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Preface
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have done it without them. First of all, I would like to thank my supervisor Erik-Jan van Kampen. From the

first meeting we had, you were very supportive and kept me on track by providing constructive feedback.

Even though I encountered numerous setbacks, the weekly progress meetings were very useful and I

could not wish for a better supervisor. I want to thank my family for their unconditional support. Without

my parents, finishing this project would not have been possible. Laura, you were the one whom I could

share all joyous moments with, but also during difficult times you were there for me. And of course the
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1
Introduction

In recent times, the development of nonlinear and adaptive flight control systems has become increasingly

successful, but its application in the civil aviation industry remains limited. Currently, civil aircraft still

use classical flight control systems, based on gain scheduling for altering flight conditions [1]. The major

drawback of gain scheduling, besides that the procedure requires elaborate and time demanding testing,

is that in case of unexpected changes in the aerodynamic model of the aircraft or when it flies outside

the safe flight conditions of the operating regime, it could result into performance degradation or even

failure. The so called ”intelligent flight control systems”, including techniques such as Incremental Nonlinear

Dynamic Inversion and Incremental Backstepping, that are currently being developed can cope with these

unexpected changes by using online system identification, making them adaptive flight control systems [2].

Reinforcement Learning (RL) has shown a lot of potential for the flight control application in several studies

and already has been applied successfully to a 6-degree-of-freedom simulation model of the Cessna

Citation II [3]. There are multiple frameworks within RL that can either quickly adapt to sudden changes

(online learning) or are robust to failures (offline learning) [4]. The reason, however, that these advanced

control systems have rarely been applied in the civil aviation industry has paradoxically to do with safety.

Especially when looking at the nonlinear flight controllers that make use of machine learning, it is often

abstract what happens inside the controller and can be considered a black box. Therefore, it is deemed

risky to apply such a controller on an aircraft and perform flight tests in reality [5].

For classical flight control systems, there are numerous regulations and guidelines for the Handling Qualities

and Stability (HQ&S) requirements that the systems need to comply with [6]. These properties help in the

design of stable and well controllable aircraft, but have never been applied to RL flight control systems. The

main goal of this thesis is therefore to develop a proof-of-concept, showing that the HQ&S requirements

can be integrated in a RL flight control system to stimulate and aid the civil aviation industry in moving

towards intelligent flight control.

1.1. Research Objective and Questions
The aim of this research is further defined in this section and supported by research questions. This report

aims to provide answers to all the research questions presented in this section.

The aim of this research is to contribute to the development of Reinforcement Learning for

continuous flight control, by assessing handling qualities and stability properties and integrating

them in the control loop.

Research Objective

1



RQ 1 Which RL framework is the most suitable for continuous flight control and the integration of

handling qualities and stability properties?

RQ 1.1 What are the state-of-the-art RL frameworks for continuous flight control?

RQ 1.2 What flight control frameworks will be used for the analysis?

RQ 1.3 How will the RL framework be integrated with the flight control framework?

Research Question 1

RQ 2 How will the performance of the RL flight controller be assessed?

RQ 2.1 Which handling qualities and stability requirements will be considered as performance

criteria?

RQ 2.2 How can the selected performance criteria be obtained from flight data?

RQ 2.3 How will the selected performance criteria be included in the optimization process?

Research Question 2

RQ 3 How can the performance criteria be integrated in the RL flight control loop?

RQ 3.1 How can the reward function be modified such that the stability and handling qualities

requirements are complied with?

RQ 3.2 What is the relation between the flight control framework structure and the selected

performance parameters?

RQ 3.3 How can the RL framework and flight control framework structures be adapted to

reach the best integration of the performance parameters?

Research Question 3

RQ 4 What is the performance of the adapted RL flight controller?

RQ 4.1 How can the RL controller be verified and validated?

RQ 4.2 How does the adapted RL flight controller compare with the same RL flight controller

that uses only the tracking error as performance parameter?

