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Summary

In this paper, we propose a stress recovery procedure for low-order finite ele-
ments in 3D. For each finite element, the recovered stress field is obtained by
satisfying equilibrium in an average sense and by projecting the directly cal-
culated stress field onto a conveniently chosen space. Compared with existing
recovery techniques, the current procedure gives more accurate stress fields, is
simpler to implement, and can be applied to different types of elements without
further modification. We demonstrate, through a set of examples in linear elas-
ticity, that the recovered stresses converge at a higher rate than that of directly
calculated stresses and that, in some cases, the rate of convergence is the same
as that of the displacement field.
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1 INTRODUCTION

In a displacement-based finite element (FE) analysis, the stress is usually computed from the displacement field in a
postprocessing step. This directly calculated stress is obtained from the derivative of the displacement field, leading
inevitably to a lower-order less-accurate field as compared to that of the displacement. In addition, the usual C0-continuity
at interelement boundaries leads to a discontinuous stress field. As a result, a significant amount of research has been
devoted to retrieve the lost accuracy and continuity of the stress field, leading to methods known as “stress recovery
techniques.” Improved stress fields obtained through these procedures not only provide a better stress representation for
reduced computational cost but also are widely used in a posteriori error estimates.

Initial techniques were based on global and local smoothing using the least-squares method. For instance,
Hinton and Campbell1 proposed a procedure in which global or local nodal averaging is used to minimize the error
between the improved nodal stress and the FE stress. Similar to global smoothing, Oden and Brauchli2 proposed a proce-
dure that, assuming a C0 continuous interpolation of the stress, computes nodal stresses by a least-square fit to the directly
calculated stress. Global smoothing techniques are computationally expensive, difficult to implement, and for quadratic
elements, results were discouraging.3 The superconvergent patch recovery (SPR) of Zienkiewicz and Zhu,3 which outper-
formed the earlier smoothing methods, became widely adopted and was further explored as an a posteriori error estimate.4
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In this recovery technique, the stress at mesh nodes is obtained by using a complete polynomial of the same order as
that used for approximating the displacement field. The polynomial is then fitted in a least-square sense to the directly
calculated stresses computed at superconvergent points over a patch of elements. Indeed, at these points, the accuracy of
the derivatives is one order higher than at any other point in the element, resulting in a substantial improvement in the
corresponding stresses. Superconvergent patch recovery was later further developed to improve its accuracy by adding
an equilibrium constraint to the least-squares functional.5 This enabled the use of higher-order polynomials and thus
resulted in more accurate recovered stresses. A similar method by Wiberg et al.6 proposed an additional improvement by
adding the equilibrium equation and the prescribed tractions as constraints on the stress field. However, because of the
additional constraints to the least-square functional and the use of higher-order polynomials for the recovered stresses,
these improvements required more computational resources. All in all, SPR-based methods have an important draw-
back, ie, they rely on superconvergent points that are not always guaranteed to exist, eg, in non-regular isoparametric
elements, elements with varying material properties,7 and in linear triangular elements.8

Several other methods that do not require superconvergent points were later proposed. In the recovery by equilibrium
in patches (REP) by Boroomand and Zienkiewicz,8,9 the improved stresses are obtained by minimizing, over a patch of
elements and in a least-square sense, the error between the improved and the FE stresses projected onto the space of
FE strains. To deal with instability and singularity issues of small patches, an equilibrium term is added to the origi-
nal minimization formulation of each element. An improved REP method was later proposed by the same authors,8 in
which the additional equilibrium term for each element was no longer needed. This leads to a simpler and efficient recov-
ery technique as compared with the original REP formulation. Ubertini then proposed the recovery by compatibility in
patches (RCP),10 which exceeds the performance of both REP and SPR in terms of accuracy and sensitivity to mesh geome-
try changes. In RCP, the stresses are improved over a patch of elements by minimizing the error between improved strains
and the strains from the FE solution. RCP requires an a priori problem-dependent particular solution to the continuum
equation of equilibrium. Payen and Bathe introduced then the nodal-point force (NPF) method.11,12 The improved stresses
in NPF are calculated from the element nodal point forces using two virtual work statements, which express that the vir-
tual work of element nodal point forces is equal to the virtual work of element boundary tractions and to the internal
virtual work, respectively. This method was later extended to 3D for 4-node tetrahedral elements.12 The procedure is not
only straightforward to implement but also more accurate because of the higher-order stress field adopted. However, NPF
also has drawbacks, which include the need of stress averaging and an element-type specific patch. As a result, Payen and
Bathe later proposed another stress improvement procedure (SIP) that alleviates these shortcomings.13 SIP uses a mixed
formulation based on the Hu-Washizu principle14 where the stress-strain relationship is relaxed pointwise but the fulfil-
ment of equilibrium is enhanced. In their paper, they showed that, under certain assumptions, REP, RCP, and NPF can
be derived from this mixed formulation. To date, their stress recovery procedure outperforms SPR, REP, RCP, and NPF.
Nonetheless, the authors provided the interpolation matrices needed to implement the stress recovery procedure only in
1D and 2D.

