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Nomenclature

Symbols

Table 1: Symbols related to the heterogeneous elliptic problem.

Symbol Description
Ω Bounded domain in Rd with Lipschitz boundary.
∂Ω Boundary of Ω.
Rd d-dimensional Euclidean space.
C Scalar coefficient field in the elliptic problem, assumed to lie in

L∞(Ω).
Cmin Lower bound of the scalar coefficient C.
Cmax Upper bound of the scalar coefficient C.
u Exact solution of the elliptic problem.
f Source term belonging to L2(Ω).
uD Dirichlet boundary data.
uh Finite element approximation of u.
Vh Finite-dimensional subspace of H1

0 (Ω).
V Solution space {u ∈ H1(Ω)|uδΩ = uD}.
Vh,0 Subspace Vh ∩H1

0 (Ω) with homogeneous boundary conditions.
H1

0 (Ω) Sobolev space of functions with zero trace on the boundary.
{φi}ni=1 Basis functions spanning Vh.
T Triangulation of the domain Ω.
N Set of degrees of freedom (DOFs).
n Number of degrees of freedom, n = |N |.

a(uh, vh) Bilinear form
∫
Ω

C∇uh · ∇vh dx.

(f, vh) Linear form
∫
Ω

fvh dx.
A Stiffness matrix derived from the Galerkin method.
b Load vector in the resulting linear system.
u Solution vector with components ui.
vh Test function in Vh.
‖ · ‖A A-norm defined by ‖x‖A =

√
xTAx.

Table 2: Symbols related to the Conjugate Gradient (CG) method.

Symbol Description
u0 Initial guess for the solution.
u∗ Exact solution of the linear system.
um Approximate solution at the mth iteration.
r0 Initial residual defined as b−Au0.
rj Residual vector at the jth iteration.
pj Search direction at iteration j.
αj Step size computed at iteration j.
βj Coefficient used to update the search direction in iteration j.

Km(A, r0) Krylov subspace spanned by {r0, Ar0, A
2r0, . . . , A

m−1r0}.
Km Shorthand for Krylov subspace Km(A, r0).
L Constraint subspace in projection methods.
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Symbol Description
V Matrix whose columns span the subspace K.
c Correction vector in projection methods.
H Hessenberg matrix defined as H = V TAV .
Tm Tridiagonal Hessenberg matrix arising from the Lanczos process.
vj Lanczos vectors forming orthonormal basis for Krylov subspace.
δj Diagonal entries of Tm.
ηj Off-diagonal entries of Tm.
em Error at iteration m, defined as u∗ − um.
Pm−1 Space of polynomials of degree at most m− 1.
rm(x) Residual polynomial of degree m with rm(0) = 1.

qm−1(x) Solution polynomial of degree m− 1 in CG.
µ Grade of a vector with respect to a matrix.
λi Eigenvalues of A.

λmin Smallest eigenvalue of A.
λmax Largest eigenvalue of A.
κ(A) Condition number of A, defined as λmax/λmin.
ξi Components of the initial error in the eigenvector basis of A.

σ(A) Spectrum (set of eigenvalues) of A.
Cm Chebyshev polynomial of degree m.
Ĉm Real-valued transformed Chebyshev polynomial adapted to inter-

val [a, b].
ρ0 Initial residual in the eigenvector basis of A.
Q Orthonormal eigenbasis matrix in diagonalization A = QDQT .
D Diagonal matrix of eigenvalues in diagonalization.
ε Relative error tolerance.
εr Relative residual tolerance.
εb Residual tolerance relative to right-hand side.
ε̃ Absolute error tolerance.
m Number of CG iterations required for convergence.
m1 Classical CG iteration bound based on condition number.

γ CG convergence rate γ =

√
κ− 1√
κ+ 1

.

Table 3: Symbols related to Schwarz preconditioners.

Symbol Description
Ωi Subdomains obtained from partitioning Ω.
Ri Restriction operator for subdomain Ωi.
Di Diagonal matrix representing the partition of unity (weights) for Ωi.
Nsub Number of subdomains.
M Preconditioner matrix.

M−1
ASM Additive Schwarz preconditioner defined by MASM =

Nsub∑
i=1

RT
i (RiART

i )
−1Ri.

M−1
RAS Restrictive additive Schwarz preconditioner defined by MRAS =

Nsub∑
i=1

RT
i Di(RiART

i )
−1Ri.

Ai Local operator on subdomain Ωi, defined as Ai = RiART
i .

R0 Restriction operator associated with the coarse space.
A0 Coarse operator defined as A0 = RT

0 AR0.
Pj Local projection operator associated with subdomain Ωj (assuming

exact solvers).
P0 Projection operator for the coarse space (assuming exact solvers).



Symbol Description

Pad Sum of the projection operators, Pad =

Nsub∑
j=1

Pj , used in the two-

level method.
κ(Pad) Condition number of the preconditioned system, given by λmax

λmin
of

Pad.
C0 Constant in stability decomposition for coarse space analysis.
k0 Maximum number of subdomains that overlap at any point.
Pj A-symmetric projection operator for subdomain Ωj .
Ej Extension operator from subdomain Ωj to global domain.

Table 4: Symbols related to eigenspectra and CG convergence bounds Chapter 4 Methodology.

Symbol Description
σ1(A) Two-cluster eigenspectrum of A, defined as the union of two inter-

vals [a, b] ∪ [c, d].
σ2(A) Eigenspectrum comprising a main cluster and a tail of eigenvalues,

with the tail denoted by Ntail.
[a, b] Interval containing the first cluster of eigenvalues.
[c, d] Interval containing the second cluster of eigenvalues.
Ntail Number of eigenvalues in the tail cluster (when the spectrum has

one cluster plus a tail).
m2 Sharpened CG iteration bound for two-cluster eigenspectrum.
p Degree parameter in two-cluster CG bound.
κl Left cluster condition number κl = b/a.
κr Right cluster condition number κr = d/c.

r̂(i)p (x) Residual polynomial function for the left cluster, defined piecewise
for the two-cluster (i = 1) and tail-cluster (i = 2) spectrum

r̂m̄−p(x) Residual polynomial function based on Chebyshev polynomials,
corresponding to the complementary polynomial degree m̄− p.

C(i)
p Cluster-specific Chebyshev polynomial of degree p, adapted to the

eigenvalue distribution of the ith cluster.

η1 Upper bound for max
x∈[a,b]

|r̂(1)p (x)|, given by 2

(√
b−
√
a√

b+
√
a

)p

.

η2 Upper bound for max
x∈[a,b]

|r̂(2)p (x)|, expressed as
(
b

a
− 1

)p

when
p = Ntail.

m̄ Total degree of the composite residual polynomial rm̄, formed as
the product r̂(i)p (x)r̂m̄−p(x).

P Performance ratio defined as P = m1/m2.
Puniform Performance ratio for uniform eigenspectrum case.
q(κl, κr) Function appearing in uniform spectrum performance analysis.
Tκ(κl, κr) Threshold function for determining when m2 < m1.
W−1(x) Lambert W function (principal branch −1).
z
(i,j)
1 , z

(j)
2 Chebyshev coordinates in the frame of reference of the ith cluster.

ζ
(i,j)
1 , ζ

(j)
2 Transformed Chebyshev coordinates for multi-cluster analysis.

k Positive integer parameter in the Chebyshev inequality, corre-
sponding to the degree in the bound estimate.

pi Chebyshev degree associated with the ith eigenvalue cluster, de-
termining the contraction factor of that cluster’s contribution to the
residual.

κi Condition number of the ith eigenvalue cluster, defined as the ratio
of the largest to smallest eigenvalue within the cluster.



Symbol Description
fi Convergence factor (or spectral measure) for the ith cluster.
Λt Set of all eigenvalues residing in tail clusters.

rt(x) Residual polynomial for tail clusters: rt(x) =
∏
λ∈Λt

(
1− x

λ

)
.

mNcluster Multi-cluster CG iteration bound.
mNtail-cluster Multi-tail-cluster CG iteration bound.

K∗ Sorted partition indices for eigenspectrum clustering.
k∗ Split index that maximizes the ratio of consecutive eigenvalues.
It Set of tail cluster start indices.

Table 5: Symbols related to implementation and numerical experiments.

Symbol Description
Qh Fine quadrilateral mesh with mesh size h.
QH Coarse quadrilateral mesh with mesh size H.
h Fine mesh size, where h = H/2r.
H Coarse mesh size.
r Refinement parameter such that h = H/2r.
Q Set of mesh pairs {(Qh, QH)} used in experiments.
vhi Internal fine mesh vertex.
qj Quadrilateral element in mesh.
Cconst Constant coefficient function Cconst ≡ 1.
C3layer, vert High-contrast coefficient function with three-layer vertical structure.

Cedge slabs, around vertices High-contrast coefficient function with edge slabs around vertices.
M−1 Set of preconditioners {M−1

2-OAS-GDSW,M−1
2-OAS-RGDSW,M−1

2-OAS-AMS}.
M−1

2-OAS-GDSW Two-level overlapping additive Schwarz preconditioner with GDSW
coarse space.

M−1
2-OAS-RGDSW Two-level overlapping additive Schwarz preconditioner with

RGDSW coarse space.
M−1

2-OAS-AMS Two-level overlapping additive Schwarz preconditioner with AMS
coarse space.

Niter Number of iterations for early estimation experiments.
fiter Fraction parameter for determining Niter.

Nupdate Update frequency for eigenvalue convergence detection.
τextremal Tolerance parameter for extremal eigenvalue convergence.
mestimate Heuristic estimate defined as mestimate = (mNcluster +mNtail-cluster)/2.

Abbreviations

Table 6: List of abbreviations and their full meanings.

Abbreviation Full meaning
CG Conjugate gradient

PCG Preconditioned conjugate gradient
SPD Symmetric positive definite
FEM Finite element method
ASM Additive Schwarz method
RAS Restrictive additive Schwarz

ORAS Optimized restrictive additive Schwarz
2-OAS Two-level overlapping additive Schwarz
MsFEM Multiscale finite element method
ACMS Approximate component mode synthesis
GDSW Generalized Dryja-Smith-Widlund

RGDSW Robust generalized Dryja-Smith-Widlund



Abbreviation Full meaning
AMS Algebraic multiscale solver
DtN Dirichlet-to-Neumann
DBC Dirichlet boundary condition
NBC Neumann boundary condition
PDE Partial differential equation

DOF(s) Degree(s) of freedom
LU Lower-Upper decomposition

GMRES Generalized minimal residual method



1
Introduction

In this thesis we focus on a simple scalar diffusion problem. Let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary ∂Ω, C ∈ L∞(Ω) be scalar field defined on Ω such that 0 < Cmin ≤ C(x) ≤ Cmax <∞
for all x ∈ Ω and f ∈ L2(Ω) be a source term, then we define

Problem 1.1: High-contrast scalar elliptic problem: strong formulation

Let uD ∈ H3/2(∂Ω) be a Dirichlet boundary condition. Find u ∈ H2(Ω) such that

−∇ · (C∇u) = f in Ω,

u = uD on ∂Ω.
(1.1)

In Table 1.1 we give a non-exhaustive overview of some real-world applications that can be modeled
using Problem 1.1. These applications span a wide range of fields, including electronics, hydrogeology,
biomechanics, materials science, and energy.

Table 1.1: Overview of Real-World High-Contrast Elliptic Problems

Application Domain High-Contrast Scenario
Thermal management of PCBs Electronics / Thermal Eng. Copper traces (high

conductivity) in an epoxy
substrate (low conductivity).

Subsurface fluid flow Hydrogeology / Petroleum Eng. High-permeability sandstone
channels adjacent to
low-permeability shale.

Electrical impedance tomography Biomechanics / Medical Imaging Varying electrical
conductivities of biological
tissues (muscle, fat, bone).

Analysis of composite materials Materials Sci. / Structural Mech. Stiff carbon fibers embedded
in a compliant polymer matrix.

Transport in fuel cells Energy / Electrochemistry High gas diffusivity in open
pores vs. low diffusivity in the
solid material of the porous
structure.

The first step in solving Problem 1.1 is to reformulate the problem in a way that reduces the regularity
constraint on the solution u ∈ H2(Ω). This leads to the weak formulation of the problem, which is

1



1 Introduction 2

obtained by multiplying Equation (1.1) with a test function v ∈ H1
0 (Ω) and integrating over Ω. The weak

formulation is given by

Problem 1.2: High-contrast scalar elliptic problem: weak formulation

Let uD ∈ H1/2(∂Ω) be a Dirichlet boundary condition. Find u ∈ V = {u ∈ H1(Ω)|u∂Ω = uD}
such that ∀v ∈ H1

0 (Ω) ∫
Ω

C∇u · ∇v dx =

∫
Ω

fv dx. (1.2)

To solve this problem numerically, we need to discretize the domain Ω and the solution space V .
To that end we consider a triangulation T of the domain Ω with the N the set of degrees of freedom
(DOFs). Then, we pick a finite dimensional subspace of V , Vh spanned by a set of basis functions φi

defined locally on each of the elements τ ∈ T

Vh = span{φi}ni=1,

where n = |N |. This leads to the discretized weak formulation

Problem 1.3: High-contrast scalar elliptic problem: discretized weak formulation

Let uD ∈ H1/2(∂Ω) be a Dirichlet boundary condition. Find uh ∈ Vh such that ∀vh ∈ Vh,0 =
Vh ∩H1

0 (Ω)

a(uh, vh) =

∫
Ω

C∇uh · ∇vh dx =

∫
Ω

fvh dx = (f, vh), (1.3)

where a(uh, vh) is the bilinear form and (f, vh) is the linear form. Equation (1.3) gives rise to the
following system of equations

Au = b, Aij = a(φi, φj), bi = (f, φi) ∀i, j ∈ N ,

where A ∈ Rn×n is the (by construction) symmetric stiffness matrix, u ∈ Rn the solution vector
with components ui and b ∈ Rn the load vector. The load vector b is constructed from the source
term f and the boundary conditions. The approximate solution uh is constructed from the basis
functions φi as

uh =
∑
i∈N

uiφi.

Note that the bilinear form a in Problem 1.3 is coercive, meaning that for all 0 6= w ∈ H1
0 (Ω) we have

a(w,w) =

∫
Ω

C∇w · ∇w dx = Cmin‖∇w‖2L2(Ω) >
Cmin
C2

p

‖∇w‖2H1
0 (Ω) ≥ 0,

since Cmin > 0 and with Cp the Poincaré constant. Moreover, for

w =
∑
i∈N

wiφi with w = (w1, w2, . . . , wn)
T 6= 0

we have
wTAw = a(w,w) > 0.

It follows that A is positive definite, making it symmetric positive definite (SPD). Additionally, through the
coercive property of a in combination with the Lax-Milgram theorem we get that both the continuous and
discrete weak formulations Problems 1.2 and 1.3 are well-posed and have unique solutions.

Apart from possibly complex domains Ω, a major obstacle in solving the linear system Au = b
from Problem 1.3, comes from its high-contrast coefficient C, which requires a broad range of element
sizes |τ | in the triangulation T to fully resolve. As a result, the number of DOFs n = |N | can be very
large, leading to a system matrix A that is large and sparse. This makes direct methods like Gaussian
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elimination, LU- or Cholesky decomposition impractical, as they require storing the entire matrix in
memory and generally have complexity O(n3).

Though A is large and sparse, it is SPD. Therefore, the linear system Au = b can be solved using
the Conjugate Gradient method (CG). CG requires only the ability to compute matrix-vector products
with A (complexity O(n) for sparse matrices) and does not require storing the entire matrix. Being an
iterative method, CG produces a sequence of approximations ui, i = 1, . . . ,m to the solution u and
stops when some convergence criterion depending on a desired tolerance ε is met. This means that
CG’s complexity is given by O(mn).

Hence, the number of iterations m required for convergence is a crucial factor in the performance of
CG. The key subject of Section 2.1.3 is to analyze the convergence of CG and how it depends on the
properties of the system matrix A. In particular, we will show that m is related to the distribution of the
eigenvalues of A. For instance, in exact arithmetic m is bounded by the number of distinct eigenvalues
of A, say k, from which follows that CG’s complexity is given by O(kn). In general, we can derive, using
a well-known bound on CG’s convergence rate discussed in Theorem 2.7, an explicit expression for
CG’s complexity

O
(√

κ(A) log

(
2

ε

)
n

)
, (1.4)

where κ(A) is the condition number of A. Comparing Equation (1.4) with the complexity of direct
methods, we see that CG is much more efficient for large sparse SPD matrices like A.

However, the difficulty of allowing for a high-contrast coefficient C and, for instance, complex domains
resides in that the condition number κ(A) can be very large, which in turn increases CG’s iteration
count and complexity. Accounting for the high-contrast coefficient C concerns the construction of robust
coarse spaces, some examples of which are given in Chapter 3. On the other hand, handling of complex
domains can be done using domain decomposition methods and this is the topic of Section 2.2.

The particular implementation of domain decomposition method and coarse space results in a
preconditioner matrix M ∈ Rn×n, which is used to transform the system Au = b into a new system
M−1Au = M−1b with a (hopefully) smaller condition number. The preconditioned CG method (PCG),
described in Section 2.1.5, is then used to solve the transformed system. Consequently, using the
equivalent of the CG complexity bound Equation (1.4) for PCG, we can determine the performance of
PCG with the preconditioner M as

O
(√

κ(M−1A) log

(
2

ε

)
n

)
. (1.5)

This thesis seeks to review the applicability of the bound in Equation (1.5) to problems like Problem 1.1.
The bound relies on an overestimation of the actual number of iterations m required for convergence and
overstates the role of the condition number κ(M−1A) in determining the convergence rate of CG. We
will see in Section 2.1.4 that the actual number of iterations m is much smaller than the classical bound
that Equation (1.5) relies on and that the condition number κ(M−1A) is not the only factor influencing
the convergence rate of CG.

The main research question in this work is as follows:

Research Question. How can we sharpen the CG iteration bound for Schwarz-preconditioned high-
contrast heterogeneous scalar-elliptic problems beyond the classical condition number-based bound?

For instance, in [1], a two-level Schwarz preconditioner with either one of the AMS and GDSW coarse
spaces significantly outperforms the same preconditioner with RGDSW coarse space, despite all three
preconditioned systems having similar condition numbers. The preconditioned systems differ in their
spectral gap and cluster width, highlighting the need for further investigation into these and possibly
more spectral properties other than the condition number.

Subsidiary Questions. To answer the main research question, we address the following subsidiary
questions:

Q1 Given an arbitrary eigenspectrum, can we construct a CG iteration bound that is sharper than the
classical condition number-based bound for high-contrast heterogeneous problems?

Q2 How do spectral characteristics other than the condition number influence the sharpened CG
iteration bound from Q1?
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Q3 Can we obtain a priori estimates of iteration bounds for PCG with Schwarz-like preconditioners
such that we can differentiate between the preconditioners studied in [1]?

Where Q1 concerns mostly the theoretical derivation of a sharper CG iteration bound, Q2 aims
to provide a richer understanding of the influence of spectral characteristics other than the condition
number on CG’s convergence. In particular, with a sharper CG iteration bound for clustered spectra, we
can better understand how CG performs on different types of high-contrast problems. Then, answering
Q3 has great practical importance for the selection of the most efficient preconditioner for a given high-
contrast problem. The condition number does not suffice to differentiate between preconditioners, as
outlined in [1]. Thus, having the ability to differentiate preconditioners based on spectral characteristics
from, for instance, their approximate eigenspectra would improve the selection process.

On top of that, having sharper bounds for (P)CG methods allows for more efficient allocation of
computational resources, as it allows for a more accurate estimate of the number of iterations necessary
for convergence. This is particularly important in high-performance computing environments, where the
cost of each iteration can be significant.

As mentioned above, the computational complexity of (P)CG methods is given in Equations (1.4)
and (1.5). If we can find a bound that scales better with the other spectral characteristics, we can
possibly show that (P)CG methods with Schwarz-like preconditioners are applicable to a wider range of
high-contrast problems than previously thought. This would open up new avenues for research and
applications in the field of numerical analysis and scientific computing.

Finding sharper bounds than the classical condition number-based bound is a non-trivial task. The
main challenge lies in the fact that the condition number is a measure of the worst-case scenario, while
we are interested in the average-case behavior of the (P)CG method. This requires a more nuanced
understanding of the eigenspectrum and its impact on the convergence of the method.

Assuming we have some expression for a sharper bound, the following challenge then lies in obtaining
a priori estimates for the spectrum of the preconditioned system. The literature does provide condition
number estimates for various Schwarz preconditioners. For instance, in the simple cases of the additive
Schwarz preconditioner with either a ASM type I coarse space or ASM type II coarse space an a priori
estimate for the condition number is given by Equation (B.4) in combination with either Equation (B.6) or
Equation (B.7), respectively. The same can be said for the MsFEM and ACMS preconditioners, as is
seen in Section 3.2.

However, these estimates are not always sharp, and they do not provide information about the
spectral gap or cluster width of the preconditioned system. So, the challenge remains; how can we
obtain a priori estimates of the spectral characteristics necessary for the sharp bound?

Fortunately, we can always obtain a posteriori estimates for the spectrum of the preconditioned
system, as is done in Chapter 6. However, this requires the computation of the eigenspectrum of the
preconditioned system, which can be computationally expensive. This is where the use of iterative
methods such as (P)CG comes in handy, as they allow us to compute the eigenspectrum during the
solution of the linear system.

This thesis is organized as follows. In Chapter 2 Mathematical background, the mathematical
background of the CG method and Schwarz methods is introduced. Chapter 3 Related work reviews
related work on coarse spaces and improved CG iteration bounds. In Chapter 4 Methodology, we expand
on the available literature and ultimately derive two novel algorithms for a sharpened CG iteration bounds
designed for high-contrast problems. The performance and practical applicability of the sharpened CG
iteration bounds are then evaluated in Chapter 6 Results. Finally, Chapter 7 Conclusion summarizes the
key insights and discusses directions for future research.



2
Mathematical background

In Section 2.1 Conjugate gradient method we discuss the classification of the CG method as both
an error projection and a Krylov subspace method. We then derive the convergence rate of CG in
Section 2.1.3 Convergence of CG, as well as the influence of the eigenvalues of the system matrix A on
that rate in Section 2.1.4 Influence of eigenvalue distribution on CG convergence. The latter is important,
since it shows that the condition number κ(A) is not the only factor influencing the convergence rate of
CG. The first part ends with a brief review of the PCG method in Section 2.1.5 Preconditioned CG. Then,
the second part of this chapter Section 2.2 Schwarz methods concerns the Schwarz methods, which are
a class of domain decomposition methods. Schwarz methods can be used to construct preconditioners
for use in PCG, even though these were originally devised as fixed point iteration methods for solving
PDEs on complex domains.

