
Permutation-Invariant
Tabular Data Synthesis

by

Yujin Zhu

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday August 26, 2022 at 9:00 AM.

Student number: 5235707
Project duration: December 1, 2021 – August 26, 2022
Thesis committee: Dr. Lydia Chen, TU Delft, supervisor

Dr. Rihan Hai, TU Delft
Dr. Geethu Joseph, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Tabular data synthesis is a promising approach to circumvent strict regulations on

data privacy. Although the state-of-the-art tabular data synthesizers, e.g., table-

GAN, CTGAN, TVAE, and CTAB-GAN, are effective at generating synthetic tabu-

lar data, they are sensitive to column permutations of input data. In this work, we

conduct an impact and root-cause analysis of sensitivity to column permutations

through extensive empirical analysis. Specifically, we show that changing the input

column order increases the statistical difference between real and synthetic data by

up to 39%, due to the encoding of tabular data. To address this challenge, we first

attempts to find an optimal column order to improve tabular data synthesis. Next,

we propose AE-GAN, an effective tabular data synthesizer that leverages the latent

representation of tabular data to regulate its sensitivity to column permutations

while incurring low training overhead. AE-GAN is composed of an Autoencoder

(AE) to efficiently represent tabular data as latent vectors, a Generative Adversar-

ial Network (GAN) to generate realistic synthetic data, and a classifier to improve

the semantic integrity of the generated records. It combines the flexibility of unsu-

pervised training with the control offered by supervised training, thereby ensuring

the statistical similarity between real and synthetic data. The evaluation of AE-

GAN on five datasets shows that it is not only more permutation-invariant than

the prior state-of-the-art, but also results in better downstream analysis based on

the generated data.

Yujin Zhu

Delft, August 2022

iii

Preface

This project has been a rocky yet fruitful journey for me. Starting with an interest

in synthetic data generation, I spent the first few months exploring possible re-

search directions without an outcome. I was discouraged and felt unsure if I could

finish this project on time. However, the idea of permutation-invariant tabular

data synthesis occurred during a discussion with my supervisor Lydia Chen and

daily supervisor Zilong Zhao. After that, this project became on track. In the fol-

lowing months, I immersed myself in experiments and results analysis, through

which I learned a lot about experiment design and data analysis. In the end, my

work resulted in a submission to the Thirty-Seventh AAAI Conference on Artificial

Intelligence (AAAI-23).

I would like to thank my supervisor Lydia Chen for your challenging questions,

constructive advice, and inspiring talks. I would have learned much less about sci-

entific research without your guidance. I am also grateful to my daily supervisor

Zilong Zhao for sharing your knowledge about tabular data synthesis with me. Be-

sides, I want to express my gratitude to Shushu Qin, Oguzhan Ersoy, and Masoud

Ghiassi. Your company at the office has made my journey much more enjoyable.

Last but not least, I want to thank my friend Yajun Liu, Ching-chi Chuang, and

Joost Verouden for sharing my happy and sad moments in this process. I would

not be able to accomplish this project without your constant listening and support.

Yujin Zhu

Delft, August 2020

v

Contents

Abstract iii

Preface v

1 Introduction 1

2 Background 3
2.1 Synthetic data generation . 3
2.2 Generative Adversarial Network. 3

2.2.1 Vanilla GAN . 4
2.2.2 Wasserstein GAN . 4
2.2.3 Wasserstein GAN with gradient penalty . 5

2.3 The representation of tabular data for neural networks 5
2.3.1 Categorical features . 5
2.3.2 Numerical features . 6

2.4 Autoencoder . 7

3 Related Work 9
3.1 Tabular data synthesis . 9
3.2 Column permutation invariance . 10
3.3 Synthetic tabular data evaluation . 10

3.3.1 Statistical similarity . 10
3.3.2 Machine learning utility. 10
3.3.3 Privacy . 11

4 Empirical Analysis 13
4.1 Experiment setup . 13

4.1.1 Dataset overview . 13
4.1.2 Column orders. 13
4.1.3 Evaluation metric for column permutation invariance 14

4.2 Traditional ML models permutation invariance . 14
4.3 CNN-based tabular data synthesizers . 15
4.4 Sparsity v.s. sensitivity . 16

4.4.1 Encoding leads to sparsity. 16
4.4.2 Sparsity increases sensitivity . 18

4.5 FCNs-based tabular data synthesizers. 19
4.6 FCNs v.s. CNNS. 19

vii

viii Contents

5 Feature Sorting Algorithm for CNN-based Tabular Data Synthesizers 21
5.1 Algorithm design . 21
5.2 Algorithm evaluation. 22

5.2.1 Table-GAN . 22
5.2.2 CTAB-GAN. 24
5.2.3 Visualization of feature sorting effect. 25
5.2.4 Conclusion . 25

6 AE-GAN: Permutation-Invariant Tabular Data Synthesizer 27
6.1 Data representation . 27
6.2 Encoder and decoder . 27
6.3 Generator and discriminator . 28
6.4 Auxiliary classifier . 29
6.5 AE-GAN Training . 30

6.5.1 Training loss . 30
6.5.2 Training algorithm. 31

7 AE-GAN Evaluation 33
7.1 Experimental setup . 33

7.1.1 Datasets . 33
7.1.2 Baseline . 33
7.1.3 Computational environment . 33

7.2 Evaluation framework . 33
7.2.1 Metrics . 33
7.2.2 Evaluation of column permutation invariance. 34
7.2.3 Evaluation of synthesis quality . 34

7.3 AE-GAN column permutation invariance. 35
7.4 AE-GAN synthesis quality . 36
7.5 AE-GAN training time . 37
7.6 Ablation study . 38

7.6.1 Without mode-specific normalization (MSN) 38
7.6.2 Without one-hot and mode-specific normalization 39
7.6.3 Without auxiliary classifier . 39
7.6.4 Co-training AE and GAN. 39
7.6.5 Using information loss in GAN . 39

8 Conclusion 41
8.1 Future work . 41

A Model hyperparameters 43
A.1 Training epochs . 43
A.2 AE-GAN latent vector length . 43

Contents ix

B Additional experiment results 45
B.1 AE-GAN Training loss. 45

B.1.1 AE training loss . 45
B.1.2 GAN training loss . 45

B.2 Feature sorting effect . 47

List of Figures 49

List of Tables 51

Bibliography 53

1
Introduction

As one of the most common data types, tabular data are ubiquitous in the operation of banks,
governments, hospitals, and manufacturers, which lay the foundation of modern society [42].
The synthesis of realistic tabular data, i.e., generating synthetic tabular data that are statisti-
cally similar to the original data, is crucial for many applications, such as data augmentation
[7], imputation [5, 17], and re-balancing [14, 29, 40]. Another important application is to use
generated data to overcome the data sharing restrictions [38] caused by regulations on data
protection and privacy, such as European General Data Protection Regulation (GDRP) [15].

Synthesizing realistic tabular data is a non-trivial task. Compared to image and language
data, tabular data are heterogeneous - they contain dense continuous features and sparse
categorical features. The former can have multiple modes, whereas the latter often have
highly-imbalanced distributions [3]. Furthermore, the correlation between features in tabular
data is often more complex than the spatial or semantic correlation in image or language data.
Related features can be far apart spatially, and multiple features can be inter-correlated.

Although the state-of-the-art tabular data synthesizers show promising results [38, 51, 55],
they suffer from a critical and undiscovered limitation: sensitivity to column permutations.
Changing the input column order influences the statistical similarity between real and synthetic
data, as demonstrated in Figure 1.1. Theoretically, reordering the columns of a table should not
change the synthesis quality of a tabular data synthesizer because the position of columns does
not imply any semantic information. We call this property column permutation invariance,
which is similar to permutation invariance in images [13, 30]. However, our extensive empirical
analysis shows that the statistical difference between real and synthetic data increases by up to
39% after changing the input column order. And the main reason is the sparsity issue caused
by data encoding.

In this work, we design a novel tabular data synthesizer, AE-GAN, that addresses the
limitation of the state-of-the-art, i.e., sensitivity to column permutations. Two key features of
AE-GAN are (1) the combination of autoencoder and GAN that reduces the sparsity of encoded

1

2 1. Introduction

Table

Table

Reorder columns

Synthetic data

Similarity
comparison

Real data

Reordered real data

Table
Synthesizer

Table

Synthetic data

Table
Synthesizer

Table

Similarity
comparison

Figure 1.1: Illustration of lacking column permutation invariance of synthetic data, i.e., dissimilarity between
real and synthetic data due to reordering of input data.

tabular data and thus enhances column permutation invariance, and (2) the introduction of an
auxiliary classifier in Wasserstein GAN with gradient penalty [21] to improve synthesis quality.

We evaluate AE-GAN on five real-world machine learning datasets against four state-of-
the-art tabular data synthesizers: table-GAN [38], CTGAN [51], CTAB-GAN[55], and TVAE
[51]. The results show that, compared to the baselines, AE-GAN is more permutation-invariant
and generates higher quality data leading to more accurate downstream analysis. Moreover,
its training time is much shorter than CTAB-GAN, the best performing model in synthesizing
realistic tabular data.

This work has three main contributions:

• The first empirical study to analyze column permutation invariance for tabular data
synthesizer and reveals its root cause, i.e., data sparsity.

• A novel tabular data synthesizer, AE-GAN, which effectively achieves high permutation
invariance and good quality of synthetic data in terms of its machine learning utility.

• A feature sorting algorithm for CNN-based tabular data synthesizers, which helps pre-
serve the relation between highly-correlated features.

The rest of this dissertation is organized as follows: Chapter 2 introduces the theoretical
background of synthetic tabular data generation. Chapter 3 discusses the recent development
in this field and the limitation of the state-of-the-art, i.e., sensitivity to column permutations.
Chapter 4 empirically analyzes the causes of sensitivity to column permutations. Then in chap-
ter 5, the first solution, a feature sorting algorithm for CNN-based tabular data synthesizers,
is introduced. Chapter 6 describes the second and main solution AE-GAN, a permutation-
invariant tabular data synthesizer. In chapter 7, a thorough experimental evaluation of the
proposed solutions is conducted. Finally, chapter 8 concludes this dissertation and discusses
the future work.

2
Background

2.1. Synthetic data generation
Synthetic data generation is the creation of artificial data that resemble data collected in
real life. Synthetic data preserves the statistical properties of real data and can serve as a
supplement/alternative when real data are rare or hard to access, such as healthcare and
financial data. Figure 2.1 illustrates the process of synthetic data generation. Real data is the
input to a data synthesis model, which then generates synthetic data similar to real data. In
the assessment, synthetic data must fulfill the requirements on statistical similarity, and if real
data are sensitive, privacy constraints should also be considered.

Real data Synthetic dataSynthesis Assessment

Figure 2.1: Illustration of synthetic data generation

2.2. Generative Adversarial Network
Generative adversarial network (GAN) is a recently developed deep learning algorithm [18]
for synthetic data generation. The most basic form is called vanilla GAN. Based on it, many
advanced GANs have been brought up to suit various purposes. This section introduces vanilla
GAN and two of its most important variations, Wasserstein GAN (WGAN) [1] and Wasserstein
GAN with gradient penalty (WGAN-GP) [21].

3

4 2. Background

Generator

Discriminator

Real
data

Random
noise

Real
samples

Synthetic
samples

Real / Fake

Figure 2.2: The structure of a vanilla GAN

2.2.1. Vanilla GAN
Figure 2.2 shows the structure of a vanilla GAN. It consists of two components: a generator (𝐺)
that learns to produce realistic synthetic data, and a discriminator (𝐷) that tries to distinguish
between real and synthetic data. Both 𝐺 and 𝐷 are neural networks, e.g., Fully-Connected
Networks (FCNs) or Convolutional Neural Networks (CNNs).In the training process, 𝐺 and 𝐷
play a zero-sum min-max game, described as follows:

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

𝑉(𝐺, 𝐷) = 𝔼[𝑙𝑜𝑔𝐷(𝑥)]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝔼[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]𝑧∼𝑝(𝑧), (2.1)

where 𝑥 is the real sample, 𝐺(𝑧) is the synthetic sample generated from input random signal
𝑧, and 𝐷(⋅) is the probability of a sample being real from the perspective of 𝐷. The goal of
𝐺 is to minimize the chance that its generated samples are identified as synthetic, whereas
𝐷 aims at maximizing the chance of correctly identifying real and synthetic samples. Given
an optimal 𝐷, function 2.1 is equivalent to minimizing the Jensen-Shannon Divergence (JSD)
between 𝑝𝑑𝑎𝑡𝑎(𝑥) and 𝑝(𝑧) [18].

2.2.2. Wasserstein GAN
One of the main limitations of vanilla GAN is the training difficulty. Since 𝐺 and 𝐷 play an
adversarial game, convergence to an equilibrium is hard. Even if an equilibrium is reached, it
is often fleeting. Moreover, it suffers from mode collapse, where 𝐺 always produces identical
samples regardless of its input [14]. Wasserstein GAN is brought up to alleviate those problems.
It replaces the JSD used by vanilla GAN with Wasserstein-1 distance (WD), which represents
the minimum amount of ”mass” to transport from distribution 𝑝 to distribution 𝑞, in order
to transform 𝑝 to 𝑞. Given probability distributions ℙ𝑟 and ℙ𝑔, the Wasserstein-1 distance is
defined as follows:

𝕎(ℙ𝑟 , ℙ𝑔) = inf
𝛾∈Π(ℙ𝑟 ,ℙ𝑔)

𝔼(𝑥,𝑦)∼𝛾[‖𝑥 − 𝑦‖], (2.2)

where Π(ℙ𝑟 , ℙ𝑔) represents all joint probability distributions 𝛾(𝑥, 𝑦) whose marginal distribu-
tions are ℙ𝑟 and ℙ𝑔 [1]. In other words, Π(ℙ𝑟 , ℙ𝑔) contains all the transport plans to change
ℙ𝑟 to ℙ𝑔, and we want to find the greatest lower bound (infimum) of all plans, i.e., the plan
with the lowest cost.

2.3. The representation of tabular data for neural networks 5

The objective of WGAN is:

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

𝔼[𝐷(𝑥)]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) − 𝔼[𝐷(𝐺(𝑧))]𝑧∼𝑝(𝑧). (2.3)

2.2.3. Wasserstein GAN with gradient penalty
Although WGAN has better training stability than vanilla GAN, it has the vanishing gradient
problem, where the change in the loss of the generator/discriminator is too small that the net-
work cannot be effectively updated through backward propagation. [21] remedies this problem
by adding a gradient penalty term to the loss of 𝐷, which leads to the objective of WGAN-GP:

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

𝔼[𝐷(𝑥)]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) − 𝔼[𝐷(𝐺(𝑧))]𝑧∼𝑝(𝑧) + 𝜆𝔼�̂�∼𝑝(�̂�)[(||∇�̂�𝐷(�̂�)||2 − 1)2], (2.4)

where 𝜆 is the penalty coefficient, �̂� ∼ 𝑝(�̂�) are the linear interpolations between real and
synthetic samples. Due to its training stability and high synthesis quality, WGAN-GP has
become the most popular choice in the generation of tables, images and text.

2.3. The representation of tabular data for neural networks
Tabular data, also known as structured data, is a two-dimensional matrix where every row rep-
resents a sample, and every column represents a feature. They usually contain both numerical
and categorical features, which require different representations.