In this paper, we extend SIP and investigate its performance on 3D linear FE analysis. We focus on 4-node tetrahedral
and 8-node hexahedral elements and provide the required interpolation matrices needed for the computation of the stress
coefficients that describe the improved stress field. With the help of numerical examples, we also investigate the conver-
gence rate of the resulting approach. Even though the examples provided here are for problems in linear elastostatics, the
method is general and thus could also be applied in a similar manner to nonlinear and dynamic problems.

2 STRESS IMPROVEMENT PROCEDURE

Here, we provide only the equations for obtaining the enhanced stress and we give the full derivation in Appendix A.
To compute the enhanced stresses we start from a displacement field that was computed by standard procedures.
The enhanced stress 𝝈(m) in the mth element is computed by the following two projection equations:

N𝑝∑
m=1∫

V (m)

𝛿𝜻 (m)⊺ {div
(
𝝈(m)) + f B} dV = 0, (1)

N𝑝∑
m=1∫

V (m)

𝛿𝝀(m)⊺
{
𝝈(m) − 𝝈

(m)
h

}
dV = 0, (2)
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where the summations involve a patch of Np elements, called the stress calculation domain Vp, fB is the known body
force, 𝛿𝜻 (m) and 𝛿𝝀(m) are Lagrangian multipliers, and 𝝈

(m)
h is the directly calculated FE stress. In Equation (1), ie, 𝛿𝜻 (m) ∈

v
1 = {v|vi ∈ P1(V𝑝), 1 ≤ i ≤ 3}, where v

1 is the vector-valued function space of first-order polynomials, from which the
displacement field is also chosen. The enhanced stress 𝝈(m) ∈ 𝝈

2 = {T| Ti𝑗 ∈ P2(V𝑝); 1 ≤ i, 𝑗 ≤ 3}, ie, 𝝈(m) is a member
of the second-order-tensor-valued function space of second-order polynomials. Similarly, in Equation (2), ie, 𝛿𝝀(m) ∈ ̄𝝈

2 ,
where ̄𝝈

2 = {T| T ∈ 𝝈
2 ; div(T) = 0} ⊂ 𝝈

2 .
Equation (1) implies that the enhanced stress field is obtained by satisfying equilibrium in a weak sense over the stress

calculation domain Vp. Yet, this equation alone is not sufficient to compute the enhanced stress field because any constant
field added to 𝝈(m) would also satisfy the equation. This arbitrariness is removed by Equation (2), which ensures that the
difference between enhanced and directly calculated stresses is orthogonal to ̄𝝈

2 . In other words, Equation (2) projects
the directly calculated stress onto ̄𝝈

2 , extracting its useful component.13

For 1D solutions, Np = 1 is sufficient to obtain an accurate stress approximation. However, for 2D and 3D problems, we
use multiple elements in the stress calculation domain to improve the accuracy. In this method, for the interior, side, and
edge nodes (Figures 1A-C), the stress calculation domain (a patch) is defined as the first layer of elements attached to it.
The patch for the corner node (Figure 1D) is defined by 2 element layers. For the mth element, the calculation domain is
given by the element itself and all its neighbouring elements, as shown in Figures 2A-D. Clearly, the number of elements
in the patch is also different whether we are dealing with an interior or a boundary element.

FIGURE 1 Schematic of the stress calculation domain used for a node depending on its position in the mesh: A, interior (8 elements); B,
side (4 elememts); C, edge (2 elements); D, corner (8 elements) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 A diagram of stress calculation domain used for an element depending on its position in the mesh: A, interior (27 elements); B,
side (18 elements); C, edge (12 elements); D, corner (8 elements) [Colour figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
wileyonlinelibrary.com
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In order to obtain the discrete FE counterparts of (1) and (2), we define the following interpolations for the enhanced
stress 𝝈(m) and the Lagrange multipliers 𝛿𝜻 (m) and 𝛿𝝀(m):

𝝈(m) = E𝜎�̂�, 𝛿𝜻 (m) = E𝜁 �̂� , 𝛿𝝀(m) = Ē𝜎
̂̄𝝈, (3)

where E𝜎,E𝜁 , Ē𝜎 are interpolation matrices, and �̂�, �̂� , ̂̄𝝈 their corresponding coefficient vectors. Substituting these inter-
polations into Equations (1) and (2) results in the discrete system of equations that we solve for obtaining the unknown
stress coefficients in each element as follows:

