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n this paper, we describe the results obtained by using variants I of the modified gradient method developed earlier [l-31. These 
are applied to the new Ipswich data sets to reconstruct the shape, 
location, and/or index of refraction of unknown two-dimensional 
scatterers (infinite cylinders in three dimensions). The modified 
gradient method was used previously in connection with two Ips- 
wich data sets (IPSO01 and IPS002). These correspond to TM 
polarization (the electric field polarized along the cylinder axis of 
the cylindrical two-dimensional scatterer), or VV in the Ipswich 
designation, for two perfectly conducting objects, the circular cyl- 
inder and the strip. Good reconstructions were obtained and 
these results were reported earlier [4]. The experimental data were 
re-normalized by multiplying the circular cylinder data by one 
unknown complex constant. This constant is determined by mini- 

mizing the L2 norm of the difference with the exact data, as com- 
puted using the representation in cylindrical wave functions. This 
constant, which is essentially a phase correction, was then used as 
a multiplier of the measured data for both the circular-cylinder data 
(IPSOO1) and the strip data (IPS002). 

Subsequently, a third data set (IPS003) was set up as a 
“contest” for the 1995 IEEE AP-S/URSI Symposium in Newport 
Beach, Califomia. It contained scattered-field data for one penetra- 
ble object, a square polystyrene cylinder [5]. However, the 
reconstruction could not be carried out satisfactorily, because we 
were not able to calibrate these data appropriately. The data sets for 
this penetrable case were difficult to calibrate, since they were 
adjusted after the Ipswich experiments in a different way than the 
previous ones, for the conducting cases. After the shape and index 
of refraction of this object became known, we re-normalized the 
IPS003 data by multiplying the data with one complex constant 

that is determined by minimizing the L2 norm of the difference 
with numerically computed data, and we reconstructed the square 
polystyrene very well. We presented these results at the 1996 IEEE 
AP-S/URSI Symposium in Baltimore, Maryland. We will not pres- 
ent these results in this paper, since this paper is devoted to the 
new data sets, which were the subject of the “contest” at the 1996 
IEEE AP-SKJRSI Symposium, viz., the reconstruction of the data 
sets IPS004, IPSOOS, IPS006, IPS007, and IPSOO8. Reconstruc- 

tions using these data sets with the modified gradient method will 
be reported. 

The modified gradient was introduced in [l, 21, for the recon- 
struction of the complex relative permittivity of inhomogeneous 
scatterers. Very briefly, the method is described as follows. An 
unknown inhomogeneity, B, imbedded in free space, is illuminated 

successively by a number of incident fields, UT, j = 1,2,. . . , J , at 
the same frequency, but originating in different places (different 
line sources, or plane waves with different angles of incidence). In 
the case of the new Ipswich experiments, we have 36 angles of 
incidence, equidistantly distributed around the object. The 
unknown scatterer is assumed to be located somewhere in a 
known, bounded, test domain, D (taken to be a square), and the 
scattered field is measured on a domain S (taken to be circle), con- 
taining the test domain, D, in its interior. In the case of the new 
Ipswich experiments, S was taken to be in the far zone of the scat- 
tered field at 18 angles of observation equidistantly distributed 
over a semi-circle. For each experiment, this semi-circle starts with 
the fonvard-scattering angle. 

Rather than working with the complex relative permittivity, 
we introduce the complex contrast 

For each incident field, u?, the total field is denoted by u j  . The 
total fields, u j  , and the contrast, x , have to satisfy a domain inte- 
gral equation in D (the object equation), and an integral represen- 
tation for the scattered field in S (the data equation). The modified 
gradient method, consists of constructing sequences of approxima- 
tions to u j  and x , starting fi-om initial estimates, u;,~ and x ; , ~ ,  
as follows: 

where an  and p 
and d,, , are functions on D. Since these updates for the total field 
and the contrast do not satisfy the object and data equations, we 
introduce two error measures, rj,. and p j , n  . These are defined on 
D and S, respectively, as 

are constants, and the update directions, 
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where f j  denotes the measured scattered field on S, and where 
Go and G, are integral operators [2], operating on x,uj,, . The 
constants a n  and p are determined by minimizing the value of 
the cost functional 

(4) 

where / I * l I D  and ~ ~ * ~ ~ s  denote the L2 norms on D and S, respectively. 
The update directions, and x n ,  are chosen as the Polak- 
Ribikre conjugate-gradient directions of the cost functional with 
respect to the field, assuming that x = x n - l ,  and with respect to 
the contrast, assuming that uj  = uj,n-l [2]. The initial estimates, 
uj,o and xo , are obtained by a back-propagation of the measured 
data, as described in [3]. 

The algorithm outlined above was changed somewhat, to 
incorporate a priori information about the Ipswich objects. For the 
perfectly conducting objects, the contrast was assumed to be posi- 
tive imaginary. This was ensured in the algorithm by replacing x n  
by i<:, and updating the contrast by the relation 
<n=<n- l+Pncn ,  where <,, p n ,  and 5, are real. This is 
described in [3], and was employed in connection with the circular- 
cylinder data (IPSOO1) and the strip data (PS002), which were, at 
the time, mystery targets, as detailed in [4]. For penetrable objects, 
we assume the contrast to be positive real. This was ensured in the 

algorithm by replacing x n  by 5 f , with accompanying changes in 
the update directions and initial estimates. This was used in [5], in 
connection with the data of the square polystyrene cylinder 
(IPS003). 