2.1. Conjugate gradient method
We seek to solve the linear system of equations Au = b, where A is a symmetric positive definite (SPD)
matrix. These properties of A make the CG method particularly suitable for solving the system, as
motivated in Chapter 1 Introduction.

2.1.1. Projection methods
To begin to understand the CG method, we need to introduce the class of projection methods, which
given some initial guess u0 find an approximation unew to the solution of the linear system Au = b
in a constrained subspace L ⊂ Rn using a correction vector c in another subspace K ⊂ Rn. That is,
projection methods solve the following problem [21, Equation 5.3]

Find unew = u0 + c ∈ u0 +K such that rnew = Aunew − b = r0 −Ac ⊥ L.

In doing so, projection methods perform a projection step, visualized in Figure 2.1.

O

L

rnew

Ac

r0

Figure 2.1: Visualization of projection method, based on [21, Figure 5.1]. The projection method finds the solution unew in the
affine subspace u0 +K, such that the new residual rnew is orthogonal to the constraint subspace L.

Error projection methods
The subclass of error projection methods defined by Definition 2.1 sets K = L.

5
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Definition 2.1: Error projection method

To perform an error projection step, find unew = u0 + c ∈ u0 +K such that

(r0 −Ac, w) = 0 ∀w ∈ K, (2.1)

where (·, ·) is an inner product on K. Let V = [v1,v2, . . . ,vm] be a matrix whose columns span
K, then one error projection step is given by

unew = u0 + V v

V TAV v = V T r0,

Error projection methods owe their name to the following central Theorem 2.1.

Theorem 2.1: Error minimization in A-norm

Given a linear system Au = b with A SPD and exact solution u∗. Define the errors e0 = u∗ − u0

and enew = u∗ − unew. Then, an error projection step minimizes the A-norm of the error in the
affine subspace u0 +K.

Proof. We have [21]

Aenew = A(e0 − c)

= A(u∗ − u0 − c)

= r0 −Ac

Hence, the orthogonality condition in Equation (2.1) can be written as

(Aenew, w) = (e0 − c, w)A = 0, ∀w ∈ K.

In other words, the correction vector c is the A-orthogonal projection of the error e0 onto K. Therefore,
there exists a projection operator PA

K such that c = PA
K e0 and we can write

enew = (I − PA
K )e0.

Moreover, we have using symmetry and positive definiteness of A that we can define the A-norm ‖ · ‖A.
Then, using the A-orthogonality between the error enew and the correction PA

K e0, we get

‖e0‖2A = ‖enew‖2A + ‖PA
K e0‖2A

≥ ‖enew‖2A,

which shows that the new error is smaller than the previous error in the A-norm. To show that the error
projection step minimizes the A-norm of the error in the affine subspace u0 + K, we let x ∈ Rn and
y ∈ u0 +K be arbitrary, then using that PA

Kx− y ∈ u0 +K we get

‖x− y‖2A = ‖x− PA
Kx+ PA

Kx− y‖2A
= ‖x− PA

Kx‖2A + ‖PA
Kx− y‖2A

≥ ‖x− PA
Kx‖2A,

which yields that [21, Theorem 1.38]

min
y∈u0+K

‖x− y‖A = ‖x− PA
Kx‖A. (2.2)

Now, substituting x = e0 and y = c into Equation (2.2), we again find c = PA
K e0, giving the desired

result.
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General algorithm for error projection methods
By performing multiple (error) projection steps we obtain a sequence of approximations {u0,u1, . . . ,um}
to exact the solution u∗ of the linear system Au = b. Theorem 2.1 ensures that each approximate
solution uj is closer to the exact solution u∗ than the previous one uj−1. This idea forms the basis for a
general error projection method and results in Algorithm 1

Algorithm 1 Prototype error projection method [21, Algorithm 5.1]
Set u = u0

while u is not converged do
Choose basis V of K = L
r = b−Au
c = (V TAV )−1V T r
u = u+ V c

end while

Projection methods differ in their choice of the spaces K and L, as well as in how they obtain the
basis V of K and the so-called Hessenberg matrix defined in Definition 2.2.

Definition 2.2: Hessenberg matrix

The Hessenberg matrix H is defined as the matrix H = V TAV , where V is a matrix whose
columns span the subspace K.

Krylov subspace methods
Krylov subspace methods form yet another subclass of projection methods and are defined by their
choice of the space K. Namely,

Km(A0, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}, (2.3)

or Km as a shorthand.
The dimension of Km(A0, r0) is related to the grade of r0 with respect to A0, which is defined in

Definition 2.3.

Definition 2.3: Grade of a vector

The grade of a vector v with respect to a matrix A is the lowest degree of the polynomial q such
that q(A)v = 0.

Consequently, we can determine the dimension of the Krylov subspace using Theorem 2.2.

Theorem 2.2: Dimension of Krylov subspace

The Krylov subspace Km is of dimension m if and only if the grade µ of v with respect to A is not
less than m [21, proposition 6.2],

dim(Km) = m ⇐⇒ µ ≥ m,

such that
dim(Km) = min{m,grade(v)}. (2.4)

A key property of the Krylov subspace methods is their ability to represent product of polynomials of
A by some vector v ∈ Rn in terms of section of A in Km, see Definitions 2.4 and 2.5.
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Definition 2.4: Restriction of an operator

The action of a matrix A can be thought of as a mapping

Rn → Rn : v 7→ Av

Thus the domain and codomain of A are Rn. Let X ⊂ Rn, we can consider the map

X → Rn : v 7→ Av

instead. The only difference from A is that the domain is X. This map is defined as the restriction
A |X of A to X.

Definition 2.5: Section of an operator

Let Q be a projector onto the subspace X. Then the section of the operator A onto X is defined
as QA |X .

Finally, we can state the polynomial representation property of the Krylov subspace methods.

Theorem 2.3: Polynomial representation

Let Qm be any projector onto Km and let Am be the section of A to Km, that is, Am = QmA |Km
.

Then for any polynomial q of degree not exceeding m− 1 [21, proposition 6.3],

q(A)v = q (Am)v

and for any polynomial of degree ≤ m,

Qmq(A)v = q (Am)v.

Theorem 2.3 shows that, for given restriction and projection matrices Qm and Pm to Km and a matrix
of the form Hm = QT

mAPm, q(Hm) represents the action of q(A) on v. Choosing Qm = Pm = Vm,
we obtain the Hessenberg matrix from Definition 2.2 and equation (A.2) resulting from Algorithm A.2.
Additionally, from the Cayley-Hamilton theorem, we know that m < n. Therefore, the dimension of
Km is smaller than n. It follows that Krylov subspaces are able to efficiently represent the product of
polynomials of A by v with the smaller dimensional matrix Hm. This is a crucial property for the CG
method as well, since the solution it generates contains a product of a polynomial of A and the initial
residual r0, see Theorem 2.4. Moreover, the Theorem 2.3 ensures that CG converges in a finite amount
of steps, which technically makes it an exact solution method instead of an iterative one.

2.1.2. CG algorithm
The CG method exists in the intersection of error projection methods and Krylov subspace methods, as it
is a projection method with the choice L = K = Km. We can derive the CG method starting from Arnoldi’s
method, see Algorithm A.1. Arnoldi’s method is much like Algorithm 1 in that it uses a Gram-Schmidt
orthogonalization procedure to obtain the basis V of the Krylov subspace Km and a projection step to
update the solution. Where Arnoldi’s method is applicable to non-symmetric matrices by performing a full
orthogonalization step, CG leverages the symmetry of A by doing a partial orthogonalization step. The
latter is possible, since the CG method only needs to maintain the orthogonality of the residuals rj with
respect to the previous residuals rj−1, rj−2 and not with respect to all previous residuals rj−3, . . . , r0.
The full derivation is discussed in the Appendix, Section A and results in Algorithm 2.
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Algorithm 2 Conjugate Gradient Method
r0 = b−Au0, p0 = r0, β0 = 0
for j = 0, 1, 2, . . . ,m do

αj = (rj , rj)/(Apj ,pj)
uj+1 = uj + αjpj

rj+1 = rj − αjApj

βj = (rj+1, rj+1)/(rj , rj)
pj+1 = rj+1 + βjpj

end for

A crucial property of the approximate solution that Algorithm 2 produces is given in Theorem 2.4

Theorem 2.4: CG approximate solution

The approximate solution at the mth iteration is given by

um = u0 +

m−1∑
i=0

ciA
ir0 = u0 + qm−1(A)r0, (2.5)

where qm−1(A) is the solution polynomial of degree m− 1 in A.

Proof. The CG method is a projection method with the choice L = K = Km. Hence, the approximate so-
lution um is an element of the affine Krylov subspace u0+Km(A, r0), see Definition 2.1. The result follows
from the fact that the Krylov subspace Km(A, r0) is spanned by the vectors {r0, Ar0, A

2r0, . . . , A
m−1r0}

and that the approximate solution um is a linear combination of these vectors. The coefficients of this
linear combination are given by the CG solution coefficients ci.

2.1.3. Convergence of CG
We derive a general bound for the error of the CG method in

Theorem 2.5: CG general error bound

Suppose we apply the CG method to the linear system Au = b with A SPD and the exact solution
u∗. Then, the error of the mth iterate em = u∗ − um is bounded as

||em||A < min
r∈Pm−1,r(0)=1

max
λ∈σ(A)

|r(λ)|||e0||A. (2.6)

Proof. Combining the results of Theorem 2.1 and Theorem 2.4 we get that the error of the mth iterate of
the CG algorithm em = u∗ − um satisfies

‖em‖A = ‖(I −Aqm−1(A))e0‖A = min
q∈Pm−1

‖(I −Aq(A))e0‖A = min
r∈Pm,r(0)=1

‖r(A)e0‖A, (2.7)

where rm(A) = I −Aqm−1(A) is the residual polynomial. The right-hand side of Equation (2.7) can be
further bounded by letting λi, ξi be the eigenvalues of A and the components of e0 in the eigenbasis of
A, respectively. Then

||r(A)e0||A =

√√√√ n∑
i=1

|r(λi)|2|ξi|2 ≤ max
λ∈σ(A)

|r(λ)|||e0||A,

which gives the desired result.
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Convergence criteria
We say that the CG method converges to a user-defined, absolute tolerance ε̃ if the error of the mth

iterate em satisfies
‖em‖A ≤ ε̃.

Theorem 2.5 allows us to define a criterion based on a relative tolerance ε; see Definition 2.6

Definition 2.6: Convergence criterion

The CG method is said to have converged to a user-defined, relative tolerance ε if

‖em‖A
‖e0‖A

≤ ε,

which according to Theorem 2.5 is satisfied when

min
r∈Pm−1,r(0)=1

max
λ∈σ(A)

|r(λ)| ≤ ε. (2.8)

However, the criterion in Definition 2.6 is not useful in practice, since it involves the usually unknown
error e. Luckily, Theorem 2.6 shows how we can relate the ratio of A-norms of the error to a similar ratio
of the 2-norms of the residuals.

Theorem 2.6: Residual convergence criterion

The CG method has converged to a user-defined, relative tolerance ε in the sense of Definition 2.6
if

‖rm‖2
‖r0‖2

≤ ε√
κ
, (2.9)

where κ =
λmax
λmin

is the condition number of A.

Proof. We have for i = 0, . . . ,m that

ei = A−1b− ui = A−1(b−Aui) = A−1ri.

Therefore, we can write
‖em‖A
‖e0‖A

=
rT0 A

−T rm
rT0 A

−T r0
=
‖rm‖A−1

‖r0‖A−1

,

where the last equality follows as A−1 is SPD. Now, by Theorem D.1 and using that the eigenvalues of
A−1 are the inverses of the eigenvalues of A, we can bound the A−1-norm of the residuals as

‖rm‖A−1 ≤ 1√
λmin
‖rm‖2,

and
‖r0‖A−1 ≥ 1√

λmax
‖r0‖2.

Hence, we can write
‖em‖A
‖e0‖A

≤
√
κ
‖rm‖2
‖r0‖2

.

To conclude, if we perform the CG method until the convergence criterion Equation (2.9) is satisfied, we
have

‖em‖A
‖e0‖A

≤
√
κ
‖rm‖2
‖r0‖2

≤ ε,

which gives the desired result.
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An important conclusion to draw from Theorem 2.6 is that if we set some relative tolerance for the
residuals εr such that we stop iterating when

‖rm‖2
‖r0‖2

≤ εr, (2.10)

then we get that the CG method has converged to a relative error tolerance ε given by

‖em‖A
‖e0‖A

≤ ε =
εr√
κ
.

This means that the CG method converges to a relative tolerance ε that is smaller than the relative
tolerance of the residuals εr by a factor of

√
κ. On the one hand, this allows us to set a convergence

criterion based on the residuals, which can actually be computed during CG iterations, as is the point of
Theorem 2.6. On the other hand, the convergence criterion based on the residuals is also pessimistic
by the same factor of

√
κ. In other words, the CG method performs more iterations to converge to a

stricter tolerance than the user-defined tolerance εr.
Moreover, using Theorem D.1 we can also bound the absolute error tolerance ε̃ of the CG method in

terms of the initial residual. That is, suppose we set εr as a convergence criterion, then we get

ε̃ ≤ εr√
κ
‖e0‖A =

εr√
κ
‖r0‖A−1 ≤ εr√

λmax
‖r0‖2. (2.11)

From Theorem 2.6 and choosing u0 = 0 ∈ Rn, we can derive a commonly implemented convergence
criterion

‖rm‖2
‖b‖2

≤ εb. (2.12)

In this case, the relative error tolerance ε achieved by the CG method in the sense of Definition 2.6 still
depends on the initial guess. Suppose, we choose a ‘good’ initial guess such that ‖r0‖2 ≤ ‖b‖2, then

‖rm‖2
‖b‖2

≤ ‖rm‖2
‖r0‖2

,

which means Equation (2.12) is more optimistic than Equation (2.10), requiring less CG iterations before
it is satisfied. However, if we choose a ‘bad’ initial guess such that ‖r0‖2 ≥ ‖b‖2, then Equation (2.12)
is more pessimistic than Equation (2.10) and will require more CG iterations before it is satisfied. For
a good (bad) initial guess we therefore achieve a relative error tolerance larger (smaller) than εb√

κ
. In

regard to the absolute error tolerance ε̃, we can write using Theorem D.1 that

‘bad’ initial guess ε̃ ≥ εb√
κ
‖e0‖A =

εb√
κ
‖r0‖A−1 ≥

√
λmin

λmax
εb‖r0‖2 ≥

√
λmin

λmax
εb‖b‖2,

‘good’ initial guess ε̃ ≤ εb√
κ
‖e0‖A =

εb√
κ
‖r0‖A−1 ≤ λmin√

λmax
εb‖r0‖2 ≤

λmin√
λmax

εb‖b‖2.

In other words, when we use Equation (2.12) as a convergence criterion, the absolute error tolerance
we achieve satisfies √

λmin
λmax

εb‖b‖2 ≤ ε̃ ≤ λmin√
λmax

εb‖b‖2. (2.13)

Comparing Equation (2.11) and Equation (2.13) we gain the insight that when

‖r0‖2 <
εb

εr
√
κ
‖b‖2,

using convergence criterion Equation (2.9) is guaranteed to give a more accurate result than Equa-
tion (2.12). On the other hand, if ‖r0‖2 is larger, then it might be better to use Equation (2.12) as
a convergence criterion. In practice, criterion Equation (2.12) is used, since its accuracy bound in
Equation (2.13) holds, independent of initial guesses.
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Convergence rate
Next to convergence criteria based on residuals, we can also try to find a solution to the minimization
problem in Equation (2.9), which gives us an expected convergence rate. Under the assumption of a
uniform distribution of the eigenvalues of A, we can further bound the error of the mth iterate of the CG
algorithm by a Chebyshev polynomial. This is done in Theorem 2.7 and is a direct consequence of
Theorem C.1.

Theorem 2.7: Convergence rate of CG

Let the linear system Au = b be as in Theorem 2.5 and let the eigenvalues of A be uniformly
distributed in the interval [λmin, λmax]. Then the error of the mth iterate of the CG algorithm satisfies

‖em‖A ≤ 2

(√
κ− 1√
κ+ 1

)m

‖e0‖A. (2.14)

Proof. We use the general expression for CG’s error from Theorem 2.5 in combination with the uniform
distribution of eigenvalues in [λmin, λmax] to write the error of the mth iterate of the CG algorithm as

‖em‖A ≤ min
r∈Pm−1,r(0)=1

max
λ∈[λmin,λmax]

|r(λ)|||e0||A, (2.15)

which by Theorem C.1 is solved by the real-valued scaled Chebyshev polynomial Ĉm from Definition C.2
with [a, b] = [λmin, λmax] and γ = 0. We obtain

‖em‖A ≤
1

dm(0)
‖e0‖A =

1

Cm(κ+1
κ−1 )

‖e0‖A, (2.16)

where κ =
λmax
λmin

is the condition number of A. Using the approximation from Equation (C.2) and setting

z̃ =
κ+ 1

κ− 1
we can write

1

dm(0)
=

1

Cm(z̃)
≤ 2(

z̃ +
√
z̃2 − 1

)m
= 2

(
z̃ −

√
z̃2 − 1

)m
= 2

(
κ+ 1− 2

√
κ

κ− 1

)m

= 2

(
(
√
κ− 1)2

(
√
κ− 1)(

√
κ+ 1)

)m

= 2

(√
κ− 1√
κ+ 1

)m

.

Substituting this into Equation (2.16) gives us the desired result.

From Theorem 2.7 and Definition 2.6 we get that the CG method converges to a user-defined, relative
tolerance ε if (√

κ− 1√
κ+ 1

)m

≤ ε

2
,

such that number of iterations m is bounded by

m ≤
⌈
logγ

( ε
2

)⌉
=
⌊
logγ

( ε
2

)
+ 1
⌋
, (2.17)

where γ =

√
κ− 1√
κ+ 1

< 1 is the CG convergence rate1. Equation 2.17 could in principle be used as a
stopping criterion, but it is not practical, since we generally do not know the condition number κ of A a
priori.

The iteration bound given in Equation (2.17) can be bounded further by using the expansion

ln

(
z − 1

z + 1

)
= −2z +O(z3),

1Note that the log(γ) is negative, flipping in the inequality.
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to write (√
κ− 1√
κ+ 1

)m

≤ exp

(
−2m√

κ

)
≤ ε

2
,

which can be rearranged to give

m ≤
⌈√

κ

2
ln

(
2

ε

)⌉
=

⌊√
κ

2
ln

(
2

ε

)
+ 1

⌋
= m1. (2.18)

Equation 2.18 is the one used in the introduction to discuss CG’s complexity.
At this point, it is necessary to note that even though the Chebyshev polynomial is optimal for the

conditions of Theorem 2.7, it is not guaranteed that the eigenvalues of A are uniformly distributed. In fact,
the eigenvalues of A are often clustered around some value. This means that the Chebyshev polynomial
is not optimal in this case, and we can actually expect a better convergence rate than Equation (2.14),
as we will see in Section 2.1.4. Even though the bounds from Equations (2.14) and (2.17) are not sharp
for non-uniform distributions, they are still correct as upper bounds.

For general distributions of eigenvalues we can still derive a useful property of the CG method.
Instead of the Chebyshev polynomial Ĉm we pose a test polynomial rtest of degree m that satisfies the
constraints of the minimization problem in Equation (2.6). This test polynomial is given by

rtest(t) =
m∏
i=1

λi − t

λi
.

Indeed, note that rtest ∈ Pm, rtest(0) = 1 and rtest(λi) = 0 for i = 1, 2, . . . ,m. We obtain for m = n = |N |
that

||en||A = ||e0||A max
λ∈σ(A)

|rtest(λ)| = 0,

which implies that CG solves the linear system in n iterations. Furthermore, if there are only k distinct
eigenvalues, then the CG iteration terminates in at most k iterations.

The strategy of posing a test polynomial rtest that satisfies the constraints of the minimization problem
to come up with a bound for the error of the CG method is not limited to the Chebyshev polynomial from
Theorem 2.7 or the test polynomial rtest. In fact, we can use any polynomial r of degree m that satisfies
the constraints of the minimization problem. Evaluating the maximum value of this polynomial on the
eigenspectrum of A would then result in an error bound. The problem is of course that we want to find a
polynomial that gives a sharp error bound. In Section 3.3 we discuss some recent literature using this
strategy to achieve sharper bounds than Equation (2.14) and in Chapter 4 we apply the same strategy
to find a bound for the error of the CG method for the case of clustered eigenvalues.

2.1.4. Influence of eigenvalue distribution on CG convergence
The bound on CG’s error in Theorem 2.7 and the convergence rate in Equation (2.17) are based on the
assumption that the eigenvalues of A are uniformly distributed. However, this is not always the case.
In this section we discuss the influence of the eigenvalue distribution on the convergence of the CG
method. In particular, we will see that if the eigenvalues are clustered around some value, then we can
expect a better convergence rate than Equation (2.14).

We can write the diagonalization of A as A = QDQT with Q being the orthonormal eigenbasis and
D the diagonal matrix of eigenvalues, since A is symmetric. The residual polynomial from Equation (2.7)
can then be expressed as rm(A) = I −Aqm−1(A) = Q(I −Dqm−1(D))QT = V rm(D)V T . As seen in
Equation (2.7), the error of the mth iterate of the CG algorithm is given by

||em||2A = ||rm(A)e0||2A,

and

||rm(A)e0||2A = eT0 rm(A)TArm(A)e0

= eT0 Qrm(D)QTQDQTQrm(D)QTe0

= (QTe0)
T rm(D)Drm(D)QTe0.
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We also have

QTe0 = QTA−1r0

= QTQD−1QT r0

= D−1ρ0,

where ρ0 = QT r0 ∈ Rn is the initial residual vector in the eigenvector basis of A. Therefore,

||rm(A)e0||2A = ρT0 D
−1rm(D)Drm(D)D−1ρ0

= ρT0 rm(D)D−1rm(D)ρ0

=

n∑
i=1

rm(λi)
2

λi
ρ20,i,

which gives

||em||2A =

n∑
i=1

rm(λi)
2

λi
ρ20,i. (2.19)

From Equation (2.19) we learn two important aspects about the convergence of the CG method.
First, loosely stated, we see that smaller eigenvalues of A lead to larger errors. This is because the
eigenvalues of A are in the denominator of Equation (2.19). Consequently, the second aspect is that the
error of the mth iterate of the CG algorithm is given by a weighted sum, in which the weights are given by
the components of the initial residual in the eigenbasis of A. As stated in Section 2.1.3, a ‘good’ initial
guess u0 leads to lower absolute error tolerance, i.e. faster convergence. Now, we learn that a good
initial guess u0 is one that has small components in the eigenbasis of A corresponding to the smallest
eigenvalues.