Research Question 4

1.2. Structure of the Report
The report will be structured as follows. The methodology and main results of the research project will

be presented in the scientific article in Part I. In Part II, the preliminary study is presented, including a

literature review on state-of-the-art RL frameworks and their application to flight control in Chapter 3, a

literature review on HQ&S and their derivation from nonlinear flight control systems in Chapter 4 and

a preliminary analysis in Chapter 5. Additional results will be presented in Part III, where a robustness

analysis to off-nominal flight conditions is performed in Chapter 6, a threshold sensitivity study on the

successful training run criteria will be included in Chapter 7 and the developed flight controller will be

validated in Chapter 8. The report will be concluded in Part IV, where main conclusions and answers to

the research questions are summarized in Chapter 9 and recommendations for future work are provided in

Chapter 10.
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Scientific Article
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Longitudinal Handling Qualities Evaluation for Soft Actor-Critic
Deep Reinforcement Learning Flight Control

H. Jansen ∗

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Reinforcement Learning applied to flight control has shown to have several benefits over
classical, linear flight controllers, as it eliminates the need for gain scheduling and it could
provide fault-tolerance. The application to civil aviation in practice, however, is non-existent as
there are multiple safety concerns. This research demonstrates the evaluation of longitudinal
Handling Qualities of the Soft Actor-Critic Deep Reinforcement Learning framework with the
aim to translate the unpredictable black box of Reinforcement Learning into classical flight
control terminology. The framework is applied to a pitch rate command system of a jet aircraft
and shows robustness to off-nominal flight conditions, center of gravity shifts and biased sensor
noise. Accurate tracking performance is achieved, while adhering to Level 1 longitudinal
Handling Qualities for all conditions.

Nomenclature

s, a, u, x = observed state, action, input and state vectors
𝑡, Δ𝑡, 𝑁 = time step, sampling time and total number of time steps
𝑄 𝜋 , 𝑄𝜽 = Q-value function and parameterized Q-value function
𝜋, 𝜋𝝓 = policy and parameterized policy
𝜽 , 𝜽 , 𝝓 = critic, target critic and actor parameters
𝑟 , 𝛾 = scalar reward and discount factor
H , H̄ = entropy and target entropy
D, B = replay buffer and mini-batch taken from replay buffer
𝜂, 𝜏, 𝜅 = entropy coefficient, target critic smoothing factor and reward scaling factor
𝜎, 𝜇 = standard deviation and mean
𝜆𝑇 , 𝜆𝑆 = temporal and spatial smoothing factors
𝐿𝑄𝜽 , 𝐿 𝜋𝝓 , 𝐿𝜂 = loss functions for critic, actor and entropy coefficient
𝐿𝑇 , 𝐿𝑆 = temporal and spatial loss functions
CAP, CAP𝑒 = Control Anticipation Parameter and equivalent Control Anticipation Parameter [g−1s−2]
𝑛𝑧𝑠𝑠 , 𝑞𝑠𝑠 = steady state normal load factor [g] and steady state pitch rate [deg/s]
𝑞, 𝑞𝑐𝑚𝑑 , 𝑞𝑟𝑒 𝑓 = pitch rate, pitch rate command and pitch rate reference, all in [deg/s]
¤𝑞, ¤𝑞0, ¤𝑞𝑛𝑑 = pitch acceleration, instantaneous pitch acceleration and attenuation factor, all in [deg/s2]
𝑉 , 𝑔 = velocity [m/s] and gravitational acceleration [m/s2]
𝜁𝑠𝑝 , 𝜔𝑠𝑝 = short period damping ratio and natural frequency [rad/s]
𝑇𝜃2 , 𝐾𝜃 , 𝜏𝑒 = incidence lag, equivalent gain and equivalent time delay
𝛼, 𝜃 = angle of attack [deg] and pitch angle [deg]
𝛿𝑒, ¤𝛿𝑒, 𝛿𝑒,𝑎𝑐𝑡 = elevator deflection angle [deg], elevator rate [deg/s] and elevator activity [deg/s]
𝑁𝜔 , 𝜔𝑘 = number of logarithmically spaced natural frequency points and discrete frequency
𝐺 (𝜔𝑘), 𝜙(𝜔𝑘) = gain [dB] and phase angle [deg] sampled at discrete frequencies
𝜅𝐺 , 𝜅𝜙 = gain and phase angle scaling factors

