack is conducted on a busbar level. Additionally,
distribution networks are under-represented in resilience
research, while being the main connection point of EVCI.
Therefore, we signal a research gap on the impact analysis
of cyber attacks on EVCI on distribution systems. This paper
contributes to addressing that gap. The specific contributions
of this work are as follows:

• We present a comprehensive cyber-physical system
architecture of EVCI based on the industry practice
in The Netherlands, which is applicable to European
distribution systems.

• A survey of EVCI-specific cyber vulnerabilities and
attack scenarios, followed by a survey on definitions,
metrics and modelling of (cyber-) resilience of power
systems.

• A method to model stochastic EV charging behaviour
is proposed. Probability density functions based on a
large number of real charging sessions are used. Its
novelty lies in realistic load profiles for individual CPs
per location type: public, private and work. The method
allows for running large numbers of scenarios. It is used
to analyse the impact of EVCI cyber attacks on medium
voltage (MV) distribution network operation.

• We present simulation results of a real Dutch MV distri-
bution network to validate the method and underline the
importance of the presented research topics.

The remainder of this paper is structured as follows. Sec-
tion III describes the EVCI CPS. Section IV presents a survey
on EV-related cyber security research. A survey on resilience
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TABLE 2. Overview of related work, coverage of topics: red = low, orange = medium, green = high.

in power systems is presented in Section V. Section VI gives
a method to model EV charging behaviour based on which
simulation results for a Dutch MV distribution grid are given
in Section VII. Finally, conclusions are given in Section VIII.

III. CYBER-PHYSICAL EV CHARGING INFRASTRUCTURE
EVCI is the interface between EVs and power systems.
On the one hand, there is a physical connection between
the EV supply equipment (EVSE) and power grids. On the
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other hand, ICT and the IoT are used for CP operation and
administration of charging sessions. Therefore, EVCI are
CPSs and should be analysed as such. This section gives
an overview of EVCI based on extensive survey of both
academic and industrial literatures [33], [34], [35], and [36],
as well as grid design documents supplied by a Dutch DSO.
An overview of this chapter is given in Figure 1.

A. STAKEHOLDERS AND ROLES
Below a summation of key stakeholders in EVCI is given:

• A physical connection between EV and CP is created by
the EV driver/owner. Authentication of the charging
session for administrative functions is commonly done
using a radio frequency identification (RFID) tag or
near a field communication (NFC) card, swiping an
authentication terminal on the CP.

• Asset management of the CP is conducted by CP
operators (CPOs). Tasks include, amongst others,
operation of the CP (including remote load control),
firmware upgrades and maintenance. A CPO can also
act as an aggregator (see below for a description).

• The necessary infrastructure for authenticating EV
drivers is provided by mobility service providers
(MSPs), contributing heavily to administrative func-
tions.

• The physical connection between the CP and power
grid is realised by a grid operator. For example,
in The Netherlands the majority of CPs are connected
directly to low voltage (LV) feeders. LV (0.23 or 0.4 kV),
MV (10, 13, 21 or 23 kV) and high voltage (HV: 25, 50 or
66 kV) distribution grids are constructed, maintained
and operated by distribution grid operators (DGOs).
While transmission grids with voltages of 150, 220 or
380 kV fall under jurisdiction of the transmission sys-
tem operator (TSO). TSOs are responsible for system
balance and frequency stability. As a result of energy
transition more intermittent renewable energy sources
(RESs) are used, leading to more complex system to
operate. distributed energy resources (DERs) are often
employed to help in maintaining stable operation [37],
[38]. As an example, EVs are increasingly employed
for system services to maintain voltage stability and
local energy balance. More specifically smart charging
is contracted for congestion management in distribution
networks (DNs) by DGOs. Consequently, grid operation
no longer is the sole responsibility of the DGO,
it is being expanded with system operation. Therefore,
DGOs are increasingly becoming distribution system
operators (DSOs).

• The administrative/financial functions of delivering
electricity to the CP are performed by suppliers.
They form the interface between customers (i.e. the
CPO, MSP or EV owner) and the energy market.
A strong connection exists between suppliers and
balance responsible parties (BRPs) or wholesalers.

Energy markets are formed by BRPs, whose bids
and tenders are used to form energy prices on day-
ahead, intraday and balancing markets. Bilateral, often
long-term contracts are sometimes signed between
BRPs and large consumers. Furthermore, BRPs have a
legal obligation to prevent system imbalances and can
be penalized by the TSO for violating energy bids or
tenders.

• (Smart) metering data, for example CP metering data,
is collected, stored and processed by register operators
(ROs). Their administrative functions contribute to
advanced metering infrastructure (AMI), asset data col-
lection (ADC), identification and access management
(IAM) and authentication, allocation, and reconciliation.
A Dutch example is EnergieData Services Nederland
(EDSN): a joint venture of the Dutch DSOs to centralise
common data processing tasks.

• Balancing service providers (BSPs), commonly
referred to as aggregators, combine flexible energy
assets – such as EVs and other DERs – to offer system
services to system operators. Congestion management
to DSOs or frequency restoration – for example
automatic or manual Frequency Restoration Response
aFRR/mFRR – to TSOs are prime examples. An aggre-
gator role is often fulfilled by other stakeholders such as
CPOs, MSPs and suppliers.

• Roaming service providers (RSPs) operate clearing
houses used to enable interoperability in EVCI. With the
complex relationship of technology and stakeholders,
the risk of vendor lock-in becomes apparent. An impor-
tant pilar of EVCI is standardization. In combination
with interoperability, it allows for the same infrastruc-
ture to be used by as many users and stakeholders as
possible. Amongst others, this is done to allow users
to use their own MSP-supplied charging card at CPs
operated by other stakeholders. The latter is called
roaming.

B. PHYSICAL SYSTEMS
The physical part of energy systems comprises the tangible
assets required to transport electricity from generation to
load. An overview of relevant physical systems to EVCI is
given below:

• Power grid. Public CPs are primarily connected to
LV feeders. Only high voltage direct current (HVDC)
chargers and charging hubs are connected to the MV
grid. LV feeders are operated radially and consist of
3-phase and one neutral copper or aluminium cables.
For example, in The Netherlands, the capacity of CP
connections is mostly 3×25A at 400V ∼= 17.5 kW . This
is consistent with private chargers which are connected
behind the meter, thus not directly to the power grid.
Most household consumers have a 3 × 25A at 400V
inbound connection and therefore a maximum 17.5 kW
capacity. Like LV grids, MV distribution grids are
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FIGURE 1. Cyber-physical system architecture of EVCI.
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operated radially. UndergroundXLPE aluminium cables
are used and vary in length between approximately
4 and 12 km with a nominal current of 275-640 A.
Generally, this allows for approximately 10-30 MV/LV
transformers with a nominal power rating of typically
400-600 kVA. MV and LV grids are designed to allow
for a total voltage drop of 10% – combined over
the HV/MV transformer, the MV feeder and entire
connected LV grid. Lines in MV grids have a maximum
loading of 60% of thermal limits. This is to ensure N-1
contingency reliability.

• CPs consist of AC or DC EVSE, a local controller,
an authentication terminal, and an energy meter [39].
DC EVSE, used in fast chargers, have a fixed cable,
whereas AC EVSE can only be used using an external
cable brought with the EV. The former have seen
the most developments over recent years, now with a
capacity ranging from 50, to 175 and even 350 kW. The
latter can commonly provide power over one or three
phases, typically with 16 or 32 A, resulting in either 3.6
(Type 1 CPs, mostly typical household sockets), 11 or
22 kW (Type 2 CPs) charging capacity (where 11 kW
is most often used, especially for public CPs). Up to 2
MW DC chargers (Type 3 CPs) have been developed,
mostly for charging buses and trucks. Generally, OCPP
is used by CPs to communicate with central back-office
systems (see the following subsections) over wide area
network (WAN). The WAN is predominantly accessed
Iy installing a Universal Mobile Telecommunication
Service (UMTS) module with a (locked) SIM card.
Several standards have been developed for connecting
EV to CP, for example: AC chargers Type 1, Type 2
and GB/T (AC); DC chargers CCS1, CCS2, GB/T (DC),
and CHAdeMO. Tesla chargers offer both AC and DC
charging.

• Electric vehicles have an onboard charger (OBC) with
an invertor for charging from an AC EVSE. The OBC
can charge using one, three, or occasionally two phases.
Then, with, for instance, typical currents in The Nether-
lands per phase of 24 or 32 A, a 7.2, 11, 16.5 or
22 kW charging capacity is achieved. Together with the
charging capacity of the CP, the actual charging power
is determined by the weakest link. DC current is directly
supplied to the onboard DC battery system (BMS).
Internal components communicate over a Controller
Area Network (CAN) bus [2]. The onboard diagnostics
(OBD2, for version 2) make sure different components
exchange the correct information to enable safe oper-
ation of the EV. The tire pressure monitoring system
(TPMS) makes sure information about tire pressure
values are given to the end user. The EV communicates
with the CP/EVSE, either using the user-supplied or CP-
connected charging cable, following the International
Electrotechnical Commission / International Organisa-
tion for Standardisation (IEC/ISO) 15118 standard (see
the following sections) or newly developed IEC61851-

1. An USB port is available for maintenance and
connecting end-user appliances.

C. CYBER SYSTEMS
EVCI rely on ICTs to operate. An overview of the most
important ICTs and related communication protocols are
given in the subsequent sections.