To obtain the residual polynomial rm, we can use the recurrence relation between the Lanczos
vectors vj in Theorem A.3 and expressions for the Hessenberg matrix coefficients in Equations (A.11)
and (A.12). In particular,

1

ηj+1
vj+1 = Avj − δjvj − ηjvj−1

= pj+1(A)v1,

where we define p−1(A) = 0, p0(A) = I. Note that it is correct to assume that a polynomial pj+1 exists
such that the above holds, as the Lanczos vectors form a basis for Km. This gives

ηj+1pj+1(A)v1 = Avj − δjvj − ηjvj−1,

= (Apj(A)− δjpj(A)− ηjpj−1(A))v1,

and thus we get the following recurrence relation between successive pj

pj+1(A) =
1

ηj+1
((A− δj)pj(A)− ηjpj(A)) . (2.20)

Furthermore, we have the following relation between the polynomials rj and pj [20, Section 3.2]

rj(A) = (I −Aqj−1(A))r0 =
pj(A)

pj(0)
r0. (2.21)

Using Equations (2.20) and (2.21) we can construct the rj for all iterations j = 0, 1, . . . ,m from the initial
residual r0. The result of this process is shown in Figure 2.2 for a system with n = 10, A = B+BT +nIn,
B ∈ Rn×n and random load vector b ∈ Rn. The CG method is run until a relative error tolerance of
ε = 10−6 is attained. This is ensured by calculating κ and using the criterion from Theorem 2.6.

The coefficients ci of the solution polynomial qj in Equation (2.5) can also be calculated from rj for
j = 0, 1, . . . ,m. To this end we suppose a function that extracts the coefficients of a polynomial p exists.
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Definition 2.7: Coefficient extraction function

Let p(t) =
m∑
i=0

cit
i be a polynomial of degree m. Then, the function coeff(p; i) extracts the ith

coefficient of p such that coeff(p; i) = ci.

Now using Equation (2.21), we can write the solution polynomial as

Aqm−1(A) = I − rm(A)

rm(0) = I =⇒ A

m−1∑
i=1

ci−1A
i = −

m∑
i=1

coeff(rm; i)Ai,

which implies
ci = −coeff(rm; i+ 1), i = 0, 1, . . . ,m− 1. (2.22)

O 4.0 8.0 12.0 16.0 20.0

−0.6

−0.3

0.0

0.4

0.7

1.0

r1(t) r2(t) r3(t) r4(t) r5(t)

Figure 2.2: Residual polynomials resulting from successive CG iterations

The behavior of the residual polynomials is crucial for understanding the convergence properties of
the CG method. In particular, the distribution of the eigenvalues of A significantly affects the convergence
rate, as illustrated in Figure 2.3.

We consider a system Autest = brandom with a known solution utest and random load vector brandom.
The system size n = 360 is kept relatively small and the system matrix A is chosen to equal diagonal
matrix D, making it numerically trivial to determine the exact solution utest = D−1brandom. For all plots
the lowest and highest eigenvalue in Figure 2.3 are λmin = 0.1, λmax = 0.9 such that κ = 9 and

γ =

√
κ− 1√
κ+ 1

=
1

2
. Furthermore, we use u0 = 0, set the relative error tolerance ε = 10−6 and use the

stopping criterion from Definition 2.6 directly, as e0 = utest − u0 is known. Alternatively, we could have
used the residual stopping criterion from Theorem 2.6, as κ is explicitly known in this case. This results
in an overall iteration bound from Equation (2.17) of

m ≤
⌈
logγ

(
10−6

2

)⌉
= 21.

Hence, the number of iterations required for convergence depends on the specific clustering of the
eigenvalues, as pointed out for example in [17, Section 2.3].
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Based on behavior exhibited in Figure 2.3 and from Theorem 2.2, we can reason what the best
and worst possible spectra for CG convergence are. That is, the best possible spectrum is one where
eigenvalues are tightly clustered around distinct values, while the worst possible spectrum is one where
the eigenvalues are evenly distributed across the whole range of the spectrum. This is illustrated in
Figure 2.4.

The first row in Figure 2.4 shows an instance of the super-linear convergence that CG can exhibit,
particularly when the eigenvalues are closely clustered. This is characteristic of CG is further touched
upon in Chapters 3 and 4.

nc = 2
O 1.0

−1.5

1.5 σ = 0.02

m = 12

O 1.0

−1.5

1.5 σ = 0.04

m = 14

nc = 3
O 1.0

−1.5

1.5
m = 14

O 1.0

−1.5

1.5
m = 17

nc = 4
O 1.0

−1.5

1.5
m = 17

O 1.0

−1.5

1.5
m = 20

rm rm−1 rm−2

Figure 2.3: Plots of the last three CG residual polynomials for different eigenvalue distributions. nc indicates the number of
clusters and σ is the width of the cluster. The size of the system N and the condition number κ(A) are kept constant. m indicates

the number of iterations required for convergence.
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Figure 2.4: Best and worst possible spectra for CG convergence. Top: eigenvalues tightly clustered on two distinct values (best
case). Bottom: eigenvalues evenly distributed across the spectrum (worst case). Left: eigenvalue distribution and corresponding

residual polynomials per iteration. Right: ratio ‖rm‖2/‖r0‖2 vs. iteration (solid), and relative error tolerance (dashed).

Convergence at relative error tolerance 10−6. For both spectra, ‖rm‖2
‖r0‖2

≤
10−6

3
, as per Theorem 2.6.

2.1.5. Preconditioned CG
Suppose M is some SPD preconditioner, then variants of CG can be derived by applying M to the
system of equations. The three main approaches are

PCG-1 left

M−1Au = M−1b

PCG-2 right

AM−1x = M−1b

u = M−1x;
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PCG-3 symmetric or split

M = LLT

L−1AL−Tx = L−1b

u = L−Tx.

Furthermore, all these variants are mathematically equivalent. Indeed, for the cases PCG-type 1
and PCG-type 2, we can rewrite the CG algorithm using the M− or M−1−inner products, respectively.
In either case the iterates are the same [21, Section 9.2]. For instance for the left preconditioned CG,
we define zj = M−1rj . Note that M−1A is self-adjoint with respect to the M−inner product, that is for
x,y ∈ Rn we have

(M−1Ax,y)M = (Ax,y) = (x, Ay) = (x,M−1Ay)M .

We use this to get a new expression for αj . To that end, we write

0 = (rj+1, rj)M

= (zj+1, rj)

= (zj − αjM
−1Apj ,M

−1rj)M

= (zj ,M
−1rj)M − αj(M

−1Apj ,M
−1rj)M

= (zj , zj)M − αj(M
−1Apj , zj)M

and therefore
αj =

(zj , zj)M
(M−1Apj , zj)M

.

Using pj+1 = zj+1 + βjpj and A-orthogonality of the search directions pj with respect to M−norm
(Apj ,pk)M = 0, we can write

αj =
(zj , zj)M

(M−1Apj ,pj)M
= (rj , zj)/(Apj ,pj).

Similarly, we can derive the equivalent expression for βj as

βj =
(zj+1, zj+1)M

(zj , zj)M
=

(rj+1, zj+1)

(rj , zj)
.

This gives the left preconditioned CG algorithm in 3.

Algorithm 3 Left preconditioned CG [21, Algorithm 9.1]
r0 = b−Au0, z0 = M−1r0, p0 = z0, β0 = 0
for j = 0, 1, 2, . . . ,m do

αj = (rj , zj)/(Apj ,pj)
uj+1 = uj + αjpj

rj+1 = rj − αjApj

zj+1 = M−1rj+1

βj =
(rj+1, zj+1)

(rj , zj)
pj+1 = zj+1 + βjpj

end for

Furthermore it can be shown that the iterates of CG applied to the system with PCG-type 3 results in
identical iterates [21, Algorithm 9.2].
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2.2. Schwarz methods
The content of this section is largely based on chapters 1, 2, 4 and 5 of [9] about Schwarz methods.

Ω1 Ω2

Ω1 ∩ Ω2

Figure 2.5: Keyhole domain Ω with two overlapping subdomains Ω1 and Ω2. The boundary of the keyhole domain is denoted by
∂Ω and the boundaries of the subdomains are denoted by ∂Ω1 and ∂Ω2. The overlapping region is denoted by Ω1 ∩ Ω2.

The original Schwarz method was a way of proving that a Poisson problem on some complex domain
Ω as in Figure 2.5 has a solution. {

−∆u = f in Ω,

u = 0 on ∂Ω.
(2.23)

Existence of a solution is proved by splitting up the original complex domain in two (or more) simpler,
possibly overlapping subdomains and alternatingly solving the Poisson problem on each of these
subdomains. The idea is that with enough iterations, the solutions on the subdomains will converge to a
solution on the original domain. The method is named after Hermann Schwarz, who first introduced
the method in 1869 [22] and has since been extended to more general problems and is now a popular
method for solving partial differential equations. Let the alternating Schwarz method be characterized
as in Definition 2.8.

Definition 2.8: Alternating Schwarz algorithm

The alternating Schwarz algorithm is an iterative method based on alternately solving subproblems
in domains Ω1 and Ω2. It updates (un

1 , u
n
2 )→

(
un+1
1 , un+1

2

)
by

−∆
(
un+1
1

)
= f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω, and

un+1
1 = un

2 on ∂Ω1 ∩ Ω2;

−∆
(
un+1
2

)
= f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

The original Schwarz algorithm is inherently sequential. That is, it solves the subproblems one after
the other, and thereby does not admit parallelization by default. However, a related algorithm can be
parallelized. The Jacobi Schwarz method is a generalization of the original Schwarz method, where
the subproblems are solved simultaneously and subsequently combined into a global solution [18]. In
order to combine local solutions into one global solution, an extension operator Ei, i = 1, 2 is used. It is
defined as

Ei(v) = v in Ωi, Ei(v) = 0 in Ω\Ωi.

Instead of looking for local solutions directly, one can also solve for local corrections stemming from a
global residual. This is the additive Schwarz method (ASM). It is defined in algorithm 4.
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Algorithm 4 Additive Schwarz method [9, Algorithm 1.2]
Compute residual rn = f −∆un.
For i = 1, 2 solve for a local correction vni :

−∆vni = rn in Ωi, vni = 0 on ∂Ωi

Update the solution: un+1 = un +

2∑
i=1

Ei(vi)
n.

The restricted additive Schwarz method (RAS) is similar to ASM, but differs in the way local corrections
are combined to form a global one. In the overlapping region of the domains it employs a weighted
average of the local corrections. In particular, a partition of unity χi is used. It is defined as

χi(x) =


1, x ∈ Ωi \ Ω3−i,

0, x ∈ ∂Ωi \ ∂Ω
α, 0 ≤ α ≤ 1, x ∈ Ωi ∩ Ω3−i

such that for any function w : Ω→ R, it holds that

w =
2∑

i=1

Ei(χiwΩi
).

The RAS algorithm is defined in algorithm 5.

Algorithm 5 Restrictive additive Schwarz method [9, Algorithm 1.1]
Compute residual rn = f −∆un.
For i = 1, 2 solve for a local correction vni :

−∆vni = rn in Ωi, vni = 0 on ∂Ωi

Update the solution: un+1 = un +

2∑
i=1

Ei(χiv
n
i ).

2.2.1. Schwarz methods as preconditioners
This section is largely based on Section 1.3.2 of [9]. Let Ni be the set containing all degrees of freedom
in the subdomain Ωi and Nsub the number of subdomains such that ni = |Ni| is the number of degrees
of freedom in the subdomain Ωi. The global set of degrees of freedom then satisfies

N = ∪Nsub
i=1Ni.

Furthermore, let Ri ∈ Rni×n, RT
i and Di be the discrete versions of the restriction, extension and

partition of unity operators, respectively. The latter Di is a discretized version of χi. We have for U ∈ Rn

U =

Nsub∑
i=1

RT
i DiRiU.

Note that Di is a diagonal matrix where the entries are the values of the partition of unity function χi

evaluated for each degree of freedom. Consider, for instance, a multidimensional FEM problem like
Problem 1.3, and let Ti be a conforming triangulation of the subdomain Ωi such that

Ωi = ∪τ∈Tiτ.

In this case
Ni = {k ∈ N|meas(supp(φk) ∩ Ωi) > 0},
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and we can define
µk = |{j|1 ≤ j ≤ Nsub and k ∈ Nj}|.

Finally, this leads to
(Di)kk =

1

µk
, k ∈ Ni. (2.24)

Originally the Schwarz method is a fixed point iteration [9, Definitions 1.12 and 1.13]

un+1 = un +M−1rn, rn = f −Aun,

where M equals, but is not limited to, one of the following matrices;

M−1
ASM =

Nsub∑
i=1

RT
i A

−1
i Ri, , (2.25a)

M−1
RAS =

Nsub∑
i=1

RT
i DiA

−1
i Ri, (2.25b)

where the local operator Ai = RiART
i is the restriction of A to the subdomain Ωi.

Although the original Schwarz method is not a preconditioner but a fixed-point iteration, the ASM and
RAS methods define linear operators that can be applied as PCG-type 1 and PCG-type 2 preconditioners
in Krylov subspace methods such as CG or GMRES, respectively. M−1

ASM is SPD and suitable for CG.
M−1

RAS may not be symmetric in general and is typically used with Krylov methods like GMRES.
Optimized Schwarz methods and corresponding preconditioners can also be constructed by including

more interface conditions (Robin or Neumann) in the subproblems. One such example is the Optimized
Restrictive Additive Schwarz method (ORAS) discussed in [9, Chapter 2].

2.2.2. Two-level additive Schwarz preconditioner
From the discussion in Section B.1 Motivation it is clear that the convergence of the Schwarz method
not only depends on the extent of the overlap between various subdomains, but on the frequency
components k in Equation (B.2) as well. That is, low frequency modes experience slower convergence.
To overcome this, we can perform a Galerkin projection of the error onto a coarse space that is spanned
by these low frequency modes. By solving

min
β
||A(u+RT

0 β)− f ||2,

where R0 is a matrix representing the coarse space. The solution to this problem is

β = (R0ART
0 )

−1R0r,

where r = f −Au is the residual and the matrix A0 = R0ART
0 is called the coarse operator.

The coarse space correction term can be added to the one-level Schwarz preconditioners Equa-
tions (2.25a) and (2.25b) to get the following preconditioners

MASM,2 = RT
0 A

−1
0 R0 +

Nsub∑
i=1

RT
i A

−1
i Ri, (2.26a)

MRAS,2 = RT
0 A

−1
0 R0 +

Nsub∑
i=1

RT
i DiA

−1
i Ri. (2.26b)

Coarse spaces
The coarse space R0 can be constructed in various ways. The classical way is called the Nicolaides space
[9, Section 4.2], which uses the discrete partition of unity operators Di as exemplified in Equation (2.24)
to get

R0 =

Nsub∑
i=1

RT
i DiRi. (2.27)
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Note that the coarse space in Equation (2.27) has a block-diagonal form, which allows for efficient
computation of the coarse operator.

Another way to construct R0 is based on the analysis of the local errors in the Schwarz method.
As seen in Section B.1 the local error in any subdomain produced by the original (one-level) Schwarz
method satisfies the homogeneous version of the original problem, i.e. right-hand side f = 0. At the
interface the local error has a Dirichlet boundary condition that equals the error of the neighboring
subdomain. Additionally, the convergence factor, e.g. ρ2D, depends on the frequency of the modes in
the local error. In particular, small frequencies appear to have slow convergence. The question thus
becomes how to get rid of these small frequency modes in the local errors of all subdomains.

One possible answer is the so-called Dirichlet-to-Neumann map [9, Definition 5.1]

Definition 2.9: Dirichlet-to-Neumann map

For any function defined on the interface u∂Ωj
: ∂Ωj 7→ R, we consider the Dirichlet-to-Neumann

map
DtNΩj

(
u∂Ωj

)
=

∂v

∂nj

∣∣∣∣
∂Ωj

,

where ∂Ωj := ∂Ωj\∂Ω and v satisfies

−∇ · (C∇v) = 0 in Ωj ,

v = u∂Ωj
on ∂Ωj ,

v = 0 on ∂Ωj ∩ ∂Ω.

(2.28)

The Dirichlet-to-Neumann map essentially solves for an error-like variable v that satisfies the Dirichlet
local interface (or global boundary) conditions. DtN then maps the interface condition to the normal
derivative of v on the interface, i.e. the Neumann condition. Now, as stated above and illustrated in [9,
Figure 5.2], the low frequency modes of the error correspond to those modes that are nearly constant
accross an interface, for which the Neumann condition is close to zero. So the problem of tackling slowly
convergent modes in the error of the Schwarz method is equivalent to a problem of finding eigenpairs
with small eigenvalue of the DtN operator. We can then use these eigenpairs to construct a coarse
space.

Hence we aim to solve the eigenvalue problem

DtNΩj
(v) = λv,

which can be reformulated in the variational form. To that end let w ∈ H1(Ωj) with w∂Ωj∩∂Ω ≡ 0 be a
test function. Multiply both sides of Equation (2.28) by w, integrate over Ωj and apply the divergence
theorem to get ∫

Ωj

C∇v · ∇w −
∫
∂Ωj

C ∂v

∂nj
w = 0, ∀w.

Then, using that v = u∂Ωj
on ∂Ωj we get that ∂v

∂nj
= DtN(v) = λv on ∂Ωj . This leads to the following

variational eigenvalue problem

Find (v, λ) s.t.
∫
Ωj

C∇v · ∇w − λ

∫
∂Ωj

Cvw = 0, ∀w. (2.29)

In Section B.2 Construction of two-level additive Schwarz preconditioner the full construction of
the coarse space R0 is detailed, including the use of the Dirichlet-to-Neumann map to identify and
eliminate low-frequency modes in the local errors. Then, in Section B.3 Convergence of two-level
additive Schwarz system the convergence properties of the two-level additive Schwarz method are
discussed. By combining and simplifying the Equations (B.4), (B.6) and (B.7), we obtain [9, Theorems
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5.16 and 5.17]

κ(M−1
ASM,2,NicoA) . C

(
Cmax
Cmin

)(
C ′ +

H

δ

)
. (2.30a)

κ(M−1
ASM,2,DtNA) . C

(
Cmax
Cmin

)(
C ′ +

1

λcδ

)
, (2.30b)

where δ is the size of the overlap between subdomains, H the typical size of the subdomains, Cmax and
Cmin are the maximum and minimum values of the coefficient function C in Equation (2.28), respectively,
C and C ′ are constants that depend on the geometry of the problem and λc is related to the cut-off
eigenvalue for the eigenpairs of the Dirichlet-to-Neumann map operator. The first bound Equation (2.30a)
is for the Nicolaides coarse space, while the second bound Equation (2.30b) is for the Dirichlet-to-
Neumann coarse space.

Notice that the bounds Equations (2.30a) and (2.30b) are both robust to the scaling in the fine-mesh
size, that is they do not contain any terms depending on h. This is an important feature of the two-level
Schwarz method.

Additionally, the bounds in Equations (2.30a) and (2.30b) contain the contrast of the coefficient
function C, which plays a crucial role in the convergence behavior of the two-level additive Schwarz
method, as explained in [13]. In high-contrast problems, where the ratio Cmax

Cmin
is large, the condition

number of the preconditioned system can become very large, leading to a theoretically predicted slow
convergence of the PCG method via Equations (1.5) and (2.18).

Fortunately, the bound in Equation (2.30b) contains the reciprocal of the cut-off eigenvalue λc, which
can help mitigate the effects of high contrast, result in a lower condition number and faster convergence
of PCG than for the Nicolaides coarse space. In this case, the two-level additive Schwarz method
with the Dirichlet-to-Neumann coarse space is defined to be robust with respect to the contrast of the
coefficient function C, as the condition number does not depend on the contrast.

However, in most cases it is not possible to select λc such that the contrast fully cancels in the
condition number bound. As a consequence, the preconditioned system maintains a large condition
number and its spectrum contains a spectral gap. The convergence of these kinds of systems is the
main concern of this thesis.



3
Related work

3.1. The spectral gap arising in high-contrast problems
In Problem 1.1, high-contrast C(x) (e.g., 106 in conductive channels vs. 10−6 in barriers) means diffusion
concentrates in high-permeability regions, while low-permeability zones resist it. This heterogeneity
introduces modes (eigenvectors) corresponding to small eigenvalues on the order of the inverse of the
high conductivity, i.e. O(10−6). In fact, the number of these eigenmodes in any (sub)domain is equal to
the number of connected conductivity regions [12]. High-contrast C(x) thus splits the eigenspectrum of
the stiffness matrix into two parts: a low-frequency and high-frequency part, resulting in a spectral gap.

3.2. Methods for high-contrast problems
The small eigenvalues of the stiffness matrix A in Problem 1.1 lead to a large condition number κ, which
in turn leads to slow convergence of the CG method through Theorem 2.7. Modern techniques effectively
shrink the size of the spectral gap or try to (partly) remove the small eigenvalues from the spectrum with
the aim of reducing κ. Below we discuss the use of multiscale solvers and or construct a coarse space
that are robust to high contrast.

3.2.1. MsFEM
The multiscale finite element method (MsFEM), as presented in [16], constructs local basis functions
spanning Vh and obtained from a homogeneous version of Problem 1.1. These basis functions are
used to construct the stiffness matrix as in Problem 1.3. The resulting system is then solved using
a multi-grid method. Though Hou and Wu show that MsFEM performs just as well as or better than
traditional FEM depending on whether the computational grid can resolve the fine-scale features of C,
MsFEM still solves a global problem. MsFEM was originally designed as a discretization method. Its
use as an upscaling method only became apparent later.

As we have seen Section 2.2.2, we can also construct preconditioners for the purpose of dealing with
high-contrast C. That is, we construct the traditional FEM basis functions as in Problem 1.3, decompose
the domain into subdomains Ωi and define coarse and local operators A0, Ai as in Equations (2.26a)
and (2.26b). The basis functions constructed using MsFEM can then be used for the construction of the
coarse space R0, akin to how the coarse space is constructed; based on the eigenmodes of the DtN in
Item ASM type II coarse space.