∗MSc Student, Faculty of Aerospace Engineering, Control & Simulation Division, Delft University of Technology
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I. Introduction
In the rapidly developing world of civil aviation, the demand for safety is crucial. Flight control systems of

conventional aircraft heavily rely on gain scheduling, where the control gains are carefully selected for each flight regime
within the operating envelope [1]. This requires complete knowledge of the dynamical aircraft model, obtained from
costly wind tunnel tests and simulations. Even though the flight control systems are designed to ensure stable and safe
behaviour, the majority of civil aviation accidents are still due to in-flight loss of control, often related to off-nominal
flight conditions [2]. In the meanwhile, more unconvential aircraft are being developed, like vertical take-off and
landing (VTOL) designs [3], morphing wing structures [4], v-shaped flying wings [5] and tilt-rotor aircraft [6]. These
developments bring more challenges, as the aerodynamic models include nonlinearities and become more complex,
showing that the need for model-free and fault-tolerant flight control is evident.

Reinforcement Learning (RL), relying on learning by interaction, is currently being actively researched and has
been demonstrated to be a promising candidate for intelligent flight control. Originally it was developed in a discrete
form using tabular methods, but the development of Neural Networks (NNs) as powerful function approximators
provided a solution for the curse of dimensionality and enabled RL for continuous state and action spaces [7]. Several
state-of-the-art frameworks can be found within the field of Approximate Dynamic Programming (ADP) and more
specifically Adaptive Critic Designs (ACDs) [8]. Most of these methods, where an actor-critic structure is used for
the selection of actions based on value functions, require an offline learning phase to learn an approximation of the
dynamical model. Recent developments, however, have led to incremental ADP (iADP), where an incremental model is
used that eliminates the need for offline learning. Within this field, Incremental Dual Heuristic Programming (IDHP)
and Incremental Global Dual Heuristic Dynamic Programming (IGDHP) are considered state-of-the-art and have been
successfully applied to control the longitudinal motion of a fighter jet [9], nonlinear missile model [10] and a business
jet aircraft [11]. Although these methods provide high adaptive capabilities, there are concerns about reliability and
safety when these methods are applied to fully control the inner and outer loops of flight control systems, as action
policies change quickly, making it somewhat unpredictable.

The advancing research on Deep Neural Networks (DNNs) made Deep Reinforcement Learning (DRL) possible
and shows potential for the application to flight control, since it is capable in dealing with high-dimensional state and
action spaces and is characterized by its generalization power. Deep Deterministic Policy Gradient (DDPG) methods
make use of the actor-critic structure to estimate policy and value functions and apply sampling from a replay buffer,
making it an off-policy framework [12]. State-of-the-art methods like Twin-Delayed DDPG (TD3) [13] [14] and the
Soft Actor-Critic (SAC) framework [15] are built upon DDPG and use target networks and double Q-value functions to
improve learning stability and decrease sensitivity to hyperparameters. SAC exploits a stochastic policy and adds an
entropy term to benefit exploration during training. It is a model-free RL method that has been proven to be robust
to several failure cases, including center of gravity shifts and reduced control effectiveness, for a nonlinear coupled
business jet aircraft, shown in Figure 1 [16]. DRL frameworks mainly address fault-tolerance due to their robustness
and high generalization power.

Fig. 1 TU Delft Cessna Citation-II research aircraft PH-LAB. ∗

However, despite all the benefits, the real-world application of RL to flight control in civil aviation remains
non-existent. The reason for this is that it becomes increasingly more complex to understand what an RL agent is doing
with the development of state-of-the-art frameworks. Research has been performed on the "black box" analysis of
state-of-the-art RL flight controllers under the name of explainable reinforcement learning, revealing that RL agents
behave quasi-linear in non-linear flight regimes [17]. There is, however, an alternative approach that could aid in getting
more insight in the underlying working mechanism of RL applied to flight control. Handling Qualities (HQ) describe

∗https://cs.lr.tudelft.nl/citation/
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the way an aircraft responds to pilot’s inputs [18]. An extensive amount of literature exists on the desired HQ for flight
control systems, providing guidelines and requirements that were originally developed to assess the performance of
classical flight controllers [19]. The evaluation of HQ of RL flight control can assist in translating the complex black box
structure of RL algorithms into well-known flight control terminology. At first glance, HQ evaluation of fully automatic
RL flight control systems seems redundant as there is no pilot present, but it ensures that the aircraft is controlled as if
a pilot were flying the aircraft. Furthermore, it is more likely that the implementation of RL in flight control occurs
gradually and the inner control loops are replaced by RL while the outer loops remain to be controlled by the pilot or
linear controllers, which further indicates the relevance of HQ evaluation.