1) INFORMATION AND COMMUNICATION TECHNOLOGIES
• Energy management systems (EMSs) and distribu-
tion management systems (DMSs) are used by TSOs
and DSOs respectively to operate the transmission,
respectively distribution grid. They combine sensor
readings and actuator states from supervisory, control
and data acquisition (SCADA) systems with geospa-
tial information system (GIS), market conditions, and
state estimations to make informed decisions on how
to best effectuate control mechanisms to keep the grid
within safe and stable operational margins. Information
from the grid is exchanged over public WAN, often
GRPS, 4G or LTE-M, using CDMA or DLMS/COSEM
protocol. A private connection is ensured through
secured access point names (APNs). Communication
over physical networks is often done through fiber optics
or copper wiring.

• Clearing houses are responsible for administrative/
financial processing of charging sessions. They are
used to identify the stakeholders and their digital
systems [34]. Communication for financial transactions
is also conducted through clearing houses.

• Registers are used amongst the stakeholders in EVCI
to exchange asset and metering data. For example,
Central Allocation, Reconciliation and Metering
data (CARM) is the main system developed and
maintained by EDSN. It is used to collect and exchange
energy data between grid operators and market parties
(mainly suppliers and BRPs). The data is necessary for
administrative processes. Another example is the Cen-
tral Interoperability Register (CIR), which contains
unique identifiers of EV owners managed by MSPs
and CPOs. The identifiers are used by CPs to identify
EV owners and authenticate charging sessions initiated
by EV owners. EV owners initiate authentication by
scanning for instance a charging card at the CP’s
authentication terminal [40].

• A CP management system (CPMS) is used by a CPO
to remotely operate CPs. They receive information from
CPs over GPRS, 3G, or 4G.

• Markets. Differentmarkets are used in order tomaintain
a strict balance between supply and demand. This
balance is crucial for frequency and voltage stability.
Example markets are day-ahead, intraday, imbalance
and ancillary services markets.’ Service platforms may
act as interfaces between stakeholders and markets to
unlock system services. Service platform define means
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of communication and allow exchange of information
through application programming interfaces (APIs).
Platforms then deal with relaying information to regular
energy markets. This ensures system services provided
do not create problems elsewhere in the grid. For
instance, GOPACS is a congestion management plat-
form specifically used in The Netherlands. Congestion
is predicted by a DSO or TSO and put in the
platform. BSPs can offer a congestion management
service through two options 1) placing a buy order 2)
adjusting load according to an agreed upon capacity
limit contract (CLC). Buy orders always have to be
combined with a sell order elsewhere to prevent national
balancing issues. Market orders are conducted through
connections to regular energymarkets [41].Messages on
the platform are exchanged according to the Universal
Smart Energy Framework (USEF) Flex Trading Protocol
(UTFP) [42]. Equigy is an example of a platform
used to connect BSPs with TSOs in Europe. The
platform uses blockchain (Hyperledger fabric) to ensure
non-repudiation of executed system services. Equigy
enables using the aggregated flexibility of a large
number of smaller DERs [43].

2) COMMUNICATION PROTOCOLS
Rademakers &Klapwijk give an overview of commonly used
protocols and communication standards in [34]:

• The Open Smart Charging Protocol (OSCP) is
designed to facilitate communication between an (DSO)
EMS and a (CPO) CPMS, allowing for optimal charging
based on 24-hour capacity forecasts. The protocol is
maintained by the Open Charge Alliance and current
adoption is expected to be low, due to few active
implementations of smart charging [44], [45], [46].

• TheOpenAutomatedDemandResponse (OpenADR)
standard is used as a standard to communicate demand
response (DR) messages between system operators,
energy service providers and consumers. The standard,
current version 2.0, features two profiles: ‘‘a’’ for infor-
mation subscribing (or ‘‘Virtual End’’) nodes (VEN)
and an extension, ‘‘b’’, for information publishing (or
‘‘Virtual Top’’) nodes (VTN). Considering the amount
of applications world-wide utilising the standard, the
adoption is considered highest amongst smart charging
protocols [45], [47], [48]. OpenADR 2.0 is recognised
as IEC 62746-10-1 [2].

• IEEE 2030.5 is a standard developed to communicate
from DSO to end user for DR activities such as ‘‘load
control, time of day pricing, distributed generation, EVs,
etc.’’ [49].

• IEC 61850-90-8 defines a model for V2G communica-
tion, allowing EVs to be used as DERs as described in
IEC 61850-7-420 [50].

• The Open Clearing House Protocol (OCHP) offers
a standard way of connecting MSPs and CPOs to

clearing houses in order to enable roaming services, thus
providing charging sessions at different CPOs from a
single Customer-MSP contract. OCHPdirect is used to
provide direct information exchange between MSP and
CPO without requiring a RSP and clearing house [51],
[52].

• The Open Charge Point Interface (OCPI) was
designed for communication between CPOs and MSPs
and facilitate roaming services through clearing houses.
Moreover, it offers information about locations and
prices of CPs to end users [52], [53],.

• The eMobility Interoperation Protocol (eMIP) was
developed byGIREVE to enable roaming services, com-
bining authentication and authorization over different
MSPs and CPOs. In that regard it is similar to OCPI,
OCHP and OICP, however does not share their open
source character [52], [55].

• Interoperability and roaming services may also be
achieved through Open Intercharge Protocol (OICP).
The protocol enables customers with different MSPs to
charge at CPs operated by different CPOs. Amongst
other things authentication and authorization is defined,
including the management of both personal and
anonymized user data [52], [56].

• The Open Charge Point Protocol (OCPP) is most
commonly used standard for communication between
CPs and CPOs and is used for a wide variety of use cases
concerning the operation of (aggregations of) CPs [46],
[57], [58].

• IEC 63110(-1:2022) is mainly targeted at operation
of CPs, enabling control over functionality such as
energy transfer, firmware updates and monitoring.
However, the functionality also stretches to roaming
services, payment administration and user authentica-
tion/authorization. The standard is relatively new, but
seems a contender for a multi-functional e-mobility
ecosystem [59].

• IEC 61851-1 is a standard for communication between
EV and CP for up to 1,000 V AC or 1,500 V DC
conductive charging. It describes operation, connection
and electrical safety standards [60].

• IEC/ISO 15118 is used to set up communication
between EV and CP for EV charging and V2G
purposes [61].

An overview of how the different protocols connect to
different stakeholder is given in Table 3.

IV. A SURVEY ON THE CYBER SECURITY OF EV
CHARGING INFRASTRUCTURE
In the previous chapter an overview of the EVCI-relevant CPS
is given. Considering cyber systems’ susceptance to cyber
attacks [3], [4], literature on cyber security in smart grids is
considered. Table 4 gives an overview of the literature used in
a survey on research on the topics of cyber security in power
grids and EVCI.
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TABLE 3. Overview of protocols and stakeholders and their relations.

Literature on cyber security in EVCI is divided into
categories based on the specific focus of cyber security
considerations: 1) reviews and surveys, 2) EVCPSs, focusing
on individual EVs and internal systems, 3) CP CPSs,
focussing on (communication) between individual CPs, 4)
CP operation and CPMS, focussing on larger aggregations
of CPs for instance through a CPO, and 5) protocols, ICT
and IoT, focussing on the largest collective implications,
as most CPs may use these and may be affected by the
considerations. Often literature may fall in two or more
categories. The category selected is then based on the size
of potentially affected proportion of the infrastructure, going
from smaller to bigger respectively.Whenmultiple categories
are selected for the same reference, cyber security of multiple
subsystems is considered (for instance when a cyber attack
are launched on EVs to maliciously affect CPs). An overview
of vulnerabilities in EVCIs is given in Figure 3.
Cyber security of power systems is addressed by many

authors [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87], [88], [89], [90], [92], [93], [94],
[95], [96], [97], [98], [99]. Of those, research into false data
injection attacks (FDIA) has received a significant amount
of attention in recent years [66], [72], [73], [86], [88], [89],
[90], [91], [97], as well as intrusion/anomaly detection [64],
[71], [75], [77], [80], [83], [87], [95], and cyber security
of supervisory control and data acquisition (SCADA) sys-
tems [62], [70], [94], [96], [98], [99]. Furthermore, topics
include the cyber security of (remote and/or automated)
control systems [76], [78], [81], [92], data management [65],
[74] and communications (especially substation communi-
cation protocols IEC 61850 and 62351), and the IoT in
a power systems context [85], [93]. An overview is given
in Table 4.
Anomaly or intrusion detection and prevention systems

(IDSs and IPSs respectively) are often employed to improve
cyber security in smart grids [77], [83], [87], [95], [100],
[101]. These systems allow for timely identification of
anomalies, thus allowing the operator for adequate response
in manual attack mitigation. IPSs are equipped with logic for
automated response based on intrusion severity assessment.