In [11, 13] a separation of scales with conforming fine and coarse triangulations, denoted as Th
and TH is introduced and resulting coarse basis functions are required to satisfy five key assumptions
(C1-C5) in [13, Section 2.2]. The coarse bases are constructed by homogeneous version of the system
problem Equation (1.1) on a coarse grid element K ∈ TH .

−∇ · (C∇φe
c,i) = 0, ∀x ∈ K, (3.1)

φe
c,i(x) = µe

i (x), ∀x ∈ e, ∀e ∈ ∂K, (3.2)

where e is an edge of the coarse grid element K. The boundary conditions, µe
i (x) on edge e ∈ K,

for this problem should satisfy conditions M1-M4 [13, Section 4] and are chosen to be either a linear

24
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interpolation of the nodal values of C, denoted as Ce, or a harmonic extension thereof on the coarse grid
element K. The latter satisfies

µe
i (x) =

(∫
e

Ceds
)−1 ∫ x

e

Ceds, ∀x ∈ e, (3.3)

and is similar to the oversampling method used in [16]. The restriction operator R0 is then derived from
these basis functions, as given in Equation 2.12 of [13]. The method introduces robustness indicators,
π(α) and γ(α), to quantify the stability of the coarse space and its effectiveness in capturing fine-scale
features. Similar to Equations (B.4) and (B.7), we get [13, Theorem 3.9]

κ(M−1
ASM,2A) / π(C)γ(1) Nsub

max
i

(
1 +

Hi

δ

)
+ γ(C). (3.4)

In particular, for linearly interpolated boundary conditions,

K(η) = {x ∈ K|C(x) ≥ η} ,

and arbitrary η ≥ 1 the authors obtain [13, Theorem 4.3]

γL(C) / max
K∈TH

{
η

HK

ε(η,K)

}
,

which does not grow unboundedly with the contrast of C as long as ε(η,K) = dist(K(η), δK) >
3h

2
,

i.e. as long as C is well-behaved near the boundary of K. However, even for max
x∈K(η)

→∞, i.e. badly

behaved C, the authors show that by the choosing oscillatory boundary condition from Equation (3.3) for
the construction of the coarse bases γOsc(C) remains bounded. Therefore, for an MsFEM coarse space
spanned by coarse basis functions constructed from Equation (3.2) with µe

i (x) as in Equation (3.3), the
condition number bound Equation (3.4) is bounded and does not grow unboundedly with the contrast of
C. In other words, MsFEM is robust to high-contrast C.

3.2.2. ACMS
The approximate component mode synthesis (ACMS) method, detailed in [14], is closely related to
MsFEM in that it uses similar fine and coarse scale grids. The coarse problem is decomposed into
two components: uc = uI + uΓ, where uI and uΓ represent the interior and interface contribution,
respectively. ACMS extends MsFEM by incorporating vertex-specific, edge-specific, and fixed-interface
basis functions, where MsFEM corresponds solely to the vertex-specific functions. The vertex-specific
basis functions are defined as harmonic extensions of trace values on the interface set Γ. Edge-specific
basis functions, on the other hand, arise from an eigenvalue problem defined on an edge e, while
fixed-interface basis functions correspond to eigenmodes of an eigenvalue problem within a coarse
element T .

ACMS supports two types of coarse spaces, depending on whether Dirichlet (DBC) or Neumann
(NBC) boundary conditions are applied. Under DBCs and similar to the coarse space constructed
using the DtN in Section 2.2.2, MsFEM basis functions are combined with edge-specific basis functions
that match on a shared edge eij between subdomains Ωi and Ωj . These functions are constructed
from the harmonic extension of eigenmodes defined on the edge eij , with a scaled bilinear form on
the right-hand side. Only eigenmodes corresponding to eigenfrequencies below a set tolerance are
retained. With NBCs, both MsFEM and edge-specific basis functions are modified. MsFEM functions
remain defined on an edge eij and satisfy a Kronecker-delta vertex condition but are now obtained via a
generalized eigenvalue problem on a slab of width kh, denoted ηkhij . The edge-specific functions are
similarly defined through a generalized eigenvalue problem on the slab but without enforcing DBCs.
Solving these eigenvalue problems can be made computationally efficient by employing mass matrix
lumping techniques.

3.2.3. GDSW
The Generalized Dryja-Smith-Widlund (GDSW) method, introduced by [7] and like MsFEM and ACMS,
partitions the computational domain into non-overlapping subdomains and further divides degrees
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of freedom (DOFs) into interior and interface nodes. The only required input for the method is a
coarse space G. G corresponds to the null space of the problem. In the case of linear elasticity, G
spans the linearized rigid body modes, while for the diffusion problem the null space is a constant
function. The restriction operators RΓ and RI project onto interface and interior DOFs, respectively, with
subdomain-specific versions such as RΓj .

By ordering the DOFs of into interface Γ and interior I nodes we can get [1, Equation 4, 5]

R0 =

(
RI

RΓ

)
=

(
−A−1

II AIΓ

IΓΓ

)
RΓ, (3.5)

in which RΓ and RI = −A−1
II AIΓRΓ are the restriction operators to the interface and interior nodes,

respectively. Note that Equation (3.5) is the discrete version of solving the problem in Equation (3.2),
known as discrete harmonic extension. The coarse solution on the interface set is subsequently defined
as

u0,Γ =

Nsub∑
j=1

RT
Γj
GΓj

qj = RΓq,

where q represents the coarse space coefficients. The complete coarse solution is then given by

u0 = RT
Γu0,Γ +RT

I u0,I ,

RGDSW
The RGDSW method alters the GDSW preconditioner by reducing the coarse space dimension through
a partitioning strategy based on nodal equivalence classes that associates each coarse mesh vertex with
interface components formed by adjacent edges and faces, distributed among nearby vertices [8]. This
reduction in the dimension of the coarse space is achieved without compromising the robustness of the
condition number estimate, ensuring that the preconditioner’s convergence properties are maintained
[15].

3.2.4. AMS
The Algebraic Multiscale Solver (AMS) method, introduced in [19, 24] and further studied in [1] relies on
domain decomposition into non-overlapping subdomains, followed by a further subdivision of interface
nodes into edge, vertex, and face nodes (in 3D). The method eliminates lower diagonal blocks in the
system matrix to facilitate efficient computation. Like (R)GDSW, AMS employs the energy minimization
principle to obtain RI , ensuring an optimal coarse space representation.

3.3. CG convergence in case of non-uniform spectra
The literature in the previous Section 3.2 mostly aims to control the condition number of the preconditioned
system M−1

ASMA, which according to Equations (2.14) and (2.17) controls the error and number of iterations
in the CG method, respectively. However, we know from Section 2.1.4 that the condition number is not
the only factor influencing convergence. Excessive work has been done on the convergence rate of the
CG method, especially in the context of non-uniform spectra. The following papers provide valuable
insights into this topic.

First, in [2] a clever use of Chebyshev polynomials is demonstrated to obtain a sharpened CG
iteration bound for the case of two clusters of eigenvalues, i.e. an eigenspectrum with a spectral gap.
The authors pose a polynomial that satisfies the minimization problem in Theorem 2.7 and derive an
error bound from the maximum of that polynomial on the eigenspectrum of A, a strategy described
at the end of Section 2.1.3. In Sections 4.1 and 4.4 the arguments made in [2] are summarized and
extended to the case of multiple clusters of eigenvalues, respectively.

Second, in [23] the convergence rate of CG method is investigated in finite precision arithmetic for
the family of clusterpoint distributions with parameter 0 ≤ ρ ≤ 1

λi = λmin +
i− 1

n− 1
(λmax − λmin)ρ

n−i, i = 1, . . . , n.

The authors show that the convergence rate strongly depends on the eigenvalue distribution of the
matrix A. Their experiments reveal that in the case of inexact arithmetic there exists a critical value of ρ
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at which the number of iterations required for convergence greatly exceeds the degrees of freedom n,
even when the condition number is small κ = 100. Moreover, this critical value shifts with increasing
precision, so that higher precision reduces the impact of rounding errors. The study further shows
that the CG behavior is consistent across different algorithm variants (standard CG, SYMMQL, Jacobi
acceleration, etc.). These results suggest that certain eigenvalue distributions make CG highly sensitive
to numerical errors, and they underline the importance of preconditioners that can modify the eigenvalue
distribution to improve CG robustness in practical applications.

Third, in [5] the authors provide a proof of CG’s superlinear convergence. This proof is fundamentally
different from the polynomial-based strategy that is used in the work of [2], in that this proof is based in the
field of logarithmic potential theory (LPT). LPT is used to solve the minimization problem in Theorem 2.7
using a strategy that is akin to how charges distribute themselves over a conductor, the interested reader
is referred to [10].

In their analysis of superlinear convergence, Beckermann and Kuijlaars use concepts from logarithmic
potential theory. Their framework begins by modeling the eigenvalues of a family of matrices not as
discrete points, but as a continuous distribution, or measure, σ on a compact set S. The core of their
proof recasts the polynomial minimization problem from Theorem 2.5 into an equivalent problem in
potential theory. This involves finding a special probability measure, µt, that minimizes the logarithmic
energy

I(µ) =

∫ ∫
log

1

|λ− λ′|
dµ(λ′)dµ(λ)

under constraints related to the eigenvalue distribution σ and the normalized iteration count t = m/n.
The solution to this energy minimization problem identifies a shrinking family of compact sets, S(t), which
represents the ”effective” spectrum that the CG polynomial must handle at iteration m. As iterations
proceed, t increases, and this effective spectral set S(t) becomes smaller.

The resulting asymptotic convergence rate is then described using the Green’s function, gS(t),
associated with these shrinking sets [5, Equations 2.22-2.31]. The Green’s function is a fundamental
tool in potential theory that quantifies how quickly polynomials can decay away from a given set. It is
defined in terms of the set’s logarithmic capacity, cap(S(t)). The logarithmic capacity can be intuitively
understood as a measure of the ”size” of the set S(t) from the perspective of polynomial approximation;
a smaller capacity implies that it is easier to find a polynomial that is small across the entire set. As
the effective spectrum S(t) shrinks with the iteration count, its capacity decreases, leading to a sharper
error bound and explaining the observed superlinear convergence.

In particular, Beckermann and Kuijlaars derive a new asymptotic error bound that is sharper than the
standard estimate. This new bound is expressed via the integral [5, Equation 1.8]:

1

m
log

(
min

r∈Pm, r(0)=1
max

λ∈σ(A)
|r(λ)|

)
. −1

t

∫ t

0

gS(τ)(0)dτ, (3.6)

where t = lim
n→∞

m

n
.

As shown by Equation (3.6) and Theorem 2.1 in [3], the error in Equation (3.6) is bounded by a
term that decreases more quickly as the number of iterations increases. Under additional separation
conditions among eigenvalues (see Theorem 2.2), the bound is proven to be asymptotically sharp.
Moreover, for matrices with equidistant eigenvalues, an explicit formula [5, Corollary 3.2 and Equation
3.11] confirms the improved bound and aligns with observed CG error curves. These findings help to
explain why, in practice, CG converges faster than predicted by traditional condition number bounds.

In [3] the authors present a proof of the sharpness of the CG iteration bound in Equation (3.6). The
paper shows that one cannot beat the asymptotic error estimate bound obtained earlier. It analyzes
a strategy in which zeros of the polynomial are set at all eigenvalues outside a chosen set S. The
authors prove that any such polynomial cannot yield a better asymptotic error bound than the one given
in Equation (3.6). Under conditions that are natural for problems arising from discretized PDEs on the
eigenvalue distribution, the bound is demonstrated to be sharp, and the discussion includes cases
where equality in the bound is reached.

Finally, in [4] the authors extend the results of [5] to cases where the eigenvalue distribution is
asymptotically uniform. They show that even when the asymptotic distribution equals an equilibrium
distribution, the CG method can exhibit superlinear convergence. In this work, the superlinearity stems
from the particular choice of the right-hand side b. The authors present a family of examples based
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on the finite difference discretization of the one-dimensional Poisson problem, where they observe
superlinear convergence according to the chosen right-hand sides.



4
Methodology

The methods described in this chapter are adapted from the ideas discussed in [2, Section 4]. Therein
Axelsson presents a sharpened CG iteration bound for two characteristic eigenspectra σ1,2. The
eigenspectrum consisting of two disjoint clusters σ1 and the two-cluster bound m2 developed for it
in Section 4.1 are central to this thesis. Alongside the treatment of the two-cluster eigenspectrum
is the analysis of the related tail-cluster eigenspectrum. Remarkably, the CG iteration bound for the
tail-cluster eigenspectrum is also contained within the bound m2. In Section 4.2 the two-cluster bound
is compared to its classical predecessor m1 from Equation (2.18), where a necessary condition is
derived for which m2 < m1. Similarly, in Section 4.3 the tail-cluster variant of m2 is compared to m1,
resulting in another necessary condition for m2 < m1. The two-cluster bound is then generalized to a
multiple-tail-cluster bound in Section 4.4. Finally, in Section 4.5 the conditions obtained in Sections 4.2
and 4.3 and the generalized multiple-tail-cluster bound are combined with an eigenspectrum partitioning
algorithm culminating in Algorithms 9 and 11, yielding two novel and sharpened CG iteration bounds.

4.1. Two cluster case
On the eigenspectrum of A, consider two intervals [a, b] and [c, d] with 0 < a < b < c < d such that all
eigenvalues of A are contained in the union of these two intervals. Additionally, we have κ(A) =

d

a
. We

treat the following two cases simultaneously

σ1(A) = [a, b] ∪ [c, d] (4.1)

σ2(A) = {λ1, . . . , λNtail} ∪ [c, d], (4.2)
where Ntail is the number of distinct eigenvalues in the tail, λ1 = a and λNtail = b. The first case is a
two-cluster eigenspectrum, while the second case has one right cluster and a tail of eigenvalues to the
left of it. These characteristic eigenspectra are illustrated in Figure 4.1.

λ
0 1

a b c d

Figure 4.1: Eigenspectrum of A with two clusters (above) and a combination of a tail and cluster (below).

The CG error Equation (2.6) suggests we look for a polynomial rm2 of degree m2 that satisfies the
constraints of the minimization problem in order to find an iteration bound m < m2. In other words, we
do not solve the minimization problem directly, but we make a clever selection of the polynomial rm2

that satisfies the constraints. As a consequence, the actual minimizing polynomial might require a lower
degree m to satisfy the same relative error tolerance ε. Therefore, the degree m2 we find is at least as
large as the actual number of iterations required to achieve the desired relative error tolerance ε.

Axelsson suggests we use not one monolithic residual polynomial function, but a multiplication of two
residual polynomial functions r̂(i)p (x) and r̂m2−p(x) for the two clusters. The superscript (i) corresponds

29
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to the two eigenspectra described above. The residual polynomial functions are constructed using the
(transformed) Chebyshev polynomials from Definitions C.1 and C.2 with γ = 0 as follows

r̂(i)p (x)


Ĉp, if i = 1
p∏

j=1

(1− x/λj), if i = 2, p = Ntail
(4.3)

and
r̂m2−p(x) = Ĉm2−p, (4.4)

Indeed, the product rm2 = r̂pr̂m2−p ∈ Pm2 . Hence, we can use the residual polynomial functions to
bound the error at the mth iterate. Now, we obtain the following intermediate bounds

max
λ∈[a,b]

|rm2
(λ)| ≤ max

λ∈[a,b]
|r̂(i)p (λ)| max

λ∈[a,b]
|r̂m2−p(λ)| ≤ max

λ∈[a,b]
|r̂(i)p (λ)|, and (4.5a)

max
λ∈[c,d]

|rm2(λ)| ≤ max
λ∈[c,d]

|r̂(i)p (λ)| max
λ∈[c,d]

|r̂m2−p(λ)| ≤ max
λ∈[c,d]

|r̂p(λ)|/Cm2−p

(
d+ c

d− c

)
(4.5b)

where the Equation (4.5a) follows from the fact that |r̂m2−p(x)| < 1 ∀x ∈ [a, b] and Equation (4.5b) from∣∣∣∣Cm2−p

(
d+ c− 2x

d− c

)∣∣∣∣ < 1 ∀x ∈ [c, d].

Furthermore, using Equation (C.2), we have

1

Ck

(
z1+z2
z1−z2

) ≤ 2

(√
z2 −

√
z1√

z2 +
√
z1

)k

, for z1 > z2 > 0 and k ∈ N+, (4.6)

and

max
λ∈[a,b]

|r̂(i)p (λ)| ≤


2

(√
b−
√
a√

b+
√
a

)p

= η1, if i = 1,(
b

a
− 1

)p

= η2, if i = 2, p = Ntail,

(4.7)

Note that if i = 1 we can determine p by requiring that the maximum of the residual polynomial function
r̂(i)p in [a, b] is equal to ε. This gives the following equation

p ≤

⌊
1

2

√
b

a
ln

2

ε
+ 1

⌋
(4.8)

Also note that for i = 2 r̂(2)p (λ) = 0 < ε for all eigenvalues λ ∈ [a, b].
Next, r̂(i)p in [c, d] is bounded by its maximum value within [a, b] multiplied by the polynomial that is

the fastest growing polynomial in Pp outside- and bounded below 1 within [a, b]. This polynomial is again

the (transformed, but unscaled) Chebyshev polynomial Cp

(
2x− b− a

b− a

)
. Therefore,

max
λ∈[c,d]

|r̂(i)p (λ)| ≤ ηiCp

(
2d− b− a

b+ a

)
,

with ηi as defined in Equation (4.7).
At this point we have ensured that max

λ∈[a,b]
|rm2
| is bounded by ε using Equation (4.5a). So it remains

to bound max
λ∈[c,d]

|rm2 | in Equation (4.5b). Using above results we can write

max
λ∈[c,d]

|rm2(λ)| < ε,

if we require that
ηiCp

(
2d− b− a

b− a

)
/Cm2−p

(
d+ c

d− c

)
< ε. (4.9)
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Using that for x1, x2, x3 ∈ R+ with x1 > x3 and z =
x1 − x2

x3

Cp(z) ≤
(
z +

√
z2 − 1

)p
=

x1 − x2

x3
+

√[
x1 − x2

x3

]2
− 1

p

≤

x1

x3
+

√[
x1

x3

]2
− 1

p

≤
(
2x1

x3

)p

,

and substituting x1 = 2d, x2 = b+ a and x3 = b− a we obtain the following inequality

ηi

(
4d

b− a

)p

/Cm2−p

(
d+ c

d− c

)
< ε. (4.10)

Moreover,

ηi

(
4d

b− a

)p

=


2

(√
b−
√
a√

b+
√
a

4d

b− a

)p

, if i = 1(
b− a

a

4d

b− a

)p

, if i = 2,

=


2

(
4d

b+ 2
√
ab+ a

)p

, if i = 1(
4d

a

)p

, if i = 2,

≤ 2


(
4d

b

)p

, if i = 1(
4d

a

)p

, if i = 2,

We can therefore require that the bound in Equation (4.10) is satisfied if we have

1/Cm2−p

(
d+ c

d− c

)
≤ ε

2
(

4d
ei

)p ,
where

ei =

{
b, if i = 1

a, if i = 2.

Again using Equation (4.6) and solving for the degree m2 − p we obtain

m2 − p ≤ 1

2

√
d

c

(
ln

(
2

ε

)
+ p ln

(
4d

ei

))
,

which leads to the following Theorem 4.1 for the number of iterations [2, Equation 4.4]
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Theorem 4.1: Two-cluster CG iteration bound m2

Given a matrix A ∈ Rn×n with eigenspectrum σ1(A) or σ2(A) as defined in Equations (4.1)
and (4.2) respectively, the number of CG iterations m required to achieve a relative error tolerance
ε is bounded by

m2 =

⌊
1

2

√
d

c
ln(2/ε) +

(
1 +

1

2

√
d

c
ln(4d/ei)

)
p

⌋
, (4.11)

where

1 ≤ p ≤ min

(⌊
1

2

√
b

a
ln

2

ε
+ 1

⌋
, Ntail

)
.

4.2. Performance ratio of the two-cluster bound
In this section we assume that we are dealing with an eigenspectrum of the form σ1(A), i.e. we are only
treating case 1. For this case, we compare the new bound in Equation (4.11) to the (approximated)
classical bound in Equation (2.18). We will see that the new bound is not absolutely sharper than the
classical one. However, we will derive an approximate, though accurate, criterion (see Equation (4.22))
that allows us to discern under what conditions the new bound is sharper.

To that end, we restate Equation (2.18) here for easy reference

m1(κ) =

⌊√
κ

2
ln

(
2

ε

)
+ 1

⌋
.

Note that ε is generally a predetermined constant. Therefore, we leave it out as an argument of m1

and m2. We also rewrite the bound from Equation (4.11) in terms of the left and right cluster condition
numbers κl =

b

a
> 1 and κr =

d

b
> 1 as

m2(κ, κl, κr) =

⌊√
κr

2
ln(2/ε) +

(
1 +

√
κr

2
ln

(
4κ

κl

))
p

⌋
.

Then, substituting p gives

m2(κ, κl, κr) =

⌊
1 +

√
κr

2
ln

(
4κ

κl

)
+

1

2
ln

(
2

ε

)(
√
κl +

√
κr +

√
κlκr

2
ln

(
4κ

κl

))⌋
. (4.12)

Next we introduce a measure of performance as the ratio of the number of iterations predicted by the
classical bound to that predicted by the sharpened bound

P =
m1

m2
. (4.13)

Consequently, the goal of this section is two-fold; determine the minimum value of P and the conditions
on κ, κl, κr for which P > 1.

4.2.1. Uniform spectrum performance
In order to see that the new bound is not absolutely sharper than the classical one, we determine
the minimum value of P . We know that the product of two lower order Chebyshev polynomials is not
optimal for a uniform eigenspectrum, cf. the proof of Chebyshev optimality outlined in Theorem C.1.
Therefore, we assume that the minimum value of P is attained for the case of a uniform eigenspectrum,
i.e. a < b = c < d, and we can set κ = κlκr, which yields

m2(κ = κlκr, κl, κr) =

1 +
√
κr

2
ln (4κr) +

√
κ

2
ln

(
2

ε

)
︸ ︷︷ ︸
=m1(κlκr)−1

 1
√
κl

+
1
√
κr

+
ln (4κr)

2︸ ︷︷ ︸
:=q(κl,κr)


 . (4.14)
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We recognize the classical CG bound as the factor in front of the last term in Equation (4.14). Now, the
performance ratio P in Equation (4.13) satisfies

P (κ = κlκr, κl, κr) = Puniform(κl, κr) =

(
1 + 1

2

√
κr ln(4κr)

m1(κlκr)
+

m1(κlκr)− 1

m1(κlκr)
q(κl, κr)

)−1

, (4.15)

which can be expanded as

Puniform(κl, κr) =
m1(κlκr)− 1

m1(κlκr)

[
q(κl, κr)

−1 . . .