[ N𝑝∑
m=1

( ∫V (m) Ē
⊺
𝜁
𝜕𝝈E𝜎dV

∫V (m) Ē
⊺
𝜎E𝜎dV

)]
�̂� =

{ N𝑝∑
m=1

(
−∫V (m)E

⊺
𝜁

f BdV
∫V (m) Ē

⊺
𝜎𝝈

(m)
h dV

)}
. (4)

In Equation (4), 𝜕𝝈 is the differential operator on SIP stresses to compute the divergence of the stresses and is defined as

𝜕𝝈 =
⎡⎢⎢⎢⎣

𝜕

𝜕x
0 0 𝜕

𝜕𝑦
0 𝜕

𝜕z

0 𝜕

𝜕𝑦
0 𝜕

𝜕x
𝜕

𝜕z
0

0 0 𝜕

𝜕z
0 𝜕

𝜕𝑦

𝜕

𝜕x

⎤⎥⎥⎥⎦
3×6

. (5)

Each of the 6 SIP stress components in 3D is interpolated using 10 coefficients, resulting in an interpolation matrix E𝜎 of
size 6 × 60, which is valid for both hexahedral (H8) and tetrahedral (T4) elements as follows:

e𝝈 =
[

1 x 𝑦 z x𝑦 𝑦z zx x2 𝑦2 z2 ] (6)

The interpolation matrix for the Lagrange multiplier 𝛿𝜻 (m) is given by

Finally, the Lagrange multipliers 𝛿𝝀(m) ∈ V̄𝝈 are interpolated using the interpolation matrix Ē𝜎 given in Equation (9).
The interpolation matrix for the self-equilibrated stresses should satisfy div Ē𝜎 = 0 as required by the self-equilibrating
property of �̄�(m). This can be easily verified by applying the operator given in Equation (5). Therefore, we have
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Ē⊺
𝜎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
x 0 0 −𝑦 0 0
𝑦 0 0 0 0 0
z 0 0 0 0 0

2x𝑦 0 0 −𝑦2 0 0
𝑦z 0 0 0 0 0
2xz 0 0 0 0 −z2

x2 0 0 −x𝑦 𝑦z −xz
0 2x 0 0 0 0
0 𝑦 0 0 −z 0
0 2z 0 0 0 0
0 2x𝑦 0 −x2 0 0
0 2𝑦z 0 0 −z2 0
0 xz 0 0 0 0
0 𝑦2 0 −x𝑦 −𝑦z xz
0 0 2x 0 0 0
0 0 2𝑦 0 0 0
0 0 z 0 −𝑦 0
0 0 x𝑦 0 0 0
0 0 2𝑦z 0 −𝑦2 0
0 0 2xz 0 0 −x2

0 0 z2 x𝑦 −𝑦z −xz
0 𝑦 0 −x 0 0
0 0 0 −z 0 0
0 0 0 2𝑦z 0 −z2

0 0 0 2xz −z2 0
0 x2 0 0 0 0
𝑦2 0 0 0 0 0
0 0 0 −z2 0 0
0 0 0 0 −x 0
0 0 0 0 2x𝑦 −x2

0 0 0 −x2 2xz 0
0 0 0 0 −x2 0
0 0 𝑦2 0 0 0
0 z2 0 0 0 0
0 0 z 0 0 −x
0 0 0 0 0 −𝑦
x 0 0 0 0 −z
0 0 0 0 −𝑦2 2x𝑦
0 0 0 −𝑦2 0 2𝑦z
0 0 x2 0 0 0
0 0 0 0 0 −𝑦2

z2 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
48×6

. (9)

All matrices defined here are suitable for both tetrahedral (T4) and hexahedral (H8) elements. Furthermore, all elements
in the mesh are treated the same way regardless of their position in the mesh, ie, no special treatment is needed for
boundary or corner elements, even though they have a smaller stress calculation domain. Using the interpolation matrices
defined in Equations (6) to (9) we solve the discrete system of Equation (4) to calculate the SIP coefficient vector �̂�. After
obtaining �̂�, the SIP stress anywhere in the element is obtained by 𝝈(m) = E𝜎�̂�. When a nodal patch is used, the stress 𝝈i

at the ith node is computed as 𝝈i = E𝜎�̂�. In this case, the stresses inside the elements are interpolated from the recovered
nodal values by using the standard FE shape functions. The computational cost associated with the calculation of the
recovered stresses for each element in the mesh is as small as the computational effort required to solve a linear system of
equations with 60 unknowns ((n3) with n = 60 if a direct solver is used). Furthermore, this cost scales linearly with the
number of elements, and therefore becomes increasingly insignificant relative to the cost of obtaining the displacement
solution.
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3 EXAMPLES