2.3.1. Categorical features
The representation of categorical features is more challenging than numerical features. In
tabular data synthesis, the most frequently used methods are label encoding and one-hot
encoding, as explained below:

• Label encoding: It converts a categorical feature to a numerical one by assigning an
integer to every category of this feature. Table 2.1 shows an example of label encoding. A
categorical feature color has three categories {”red”, ”green”, ”blue”}, and their assigned
values are {0, 1, 2} after encoding. The drawback of label encoding is that it introduces
an artificial order to the categories, which often leads to sub-optimal results [23]. In our
example, ”Blue” > ”Green” > ”Red”, but in real life this order does not exist.

• One-hot encoding: It creates a binary digit for every category of a feature and assigns
1 to the digit that corresponds to the current category, with all other digits set to 0.
Table 2.1 also shows an example of one-hot encoding. Since color has 3 categories, its
one-hot encoding has 3 digits. From left to right, the 3 digits represent ”Red”, ”Green”,
and ”Blue” respectively. If color=”Red”, then the first digit is 1, and the second and
third digit are 0. Similarly, the one-hot encoding for ”Green” and ”Blue” are 010 and
001. One clear disadvantage of one-hot encoding is the extra 0s introduced to the data,
which will cause memory and scalability issues when many features have a large number
of categories.

6 2. Background

Table 2.1: Two encoding methods for categorical feature Color

Color Label encoding One-hot encoding

Red 0 100
Green 1 010
Blue 2 001

Although there are many approaches for representing categorical features in neural networks
(we refer readers to [23] for a comprehensive review), many of them are not suitable for tabular
data synthesis due to their irreversibility, i.e., once a value is encoded, it is impossible to restore
its original value. Examples include hash encoding, target encoding [35] and leave-one-out
encoding [36]. A more advanced approach for representing categorical features is to learn their
representations automatically with machine learning models, such as autoencoder (AE) [10]
and CNN [22]. It avoids the sparsity issue caused by one-hot encoding and therefore represents
tabular data more efficiently. The details of AE is introduced in the following section.

2.3.2. Numerical features
Numerical features include integer and continuous features. Although integer features do not
have a continuous distribution, it is usually represented in the same way as continuous features.
There are two common methods to represent them:

• Min-max normalization: scale a numerical feature to [−1, 1] using its minimum and
maximum values. Given a value 𝑣 of feature 𝐹𝑖, its normalized value 𝑣𝑛𝑜𝑟𝑚 = −1 + 2 ×

𝑣−𝑚𝑖𝑛(𝐹𝑖)
𝑚𝑎𝑥(𝐹𝑖)−𝑚𝑖𝑛(𝐹𝑖)

.

• Mode-specific normalization: this method considers the multiple modes of numerical
features, as demonstrated in Figure 2.3. For each continuous feature, it first trains
a variational Gaussian mixture (VGM) model with multiple modes, and mode 𝑘 is a
Gaussian distribution with mean 𝜂𝑘 and standard deviation 𝜙𝑘. Then, given a value
𝑐𝑖,𝑗, it identifies the component 𝑘 that 𝑐𝑖,𝑗 most likely belongs to, and then normalizes
the value by calculating 𝛼𝑖,𝑗 =

𝑐𝑖,𝑗−𝜂𝑘
4𝛼𝑘

. The chosen mode 𝛽𝑖,𝑗 is represented by one-hot
encoding.

Figure 2.3: Illustration of mode-specific normalization [51]

2.4. Autoencoder 7

Encoder

Latent vector

Input Output

Decoder

Figure 2.4: The structure of an AE

2.4. Autoencoder
Autoencoder (AE) is an unsupervised learning algorithm that learns a mapping from high-
dimensional inputs to low-dimensional representations [37, 47], namely latent vectors. Figure
2.4 shows the structure of an AE. It consists of two FCNs, an encoder (𝐸𝑛𝑐) and a decoder
(𝐷𝑒𝑐). 𝐸𝑛𝑐 takes a high-dimensional input and compresses it to a latent vector, and 𝐷𝑒𝑐 uses
the latent vector to reconstruct the original input. 𝐸𝑛𝑐 and 𝐷𝑒𝑐 are penalized for creating
output that deviates from the input. The loss function is defined as follows:

𝑚𝑖𝑛
𝜃,𝜙

𝐿(𝜃, 𝜙) = 1
𝑁

𝑁

∑
𝑖=1
||𝑥𝑖 − 𝐷𝑒𝑐𝜃(𝐸𝑛𝑐𝜙(𝑥𝑖))||22, (2.5)

where 𝜃 and 𝜙 are the parameters of 𝐷𝑒𝑐 and 𝐸𝑛𝑐, 𝑥𝑖 is a high-dimensional input, 𝐸𝑛𝑐𝜙(𝑥𝑖)
is the latent vector, 𝐷𝑒𝑐𝜃(𝐸𝑛𝑐𝜙(𝑥𝑖)) is the reconstructed output, and 𝑁 is the total number of
samples. The objective of AE is to minimize the difference between its input and output.

3
Related Work

3.1. Tabular data synthesis
We focus on the deep-learning approaches for tabular data synthesis and skip the discussion of
classical methods such as Copulas [32, 39] and Bayesian Networks [53]. Table 3.1 summarizes
the recently developed deep learning methods for tabular data synthesis, in terms of models,
network architecture, and datasets. MedGAN [9] is designed for aggregated electronic health
records (EHRs), which only have count and binary features. Since EHRs are high-dimensional
and sparse [2], medGAN uses a pre-trained autoencoder to learn compact representations of
the input data and thereby simplifies the GAN’s task. MedGAN is improved by [2], where the
standard GAN loss is replaced by Wasserstein loss with gradient penalty, and the new model is
named medWGAN. However, medGAN and medWGAN cannot easily generalize to real-world
scenarios because they only consider count and binary features.

A few methods are suitable for general tabular data, including table-GAN [38], CTGAN
[51], TVAE [51], and CTAB-GAN [55]. Three of them are based on GAN: table-GAN and
CTAB-GAN uses convolutional neural networks as generator and discrminator, whereas CT-
GAN’s generator and discriminator are fully-connected networks. Besides, table-GAN and
CTAB-GAN include a classifier to help training the generator. TVAE is different from the
other models because it consists of an encoder and a decoder, both of which are fully-connected
networks, and no adversarial training is involved. In addition, CTGAN, TVAE and CTAB-
GAN use mode-specific normalization to represent numerical features and one-hot encoding to
represent categorical features. In contrast, table-GAN uses label encoding to convert categor-
ical features and then treat it the same as numerical features using min-max normalization.
Furthermore, CTAB-GAN defines the mixed datatype, i.e., variables with both continuous
and categorical values, and proposes a encoding method for it. Despite their effectiveness in
tabular data synthesis, those models overlook and do not abide by the key property of column
permutation invariance.

9

10 3. Related Work

Table 3.1: Deep learning methods for tabular data synthesis (ordered chronologically)

Method Model design Network Data Data representation

medGAN AE + GAN FCN Medical records -

table-GAN DCGAN + Classifier CNN General Min-Max normalization +
Label encoding

medWGAN AE + WGAN-GP FCN Medical records -

CTGAN Conditional WGAN-GP FCN General Mode-specific normalization +
One-hot encoding

TVAE Conditional VAE FCN General Mode-specific normalization +
One-hot encoding

CTAB-GAN Conditional DCGAN + Classifier CNN, FCN General Mode-specific normalization +
One-hot encoding

3.2. Column permutation invariance
Indeed, in the computer vision field, similar concepts have been brought up and investigated,
including permutation invariance [13, 30], translation invariance [16, 26, 27], and translation
equivalence [11, 12, 49]. Permutation invariance means the output of a neural network stays
the same despite permutations of its input. For example, the classification of an image should
not change after adjusting the object location in the image.

Motivated by that, we define column permutation invariance in tabular data synthesis as
follows: the performance of a tabular data synthesizer is not affected by permutations on the
input columns. To the best of our knowledge, column permutation invariance has not been
researched by the prior state-of-the-art in tabular data synthesis.

3.3. Synthetic tabular data evaluation
The evaluation of synthetic tabular data involves three parts: statistical similarity, machine
learning utility, and privacy [4, 55].

3.3.1. Statistical similarity
Realistic synthetic data should preserve the statistical properties of real data. Therefore,
the statistical similarity between real and synthetic data is fundamental in the evaluation
of synthetic data. Various metrics can be used to quantify statistical similarity, and the
most common ones are the difference in mean and standard deviation, the difference between
correlation matrix, Jensen-Shannon divergence, and Wasserstein-1 distance.

3.3.2. Machine learning utility
Another important aspect is the machine learning utility of synthetic data, e.g., whether ma-
chine learning models trained with synthetic data can achieve good performance compared to
models trained with real data [51]. The evaluation of this property involves several steps:

• Choose a machine learning task and one or several machine learning models for this task.

• Train the models with real samples and test their performance, denoted by 𝑃𝑟𝑒𝑎𝑙. The
metric can be accuracy or F1 score for classification tasks, or Root Mean Squared Error

3.3. Synthetic tabular data evaluation 11

or Mean Absolute Error for regression tasks.

• Train the models with synthetic samples and test their performance, denoted by 𝑃𝑓𝑎𝑘𝑒.

• Calculate the difference between 𝑃𝑟𝑒𝑎𝑙 and 𝑃𝑓𝑎𝑘𝑒. A small difference indicates high ma-
chine learning utility.

3.3.3. Privacy
Although privacy protection is one of the main incentives for generating synthetic data, there
is no definitive method for evaluating privacy in data synthesis. A common approach is to
calculate the distance between each synthetic data point and its closest neighbor in the real
dataset and then average over all synthetic data points [38, 50, 55]. More complex methods
involve membership attack [44] and differential privacy [31] and are beyond the scope of this
work.

4
Empirical Analysis

In this chapter, we show that traditional machine learning models, e.g., logistic regression,
decision tree, and support vector machine, are invariant to the column permutations of tab-
ular data. However, the state-of-the-art tabular data synthesizers are sensitive to column
permutations. We analyze the root causes of this phenomenon.

4.1. Experiment setup
4.1.1. Dataset overview
The empirical analysis is carried out with five real world datasets, namely Loan, Adult, Credit,
Intrusion, and Covtype, as summarized in Table 4.1. The Loan dataset1 contains the demo-
graphic information about bank customers and their response to a personal loan campaign.
The Adult dataset2 has many census data and is used to predict whether the income of an
adult exceeds $50k/year. The Credit dataset3 consists of anonymized credit card transactions
labeled as fraudulent or genuine. The Intrusion dataset4 has encrypted WiFi traffic records
and classifies whether a record is from a unmanned aerial vehicle. The Covtype dataset5 con-
tains the cover type of forests and the related geographical information. Every dataset has a
target column for classification tasks. Due to the limitation of computational resources, we
randomly selected 50k samples from the Credit, Intrusion and Covtype datasets.

4.1.2. Column orders
To test whether the state-of-the-art tabular data synthesizers are sensitive to column permu-
tations, three column orders are designed for the datasets:

1. Original order: the column order in the original datasets.
1https://www.kaggle.com/code/pritech/bank-personal-loan-modelling/data
2https://archive.ics.uci.edu/ml/datasets/Adult
3https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
4https://archive.ics.uci.edu/ml/datasets/Unmanned+Aerial+Vehicle+%28UAV%29+Intrusion+Detection
5https://archive.ics.uci.edu/ml/datasets/Covertype

13

14 4. Empirical Analysis

Table 4.1: Statistics of datasets

Dataset # Continuous
columns

Categorical
columns # Samples Target column

Loan 5 8 5k PersonalLoan
Adult 5 9 48k Income
Credit 30 1 50k Class

Intrusion 22 20 50k Class
Cover_Type 10 45 50k Cover type

2. Order by type: put all continuous columns on the left side of the table, and all categorical
columns on the right.

3. Order by correlation: first calculate the pair-wise correlation between all features, and
then sort the features based on the absolute correlation coefficient. Place highly-correlated
pairs on the left, and weakly-correlated pairs on the right.

4.1.3. Evaluation metric for column permutation invariance
To quantify permutation invariance, we define Maximum Absolute Variation (MAV) as follows:

𝑀𝐴𝑉 = 𝑚𝑎𝑥(ℒ) − 𝑚𝑖𝑛(ℒ), (4.1)

where ℒ = {𝑒1, 𝑒2...𝑒𝑛} represents the evaluation results of synthetic data in column order
{1, 2, ..𝑛}. Since the scale of the evaluation results varies per dataset, we normalize MAV to
allow comparison across different datasets. The normalized MAV is calculated as follows:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝐴𝑉 = 𝑚𝑎𝑥(ℒ) − 𝑚𝑖𝑛(ℒ)
𝑚𝑖𝑛(ℒ) (4.2)

The range of normalized MAV is [0, +∞]. A low normalized MAV means a small difference
between the synthetic data in different column orders. Therefore the permutation invariance
of the tabular data synthesizer is high.

4.2. Traditional ML models permutation invariance
Intuitively, machine learning models should not be sensitive to the column permutations of
tabular data. Take logistic regression as an example. Assume that one feature is the target
for regression or classification, and all the other features are the predictors. The formula of
logistic regression is as follows:

𝑙𝑜𝑔(𝑝(𝑋)
1 − 𝑝(𝑋)) = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝, (4.3)

where 𝑋 = (𝑋1, ..., 𝑋𝑝) are 𝑝 predictors. In this case, changing the column order is equivalent
to altering the locations of 𝑋1, ..𝑋𝑝 in the above formula. Obviously, this does not affect how
the model is fitted.

Decision tree, another popular machine learning model, is also invariant to column permu-

4.3. CNN-based tabular data synthesizers 15

98.6 98.8 99.0 99.2 99.4 99.6 99.8 100.0
Prediction accuracy

LR

SVM

DT

RF

MLP

M
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s

Column order
Original order
Order by type
Order by correlation

Figure 4.1: Arrange Intrusion dataset in 3 different orders and test the prediction accuracy of 5 machine
learning models. The results are almost the same.

tations. In this model, the feature space is divided into multiple regions with linear boundaries.
For each division, the feature and cutpoint that minimizes the residual squared error are se-
lected to make the decision boundary. When a tie exists between multiple features or cutpoints,
a random choice is made. The order of features does not influence decision trees because it
does not affect the selection of features and cutpoints.

To verify that traditional machine learning models are invariant to column permutations,
we test 5 machine learning models, logistic regression (LR), support vector machine (SVM),
decision tree (DT), random forest (RF), and multi-layer perception (MLP). Both linear and
non-linear models are included. We measure the prediction accuracy of the 5 models. Figure
4.1 shows the results on Intrusion dataset. The prediction accuracy of logistic regression and
support vector machine stays the same for all column orders, while the prediction accuracies
of decision tree, random forest, and multi-layer perceptron change less than 0.2%. The reason
is that logistic regression and support vector machine are deterministic algorithms, whereas
decision tree, random forest, and multi-layer perceptron are inherently random. Using the
formula defined in section 3.2, we find the normalized MAV for the 5 machine learning models
are close to 0, which means they are highly invariant to column permutations.

4.3. CNN-based tabular data synthesizers
Initially designed for images, CNNs use a set of convolution kernels to slide over the input
feature space, abstract high-dimensional features, and then aggregate them into knowledge

16 4. Empirical Analysis

about the input. Due to the limited kernel size, CNNs only learn the local relations between
neighboring features and fall short to capture the global dependencies.

However, CNNs’ focus on local relations hinders tabular data synthesis. In contrast to
image data, tabular data do not have strong local relations. Highly-correlated features can
be very far apart, and their dependencies are complex and irregular [57]. These characteris-
tics make modeling tabular data extra challenging for CNNs [25, 41], despite their supreme
performance in many machine learning tasks [46].