−
1 + 1

2

√
κr ln(4κr)

(m1(κlκr)− 1)q(κl, κr)2
+O

(
1

(m1(κlκr)− 1)2q(κl, κr)3

)]
.

Next, we require that κr & 5, for which it holds that 1
√
κl

+
1
√
κr

<
ln (4κr)

2
, ∀κl ≥ 1. This requirement

on κr ensures that we can expand q(κl, κr)
−1 as follows

q(κl, κr)
−1 =

1

ln(4κr)
− 1

ln(4κr)2

(
1
√
κl

+
1
√
κr

)
+O

(
1

(ln(4κr))3

(
1
√
κl

+
1
√
κr

)2
)
,

which gives the performance for a uniform eigenspectrum as

Puniform(κl, κr) ≈
1

ln(4κr)

(
1− 1
√
κl ln

(
2
ε

))

− 1

ln(4κr)2

(
1
√
κl

+
1
√
κr

+
1

√
κlκr ln

(
2
ε

))

+O

(
1

ln(4κr)

[
1

ln(4κr)2
+

1

κlκr ln
(
2
ε

)2
])

. (4.16)

The approximate equality in Equation (4.16) stems from the fact that

m1(κlκr)− 1

m1(κlκr)
≈

κlκr≥5
1.

Equation 4.16 shows that the uniform (minimum) performance Puniform(κl, κr) tends in its leading
order term to 1/ ln(4κr) as κl →∞. That is, let P (i)

uniform denote the i-th order expansion of Equation (4.16),
then

Puniform(κl, κr) .
1

ln(4κr)
= P

(0)
uniform(κr).

Only for small κl =
κ

κr
does the first order term become significant. Additionally, Equation (4.16) shows

that for increasing κr we expect a decreasing minimum performance. We also find that the new bound
m2(κ, κl, κr) is not absolutely sharper than the classical bound m1(κ). In fact, based on the terms in the
expansion of Equation (4.16) we can say that

P
(1)
uniform(κl, κr) . Puniform(κl, κr) . P

(0)
uniform(κr) < 1, (4.17)

4.2.2. Performance threshold
Now that we have established that the new bound is not absolutely sharper than the classical one, we
can determine the conditions under which the new bound is sharper. We know that for κ = κrκl the
performance ratio P is given by Equation (4.15). We now solve the inverse problem, i.e. for what κ is
P ≥ 1? This gives the following inequality

m1

m2
≥ 1⇒ m1(κ) ≥ m2(κ, κl, κr),
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which can be rewritten as√
κ

κlκr
≥ 1

2
ln

(
4κ

κl

)
+

1
√
κr

+
1
√
κl

(
1 + log 2

ε

(
4κ

κl

))
. (4.18)

At this point we neglect the last term in Equation (4.18). Doing so relaxes the constraint on the
performance ratio as

P ≥ 1−O
(√

κr

κl
log 2

ε

(
4κ

κl

))
= Pthreshold, (4.19)

which is a good approximation as long as κl ≥ κr � 1. Next to simplifying Equation (4.18), this reduces
the number of variables. Indeed, by introducing a new parameter for the spectral width s =

κ

κl
, dropping

the last term in Equation (4.18) and setting cr =
2
√
κr

we can write

cr
√
s ≥ ln (4s) + cr. (4.20)

To solve the equality in Equation (4.20) for s, we make use of the Lambert W function. The Lambert
W function is defined as the solution to the equation x = yey for y. For a real-valued argument
x ∈ [−1/e, 0), the equation has two real solutions, given by the zeroth y = W0(x) > −1 and principle
negative y = W−1(x) ≤ −1 branches of W . In order to solve Equation (4.20), we transform the equality

into the form x = yey with y = −cr
√
s

2
= −

√
κ

κlκr
< −1 and x = − cr

4 exp
(
cr
2

) . Then, we can write

−cr
√
s

2
= y = W−1(x) = W−1

(
− cr

4 exp
(
cr
2

)) , x ∈
(
−1

e
, 0

]
,

where W−1 is the first negative branch of the Lambert W function. Note that κr ≥ 1 =⇒ cr ≤ 1. So the
condition on x is indeed satisfied. Finally, after substituting cr =

2
√
κr

we obtain an explicit expression

for the spectral width s in terms of the right cluster condition number κr

s(κ, κl) ≥ κrW−1

− 1

2
√
κr exp

(
1√
κr

)
2

,

or, in terms of the original condition numbers

κ ≥ 4κlκrW−1

− 1

2
√
κr exp

(
1√
κr

)
2

= Tκ(κl, κr). (4.21)

The evaluation of the Lambert W function is not a trivial task and often requires numerical methods for
accurate computation [6]. Luckily, there exists an expansion of W−1(x) for x→ 0− [6, Equation 4.19].
Let x be as above and set L = ln(−x) and l = ln(−L), then

κ ≥ 4κlκr

(
L− l +

l

L

)2

+O
(
κlκrl

4

L4

)
:= T (0)

κ (κl, κr) +O
(
κlκrl

4

L4

)
. (4.22)

We combine the results of this section with those of Section 4.2.1 in Theorem 4.2.

Theorem 4.2: Two-cluster performance threshold

Given an SPD matrix A ∈ Rn×n with eigenspectrum σ1(A) as defined in Equation (4.1) and
κl ≥ κr � 1, the two-cluster CG iteration bound m2 from Theorem 4.1 is sharper than the
classical CG iteration bound m1 from Equation (2.18) if the condition number κ of A satisfies
Equation (4.21) or approximately satisfies Equation (4.22).
Conversely, if κ does not satisfy either condition, then the performance ratioP from Equation (4.13)
satisfies the bounds

Puniform(κl, κr) ≤ P (κ, κl, κr) ≤ Pthreshold . 1, (4.23)

where Puniform(κl, κr) is given by Equation (4.15) and Pthreshold by Equation (4.19).
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Figure 4.2 visualizes all the findings regarding the performance of the two-cluster bound m2.
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Figure 4.2: Performance ratio of the classical bound m1 from Equation (2.18) and the two-cluster bound m2 from Equation (4.11)
as a function of the global condition number κ for right cluster condition number κr = 5 (left) and κr = 103 (right). All plots

contain graphs for spectra with κl = 1, 10, 102, 103, 104. The plots also contain a red, shaded region for which Puniform < P < 1,
a diagonally hashed region resembling the performance bounds from Equation (4.23), a red, dashed line resembling the first

order expansion of the uniform performance ratio, P (1)
uniform from Equation (4.16), and both the exact and approximate κ-threshold

values for each κl graph from Equations (4.21) and (4.22), respectively.

We can notice that the performance graphs for various left cluster widths κl grow with the square
root of the global condition number, i.e. P ≈ O(

√
κ), as the slope of these lines is approximately 1/2.

This is to be expected from Equation (4.12), since for constant κl, κr, and κ > Th(κl, κr)� 1 we have

that P ∼
√
κ

ln(4κ)
. The slope of the term

√
κ

ln(4κ)
in a log-log plot satisfies

d ln(P )

d ln(κ)
= κ

d ln(P )

dκ
∼ κ

d

dκ

[
ln(
√
κ)− ln(ln(4κ))

]
=

1

2
− 1

ln(4κ)
−→
κ→∞

1

2
.

Next to this we can see that the first order expansion of the uniform performance ratio P
(1)
uniform agrees

well with the minimum performance bound as long as κ = κlκr � 1, which is in agreement with the
error terms in Equation (4.16) and the minimum performance bound from Equation (4.23). Finally, we
see that both Tκ(κl, κr) and its zeroth order expansion T (0)

κ (κl, κr) from Equations (4.21) and (4.22) are
accurate approximations of the actual κ-threshold value at which P = 1, and even more so for larger
values of κ, κr. We do see a deviation of both Tκ(κl, κr) and T (0)

κ (κl, κr) for κl ≤ κr. Again, this is in
agreement with the error terms in Equation (4.19).

4.3. Performance of the tail-cluster bound
The two-cluster bound from Equation (4.11) is also derived for the spectrum σ2, i.e. the case of a right
cluster with a tail of eigenvalues to the left of it. In this case we can also derive a condition for which
m2 < m1, or P > 1. The tail-cluster bound is given by Equation (4.11) with p = Ntail ≤

⌊√
κl

2
ln

(
2

ε

)
+ 1

⌋
.

This gives
m2(κ, κl, κr, p) =

⌊√
κr

2
ln

(
2

ε

)
+ p

(
1 +

√
κr

2
ln

(
4κ

κl

))⌋
. (4.24)
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The performance ratio is now given by

Ptail-cluster(κ, κl, κr, p) =

√
κ
κr

ln
(
2
ε

)
p ln

(
4κ
κl

) −O
√ κ

κr

ln
(
2
ε

)
+ 2p√

κr

p2 ln
(

4κ
κl

)2
 , for p ≥

⌈
log 4κ

κl

(
2

ε

)⌉
. (4.25)

Equation (4.25) shows that

Ptail-cluster(κ, κl, κr, p) −→
1

ln(4κr)
≈ P

(0)
uniform(κr) as p→

⌊√
κl

2
ln

2

ε
+ 1

⌋
and κ→ κlκr,

that is, the minimum performance of the tail-cluster bound reduces to the leading order term of the
two-cluster bound’s minimum performance from Equation (4.16) as p approaches its maximum value.
Another crucial aspect about Ptail-cluster(κ, κl, κr, p) is recovered when we require its leading order term
to be larger than 1, giving us the following inequality

p ≤
⌊√

κ

κr
log 4κ

κl

(
2

ε

)⌋
. (4.26)

Equation (4.26) can be interpreted as a sparsity condition on the tail cluster, i.e. the tail cluster must be
sparse enough to ensure that the performance ratio is larger than 1.

Finally, we formulate the performance condition for the tail-cluster bound in Theorem 4.3.

Theorem 4.3: Tail-cluster performance condition

Given an SPD matrix A ∈ Rn×n with eigenspectrum σ2(A) as defined in Equation (4.2) with the

tail cluster containing p = Ntail ≤
⌊√

κl

2
ln

(
2

ε

)
+ 1

⌋
, the tail-cluster bound from Equation (4.24)

is sharper than the classical bound if the following conditions on p hold⌈
log 4κ

κl

(
2

ε

)⌉
≤ p ≤

⌊√
κ

κr
log 4κ

κl

(
2

ε

)⌋
. (4.27)

The left-hand side inequality of Equation (4.27) ensures that the expansion made in Equation (4.25)
is valid and can be interpreted as a minimum density condition on p. Notice that for ε = 10−8, κ ≈ 108

and κl ≈ 10 this left-hand side of Equation (4.27) is approximately equal to 1, in which case we can
neglect it as a condition on p as p ≥ 1 is always satisfied.

4.4. Generalization to multiple clusters
The technique outlined in Section 4.1 starts at the left most cluster [a, b], finds the Chebyshev degree
p1 = p satisfying Equation (4.8), moves to the neighboring cluster [c, d] and finds the Chebyshev degree
p2 = m2 − p satisfying Equation (4.9). Rewriting Equation (4.9) gives the following equation for p2:

1

Cp2

(
d+c
d−c

) ≤ ε

Ĉ
(1)
p1 (d)

= ε2, (4.28)

where C(1)
p1

(x) is the (transformed) Chebyshev polynomial from Definition C.2 corresponding to the first
cluster.

Suppose there is a third cluster to the right of [c, d], i.e. [e, f ]. We can repeat the process and find
the Chebyshev degree p3 satisfying a similar equation as Equation (4.28) for the third cluster.

1

Cp3

(
f+e
f−e

) ≤ ε

Ĉ
(1)
p1 (f)Ĉ

(2)
p2 (f)

= ε3,

This leads to the general equation for the Chebyshev degree pi of the ith cluster [ai, bi]

1

Cpi

(
bi+ai

bi−ai

) ≤ ε∏i−1
j=1 Ĉ

(j)
pj (bi)

= εi. (4.29)
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An eigenvalue spectrum of this kind is visualized in Figure 4.3.

λ
0 1

· · ·

a1 b1 a2 b2 an−1 bn−1 an bn

Figure 4.3: Example of an eigenvalue spectrum consisting of multiple clusters.

The Chebyshev polynomials Cp grow rapidly outside the interval [−1, 1] [2, Section 4]. Therefore, it
can be cumbersome for a computer to evaluate the product of the Ĉ(j)

pj
(bi) terms in the denominator

of Equation (4.29). Instead, we first apply Equation (4.6) and introduce the cluster condition numbers
κi =

bi
ai

, where i is the index of the cluster. We can then rewrite Equation (4.29) using Equation (C.2) as
follows

pi =

⌈
ln

εi
2
/ ln

√
κi − 1
√
κi + 1

⌉
,

and

ln
εi
2

= ln
ε

2
−

i−1∑
j=1

ln Ĉ(j)
pj

(bi).

Let z(i,j)1 =
bj + aj − 2bi

bj − aj
and z

(j)
2 =

bj + aj
bj − aj

then

ln Ĉ(j)
pj

(bi) = lnCpj
(z

(i,j)
1 )− lnCpj

(z
(j)
2 ).

We have, using the approximations in Equation (C.2)

lnCpj (z
(i,j)
1 ) ≈ pj ln

∣∣∣∣∣z(i,j)1 −
√(

z
(i,j)
1

)2
− 1

∣∣∣∣∣− ln 2, (4.30)

and

lnCpj
(z

(j)
2 ) ≈ pj ln

[
z
(j)
2 +

√(
z
(j)
2

)2
− 1

]
− ln 2, (4.31)

both of which become more accurate approximations as z,m→∞. Introducing

ζ
(i,j)
1 = z

(i,j)
1 −

√(
z
(i,j)
1

)2
− 1,

ζ
(j)
2 = z

(j)
2 +

√(
z
(j)
2

)2
− 1, and

γi =

√
κi − 1
√
κi + 1

,

with κi the ith cluster condition number, and substituting the inequalities 4.30 and 4.31 back into the
bound for pi gives

pi ≤


ln ε

2 −
∑i−1

j=1 pj

(
ln ζ

(i,j)
1 − ln ζ

(j)
2

)
ln γi


=

logγi

ε

2
−

i−1∑
j=1

pj

(
logγi

ζ
(i,j)
1 − logγi

ζ
(j)
2

)
=

logγi

ε

2
−

i−1∑
j=1

pj logγi

(
ζ
(i,j)
1

ζ
(j)
2

)
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Note that in general γi < 1 and ζ
(i,j)
1 > ζ

(j)
2 . Therefore, the term logγi

(
ζ
(i,j)
1

ζ
(j)
2

)
< 0. So we multiply this

term by −1 and obtain

pi ≤

logγi

ε

2
+

i−1∑
j=1

pj logγi

(
ζ
(j)
2

ζ
(i,j)
1

) (4.32)

Evidently, adding more clusters to the left of the interval [ai, bi] increases the degree pi of the Chebyshev
polynomial. Next to this, Equation (4.32) reduces to the classical CG iteration bound Equation (2.17) for
a single cluster when i = Ncluster = 1.

Equation 4.32 gives us a way to calculate the Chebyshev degree pi of the ith cluster [ai, bi] in terms
of the Chebyshev degrees of the previous clusters. To obtain a bound on the number of iterations for
the CG method we sum the Chebyshev degrees of all the clusters. This leads to the Theorem 4.4.

Theorem 4.4: Multiple cluster CG iteration bound mNcluster

Given an SPD matrix A ∈ Rn×n with eigenspectrum as shown in Figure 4.3 consisting of Ncluster
clusters, the number of CG iterations m required for convergence to a tolerance ε is bounded by

mNcluster =

Ncluster∑
i=1

pi (4.33)

where the Chebyshev degrees pi satisfy the inequality from Equation (4.32).

4.4.1. Multiple tail clusters
We have not yet generalized to an eigenvalue spectrum consisting of multiple tail clusters. Moreover,
the most general eigenvalue spectrum can consist of any combination of regular and tail clusters, as
shown in Figure 4.4.

λ
0 1

· · ·

a1 b1 a2 b2 an−1 an−1 an bn

Figure 4.4: Example of the most general eigenvalue spectrum. In order from left to right; a tail cluster [a1, b1], a regular cluster
[a2, b2], a tail cluster [an−1, an−1] with a single eigenvalue and another regular cluster [an, bn].

Fortunately, there is a natural way to generalize the CG bound to this case. Let Λt be the set of all
eigenvalues residing in tail clusters. Now consider a polynomial similar to Equation (4.3) for the case
i = 2, that is

rt(x) =
∏
λ∈Λt

(
1− x

λ

)
. (4.34)

The polynomial rt(x) is indeed the natural choice for polynomials of the tail clusters. To see this, suppose
we were to consider separate polynomials rtj (x) for each tail cluster j consisting of tj tail eigenvalues
λj ∈ Λtj . Then we need rtj (λj) = 0, ∀λj ∈ Λtj , ∀j. The most natural choice for such a polynomial is

rtj (x) =
∏

λ∈Λtj

(
1− x

λ

)
. (4.35)

Now, consider the global residual polynomial r(x) defined as

r(x) =
∏
j

rtj (x)

Ncluster∏
i=1

Ĉ(i)
pi

(x) =
∏
λ∈Λt

(
1− x

λ

)Ncluster∏
i=1

Ĉ(i)
pi

(x) = rt(x)

Ncluster∏
i=1

Ĉ(i)
pi

(x), (4.36)

where Λt = ∪jΛtj . Hence, we recover rt(x) from Equation (4.34) and see that is a natural generalization.
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The degree of rt is equal to the number of eigenvalues in Λt, which we denote as Nt. Now Nt, unlike
the degrees pi of the Chebyshev polynomials C(i)

pi
corresponding to the clusters, is fixed. Therefore,

the contribution of the tail clusters to the CG bound is simply Nt. However, rt may still influence the
degrees pi through its contribution to the global residual polynomial r(x) defined in Equation (4.36). In
particular, we rewrite Equation (4.32) as

pi ≤

logγi

ε

2
+

i−1∑
j=1

pj logγi

ζ
(j)
2

ζ
(i,j)
1

−
∑
λ∈Λt

logγi

∣∣∣∣1− hi

λ

∣∣∣∣
 , (4.37)

where
hi = arg max

x∈[ai,bi]
|rt(x)| ,

that is, we make the approximation that the maximum of the tail residual polynomial rt on the ith cluster
is attained at one of that cluster’s endpoints. For instance, in the case that the ith cluster lies fully to
the right of all tail eigenvalues, that is ai > max{λ : λ ∈ Λt}, we have hi = bi. Finally, we can combine
Equation (4.32) and Equation (4.33) to obtain Theorem 4.5.

Theorem 4.5: Tail-cluster CG iteration bound mNtail-cluster

Given an SPD matrix A ∈ Rn×n with eigenspectrum consisting of Ncluster clusters and a set of
tail eigenvalues Λt, the number of CG iterations m required for convergence to a tolerance ε is
bounded by

mNtail-cluster = Nt +

Ncluster∑
i=1

pi. (4.38)

where Nt = |Λt| and the Chebyshev degrees pi satisfy the inequality from Equation (4.37).

4.4.2. Computation of the generalized CG bound
We summarize the techniques outlined in this section in Algorithm 6. This algorithm takes a set of clusters,
a possibly empty set of tail eigenvalues Λt and a relative error tolerance ε as input and returns the
generalized multi-tail-cluster CG iteration bound mN . The algorithm iterates over all clusters, calculating
the Chebyshev degree pi for each cluster based on the previous clusters’ degrees and the relative
error tolerance. It also treats tail eigenvalues as discussed in Section 4.4.1. Finally, it sums up all the
Chebyshev degrees and the contribution from the tail eigenvalues to obtain the multi-cluster CG bound.
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Algorithm 6 GeneralizedCGIterationBound(clusters,Λt, ε)

1: Input: Sorted set clusters = 〈[a1, b1], [a2, b2], . . . , [aNcluster , bNcluster ]〉, a set of tail eigenvalues Λt and
relative error tolerance ε

2: Output: Generalized multi-tail-cluster CG iteration bound mN

3: Initialize Nt ← |Λt|, P ← ∅
4: Construct the residual polynomial ln |rt|(x) =

∑
λ∈Λt

ln
∣∣∣1− x

λ

∣∣∣
5: for [ai, bi] ∈ clusters do
6: γi ←

√
κi − 1
√
κi + 1

, where κi =
bi
ai

7: ln |rt|max ← max{ln |rt|(x) : x ∈ [ai, bi]}
8: εi ← ln(ε)− ln |rt|max
9: for [aj , bj ] ∈ clusters<i do . clusters<i = all clusters to the left of [ai, bi]

10: z1 ←
bj + aj − 2bi

bj − aj

11: z2 ←
bj + aj
bj − aj

12: pj ← P [j]

13: εi ← εi − pj

(
ln

(
z1 −

√
z21 − 1

)
− ln

(
z2 +

√
z22 − 1

))
14: end for
15: pi ←

⌈
logγi

(εi
2

)⌉
16: P ← P ∪ 〈pi〉
17: end for

18: mN ← Nt +

Ncluster∑
i=1

P [i]

19: return mN

4.5. Algorithms for sharpened CG iteration bounds
In this section we combine the findings of Sections 4.2 to 4.4 to derive two flexible algorithms for
determining a sharpened CG bound, Algorithms 9 and 11. Notice that Algorithm 6 is not directly
useful, as it requires the extremal eigenvalues in a spectrum that specify clusters and optionally tail
clusters as input. Therefore, the main focus of the algorithms in this section is to partition a given
eigenspectrum in such a way that the resulting set of clusters and optional tail eigenvalues can be
fed into Algorithm 6 to obtain CG iteration bounds mNcluster and mNtail-cluster . Moreover, to ensure that
mNcluster < m1 and mNtail-cluster < m1 the partitioning of the eigenspectrum is done such that the resulting
clusters satisfy the performance conditions derived in Sections 4.2.2 and 4.3, respectively.

4.5.1. Multi-cluster CG iteration bound
We start by exclusively partitioning a spectrum into clusters, that is we do not look for possible tail
eigenvalues. Later in Section 4.5.2 we will see how to extend the algorithms we derive to the incorporate
clusters of tail eigenvalues.