In this section, we perform numerical tests on problems modeled with 3D linear FEs. No units are presented, so it is
assumed that any consistent unit system can be used to interpret the results. h-convergence is performed to investigate
the accuracy of the new approach. To that end, the mesh refinement adopted is not based on just splitting the FEs from
the coarsest mesh but uses the exact geometry as reference for creating new elements. This is particularly important for
geometries with curved surfaces so that the discretization error is minimal. We use the H0-norm of the stress15 defined as

||e||H0 =

√√√√ N∑
m=1

(∫V (m)

(
𝝈ex − 𝝈(m)

)⊺
.
(
𝝈ex − 𝝈(m)

)
dV

∫V (m)𝝈
⊺
ex.𝝈ex dV

)
, (10)

where 𝝈ex is the exact stress and 𝝈(m) is the SIP stress in an element. The global error in the mesh is computed by adding
the error contribution of every element, which is in turn computed by numerical quadrature on Gauss points. The error
in directly calculated stresses 𝝈(m)

h can be computed in a similar way by replacing 𝝈(m) by 𝝈
(m)
h in Equation (10).

3.1 Example 1: 3D cube under uniaxial loading
This first problem is used to verify SIP in 3D. We start with a cube of unit volume subjected to a sinusoidal body force
f b = 105 × x sin(6πx)e1. Homogeneous essential boundary conditions (u(m) = 0) are prescribed on its left and right
faces (see Figure 3). The cube is composed of a material with Young's modulus E = 110×109 and Poisson's ratio 𝜈 = 0. The
exact solution to this problem can be obtained by integrating the 1D equilibrium equation for a bar. To check for frame
invariance, the block is rotated and analyzed in several rotated configurations (with the body force rotated accordingly),
and the results are compared with the initial configuration. Namely, the problem is tested in 6 different orientations in

FIGURE 3 A 3D block subjected to a body force fb in the x-direction with prescribed homogeneous boundary condition applied on left and
right faces

FIGURE 4 Stress convergence curves for the 3D block problem of Example 3.1 modelled with H8 and T4 elements. The figures show the
error in recovered and directly calculated stresses as measured in the H0-norm. FEM, finite element method; SIP, stress improvement
procedure



SHARMA ET AL. 7

3D space: aligned with the x, y, and z axes, and then rotated 30 degrees in the xy, yz, and zx planes. We start with a mesh
of 8 hexahedral elements of equal size and every new mesh refinement in the sequence is obtained by subdividing each
hexahedral element by 8. For tetrahedral meshes, we start by creating tetrahedra within original hexahedral mesh, with a
total of 48 tetrahedra. For the following level of refinement, we create tetrahedra within the new refined hexahedral mesh
(384 tetrahedra). This mesh refinement is obtained by increasing the number of nodes on each edge of the model geometry.
The mesh size h is taken as the diameter of a sphere circumscribing any element in the FE mesh. For the calculation of
the SIP stress, we consider 3-point and 8-point quadrature rules for hexahedral and tetrahedral elements, respectively.

Figure 4 shows the global mesh error ||e||H0 as a function of the mesh size h. This result is representative for all orienta-
tions of the 3D block. We show not only that the recovered stresses are more accurate than that of the directly calculated
ones but also that the former achieve superconvergence for this problem.

3.2 Example 2: infinite plate with a hole
Consider, in Figure 5, a plate with a hole subjected to a unidirectional tensile stress 𝜎0 = 1 at an infinite distance from a
cylindrical hole with the radius a = 1. This plane strain elasticity problem has been extensively used in the literature as

FIGURE 5 A schematic diagram of an infinite elastic 3D plate with a hole under unidirectional tensile stress 𝜎0 = 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 The discretizations labeled with (A)-(E) use 8-node hexahedral elements those labeled with (F)-(J) use 4-node tetrahedral
elements

wileyonlinelibrary.com
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a benchmark test for stress recovery procedures,3,4,9,10 and its exact solution is given by16 the following:

u(x) = (1 + 𝜈)a𝜎0

2E

⎡⎢⎢⎢⎣
2(1 − 𝜈)

(
r
a
+ 2a

r

)
cos 𝜃 +

(
a
r
− a3

r3

)
cos 3𝜃

−2(1 − 2𝜈) a
r

sin 𝜃 − 2𝜈 r
a

sin 𝜃 +
(

a
r
− a3

r3

)
sin 3𝜃

0

⎤⎥⎥⎥⎦ , (11)

𝝈(x) =

⎡⎢⎢⎢⎢⎢⎣

𝜎11
𝜎22
𝜎33
𝜎12
𝜎23
𝜎13

⎤⎥⎥⎥⎥⎥⎦
= 𝜎0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − a2

r2

(
3
2

cos 2𝜃 + cos 4𝜃
)
+ 3a4

2r2 cos 4𝜃

− a2

r2

(
1
2

cos 2𝜃 − cos 4𝜃
)
− 3a4

2r2 cos 4𝜃

𝜈

(
1 − 2 a2

r2 cos 2𝜃
)