The contribution of this research is to stimulate civil aviation to move towards RL flight control, by showing a
proof-of-concept of the evaluation of longitudinal HQ for the state-of-the-art SAC framework applied to the Cessna
Citation II PH-LAB research aircraft of the TU Delft. The research builds upon earlier work done on the development
of a SAC controller for the same aircraft [16], but instead of developing an autonomous controller for the entire aircraft,
this work centers on a pitch rate command system to make the implementation of RL flight control more realizable.

The theoretical background of the SAC framework and an overview of longitudinal HQ will be provided in section II.
The implementation of the SAC framework for a pitch rate command system will be discussed in section III. The results
will be presented and analyzed in section IV and the main conclusions of the research will be drawn in section V.

II. Background
This section contains background information on the selected RL algorithm and includes the approach of estimating

the relevant longitudinal HQ for nonlinear flight control applications.

A. Soft Actor-Critic Framework
The underlying principle of RL is an agent acting in an environment and learning from its interactions by receiving

feedback through rewards. More specifically, at time 𝑡 the state of the environment s𝑡 ∈ R𝑛 and the action of the agent
a𝑡 ∈ R𝑚 result in a scalar reward 𝑟𝑡+1 and new state s𝑡+1. The state transition function, represented by Equation 1, relies
on the Markov property, i.e., the current state and action contain all the required information from history to estimate the
subsequent state [7]. The goal of the RL agent is to find a policy 𝜋, that maximizes the cumulative reward over time.
The SAC framework is based on a stochastic policy, meaning that actions are sampled from a policy distribution as
specified by Equation 2.

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ) (1) a𝑡 ∼ 𝜋 (· | s𝑡 ) (2)

The expected sum of future rewards, as a results of following the policy 𝜋 and starting from the current state s𝑡 and
action a𝑡 , is incorporated in the Q-value function as outlined in Equation 3. A discount factor 𝛾 is included to provide
the ability to adapt the balance between short- and long-term future rewards of the learning episode consisting of 𝑁
time steps. The Q-value function gives an indication of how valuable the state-action pair is when following the current
policy. The recursive property of Equation 3 is visible in Equation 4, better known as the Bellman equation.

𝑄 𝜋 (s𝑡 , a𝑡 ) = E
𝜋

[
𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 | s𝑡 , a𝑡

]
(3) 𝑄 𝜋 (s𝑡 , a𝑡 ) = E

𝜋
[𝑟𝑡+1 + 𝛾𝑄 𝜋 (s𝑡+1, a𝑡+1)] (4)

A key characterizing feature of the SAC framework is the use of entropyH , which is computed with the log-likelihood
function according to Equation 5. It gives an indication of the randomness of the policy 𝜋 and therefore introduces the
ability to make a trade-off between exploration and exploitation while learning. Finding a policy which exploits high
rewards while also incorporating randomness to a high degree is beneficial to avoid converging quickly to local-optima
and contributes to the robustness of the agent.

H(𝜋(· | s𝑡 )) = Ea∼𝜋 [− log 𝜋(a | s𝑡 )] (5)

The SAC frameworks evolves around an actor-critic structure, where the actor and critic generate estimates of the
policy and Q-value function respectively, using function approximators in the form of Deep Neural Networks (DNNs).
Furthermore, the learning process is offline and state transition samples (s𝑡 , a𝑡 , s𝑡+1, 𝑟𝑡+1) are stored in a replay buffer D.
The off-policy learning property of the SAC framework enables the agent to learn from the past by using a mini-batch B
with state transition samples obtained from the replay buffer [15].
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1. Critic
The critic estimates the Q-value function with the parameter vector 𝜽. Equation 4 is modified with an entropy

term to account for the randomness of the policy distribution, estimated by the actor with parameter vector 𝝓, to form
Equation 6. The entropy term includes a minus sign, since the log-likelihood of the policy distribution generally outputs
negative values. Furthermore, the entropy is multiplied with the entropy coefficient 𝜂, which essentially indicates the
weight of the contribution of the entropy term. The state transitions (s𝑡 , a𝑡 , s𝑡+1) are sampled from the mini-batch B,
whereas the next action is sampled from the parameterized policy distribution 𝜋𝝓 .