The idea is to use a simple algorithm to split an eigenspectrum into two clusters. Then, we calculate
the left and right cluster condition numbers κl and κr and check if the approximate threshold condition
in Equation (4.22) is satisfied. In fact, the algorithm recursively applies the previous two steps, stopping
only when the threshold condition is not satisfied. The result is a list of indices at which to split the
eigenspectrum, yielding an ordered set of clusters 〈[ai, bi]〉Ncluster

i=1 , where Ncluster is the number of clusters.
Finally, we can use Algorithm 6 to calculate the generalized CG iteration bound for a spectrum consisting
of purely clusters, mNcluster .

To that end, suppose we are given a sorted set of eigenvalues σ = 〈λ1, λ2, . . . , λn〉 with 0 < λ1 ≤
λ2 ≤ · · · ≤ λn. We need to find an optimal way of splitting this set in two disjoint sets. In order to do so,
we turn to Figure 4.2, in which it is shown that the performance of the two-cluster bound m2 relative to
the classical bound m1 for fixed κ increases both with smaller κl and κr. Therefore, we expect to get
the greatest performance gain from splitting the spectrum between those eigenvalues that share the
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largest ratio. That is to say, we can always write

κ =
λk∗

λ1

λk∗+1

λk∗

λn

λk∗+1
= κlκmκr,

where κl =
λk∗

λ1
, κm =

λk∗+1

λk∗
and κr =

λn

λk∗+1
. The split index k∗ must be chosen such that the ratio

λk∗+1

λk∗
is maximized and, simultaneously, κl, κr are minimized.

Therefore, we choose to split the eigenspectrum at the largest relative distance between consecutive
eigenvalues, resulting in Algorithm 7.

Algorithm 7 SplitEigenspectrum(σ)

1: Input: Sorted eigenvalues σ = 〈λ1, λ2, . . . , λn〉 with λi > 0
2: Output: Split index k∗ such that clusters are 〈λ1, . . . , λk∗〉 and 〈λk∗+1, . . . , λn〉
3: Initialize max_gap← 0, k∗ ← 1
4: for i = 1 to n− 1 do
5: Compute relative distance: gi ←

λi+1

λi
6: if gi > max_gap then
7: max_gap← gi
8: end if
9: k∗ ← i

10: end for
11: return k∗

The ratio of consecutive eigenvalues is used to ensure that the split index k∗ is chosen such that the
ratio λk∗+1

λk∗
is maximized, as discussed above.

Recursive application of Algorithm 7 with stopping criterion based on the threshold condition in
Equation (4.22) leads to Algorithm 8.

Algorithm 8 PartitionEigenspectrum(σ)

1: Input: Sorted eigenvalues σ = 〈λ1, λ2, . . . , λn〉
2: Output: Sorted partition indices K∗ = 〈k∗1 , k∗2 , . . . , k∗Ncluster−1, n〉
3: if σ = ∅ then
4: return ∅
5: else if |σ| = n ≤ 2 then
6: return 〈n〉
7: end if
8: κ← λn

λ1
9: k∗ ← SplitEigenspectrum(σ)

10: κl ←
λk∗

λ1

11: κr ←
λn

λk∗+1

12: if κ > T (0)(κl, κr) then
13: return PartitionEigenspectrum(σ≤k∗) ∪ k∗ + PartitionEigenspectrum(σ>k∗)
14: else
15: return 〈n〉 . No further partitioning needed, return last index
16: end if

Note that Algorithm 8 returns at a minimum a set containing only the last index K∗ = 〈n〉, if the
threshold condition is not satisfied for any split. Additionally, the value k∗ is added (element-wise) to
the result of the right-hand recursion in line 8 of Algorithm 8. This is to ensure that the resulting set of
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indices K∗ contains the correct, global indices of the eigenvalues in the spectrum, as the right-hand
recursion only returns indices relative to the right-hand side of the split.

Finally, we can combine the partitioning from Algorithm 8 with the Chebyshev degree calculation from
Algorithm 6 to obtain the sharpened CG bound Algorithm 9. It is important to realize that partitioning done
by Algorithm 8 can also produce clusters consisting of a single eigenvalue, i.e. [ai, bi] = [λi, λi]. Clusters
of this kind automatically satisfy the sparsity condition in Equation (4.26) for any κ ≥ 1, κl, κr < κ and
ε ≤ 1

2
. Therefore, these single eigenvalue clusters belong to the set of tail eigenvalues Λt. Even though

we did not aim to find tail eigenvalues, we are forced to accept their existence in this case. Not merely
because single eigenvalue clusters satisfy the sparsity condition, but also because the Chebyshev
polynomial Ĉ(i)

pi
corresponding to a single eigenvalue cluster is not well-defined.

Algorithm 9 MultiClusterCGIterationBound(σ, ε)

1: Input: Sorted eigenvalues σ = 〈λ1, λ2, . . . , λn〉, target relative error ε
2: Output: Sharpened CG iteration bound mNcluster ≤ m1

3: Initialize Λt ← ∅, clusters← ∅, ka ← 1
4: K∗ ← PartitionEigenspectrum(σ)
5: for kb ∈ K∗ do
6: if ka = kb then
7: Λt ← Λt ∪ {σ[ka]} . Single eigenvalue cluster, add to tail eigenvalues
8: else
9: clusters← clusters ∪ 〈[σ[ka], σ[kb]]〉

10: end if
11: ka ← kb + 1
12: end for
13: mNcluster ← GeneralizedCGIterationBound(clusters,Λt, ε)
14: return mNcluster

Algorithm 9 first partitions the eigenspectrum into clusters using Algorithm 8. Then, it constructs
a list of clusters, leaving out single eigenvalue clusters, but adding them to the list of tail eigenvalues
instead. Finally, the algorithm computes the sharpened CG bound using Algorithm 6. In the case that
the eigenspectrum is never partitioned, i.e. the threshold condition is never satisfied, the algorithm
returns the classical CG bound m1 from Equation (2.17).

4.5.2. Multi-tail-cluster CG iteration bound
In this section we adapt Algorithm 8 to check additional conditions on p = k∗, that is

k∗ <

⌊√
κl

2
ln

2

ε
+ 1

⌋
and the sparsity condition from Equation (4.26). This results in Algorithm 10. Similar to Algorithm 8,
the algorithm recursively partitions the eigenspectrum, returning the set of split indices K∗. In addition,
Algorithm 10 also updates a preinitialized set of tail eigenvalues Λt and a set of tail cluster start indices
It. The tail cluster start indices are initialized to an offset value, which is incremented by the size of the
left-hand partition at each recursive call. This way, the tail cluster start indices are always relative to the
original eigenspectrum. The purpose of tracking the start indices of the tail clusters is to ensure that the
tail eigenvalues can be identified and left out of the set of regular clusters upon calling the generalized
multi-tail-cluster CG iteration bound in Algorithm 11.
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Algorithm 10 PartitionEigenspectrumTails(σ,Λt ← ∅, It ← ∅,offset← 1)

1: Input: Sorted eigenvalues σ = 〈λ1, λ2, . . . , λn〉, preinitialized set of tail eigenvalues Λt, preinitialized
set of tail cluster start indices It and an offset for the tail indices equal to 1

2: Output: Sorted partition indices K∗ = 〈k∗1 , k∗2 , . . . , k∗Ncluster−1, n〉, updated set of tail eigenvalues Λt

and updated set of tail cluster start indices It
3: if σ = ∅ then
4: return ∅
5: else if |σ| = n = 1 then
6: Λt ← Λt ∪ {λ1}
7: It ← It ∪ {offset}
8: return 〈1〉
9: end if

10: κ← λn

λ1
11: k∗ ← SplitEigenspectrum(σ)

12: κl ←
λk∗

λ1

13: κr ←
λn

λk∗+1

14: if k∗ <

⌊√
κl

2
ln

2

ε
+ 1

⌋
and k∗ ≤

⌊√
κ

κr
log 4κ

κl

(
2

ε

)⌋
then

15: Λt ← Λt ∪ σ≤k∗

16: It ← It ∪ {offset}
17: return 〈k∗〉 ∪ k∗ + PartitionEigenspectrumTails(σ>k∗ ,Λt, It,offset + k∗)
18: else if κ > T (0)(κl, κr) then
19: return PartitionEigenspectrumTails(σ≤k∗ ,Λt, It,offset) ∪ . . .

k∗ + PartitionEigenspectrumTails(σ>k∗ ,Λt, It,offset + k∗)
20: else
21: return 〈n〉 . No further partitioning needed, return last index
22: end if

We are now in a position to formulate the final algorithm of this chapter, the multi-tail-cluster CG
iteration bound Algorithm 11.

Algorithm 11 MultiTailClusterCGIterationBound(σ, ε)

1: Input: Sorted eigenvalues σ = 〈λ1, λ2, . . . , λn〉, target relative error ε
2: Output: Multi-tail-cluster CG iteration bound mNtail-cluster ≤ m1

3: Initialize Λt ← ∅, It ← ∅, clusters← ∅, ka ← 1
4: K∗ ← PartitionEigenspectrumTails(σ,Λt, It)
5: for kb ∈ K∗ do
6: if ka /∈ It then . Cluster is not a tail cluster
7: clusters← clusters ∪ 〈[σ[ka], σ[kb]]〉
8: end if
9: ka ← kb + 1

10: end for
11: mNtail-cluster ← GeneralizedCGIterationBound(clusters,Λt, ε)
12: return mNtail-cluster

We conclude this chapter with a schematic in Figure 4.5 showing the flow from input eigenvalues
through the splitting and partitioning algorithms, into the main bound algorithms, and finally to the
generalized CG bound calculation. Both approaches ultimately call GeneralizedCGIterationBound to
compute the sharpened bound.
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MultiClusterCGIterationBound
(Algorithm 9)
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(Algorithm 11)
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(Algorithm 7)
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(Algorithm 6)
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Uses Theorem 4.2
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Uses Theorem 4.3
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Figure 4.5: Schematic overview of the algorithmic building blocks for the multi-cluster and multi-tail-cluster CG iteration bounds.



5
Implementation

In this chapter we discuss the implementation of Problem 1.3 and the PCG method used to solve it,
together with the relevant preconditioners from Sections 2.2 and 3.2. We narrow the scope of the
family of problems described by Problem 1.3 to three specific instances of the coefficient function C.
All implementations in this chapter, as well as the algorithms described in Sections 4.4.2 and 4.5 are
available in the online High-Contrast Multi-Scale FEM repository. For specific references to scripts or
classes in the repository, we refer to the repository’s top-level README.md file.

5.1. Implementation of the elliptic problem
We consider a square domain Ω = [0, 1]2 and introduce two conforming quadrilateral meshes Qh and
QH with fine and coarse mesh sizes h and H, respectively, where h = H/2r and r ∈ N a positive integer.
We fix r = 4 and limit our study to the set of meshes

Q = {(Qh, QH) | H ∈ {1/4, 1/8, 1/16, 1/32, 1/64}}. (5.1)
The fine and coarse meshes Qh, QH for H = 1/4 are shown in Figure 5.1.
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0.0 0.2 0.4 0.6 0.8 1.0

Ωi

Figure 5.1: Plot of the conforming fine and coarse meshes Qh and QH for H = 1/4 (left) and some of the overlapping
subdomains Ωi with overlap δ = 2h (right).

Next, we construct a FE space Vh from first order Legendre polynomials φi associated to each
internal fine mesh vertex vhi in Qh and locally defined on all quadrilateral elements qj sharing vhi . That is

supp(φi) =
⋃

j:vh
i ∈qj ,qj∈Qh

qj , ∀i ∈ {1, . . . , n}.
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https://github.com/PhilipSoliman/hcmsfem
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This defines the stiffness matrix A and load vector b as specified in Problem 1.3.
We construct for each fine meshQh three coefficient functions Cconst ≡ 1, C3layer, vert and Cedge slabs, around vertices,

the latter two of which are high-contrast coefficient functions with a periodic structure, as shown in
Figure 5.2.
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Cedge slabs, around vertices

Figure 5.2: Plot of the coefficient function C3layer, vert and Cedge slabs, around vertices defined on the fine mesh Qh for H = 1/4. The

contrast is Cmax
Cmin

= 108 for both coefficient functions.

The coefficient functions C3layer, vert, Cedge slabs, around vertices are centered on or around those fine mesh
vertices that lie on two coarse mesh edges eHi ∈ QH . The periodic structure of these coefficient functions
is replicated when more subdomains are added. That is, the number of inclusions is kept proportional to
the number of subdomains.

Finally, it is important to note that the meshesM, finite element space Vh and coefficient functions
in Figure 5.2 are the same as the ones in [1].

5.2. Implementation of the PCG method
We implement a PCG-type 1 method to solve the linear system arising from the discretization of the
elliptic problem. To that end we first decompose the fine mesh Qh into overlapping subdomains Ωi to be
used for the alternating Schwarz method, as visualized in Figure 5.1. Then, we construct preconditioners
with a general form similar to Equation (2.26a)

M−1 = RT
0 A

−1
0 R0 +

Nsub∑
i=1

RT
i A

−1
i Ri,

where Ri is the restriction operator to and Ai = RT
i ARi is the local operator on Ωi ∀i ≥ 1. Also, Nsub =

(1/H)2, or simply the number of coarse mesh elements in QH . Similarly, the coarse restriction operator
R0 and corresponding coarse operator A0 = RT

0 AR0 are constructed as discussed in Section 3.2. We
construct R0 for the GDSW, RGDSW, and AMS coarse spaces, resulting in the following set of two-level
overlapping Schwarz preconditioners

M−1 =
{
M−1

2-OAS-GDSW,M−1
2-OAS-RGDSW,M−1

2-OAS-AMS
}
. (5.2)



6
Results

In this chapter we present and discuss two experiments with the sharpened CG iteration bounds from
Algorithms 9 and 11 applied to the approximate eigenspectra calculated as a by-product of the PCG
method applied to Problem 1.3. The first experiment in Section 6.1 tests the absolute sharpness of
the new bounds as compared to the actual number of CG iterations required for convergence given
a residual error tolerance εr. Where the first experiment presumes a full spectrum to be available at
the time of calculating the new bounds, this is usually not the case in practice. Therefore, the second
experiment in Section 6.2 investigates the capability of the new bounds to predict the number of CG
iterations required for convergence, but based on approximate spectra obtained in the first Niter iterations.
Each experiment is conducted on the same set of meshes Q, using the preconditioners fromM−1 and
for at least the two coefficient functions C3layer, vert and Cedge slabs, around vertices as described in Chapter 5.

6.1. Sharpness of bounds
Here we run the PCG method from Algorithm 3 until we achieve convergence in the sense of Theorem 2.6
with εr = 10−8. Every iteration we store the CG coefficients α, β such that at convergence we can
construct the Lanczos matrix Tm using Equations (A.2), (A.11) and (A.12). Then, we calculate all
eigenvalues of Tm, also known as Ritz values. The eigenvalue spectrum σ(Tm) at convergence of the
PCG method is a good approximation of the spectrum σ(M−1A). Therefore, we can use σ(Tm) as input
for the multi-cluster and multi-tail-cluster CG iteration bounds from Algorithms 9 and 11 and study how
well the bounds match the actual number of CG iterations required for convergence m.

Before we present the iteration bounds, we show in Figures 6.1 and 6.2 the output of
PartitionEigenspectrum and PartitionEigenspectrumTails from Algorithms 8 and 10 corresponding to
the CG iteration bounds from Algorithms 9 and 11 respectively. We observe that where the multi-cluster
partitioning Algorithm 8 consistently splits the eigenspectra σ(M−1A) ∀M−1 ∈M−1 into two clusters,
the multi-tail-cluster partitioning Algorithm 10 partitions the eigenspectrum into either one or two tail
clusters and/or one regular cluster, depending on the coarse mesh size H.

For instance, consider the partitioning of the eigenspectrum σ(M−1
2-OAS-AMSA) for the mesh Q1/4

and coefficient function C3layer, vert among Figures 6.1 and 6.2. PartitionEigenspectrum does not split
σ(M−1

2-OAS-AMSA) and simply returns the extremal eigenvalues. In contrast, PartitionEigenspectrumTails
finds two tail clusters, resulting in an output that consists exclusively of tail eigenvalues. In regard to the
CG iteration bounds, this means that mNcluster = m1 and mNtail-cluster = m. That is, the multi-cluster bound
is equal to the classical bound, while the multi-tail-cluster bound is equal to the actual number of CG
iterations required for convergence.

47
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Figure 6.1: Partition of the eigenspectrum σ(Tm) ≈ σ(M−1A) for M−1 ∈ M into clusters using the multi-cluster partitioning
Algorithm 8. The left and right columns correspond to coarse meshes Q1/4 and Q1/64 and the first and second row correspond
to the coefficient functions C3layer, vert and Cedge slabs, around vertices respectively. Every spectrum’s condition number is plotted to the
right of it as well as the number of PCG iterations m required for convergence. Eigenvalues are shown as crosses and clusters

are indicated using square brackets.

Another interesting observation can be made when comparing the output of
PartitionEigenspectrumTails given of the eigenspectrum σ(M−1

2-OAS-RGDSWA) for coefficient function
C3layer, vert among meshes Q1/4 and Q1/64 in Figure 6.2. For the mesh Q1/4, PartitionEigenspectrumTails
finds two tail clusters and one regular cluster. For the finest mesh Q1/64, however, it finds only one tail
cluster and one regular cluster. This indicates that the second tail cluster and regular cluster are merged
into one regular cluster as the mesh size H decreases. The term ‘merged’ is used here to mean that for
Q1/64 neither one of the splitting conditions in Algorithm 10 is satisfied, i.e., the second cluster is not
sufficiently separated from the third cluster by Equation (4.22), nor do the number of eigenvalues in the
cluster satisfy the sparsity condition from Equation (4.26).
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Figure 6.2: Partition of the eigenspectrum σ(Tm) ≈ σ(M−1A) for M−1 ∈ M into tail clusters using the tail-cluster partitioning
algorithm Algorithm 10. The left and right columns correspond coarse meshes Q1/4 and Q1/64 and the first and second row

correspond to the coefficient functions C3layer, vert and Cedge slabs, around vertices respectively. Every spectrum’s condition number is
plotted to the right of it as well as the number of PCG iterations m required for convergence. Eigenvalues are shown either as
crosses or as circles, depending on whether they form a regular or tail cluster, respectively. Additionally, starting indices of tail

clusters, It, are indicated using vertical bars ‘|’

In Figures 6.3 to 6.5 we present the CG iteration bounds mNcluster ,mNtail-cluster produced by
MultiClusterCGIterationBound and MultiTailClusteCGIterationBound from Algorithms 9 and 11, re-
spectively. As mentioned in Section 4.5, the output of PartitionEigenspectrum and
PartitionEigenspectrumTails is specifically designed such that bounds mNcluster ,mNtail-cluster < m1. That is,
no special effort is made in Chapter 4 to make these bounds sharp with respect to the actual number
of CG iterations m required for convergence. Fortunately, for all meshes, coefficient functions and
preconditioners both bounds are either of the same order mNcluster ,mNtail-cluster = O(m) or one order higher
mNcluster ,mNtail-cluster = O(10m).
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Figure 6.3: Plot of the number of CG iterations m (solid, red line with small circle markers)required to achieve convergence of the
solution to Problem 1.3 in the sense of criterion Equation (2.10) with εr = 10−8. The left and right columns corresponds to the
C3layer, vert and Cedge slabs, around vertices coefficient functions. Also shown are the corresponding classical m1 (dashed, light-gray
line with cross markers), multi-cluster mNcluster (dotted, dark-blue line with triangle markers), and multi-tail-cluster mNtail-cluster

(dash-dotted, gold line with big circle markers) bounds for the CG method applied to the eigenspectra obtained from the Lanczos
matrix convergence (Ritz values).
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Figure 6.4: Similar to Figure 6.3, but now for RGDSW coarse space.
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Figure 6.5: Similar to Figure 6.3, but now for AMS coarse space.

Additionally, it appears mNtail-cluster . mNcluster . Even though this was not a design goal of the multi-
tail-cluster CG iteration bound, it is a desirable property. The reason for the sharper multi-tail-cluster
bound stems from the more rigorous partitioning done by PartitionEigenspectrumTails compared to
PartitionEigenspectrum, as shown in Figure 6.2 and the related discussion above.

6.2. Early estimation of CG iteration bounds
We consider now a more practical setting where the eigenspectrum σ(M−1A) is not available at the time
of calculating the CG iteration bounds. Instead, we assume that we only have access to an approximate
eigenspectrum σ(Ti) obtained from the Lanczos matrix Ti after i iterations of the PCG method. The
goal is to investigate how well the multi-cluster and multi-tail-cluster CG iteration bounds can predict the
number of CG iterations m required for convergence based on these approximate spectra.

6.2.1. Ritz value migration and convergence of bounds
To this end, we run the PCG method from Algorithm 3 for Niter iterations, where Niter is a parameter that
we can choose. Every iteration i, we calculate the multi-cluster and multi-tail-cluster CG iteration bounds
mNcluster(σ(Ti)) and mNtail-cluster(σ(Ti)) using the approximate eigenspectrum σ(Ti). In Figures 6.6 and 6.7
we show the convergence of the multi-cluster and multi-tail-cluster CG iteration bounds mNcluster(σ(Ti))
and mNtail-cluster(σ(Ti)) as a function of the number of iterations i with Niter = 300.
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Figure 6.6: Plots of the multi-cluster CG iteration bounds mNcluster , mNtail-cluster and mestimate =
1

2
(mNcluster +mNtail-cluster ) for the

first Niter = 300, Q1/64 and Cedge slabs, around vertices (top) together with the approximate spectra σ(Ti) ≈ σ(M−1
2-OAS-AMSA) that

they are obtained from (bottom). Additionally, dark-blue dashes and gold bars indicate the partitions obtained from
PartitionEigenspectrum and PartitionEigenspectrumTails respectively. In the top figure the number of CG iterations m

required for convergence is indicated by a solid, black, horizontal line. The dashed, black curve is the identity plot of i. Finally, the
number of CG iterations calculated by the multi-tail-cluster bound is indicated by a dashed, black, horizontal line.