C1 C5 C3 C4 C2C1 C2 C3 C4 C5

Kernel KernelKernelKernel

Figure 4.2: Left: CNN cannot capture the dependencies between columns C1 and C5. Right: After exchanging
the locations of C2 and C5, C1 and C5 are captured simultaneously [28].

Since CNNs capture mainly local relations, CNN-based tabular data synthesizers are sen-
sitive to column permutations, as demonstrated in Figure 4.2. We use table-GAN to verify
this assumption. We test it with five datasets arranged using three column orders, namely the
original order, order by type, and order by correlation. For each order, we train the model
separately and calculate the Wasserstein-1 distance (WD) between real and synthetic data.
Every experiment is repeated 5 times. Table 4.2 summarizes our results. The last column
shows the normalized MAV on different datasets. For example, on the Adult dataset, order
by type gives the highest WD (12.563), and order by correlation the lowest (11.512). Then
the normalized MAV is (12.563 − 11.512)/11.512 × 100% = 9.13%. The results show that
table-GAN is most sensitive on the Intrusion dataset, with the WD changed by 14.90%.

Table 4.2: TableGAN experiment results using 3 column orders: WD and normalized MAV

Dataset Column order Normalized MAV
(%)Original order Order by type Order by corr.

Loan 2.062 2.047 2.066 0.93%
Adult 12.153 12.563 11.512 9.13%
Credit 0.420 0.410 0.403 4.22%

Covtype 1.282 1.284 1.345 4.91%
Intrusion 6.486 5.896 5.645 14.90%

Avg. 4.481 4.440 4.194 6.82%

4.4. Sparsity v.s. sensitivity
4.4.1. Encoding leads to sparsity
The representation of categorical features in tabular data often leads to sparse training data.
In the state-of-the-art, CTGAN, CTAB-GAN, and TVAE use one-hot encoding to represent

4.4. Sparsity v.s. sensitivity 17

categorical features. Despite its simplicity and effectiveness, one-hot encoding introduces many
0s to the tabular data and thus increases sparsity. In contrast, table-GAN uses label encoding
to transform categorical features into numerical ones and then normalizes them using min-
max normalization. Although this method does not increase sparsity, it causes poor synthesis
quality of categorical features.

Representing numerical features can also lead to sparsity. CTGAN, TVAE, and CTAB-
GAN use mode-specific normalization to represent multi-modal numerical features. However,
the multi-model information is stored using one-hot encoding. For example, suppose a numer-
ical feature 𝐹 has three modes, i.e., its distribution can be decomposed into three Gaussian
distributions, denoted by 𝒩𝑖(𝜇𝑖 , 𝜎2𝑖), 𝑖 ∈ [1, 3]. A value of feature 𝐹, 𝑣, belongs to mode 1.
Then 𝑣 is represented by vector [𝑣−𝜇1𝜎1

, 1, 0, 0], where 𝑣−𝜇1
𝜎1

is the normalized value of 𝑣, and [1,
0, 0] represents mode 1. Therefore, if a numerical feature has 𝑛 modes, it requires a vector of
length 𝑛 + 1 to represent one value.

Figure 4.3 shows the number of columns in five datasets before and after using various
encoding. It proves that one-hot encoding and mode-specific normalization can significantly
increases the number of columns in tabular data. For example, the number of columns in
the Credit dataset go from 31 to 301 after mode-specific normalization and one-hot encoding.
Naturally, this leads to data sparsity.

0 50 100 150 200 250 300
Columns

Loan

Adult

Credit

Intrusion

Covtype

Da
ta

se
t

Encoding method
No encoding
Mode specific normalization (MSN)
One-hot encoding
MSN + One-hot encoding

Figure 4.3: The impact of encoding on the numer of columns in five datasets

18 4. Empirical Analysis

4.4.2. Sparsity increases sensitivity
Our experiments show that sparse tabular data increases tabular data synthesizers’ sensi-
tivity to column permutations. We compare CTAB-GAN, a model using one-hot encoding
and mode-specific normalization, with table-GAN, a model using label encoding and min-max
normalization. Note that label encoding and min-max normalization do not change the dimen-
sionality of the input data, whereas one-hot encoding and mode-specific normalization increase
sparsity. Also recall that table-GAN and CTAB-GAN have a similar architecture: they both
use CNNs as the generator and the discriminator. Table 4.3 shows our experiment results
of CTAB-GAN. Compared to table-GAN (the results are in Table 4.2), CTAB-GAN is more
sensitive to column permutations on all datasets. The average maximum change in WD on
five datasets is 38.67%, whereas in table-GAN this is 6.82%.

Table 4.3: CTAB-GAN experiment results using 3 column orders: WD and normalized MAV

Dataset Column order Normalized MAV
(%)Original order Order by type Order by corr.

Loan 0.356 0.283 0.216 64.81%
Adult 1.517 0.934 1.203 62.42%
Credit 0.115 0.144 0.137 25.22%

Covtype 0.539 0.514 0.583 13.42%
Intrusion 2.668 3.401 2.831 27.47%

Avg. 1.039 1.055 0.994 38.67%

In addition, we visualize the input of table-GAN and CTAB-GAN, as shown in Figure 4.4.
We reshape each row of a table into a square matrix to make it compatible with CNNs. In
table-GAN, one row of the Adult dataset is represented by a 4×4 matrix, but in CTAB-GAN
this goes up 24 × 24 due to the one-hot encoding and mode-specific normalization, and the
data points are much sparser. Consequently, CTAB-GAN is much more sensitive to column
permutations than table-GAN.

0 1 2 3

0
1

2
3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
2

4
6

8
10

12
14

16
18

20
22 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Left: Visualization of the input to table-GAN on Adult dataset; Right: Visualization of the input
to CTAB-GAN on the Adult dataset.

4.5. FCNs-based tabular data synthesizers 19

4.5. FCNs-based tabular data synthesizers
Theoretically, fully-connected networks (FCNs) should be robust to column permutations be-
cause all features are connected. However, we find FCNs are not fully permutation invariant
while testing CTGAN and TVAE, two FCN-based tabular data synthesizers. Table 4.4 and
4.5 shows our experiment results. Averaging the results on five datasets, the maximum change
in WD is 18.62% for CTGAN and 17.29% for TVAE. The results show that FCNs are also
sensitive to column permutations.

Table 4.4: CTGAN experiment results using 3 column orders: WD and normalized MAV

Dataset Column order Normalized MAV.
(%)Original order Order by type Order by corr.

Loan 1.271 1.218 0.988 28.64%
Adult 3.762 3.719 3.787 1.83%
Credit 0.255 0.310 0.328 28.63%

Covtype 2.184 2.330 2.047 13.83%
Intrusion 1.814 2.180 1.841 20.18%

Avg. 1.857 1.951 1.798 18.62%

Table 4.5: TVAE experiment results using 3 column orders: WD and normalized MAV

Dataset Column order Normalized MAV
(%)Original order Order by type Order by corr.

Loan 1.550 1.498 1.626 8.54%
Adult 2.598 2.910 3.774 45.27%
Credit 0.221 0.211 0.194 13.92%

Covtype 0.621 0.609 0.633 3.94%
Intrusion 3.627 3.259 3.740 14.76%

Avg. 1.723 1.697 1.993 17.29%

4.6. FCNs v.s. CNNS
We expect FCNs to be more permutation-invariant than CNNs. They are not restricted by
the convolution kernel size, and they have the potential to capture global dependencies due
to their fully-connected nature. We verify this assumption by comparing the performance of
CTGAN and CTAB-GAN.

CTGAN and CTAB-GAN have many similarities, including data representation methods,
Wasserstein loss with gradient penalty, and training by sampling. Their main difference lies
in the GAN architecture – CTGAN has FCNs, while CTAB-GAN uses CNNs. Therefore,
by comparing the performance of CTGAN and CTAB-GAN, we can gain insights into the
difference between FCNs and CNNs in terms of column permutation invariance.

Comparing Table 4.3 and Table 4.4, we find CTGAN is less or almost equally sensitive
to column permutations on all datasets. Averaging the results on five datasets, its maximum
change in WD after column permutation is about 12% lower than the result of CTAB-GAN.
Therefore, given the same input, FCNs are more permutation-invariant than CNNs.

5
Feature Sorting Algorithm for

CNN-based Tabular Data Synthesizers

5.1. Algorithm design
Although the features in tabular data are often heterogeneous, some are highly correlated, such
as age and experience, and height and weight. However, as discussed in section 4.3, CNN-based
table synthesizers often fail to capture these correlations due to their focus on local relations.
A simple solution for this problem is to put highly-correlated features together, such that a
convolution kernel can capture them simultaneously.

The location of features also matters in CNNs. In a convolution process, the features
on the border of the input matrix are convoluted fewer times than the features within the
border, leading to the potential loss of information about features on the border. This is called
boundary effects in image processing [6, 45]. Previous studies have shown that boundary effects
result in statistical biases in finite-sampled data [19, 20, 27], and various methods have been
proposed to reduce its impact [8, 24, 43]. Therefore, to better capture the correlation between
features, one must carefully choose the location of high-correlated features.

Our solution is to put highly-correlated features together in the middle of a table. This
brings two advantages: (1) A convolution kernel can capture the highly-correlated features
simultaneously so that their correlation is better preserved, and (2) those highly-correlated
features will locate at the center of the input matrix, and they are less prone to the boundary
effects in CNNs. Figure 5.1 illustrates our idea. Take one row in a table as an example. We
reshape it into a square matrix to feed it to a CNN. Before reshaping, two pairs of highly
correlated features, {𝐹1, 𝐹2} and {𝐹15, 𝐹16}, are at the leftmost and rightmost locations. As
a result, they are on the border of the input matrix after reshaping. Due to the boundary
effects in CNNs, the correlations between 𝐹1 and 𝐹2, and 𝐹15 and 𝐹16 are probably lost after
several aggregations, activation, and pooling operations. However, after putting {𝐹1, 𝐹2} and
{𝐹15, 𝐹16} in the middle of this row, they end up at the center of the input matrix and are

21

22 5. Feature Sorting Algorithm for CNN-based Tabular Data Synthesizers

less susceptible to boundary effects.

F1 F2 F15 F16

F1 F2

F15 F16

Highly correlated Highly correlated

F1 F2

F15 F16

.... F1 F2 F15 F16

Reshape

Reshape

Feature sorting

Highly correlated

Figure 5.1: Top: The highly correlated features, 𝐹1, 𝐹2, 𝐹15 and 𝐹16 are on the border of the input matrix,
suffering from the boundary effects of CNNs. Bottom: After feature sorting, 𝐹1, 𝐹2, 𝐹15 and 𝐹16 are at the

center of the input matrix.

Although this idea seems straightforward, one complication arises due to the encoding of
features. Some encoding methods, such as Variational Gaussian Mixture [51] and One-hot
encoding, require multiple columns to represent one feature. Consequently, each feature may
occupy a different number of columns due to encoding. To put the highly correlated features
in the middle after encoding, we must consider the length of each encoded feature.

We developed a feature sorting algorithm that groups the highly-correlated features and
puts them in the middle, as shown in Algorithm 1. In this algorithm, we first pick out the most
correlated pair of features and then add other features to their left or right side. We have two
counters, 𝑐𝑙𝑒𝑓𝑡 and 𝑐𝑟𝑖𝑔ℎ𝑡, for columns taken by features added to the left and the right side.
Before adding a feature, we compare 𝑐𝑙𝑒𝑓𝑡 and 𝑐𝑟𝑖𝑔ℎ𝑡, and then add it to the side with fewer
columns, such that the highly correlated features always stay in the middle after encoding.

5.2. Algorithm evaluation
We evaluated the feature sorting algorithm on table-GAN and CTAB-GAN, two CNN-based
table synthesizers, because this algorithm is designed to alleviate the limitation of CNNs.

5.2.1. Table-GAN
Table 5.1 shows the effect of the feature sorting algorithm on table-GAN. A negative change
in Dif. Corr. or WD means the difference between synthetic and real data becomes smaller.
That is, the feature sorting algorithm helps table synthesizers generate more realistic data.
The results show that the feature sorting algorithm works the best on the Credit dataset,
where Dif. Corr. and WD are decreased by 12% and 4%. It also improves the results on
the Intrusion dataset, where WD is reduced by 16%, whereas Dif. Corr slightly increases by
3%. However, it doesn’t have much influence on the Loan and Covtype datasets, where the
Dif.Corr. and WD change less than 5%. Moreover, the results on the Adult dataset become

5.2. Algorithm evaluation 23

Algorithm 1 Feature Sorting Algorithm: Put highly-correlated features in the middle
Input: Original Table 𝑇𝑜 = {𝐹0, 𝐹1, ..., 𝐹𝑛}
Output: Sorted Table 𝑇𝑠𝑜𝑟𝑡𝑒𝑑

1: 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 ← {}
2: 𝑐𝑙𝑒𝑓𝑡 , 𝑐𝑟𝑖𝑔ℎ𝑡 ← 0 {No. columns added to the left / right of 𝑇𝑠𝑜𝑟𝑡𝑒𝑑}
3: 𝑐𝑜𝑟𝑟 ← [] {Pair-wise correlation / association}
4: for all possible pairs of features in 𝑇𝑜 do
5: Calculate the absolute value of their correlation / association and save it in 𝑐𝑜𝑟𝑟
6: end for
7: while 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑠𝑜𝑟𝑡𝑒𝑑) ≠ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑜) do
8: Find the largest value 𝑣 in 𝑐𝑜𝑟𝑟
9: Find the corresponding pair of features {𝐹𝑥 , 𝐹𝑦}

10: 𝐹𝑛𝑒𝑤 ← {𝐹𝑥 , 𝐹𝑦} − {𝐹𝑥 , 𝐹𝑦} ∩ 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 {Feature(s) not yet in 𝑇𝑠𝑜𝑟𝑡𝑒𝑑}
11: 𝑐 ← No. columns occupied by 𝐹𝑛𝑒𝑤 after encoding
12: if 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 is empty then
13: 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 ← {𝐹𝑥 , 𝐹𝑦} {Add the first pair}
14: else
15: if 𝑐𝑟𝑖𝑔ℎ𝑡 < 𝑐𝑙𝑒𝑓𝑡 then
16: 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 + 𝐹𝑛𝑒𝑤 {Add the new feature(s) to the right}
17: 𝑐𝑟𝑖𝑔ℎ𝑡 ← 𝑐𝑟𝑖𝑔ℎ𝑡 + 𝑐
18: else
19: 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝐹𝑛𝑒𝑤 + 𝑇𝑠𝑜𝑟𝑡𝑒𝑑 {Add the new feature(s) to the left}
20: 𝑐𝑙𝑒𝑓𝑡 ← 𝑐𝑙𝑒𝑓𝑡 + 𝑐
21: end if
22: end if
23: Remove 𝑣 from 𝑐𝑜𝑟𝑟
24: end while
25:
26: return 𝑇𝑠𝑜𝑟𝑡𝑒𝑑

worse, with Dif. Corr and WD increased by 24% and 3%.
The algorithm performs the best on the Credit dataset because of the simple correla-

tion between its features. Using ±0.2 as the threshold for high correlation, only ”Time” and
”Amount” are strongly-correlated with other features, whereas all the other features have a
close-to-0 correlation. Besides, ”Time” and ”Amount” are only correlated with 3 and 5 fea-
tures, respectively. With such a small number of correlated features, capturing their relation
in the convolution process is easy once we put them together.