FIGURE 2. Overview of ML applied to power system research.

In [77] the authors employ support vector machine (SVM)
to detect anomalies in smart meters as critical part of AMI
in smart grids. A temporal failure propagation graph is used
to identify the attack origin in case of an anomaly. Finally
the authors introduce a pattern recognition algorithm based
on simulated cyber attacks, to determine the severity of the
detected attack. Molzahn & Wang identify anomalies in data
used for control centre algorithms. It could be seen as an
IDS against FDIAs targeting optimal power flow derivation.
Their method compares specified parameter data to historical
operating point data to detect intrusions. An IDS for DoS
attacks against BSPs/aggregators is presented in [100]. The
authors present a method to impose a gateway to monitor
incoming traffic in EVs. They compare their method with
existing IDSs such as Cuckoo and show their method
improves on throughput, packet delivery rate and jitter.
In [83] Yang et al. present an IDS for SCADA. They
use whitelists for access-control and protocols, as well as
behaviour-based rules. Incoming traffic is compared to these
lists and rules sequentially and any deviations are reported
and logged. A testbed specific for SCADA simulation is
presented and used to show an improvement of SCADA
cyber security through the work’s IDS. Finally, the authors
in [95] present a distributed IDS, covering multiple layers
in smart grids. The IDS covers home, neighbourhood and
wide area networks (HANs, NANs, and WANs respectively).
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TABLE 4. Overview of literature on cyber security in power grids and EVCI.

The method is based on a SVM for anomaly classification.
It is combined with an artificial immune system, where the
immune system is taken as analogy for attack detection. The
authors show the performance of their method using a form
of confusion matrix and report an acceptable performance,
but there is room for improvement. An overview of AI
and ML applied to power system research is presented in
Figure 2.

Encryption, through different cryptographic schemes,
is often employed to improve cyber security in general.
However, due to time criticality of monitoring and control in
power systems, this is an especially difficult security control
to implement. Encryption results in overhead that often
renders typical schemes unusable. Nevertheless, IEC62351 is
researched as security extension to the widely used IEC61850
standard for substation automation [69], [84], [135].

Recent years have seen the introduction of artificial
intelligence (AI) and machine learning (ML) for improving
cyber security in power systems. For instance, they are used
for improving IDSs/IPSs [75], [77], [80], [95], data analysis
for threat assessment and investment decision making [85]
cyber security assessment [68], [71], and demand response
automation [86].
While research on cyber security of smart grids in general

is widespread, with a large variety of focus areas in terms of
vulnerabilities and mitigation, the specific focus on electric
vehicles – DERs with a significant impact on smart grids – is
less thoroughly investigated [8]. However, this is contradicted
in [2], where a survey is presented in which EVs get
similar attention as for instance AMI and SCADA. One
might conclude that this specific research topic is not always
findable or part of research into a broader topic, such as DER
security [16].

In order to gain a complete understanding of vulnerabilities
and potential attack scenarios in EVCI, the use of assessment
frameworks can contribute to coverage of the analysis.
An example of such an assessment framework is the widely
used STRIDE threat model. Short for Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service (DoS)
and Elevation of privilege, STRIDE was first published
on by Microsoft in the November 2006 edition of MSDN
Magazine [136].

• Spoofing: acting as someone or something else.
• Tampering: modifying data.
• Repudiation: erasing proof of action responsibility.
• Information disclosure: leaking information to unautho-
rized people or systems.

• Denial of service: overloading assets to discontinue
services.

• Elevation of privilege: enabling access to systems
otherwise unauthorized to.

The STRIDE framework proposes an analysis on authenti-
cation, integrity, nonrepudiation, confidentiality, availability,
and authorization on a system decomposition. A potential
decomposition of EVCI could be EV internals, CPs, CPMS
and protocols, as suggested in 4. EVCI may also be
broken down in to their cyber and physical parts, internal
and external [2]. When diving deeper vulnerabilities may
include, amongst others, CAN bus architecture – especially
the on-board diagnostics (OBD2) port –, tire TPMSs and
USB-ports as important internal EV vulnerabilities An
attacker would need physical access to the EV to exploit
them. Externally, several key EV charging communication
interfaces – ISO 15118, Global Positioning System (GPS)
and OCPP – may be prone to cyber attacks. These interfaces
may also serve as the base for EVCI system fragmentation
for STRIDE. For instance into CPs, information privacy,
connection types (vehicle-to-anything, V2x) and autonomous
EV systems [16]. An overview of the found vulnerabilities
in EVCI components and their potential for STRIDE cyber
attacks is given in Table 5.

Digital twins (DTs) may be used to detect and mitigate
cyber attacks on EVCI. An important step in applying DTs
is this context is state estimation. Namely, in order to detect
a cyber attack a comparison to some viable base operation
must be made. In [115] the authors use a long short-
term memory (LSTM) model trained as a recurrent neural
network (RNN). The data used to train the LSTM offline is
generated using time series data generated by the DT model.
The model is then trained online using deep reinforcement
learning (DRL). The trained LSTM-DRL model is used to
detect and mitigate FDIA and switching attacks, the latter
described as controlling circuit breakers. They demonstrate
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TABLE 5. Overview of components in EVCI and their found vulnerabilities to STRIDE-defined cyber attacks.

their algorithm can maintain system stability using the IEEE
30-bus test system.

As a form of digital twins, testbeds offer a modelling
environment useable by other researchers. They often include
both physical and cyber models of power systems [3],
[141], [145], [146], occasionally incorporating EVCI [125].
Testbed may be used to design and test experiments by
running self-made scenarios. The most advanced testbeds
allow for modular selection of different test systems and
different power system functionalities, such as markets,
DERs (including EVs) and RES. Most relevant for EVCI
cyber-physical security research are testbeds that include
at least models for the categories presented in 4. Such a
testbed is presented in [125]. The testbed includes a CPS
implementation of CPs, a CPMS and OCPP (see below).
The authors use the vulnerabilities described in [10] to
deploy a load oscillation attack in a WSCC 9-bus grid model
implementation. They conclude that through the attack,
maximum frequency is exceeded, likely leading to tripped
generator protection relays and blackouts.

The use of CPs, especially public chargers, are highly
dependent on availability. In order to increase the user
friendliness CPOs, BSPs, energy suppliers, and other EVCI
stakeholders have developed an array of websites and
applications that aim to aid in finding suitable charging
locations. Applications, often on smart phone devices, often
offer a map interface with CP locations and availability.
While these applications may enhance user experience,
they also create an additional vulnerability. Namely, cyber
attacks could be launched by using the, mostly publicly
available, data these applications generate. Potential attackers
could employ data grabbing or even use APIs developed
by application publishers. Especially in combination with
open grid data [147], [148], [149], [150] public data might
contribute to cyber attacks. Acharya, Dvorkin & Karri
present an attack scenario based solely on publicly available
data in [6]. The authors use open data on power grid

infrastructure and common smartphone apps for EVSE usage
patterns. The attack is based on similar vulnerabilities as
presented in [2]. They construct a model based on linear
(DC) power flow assumptions and swing equations in order
to find the minimum requirements for an attack on the
stability of the power grid of Manhattan. Such an attack
will likely not succeed with current EV penetration and state
of technology [6], [141]. However, by 2030 the adoption
of EVs may result in power system frequency and voltage
instability [30].

In order to conduct an extensive survey on the cyber
security of EVCI, four cyber attack categories were identified
and used to structure the remainder of this section:

• Cyber attacks on internal EV components. An attacker
should have physical access to the car and a prime
entry points are USB or the OBD ports. An important
target system may be the CAN bus, where most internal
communication is transported. The impact may be
minimal, as only the infected car is affected. However,
malware may spread from car to car through charging at
(semi-)public CPs.

• Cyber attacks on CPs. Although also requiring access
to physical infrastructure (the intended CP), this attack
scenario could have an increased impact compared to
the former attack scenario. Namely, the most obvious
targets would be publicly accessible CPs, precisely those
CPs where multiple EVs may visit. Moreover, specific
vulnerabilities may be filtered on in the search for
attack targets. Those vulnerabilities may be exploited
to increase the attack vector for instance by entering
CPMSs.

• Operation of CPs. In most cases large aggregations
of CPs are operated by CPOs through a single CPMS.
This poses a single point of failure. Especially as
those systems may not be thoroughly secured. The
affected number of CPs in this attack scenario would
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be significantly bigger and therefore the impact on the
power grid more severe.

• Protocols. Finally, the attack scenario with the biggest
impact on the power grid is where an attack would
be able to exploit vulnerabilities in charging protocols.
As much effort has been put in standardising the
communication in EVCI, a majority of CPs tend to
use the same protocols for communication between EV
and CP, CP and CPMS, and other parts of the EVCI.
This introduces an even more centralised single point
of failure than the former attack scenario: an succesful
attack may allow the operation of CPs of multiple CPOs.