Most notably, we observe that in Figure 6.6 the multi-cluster bound converges to its final value within
about 60 iterations, whereas the multi-tail-cluster bound needs almost all m iterations to converge. We
can understand this difference by first looking at the spectra σ(Ti) in the bottom of Figure 6.6. We
notice that the first cluster eigenvalue λ1 splits off from the right cluster, forms a single eigenvalue
cluster and settles in its final position all before 30 iterations. In the next 30 iterations, the second
eigenvalue λ2 separates from the right cluster, migrates towards the left cluster and joins it. In the
process, several things change in the output of PartitionEigenspectrum. First, the right cluster expands,
as a consequence of λ2 migrating away, yet still remaining a member. Second, in its migration λ2

eventually satisfies the threshold condition from Equation (4.22) and is removed from the right cluster,
resulting in a rapid decrease of the right cluster size and the temporary formation of a third, single
eigenvalue cluster consisting of only λ2. What happened to the right cluster, happens in reverse order to
the left cluster as λ2 joins the left cluster, resulting in a rapid increase of the left cluster size, followed by
a slow decrease of the left cluster size as λ2 migrates towards the left cluster’s extremal eigenvalue λ1.
This results in the characteristic two-peak shape of the multi-cluster bound in Figure 6.6. We deem the
process of the migration of an eigenvalue from the right to the left cluster and the characteristic two-peak
shape in the plot of mNcluster as Ritz value migration.

We are now in a position to understand the more rapid convergence of the multi-cluster bound
compared to the multi-tail-cluster bound. That is, the multi-cluster bound needs at a minimum two
clusters that approximate the final two clusters of the spectrum. This happens after at least two Ritz
eigenvalue migrations have occurred. In contrast, the tail cluster bound never considers the left group
of tail eigenvalues as a regular cluster. Consequently, the effect of the left tail eigenvalues on the
multi-tail-cluster bound only becomes apparent once the left tail has gathered a sufficient number of tail
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eigenvalues. Moreover, the characteristic two-peak shape corresponding to the Ritz value migration
is not present in the multi-tail-cluster bound. This can be attributed to the more rigorous splitting of
PartitionEigenspectrumTails, preventing the growth and shrinkage of the right cluster and, conversely,
of the left cluster. Instead, the multi-tail-cluster bound is more stable and converges to its final value in a
more gradual manner, yet does so more slowly than the multi-cluster bound.
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Figure 6.7: Similar to Figure 6.6, but now for the RGDSW coarse space.

In Figure 6.7 we observe a similar behavior of the multi-cluster and multi-tail-cluster bounds as
in Figure 6.6. However, the Ritz value migration occurs at a slower rate resulting in only one, single
eigenvalue left cluster being formed within the first 300 iterations. Effectively, this means that both
the multi-cluster and tail-cluster bounds underestimate the number of CG iterations m required for
convergence.

6.2.2. Comparison of bounds
Here we utilize the results from Section 6.2.1 to generate early CG iteration bounds mNcluster(σ(Ti)) and
mNtail-cluster(σ(Ti)) for i = 1, . . . , Niter, where Niter satisfies

Niter = min{300, bfitermc}, fiter ∈ (0, 1],

where m is the final number of CG iterations required for convergence. Additionally, we use a simple
algorithm that can detect temporary convergence of the extremal eigenvalues in the set of clusters that
results from PartitionEigenspectrum. That is let K∗ be as in Section 4.5, then we check after some
specified update frequency Nupdate whether the extremal eigenvalues of the clusters in K∗ have not
changed for the last Nupdate iterations

∀k ∈ K∗ λk,i

λk,i−Nupdate

< 1 + τextremal, i = Nupdate, 2Nupdate, . . . , Niter, (6.1)
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where τextremal is some tolerance parameter. If this condition is satisfied, we assume that the extremal
eigenvalues of the clusters have converged, and we can use the current clusters to calculate the CG
iteration bounds mNcluster(σ(Ti)) and mNtail-cluster(σ(Ti)).

The Tables 6.1 to 6.3 show the results of this process for fiter = 0.6, Nupdate = 5 and τextremal = 0.1
for the coefficient function Cconst, C3lvert and Cedge slabs, around vertices, respectively.

Table 6.1: PCG iteration bounds m1, mNcluster , mNtail-cluster , mestimate for solving the model diffusion problem with coefficient
function Cconst. Bounds are based on approximate spectra (Ritz values) obtained during the initial PCG iterations and are shown

for meshes H = 1/4, H = 1/8, H = 1/16, H = 1/32, H = 1/64 and 2-OAS preconditioners with GDSW, RGDSW, AMS
coarse spaces. The i column shows the iteration at which the bounds are obtained. The color of each cell indicates whether the

bound is larger (blue) or smaller (red) than the number of iterations required for convergence m. The shade of the cell is
proportional to the absolute difference between m and the bound.

m m1 mNcluster mNtail-cluster mestimate i

H = 1/4
GDSW 23 34 34 11 23 11
RGDSW 21 40 40 11 26 11
AMS 18 23 23 11 17 11

H = 1/8
GDSW 30 37 37 16 27 16
RGDSW 32 43 43 11 27 11
AMS 21 23 23 11 17 11

H = 1/16
GDSW 33 37 37 16 27 16
RGDSW 38 45 45 16 31 16
AMS 22 24 24 16 20 16

H = 1/32
GDSW 35 37 37 16 27 16
RGDSW 42 44 44 16 30 16
AMS 22 24 24 16 20 16

H = 1/64
GDSW 36 37 37 16 27 16
RGDSW 45 44 44 16 30 16
AMS 23 29 29 11 20 11

Table 6.2: PCG iteration bounds m1, mNcluster , mNtail-cluster , mestimate for solving the model diffusion problem with coefficient
function C3layer, vert. Bounds are based on approximate spectra (Ritz values) obtained during the initial PCG iterations and are
shown for meshes H = 1/4, H = 1/8, H = 1/16, H = 1/32, H = 1/64 and 2-OAS preconditioners with GDSW, RGDSW,

AMS coarse spaces. The i column shows the iteration at which the bounds are obtained. The color of each cell indicates whether
the bound is larger (blue) or smaller (red) than the number of iterations required for convergence m. The shade of the cell is

proportional to the absolute difference between m and the bound.

m m1 mNcluster mNtail-cluster mestimate i

H = 1/4
GDSW 62 225,419 111 26 69 26
RGDSW 78 224,028 109 26 68 26
AMS 20 23 23 11 17 11

H = 1/8
GDSW 237 300,788 641 91 366 51
RGDSW 242 302,967 638 86 362 51
AMS 22 23 23 11 17 11

H = 1/16
GDSW 403 350,992 949 148 549 96
RGDSW 442 351,891 948 147 548 96
AMS 22 23 23 11 17 11

H = 1/32
GDSW 607 367,021 2,228 231 1,230 161
RGDSW 606 368,220 2,277 290 1,284 216
AMS 22 23 23 11 17 11

H = 1/64
GDSW 797 359,087 1,764 85 925 46
RGDSW 778 359,976 1,763 85 924 51
AMS 22 23 23 11 17 11



6 Results §2 Early estimation of CG iteration bounds 55

Table 6.3: PCG iteration bounds m1, mNcluster , mNtail-cluster , mestimate for solving the model diffusion problem with coefficient
function Cedge slabs, around vertices. Bounds are based on approximate spectra (Ritz values) obtained during the initial PCG

iterations and are shown for meshes H = 1/4, H = 1/8, H = 1/16, H = 1/32, H = 1/64 and 2-OAS preconditioners with
GDSW, RGDSW, AMS coarse spaces. The i column shows the iteration at which the bounds are obtained. The color of each cell
indicates whether the bound is larger (blue) or smaller (red) than the number of iterations required for convergence m. The shade

of the cell is proportional to the absolute difference between m and the bound.

m m1 mNcluster mNtail-cluster mestimate i

H = 1/4
GDSW 80 124,727 88 36 62 36
RGDSW 81 117,699 133 36 85 36
AMS 83 98,421 191 84 138 41

H = 1/8
GDSW 261 127,648 383 173 278 96
RGDSW 494 124,745 1,274 583 929 186
AMS 171 110,677 302 123 213 71

H = 1/16
GDSW 346 123,872 306 134 220 76
RGDSW 1,406 122,195 2,185 979 1,582 241
AMS 238 110,969 310 126 218 81

H = 1/32
GDSW 363 122,634 310 136 223 76
RGDSW 3,082 109,007 1,415 920 1,168 271
AMS 276 110,970 312 127 220 86

H = 1/64
GDSW 407 127,897 485 268 377 186
RGDSW 6,766 69,645 2,612 956 1,784 291
AMS 310 114,629 324 132 228 91

In Table 6.1 we can see that the classical bound m1 and the multi-cluster bound mNcluster are equal
to each other. That is, no additional partitioning is performed by PartitionEigenspectrum and the multi-
cluster bound reduces to the classical bound, as discussed in Section 4.5. On the other hand, the
multi-tail-cluster bound mNtail-cluster is equal to the actual number of CG iterations i at the time of its
calculation. This is a consequence of the fact that the eigenspectrum σ(Ti) for i = 11, 16 as in Table 6.1,
is so sparse that PartitionEigenspectrum does not find any clusters. This is similar to the case discussed
in Figure 6.2 for the mesh Q1/4 and coefficient function C3layer, vert. Moving to the high contrast coefficient
functions C3lvert and Cedge slabs, around vertices in Tables 6.2 and 6.3, we can confirm that the multi-cluster
bound performs better than the classical bound m1 and differs from m by factor of 2 to 4, that is

km ∼ mNcluster < m1, k < 4. (6.2)

Expectedly, the multi-tail-cluster bound mNtail-cluster is too sharp to be useful in early estimation of the
number of CG iterations m required for convergence. However, it may still serve a purpose as part of
mestimate, see Figures 6.6 and 6.7. Even though mestimate is merely a heuristic, it does seem to perform
well as an early estimate of the number of CG iterations m required for convergence, as evidenced by
both Tables 6.2 and 6.3

We note that for the coefficient function Cedge slabs, around vertices in Table 6.3 both bounds mNcluster ,
mNtail-cluster and the heuristic mestimate underestimate the number of CG iterations for the preconditioner
M2-OAS-RGDSW on the meshes Q1/32 and Q1/64. This happens for the same reasons as discussed in
Section 6.2.1, i.e., the Ritz value migration is not yet complete, and the left cluster has not fully formed
yet. For the bounds to still be useful in practice, we can simply increase the number of iterations Niter to
allow for more Ritz value migrations to occur. Or, if this is computationally too expensive, we can still
use the bounds as indications of the number of CG iterations m required for convergence.

Finally, considering all Tables 6.1 and 6.3 at once, we can say that the multi-cluster bound mNcluster

gives the most robust early upper bound on the number of CG iterations m required for convergence,
assuming that one does sufficient iterations such that several Ritz values have migrated to the left
cluster(s). The tail-cluster bound gives a sharper bound that is only accurate for a more developed set
of Ritz eigenvalues, that is closer to the actual spectrum of A, as in Figures 6.3 to 6.5. Be that as it
may, within the first Niter = 300 both bounds are able to distinguish between the robust preconditioners
GDSW and AMS on the one side and the non-robust RGDSW on the other.



7
Conclusion

This thesis has stressed that the classical condition number-based Conjugate Gradient (CG) iteration
bound, m1, from Equation (2.18), does not fully capture the convergence behavior in high-contrast
heterogeneous elliptic problems, particularly when two-level Schwarz preconditioners are employed.
The spectra of the preconditioned systems, σ(M−1A) for all M−1 ∈M−1 as defined in Equation (5.2),
were found in [1] to not only possess a condition number like that of Equation (3.4) but also to exhibit the
spectral gap discussed in Section 3.1. The presence of this spectral gap undermines the assumption
of a uniformly distributed eigenspectrum, a key premise in the derivation of the classical CG iteration
bound. This observation forms the primary motivation for this thesis: the classical bound is too coarse
for high-contrast problems, necessitating the development of sharper, more descriptive bounds.

The main contributions of this thesis are the development and analysis of sharpened Conjugate
Gradient (CG) iteration bounds for high-contrast heterogeneous elliptic problems preconditioned by
two-level Schwarz methods. Building on the ideas from [2, Section 4], this work introduces new multi-
cluster and tail-cluster bounds that more accurately reflect the convergence behavior in the presence of
clustered eigenspectra. These bounds are derived, generalized, and validated both theoretically and
numerically, and their performance is compared to the classical condition number-based bound. The
thesis also presents practical algorithms for partitioning eigenspectra and computing these sharpened
bounds, and discusses the challenges and future directions for their application in predictive performance
analysis.

7.1. Development of Sharpened Iteration Bounds
A review of the relevant literature in Section 3.3 revealed that a two-cluster sharpened CG iteration bound
was derived in [2, Section 4], expressed in terms of the four extremal eigenvalues of the two clusters
within a spectrum. In Section 4.1, this bound was re-derived. The necessary conditions for which this
two-cluster bound, m2, is sharper than the classical bound, m1, were established in Sections 4.2 and 4.3
through Equations (4.22) and (4.26). This process identified the three key spectral characteristics sought
by Q2: the left- and right-cluster condition numbers, κl and κr, and the spectral width, s = κ

κl
.

We developed two novel sharpened CG iteration bounds in Section 4.5. By combining the afore-
mentioned necessary conditions based on κl, κr and s ensuring m2 < m1 with a recursive partitioning
algorithm and a generalized multi-cluster version of the bound from [2], we introduced a multi-cluster
bound, mNcluster (Algorithm 9), and a tail-cluster bound, mNtail-cluster (Algorithm 11). The only difference
between these two bounds is that the tail-cluster bound treats smaller, sparse clusters in a spectrum
differently by considering each eigenvalue in that cluster individually, rather than as part of a collective
cluster. This distinction allows the tail-cluster bound to capture more detailed spectral information.

7.2. Numerical Validation and Performance
The sharpness of these new bounds was investigated in Section 6.1 by applying them to approximate
eigenspectra obtained from the tridiagonal Lanczos matrix. These spectra resulted from a converged
PCG process with relative residual error stopping-criterion of εr = 10−8 applied to Problem 1.3 for
three two-level Schwarz preconditioners constructed with GDSW, RGDSW, or AMS coarse spaces.
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The bounds were evaluated for two specific high-contrast scalar coefficient functions, C3layer, vert and
Cedge slabs, around vertices, as shown in Figure 5.2.

In all tested scenarios, the tail-cluster bound, mNtail-cluster , consistently outperformed the multi-cluster
bound, mNcluster , which in turn was significantly sharper than the classical condition number-based bound,
m1. With regard to the relative improvement, we found that the new bounds were anywhere between
10 to 1000 times smaller than the classical bound. In an absolute sense, we found that both new
bounds are either of the same order as m, that is mNcluster ,mNtail-cluster = O(m), or one order higher,
mNcluster ,mNtail-cluster = O(10m). This result positively answers Q1 and demonstrates the superior accuracy
of the newly developed bounds. Furthermore, both mNcluster and mNtail-cluster provide valuable information
about the convergence behavior and can distinguish between the robustness of different preconditioners
more accurately than the classical bound.

7.3. Challenges in Practical Estimation and Future Directions
Despite their sharpness, we showed in Section 6.2 that the practical application of mNcluster and mNtail-cluster

for a priori iteration estimation faces challenges. The bounds require more detailed spectral information
than is typically available or computationally feasible to obtain from the initial PCG iterations. The core
issue is that the Ritz values may not converge quickly enough to the true eigenvalues of A, particularly
the internal ones defining cluster boundaries, to provide an accurate estimate of the full spectrum in
the early PCG iterations. Consequently, the answer to Q3 is that the utility of these bounds for early
estimation depends on the specific coefficient function and preconditioner used.

In fact, the classical bound m1 suffers from slowly converging Ritz values as well. Though to a
lesser extent than the new bounds. This is because m1 only relies on the extremal eigenvalues of the
spectrum. In contrast, mNcluster is most accurate when the extremal eigenvalues of each cluster are well
approximated by the Ritz values, which is not always the case. Similarly, mtail-cluster requires the extremal
eigenvalues of each cluster as well as a set of specific tail eigenvalues to be well approximated by the
Ritz values. This is a more stringent requirement, which explains why mNtail-cluster is not always an upper
bound for m when only a few Ritz values are available.

For most combinations of coefficient functions and meshes tested with the GDSW and AMS coarse
spaces, we observed the following within the first 300 PCG iterations:

mtail-cluster(σ(Ti)) . m . mNcluster(σ(Ti)) for i ≤ Niter = 300, (7.1)

where m is the actual number of iterations and σ(Ti) is the Ritz spectrum at iteration i. Note that this
relationship is not guaranteed to persist for higher values of Niter the RGDSW coarse space or other
variants of Problem 1.2.

That being said, Equation (7.1) suggests we can leverage the tail-cluster bound to obtain a more
accurate estimate of the number of iterations required for convergence. The average of the multi-cluster
and tail-cluster bounds at iteration i denoted as mestimate is such a heuristic. Though mestimate is arbitrarily
constructed and there is no guarantee that it is a valid upper bound, it provides good estimates of m.
However, even the performance of mNcluster as an upper bound and mestimate as a heuristic deteriorates
when the RGDSW coarse space is used to solve Problem 1.3 with Cedge slabs, around vertices, where they
can underestimate the true iteration count.

In conclusion, the main goal of this thesis was to sharpen the CG iteration bound for Schwarz-
preconditioned high-contrast heterogeneous scalar-elliptic problems beyond the classical condition
number-based bound. The derived multi-cluster and tail-cluster bounds offer a more nuanced and
accurate picture of convergence behavior than the classical condition number-based bound, able to
distinguish between preconditioners effectively.

Future research could focus on three main areas. First, the splitting conditions derived in Sections 4.2
and 4.3 could be refined to better identify advantageous cluster partitions, potentially enhancing the
sharpness of the multi-cluster and tail-cluster bounds as well as countering the effects of slowly converging
Ritz values. Second, and more fundamentally, research into the a priori estimation of the key spectral
characteristics (κl, κr, s) or all internal, extremal eigenvalues is crucial to circumvent the dependency
of specifically mNcluster on an approximate Ritz spectrum altogether, which would unlock its full potential
for predictive performance analysis. Finally, it would be beneficial to apply the new bounds to a wider
range of problems, including those with more complex, multi-high-contrast coefficients, finer mesh
discretizations, different preconditioners, and other types of PDEs. This added complexity should come
at no extra theoretical cost, as the bounds are derived for general SPD matrices and can handle multiple
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clusters. Such studies would further validate the robustness and versatility of the new bounds in practical
applications.



Appendix

A. Derivation of the CG Method
A.1. Arnoldi's method for linear systems
Arnoldi’s method for linear systems Au = b, where A is a general (possibly non-symmetric) stiffness
matrix, is just an instantiation of Algorithm 1. It uses a Gramm-Schmidt orthogonalization procedure
to simultaneously obtain the basis V of K and the Hessenberg matrix, see Definition 2.2. Assuming
without loss of generality that V has dimension m, we set V = Vm and let v1 = r0/||r0||2 and β = ||r0||2,
then by Definition 2.1 we have

V T
mAVm = Hm and V T

m r0 = V T
mβv1 = βe1 =⇒ um = u0 + Vmc,

Hmc = βe1.

Substituting this into the template for the error projection methods given in Algorithm 1 gives Algorithm A.1.

Algorithm A.1 Arnoldi’s method for linear systems (FOM) [21, Algorithm 6.4]
Compute r0 = b−Au0, β = ||r0||2 and v1 = r0/β
Define Hm = {0}
Define V1 = {v1}
for j = 1, 2, . . . ,m do

wj = Avj

for i = 1, 2, . . . , j do
hij = (wj ,vi) and store hij in Hm

wj = wj − hijvi

end for
hj+1,j = ||wj ||2
if hj+1,j = 0 then

m = j
break

end if
vj+1 = wj/hj+1,j and store vj+1 into Vj+1

end for
Solve Hmc = βe1 for c
um = u0 + Vmc

Note that a stopping criterion can be derived from the residual vector rm = b−Aum. Theorem A.1
gives a way of calculating the size of the residual vector [21, Proposition 6.7].

Theorem A.1: Arnoldi residual

The residual vector rm = b−Aum satisfies

‖rm‖2 = hm+1,m|eTmc|, (A.1)

Proof. We have

rm = b−Aum

= r0 −AVmc

= βv1 − VmHmc− hm+1,meTmcvm+1

= −hm+1,meTmcvm+1.
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The result follows by taking the 2-norm of both sides of the equality and using the fact that ||vm+1||2 =
1.

A.2. Lanczos' Algorithm
In the special case where A is symmetric, the Arnoldi method can be simplified to the Lanczos algorithm.
In particular, for symmetric A, the Hessenberg matrix Hm is tridiagonal

Hm = Tm =


δ1 η2 0 . . . 0
η2 δ3 η3 . . . 0
0 η3 δ4 . . . 0
...

...
... . . . ηm

0 0 0 ηm δm

 , (A.2)

where we redefined Hm to be the tridiagonal matrix Tm, also called the Ritz matrix. The tridiagonality
of Tm allows us to reduce the Gramm-Schmidt orthogonalization procedure in the inner for-loop in
Algorithm A.1 to just two vector subtractions and an inner product, resulting in Algorithm A.1

Algorithm A.2 Lanczos algorithm for linear systems [21, Algorithm 6.16]
Compute r0 = b−Au0, β = ||r0||2, v0 = 0 and v1 = r0/β
V1 = {v1}
for j = 1, 2, . . . ,m do

wj = Avj − ηjvj−1

δj = (wj ,vj)
wj = wj − δjvj

ηj+1 = ||wj ||2
if ηj+1 = 0 then

m = j
Break

end if
vj+1 = wj/ηj+1 and store vj+1 into Vj+1

end for
Solve the tridiagonal system Tmc = βe1 for c
um = u0 + Vmc

A.3. D-Lanczos
A downside of Algorithm A.2 in particular and projections methods like Algorithm 1 in general is their
reliance on an arbitrary choice of dimension m. The methods run until the basis Vm is constructed
and subsequently construct Hm to determine the correction c. This is not ideal, since the resulting
solution um may not be close enough to the true solution u. That is, it is not guaranteed that the residual
vector rm is ‘small enough’. Alternately, it might happen m is chosen too large, and the method is
unnecessarily expensive. In the specific case of the Arnoldi method Theorem A.1 may be used to
determine the residual before calculating c. Though this saves some computational time, it still requires
the construction of the basis Vm and the tridiagonal matrix Tm, as well as a restart of the algorithm. This
is not ideal, since the construction of Vm and Tm is expensive.

To address the issue of arbitrary m, we construct a version of Algorithm A.2 that allows us to
incrementally update the solution um and the residual vector rm. This way, we can stop the algorithm
when the residual vector is smaller than some predefined threshold, like rm < ε.