− a2

r2

(
1
2

sin 2𝜃 + sin 4𝜃
)
+ 3a4

2r2 sin 4𝜃
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

FIGURE 7 H0-norm of the error in stress as a function of mesh size h for the 3D plate with a circular hole. The left and right curves
correspond to the convergence for hexahedral (H8) and tetrahedral (T4) elements, respectively. FEM, finite element method; SIP, stress
improvement procedure

FIGURE 8 Stress plots for the problem described in Section 3.2. The plots compare the x-component of the directly computed FE stresses
(A and C) to those obtained by SIP (B and D) for 2 types of discretizations [Colour figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
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FIGURE 9 Element error for the FEM and SIP solutions measured in H0-norm. The global errors for FEM and SIP are 0.045 and 0.028,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

where r =
√

x2 + 𝑦2 and tan 𝜃 = 𝑦∕x. Here, we emulate plane strain conditions by preventing any deformation along
the z-direction. By exploiting the symmetry of the problem, we only consider the region enclosed by points A,A′ through
E,E′ as our calculation domain. At boundaries AA′B′B and DD′E′E, symmetry conditions are imposed, and at boundaries
CC′B′B and DD′C′C traction forces obtained from the exact solution are applied.16 Young's modulus and Poisson's ratio
are taken as 1000 and 0.3, respectively.

Five mesh sizes are used for the convergence analysis. The coarsest contains 12 hexahedral elements, and subsequent
meshes are refined uniformly by dividing each element in 8 subelements. Thus, subsequent meshes contain 96, 768, 6144,
and 49 152 elements, respectively. Figures 6A-E show the meshes used for the convergence analysis. Finer meshes are
used in the mesh convergence analysis involving tetrahedra because of the lower accuracy compared with hexahedra.
Starting from a mesh with 72 tetrahedral elements, subsequent meshes have 576, 4608, 36 864, and 294 912 tetrahedra,
obtained by uniform refinement (see Figures 6F-J).

In Figure 7, the global error given by Equation (10) is plotted as a function of mesh size h, which this time is obtained
as the diameter of a sphere circumscribing the biggest element in the FE mesh. We observe a convergence rate of 1.32
for hexahedral elements and a convergence rate of 1.35 for tetrahedral elements. We notice throughout that the directly
calculated ones and therefore that a much coarser mesh can be used for the same level of accuracy. Contrary to Section 3.1,
we did not obtain superconvergence for this example, which we attribute to the irregularity of the mesh. A convergence
rate of 1.3 was also obtained in the SPR, REP, and RCP methods.3,4,9,10

Finally, Figures 8A-D show the x-component of the stress for both SIP and directly calculated FE stresses. From the
exact solution, 𝜎x = 3 at point A in Figure 5, which shows that SIP has higher accuracy for all meshes considered. In fact,
the SIP stress for the coarser mesh in the figure is more accurate than the FE stress for the finer one despite of being
64 times coarser. The maximum element errors are concentrated near the points of maximum stress, as shown in Figure 9.
Additionally, it can be seen in Figure 9B that SIP gives a lower error for the corner elements on edge AA′ (see Figure 5)
compared with the inner elements on that edge. This is because the stress calculation domain for the corner nodes is
larger than that of the inner nodes on the boundary edge.

3.3 Example 3: internally pressurized sphere
In the third example, we consider a hollow sphere with inner radius a = 1 and outer radius b = 2 subjected to a uniform
internal pressure p = 1 (see Figure 10). The analytical solution for this particular problem is given by16

u(x) =
a3𝑝

(
2R3(1 − 2𝜈) + b3(1 + 𝜈)

)
2(−a3 + b3)ER2

⎡⎢⎢⎣
cos𝜙 sin 𝜃

sin𝜙 sin 𝜃

cos 𝜃

⎤⎥⎥⎦ , (13)

𝝈(x) =

⎡⎢⎢⎢⎢⎢⎣

𝜎11
𝜎22
𝜎33
𝜎12
𝜎23
𝜎13

⎤⎥⎥⎥⎥⎥⎦
= a3𝑝

16(a3 − b3)R3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
(
2b3 + 16R3 + 6b3 cos 2𝜃 + 3b3 cos 2(𝜃 − 𝜙) − 6b3 cos 2𝜙 + 3b3 cos 2(𝜃 + 𝜙)

)
−
(
2b3 + 16R3 + 6b3 cos 2𝜃 + 3b3 cos 2(𝜃 − 𝜙) − 6b3 cos 2𝜙 + 3b3 cos 2(𝜃 + 𝜙)

)
4(b3 − 4R3 + 3b3 cos 2𝜃)