Some real-life examples of hacked EVCI can already
be found in popular media. For instance, in 2022, during
the ongoing war between Ukraine and Russia, parts of
Russian charging networks were hacked to display Ukrainian
propaganda [151]. Furthermore, high-risk zero-day vulner-
abilities in Phoenix Contact EV chargers were successfully
exploited during the Pwn2OwnAutomotive 2024 event [152].
Hackers were able to elevate privileges and, among other
things, disrupt charging services—potentially affecting the
connected power grid. Finally, in 2024, ElaadNL demon-
strated large-scale risks in modern charging points (CPs),
exploiting vulnerabilities in charging cables [153]. ElaadNL,
an organisation formed by the Dutch DSOs, focuses on the
development and standardisation of EVCI. Among other
services, they offer large-scale testing for OEMs of both
EVs and CPs. During their demonstration, they showed that
10 out of 18 CP models were broadcasting more services
over the charging cable than necessary. These services
could potentially be exploited to elevate user privileges—
particularly in DC fast chargers—and allow attackers to target
the CPMS.According to the researchers, this could ultimately
destabilise the power grid.

A. CYBER SECURITY OF INTERNAL EV COMPONENTS
While the prime physical effects might not extend to the
power grid, cyber attacks on internal EV components may
affect EV operation. In order to safely drive, EVs rely on
many onboard devices for sensing, actuating and diagnostics.
In case these sub-systems are compromised, different EV
functions may be affected. These functions include driving
and braking, battery management, internal climate controls,
and others. Cyber attacks on internal components might result
in decreased driving experience, damage to the EV and even
harm to driver and passengers [7], [8], [106], [107], [108],
[109], [110], [111], [112], [113], [114].
Chandwani, Dey and Malik focus on vulnerabilities of

internal EV components in [7]. They investigate vulnera-
bilities in OBCs – mainly the main charger controller –
, (interfaces with and between) other engine control units
(ECUs) on the CAN bus – similar to [2] and [6] – and
the \BMS. They develop countermeasures and simulate data
integrity attacks using MATLAB & Simulink to test their
effectiveness. The work concludes that proper detection

measures can effectively counteract attacks on internal EV
CPSs.

Similarly the authors in [8] focus on potential damages to
the EV itself, while recognising the potential for destabilising
the grid. They model FDIA based on an exogenous input-
based model, corresponding to their state-space modelling
setup and target overcharging of the EV. They design and
test a static and dynamic detection algorithm. The static
algorithm uses only terminal voltage input data, while the
dynamic algorithm combines that with system knowledge.
Their conclusion is that the dynamic detector performs better
overall, but given enough knowledge of the system, an attack
may go unnoticed.

B. CYBER SECURITY OF EV CHARGE POINTS
Cyber attack on CPs may be launched in two ways 1)
through physical access to either the CP or EV, or 2)
exploiting communication between CPs, EVs, and their
respective IT applications, e.g. smart phone apps or back-
office systems. The latter will be discussed in more detail in
Section IV-D. Vulnerabilities could be exploited by gaining
access to the CP internals and installing malware, or infecting
an EV and propagate during charging session interaction.
Vulnerabilities to CP cyber systems, excluding CPMSs, are
also considered in this category. Typically, these would entail
wireless charging or session authentication. In this category,
attack surface growth is dependent on a physical vessel –
such as an EV or malicious USB – for spreading for instance
malware. Considering the complexity of this, and thus the
limited possibility for a large attack surface, the potential
effects on power grids is limited 9], [72], [80], [81], [82], [83],
[84], [85], [86], [87], [88], [88], [89], [90].

The authors of [154] mention the security flaws of OCPP
(see Section IV-D). However, they recognize security patches
in more recent versions. They design a new type of attack that
is able to circumvent OCPP security measures, by one-time
exploitation of CP vulnerabilities. Their man-in-the-middle
(MitM) attack is based on vulnerabilities in the Transport
Layer Security (TLS) used to secure communication between
CPs and a CPMS. The novel attacks specifically target smart
charging schemes. Attack objectives are energy markets,
and ultimately BSP financial performance. The authors state
compromising power system stability would require a very
large number of exploited CPs.

In [9] and [116] the authors employ a mixed integer
linear programming (MILP) model to optimise availability
of grid components while minimising security risk of
FDIA, either malicious or unintentional. In their model they
simulate malware propagation through EVSEs and their
communication networks similar to how a disease spreads
in human populations. In their work they aim to show the
interdependence of smart grids, EVCI and EVs.

Following recent technological developments in wireless
charging, the authors of [117] write about the state-of-the-
art in wireless charging, devoting a section on cyber security
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of such systems. Considering there’s no physical connection
between EV and CP, the handshake needs to happen over
the air, making wireless charging specifically vulnerable to
MitM, FDIA and DoS attacks. While it is stated that hacking
a single CP may lead to damage of EV and CP, there is no
analysis of larger attack vectors and the consequences for the
grid. They test their solution on a NXP-ATOP and conclude it
to be more secure than radio-frequency identification (RFID)
or IEC 15118 at the time of writing.

Finally, [118] addresses MitM attacks that may be utilised
to perform substitution, leading to possible charging trans-
action fraud and problems for DR programs. They propose
an authentication protocol using an on-board IED that
communicates with the EVSE to make sure the authenticated
EV is the one physically connected to the grid.

C. CYBER SECURITY OF CP OPERATION
In order to efficiently roll out EVCI and charging facilities
for EVs, CPs are controlled by a mere handful of private
companies (called CPOs) in a bid for economies of scale.
On the one hand, this approach has resulted in an all-together
quicker and cost-effective realization of EV charging capac-
ity. On the other hand, it has resulted in potential single points
of failure. Namely, CPOs operate their CPs through ICT in
the form of CPMSs. Often, CPOs rely on cloud applications
for connecting to tens or even hundreds of thousands of
CPs for operation, firmware updates and diagnostics. As a
result, huge aggregations of CPs may be vulnerable to insider
threats, MitM attacks, DoS attacks, and others through a
single point of access. Considering the accelerating adoption
of EVs and subsequent increase in the number of CPs, the
consequences for the power grid may be vast [6], [11], [100],
[119], [125], [126], [127], [128], [129], [130]. Based on
the National Institute of Standards and Technology (NIST)
Internal or Interagency Reports (NISTIR) 7628 [119] propose
a cyber security architecture and demand response scheme
for smart EV charging. They claim their design is scalable
and provides secure identification implemented between an
on-board intelligent electronic device (IED) and a charge
management server (i.e. CPO back-office). The system is
tested on a NXP automotive telematics onboard unit platform
(ATOP).

D. CYBER SECURITY OF PROTOCOLS AND OTHER ICT
The final category of literature analysed in this work focuses
on ICT and IoT used in EVCI. ICTs and IoT are, amongst
others, used for communication from EV to CP, between
CPs, and from CP to several back-office systems such as
CPMS (see above). It is widely recognized that ICTs and
IoT may be vulnerable to cyber attacks. Seeing all or most
CPs rely on identical or similar ICT and IoT components,
this final category can be considered as the worst case
scenario. A successful exploitation of vulnerabilities in ICTs
or IoT might result in the entire EVCI being affected,
with consequences for power grids stretching even beyond
country borders. On top of that, in order to promote efficient

operation and interoperability, standardization has been a
top priority in the development of EVCI. ElaadNL, formed
by Dutch DSOs, is a prime example of that endeavour.
Standardization has resulted in a number of communication
protocols that are used to perform various tasks of EVCI
all over the world. A downside to this development is
the potential for cyber attacks with unprecedented con-
sequences for power grids [10], [11], [14], [125], [128],
[131], [132], [133], [134].
OCPP is a communication protocol that is rapidly

becoming the de facto standard for communication between
EVSEs and a CPO’s back-office. Therefore an attack
on especially this communication protocol may lead to
disastrous effects on power grids. This is exactly what is
proven in [10]. The Internet Engineering Task Force (IETF)
framework Request For Comments (RFC) 3552 and unified
modelling language for security (UMLsec) notation is used
to analyse the cyber security of the protocol. They conclude
that design flaws may be used to launch cyber attacks. The
consequences for power grids may be disastrous. However,
their findings were based on the currently outdated OCPP
version 1.6, which had a security update to version 1.6-j in
2018 (after publication of [10]).

The most recent OCPP version is 2.0.1. Alcaraz et al.
present an in-depth analysis of that version using STRIDE
and threat classification framework DREAD (Damage,
Reproducibility, Exploitability, Affected users and Discover-
ability) in [134]. They argue that while the latest version has
considerable security improvements, it is still susceptible to
cyber attacks, namely tampering, and DoS attacks. A review
of security and privacy-related literature in OCPP version
2.0.1. is presented in [14]. The author categorize attacks
into cyber, physical, and cyber-physical and analyse literature
in each category. They conclude that while an important
improvement in terms of security, version 2.0.1. not all
possible attacks already have countermeasures.Moreover, the
authors report on blockchain as a frequently used technology
to mitigate susceptibility to and consequences of cyber
attacks.