To that end, we start by performing a LU-factorisation of Tm given by

Tm = LmUm =


1 0 0 . . . 0
η̃2 1 0 . . . 0
0 η̃3 1 . . . 0
...

...
... . . . ...

0 0 . . . η̃m 1

×

δ̃1 η2 0 . . . 0

0 δ̃2 η3 . . . 0

0 0 δ̃3 . . . 0
...

...
... . . . ηm

0 0 0 . . . δ̃m

 (A.3)
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Then, the approximate solution is given by

um = u0 + Vmc

= u0 + VmU−1
m L−1

m βe1

= u0 + VmU−1
m (L−1

m βe1)

= u0 + Pmzm,

where Pm = VmU−1
m and zm = L−1

m βe1. Considering the definition of Um in Equation (A.3), we have
that the mth column of Pm is given by

pm =
1

δ̃m
[vm − ηmpm−1] . (A.4)

Furthermore, from the LU factorization of Tm we have that

η̃m =
ηm

δ̃m−1

,

δ̃m = δm − η̃mηm, m > 1.

Now the solution can be incrementally updated by realizing that

zm =

(
zm−1

ζm

)
=

zm−2

ζm−1

ζm

 ,

and
Lm =

(
Lm−1 0m−1

0T
m−2 η̃m 1

)
.

Then,
Lmzm =

(
Lm−1zm−1

η̃mζm−1 + ζm

)
=

(
βe1
0

)
,

where the last equality follows from definition of zm. Consequently, we have that

ζm = −η̃mζm−1.

Finally, we obtain

um = u0 + Pmzm

= u0 + [Pm−1pm]

(
zm−1

ζm

)
= u0 + Pm−1zm−1 + pmζm

= um−1 + pmζm.

Putting it all together, we obtain Algorithm A.3.
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Algorithm A.3 D-Lanczos [21, Algorithm 6.17]
r0 = b−Au0, β = ||r0||2, v1 = r0/β
η̃1 = β1 = 0, p0 = 0
for m = 1, 2, . . . ,m until convergence do

w = Avm − βmvm−1

δm = (w,vm)
if m > 1 then

η̃m =
βm

δ̃m−1

ζm = −η̃mζm−1

end if
δ̃m = δm − η̃mβm

pm =
1

δ̃m
[vm − βmpm−1]

um = um−1 + pmζm
if ‖rm+1‖2 < ε then

break
end if
w = w − δmvm

βm+1 = ||w||2
vm+1 = w/βm+1

end for

Some core properties of Algorithm A.3 are described in Theorem A.2

Theorem A.2: A-orthogonality of pm

The vectors pm produced in algorithm Algorithm A.3 are A-orthogonal to each other.

Proof. We have

PT
mAPm = U−T

m V T
mAVmU−1

m

= U−T
m TmU−1

m

= U−T
m Lm,

where U−T
m and Lm are both lower diagonal matrices. Their product must be symmetric, since PT

mAPm

is symmetric (due to the symmetry of A). The result follows from the fact that U−T
m Lm must be a diagonal

matrix

Theorem A.3: Lanczos recurrence relation

The Lanczos vectors are related through the Lanczos recurrence relation

ηj+1(A)vj+1 = Avj − δjvj − ηjvj−1. (A.5)

Proof. This follows directly from the definition of Tm in Equation (A.2) and the definition of the Hessenberg
matrix in Definition 2.2.

A.4. Deriving CG from D-Lanczos
From general properties of error projection methods and observations made in the in Algorithm A.3, we
can derive the CG method. We start by constraining subsequent residuals rj to be orthogonal. This
follows from choosing subspaces K = L, as in the Arnoldi process. Again, the space K is spanned
by the vectors vm. Thus setting v1 = r0/‖r0‖2, automatically means subsequent residuals will be
orthogonal to each other. Then, as suggested by Theorem A.2, we also require that the vectors pj are
A-orthogonal to each other. From this point on, we use the term search direction to refer to the vectors
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pj . Next to this we also introduce the CG variables αj and βj , which are the step size and the search
direction update, respectively. This results in the following update equations

uj+1 = uj + αjpj , (A.6)

and, thereby,
rj+1 = rj − αjApj . (A.7)

If the residuals are to be orthogonal, then

(rj+1, rj) = 0 =⇒ (rj − αjApj , rj) = 0 =⇒ αj =
(rj , rj)

(Apj , rj)
.

Now, using the relation between rm and vm+1 found in the proof of Theorem A.1 and Equation (A.4),
we can write the next search direction as a linear combination of the previous search direction and the
next residual

pj+1 = rj+1 + βjpj . (A.8)

Substituting Equation (A.8), we obtain

(Apj+1, rj) = (Apj ,pj − βj−1pj−1) = (Apj ,pj),

since pj is A-orthogonal to pj−1. This allows us to write

αj =
(rj , rj)

(Apj ,pj)
. (A.9)

Additionally, taking the inner product with Apj on both sides of Equation (A.8) gives

βj =
(rj+1, Apj)

(pj , Apj)
.

Now, rewriting Equation (A.7) gives
Apj =

1

αj
(rj − rj+1),

which we substitute into the equation for βj to obtain

βj =
1

αj

(rj+1, (rj+1 − rj))

(Apj , rj)
=

(rj+1, rj+1)

((rj − rj−1), rj)
=

(rj+1, rj+1)

(rj , rj)
. (A.10)

Finally, Equations (A.6) to (A.10) comprise one iteration of the CG method, as shown in Algorithm 2.

A.5. Relation to D-Lanczos
There exist relations between the entries of Tm δj , ηj and the CG coefficients αj , βj . Namely, we have

δj+1 =


1

αj
+

βj−1

αj−1
j > 0,

1

α0
j = 0,

(A.11)

and
ηj+1 =

√
βj−1

αj−1
. (A.12)

Here we have used the definition of Tm and the fact that the residuals are multiples of the Lanczos
vectors rj = scalar× vj [21, Equation 6.103].
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B. Derivation of the Two-level Schwarz preconditioner
In this section we discuss the general idea behind as well as the construction of robust coarse spaces
to be used in conjunction with the One-level Schwarz preconditioner, ultimately leading to a Two-level
Schwarz preconditioner. To that end, we first motivate the need for an additional level or coarse space in
Section B.1 Motivation by studying the convergence factor of the original Schwarz method. In Section B.2
Construction of two-level additive Schwarz preconditioner we construct the Schwarz preconditioner
with both a Nicolaides coarse space from Equation (2.27) and one based on the Dirichlet-to-Neumann
map from Definition 2.9. The latter coarse space is constructed using the eigenfunctions corresponding
to the smallest mj eigenvalues resulting from a local eigenproblem in each subdomain Ωj defined in
Equation (2.29). Finally, in Section B.3 Convergence of two-level additive Schwarz system bounds
for the two full preconditioned systems’ condition numbers are provided. All of this can be found in [9,
Sections 5.1-5.5].

B.1. Motivation
First we consider the convergence of the original Schwarz method stated in definition 2.8 for two simple
one- and two-dimensional domains Ω. This motivates the construction of the coarse space.

1D case
Let L > 0 and the domain Ω = (0, L). The domain is split into two subdomains Ω1 = (0, L1) and
Ω2 = (l2, L) such that l2 ≤ L1. Instead of solving for u1,2 directly, we solve for the error en1,2 = un

1,2−u|Ωi
,

which by linearity of the Poisson problem as well as the original Schwarz algorithm satisfies

−en+1
1

dx2
= 0 in (0, L1),

en+1
1 (0) = 0, and

en+1
1 (L1) = en2 (L1);

−en+1
2

dx2
= 0 in (l2, L),

en+1
2 (l2) = en+1

1 (l2),

en+1
2 (L) = 0.

The solution to the error problem is

en+1
1 (x) =

x

L1
en2 (L1), en+1

2 (x) =
L− x

L− l2
en+1
1 (l2).

These functions increase linearly from the boundary of the domain to the boundary of the overlapping
region. The error at x = L1 is updated as

en+1
2 (L1) =

1− δ/(L− l2)

1 + δ/l2
en2 (L1),

where δ = L1 − l2 > 0 is the overlap. The error is reduced by a factor of

ρ1D =
1− δ/(L− l2)

1 + δ/l2
, (B.1)

which indicates the convergence becomes quicker as the overlap increases [9, Section 1.5.1].

2D case
In the 2D case two half planes are considered Ω1 = (−∞, δ)× R and Ω2 = (δ,∞)× R. Following the
example of [9, Section 1.5.2] the problem is

−(η −∆)u = f in R2,

u bounded at infinity,

where η > 0 is a constant. Proceeding in similar fashion as the one-dimensional case, the error en+1
1,2

can be solved for in the two subdomains. This is done via a partial Fourier transform of the problem in
the y-direction yielding an ODE for the transformed error ên+1

1,2 with the added Fourier constant k, which
can be solved explicitly with the ansatz

ên+1
1,2 (x, k) = γ1(k)e

λ+(k)x + γ2(k)e
λ−(k)x,
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where λ±(k) = ±
√
k2 + η. By using the interface conditions ên+1

1 (0, k) = ên+1
2 (0, k) we get

γn+1
i (k) = ρ(k; η, δ)2γn−1

i (k),

such that the convergence factor is [9, Equation 1.36]

ρ2D(k; η, δ) = e−δ
√

η+k2 (B.2)

which indicates that the convergence is quicker as the overlap increases as before. Next to this, it also
shows that the convergence is quicker for higher k.

B.2. Construction of two-level additive Schwarz preconditioner
Here we present the construction of a full two-level Schwarz preconditioner. We partition Ω into Nsub
subdomains Ωj , which overlap each other by one or several layers of elements in the triangulation T .
We make the following general assumptions.

D1 For every degree of freedom k ∈ N , there is a subdomain Ωj such that φk has support in Ωj [9,
Lemma 5.3].

D2 The maximum number of subdomains a mesh element can belong to is given by

k0 = max
τ∈T

(|{j|1 ≤ j ≤ Nsub and τ ⊂ Ωj}|) .

D3 The minimum number of colors needed to color all subdomains so that no two adjacent subdomains
have the same color is given by

Nc ≥ k0

D4 The minimum overlap for any subdomain Ωj with any of its neighboring subdomains is given by

δj = inf
x∈Ωj\∪i6=jΩ̄i

dist(x, ∂Ωj \ ∂Ω).

D5 The partition of unity functions {χj}Nsub
j=1 ⊂ Vh are such that

D5.a χj(x) ∈ [0, 1], ∀x ∈ Ω̄, j = 1, . . . , Nsub,
D5.b supp(χj) ⊂ Ω̄j ,

D5.c
Nsub∑
j=1

χj(x) = 1, ∀x ∈ Ω̄,

D5.d ‖∇χj(x)‖ ≤
Cχ

δj
,

and are given by

χj(x) = Ih

(
dj(x)∑Nsub
j=1 dj(x)

)
,

where

dj(x) =

{
dist(x, ∂Ωj), x ∈ Ωj ,

0, x ∈ Ω \ Ωj .

D6 The overlap region for any subdomain is given by

Ωδ
j = {x ∈ Ωj |χj < 1}.
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From Item D1 it follows that the extension operator Ej : Vh,0(Ωj)→ Vh can defined by

Vh =

Nsub∑
j=1

EjVh,0(Ωj).

Note that using the extension operator we can show that all the local bilinear forms are positive definite
as

aΩj
(v, w) = a(Ejv,Ejw) ≥ α‖Ejv‖2a, ∀v, w ∈ Vh,0(Ωj),

and a is positive definite.
Finally, we define the a-symmetric projection operators P̃j : Vh,0 → Vh and Pj : Vh → Vh defined by

aΩj
(P̃ju, vj) = a(u,Ejvj) ∀vj ∈ Vh,0,

P = EjP̃j .

Then their matrix counterparts are given by

P̃j = A−1
j RT

j A,

Pj = RT
j A

−1
j RT

j A,

where Aj = RjART
j and its inverse is obtained using an exact solver. From this we can construct the

two-level additive Schwarz preconditioned system as

M−1
ASM,2A =

Nsub∑
j=1

Pj . (B.3)

B.3. Convergence of two-level additive Schwarz system
In the following, we denote

Pad =

Nsub∑
j=1

Pj ,

and correspondingly,

Pad =

Nsub∑
j=1

Pj .

In the context of this thesis the two-level additive Schwarz method is used in combination with a Krylov
subspace method, in which case convergence rate depends on the entire spectrum of eigenvalues, as
discussed in Section 2.1.4. However, an upperbound for the convergence rate can be derived from the
condition number of Pad using Theorem 2.7.

Using the fact that Pad is symmetric (see [9, Lemma 5.8]) with respect to the a-norm, we can write

κ(Pad) =
λmax
λmin

,

where
λmax = sup

v∈Vh

a(Pad)

a(v, v)
, λmin = inf

v∈Vh

a(Pad)

a(v, v)
.

Additionally, we can employ the a-orthogonality of the projection operators to get

a(Pju, u)

‖u‖2a
=

a(Pju,Pju)

‖u‖2a
≤ 1.

Going further, we can pose that the projection operators defined by the sum of projection operators Pj

of like-colored subdomains are a-orthogonal to each other, since the partition of unity functions χj are
zero on their shared interfaces (see Item D3). To that end, define

PΘi
=
∑
j∈Θi

Pj ,
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where Θi is the set of indices of subdomains with color i and i = 1, . . . , Nc. Then, we can write [9,
Lemma 5.9]

λmax(Pad) = sup
v∈Vh

Nc∑
i=1

a(PΘi
v, v)

a(v, v)

≤
Nc∑
i=1

sup
v∈Vh

a(PΘi
v, v)

a(v, v)

≤ Nc + 1,

where the extra one comes from the coarse projection operator P0. Note that this bound can be made
sharper by using Item D2 to get λmax(PΘi

) ≤ k0 + 1.
Next, we define a stable decomposition [9, Definition 5.10].

Definition B.1: C0-stable decomposition (uniform)

A function v ∈ Vh is said to admit a C0-stable decomposition if there exists a uniform constant
C0 > 0 such that

Nsub∑
j=0

‖Ejv‖2a ≤ C2
0‖v‖2a

It can be shown that the minimum eigenvalue satisfies

λmin(Pad) ≥ C−2
0 ,

provided that every v ∈ Vh admits a C0-stable decomposition in the sense of Definition B.1 [9, Theorem
5.11]. Note that through the equivalence of norms, we have

Cmin‖∇v‖2 ≤ ‖v‖2a ≤ Cmax‖∇v‖2.

Therefore, we can conclude that every v ∈ Vh admits a C0-stable decomposition if and only if

Nsub∑
j=0

‖Ej∇v‖2 ≤
Cmax
Cmin

C2
0‖∇v‖2.

Finally, we can write the condition number of the two-level additive Schwarz preconditioner as

κ(Pad) ≤
Cmax
Cmin

(Nc + 1)C2
0 . (B.4)

The constant C0 depends on the projection operator Πj onto the chosen coarse space V0 for each
subdomain and is fully derived in [9, Sections 5.5-5.7]. We present the main results below.

I. Nicolaides coarse space The projection operator is defined as

ΠNico
j u =


(

1

|Ωj |

∫
Ωj

u

)
1Ωj

, δΩj ∩ δΩ = ∅,

0, otherwise,
(B.5)

which are simply the averages of the function over the subdomain Ωj and gives rise to the following
basis functions in Vh,0

ΦNico
j = Ih(χj1Ωj

).

Then,
V0 = span{ΦNico

j }Nsub
j=1 ,

and
dimV0 = the number of floating subdomains,
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that is the number of subdomains that are not connected to the boundary of the domain Ω. In this
case [9, Theorem 5.16],

C2
0,Nico =

(
8 + 8C2

χ

Nsub
max
j=1

[
C2

P + C−1
tr

Hj

δj

]
k0CIh(k0 + 1) + 1

)
, (B.6)

where Hj is the diameter of the subdomain Ωj , Cχ the partition of unity constant from Item D5, Cp

the Poincaré constant following from [9, Lemma 5.18], Ctr the trace constant and CIh the stable
interpolation constant.

II. Local eigenfunctions coarse space The projection operator is defined as

Πspec
j u =

mj∑
k=1

aΩj (u, v
(j)
k )v

(j)
k ,

where v
(j)
k is the kth eigenfunction resulting from the eigenproblem in Equation (2.29). The basis

functions in Vh,0 are then given by
Φspec

j,k = Ih(χjv
(j)
k ),

resulting in the coarse space
V0 = span{Φspec

j,k }
Nsub,mj

j=1,k=1,

with dimension

dimV0 =

Nsub∑
j=1

mj .

In this case [9, Theorem 5.17]

C2
0,DtN =

(
8 + 8C2

χ

Nsub
max
j=1

[
C2

P + C−1
tr

1

δjλmj+1

]
k0CIh(k0 + 1) + 1

)
. (B.7)

C. Chebyshev approximation
This section contains the definition of Chebyshev polynomials of the first kind, some of their properties
and their application to a minimization problem akin to the one described in Theorem 2.7.

C.1. Chebyshev polynomials
This section introduces Chebyshev polynomials and some of their properties. First, their definition in
Definition C.1.

Definition C.1: Chebyshev polynomial

The mth degree Chebyshev polynomial of the first kind is denoted as Cm, for z ∈ C

Cm(z) =

{
cos(m cos−1(z)), |z| ≤ 1,

cosh(m cosh−1(z)), |z| > 1,
,

as well as through the recurrence relation

Cm(z) = 2zCm−1(z)− Cm−2(z), m ≥ 2,

with initial conditions
C0(z) = 1, C1(z) = z.

For |z| > 1 we can also write

Cm(z) =
1

2

((
z +

√
z2 − 1

)m
+
(
z −

√
z2 − 1

)m)
, (C.1)
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which may be approximated as

Cm(z) ≈


1

2

(
z +

√
z2 − 1

)m
, <{z} > 1,

1

2

(
z −

√
z2 − 1

)m
, <{z} < −1.

(C.2)

The extreme points of Cm are given by

zk = cos

(
kπ

m

)
, k = 0, 1, . . . ,m. (C.3)

Indeed, substituting zk into Cm gives

Cm(zk) = cos(kπ) = cos(kπ) = (−1)k, k = 0, 1, . . . ,m. (C.4)

For the optimality proof we need to introduce the real-valued, transformed Chebyshev polynomial in
Definition C.2.

Definition C.2: Real Transformed Chebyshev polynomial

The transformed Chebyshev polynomial of the first kind is denoted as Ĉm, for x ∈ R is obtained
through an affine change of variables T from the [a, b] ⊂ R to the interval [−1, 1] as

t ∈ [a, b] =⇒ z = T (t) =
2t− (a+ b)

b− a
∈ [−1, 1],

and a subsequent scaling with the factor Cm(T (γ)) for γ ∈ R outside the interval [a, b] as

Ĉm(t) =
Cm(T (t))

Cm(T (γ))
=

Cm

(
2t−(a+b)

b−a

)
Cm

(
2γ−(a+b)

b−a

)
Lastly, by Equation (C.4) we get for tk = T−1(zk)

Ĉm(tk) =
(−1)k

Cm(T (γ))
=

(−1)k

dm(γ)
, (C.5)

where dm(γ) = Cm(T (γ)).

C.2. Chebyshev optimality
We now show that Ĉm from Definition C.2 is the solution of the following minimization problem

Theorem C.1: Min-max polynomial

The real-valued polynomial pm(t) of degree m such that for γ ∈ R outside the interval [a, b] the
following holds

min
p∈Pm,p(γ)=1

max
t∈[a,b]

|p(t)|,

is given by the Chebyshev polynomial Ĉm. Furthermore, we have

min
p∈Pm,p(γ)=1

max
t∈[a,b]

|pm(t)| = 1

dm(γ)
,

where dm(γ) is as in Equation (C.5).

Proof. We proof this by contradiction. First, note that by Equation (C.5) we have

max
t∈[a,b]

|Ĉm(t)| = max
k=0,1,...,m

|Ĉm(tk)| =
1

dm
,
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Assume that there exists a polynomial wm(t) of degree m such that

max
t∈[a,b]

|wm(t)| < 1

dm
.

Without loss of generality we can assume wm, just like Ĉm, is a monic polynomial, i.e. wm(t) = tm + . . . .
We now define the difference polynomial

fm(t) = Ĉm(t)− wm(t) ∈ Pm−1,

where the inclusion in the m− 1 degree polynomials follows from the fact that fm is the difference of two
monic polynomials of degree m.

Consider the values of fm at the extreme points tk = T−1(zk) of Ĉm with zk as in Equation (C.3) and
T as in Definition C.2. We distinguish between even and odd k. By Equation (C.5) and the assumption
on wm we then obtain

even k: fm(tk) =
1

dm
− wm(tk) > 0.

odd k: fm(tk) = −
1

dm
− wm(tk) < 0.

From this we gather that fm(tk) has alternating signs at the extreme points tk of Ĉm.
Now, the sequence (zk)

m
k=0 is decreasing, and thus the sequence (tk)

m
k=0 is also decreasing. This

means that we can construct m distinct intervals Ik = [tk+1, tk] such that fm switches sign in each
interval. By the intermediate value theorem, we know that fm must have at least one root in each interval
Ik. This leads to the conclusion that fm has at least m roots in the interval [a, b].

However, by the fundamental theorem of algebra fm, a polynomial of degree m − 1, can have at
most m− 1 distinct roots. The only possibility is for fm ≡ 0, but then we have

max
t∈[a,b]

|wm(t)| = max
t∈[a,b]

|Ĉm(t)| = 1

dm
,

which contradicts our main assumption that wm is a polynomial such that max
t∈[a,b]

|wm(t)| < 1

dm
. Thus, we

conclude that the Chebyshev polynomial Ĉm is indeed the solution to the minimization problem.

D. Rayleigh quotient
Definition D.1: T

e Rayleigh quotient of a matrix A and a vector u is defined as

R(A,u) =
uTAu

uTu
. (D.1)

Theorem D.1: Rayleigh quotient bound

Suppose A is symmetric. Then the Rayleigh quotient R(A,u) is bounded by the smallest and
largest eigenvalue of A, i.e.

λmin ≤ R(A,u) ≤ λmax.

Proof. A has diagonalization A = QΛQT , where Q is an orthonormal eigenbasis and Λ is the diagonal
with real and positive eigenvalues λi of A. The Rayleigh quotient satisfies with v = Qu

R(A,u) =
uTAu

uTu
=

vTΛv

vTv
=

n∑
i=1

λiv
2
i

‖v‖2
,

which is a convex combination of the eigenvalues λi of A. Thus, we have
λmin ≤ R(A,u) ≤ λmax.
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