The algorithm also alleviates the CNN boundary effect on the highly-correlated features of
the Credit dataset. Before applying the algorithm, ”Time” and ”Amount” are the leftmost and
rightmost columns in the table, and many of their correlated features are far apart. However,
after feature sorting, these features are put in the middle of the table and therefore become
less susceptible to the CNN boundary effect.

In contrast to the Credit dataset, the other four datasets have a larger number of correlated
features. For example, in the Adult dataset, most features are correlated with at least one
feature, and seven features are correlated with more than three features. Due to the limited

24 5. Feature Sorting Algorithm for CNN-based Tabular Data Synthesizers

kernel size, it is challenging for CNNs to capture all the cross-column relations even after
putting the highly-correlated features together. Besides, our algorithm is based on pairwise
correlation, but putting one pair of highly-correlated features together could possibly separate
another pair of highly-correlated features, which explains why sometimes Dif. Corr. and WD
become worse after applying the feature sorting algorithm. In this case, domain knowledge is
required to effectively group the correlated features and arrange them in a good order.

Table 5.1: The results of table-GAN before and after applying the feature sorting algorithm on five datasets.
The correlation difference and Wasserstein distance between real and synthetic data are reported.

Dataset Before sorting After sorting Change
Dif. Corr. WD Dif. Corr. WD Dif. Corr. WD

Loan 2.284 2.062 2.203 2.087 -4% 1%
Adult 1.563 12.153 1.942 12.502 24% 3%
Credit 3.092 0.420 2.728 0.403 -12% -4%

Covtype 4.885 1.282 4.915 1.348 1% 5%
Intrusion 6.433 6.486 6.597 5.418 3% -16%

5.2.2. CTAB-GAN
To understand whether our feature sorting algorithm works when sparsity is involved, we tested
it on CTAB-GAN, and the results are summarized in Table 5.2. Surprisingly, the algorithm
can reduce Dif. Corr. and WD by more than 10 % on all datasets except the Credit dataset.
On the Loan dataset, the Dif. Corr. and WD are decreased by 57% and 29% after feature
sorting, meaning that the algorithm can effectively improve the statistical similarity between
synthetic and real data.

Compared with table-GAN, CTAB-GAN has more performance gain after feature sorting.
This is due to the sparsity issue caused by the encoding methods of CTAB-GAN, i.e., mode-
specific normalization for continuous features and one-hot encoding for categorical features.
Since the input data are sparse after encoding, putting the highly-correlated columns together
can drastically reduce the distance between correlated columns, and therefore improves CTAB-
GAN’s ability to capture the relation between highly-correlated columns.

Table 5.2: The results of CTAB-GAN before and after applying the feature sorting algorithm on five datasets.
The correlation difference and Wasserstein distance between real and synthetic data are reported.

Dataset Before sorting After sorting Change
Dif. Corr. WD Dif. Corr. WD Dif. Corr. WD

Loan 1.469 0.356 0.638 0.253 -57% -29%
Adult 0.448 1.517 0.296 1.205 -34% -21%
Credit 1.688 0.115 1.660 0.134 -2% 17%

Covtype 1.948 0.539 1.442 0.475 -26% -12%
Intrusion 3.969 2.668 3.385 1.999 -15% -25%

5.2. Algorithm evaluation 25

ds
t_

by
te

s

nu
m

_f
ai

le
d_

lo
gi

ns

di
ff_

sr
v_

ra
te

du
ra

tio
n

nu
m

_f
ile

_c
re

at
io

ns

ds
t_

ho
st

_c
ou

nt

ro
ot

_s
he

ll

nu
m

_r
oo

t

nu
m

_a
cc

es
s_

fil
es

ds
t_

ho
st

_d
iff

_s
rv

_r
at

e

lo
gg

ed
_in

ds
t_

ho
st

_s
rv

_c
ou

nt

pr
ot

oc
ol

_t
yp

e

ds
t_

ho
st

_r
er

ro
r_

ra
te

ds
t_

ho
st

_s
rv

_r
er

ro
r_

ra
te

re
rro

r_
ra

te

sr
v_

re
rro

r_
ra

te

ds
t_

ho
st

_s
rv

_s
er

ro
r_

ra
te

sr
v_

se
rro

r_
ra

te

fla
g

ds
t_

ho
st

_s
er

ro
r_

ra
te

se
rro

r_
ra

te

is_
gu

es
t_

lo
gi

n

ho
t

ds
t_

ho
st

_s
am

e_
sr

v_
ra

te

se
rv

ice

sa
m

e_
sr

v_
ra

te

co
un

t

su
_a

tte
m

pt
ed

nu
m

_c
om

pr
om

ise
d

ds
t_

ho
st

_s
am

e_
sr

c_
po

rt_
ra

te

sr
v_

co
un

t

nu
m

_s
he

lls

sr
v_

di
ff_

ho
st

_r
at

e

ds
t_

ho
st

_s
rv

_d
iff

_h
os

t_
ra

te

wr
on

g_
fra

gm
en

t

la
nd

sr
c_

by
te

s

dst_bytes

num_failed_logins

diff_srv_rate

duration

num_file_creations

dst_host_count

root_shell

num_root

num_access_files

dst_host_diff_srv_rate

logged_in

dst_host_srv_count

protocol_type

dst_host_rerror_rate

dst_host_srv_rerror_rate

rerror_rate

srv_rerror_rate

dst_host_srv_serror_rate

srv_serror_rate

flag

dst_host_serror_rate

serror_rate

is_guest_login

hot

dst_host_same_srv_rate

service

same_srv_rate

count

su_attempted

num_compromised

dst_host_same_src_port_rate

srv_count

num_shells

srv_diff_host_rate

dst_host_srv_diff_host_rate

wrong_fragment

land

src_bytes

1.000.00-0.01-0.000.00-0.030.010.020.02-0.020.020.010.02-0.01-0.01-0.02-0.01-0.03-0.030.03-0.03-0.030.000.010.030.110.03-0.030.020.030.03-0.010.00-0.010.000.000.00-0.00

0.001.000.010.000.010.030.000.000.000.000.020.020.000.050.050.050.050.010.010.180.010.010.000.290.010.230.010.010.100.000.020.010.000.010.070.000.000.00

-0.010.011.000.060.010.190.000.030.020.420.28-0.320.110.110.100.120.100.170.170.220.160.160.010.03-0.340.44-0.370.260.000.030.07-0.070.00-0.08-0.080.020.000.01

-0.000.000.061.000.080.070.050.100.080.420.10-0.130.260.020.030.030.03-0.06-0.060.33-0.06-0.060.020.07-0.140.480.05-0.070.090.100.35-0.040.00-0.04-0.030.010.000.00

0.000.010.010.081.000.030.340.320.000.020.040.020.000.020.010.020.020.020.020.040.020.020.000.120.010.070.030.030.060.270.030.020.500.030.010.000.000.00

-0.030.030.190.070.031.000.030.040.030.180.43-0.390.15-0.02-0.02-0.02-0.020.450.450.450.450.450.000.07-0.520.57-0.530.480.010.04-0.240.120.01-0.24-0.450.060.020.00

0.010.000.000.050.340.031.000.630.410.000.010.020.000.000.000.010.010.010.010.000.010.010.000.410.000.230.010.010.470.640.020.010.330.010.030.000.000.00

0.020.000.030.100.320.040.631.000.780.030.060.050.000.020.020.020.020.040.040.000.040.040.000.080.050.110.040.040.710.660.050.020.500.020.030.000.000.00

0.020.000.020.080.000.030.410.781.000.010.050.030.010.020.020.020.010.040.030.020.030.030.000.000.040.050.040.040.620.780.020.020.000.020.020.000.000.00

-0.020.000.420.420.020.180.000.030.011.000.33-0.420.410.120.080.090.080.060.060.180.050.060.000.04-0.440.81-0.170.160.000.040.45-0.080.00-0.08-0.010.100.000.00

0.020.020.280.100.040.430.010.060.050.331.000.740.380.350.330.360.350.630.630.790.630.630.070.100.750.900.730.640.010.070.130.090.010.170.010.100.010.00

0.010.02-0.32-0.130.02-0.390.020.050.03-0.420.741.000.10-0.18-0.18-0.18-0.17-0.65-0.650.72-0.65-0.650.070.070.930.920.77-0.620.010.03-0.110.110.010.160.080.070.01-0.01

0.020.000.110.260.000.150.000.000.010.410.380.101.000.080.110.110.110.190.190.160.180.180.020.020.070.940.160.130.000.010.490.370.000.070.250.280.000.00

-0.010.050.110.020.02-0.020.000.020.020.120.35-0.180.081.000.960.970.95-0.17-0.170.96-0.18-0.180.020.03-0.160.22-0.200.180.000.010.03-0.060.01-0.020.220.050.00-0.00

-0.010.050.100.030.01-0.020.000.020.020.080.33-0.180.110.961.000.960.97-0.18-0.180.97-0.18-0.180.020.03-0.150.22-0.210.170.000.010.02-0.070.01-0.020.230.030.000.00

-0.020.050.120.030.02-0.020.010.020.020.090.36-0.180.110.970.961.000.99-0.17-0.170.99-0.17-0.170.020.04-0.150.22-0.210.180.000.010.03-0.070.01-0.020.210.030.000.00

-0.010.050.100.030.02-0.020.010.020.010.080.35-0.170.110.950.970.991.00-0.18-0.180.99-0.17-0.170.020.04-0.150.22-0.200.170.000.010.03-0.070.01-0.010.210.030.000.00

-0.030.010.17-0.060.020.450.010.040.040.060.63-0.650.19-0.17-0.18-0.17-0.181.001.001.000.990.990.040.07-0.710.81-0.850.720.000.05-0.22-0.040.01-0.23-0.190.050.010.00

-0.030.010.17-0.060.020.450.010.040.030.060.63-0.650.19-0.17-0.18-0.17-0.181.001.001.000.991.000.040.07-0.710.81-0.840.720.010.05-0.22-0.040.01-0.23-0.190.050.020.00

0.030.180.220.330.040.450.000.000.020.180.790.720.160.960.970.990.991.001.001.000.990.990.050.080.760.310.920.780.000.020.250.090.000.240.280.040.020.06

-0.030.010.16-0.060.020.450.010.040.030.050.63-0.650.18-0.18-0.18-0.17-0.170.990.990.991.001.000.040.07-0.710.82-0.840.710.000.05-0.22-0.040.01-0.23-0.190.040.02-0.00

-0.030.010.16-0.060.020.450.010.040.030.060.63-0.650.18-0.18-0.18-0.17-0.170.991.000.991.001.000.040.07-0.710.82-0.840.710.010.05-0.22-0.040.01-0.23-0.190.040.020.01

0.000.000.010.020.000.000.000.000.000.000.070.070.020.020.020.020.020.040.040.050.040.041.000.980.060.920.050.050.000.000.020.030.000.030.030.000.000.00

0.010.290.030.070.120.070.410.080.000.040.100.070.020.030.030.040.040.070.070.080.070.070.981.000.090.220.080.080.000.300.050.040.120.030.040.000.000.11

0.030.01-0.34-0.140.01-0.520.000.050.04-0.440.750.930.07-0.16-0.15-0.15-0.15-0.71-0.710.76-0.71-0.710.060.091.000.950.84-0.680.010.07-0.010.090.010.210.190.070.01-0.01

0.110.230.440.480.070.570.230.110.050.810.900.920.940.220.220.220.220.810.810.310.820.820.920.220.951.000.920.790.120.100.710.590.080.480.470.340.140.06

0.030.01-0.370.050.03-0.530.010.040.04-0.170.730.770.16-0.20-0.21-0.21-0.20-0.85-0.840.92-0.84-0.840.050.080.840.921.00-0.840.010.060.200.060.010.260.220.050.00-0.01

-0.030.010.26-0.070.030.480.010.040.040.160.64-0.620.130.180.170.180.170.720.720.780.710.710.050.08-0.680.79-0.841.000.010.05-0.190.240.01-0.25-0.210.020.01-0.00

0.020.100.000.090.060.010.470.710.620.000.010.010.000.000.000.000.000.000.010.000.000.010.000.000.010.120.010.011.000.790.000.000.000.000.000.000.000.00

0.030.000.030.100.270.040.640.660.780.040.070.030.010.010.010.010.010.050.050.020.050.050.000.300.070.100.060.050.791.000.030.030.500.010.030.000.000.00

0.030.020.070.350.03-0.240.020.050.020.450.13-0.110.490.030.020.030.03-0.22-0.220.25-0.22-0.220.020.05-0.010.710.20-0.190.000.031.000.060.030.040.250.070.040.01

-0.010.01-0.07-0.040.020.120.010.020.02-0.080.090.110.37-0.06-0.07-0.07-0.07-0.04-0.040.09-0.04-0.040.030.040.090.590.060.240.000.030.061.000.00-0.08-0.060.110.00-0.00

0.000.000.000.000.500.010.330.500.000.000.010.010.000.010.010.010.010.010.010.000.010.010.000.120.010.080.010.010.000.500.030.001.000.010.010.000.000.00

-0.010.01-0.08-0.040.03-0.240.010.020.02-0.080.170.160.07-0.02-0.02-0.02-0.01-0.23-0.230.24-0.23-0.230.030.030.210.480.26-0.250.000.010.04-0.080.011.000.150.040.02-0.00

0.000.07-0.08-0.030.01-0.450.030.030.02-0.010.010.080.250.220.230.210.21-0.19-0.190.28-0.19-0.190.030.040.190.470.22-0.210.000.030.25-0.060.010.151.000.070.11-0.00

0.000.000.020.010.000.060.000.000.000.100.100.070.280.050.030.030.030.050.050.040.040.040.000.000.070.340.050.020.000.000.070.110.000.040.071.000.000.00

0.000.000.000.000.000.020.000.000.000.000.010.010.000.000.000.000.000.010.020.020.020.020.000.000.010.140.000.010.000.000.040.000.000.020.110.001.000.00

-0.000.000.010.000.000.000.000.000.000.000.00-0.010.00-0.000.000.000.000.000.000.06-0.000.010.000.11-0.010.06-0.01-0.000.000.000.01-0.000.00-0.00-0.000.000.001.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.2: The correlation matrix of Intrusion dataset after feature sorting. Light color (orange/blue) means
high correlation.

5.2.3. Visualization of feature sorting effect
To verify the effect of the feature sorting algorithm, the correlation matrices of the intrusion
dataset before and after feature sorting are plotted, as shown in Figure 5.2 and 5.3. The
results show that after feature sorting, the features with high correlation are in the middle of
the correlation matrix, meaning that they are put in the middle of all features by the algorithm.

5.2.4. Conclusion
To summarize, our feature sorting algorithm can improve the performance of CNN-based table
synthesizers, especially when the input tabular data are sparse. For dense tabular data, it also
works if the relation between correlated features is relatively simple. When there are complex
relations between many features, finding an optimal column order that improves tabular data
synthesis is more challenging.