12b3(sin 𝜃)2 sin 2𝜙
12b3 sin 2𝜃 sin𝜙

12b3 cos𝜙 sin 2𝜃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

wileyonlinelibrary.com
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FIGURE 10 Schematic diagram of an internally pressurized hollow sphere with inner radius a and outer radius b subjected to a uniform
pressure load p on the internal wall [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Hexahedral (A-D) and tetrahedral (E-H) discretizations used for the convergence study of the hollow sphere [Colour figure
can be viewed at wileyonlinelibrary.com]

where R =
√

x2 + 𝑦2 + z2, cos 𝜃 = z∕r, and tan𝜙 = 𝑦∕x. By exploiting the symmetry of the sphere, we only consider an
eighth part, reducing the expense of the analysis significantly. Consequently, symmetry boundary conditions are imposed
on all the planar surfaces of the smaller domain considered, ie, the 3 planar surfaces with normals in the x, y, and z
directions.

Starting with a coarse mesh containing 54 hexahedral elements, we again perform uniform refinement by subdividing
each element into 8 equal elements. As aforementioned, we emphasize that the refinement strategy is based on the exact
geometry. This results in finer meshes containing 432, 3456, and 27 648 hexahedral elements (see Figures 11A-D). A
similar approach was used for the tetrahedral meshes where the coarsest mesh has 324 elements, followed by 2592, 20 736,
and 165 888 elements in the sequence (see Figures 11E-H).

Figure 12 summarizes the convergence results for this problem where convergence rates of 1.44 and 1.49 were obtained
for hexahedral and tetrahedral meshes, respectively. As in Section 3.2, the convergence rate is not optimal because of the
use of irregular meshes. However, for the meshes considered, the SIP stresses show higher accuracy than those of directly
calculated from the FE solution. Figure 13 shows that the SIP stresses are much closer to the exact ones. The higher
accuracy of SIP is also shown in Figure 14. Similar to Section 3.2, we notice that the element error is lower in the corner

wileyonlinelibrary.com
wileyonlinelibrary.com
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FIGURE 12 Stress convergence curves for hexahedral (left) and tetrahedral (right) meshes for the internally pressurized sphere. FEM,
finite element method; SIP, stress improvement procedure

FIGURE 13 Stress plots (magnitude) for the internally pressurized sphere of Section 3.3. The plots compare the directly calculated stress
with that of the new approach. A, FEM: 𝜎h

vm is the von Mises stress; B, SIP: 𝜎h
vm is the von Mises stress. FEM, finite element method; SIP,

stress improvement procedure [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Element error for FEM and SIP solutions measured in H0-norm. The global errors for FEM and SIP are 0.111 and 0.068,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

elements A, B, and C for which we use a bigger patch of elements (see Figure 14B). Nevertheless, the SIP results are a
clear improvement over directly calculated FEM stresses in terms of accuracy and convergence rate.

3.4 Example 4: spherical cavity in an infinite solid subjected to remote stress
As a final numerical example, we consider a spherical cavity of radius a = 1 in an infinite solid subjected to a remote
tensile stress 𝜎0 in the z-direction. Taking advantage of the symmetry of the problem, we perform the analysis on a cube
with edge length l = 4 with 1/8 of the spherical cavity in one of its corners, as shown in Figure 15.

wileyonlinelibrary.com
wileyonlinelibrary.com
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FIGURE 15 A simplified model of a spherical cavity in an infinite solid subjected to remote stress

The exact solution of this 3D problem, whose derivation is given in more detail in Appendix B, is given by

u(x) = 1
2ER7(−7 + 5ν)

⎡⎢⎢⎣
𝜎0x

(
3a5𝛼(x2 + 𝑦2 − 4z2) + 2R7𝛽𝜈 + a3R2𝛼

(
−6(x2 + 𝑦2) + 9z2 + 5R2𝜈

))
𝜎0𝑦

(
3a5𝛼(x2 + 𝑦2 − 4z2) + 2R7𝛽𝜈 + a3R2𝛼

(
−6(x2 + 𝑦2) + 9z2 + 5R2𝜈

))
𝜎0z

(
−3a5𝛼

(
3(x2 + 𝑦2) − 2z2) + 2R7𝛽 + a3R2𝛼(−4x2 − 4𝑦2 − 19z2 + 15R2𝜈)

) ⎤⎥⎥⎦ (15)

where 𝛼 = 1 + 𝜈, and 𝛽 = −7 + 5𝜈. The exact displacement given by Equation (15) is prescribed in the cube surfaces, and
a traction-free boundary condition is prescribed on the spherical surface. Moreover, we take E = 1000 and 𝜈 = 0.3.