The low security maturity of OCPP is also recognised
by [129] and [141]. Kabir et al. describe a switching attack
– described here as quick cycling of charging/discharging
of a large amount of EVSEs – through the protocol. The
attack could potentially go undetected and lead to inter-area
oscillations and eventual blackouts if targeted at weakly
connected generation areas. They design a back propagation
neural network scheme that is effective at detecting and
mitigating the effects of the attack scenario. The authors
base their analysis on the claim that no authentication is
required at private EVSEs/CPs. However often authentication
procedures are very similar at public and private EVSEs
(at least in The Netherlands). Private CPs are often also
connected to a CPO back-office and require the same
charging session authorisation, although newer versions of
IEC 15118 enable identification of the plugged-in vehicle
directly.
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FIGURE 3. Overview of EVCI and related cyber security vulnerabilities.

Electrification is an important by-product of energy
transition. As systems such as heating and transportation tran-
sitioned, a prime alternative to fossil fuels is often electricity.
As a result, more and more strain is put on power grids. While
grids are expanded, system services are required to optimal
allocate available capacity. Congestion management is a
relatively new example of this, especially for DSOs. In order
to unlock the potential of DERs for providing system services
– often called flexibility – new ways of communicating
between stakeholders and assets is required. OpenADR and
OSCP are examples of this (see Section III-C2). A security
assessment of OSCP is described in [137]. The protocol in
combination with weak authentication (through RFID) allow
for spoofing, using a counterfeit card to enable charging
sessions, or eavesdropping of valid session details. On top
of that, due to the lack of end-to-end security, tampering with
data at different parts in the communication chain is possible.
This would prove detrimental if a stakeholder such as a CPO
has been (unknowingly) compromised and an attacker could
alter service provision. TLS information is not provided at
the end of the secure tunnel, preventing integrity validation
later in the process. Some of these issues are addressed in

OpenADR systems by using XML signatures [138], although
integrity is not fully guaranteed. Because IEEE 2030.5 lacks
requirements for end-to-end security, secure communication
implementation is questionable and may pose a number
of cyber vulnerabilities [139]. IEC 61850-90-8 is an EV-
specific implementation of the IEC 61850, which due to
overhead constraints contains no specific cyber security
measures [84]. Considering no out-of-the-box security is
offered in IEC 61850, sub-standard IEC 61850-90-8 is
assumed to have similar vulnerabilities. IEC 15118-2 was an
extension to IEC 15118 incorporating security measures such
as TLS tunnels and encrypted XML for end-to-end secure
communication [142], securing most of the vulnerabilities
prevalent in other protocols.

V. A SURVEY ON THE (CYBER) RESLIENCE OF POWER
SYSTEMS
A. RESILIENCE ENGINEERING: THE ROOT OF ALL
RESILIENT POWER SYSTEM
The notion of system resilience originates from robustness
and stability. Thus combining the ability to overcome adverse
conditions, respectively the ability to return to steady state
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after disturbances. The initial definition was adopted and
extended to include different phases: anticipation, response,
recovery and adaptation. Currently, resilience engineering is
thoroughly researched field. It finds application, applied in
various fields, including power system engineering. Holling
is considered to have introduced the concept of system
resilience in his work in 1973 [155] and further through
works in 1986 [156], 1996 [157]. He describes resilience of
(ecological) systems as the ability to persist despite external
influences. He compares the term with the stability of a
system, which is the ability to return to an equilibrium state
after external influences. According to Holling resilience
and stability are often inversely related and heterogeneity
and complexity might promote the resilience of a system.
In the author’s more recent work, he further compares the two
views, dubbing the former definition as ecological resilience
and defines focusing on stability near an equilibrium state
as engineering resilience [157]. The work describes that
the short-term stabilisation success of resilience engineering
might result in actual gradual decrease of system resilience.

Reference [158] extend the definition of resilience by
not only incorporating persistence, but also returning to
normal performance after a disrupted state. Their review
concludes on common features of resilience definitions found
in other works. The most important common aspects are:
limiting negative effects of disruptions and quickly returning
to normal operation. Other important aspects mentioned are
quick identification and adequate adaptation to prevent future
re-occurrence.

Bhamra, Dani & Burnard also include returning to a
stable state in the definition of resilience in [159]. They
base their claim on many definitions gathered through a
literature survey. The authors argue that, based on reports
of numerous small and large catastrophes, localised failures
can cause cascading effects far beyond the directly impacted
system. The resilience of a system then becomes a function
of vulnerability, i.e. the ability to absorb shocks, and adaptive
capacity, or the ability to adjust accordingly. The authors
conclude that while many research focusses on defining
system resilience, little work is spent on empirically proving
said definitions.

[160] state that the resilience can be used to increase the
scope of risk management as a part of systems engineering.
Similar to [159] they describe resilience as a function of
anticipating, absorbing, adapting to and recovering from
inevitable disruptive events. From a review of resilience
definitions, they conclude this is also true for critical
infrastructure systems. They compare the two schools of
resilience – as a static characteristic of the system versus
an ever-changing function of the system characteristics –
and give preference for looking at resilience from the latter,
epistemic viewpoint, comparable to [156]. Besides defining
resilience from multiple perspectives, Francis & Bekera
in [160] compare the concepts of disruption – external
and systemic, and of human, automated, and combined
origin –, failures and success, and their implications for

resilience strategies. Moreover, they compare the definition
of resilience with that of safety, reliability and survivability.
They indicate the overlap in terms of adaptation, but show
large contrasts in terms of anticipation and the notion that
resilience is a quality achieved through operations rather
than a property of a system. The latter is also addressed by
Holling in his works [155], [156], [157]. The authors identify
robustness as part of resilience as the ‘‘withstand’’ or absorb
phase.

B. RESILIENCE ENGINEERING OF POWER SYSTEMS
In 2015, Panteli & Mancarella considered the application
of resilience to power systems as a novelty, lacking a
‘‘universally accepted [. . . ] definition and even a common
understanding of the concept’’ [12, p. 112]. Currently, there
is an abundance of literature on the topic, often focussing
on resilience of power systems against natural hazards or
extreme weather events. Multiple authors distinguish the
difference between stability against frequently occurring
low impact events, and resilience against so-called HILP
disturbances [19], [161], [162].

In [19] the authors present a review of the state-of-the-art
in power system resilience, focussing on ‘‘extreme events’’
relating to weather and natural hazards, but also cyber events.
While they state that there is no uniform consensus on
a definition of resilience of power systems, the presented
definitions correlate strongly. Below is a list of seemingly
synonymous words used to define power system resilience
per key element of resilience.

Not all definitions use all key elements – or a synonym
thereof – but the most used terms include anticipate, absorb
and recover [12], [162], [163], [164], [165], [166]. In short,
the definition of power system resilience closely follows
those found in general resilience (engineering) research.
It revolves around anticipating high impact low probability
events, absorbing as much as possible of the impact of such
events and recovering quickly to a pre-disturbance service
level.

1) METRICS FOR POWER SYSTEM RESILIENCE
Considering resilience as an epistemic characteristic [156],
[160], the ability to monitor resilience is of the utmost
importance. Therefore, metrics are defined in order to
quantify and measure resilience during different phases.

Bruneau et al. are considered to have introduced what
is now known as the resilience triangle, even though they
do not mention it explicitly as such in their work [167]
(see Figure 4). They present a metric to measure system
performance over time: Q(t). The graph forms a triangle
between the time of a disturbance t1, the time of return
at stable system performance t2, stable system performance
QT and degraded system performance Q1. The triangle was
later extended by [162] and [168] to form a trapezoid.
The resilience trapezoid includes the different phases of
resilience. The performance Q(t) remains relatively stable
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TABLE 6. List of synonyms used to define power system resilience.

in each phase, but each phase includes a plateau indicating
the different phases of resilience (related to the terms
presented in Table 6). This results in a trapezoid shape. The
resilience triangle or trapezoid is often a starting point for
visualizing and quantifying power system resilience [169].
For example [162], [168] make a distinction between
operational and infrastructural resilience. They present a
mathematical framework that describes the trapezoid in terms
of degradation speed, depth and duration, and restoration
speed. Their parameters include customer and generation
power interruption, and tripped power lines.

In quantifying power system resilience, special attention
needs to be given to the objective of the system. For power
systems this is delivering power to customers connected to
the grid. Often, resilience engineering is employed in power
grid planning and an indication of resilience is required
for important decision making. Fragility curves are often
turned to in order to give this indication while respecting
the stochastic nature of HILP events. Fragility curves or
functions, are indicators of asset or system failure probability
as function of some input or state variable. In power system
resilience research the input often relates to extreme weather
conditions such as wind speeds, precipitation, water levels,
etc. [12], [19], [161], [163], [165], [166], [168], [170],
[171], [172], [173], [174], [175], [176], [177]. For example,
in [160] the authors further emphasize the importance of an
objective setting for measuring resilience. The authors state
that resilience is ultimately defined by absorptive, adaptive
and recovery capabilities of the system. A metric is defined
based on speed of recovery and system hardness, i.e. the ratio
between original and new stable state system performance.
Fragility curves are used to measure expected system
degradation in the face of a disruptive event. An entropy-
weighted factor is used for event stochastics. The metric is
tested in a newly designed, experimental distribution system
model.