26 5. Feature Sorting Algorithm for CNN-based Tabular Data Synthesizers

du
ra

tio
n

pr
ot

oc
ol

_t
yp

e

se
rv

ice fla
g

sr
c_

by
te

s

ds
t_

by
te

s

la
nd

wr
on

g_
fra

gm
en

t

ho
t

nu
m

_f
ai

le
d_

lo
gi

ns

lo
gg

ed
_in

nu
m

_c
om

pr
om

ise
d

ro
ot

_s
he

ll

su
_a

tte
m

pt
ed

nu
m

_r
oo

t

nu
m

_f
ile

_c
re

at
io

ns

nu
m

_s
he

lls

nu
m

_a
cc

es
s_

fil
es

is_
gu

es
t_

lo
gi

n

co
un

t

sr
v_

co
un

t

se
rro

r_
ra

te

sr
v_

se
rro

r_
ra

te

re
rro

r_
ra

te

sr
v_

re
rro

r_
ra

te

sa
m

e_
sr

v_
ra

te

di
ff_

sr
v_

ra
te

sr
v_

di
ff_

ho
st

_r
at

e

ds
t_

ho
st

_c
ou

nt

ds
t_

ho
st

_s
rv

_c
ou

nt

ds
t_

ho
st

_s
am

e_
sr

v_
ra

te

ds
t_

ho
st

_d
iff

_s
rv

_r
at

e

ds
t_

ho
st

_s
am

e_
sr

c_
po

rt_
ra

te

ds
t_

ho
st

_s
rv

_d
iff

_h
os

t_
ra

te

ds
t_

ho
st

_s
er

ro
r_

ra
te

ds
t_

ho
st

_s
rv

_s
er

ro
r_

ra
te

ds
t_

ho
st

_r
er

ro
r_

ra
te

ds
t_

ho
st

_s
rv

_r
er

ro
r_

ra
te

duration

protocol_type

service

flag

src_bytes

dst_bytes

land

wrong_fragment

hot

num_failed_logins

logged_in

num_compromised

root_shell

su_attempted

num_root

num_file_creations

num_shells

num_access_files

is_guest_login

count

srv_count

serror_rate

srv_serror_rate

rerror_rate

srv_rerror_rate

same_srv_rate

diff_srv_rate

srv_diff_host_rate

dst_host_count

dst_host_srv_count

dst_host_same_srv_rate

dst_host_diff_srv_rate

dst_host_same_src_port_rate

dst_host_srv_diff_host_rate

dst_host_serror_rate

dst_host_srv_serror_rate

dst_host_rerror_rate

dst_host_srv_rerror_rate

1.000.260.480.330.00-0.000.000.010.070.000.100.100.050.090.100.080.000.080.02-0.07-0.04-0.06-0.060.030.030.050.06-0.040.07-0.13-0.140.420.35-0.03-0.06-0.060.020.03

0.261.000.940.160.000.020.000.280.020.000.380.010.000.000.000.000.000.010.020.130.370.180.190.110.110.160.110.070.150.100.070.410.490.250.180.190.080.11

0.480.941.000.310.060.110.140.340.220.230.900.100.230.120.110.070.080.050.920.790.590.820.810.220.220.920.440.480.570.920.950.810.710.470.820.810.220.22

0.330.160.311.000.060.030.020.040.080.180.790.020.000.000.000.040.000.020.050.780.090.991.000.990.990.920.220.240.450.720.760.180.250.280.991.000.960.97

0.000.000.060.061.00-0.000.000.000.110.000.000.000.000.000.000.000.000.000.00-0.00-0.000.010.000.000.00-0.010.01-0.000.00-0.01-0.010.000.01-0.00-0.000.00-0.000.00

-0.000.020.110.03-0.001.000.000.000.010.000.020.030.010.020.020.000.000.020.00-0.03-0.01-0.03-0.03-0.02-0.010.03-0.01-0.01-0.030.010.03-0.020.030.00-0.03-0.03-0.01-0.01

0.000.000.140.020.000.001.000.000.000.000.010.000.000.000.000.000.000.000.000.010.000.020.020.000.000.000.000.020.020.010.010.000.040.110.020.010.000.00

0.010.280.340.040.000.000.001.000.000.000.100.000.000.000.000.000.000.000.000.020.110.040.050.030.030.050.020.040.060.070.070.100.070.070.040.050.050.03

0.070.020.220.080.110.010.000.001.000.290.100.300.410.000.080.120.120.000.980.080.040.070.070.040.040.080.030.030.070.070.090.040.050.040.070.070.030.03

0.000.000.230.180.000.000.000.000.291.000.020.000.000.100.000.010.000.000.000.010.010.010.010.050.050.010.010.010.030.020.010.000.020.070.010.010.050.05

0.100.380.900.790.000.020.010.100.100.021.000.070.010.010.060.040.010.050.070.640.090.630.630.360.350.730.280.170.430.740.750.330.130.010.630.630.350.33

0.100.010.100.020.000.030.000.000.300.000.071.000.640.790.660.270.500.780.000.050.030.050.050.010.010.060.030.010.040.030.070.040.030.030.050.050.010.01

0.050.000.230.000.000.010.000.000.410.000.010.641.000.470.630.340.330.410.000.010.010.010.010.010.010.010.000.010.030.020.000.000.020.030.010.010.000.00

0.090.000.120.000.000.020.000.000.000.100.010.790.471.000.710.060.000.620.000.010.000.010.010.000.000.010.000.000.010.010.010.000.000.000.000.000.000.00

0.100.000.110.000.000.020.000.000.080.000.060.660.630.711.000.320.500.780.000.040.020.040.040.020.020.040.030.020.040.050.050.030.050.030.040.040.020.02

0.080.000.070.040.000.000.000.000.120.010.040.270.340.060.321.000.500.000.000.030.020.020.020.020.020.030.010.030.030.020.010.020.030.010.020.020.020.01

0.000.000.080.000.000.000.000.000.120.000.010.500.330.000.500.501.000.000.000.010.000.010.010.010.010.010.000.010.010.010.010.000.030.010.010.010.010.01

0.080.010.050.020.000.020.000.000.000.000.050.780.410.620.780.000.001.000.000.040.020.030.030.020.010.040.020.020.030.030.040.010.020.020.030.040.020.02

0.020.020.920.050.000.000.000.000.980.000.070.000.000.000.000.000.000.001.000.050.030.040.040.020.020.050.010.030.000.070.060.000.020.030.040.040.020.02

-0.070.130.790.78-0.00-0.030.010.020.080.010.640.050.010.010.040.030.010.040.051.000.240.710.720.180.17-0.840.26-0.250.48-0.62-0.680.16-0.19-0.210.710.720.180.17

-0.040.370.590.09-0.00-0.010.000.110.040.010.090.030.010.000.020.020.000.020.030.241.00-0.04-0.04-0.07-0.070.06-0.07-0.080.120.110.09-0.080.06-0.06-0.04-0.04-0.06-0.07

-0.060.180.820.990.01-0.030.020.040.070.010.630.050.010.010.040.020.010.030.040.71-0.041.001.00-0.17-0.17-0.840.16-0.230.45-0.65-0.710.06-0.22-0.191.000.99-0.18-0.18

-0.060.190.811.000.00-0.030.020.050.070.010.630.050.010.010.040.020.010.030.040.72-0.041.001.00-0.17-0.18-0.840.17-0.230.45-0.65-0.710.06-0.22-0.190.991.00-0.17-0.18

0.030.110.220.990.00-0.020.000.030.040.050.360.010.010.000.020.020.010.020.020.18-0.07-0.17-0.171.000.99-0.210.12-0.02-0.02-0.18-0.150.090.030.21-0.17-0.170.970.96

0.030.110.220.990.00-0.010.000.030.040.050.350.010.010.000.020.020.010.010.020.17-0.07-0.17-0.180.991.00-0.200.10-0.01-0.02-0.17-0.150.080.030.21-0.17-0.180.950.97

0.050.160.920.92-0.010.030.000.050.080.010.730.060.010.010.040.030.010.040.05-0.840.06-0.84-0.84-0.21-0.201.00-0.370.26-0.530.770.84-0.170.200.22-0.84-0.85-0.20-0.21

0.060.110.440.220.01-0.010.000.020.030.010.280.030.000.000.030.010.000.020.010.26-0.070.160.170.120.10-0.371.00-0.080.19-0.32-0.340.420.07-0.080.160.170.110.10

-0.040.070.480.24-0.00-0.010.020.040.030.010.170.010.010.000.020.030.010.020.03-0.25-0.08-0.23-0.23-0.02-0.010.26-0.081.00-0.240.160.21-0.080.040.15-0.23-0.23-0.02-0.02

0.070.150.570.450.00-0.030.020.060.070.030.430.040.030.010.040.030.010.030.000.480.120.450.45-0.02-0.02-0.530.19-0.241.00-0.39-0.520.18-0.24-0.450.450.45-0.02-0.02

-0.130.100.920.72-0.010.010.010.070.070.020.740.030.020.010.050.020.010.030.07-0.620.11-0.65-0.65-0.18-0.170.77-0.320.16-0.391.000.93-0.42-0.110.08-0.65-0.65-0.18-0.18

-0.140.070.950.76-0.010.030.010.070.090.010.750.070.000.010.050.010.010.040.06-0.680.09-0.71-0.71-0.15-0.150.84-0.340.21-0.520.931.00-0.44-0.010.19-0.71-0.71-0.16-0.15

0.420.410.810.180.00-0.020.000.100.040.000.330.040.000.000.030.020.000.010.000.16-0.080.060.060.090.08-0.170.42-0.080.18-0.42-0.441.000.45-0.010.050.060.120.08

0.350.490.710.250.010.030.040.070.050.020.130.030.020.000.050.030.030.020.02-0.190.06-0.22-0.220.030.030.200.070.04-0.24-0.11-0.010.451.000.25-0.22-0.220.030.02

-0.030.250.470.28-0.000.000.110.070.040.070.010.030.030.000.030.010.010.020.03-0.21-0.06-0.19-0.190.210.210.22-0.080.15-0.450.080.19-0.010.251.00-0.19-0.190.220.23

-0.060.180.820.99-0.00-0.030.020.040.070.010.630.050.010.000.040.020.010.030.040.71-0.041.000.99-0.17-0.17-0.840.16-0.230.45-0.65-0.710.05-0.22-0.191.000.99-0.18-0.18

-0.060.190.811.000.00-0.030.010.050.070.010.630.050.010.000.040.020.010.040.040.72-0.040.991.00-0.17-0.18-0.850.17-0.230.45-0.65-0.710.06-0.22-0.190.991.00-0.17-0.18

0.020.080.220.96-0.00-0.010.000.050.030.050.350.010.000.000.020.020.010.020.020.18-0.06-0.18-0.170.970.95-0.200.11-0.02-0.02-0.18-0.160.120.030.22-0.18-0.171.000.96

0.030.110.220.970.00-0.010.000.030.030.050.330.010.000.000.020.010.010.020.020.17-0.07-0.18-0.180.960.97-0.210.10-0.02-0.02-0.18-0.150.080.020.23-0.18-0.180.961.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.3: The correlation matrix of the Intrusion dataset before feature sorting. Light color (orange/blue)
means high correlation.

6
AE-GAN: Permutation-Invariant Tabular

Data Synthesizer

We propose AE-GAN, a GAN-based tabular data synthesizer, which is robust to column per-
mutations by utilizing the latent representations of tabular data via an autoencoder. Figure
6.1 shows the overall architecture and the data flow of AE-GAN. It has five components: En-
coder (𝐸𝑛𝑐), Decoder (𝐷𝑒𝑐), Generator (𝐺), Discriminator (𝐷), and Classifier (𝐶). The main
objective of the encoder and the decoder is to find the latent representation of the input data,
which follow the proposed data encoding scheme below. Once the autoencoder is fully trained,
the encoded latent vector and the random noise vector are then used as input to train the GAN.
Here, the GAN aims to generate the synthetic latent vector with high similarity to the original
one. The classifier here provides additional feedback to the training of the GAN, ensuring the
semantic integrity of synthetic data. We explain the design choice of each component in the
following.

6.1. Data representation
Following [51], we use mode-specific normalization for numerical features and one-hot encoding
for categorical features. Mode-specific normalization preserves the multi-modal distribution
of continuous variables and improves the performance of tabular data synthesizers [51, 55].
And one-hot encoding is a simple yet effective way to convert categorical values to numerical
ones without losing too much information. Certainly, one-hot encoding and mode-specific
normalization lead to sparsity, but the autoencoder in AE-GAN solves this issue.

6.2. Encoder and decoder
Since we identify sparsity as one of the main reasons for table synthesizers’ sensitivity to
column permutations, one natural solution is to use an autoencoder to extract the features of
tabular data and compress them into compact latent vectors. Such an advantage can apply to

27

28 6. AE-GAN: Permutation-Invariant Tabular Data Synthesizer

Generator Discriminator Classifier

Encoder D
ec

od
er

Random noise

Latent
vectors

Real Table Synthetic Table

Class 1 Class 2 Class 3Validity

Evaluation

...

...

...

... ...

Figure 6.1: The overall architecture and data flow of AE-GAN

all kinds of tabular data synthesizers.
We use two three-layer fully connected networks as 𝐸𝑛𝑐 and 𝐷𝑒𝑐. Based on our study of

mainstream open-source implementations of autoencoder [33, 54, 56], fully-connected networks
with 2-4 layers are common choices for autoencoders.

Another important design choice is the length of the latent vector, i.e., the output size
of 𝐸𝑛𝑐 and the input size of 𝐷𝑒𝑐, which determines the autoencoder’s capacity to represent
high-dimensional data. We choose this parameter based on the size of the input dataset. For
datasets with a large number of columns after encoding, we increase the length of the latent
vector to ensure the complex relations between columns are well represented, therefore helping
the generator to synthesize realistic data. The latent vector length for each dataset is provided
in Table A.2 in Appendix A.

6.3. Generator and discriminator
The core of AE-GAN is a GAN, which has two competing networks, namely the generator, 𝐺,
and the discriminator, 𝐷. We opt for fully-connected networks as the architecture choices for
both of them, due to their relative robustness to the column permutation. Figure 6.2 shows the
detailed architectures of the generator and the discriminator, both of which have three fully-
connected layers. In the discriminator, the fully connected layers are followed by leaky ReLU
activation, whereas in the generator they are followed by batch normalization and tanh/leaky
ReLU activation. The design is based on the architecture of WGAN-GP [21].

As for the loss function to train both generator and discriminators, we use Wasserstein
loss with gradient penalty [21], as it improves the training stability of GAN and alleviates the

6.4. Auxiliary classifier 29

Real / synthetic
data

Fully-connect
layer

Leaky ReLU

Fully-connect
layer

Leaky ReLU

Fully-connect
layer

Validity
Fu

lly
-c

on
ne

ct
ed

 la
ye

rs

Random noise

Block 1

Block 2

Fully-connect
layer

Tanh

Fully-connected
layer

Batch
normalization

Leaky ReLU
A

ct
iv

at
io

n
Fu

lly
-c

on
ne

ct
ed

 la
ye

rs

Synthetic data

Discriminator Generator

Figure 6.2: Architectures of the discriminator (left) and the generator (right).

vanishing gradient problem.

6.4. Auxiliary classifier
To enhance the training of 𝐺 and thus the quality of the generated tabular data, we introduce
an auxiliary classifier 𝐶 to the GAN. This design is inspired by [38], where an auxiliary classifier
is added to maintain the semantic consistency of synthetic data. Note that the input to 𝐶 is
the reconstructed data from 𝐷𝑒𝑐, rather than the latent data from 𝐸𝑛𝑐 and 𝐺 because we want
𝐶 to learn the semantic relations between columns directly. Specifically, given a categorical
target column with several categories, 𝐶 learns to classify which category a sample belongs to
according to the columns other than the target column. This is how 𝐶 differs from the 𝐷: 𝐷
determines the ”realness” of a sample based on all columns in the latent space, whereas 𝐶 learns
the relationship between the target column and all other columns in the reconstructed space.
By combining 𝐶 with the GAN, we simultaneously leverage the flexibility of unsupervised
training with the control provided by supervised training, thereby improving the quality of the
synthetic data.

Figure 6.3 illustrates the architecture of the auxiliary classifier. It consists of five fully-
connected layers, four of which are followed by Leaky ReLU activation and a dropout layers,
and the last fully-connect layer predicts the class of a sample.