𝑄𝜽 (s𝑡 , a𝑡 ) = E
(s𝑡 ,a𝑡 ,s𝑡+1 )∼B

a𝑡+1∼𝜋𝝓

[
𝑟𝑡+1 + 𝛾𝑄𝜽 (s𝑡+1, a𝑡+1) − 𝜂 log 𝜋𝝓 (a𝑡+1 | s𝑡+1)

]
(6)

To stabilize the learning process, a target critic is introduced with parameters 𝜽. A soft update of the target critic
parameters is performed with a smoothing factor 𝜏 according to the exponentially moving average: 𝜽 𝑡+1 = 𝜏𝜽 𝑡 + (1−𝜏)𝜽 𝑡 .
The target critic prevents the Q-value function estimate to be updated in an aggressive and potentially unstable manner.
Next to that, double Q-value function estimates are used for both the normal and target critic, to further improve stability.
With a single Q-value function approximation, there is the risk of having an overestimation bias of the Q-value estimates,
which is partially mitigated by introducing additional parallel Q-value function estimates and always selecting the lowest
value for learning.

The loss function for each of the two critics consists of the squared difference between the critic Q-value estimate at
time 𝑡 and the target critic Q-value at time 𝑡 + 1, derived from the Bellman equation. In essence, the loss function is a
form of the Temporal Difference (TD) error, modified to the SAC framework.

𝐿𝑄𝜽𝑖
= E

(s𝑡 ,a𝑡 ,s𝑡+1 )∼B
a𝑡+1∼𝜋𝝓

[(
𝑄𝜽𝑖 (s𝑡 , a𝑡 ) −

(
𝑟𝑡+1 + 𝛾

(
min
𝑖=1,2

𝑄𝜽𝑖
(s𝑡+1, a𝑡+1) − 𝜂 log 𝜋𝝓 (a𝑡+1 | s𝑡+1)

)))2
]

(7)

2. Actor
The actor resembles the stochastic policy, where the DNN with parameters 𝝓 outputs the mean 𝝁𝝓 and standard

deviation 𝝈𝝓 of a Gaussian policy distribution. In order to make the output of the DNN differentiable for parameter
updates, 𝝁𝝓 and 𝝈𝝓 are reparameterized by sampling an action with a Gaussian noise vector 𝝐 𝑡 according to:
a𝑡 = 𝝁𝝓 (s𝑡 ) + 𝝐 𝑡 · 𝝈𝝓 (s𝑡 ). A hyperbolic tangent squashing function is used to ensure that the action remains bounded. It
should be noted that the action can be made deterministic, which is for instance necessary when evaluating the SAC
agent, by taking the mean 𝝁𝝓 of the policy distribution. The loss function of the policy is implemented such that a
combination of maximizing the expected return and entropy of the policy distribution is reached, while using the lowest
Q-value approximation from the target critics:

𝐿 𝜋𝝓 = E
s𝑡∼B

a𝑡∼𝜋𝝓

[
𝜂 log 𝜋𝝓 (a𝑡 | s𝑡 ) − min

𝑖=1,2
𝑄𝜽𝑖

(s𝑡 , a𝑡 )
]

(8)

3. Entropy Adjustment
As the policy develops and its approximation improves while the agent is learning, the entropy should be adjusted

during training as well. In the early stages of learning, a high degree of exploration is desired to find regions within the
environment that yield a high return, whereas the emphasis of learning should be put on exploitation when the agent
gets more experienced. It was therefore proposed to automatically adjust the entropy coefficient 𝜂, in a way that the
entropy remains above a minimum threshold, i.e., the target entropy H̄ . The loss function for entropy coefficient is
defined by Equation 9 and it was empirically found that when the target entropy is set to the negative of the dimension of
the action space (H̄ = −𝑚), it leads to stable results [20].