The new Ipswich data sets (IPSOO4-IPSO08) are all given in 
the same form, and a perfectly conducting circular-cylinder data set 
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Figure 1. The reconstruction of the aluminum circular cylinder 
(IPS006). 

(IPSO06) was also given, which enables a consistent re-normaliza- 
tion to obtain a phase correction and a slight amplitude correction. 
From the latter data set, we observe that the circular cylinder is not 
located exactly at the origin of the coordinate system. Hence, we 

can only compare the fonvard-scattering data, f / ” ” ,  with the ana- 

lytical data, f?’. A complex correction factor, y , was found by 

2 J 
defining y to be the minimizer of Elf?’ -11f,””i . We found 

j=l 

that 

= 0.04. (5) 

The correction factor, y , was then used to modify the measured 
data of the new Ipswich data sets in a similar way as in [4, 51. 
Using these recalibrated data, we ran the inversion algorithm. 

1. IPS006 

We first present the reconstructed image of the Ipswich data 
set, IPS006, the known perfectly conducting circular cylinder with 
radius of 15.9 cm. We took a test domain, D, with sides of 12 cm, 
or 4 h ,  since the wavelength, h , in all experiments was 3 cm. The 
test domain was subdivided into 60 x 60 subsquares for the com- 
putations, and the imaginary value of the contrast after 64 itera- 
tions is depicted in Figure 1. As described in [3,4], the reconstruc- 
tion of a boundary was aided considerably if an upper limit was 
placed on the contrast. We took the maximum amplitude of the 
contrast to be one. In this way, we also ensured that the mesh size 
was always less than one-tenth of the intemal wavelength. This is 
necessary for an accurate computation of the field values. After 32 
iterations, the image did not improve anymore, and we terminated 

the scheme after 64 iterations with a cost functional of Fii2 = 0.13. 

2. IPS004 

Observing that our reconstruction of the circular cylinder was 
successhl, we continued to reconstruct the perfectly conducting 
object from the date set IPS004, the aluminum dihedral. However, 
this corresponds to TE polarization (the electric field polarized 
transverse to the cylinder axis), or HH in the Ipswich designation. 
But the problem is that no experimental data with respect to the TE 
scattering from a circular cylinder had been supplied, so that no 
proper calibration of the data could be carried out. Secondly, the 
object and data equations for the TE case require a different 
approach, which is not appropriate to outline here. Thirdly, the pre- 
sent object was known and, hence, did not really fit in the 
“contest.” Although we have implemented the modified gradient 
method for this case, and we guessed that for the TE polarization 
we have to multiply the data with an extra imaginary factor -i, 
and although we presented these results at the Baltimore Sympo- 
sium, in view of the reasons above, we do not present them here. 

3. IPS005 

We now continue with the first mystery object (IPS005), with 
a priori information that the object is penetrable and lies inside a 
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circle of radius of 15 cm. We assumed that the contrast was real 
and positive. We took a test domain, D, with sides of 30 cm, or 
101. The test domain was taken to be subdivided into 60 x 60 
subsquares. The maximum amplitude of the contrast was taken to 
be one. Then, the mesh size was always less than about one fifth of 
the internal wavelength. This is really the upper limit for an ade- 
quate computation of the field values. After 64 iterations, the 
image did not improve significantly, and we terminated the scheme 

after 128 iterations, with a cost functional of 4:; = 0.07. The 
reconstruction results of the real values of the contrast are depicted 
in Figure 2. From this we clearly observe a dihedral-shaped object, 
with a permittivity of about 2. 
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4. IPS007 
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We now continue with the second mystery object (IPS007), 
with a priori information that the object is penetrable and lies 
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Figure 4. The reconstruction of the mystery object IPSOOS. 

Figure 2. The reconstruction of the mystery object IPSOOS. 1 IU 0 
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Figure 5. The reconstruction of the mystery object IPSOOS, 
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Figure 3. The reconstruction of the mystery object IPS007. 

using reciprocity. 

inside a circle of radius of 7.5 cm. We assumed that the contrast is 
real and positive. We took a test domain, D, with sides of 18 cm, or 
6h .  The test domain was taken to be subdivided into 60 x 60 
subsquares. The maximum amplitude of the contrast was taken to 
be one. Then, the mesh size was always less than about one-sev- 
enth of the internal wavelength. After 64 iterations, the image did 
not improve significantly, and we terminated the scheme after 128 

iterations, with a cost functional of 4;; = 0.07. The reconstruction 
results of the real values of the contrast are depicted in Figure 3. 
The present object was clearly a circular tube, with a smaller one in 
its interior, both having a permittivity of about 2.  