Thus, resilience assessment needs a relevant metric as
indicator of system performance. In [12] the loss of load
frequency (LOLF) and loss of load expectation (LOLE) are
used. The authors use them to model the resilience of power
systems to extreme weather events. Moreover, they use the
aforementioned fragility curves to determine probabilities of
component failure.

In [166] the authors use a similar approach. Metrics are
used for transmission substations and distribution nodes with
power, the percentage of critical facilities with power, and the

FIGURE 4. Resilience triangle.

percentage of customers with power in the face of hurricane
events.

Bhusal et al. present an extensive review of power
system resilience in [19]. Their review includes definitions,
metrics, enhancement andmodelling methods. They compare
attribute-based metrics – i.e. as a static characteristic
– with performance-based metrics – i.e. epistemic. The
former includes robustness, adaptability, resourcefulness, and
recoverability. The latter is based on quantitative data. The
authors present a review on both types, further categorising
into 1) resilience features, such as betweenness centrality,
2) code-based (for instance based on running simulation
models [178]), 3) reliability-based, such as LOLF, LOLE and
energy not supplied, and 4) other metrics such as total energy
curtailment.

Ji, Wei & Poor adapt two industry standards – system
average interruption frequency index (SAIFI) and system
average interruption duration index (SAIDI) – to measure
power system resilience under extreme weather condi-
tions [174]. Interestingly, the authors in [178] state that
these are reliability metrics used to measure power system
performance. Moreover, they state their usefulness is in
decline due to 1) increasing numbers of HILP events, 2)
renewable energy generation and 3) cyber security related
events. Nevertheless, in [174] the author use the metrics in
the form of the ratio between interrupted and un-interrupted
customers, as well as the total interruption time and number
of customers. The model does not include the customer
average interruption duration index (CAIDI), which is also
widely implemented in industry. CAIDI is the ratio SAIDI
over SAIFI and could provide a meaningful extension in
terms of recovery performance of the system. Namely, a low
CAIDI would signal a short restoration time. In terms of
resilience, these measures quantify how the system objective
of transporting electricity to customers, is influenced byHILP
events.

The authors of [179] present a risk assessment database
containing 25 indexes that can be used as performance
indication, thus they can quantify the resilience of power
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distribution systems. They include frequently used metrics
for interrupted services such as loss of load probability
(LOLP) and damage to grid components, but also resilience
of DERs, and external factors such as related to emergency
response services and meteorology.

There are many more works describing metrics for the
quantification or assessment of power system resilience [180],
[181], [182], [183], [184], and the aforementioned is not
an exhaustive review of the entire state-of-the-art of power
system resilience metrics. However, the explored body
of work follows very similar patterns: starting from the
resilience triangle or trapezoid, picking performance metrics
relating to loss of load or power system component failures,
and describing a mathematical, statistical, or modelling
method to quantify and analyse resilience in the face of
a HILP; most often related to extreme weather or natural
hazards.

2) IMPROVING POWER SYSTEM RESILIENCE
After designing indicators for determining power system
resilience, the next step is increasing the resilience to HILP
disturbances. Taking measures to improve system resilience
can be spread out over multiple time horizons, from short
term to long term investments. Often, improving power
system resilience is related to introducing redundancies,
for instance the widely recognized N-1 contingencies.
Making these types of changes to the power system, of the
physical grid, is commonly referred to as grid hardening.
However, as the impact of HILP disturbances is likely to
exceed single contingency conditions, measures should in
most cases extend this security fundamental. In [23] the
authors categorise power system resilience improvements
into planning, response and restoration, based on [185].
According to the authors, planning is related to long-
term investments – both hardware- and software-based –
focussing on anticipation and absorption. Response however,
is short-term, and focusses on day-ahead and real-time
measures. Finally, restoration includes system recovery mea-
sures. When regarding long-term planning of power system
resilience, the authors consider software-based approaches
to be most cost-effective. They review different measures in
each category.

Mohamed et al. present a review of ‘‘proactive’’ measures
for improving power system resilience [186]. They divide
enhancement actions into short-term – days or weeks before
and during HILP – and long-term planning, the latter
further categorised into operational, hardening and ‘‘smart
technologies’’ such as AMI, microgrids (MGs) and DERs.

As mentioned by [23], one of the measures that can be
used to increase power system resilience in all phases is
the use of renewable energy generation (REG) combined
with energy storage systems (ESS)s, often in a MG context.
In [28] the authors present a review of location, allocation
and operation optimisation of REG and ESSs. They conclude
that most literature focusses on cost and network loss

minimisation. Nazemi et al. present such an optimisation
based on linear programming [187]. Based on fragility
curves in an earthquake context, their approach aims to
minimise loss of critical load with financial constraints
of ESS deployment. Similarly, [188] use a two two-stage
stochastic mixed-integer second order conic program to
model cost-efficient deployment of mobile ESSs by a
DSO to prevent load shedding. On the other hand, [189],
[190], [191] present models to use mobile ESSs (MESSs)
specifically for restoration purposes. In [192] the authors
also focus on MESSs for the recovery phase, presenting
an architecture based specifically on EVs. While, in [193]
the authors combine different types of MESSs to address
both the absorb and recovery phases. [194] present a multi-
objective optimisation formulation for optimal allocation and
location of REG and ESS combinations. They specifically
focus on restoration, giving higher priority to non-black-start
generators.

Chen et al. present a review of another much investigated
measure for enhancing power system resilience: micro-
grids [21]. They address networked MGs and distinguish
betweenMGs with fixed and dynamic boundaries, presenting
work mostly on the absorption and recovery phases. In [195]
the authors present utilise a strategy based on minimum
state of charge (SoC) of ESS. The ESSs can be used in
the case of a HILP even to improve resilience. A method
for determining optimal identification of MG boundaries for
resilience is presented in [196]. In [197] the authors use EVs
to optimise resilience not only of the distribution grid, but also
the individual MGs it comprises. Reference [198] formulate
an optimisation problem to minimise load shedding using
controlled islanding. Their constraints are based on system
frequency constraints and active and reactive power balance.

MGs and islanding can also be utilised as a tool for
speedy recovery, as is demonstrated by [199], [200], [201],
[202], and [203]. Reference [199] exploit MGs to quickly
isolate faults and begin restoring service. References [200]
and [204] focus specifically on restoring service to critical
loads. Reference [201] combine networkedMGs through soft
open points (SOPs) – electronics for controlling power flow
at open ends in a distribution network – with planning of
MESS, repair crews (similar to [203]) and, devices used for
fault detection and voltage support. In [202] the specific focus
is on restoring power supply to critical loads in distribution
systems, which is achieved through the use of EVs as MESS.

C. CYBER RESILIENCE OF POWER SYSTEMS
Like power system resilience, cyber resilience deals with
the ability of a system to anticipate, absorb, recover from
and adapt to HILP events. However, the specific focus
is on malicious cyber events [186], [205], [206], [207].
Nevertheless, the focus is unequivocally on maintaining
an acceptable level of service, performance or output of
the system in the face of HILP events. Power systems
comprise of the physical system and a cyber system. The
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cyber system is used, amongst others, for monitoring and
control. Therefore, the power system must be regarded as
the cyber-physical system (CPS) [208]. In conclusion, it is
important to recognise potential cyber-physical attacks as
HILP events with potentially unprecedented effect on power
systems [186].

One important difference between the application of the
concept of resilience in power systems and cyber systems,
is the ability to adequately and timely detect an ongoing
cyber event [209], [210], [211], [212]. This gives rise to
an additional resilience phase added in the context of cyber
systems: identification. Moreover, for other types of HILPS
there may be observable precursors, i.e. they can often
be foreseen to some extent. For instance, this is the case
when looking at changing weather conditions and climate
influences for weather HILP disturbances. On the other
hand, this will most likely not be the case for cyber attacks.
Considering the power CPS is very complex, only the most
sophisticated attacker would have the resources to penetrate
its defences – which include intrusion detection. Capable
actors would most likely be able to obscure their cyber attack
until it’s too late. As a result, a different approach has to be
taken with cyber resilience, especially towards anticipation
and response.

In [102] a survey is presented of cyber-physical security in
active distribution networks (ADNs). A prime origin of cyber
attacks may be the interconnected EVCI. Vulnerabilities in
several of the system components discussed in Section IV
are mentioned as source of potential cyber attacks. These
cyber attacks may lead to electricity fraud, and damage to
the connected AND in the form of voltage and frequency
instability.

A security score for quantifying power system effects of
cyber attacks on EVCI is presented in [141]. The metric
is based on different indicators of feasibility, impact and
detectability. Their approach is validated in a model of the
New South Wales grid to train a LSTM-based method to
detect and locate cyclic load attacks.

In [212] the authors present a survey on the state-of-the-art
of power grid cyber resilience, starting with characteristics
of cyber attacks on power systems, primarily on IT-OT
interfaces of the CPS. They also underline the possibility
of an attack coming from sub-systems such as EVCI. The
authors recognise the importance of adequate detection of
cyber events. They conduct a survey on the use of DERs for
response and restoration purposes. Furthermore they review
the application of cyber-physical testbeds.