30 6. AE-GAN: Permutation-Invariant Tabular Data Synthesizer

Real /
synthetic

data
Block 1 Block 2 Block 3 Block 4 Fully-connected

layer Classification

Fully-connected
layer DropoutLeaky ReLU

Figure 6.3: Architecture of the auxiliary classifier

6.5. AE-GAN Training
6.5.1. Training loss
The training of AE-GAN requires four loss functions: autoencoder loss 𝕃𝐴𝐸, generator loss 𝕃𝐺,
discriminator loss 𝕃𝐷, and classifier loss 𝕃𝐶. They are explained in the following.

Autoencoder loss
Autoencoder loss is the reconstruction loss, i.e., the element-wise mean squared error between
its input and reconstructed output. It is defined as follows:

𝕃𝐴𝐸 = 𝔼||𝑥 − �̃�||22, (6.1)

where 𝑥 and �̃� are the input and the reconstructed output.

Generator loss
The generator receives feedback from both the discriminator and the classifier. Therefore, its
loss function has two parts: discriminator feedback 𝕃𝐷𝐺 and classifier feedback 𝕃𝐶𝐺.

𝕃𝐺 = 𝕃𝐷𝐺 + 𝕃𝐶𝐺 (6.2)

Discriminator feedback is the validity of the synthetic samples:

𝕃𝐷𝐺 = −𝔼[𝐷(𝐺(𝑧))], (6.3)

where 𝐺(𝑧) is the generator output, i.e., the synthetic sample, and 𝐷(𝐺(𝑧)) is the discriminator
output, i.e., the validity of the sample. The higher 𝐷(𝐺(𝑧)) is, the more realistic a sample is.
Therefore, the generator wants to maximize 𝐷(𝐺(𝑧)). The minus sign is used to adapt it to a
minimization problem.

Classifier feedback is the difference between the predicted labels and the actual labels of
synthetic samples. Recall that every synthetic sample has a target column for classification.
The classifier predicts the value of the target column based on other columns and then calcu-
lates the cross entropy between the predicted value and the actual value of the target column:

𝕃𝐶𝐺 = 𝐻(𝑚,𝑚′), (6.4)

6.5. AE-GAN Training 31

where 𝑚 and 𝑚′ are the actual and predicted labels of synthetic samples, and 𝐻(⋅) is the cross
entropy operator.

Discriminator loss
The discriminator loss measures how well it differentiates the real samples and the synthetic
samples. It is calculated by:

𝕃𝐷 = −𝔼[𝐷(𝑥) − 𝐷(𝐺(𝑧)) − 𝜆 × (||∇𝐷(�̂�)||2 − 1)2], (6.5)

where 𝐷(𝑥), 𝐷(𝐺(𝑧)) and 𝐷(�̂�) are the discriminator output on real samples, synthetic samples,
and the interpolates between real and synthetic samples. 𝜆 is the gradient penalty coefficient,
∇𝐷(�̂�) is the gradient of 𝐷(�̂�) on �̂�.

Classifier loss
The classifier loss also has two parts: loss on real samples 𝕃𝑅𝐶 and loss on synthetic samples 𝕃𝑆𝐶.

𝕃𝐶 = 𝕃𝑅𝐶 + 𝕃𝑆𝐶 , (6.6)

where 𝕃𝑆𝐶 = 𝕃𝐶𝐺, and the calculation of 𝕃𝑅𝐶 is similar to 𝕃𝑆𝐶.

6.5.2. Training algorithm
We first train the AE until convergence and then train the GAN with the classifier while
utilizing the compression power of the AE. Inspired by TimeGAN [52], we also test a joint
training algorithm for the AE, the GAN, and the classifier. We first pre-train the autoencoder
for a certain number of epochs and then co-train it with the GAN and the classifier. We
hypothesize that the joint training of all components can potentially enhance data synthesis
because the autoencoder can adjust itself according to the feedback from the GAN and the
classifier. This assumption is tested in our experiments in Chapter 7.

7
AE-GAN Evaluation

AE-GAN is evaluated in three aspects: column permutation invariance, synthesis quality, and
training time. Our aim is to verify if AE-GAN is robust to column permutations and achieves
good synthesis quality compared with state of the art. Additionally, we evaluate the scalability
of AE-GAN by analyzing its training time.

7.1. Experimental setup
This section describes the datasets, the evaluation baseline, and the computational environment
used for the evaluation.

7.1.1. Datasets
We use five real-world machine learning datasets for the experimental evaluation, namely Loan,
Adult, Credit, Intrusion, and Covtype. The details of the datasets are described in Chapter 4.

7.1.2. Baseline
Four state-of-the-art tabular data synthesizers are selected as the baseline models, namely
table-GAN, CTGAN, TVAE, and CTAB-GAN. We use the same hyperparameters as the orig-
inal papers, and every experiment is repeated three times to obtain reliable results.

7.1.3. Computational environment
We implemented our proposed solutions using Pytorch on a server with an Intel(R) Core(TM)
i9-10900KF CPU @3.70GHz and a GeForce RTX 2080 Ti GPU.

7.2. Evaluation framework
7.2.1. Metrics
Our evaluation of table synthesizers focuses on the statistical similarity and the machine learn-
ing utility difference between real and synthetic data. Specifically, three metrics are adopted,

33

34 7. AE-GAN Evaluation

as described below:

• Wasserstein-1 Distance (WD): it measures the difference between two continuous/discrete
1-dimensional distributions. A low WD distance means a high degree of similarity. We
use this metric to compare the per feature similarity between real and synthetic data.

• Difference in Correlation Matrix (Dif. Corr.): it measures how well the cross-column
correlations are captured by a table synthesizer. A correlation matrix contains the cor-
relation coefficient between every pair of features in a table. We calculate the difference
between the correlation matrices of real and synthetic table as follows:

𝐷𝑖𝑓. 𝐶𝑜𝑟𝑟. = √∑
𝑖,𝑗
(𝐶𝑜𝑟𝑟𝑅𝑖,𝑗 − 𝐶𝑜𝑟𝑟𝑆𝑖,𝑗)2, (7.1)

where 𝐶𝑜𝑟𝑟𝑅𝑖,𝑗 and 𝐶𝑜𝑟𝑟𝑆𝑖,𝑗 are the elements at location (𝑖, 𝑗) in the real and synthetic
correlation matrix.

• Machine learning utility difference: it shows how useful synthetic data are in training
machine learning models compared with real data. We measure machine learning utility
difference by calculating the difference in accuracy, F1-score, and AUC between machine
learning models trained with real and synthetic data. A small difference indicates high
synthesis quality.

Note that we use ”correlation” as a general term here. For a pair of continuous features,
it refers to the Pearson correlation coefficient; for two categorical features, it is their Cramer’s
V; and for a categorical feature and a continuous feature, it means their correlation ratio.

7.2.2. Evaluation of column permutation invariance
Similar to our empirical analysis in Chaper 4, we put data in three different orders, i.e., original
order, order by type, and order by correlation, and test the column permutation invariance
of AE-GAN. We use the normalized MAV as the metric for column permutation invariance,
which is defined in section 4.1.3. We demonstrate the evaluation process in Figure 7.1. For
each column order, we train a tabular data synthesizer separately. Then we generate synthetic
tabular data in each order and calculate their WD to the original data. Next, we find the
minimum and maximum values of WD, i.e., 𝑊𝐷𝑚𝑖𝑛 and 𝑊𝐷𝑚𝑎𝑥, and the normalized MAV is
𝑊𝐷𝑚𝑎𝑥−𝑊𝐷𝑚𝑖𝑛

𝑊𝐷𝑚𝑖𝑛
. A low normalized MAV indicates high permutation invariance.

7.2.3. Evaluation of synthesis quality
Figure 7.2 shows our evaluation framework for synthesis quality. The real data are divided into
train data and test data, of which the train data are used for training the tabular data synthe-
sizer and generating synthetic tabular data. After synthesizing tabular data, we first compare
statistical similarity of the train data and synthetic data by calculating their Wasserstein-1
distance and correlation difference. Then we use the train data and synthetic data to fit four

7.3. AE-GAN column permutation invariance 35

Table
Synthesizer

Table

Original order

Table

Original order

Table
Synthesizer

Table

Order by type

Table

Order by type

Table
Synthesizer

Table

Order by correlation

Table

Order by correlation

(1)

(2)

(3)

Figure 7.1: Evaluation method for permutation invariance, i.e., the calculation of the normalized MAV

machine learning models separately, and evaluate their accuracy, F1-score and AUC with the
test data. By comparing the performance of the machine learning models trained with real
and synthetic data, we get their machine learning utility difference.

7.3. AE-GAN column permutation invariance
Table 7.1 shows our evaluation results on the permutation invariance of AE-GAN. The results
show that on the Loan, Credit, Covtype, and Intrusion datasets, the normalized MAV of AE-
GAN is below or around 10%. However, on the Adult dataset, it is 17.87%. Recall that a
low normalized MAV indicates high permutation invariance. Overall, the average normalized
MAV on 5 datasets is 10.27%.

To compare the column permutation invariance of AE-GAN against the state-of-the-art
tabular data synthesizers, we summarize their evaluation results in Table 7.2. Looking at the
results of each dataset, we find the most permutation-invariant model varies per dataset. Our
model AE-GAN is the best on the Intrusion dataset, which has the highest number of columns
after encoding and therefore is the most difficult dataset. It is also the second best on the
Credit dataset, the second largest dataset after encoding.

Comparing the average normalized MAV on five datasets, we find that AE-GAN ranks
second in permutation invariance among the five models. Table-GAN is the most permutation-
invariant model because it doesn’t have the sparsity issue caused by one-hot encoding and
mode-specific normalization. However, it has the worst synthesis quality, as our results show
later. Although our model AE-GAN is less permutation-invariant than table-GAN, it is better
than CTAB-GAN, TVAE, and CTGAN. Those models, like AE-GAN, adopt one-hot encoding
for categorical features and mode-specific normalization for numerical features and thus have
sparse input data. However, since AE-GAN has an autoencoder to compress the input data,

36 7. AE-GAN Evaluation

Real data
Train data

Test data

Table
Synthesizer

Synthetic data

Wasserstein
distance

Correlation
difference

Logistic
regression

Decision
tree

Multilayer
perceptron

Random
forest

Accuracy
F1-score

AUC

Accuracy
F1-score

AUC

Difference

Logistic
regression

Decision
tree

Multilayer
perceptron

Random
forest

Figure 7.2: Evaluation framework for synthesis quality

it is more robust to column permutations.

Table 7.1: AE-GAN permutation invariance

Dataset Column order Normalized MAV
(%)Original order Order by type Order by corr.

Loan 1.374 1.46 1.474 7.28%
Adult 6.042 5.554 4.962 21.77%
Credit 0.341 0.372 0.348 9.09%

Intrusion 4.328 4.028 4.442 10.28%
Covtype 1.408 1.551 1.414 10.16%

Avg. 2.699 2.593 2.528 11.71%

7.4. AE-GAN synthesis quality
Table 7.3 shows the synthesis quality of AE-GAN and the four baseline models. CTAB-GAN
is the best model in terms of statistical similarity and ML utility difference. However, it
is the worst in column permutation invariance, as shown in Table 7.2. In contrast, table-
GAN is the worst in statistical similarity and ML utility difference, but it is most invariant
to column permutations. Among the rest three models, AE-GAN and TVAE do not have a
clear advantage over each other. AE-GAN performs better on Dif. Corr and Accuracy, while
TVAE has better WD, AUC, and F1-score. Besides, CTGAN performs worse than AE-GAN
and TVAE on all metrics except for WD. In short, AE-GAN is better than table-GAN and
CTGAN, on par with TVAE, and worse than CTAB-GAN in synthesis quality.

7.5. AE-GAN training time 37

Table 7.2: The normalized MAV of AE-GAN and four baseline models. We test three column orders, namely
the original order, order by type, and order by correlation and report the normalized MAV for each dataset.

The average normalized MAV on five datasets is also reported.

Model Dataset Avg.
Loan Adult Credit Covtype Intrusion

table-GAN 0.93% 9.13% 4.22% 4.91% 14.90% 6.82%
CTGAN 28.64% 1.83% 28.63% 13.83% 20.18% 18.62%
TVAE 8.54% 45.27% 13.92% 3.94% 14.76% 17.29%

CTAB-GAN 64.81% 62.42% 25.22% 13.42% 27.47% 38.67%

AE-GAN 7.28% 21.77% 9.09% 10.16% 10.28% 11.71%

Table 7.3: The statistical similarity and ML utility difference comparison of AE-GAN and four baseline
models.

Model Statistical Similarity ML Utility Difference
WD Dif. Corr. Accuracy AUC F1-score

table-GAN 4.481 3.651 21.143 0.269 0.387
CTAB-GAN 1.039 1.905 9.114 0.122 0.202

CTGAN 1.857 3.592 14.986 0.219 0.314
TVAE 1.723 2.848 12.839 0.150 0.244

AE-GAN 2.699 2.331 9.984 0.185 0.260

7.5. AE-GAN training time
A model with a short training time can scale up to large datasets. It also requires fewer
hardware resources than slow models given the same input. We compare the scalability of
AE-GAN with the baseline models by analyzing their training time per epoch. The results
are summarized in Table 7.4. Table-GAN and TVAE have the shortest training time, taking
1.58 seconds and 1.40 seconds per epoch on average respectively. AE-GAN and CTGAN are
slightly slower than table-GAN and TVAE, using 2.09 seconds and 2.15 seconds per epoch.
Surprisingly, CTAB-GAN is more than ten times slower than the other models, taking 25.48
seconds per epoch on average. The results suggest that table-GAN and TVAE have the best
scalability. Our model AE-GAN is slower than table-GAN and TVAE due to a more complex
model architecture. Nonetheless, it has a clear advantage over CTAB-GAN, which the model
with the highest synthesis quality.

Figure 7.3 summarizes the evaluation results of AE-GAN and the baseline model. It shows
that, compared with four state-of-the-art models, AE-GAN achieves the best balance between
permutation invariance, synthesis quality, and training time. It is more permutation-invariant
than CTAB-GAN, CTGAN, and TVAE, and it generates better data than table-GAN and
CTGAN. Besides, AE-GAN outperforms CTAB-GAN in training time on all datasets, speeding
up as much as 13 times.

38 7. AE-GAN Evaluation

Table 7.4: The training time (seconds per epoch) of AE-GAN and the baseline models on five datasets.

Model Dataset Avg.
Loan Adult Credit Intrusion Covtype

table-GAN 0.14 0.66 2.33 2.38 2.37 1.58
CTGAN 0.31 1.72 2.55 2.80 3.09 2.09
TVAE 0.09 0.99 2.02 2.43 1.48 1.40

CTAB-GAN 1.62 25.6 28.48 44.97 26.74 25.48

AE-GAN 0.23 2.16 2.18 2.86 3.32 2.15

0 5 10 15 20 25
% / s

table-GAN

CTGAN

TVAE

CTAB-GAN

AE-GAN

M
od

el

Metric
Sensitivity to permutations (%)
ML utility difference - Accuracy (%)
Training time (s/epoch)

Figure 7.3: Permutation invariance, ML utility difference and training time of AE-GAN and baseline models.

7.6. Ablation study
We did an ablation study to understand the influence of the design choices we made with
AE-GAN. We changed the data representations, model architecture, and training algorithm to
test their effect. Table 7.5 shows the results of the ablation study.