5. IPSOOS 

For the third and last mystery object (IPS008), we had the a 
priori information that the object is penetrable and lies inside a cir- 
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cle of radius of 7.5 cm. We assumed that the contrast was real and 
positive. The test domain and subdivision was taken to be the same 
as in the previous case. We observed that the cost function did not 
decrease substantially as a function of the number of iterations. 

After 128 iterations, its value was still very large: 4:’: = 0.16. The 
reconstruction results of the real values of the contrast are depicted 
in Figure 4, but we were pretty sure that these results were not reli- 
able. We therefore applied reciprocity to complete the data, except 
for the back-scattering data. Instead of 36 x 18 data points, we then 
had 36 x 35 data points. The reconstruction results are depicted in 
Figure 5.  The outside boundary seems to be reconstructed well. It 
seems to be the outer tube of the previous case, but inside we did 
not trust the results, since the cost functional with respect to the 

increased number of data points was still too large: 4;: = 0.22. 
The reasons for the present failure of proper reconstruction may be 
found in the observations that we may need more data points to 
reconstruct the interior, and that the assumption of real contrast 
does not hold. After the composition of this mystery object was 
revealed, it seems that the latter assumption may be violated. 

Judgments of the power and robustness of the modified gra- 
dient method for reconstructing the shape and the index of refrac- 
tion of an inhomogeneous object are left to the reader. 
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Editor’s Comments Continuedfrornpage 5 

tional methods. I believe the GA is going to play an important role 
in antenna-design methodology, and this article does an excellent 
job of showing how it can be used. 

Not quite a year ago, Dick Dowden and colleagues described 
the red-sprite phenomenon, and what was known about it based on 
VLF-scatter measurements, in an article in this Magazine. In 
Dick’s article with Craig Rodger, in this issue, the authors explore 
what can be determined about the structure and physical parame- 

ters of the sprites, using a simple model. This article is fascinating 
from at least two standpoints. First, it provides some rather good 
limits on the possible values that can be associated with the sprite 
plasma. Even if you are not someone with a keen interest in radio 
propagation in magneto-plasmas, you’ll find this article both inter- 
esting, and readily understandable. In part, that’s because of the 
second aspect: The authors do an excellent job of using a simple 
model, and the basic physics of the scattering involved, to amve at 
a surprisingly rich set of results. This article is worth reading just 
to enjoy the physical reasoning and adept modeling employed. 

The Parkes 60 m radio telescope is one of the word’s great 
radio astronomy observing instruments. It also is a very interesting, 
very large antenna. Bruce Thomas and his colleagues have given 
us an exciting look at what is involved in a major upgrade to such a 
facility. What I found fascinating about this work was the complex 
interrelationships among the various components and subsystems 
in the facility. As always in such large instruments, the mechanical 
aspects must be considered as an integral part of the engineering, 
along with the electromagnetic performance. This article is enjoy- 
able reading, both because of the way in which it is written, and 
because of the glimpse into the elegant complexity of such instru- 
ments. 

The challenge of reconstructing an image of an unknown 
scatterer from electromagnetic fields scattered by it is a problem 
that almost everyone in electromagnetics has thought about, at 
some time or another. I think part of the breadth of appeal of such 
inverse problems is that many of us have this intuitive feeling that 
such problems shouldn’t be that difficult to solve. In turn, I think 
that’s because so much of our leaming process is tied up with our 
vision system, and mental visualization. We do this kind of image 
reconstruction almost every waking moment, and even when we 
dream, at optical wavelengths. Why should making the wavelength 
longer and the radiation coherent make the problem so much 
harder? Well, it does, and part of the reason is because while we do 
not have to understand visible-light scattering in order to see, we 
do have to understand and be able to properly process longer- 
wavelength scattering in order to reconstruct an image we can see. 
That understanding and processing is the topic of the Special Ses- 
sion on Image Reconstruction Using Real Data. For the second 
year in a row, we have a set of selected mini-articles from that spe- 
cial session, held at the Baltimore AP-S/URSI Symposium. What 
sets these special sessions apart, among other things, is that all of 
the presentations deal with the same data set: the Ipswich data. 
These are measured data, collected at the US Air Force Ipswich 
Measurement Facility. They involve a variety of targets, some of 
which were known to the authors before the session, and some of 
which were not. The result is a fun and fascinating look at how a 
variety of techniques perform on the same sets of data. Robert 
McGahan and Ralph Kleinman have served as “guest Editors” in 
assembling these mini-articles, and have written the introduction to 
the set, as well. The results are getting better each year. It will be 
interesting to see what happens at the Montreal Symposium’s spe- 
cial session. One added note: In addition to the description of the 
targets and the data sets given in the introductory article, the article 
by J. B. Morris, R. V. McGahan, J. L. Schmitz, R. M. Wing, D. A. 
Pommet, and M. A. Fiddy gives additional information on the data 
sets. It also shows how what has now become an almost “classic” 
inverse technique-back-propagation, using aspect diversity in dif- 
fraction tomography-performs on each data set. 

I must correct one comment I made in this column in the last 
issue. Simon Walker’s article, in the February issue, did not con- 

Continued on page 85 
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