Literature on metrics to assess cyber resilience of power
system is underrepresented compared to ‘‘regular’’ power
system resilience. The authors of [213] present a review of
assessments frameworks used to quantify cyber resilience,
not specifically in the context of power systems.

In [214] a resilience metric for CPS is proposed based on
two variables 1) the degree to which the system is able to
be steered to any state within the domain of the system and
2) the ratio of available sensors to state variable, taking the

minimum over all state variables as parameter. In essence it
looks at affected sensors and actuators in the CPS.

A game-theoretical approach to fragility curves for cyber-
resilience is defined in [215]. The authors look at quantifying
grid damage – in terms of tripped lines, loss of load and
generation, and associated costs – as a result of cyber attacks,
while grid hardening is employed to improve resilience to the
attacks.

Smart grids rely heavily on data coming from IT and OT
systems. Therefore, information models that relate that data
to each other become crucial for extracting and standardising
the information needed for operation of the system. In [216]
these information interrelationships are used to create a
quantitative exposuremetric, depending on the corresponding
security mechanisms.

Reference [217] have developed a database of cyber attacks
on protection relays. The database is used to set up a dynamic
security assessment. By measuring rotor angle, bus voltage,
and frequency they classify the system’s response to the
attacks. The classification is based on pre-defined secure state
operation limits.

Finally, several works have been published on the develop-
ment of cyber-physical testbeds that can be utilised to analyse
and characterise cyber-physical attacks on power systems.
Extensive reviews are presented in [166] and [167].

VI. MODELING EV CHARGING BEHAVIOUR
In the previous sections evidence is given that EVCI are
cyber-physical systems and are becoming an important
sub-system of power systems. EVCI’s susceptibility to cyber
attacks has been shown. While the impact of a cyber-physical
attack on EVCI might be vast for power grids, the topic
is not widely researched. This holds especially for power
distribution grids. Therefore, the findings of this survey are
extended with preliminary simulation results to underpin the
importance of the topic for future research.

In order to investigate the effects of cyber attacks on EVCI
in distribution grids, an accurate estimation of EV charging-
related load is required. Hence, a method to stochastically
model EV charging behaviour is presented in this chapter.
The method can be used to generate load profiles originating
from CPs. Finally, the resulting load profiles are used
to simulate cyber attacks on EVCI and their effects on
distribution grid voltage.

The charging behaviour is modelled as a Markov chain,
where each CP state transition is governed by probabilities.
Each CP knows three states 1) unoccupied, 2) charging and
3) idle (occupied but not charging), see Figure 5. p12 is the
probability of EV arrival at the CP and is time-dependent.
p23 is related to the EV’s energy demand, which is modelled
probabilistically in the method. p23 related to a probabilistic
connection time on top of energy demand, governing the
departure of EVs before being fully charged. Finally, p31
embodies the probability of an EV reaching full state-of-
charge before the connection time has expired.
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Algorithm 1 Pseudocode for Stochastic Charging Behavior

1: Input: f(A,τ )(t), F(C,τ )(x), F(E,τ )(x), F(P,τ )(x), CPtrτ , Tr ,
T , t0, tT , I

2: Output: EV charging load profile PtrT per transformer
3: Initialization
4: for tr ∈ Tr do
5: for i ∈ I do
6: for t ∈ T do
7: for cp ∈ CPtrτ do
8: if α(cp,t) = 1 then
9: if t = tcpdep then
10: α(cp,t) = 0
11: β(cp,t) = 0
12: else if Pcp(t − tcparr) ≥ Ecp then
13: β(cp,t) = 0
14: else
15: Ptrt = Pcp
16: end if
17: else
18: if R ∈ [0, 1] < f(A,τ )(t) then
19: α(cp,t) = 1
20: β(cp,t) = 1
21: tcparr = t
22: tcpdep = t + F(C,τ )(R ∈ [0, 1])
23: Ecp = F(E,τ )(R ∈ [0, 1])
24: Ptrt = Pcp
25: end if
26: end if
27: end for
28: end for
29: end for
30: end for

An overview of the method is given in Algorithm 1
in pseudocode. The arrival times fA,τ (t) were adopted
from [218] as a Probability Density Function (PDF), giving
the arrival time of an EV at a CP: tcparr . From the same,
three inverse Cumulative Distribution Functions (CDFs) were
taken:

• Connection times, Fc,τ (t), resulting in departure time of
the connected EV at a CP tcpdep.

• Energy demand, FE,τ (t) resulting in the energy demand
for the currently connected EV at a CP Ecp.

• Outlet power, FP,τ (t) resulting in the outlet power per
CP Pcp. During Initialization of the model, amongst
other things, each CP is assigned with its outlet power.

Sampling from the PDF was done through Bernouilli trial
and from the CDFs using random number draw.

The number of total CPs CPtrτ per charger type τ ∈

{private, public, work} and transformer (MV to LV) tr ∈ Tr
is deducted from [1]. The ratio per transformer is shown in
Figure 7. A significant increase in the number of CPs is to
be expected. As is apparent from the figure, the spread will
also increase. This spread can mostly be attributed to the

FIGURE 5. Markov chain diagram for EV charging, representing the
different states of a CP.

FIGURE 6. Example load profile for a single transformer for T = 288,
t = 15 minutes, t0 = April 1st 2030 00:00, tT = April 3rd 2030 23:45, I = 1.

FIGURE 7. Development of number of CPs per MV-LV transformer
(median), including interquartile (25-75%) spread and lowerand upper
bound.

future development of charging hubs, causing hot spots with
significantly large numbers of CPs.

Simulations are run for T timesteps t , from t0 to tT . Then let
αcp t and βcp t ∈ {0, 1} be the occupied, respectively charging
state per CP for any given timestep. The number of iterations
is set to I .

Figure 6 shows an example output of the algorithm for
a random transformer in a grid model supplied by a Dutch
DSO. The figure shows a single iteration of 3 days (288
timesteps of 15 minutes). Evident from the figure is that
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the specific transformer is in a residential area, considering
the high load originating from private CPs. Moreover, the
peaks coincide with peaks found in [1] which are in the
evening (around 19:00) and morning for private and work
related charging respectively. The public charging shows less
of a pattern, resulting from their more diverse usage. Finally,
the model also accounts for change in charging behavior
between weekdays and weekend. The simulation ran from
Monday up to and including Wednesday, therefore including
work-related charging. Figure 6 shows the results from a
single iteration. When more iterations are run and the results
averaged, the plots approximate the ones presented in [1].

VII. SIMULATION RESULTS
Simulation results of cyber attacks based on the EV charging
load profiles described in the previous chapter are presented.
The object of the simulation study is to show the potential
impact an cyber attack on EVCI might have on the power
system. Considering the probabilistic nature of EV charging
behaviour, special examination of stochasticity must be
addressed. Thus, a cyber attack scenario is designed where
an attacker would conduct a cyber attack to disrupt the grid.
Consequently, it is most likely an attacker would target either
a CPO’s CPMS or a CP protocol (see Section IV). Namely,
the effects on the grid of an attack would bemainly dependent
on the amount of load collectively controlled in the affected
EVCI. This in turn is dependent not only on the number
of CPs, but also their outlet power and the presence and
energy demand of EVs. As these variables are highly time
dependent, a stochastic approach was chosen tomodel the EV
charging behaviour (see Section VI). Thus, a large number
of iterations was run to prevent experimental bias. In order
to demonstrate the effect the cyber attack would have on
the grid, voltage stability was chosen the main indicator.
A number of assumptions were made in designing the cyber
attack scenario:

• Assumption 1: the vulnerabilities described in Sec-
tions IV-C and IV-D are exploited to gain access to CP
operation.

• Assumption 2: remote attacks on CPMSs and MitM
attacks on OCPP and OSCP are used to eventually
elevate hacker privileges to remotely operate CPs.

• Assumption 3: all CPs in the analysed grids are
connected to a CPO back-end. By combining the fleet
of CPs of different CPOs the attack is scaled up to cover
private, public and workplace CPs.

• Assumption 4: the attacker controls enough computa-
tional power and network bandwidth to simultaneously
execute an attack across the entire attack vector.

• Assumption 5: the attacker has deep knowledge of the
energy system, using market insights in supply and
demand to time the attack.

The attack scenarios described above are often referred to
as load altering attacks (LAAs). A cyber attack exploiting
a vulnerability in a charging protocol is modelled, resulting

TABLE 7. Facts and figures of the studied MV distribution grid.

in the worst case scenario, i.e. the largest possible affected
collective load. In terms of power system operations these
LAAs can affect a power grid’s frequency, rotor and voltage
stability [219]. Of those, the latter is chosen as focal point.
Namely, frequency stability is often the responsibility of
transmission system operators (TSOs) who are not respon-
sible for distribution networks. Moreover, rotor stability
requires the presence of synchronousmachines, which are not
as prevalent in MV distribution networks (DNs) as they are
in transmission networks (besides inverter-based generators).
As a result, voltage stability is chosen as the starting point
for impact analysis. As an indication for voltage stability, the
effect of the cyber attack scenario on voltage levels is reported
on in this work.