7.6.1. Without mode-specific normalization (MSN)
We use mode-specific normalization in AE-GAN to normalize numerical features. Although it
preserves the multi-model distribution of numerical features, it increases the sparsity in training
data. We replace it with min-max normalization to understand its effect. Table 7.5 shows that
after removing mode-specific normalization, the WD becomes worse on all datasets, meaning
that using mode-specific normalization improves the synthesis quality. However, it also makes
AE-GAN less invariant to column permutations. After removing it, the column permutation

7.6. Ablation study 39

Table 7.5: Ablation study results on synthesis quality and permutation invariance of AE-GAN

Dataset WD between real and synthetic data Normalized MAV

AE-GAN w/o MSN w/o one-hot
& MSN w/o classifier co-train

AE & GAN
use information

loss AE-GAN w/o MSN w/o one-hot
& MSN

Loan 1.374 2.309 3.749 1.308 1.880 1.317 7.28% 3.29% 4.45%
Adult 6.042 6.319 15.432 6.293 6.508 6.357 21.77% 39.20% 40.65%
Credit 0.341 1.650 1.505 0.344 0.534 0.339 9.09% 3.19% 2.70%

Covtype 1.408 3.099 5.954 1.428 2.437 1.439 10.16% 5.48% 0.79%
Intrusion 4.328 14.915 58.241 4.492 4.836 5.487 10.28% 26.84% 2.76%

Avg. 2.699 5.658 16.976 2.773 3.239 2.988 11.71% 15.60% 10.27%

invariance improves on the Loan, Credit, and Covtype datasets. The result suggests that
reducing sparsity can improve permutation invariance.

7.6.2. Without one-hot and mode-specific normalization
To further reduce sparsity in the input data, we remove one-hot encoding and mode-specific
normalization together. Similar to table-GAN, we pre-process categorical and numerical fea-
tures using min-max normalization. We found the WD is even worse than only removing
mode-specific normalization, which proves that one-hot encoding can also enhance synthe-
sis quality. Furthermore, the permutation invariance improves on all datasets except the
Adult dataset. On datasets with many categorical features such as the Covtype and Intrusion
datasets, the improvement is around 10%. The results verify again that reducing sparsity can
enhance permutation invariance.

7.6.3. Without auxiliary classifier
We use an auxiliary classifier to improve the synthesis quality of AE-GAN. After removing the
auxiliary classifier, the Wasserstein distance between real and synthetic data becomes worse
on all datasets except the Loan dataset.

7.6.4. Co-training AE and GAN
The AE and GAN in AE-GAN are trained separately. To study whether co-training AE and
GAN can improve the synthesis quality, we first pre-train the AE for 300 epochs and then
train it together with GAN. Surprisingly, the results show that co-training makes the synthesis
quality worse. We find the training loss of AE is already low after pre-training. However,
during co-training, the feedback from GAN increases AE’s loss and makes it unstable. This
suggests that the performance bottleneck of AE-GAN is the GAN, rather than the AE.

7.6.5. Using information loss in GAN
In this paper, we use WGAN-GP and classification loss in GAN. Here we add information loss
to the generator loss. Information loss measures the difference in mean and variance between
real and synthetic data. Previous study [55] shows that information loss improves the quality of
the generated data. In our experiments, we found the information loss only improves synthesis
quality on the Loan and Credit datasets.

8
Conclusion

This work investigates permutation-invariant tabular data synthesis. First, an extensive empir-
ical study is conducted to show that the state-of-the-art tabular data synthesizers are sensitive
to column permutations. Furthermore, it is observed that the two most commonly used net-
works in tabular data synthesis, Convolutional Neural Networks (CNNs) and Fully Connected
Networks (FCNs), have different levels of sensitivity to column permutations. This work
analyzes the root causes of the phenomena. Next, a feature sorting algorithm is deisigned
for CNN-based tabular data synthesizers. It improves synthesis quality by putting highly-
correlated columns in the middle of the input tabular data, which helps preserve the correlation
between different features and alleviates the CNN boundary effect. Then, this work proposes a
novel and effective tabular data synthesizer, AE-GAN, that is robust to column permutations
and achieves good synthesis quality. The evaluation results show that AE-GAN achieves the
best balance between column permutation invariance and synthesis quality. The autoencoder
in AE-GAN reduces sparsity in input data, thereby enhancing column permutation invariance.
And the auxiliary classifier improves the synthesis quality. Additionally, AE-GAN is much
faster than CTAB-GAN, the best state-of-the-art in terms of synthesis quality, demonstrating
high scalability.

8.1. Future work
This work focuses on synthesizing tabular data without temporal dependencies. However,
tabular time series, i.e., tabular data with features whose data points are collected sequentially
over a certain period, have strong temporal dependencies. Therefore, tabular time series not
only have correlated features, but each feature also has a correlation between data points, which
makes synthesizing tabular time series extra challenging. The current methods for tabular
time series synthesis include recurrent neural network [34], convolutional neural network and
transformer based on an attention mechanism [48]. A research direction is to evaluate whether
those methods are sensitive to column permutations and analyze the reason.

41

42 8. Conclusion

Also, this work concentrates on deep learning methods for tabular data synthesis, namely
generative adversarial networks, autoencoder, and variational autoencoder. It is worthwhile to
explore statistical methods for tabular data synthesis, such as Copulas [32, 39] and Bayesian
Networks [53].

Last but not least, the analysis in this work can be extended to more datasets and column
orders, which will shed more light on the column permutation invariance of different tabu-
lar data synthesizers. It is left for future work due to the limited time and computational
resources.

A
Model hyperparameters

A.1. Training epochs
Table A.1 shows the training epochs of AE-GAN and the four baseline models. The results of
baseline models are based on their original implementations.

Table A.1: Training epochs of AE-GAN and the baseline models

Dataset AE-GAN TableGAN CTGAN TVAE CTAB-GAN
AE GAN

Loan 300 600 50 300 300 150
Adult 300 150 50 300 300 150
Credit 300 300 50 300 300 150

Covtype 300 300 50 300 300 150
Intrusion 300 300 50 300 300 150

A.2. AE-GAN latent vector length
Table A.2 shows the number of columns in 5 datasets before and after encoding and the latent
vector length of AE. The latent vector length increases with the number of columns after
encoding.

Table A.2: AE-GAN latent vector length for 5 datasets

Dataset # Columns w/o
encoding

Columns w
encoding

Latent vector
length

Loan 13 55 32
Adult 14 151 64
Credit 31 301 96

Intrusion 42 332 96
Covtype 55 205 64

43

B
Additional experiment results

B.1. AE-GAN Training loss
B.1.1. AE training loss
Figure B.1 shows the training loss of the AE in AE-GAN. It shows that AE performs the worst
on the Credit and the Intrusion dataset, which have the longest input vectors after encoding.

0 50 100 150 200 250 300
Epochs

0

5

10

15

20

25

30

AE
 tr

ai
ni

ng
 lo

ss

Loan
Adult
Covtype
Credit
Intrusion

Figure B.1: AE training loss on 5 datasets

B.1.2. GAN training loss
Figure B.2, B.3, and B.4 show the training loss of GAN on Intrusion, Loan, and Covtype
datasets. Loss_g is the generator loss, loss_d is the discriminator loss, loss_cc is the classifier
loss for real samples, and loss_cg is the classifier loss for synthetic samples. The results show
that GAN has converged during training despite some fluctuations in loss_d or loss_cc.

45

46 B. Additional experiment results

0 50 100 150 200 250 300
Epochs

6

4

2

0

2

GA
N

tra
in

in
g

lo
ss

loss_g
loss_d
loss_cc
loss_cg

Figure B.2: GAN training loss on the Intrusion dataset.

0 100 200 300 400 500 600
Epochs

4

2

0

2

4

6

8

GA
N

tra
in

in
g

lo
ss

loss_g
loss_d
loss_cc
loss_cg

Figure B.3: GAN training loss on the Loan dataset

0 50 100 150 200 250 300
Epochs

4

3

2

1

0

1

2

3

GA
N

tra
in

in
g

lo
ss

loss_g
loss_d
loss_cc
loss_cg

Figure B.4: GAN training loss on the Covtype dataset

B.2. Feature sorting effect 47

B.2. Feature sorting effect
Figure B.5, B.6, B.7, and B.8 show the correlation matrices of the input to table-GAN before
and after feature sorting on the Loan and the Adult datasets. The results show that the feature
sorting algorithm can effectively put highly correlated features in the middle.

Ag
e

Ex
pe

rie
nc

e

In
co

m
e

ZI
P

Co
de

Fa
m

ily

CC
Av

g

Ed
uc

at
io

n

M
or

tg
ag

e

Se
cu

rit
ie

s A
cc

ou
nt

CD
 A

cc
ou

nt

On
lin

e

Cr
ed

itC
ar

d

Age

Experience

Income

ZIP Code

Family

CCAvg

Education

Mortgage

Securities Account

CD Account

Online

CreditCard

1.00 0.99 -0.06 0.29 0.07 -0.05 0.05 -0.01 0.00 0.01 0.01 0.01

0.99 1.00 -0.05 0.29 0.07 -0.05 0.02 -0.01 0.00 0.01 0.01 0.01

-0.06 -0.05 1.00 0.31 0.19 0.65 0.22 0.21 0.00 0.17 0.01 0.00

0.29 0.29 0.31 1.00 0.00 0.32 0.06 0.32 0.00 0.00 0.00 0.07

0.07 0.07 0.19 0.00 1.00 0.14 0.13 0.04 0.00 0.04 0.00 0.01

-0.05 -0.05 0.65 0.32 0.14 1.00 0.16 0.11 0.02 0.14 0.00 0.01

0.05 0.02 0.22 0.06 0.13 0.16 1.00 0.04 0.00 0.00 0.02 0.00

-0.01 -0.01 0.21 0.32 0.04 0.11 0.04 1.00 0.01 0.09 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 1.00 0.32 0.00 0.00

0.01 0.01 0.17 0.00 0.04 0.14 0.00 0.09 0.32 1.00 0.17 0.28

0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.17 1.00 0.00

0.01 0.01 0.00 0.07 0.01 0.01 0.00 0.01 0.00 0.28 0.00 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure B.5: The correlation matrix of the Loan dataset before feature sorting

Fa
m

ily

Cr
ed

itC
ar

d

M
or

tg
ag

e

CC
Av

g

In
co

m
e

Ex
pe

rie
nc

e

Ag
e

ZI
P

Co
de

CD
 A

cc
ou

nt

Se
cu

rit
ie

s A
cc

ou
nt

Ed
uc

at
io

n

On
lin

e

Family

CreditCard

Mortgage

CCAvg

Income

Experience

Age

ZIP Code

CD Account

Securities Account

Education

Online

1.00 0.01 0.04 0.14 0.19 0.07 0.07 0.00 0.04 0.00 0.13 0.00

0.01 1.00 0.01 0.01 0.00 0.01 0.01 0.07 0.28 0.00 0.00 0.00

0.04 0.01 1.00 0.11 0.21 -0.01 -0.01 0.32 0.09 0.01 0.04 0.01

0.14 0.01 0.11 1.00 0.65 -0.05 -0.05 0.32 0.14 0.02 0.16 0.00

0.19 0.00 0.21 0.65 1.00 -0.05 -0.06 0.31 0.17 0.00 0.22 0.01

0.07 0.01 -0.01 -0.05 -0.05 1.00 0.99 0.29 0.01 0.00 0.02 0.01

0.07 0.01 -0.01 -0.05 -0.06 0.99 1.00 0.29 0.01 0.00 0.05 0.01

0.00 0.07 0.32 0.32 0.31 0.29 0.29 1.00 0.00 0.00 0.06 0.00

0.04 0.28 0.09 0.14 0.17 0.01 0.01 0.00 1.00 0.32 0.00 0.17

0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.32 1.00 0.00 0.00

0.13 0.00 0.04 0.16 0.22 0.02 0.05 0.06 0.00 0.00 1.00 0.02

0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.17 0.00 0.02 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure B.6: The correlation matrix of Loan dataset after feature sorting

48 B. Additional experiment results

ag
e

wo
rk

cla
ss

fn
lw

gt

ed
uc

at
io

n

m
ar

ita
l-s

ta
tu

s

oc
cu

pa
tio

n

re
la

tio
ns

hi
p

ra
ce

ge
nd

er

ca
pi

ta
l-g

ai
n

ca
pi

ta
l-l

os
s

ho
ur

s-
pe

r-w
ee

k

na
tiv

e-
co

un
try

age

workclass

fnlwgt

education

marital-status

occupation

relationship

race

gender

capital-gain

capital-loss

hours-per-week

native-country

1.00 0.22 -0.08 0.24 0.58 0.18 0.47 0.04 0.09 0.08 0.06 0.07 0.09

0.22 1.00 0.05 0.10 0.08 0.40 0.10 0.06 0.15 0.11 0.05 0.23 0.03

-0.08 0.05 1.00 0.06 0.05 0.05 0.04 0.15 0.03 -0.00 -0.00 -0.01 0.15

0.24 0.10 0.06 1.00 0.09 0.19 0.12 0.07 0.09 0.20 0.10 0.19 0.13

0.58 0.08 0.05 0.09 1.00 0.13 0.49 0.08 0.46 0.08 0.08 0.25 0.06

0.18 0.40 0.05 0.19 0.13 1.00 0.18 0.08 0.42 0.12 0.08 0.31 0.06

0.47 0.10 0.04 0.12 0.49 0.18 1.00 0.10 0.65 0.09 0.08 0.31 0.07

0.04 0.06 0.15 0.07 0.08 0.08 0.10 1.00 0.11 0.02 0.03 0.05 0.40

0.09 0.15 0.03 0.09 0.46 0.42 0.65 0.11 1.00 0.05 0.05 0.23 0.05

0.08 0.11 -0.00 0.20 0.08 0.12 0.09 0.02 0.05 1.00 -0.03 0.08 0.03

0.06 0.05 -0.00 0.10 0.08 0.08 0.08 0.03 0.05 -0.03 1.00 0.05 0.04

0.07 0.23 -0.01 0.19 0.25 0.31 0.31 0.05 0.23 0.08 0.05 1.00 0.04

0.09 0.03 0.15 0.13 0.06 0.06 0.07 0.40 0.05 0.03 0.04 0.04 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure B.7: The correlation matrix of the Adult dataset before feature sorting

ca
pi

ta
l-l

os
s

ca
pi

ta
l-g

ai
n

ho
ur

s-
pe

r-w
ee

k

wo
rk

cla
ss

m
ar

ita
l-s

ta
tu

s

ag
e

ge
nd

er

re
la

tio
ns

hi
p

oc
cu

pa
tio

n

na
tiv

e-
co

un
try ra
ce

ed
uc

at
io

n

fn
lw

gt

capital-loss

capital-gain

hours-per-week

workclass

marital-status

age

gender

relationship

occupation

native-country

race

education

fnlwgt

1.00 -0.03 0.05 0.05 0.08 0.06 0.05 0.08 0.08 0.04 0.03 0.10 -0.00

-0.03 1.00 0.08 0.11 0.08 0.08 0.05 0.09 0.12 0.03 0.02 0.20 -0.00

0.05 0.08 1.00 0.23 0.25 0.07 0.23 0.31 0.31 0.04 0.05 0.19 -0.01

0.05 0.11 0.23 1.00 0.08 0.22 0.15 0.10 0.40 0.03 0.06 0.10 0.05

0.08 0.08 0.25 0.08 1.00 0.58 0.46 0.49 0.13 0.06 0.08 0.09 0.05

0.06 0.08 0.07 0.22 0.58 1.00 0.09 0.47 0.18 0.09 0.04 0.24 -0.08

0.05 0.05 0.23 0.15 0.46 0.09 1.00 0.65 0.42 0.05 0.11 0.09 0.03

0.08 0.09 0.31 0.10 0.49 0.47 0.65 1.00 0.18 0.07 0.10 0.12 0.04

0.08 0.12 0.31 0.40 0.13 0.18 0.42 0.18 1.00 0.06 0.08 0.19 0.05

0.04 0.03 0.04 0.03 0.06 0.09 0.05 0.07 0.06 1.00 0.40 0.13 0.15

0.03 0.02 0.05 0.06 0.08 0.04 0.11 0.10 0.08 0.40 1.00 0.07 0.15

0.10 0.20 0.19 0.10 0.09 0.24 0.09 0.12 0.19 0.13 0.07 1.00 0.06

-0.00 -0.00 -0.01 0.05 0.05 -0.08 0.03 0.04 0.05 0.15 0.15 0.06 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure B.8: The correlation matrix of Adult dataset after feature sorting