𝐿𝜂 = E
s𝑡∼B

a𝑡∼𝜋𝝓

[
𝜂 log 𝜋𝝓 (a𝑡 | s𝑡 ) − 𝜂H̄

]
(9)
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4. Overview
Figure 2 illustrates the interactions between the main components of the SAC framework, where the notation {·}

indicates a batch of samples. In the figure, dashed lines correspond to the parameter updates, specified by the gradients
∇𝜽𝑖 𝐿𝑄𝜽𝑖

, ∇𝝓𝐿 𝜋𝝓 and ∇𝜂𝐿𝜂 for the critics, actor and entropy coefficient respectively.

Fig. 2 Overview of the SAC framework showing the interaction between the actor, critic, environment and
entropy. Adapted from [16].

B. Longitudinal Handling Qualities
Aircraft HQ are defined as how the pilot experiences the way the aircraft responds to the pilot’s input. An extensive

amount of literature has been written on HQ and several versions of guidelines exist to aid the design of aircraft and
flight control systems. Qualitative methods for determining the HQ through pilot opinion ratings are often used in real
flight experiments and in simulators, but since evaluation of HQ has not yet been performed for RL flight control, this
paper will focus on quantitative HQ determination through simulations. The longitudinal motion of aircraft consist of
two eigenmodes; the short period and phugoid. Since the latter is usually slow, with low frequency oscillations, the pilot
is often capable of controlling and stabilizing the motion. The short period mode, on the other hand, involves higher
frequencies and has a significant impact on the manoeuvrability of the aircraft. Therefore, adequate short period HQ are
crucial for the longitudinal controllability of the aircraft [18]. Several civilian aircraft standards exist, but focus more on
qualitative assessment [18]. The Military Standards provide quantitative guidelines for the assessment of short period
HQ and strongly recommend to include the Control Anticipation Parameter as the key requirement, due to the fact that it
captures the majority of the short period dynamics [19]. These standards can be applied to civilian aircraft as well, as
the requirements in the standards are specified per aircraft category.

1. Control Anticipation Parameter
The CAP, originally defined in a study by Bihrle [21], is the main HQ criterion of this research and is defined by the

instantaneous pitch acceleration ¤𝑞0 over the steady state load factor 𝑛𝑧𝑠𝑠 . Alternatively, the steady state pitch rate 𝑞𝑠𝑠,
in combination with the velocity 𝑉 and gravitational acceleration 𝑔 could be used for the computation of the CAP, as
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shown in Equation 10. The parameter is a metric that indicates to what extent the pilot can anticipate on the aircraft’s
response after a step input is exerted on the control stick, based on the initial pitch acceleration. A CAP that is too low
results in a response that tends to feel sluggish which in turn can generate Pilot Induced Oscillations (PIO). When the
CAP is too high on the other had, the aircraft feels sensitive and the pilot might overcompensate resulting in PIO as well.

CAP =
¤𝑞0
𝑛𝑧𝑠𝑠

=
¤𝑞0

𝑉
𝑔
𝑞𝑠𝑠

(10)

2. Low Order Equivalent System
Additional parameters like the damping ratio and natural frequency are often used for the assessment of the short

period HQ. These parameters, however, are related to a second order model of the aircraft, whereas modern aircraft are
generally highly augmented and include sensor, control and actuator dynamics. Next to that, the aircraft dynamics could
be nonlinear, which complicates the analysis of second order short period parameters. Typically, the nonlinear aircraft
model is linearized around the operating point such that a Higher Order System (HOS) is obtained. It was found that the
linear HOS can be represented by a second order model with an equivalent time delay to account for the higher order
dynamics [22]. The resulting Low Order Equivalent System (LOES), defined by Equation 11, contains the short period
damping ratio 𝜁𝑠𝑝 , natural frequency 𝜔𝑠𝑝 , incidence lag 𝑇𝜃2 , equivalent gain 𝐾𝜃 and equivalent time delay 𝜏𝑒. It relates
the pitch rate 𝑞 to the pitch rate command 𝑞𝑐𝑚𝑑 exerted by the pilot through the control stick. The LOES parameters are
acquired through frequency matching at the bandwidth where the pilot is the most sensitive [23].