As in the previous examples, we use hexahedral and tetrahedral elements to discretize the problem and we follow the
same refinement strategy. The hexahedral meshes shown in Figures 16A-D contain 96, 768, 6144, and 49 152 elements,
respectively. For the tetrahedral meshes in Figures 16E-H, the number of elements are 288, 2304, 18432, and 147456,
respectively. Figure 17 shows the convergence plots for this problem with convergence rates of 1.40 and 1.46 for hexahedral
and tetrahedral meshes, respectively. As in the previous examples, we know that though the SIP stresses convergence
rates are not optimal due to irregular meshes, they are still higher than the directly calculated FEM stresses. Besides the
faster convergence, the SIP stresses are also more accurate. Figure 18 also shows that SIP stresses are much closer to the
exact stresses, and the errors of the SIP stresses in Figure 19 are smaller.

FIGURE 16 Hexahedral (A-D) and tetrahedral (E-H) meshes used for the convergence study of Section 3.4
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FIGURE 17 Error in stress measure in the H0-norm as a function of mesh size h for the spherical cavity in an infinite solid. The left and
right curves correspond to the convergence for hexahedral (H8) and tetrahedral (T4) elements, respectively. FEM, finite element method; SIP,
stress improvement procedure

FIGURE 18 von Mises Stress plots (magnitude) for Section 3.4. A, FEM; B, SIP [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Element error for FEM (A) and SIP (B) solutions measured in H0-norm. The global errors for FEM and SIP are 0.012 and
0.004, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

4 CONCLUSIONS

Building on the work of Payen and Bathe,13 we have presented a methodology that can be used to recover stresses with
high accuracy in 3D elasticity problems. We provide the interpolation matrices required to implement this method and
verified it with the aid of several examples that have an analytical solution. The method is straightforward to implement,
computationally efficient, and scalable. It is also general in the sense that it can be used for any type of low-order 3D
element and mesh configuration. Moreover, no special treatment is required for corner nor boundary elements in the
mesh; however, a bigger patch is used for corner nodes when computing stress at those locations. Similar to other recovery
techniques, the method fails to reach superconvergence when using irregular meshes. Yet, the results obtained are, to date,
the most accurate 3D recovered stresses in problems of linear elasticity; for comparison with other recovery techniques,

wileyonlinelibrary.com
wileyonlinelibrary.com
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we refer to the work of Payen and Bathe.13 Although we only considered and tested linear elastic problems, the method
could also be extended and applied to nonlinear and dynamic problems.

Regarding future research, the effectivity robustness tests proposed by Babuška et al.17 could be performed to explore the
feasibility of this method as an a posteriori error estimator. The current recovery technique could also be extended for shell
and plate elements and its application could be explored, for example in topology optimization with stress constraints.
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APPENDIX A

DERIVATION OF THE ENHANCED STRESS

Following the procedure outlined by Payen and Bathe,13 we start with a three-field variational functional. Given the mth
element displacements u(m), the stresses 𝝈(m), the strains 𝜺(m)

u , the constitutive matrix C (m), the body force vector f B, and
the surface traction vector f S, a three-field functional can be written as

Π∗(u(m),𝝀(m),𝝈(m))= N∑
m=1

⎛⎜⎜⎜⎝∫V (m)

1
2
𝜺
(m)⊺
u 𝝈(m)dV −∫

S(m)
𝑓

u(m)⊺f SdS− ∫
V (m)

u(m)⊺f BdV − ∫
V (m)

𝝀(m)⊺
(
𝝈(m) − C(m)𝜺

(m)
u

)
dV

⎞⎟⎟⎟⎠ , (A1)

where the independent fields are u(m), 𝝈(m), and 𝝀(m). The latter denotes the Lagrangian multiplier field that enforces
weakly the stress-strain relationship over the element of volume V (m). Strains 𝜺(m)

u follow from the kinematic relationship
through 𝜺

(m)
u = B(m)Û(m), where Û(m) is the element local degree of freedom vector and B(m) is the strain-displacement

matrix. It was shown by Payen and Bathe13 that REP, RCP, and NPF formulations can all be derived from (A1). The
difference in these methods lies in the interpolations used for the Lagrange multipliers 𝝀(m). Invoking the stationarity of
Equation (A1) with respect to the independent fields u(m), 𝝈(m), and 𝝀(m) yields

N∑
m=1

⎛⎜⎜⎜⎝ ∫V (m)

𝛿𝜺
(m)⊺
u

{1
2
𝝈(m) + C(m)𝝀(m)

}
dV − ∫

S(m)
𝑓

𝛿u(m)⊺f SdS − ∫
V (m)

𝛿u(m)⊺f BdV
⎞⎟⎟⎟⎠ = 0, (A2)

∫
V (m)

𝛿𝝀(m)⊺
{
𝝈(m) − C(m)𝜺

(m)
u

}
dV = 0, ∀m, (A3)