List of Figures

1.1 Illustration of lacking column permutation invariance of synthetic data, i.e.,
dissimilarity between real and synthetic data due to reordering of input data. . 2

2.1 Illustration of synthetic data generation . 3
2.2 The structure of a vanilla GAN . 4
2.3 Illustration of mode-specific normalization [51] 6
2.4 The structure of an AE . 7

4.1 Arrange Intrusion dataset in 3 different orders and test the prediction accuracy
of 5 machine learning models. The results are almost the same. 15

4.2 Left: CNN cannot capture the dependencies between columns C1 and C5. Right:
After exchanging the locations of C2 and C5, C1 and C5 are captured simulta-
neously [28]. 16

4.3 The impact of encoding on the numer of columns in five datasets 17
4.4 Left: Visualization of the input to table-GAN on Adult dataset; Right: Visual-

ization of the input to CTAB-GAN on the Adult dataset. 18

5.1 Top: The highly correlated features, 𝐹1, 𝐹2, 𝐹15 and 𝐹16 are on the border of
the input matrix, suffering from the boundary effects of CNNs. Bottom: After
feature sorting, 𝐹1, 𝐹2, 𝐹15 and 𝐹16 are at the center of the input matrix. . . . 22

5.2 The correlation matrix of Intrusion dataset after feature sorting. Light color
(orange/blue) means high correlation. 25

5.3 The correlation matrix of the Intrusion dataset before feature sorting. Light
color (orange/blue) means high correlation. 26

6.1 The overall architecture and data flow of AE-GAN 28
6.2 Architectures of the discriminator (left) and the generator (right). 29
6.3 Architecture of the auxiliary classifier . 30

7.1 Evaluation method for permutation invariance, i.e., the calculation of the nor-
malized MAV . 35

7.2 Evaluation framework for synthesis quality . 36
7.3 Permutation invariance, ML utility difference and training time of AE-GAN and

baseline models. 38

B.1 AE training loss on 5 datasets . 45
B.2 GAN training loss on the Intrusion dataset. 46

49

50 List of Figures

B.3 GAN training loss on the Loan dataset . 46
B.4 GAN training loss on the Covtype dataset . 46
B.5 The correlation matrix of the Loan dataset before feature sorting 47
B.6 The correlation matrix of Loan dataset after feature sorting 47
B.7 The correlation matrix of the Adult dataset before feature sorting 48
B.8 The correlation matrix of Adult dataset after feature sorting 48

List of Tables

2.1 Two encoding methods for categorical feature Color 6

3.1 Deep learning methods for tabular data synthesis (ordered chronologically) . . 10

4.1 Statistics of datasets . 14
4.2 TableGAN experiment results using 3 column orders: WD and normalized MAV 16
4.3 CTAB-GAN experiment results using 3 column orders: WD and normalized MAV 18
4.4 CTGAN experiment results using 3 column orders: WD and normalized MAV . 19
4.5 TVAE experiment results using 3 column orders: WD and normalized MAV . . 19

5.1 The results of table-GAN before and after applying the feature sorting algorithm
on five datasets. The correlation difference and Wasserstein distance between
real and synthetic data are reported. 24

5.2 The results of CTAB-GAN before and after applying the feature sorting al-
gorithm on five datasets. The correlation difference and Wasserstein distance
between real and synthetic data are reported. 24

7.1 AE-GAN permutation invariance . 36
7.2 The normalized MAV of AE-GAN and four baseline models. We test three

column orders, namely the original order, order by type, and order by correlation
and report the normalized MAV for each dataset. The average normalized MAV
on five datasets is also reported. 37

7.3 The statistical similarity and ML utility difference comparison of AE-GAN and
four baseline models. 37

7.4 The training time (seconds per epoch) of AE-GAN and the baseline models on
five datasets. 38

7.5 Ablation study results on synthesis quality and permutation invariance of AE-
GAN . 39

A.1 Training epochs of AE-GAN and the baseline models 43
A.2 AE-GAN latent vector length for 5 datasets . 43

51

Bibliography

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 214–223. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/
v70/arjovsky17a.html.

[2] Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. Synthesizing
electronic health records using improved generative adversarial networks. Journal of the
American Medical Informatics Association, 26(3):228–241, 2019.

[3] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk,
and Gjergji Kasneci. Deep neural networks and tabular data: A survey. CoRR,
abs/2110.01889, 2021. URL https://arxiv.org/abs/2110.01889.

[4] Bauke Brenninkmeijer, A de Vries, E Marchiori, and Youri Hille. On the generation and
evaluation of tabular data using gans, 2019.

[5] Ramiro Daniel Camino, Christian Hammerschmidt, et al. Working with deep generative
models and tabular data imputation. 2020.

[6] Kenneth R Castleman. Digital image processing. Prentice Hall Press, 1996.

[7] Haipeng Chen, Sushil Jajodia, Jing Liu, Noseong Park, Vadim Sokolov, and VS Subrah-
manian. Faketables: Using gans to generate functional dependency preserving tables with
bounded real data. In IJCAI, pages 2074–2080, 2019.

[8] Hsien-Tzu Cheng, Chun-Hung Chao, Jin-Dong Dong, Hao-Kai Wen, Tyng-Luh Liu, and
Min Sun. Cube padding for weakly-supervised saliency prediction in 360 videos. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1420–1429, 2018.

[9] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng
Sun. Generating multi-label discrete patient records using generative adversarial networks.
In Machine learning for healthcare conference, pages 286–305. PMLR, 2017.

[10] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng
Sun. Generating multi-label discrete patient records using generative adversarial networks.
In Machine learning for healthcare conference, pages 286–305. PMLR, 2017.

53

https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://arxiv.org/abs/2110.01889

54 Bibliography

[11] Taco S. Cohen and Max Welling. Steerable cnns. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rJQKYt5ll.

[12] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In In-
ternational Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=Hkbd5xZRb.

[13] Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. Regularizing towards per-
mutation invariance in recurrent models. Advances in Neural Information Processing
Systems, 33:18364–18374, 2020.

[14] Justin Engelmann and Stefan Lessmann. Conditional -based oversampling of tabular data
for imbalanced learning. Expert Systems with Applications, 174:114582, 2021.

[15] EU. General data protection regulation, 2018. URL https://gdpr-info.eu/.

[16] Hidetoshi Furukawa. Deep learning for target classification from sar imagery: Data aug-
mentation and translation invariance. arXiv preprint arXiv:1708.07920, 2017.

[17] Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising autoen-
coders. In Pacific-Asia conference on knowledge discovery and data mining, pages 260–272.
Springer, 2018.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

[19] D Griffith and Carl Amrhein. An evaluation of correction techniques for boundary effects
in spatial statistical analysis: traditional methods. Geographical Analysis, 15(4):352,
1983.

[20] Daniel A Griffith. The boundary value problem in spatial statistical analysis. Journal of
regional science, 23(3):377–387, 1983.

[21] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. Advances in neural information pro-
cessing systems, 30, 2017.

[22] Huimei Han, Ying Li, and Xingquan Zhu. Convolutional neural network learning for
generic data classification. Information Sciences, 477:448–465, 2019.

[23] John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural net-
works. Journal of Big Data, 7(1):1–41, 2020.

[24] Carlo Innamorati, Tobias Ritschel, Tim Weyrich, and Niloy J Mitra. Learning on the
edge: Investigating boundary filters in cnns. International Journal of Computer Vision,
128(4):773–782, 2020.

https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=Hkbd5xZRb
https://openreview.net/forum?id=Hkbd5xZRb
https://gdpr-info.eu/

Bibliography 55

[25] Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-{dnf}: Effective deep modeling of
tabular data. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=73WTGs96kho.

[26] Eric Kauderer-Abrams. Quantifying translation-invariance in convolutional neural net-
works. arXiv preprint arXiv:1801.01450, 2017.

[27] Osman Semih Kayhan and Jan C van Gemert. On translation invariance in cnns: Con-
volutional layers can exploit absolute spatial location. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14274–14285, 2020.

[28] Ethan Keller. Fct-gan: Fourier neural operator for global relation enhancement in tabular
data synthesizing using generative adversarial networks, 2022.

[29] Aki Koivu, Mikko Sairanen, Antti Airola, and Tapio Pahikkala. Synthetic minority over-
sampling of vital statistics data with generative adversarial networks. Journal of the
American Medical Informatics Association, 27(11):1667–1674, 2020.

[30] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks.
In International conference on machine learning, pages 3744–3753. PMLR, 2019.

[31] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory to
practice. Synthesis Lectures on Information Security, Privacy, & Trust, 8(4):1–138, 2016.

[32] Zheng Li, Yue Zhao, and Jialin Fu. Sync: A copula based framework for generating
synthetic data from aggregated sources. In 2020 International Conference on Data Mining
Workshops (ICDMW), pages 571–578. IEEE, 2020.

[33] Xiaoyu Liao. L1aoxingyu/pytorch-beginner: Pytorch tutorial for beginners, 2020. URL
https://github.com/L1aoXingyu/pytorch-beginner.git.

[34] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for
sharing networked time series data: Challenges, initial promise, and open questions. In
Proceedings of the ACM Internet Measurement Conference, pages 464–483, 2020.

[35] Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes
in classification and prediction problems. ACM SIGKDD Explorations Newsletter, 3(1):
27–32, 2001.

[36] Sheraz Naseer and Yasir Saleem. Enhanced network intrusion detection using deep convo-
lutional neural networks. KSII Transactions on Internet and Information Systems (TIIS),
12(10):5159–5178, 2018.

[37] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

https://openreview.net/forum?id=73WTGs96kho
https://openreview.net/forum?id=73WTGs96kho
https://github.com/L1aoXingyu/pytorch-beginner.git

56 Bibliography

[38] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and
Youngmin Kim. Data synthesis based on generative adversarial networks. Proc. VLDB
Endow., 11(10):1071–1083, jun 2018. ISSN 2150-8097. doi: 10.14778/3231751.3231757.
URL https://doi.org/10.14778/3231751.3231757.

[39] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016
IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages
399–410. IEEE, 2016.

[40] Matias Quintana and Clayton Miller. Towards class-balancing human comfort datasets
with gans. In Proceedings of the 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation, pages 391–392, 2019.

[41] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-
precht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5301–5310. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/rahaman19a.html.

[42] Mark Ryan. Deep learning with structured data. Simon and Schuster, 2020.

[43] Stefan Schubert, Peer Neubert, Johannes Pöschmann, and Peter Protzel. Circular convo-
lutional neural networks for panoramic images and laser data. In 2019 IEEE Intelligent
Vehicles Symposium (IV), pages 653–660. IEEE, 2019.

[44] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership in-
ference attacks against machine learning models. In 2017 IEEE symposium on security
and privacy (SP), pages 3–18. IEEE, 2017.

[45] Gilbert Strang and Truong Nguyen. Wavelets and filter banks. SIAM, 1996.

[46] Farhana Sultana, Abu Sufian, and Paramartha Dutta. Advancements in image classifi-
cation using convolutional neural network. In 2018 Fourth International Conference on
Research in Computational Intelligence and Communication Networks (ICRCICN), pages
122–129. IEEE, 2018.

[47] Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-
based representation learning. arXiv preprint arXiv:1812.05069, 2018.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

https://doi.org/10.14778/3231751.3231757
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Bibliography 57

[49] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for
rotation equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018.

[50] Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative adver-
sarial networks. arXiv preprint arXiv:1811.11264, 2018.

[51] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Model-
ing Tabular Data Using Conditional GAN. Curran Associates Inc., Red Hook, NY, USA,
2019.

[52] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adver-
sarial networks. Advances in neural information processing systems, 32, 2019.

[53] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian networks. ACM Transactions on Database
Systems (TODS), 42(4):1–41, 2017.

[54] Yue Zhao. Yzhao062/pyod: A comprehensive and scalable python library for outlier
detection (anomaly detection), 2020. URL https://github.com/yzhao062/pyod.git.

[55] Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table
data synthesizing. In Asian Conference on Machine Learning, pages 97–112. PMLR, 2021.

[56] Morvan Zhou. Morvanzhou/pytorch-tutorial: Build your neural network easy and fast,
2020. URL https://github.com/MorvanZhou/PyTorch-Tutorial.git.

[57] Yitan Zhu, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla, Hyunseung
Yoo, Yvonne A Evrard, James H Doroshow, and Rick L Stevens. Converting tabular data
into images for deep learning with convolutional neural networks. Scientific reports, 11
(1):1–11, 2021.

https://github.com/yzhao062/pyod.git
https://github.com/MorvanZhou/PyTorch-Tutorial.git

	Abstract
	Preface
	Introduction
	Background
	Synthetic data generation
	Generative Adversarial Network
	Vanilla GAN
	Wasserstein GAN
	Wasserstein GAN with gradient penalty

	The representation of tabular data for neural networks
	Categorical features
	Numerical features

	Autoencoder

	Related Work
	Tabular data synthesis
	Column permutation invariance
	Synthetic tabular data evaluation
	Statistical similarity
	Machine learning utility
	Privacy

	Empirical Analysis
	Experiment setup
	Dataset overview
	Column orders
	Evaluation metric for column permutation invariance

	Traditional ML models permutation invariance
	CNN-based tabular data synthesizers
	Sparsity v.s. sensitivity
	Encoding leads to sparsity
	Sparsity increases sensitivity

	FCNs-based tabular data synthesizers
	FCNs v.s. CNNS

	Feature Sorting Algorithm for CNN-based Tabular Data Synthesizers
	Algorithm design
	Algorithm evaluation
	Table-GAN
	CTAB-GAN
	Visualization of feature sorting effect
	Conclusion

	AE-GAN: Permutation-Invariant Tabular Data Synthesizer
	Data representation
	Encoder and decoder
	Generator and discriminator
	Auxiliary classifier
	AE-GAN Training
	Training loss
	Training algorithm

	AE-GAN Evaluation
	Experimental setup
	Datasets
	Baseline
	Computational environment

	Evaluation framework
	Metrics
	Evaluation of column permutation invariance
	Evaluation of synthesis quality

	AE-GAN column permutation invariance
	AE-GAN synthesis quality
	AE-GAN training time
	Ablation study
	Without mode-specific normalization (MSN)
	Without one-hot and mode-specific normalization
	Without auxiliary classifier
	Co-training AE and GAN
	Using information loss in GAN

	Conclusion
	Future work

	Model hyperparameters
	Training epochs
	AE-GAN latent vector length

	Additional experiment results
	AE-GAN Training loss
	AE training loss
	GAN training loss

	Feature sorting effect

	List of Figures
	List of Tables
	Bibliography