For our experimental setup, a MV grid models is supplied
by aDutchDSO.A schematic overview in the form of a single
line diagram is given in Figure 8. The most important facts
and figures are given in Table 7.

The power flow analysis is conducted throughDIgSILENT
PowerFactory’s Python API. Disturbance event dates are
generated based on a random week- or weekend day,
depending on the experiment. Simulated times are 8:45, 12:45
and 18:00, coinciding with regular morning, afternoon and
evening peaks in distribution grids. The attack scenario is
based on the attacker’s knowledge to coincide with ancillary
services markets. As such, the CPs are assumed to be
in the idle state (see Figure 5) as part of a congestion
management service to the DSO. The attack is executed
by simultaneously switching the CPs to charging state
during congested power grid conditions, further straining
operational limits. The attack is simulated in PowerFactory
using Parameter Event Objects (.EvtParam, hereafter PEOs)
inside the Quasi-Dynamic Simulation (QDS, ‘‘ldfsweep’’
inside PowerFactory. ComStatsim simulation module object)
events module (IntEvtqds). The PEOs target the MV loads
objects (.ElmLodmv) and sets their ‘‘scale’’ parameter.
Before the attack the loads are scaled down to their base, non-
charging load, simulated delayed or smart charging. At the
time of the attack the loads are scaled to 1.0, i.e. fully
considering loads of all connected and charging CPs.

To minimize statistical bias, experiments are repeated
30 times, generating new EV load profiles each time.
EV charging load profiles are generated for the entirety of the
simulation date, resulting in a statistically relevant EV load at
the time of the disturbance. For each simulated disturbance
event a base simulation is run on top of the disturbed state
simulation. For each bus, voltage magnitude (in p.u. based
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FIGURE 8. Single line diagram of MV distribution network.

on nominal bus voltage), and active power flow (in MW) are
collected. These are then used to determine the delta between
base and cyber attack scenario.

A. STATISTICAL SPREAD
Figure 9 shows the change in active power flow for buses
on feeder 9 (see Figure 8). The figure is used to visualize
the statistical spread in the results. Each observation in the
box-plot represents one iteration of a cyber attack event
compared to the base simulation for that datetime. In other
words, the 1P is formed by the combined loads of the

affected CPs connected to the bus number on the x-axis. The
1V is calculated by subtracting the bus voltage under cyber
attack from the bus voltage in the base case. The reason there
are box and whiskers is due to the probabilistic nature of
the EV charging behaviour model and repeated simulation
iterations. It can be concluded that the statistical spread is
smaller for buses with fewer connected CPs. This is to be
expected, due to the stochastic nature of EV arrival at CPs.
More connected EVs will result in a higher difference in
active load due to a cyber attack. The differences in the
number of CPs connected to each bus bar, notably between

111474 VOLUME 13, 2025



S. Hijgenaar et al.: Cyber Resilience of Electric Vehicle Charging in Smart Grids: The Dutch Case

FIGURE 9. Box plot of difference in active power flow [MW]and voltage [p.u.] in feeder 9 (F9) for 2050 at 8:45.

FIGURE 10. Yearly increase of affected load (a) per feeder (b) over allbuses in the MV network.

the two groups 46-52 and 53-57, can be explained by the
expected adoption of electric mobility. For instance, it may be
that buses 46-52 feed a higher-income demographic area or
business park, while buses 53-57 cover less densely populated
or developed areas, or areas with fewer possibilities for
installing new grid connections c.q. CPs.

B. IMPACT ANALYSIS
Due to the expected accelerated adoption of electric mobility,
the affected load by a possible cyber attack is set to increase.

This is shown in Figure 10. In (a) the yearly increase in
affected load is shown per feeder. The statistical spread,
indicated by the shaded area around the different line plots,
is caused by differences in the number of connected CPs per
feeder bus. A bigger shaded area may mean large deviations
in the number of connected CP per bus, or a smaller number
of buses in the feeder, resulting in a bigger spread. Overall
the impact of possible cyber attacks is shown to increase
over the years. Cumulatively, the maximum load altered
approximates 16 MW towards 2050. The resulting voltage
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FIGURE 11. Impact of cyber attacks over the years, split by time of the attack and week/weekend.

drop at the end of the feeder approximates 0.05 p.u. (see
Figure 9). In Figure 10(b) the kernel density plot (KDE)
shows the distribution of delta P, averaged over all buses, per
year. A KDE may be used to show smoothened PDFs, for
instance by smoothening out a histogram. In this case they
are used to visualise the relative occurrence of the sum of
affected load by the cyber attack. Namely, affected load is
stochastic and continuous. A simple histogram would show
it discretised and incur loss of information. Furthermore,
a KDE is used to show the stochasticity over a large number
of buses and iterations. The affected load is evident from
the figure. Namely, while a sharp peak around 0.1 MW
is visible for the first years, the peak decreases over the
years, giving way to a slightly smaller, but more impactful
peak around 1.5 MW. Conclusively, over the years the
absolute impact per bus will increase. It should be noted
that in the construction of this figure, buses with few or
no connected CPs (also visible as feeders in the bottom of
Figure 10(a)) are ignored. These skewed the graph towards
0, drawing away attention from the main conclusion: how
impact will grow over the years. Moreover, KDE plots apply
a smoothening function, resulting in negative values (not
shown in the figure). It should be noted that the true negative
1P were non-present or negligible. In Figure 11 the effects
are visible separately for weekends (top) and weekdays
(bottom).

In radially operated distribution networks, it is expected
that voltages drop along the line. This is a result of resistance
and reactance of the cables as well as the loads in the network,
in line with Ohm’s law. This is evident from Figure 9, where
voltages drop along feeder 9. Even though the affected load
is lowest at the end of the feeder, 1V is biggest. Because of
this, the impact of cyber attacks is addressed by looking at the
final bus in each feeder. This concept is applied in Figure 10.
It shows how the impact of the cyber attack will develop over
the years. Each line plot shows how the voltage is affected at
the last bus in each feeder in Figure 10a. The rows distinguish
between week- and weekend days, while the columns show
the different times of the simulated cyber attack. Curves in
the different plots may appear less smooth. This is because of
lower number of CPs, increasing the effect of stochasticity.
Plots tend to smooth out towards 2050, as the number of CPs
increases.

Large differences are seen between cyber attack times and
day of the week. Overall the effects of a potential cyber attack
in this specific distribution grid will be biggest during the
week in the morning. This is because the grid is dominated
by work-related charging. This is even more apparent from
Figure 12. A sharp peak can be seen on weekdays at the
beginning of the work day (8:45). While the public charging
peak at the beginning of the evening (18:00) is much less
pronounced.
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FIGURE 12. Single iterations over years of load related to EV-charging.

C. DISCUSSION AND FUTURE WORK
In general the effects of this type of cyber attack seems
to be limited on voltage levels in this specific distribution
grids. Even considering the worst-case scenario, a cyber
attack covering the entire EVCI would not incur unstable grid
operation. This is most likely due to the highly stochastic
behaviour of EV users, which is also visible in Figure 9
as the length of boxes and whiskers. While the number of
CPs drastically increases, the maximum occupancy remains
relatively low. It is assumed that charging behaviour will not
drastically change over time [220]. Therefore, this behaviour
may be expected in the future scenarios. From the simulations
we conclude that no significant impact may arise for this
specificMV distribution grid. However, several opportunities
for future research have presented themselves:

• The effect of cyber attacks on other MV distribution
grids.

• As the cyber attack crosses network and even country
borders, the aggregated effect of multiple MV distribu-
tion grids on HV distribution grids or even transmission
grids.

• The current study was conducted using quasi dynamic
simulations, thus showing the steady state response.
A study towards dynamic behaviour, for instance

in combination with different inverter-based DERs,
is crucial for a deeper understanding of the impact.

• Different combinations of grid conditions and cyber
attacks may be possible. For instance the effect of a
cyber attack on a grid with congestion. The grid already
under stress may exhibit a much larger impact due to
an cyber attack. On top of that, different DERs, such as
rooftop PVmay influence the impact both positively and
negatively (from a power system stability perspective).

VIII. CONCLUSION
In this survey paper we addressed a combination of two top-
ics: cyber security in electric vehicle charging infrastructure
(EVCI) and power system (cyber) resilience. We conclude
that numerous vulnerabilities are present in both physical
and digital systems of electric vehicles (EVs), charge points
(CPs) and related systems – for instance CP management
systems (CPMSs). The existing vulnerabilities may lead to
cyber attacks on significant portions of the infrastructure.
Considering the physical interdependency, cyber attacks on
EVCI may have a profound effect on power systems. From
our survey on power system resilience we conclude the
latter has not been thoroughly addressed. Therefore we
have presented a method to model stochastic EV charging
behaviour to analyse the impact a cyber attack on EVCI may
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have on a MV distribution grid. We show that although the
effects may not be severe in static analysis, much is unknown
about dynamic responses. Therefore we propose directions
for future research into combinations of EVCI cyber attacks
and power system resilience.
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