𝝀(m) = 1
2
𝜺
(m)
u , ∀m. (A4)

Equation (A3) is valid for all variations 𝛿𝝀(m), and thus certainly for 𝛿𝝀(m) = 1
2
𝛿𝜺m

u . Therefore, Equation (A2) can be written
as

N∑
m=1

⎛⎜⎜⎜⎝∫V (m)

𝛿𝜺
(m)⊺
u

{1
2

C(m)𝜺
(m)
u + C(m)𝝀(m)

}
dV − ∫

S(m)
𝑓

𝛿u(m)⊺f SdS − ∫
V (m)

𝛿u(m)⊺f BdV
⎞⎟⎟⎟⎠ = 0. (A5)

Substituting (A4) into (A5) yields the conventional weak problem statement that is usually implemented in
displacement-based finite element codes and from which the displacement can be readily computed as follows:

N∑
m=1

⎛⎜⎜⎜⎝∫V (m)

𝛿𝜺
(m)⊺
u C(m)𝜺

(m)
u dV − ∫

S(m)
𝑓

𝛿u(m)⊺f SdS − ∫
V (m)

𝛿u(m)⊺f BdV
⎞⎟⎟⎟⎠ = 0. (A6)

After computing the displacements, the directly calculated FE stresses can be obtained by using proper kinematic and
constitutive relationships. However, the accuracy of these stresses is an order lower than that of the displacements. Thus,
instead of computing the stresses directly we use this a posteriori technique to obtain stresses with higher accuracy.

APPENDIX B

EXACT SOLUTION FOR A SPHERICAL CAVITY SUBJECTED TO REMOTE STRESS

In the following, we use a different notation for the vector coordinate x = (x, y, z) as x = (x1, x2, x3). Following the
procedure outlined by Bower,18 the displacement field for the problem given in Section 3.4 can be obtained by

ui(x) =
2(1 + ν)

E

(
𝜳 i(x) +

1
4(1 − ν)

𝜕

𝜕xi
(𝜙(x) − xk𝜳 k(x))

)
, (B1)
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where 𝜳 i(x) is a vector-valued function and 𝜙(x) is a scalar function. For this problem, 𝜳 i(x) and 𝜙(x) are given by18 the
following:

𝜳 i(x) =
(1 − ν)𝜎0

1 + ν
x3δi3 +

a3(1 − ν)𝜎0

R3(7 − 5ν)

(
5ν − 1

2(1 − 2ν)
xi + 5x3𝛿i3

)
, (B2)

𝜙(x) = ν(1 − ν)𝜎0

1 + ν
(
3x2

3 − R2) + a3(1 − ν)𝜎0

R3(7 − 5ν)

(
7 − 5ν

2(1 − 2ν)
R2 − a2 +

3x2
3a2

R2

)
, (B3)

respectively. The displacement field is then obtained by replacing Equations (B2) and (B3) into (B1), resulting in
Equation (15). Finally, the stress tensor for this problem is given by

𝝈 =
[
𝜎11 𝜎22 𝜎33 𝜎12 𝜎23 𝜎13

]⊺

= A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3a3𝜎0
(

a2 (4x4
1 − x4

2 + 3x2
2x2

3 + 4x4
3 + 3x2

1
(

x2
2 − 9x2

3
))

− R2 (4x4
1 + x2

2x2
3 + Bx4

3 + Cx4
2 + x2

1
(

Dx2
2 − Fx2

3
)))

−3a3𝜎0
(

a2 (x4
1 − 4x4

2 + 27x2
2x2

3 − 4x4
3 − 3X23x2

1
)
+ R2 (4x4

2 + Bx4
3 + Cx4

1 − Fx2
2x2

3 + x2
1
(

x2
3 + Dx2

2
)))

−𝜎0
(
3a5 (3X2

12 − 24X12x2
3 + 8x4

3
)
− 2𝛼R9 − a3R2 (−4X2

12 − 41X12x2
3 + 38x4

3 + 5
(

X12 − 2x2
3
)

R2ν
))

3a3𝜎0x1x2
(
5a2 (X12 − 6x2

3
)
+ R2 (LX12 + Mx2

3
))

3a3𝜎0x2x3
(
5a2 (3X12 − 4x2

3
)
− R2 (Nx2

3 + QX12
))

3a3𝜎0x1x3
(
5a2 (3X12 − 4x2

3
)
− R2 (Nx2

3 + QX12
))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B4)

where A = 1∕(2𝛼R9), B = 3−5ν, C = −2+5ν, D = 2+5ν, F = 18+5ν, L = −6+5ν, M = 19+5ν,N = −19+5𝜈, Q = 6+5ν,
and Xij is the sum of the squares of the ith and jth coordinates, eg, X23 = x2

2 + x2
3.
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