𝑞(𝑠)
𝑞𝑐𝑚𝑑 (𝑠)

=
𝐾𝜃

(
𝑠 + 1/𝑇𝜃2

)
𝑒−𝜏𝑒𝑠

𝑠2 + 2𝜁𝑠𝑝𝜔𝑠𝑝 + 𝜔2
𝑠𝑝

(11)

An alternative approach for the computation of the CAP is to use the short period model parameters derived from
the LOES as shown in Equation 12. The equivalent CAP𝑒 includes an attenuation factor ¤𝑞𝑛𝑑 to compensate for the
difference in instantaneous accelerations of the LOES and the full aircraft model. More specifically, it is the ratio
between the maximum pitch acceleration of the full aircraft model ¤𝑞𝑚𝑎𝑥 and the instantaneous pitch acceleration of the
LOES ¤𝑞0,𝑠𝑝 , which is equal to the equivalent gain 𝐾𝜃 . The underlying reason for the inclusion of this factor is that the
maximum pitch acceleration of the full aircraft model occurs not exactly at the instant at which the step input is exerted
by the pilot, but with a short delay due to actuator dynamics. It is generally of lower magnitude than ¤𝑞0,𝑠𝑝 and thus the
CAP obtained from the LOES requires compensation for this phenomenon [24].

CAP𝑒 =
𝜔2
𝑠𝑝

𝑉
𝑔

1
𝑇𝜃2

¤𝑞𝑛𝑑 (12)

3. Requirements
The aforementioned CAP and short period parameters were used to develop requirements for longitudinal HQ by the

Military Standards [19]. The requirements are divided according to the intensity of the pilot workload, with Level 1
being the lowest and thus desired workload intensity and Level 3 being the highest. The specific requirements that apply
to the aircraft category that the Cessna Citation II falls under are presented in Table 1. Note that the CAP is usually
assessed in combination with the damping ratio 𝜁𝑠𝑝 and requires both parameters to be in Level 1.

Table 1 Longitudinal HQ requirements of the aircraft’s short period reponse for the three levels of pilot
workload [19].

Parameter Level 1 Level 2 Level 3

Damping ratio short period [-] 0.35 ≤ 𝜁𝑠𝑝 ≤ 1.3 0.25 ≤ 𝜁𝑠𝑝 ≤ 2.0 0.15 ≤ 𝜁𝑠𝑝

Natural frequency short period [rad/s] 𝜔𝑠𝑝 ≥ 1.0 𝜔𝑠𝑝 ≥ 0.6 -
Time delay [s] 𝜏𝑒 < 0.1 𝜏𝑒 < 0.2 𝜏𝑒 < 0.25
Control Anticipation Parameter [g−1s−2] 0.28 ≤ CAP ≤ 3.42 0.15 ≤ CAP ≤ 9.85 -
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III. Flight Control System Design
The implementation of the SAC framework for flight control and the evaluation of longitudinal HQ during training

will be discussed in this section.

A. Flight Control Framework
The proposed flight control framework is a Command and Stability Augmentation System (CSAS) with the aim to

stabilize the inner flight control loop while providing adequate HQ [25]. It is realized by including a reference model on
the command path, i.e., the feedforward path between the pilot input and controller, that can be designed to shape the
response for the desired HQ. As the scope of this research is developing a proof-of-concept, rather than optimizing a RL
flight controller, it was decided to implement the CSAS in the form of a pitch rate command system, as visualized in
Figure 3. This improves the ease of implementation in practice as it does not fully take over the pilot, but merely the
inner control loop. Furthermore, short period HQ are directly related to pitch rate control.

1. High-Fidelity Longitudinal Aircraft Model
For the implementation of the SAC controller, the Cessna Citation II PH-LAB research aircraft of the TU Delft was

selected, visualized in Figure 1. As the aim of this research is to stimulate aviation to move towards intelligent flight
control with RL, by means of evaluating HQ to get more insight on how such a controller would behave, the PH-LAB
provides a platform to implement the proposed controller in practice in the future. Moreover, a high-fidelity simulation
model, validated for the PH-LAB [26], created with the Delft University Aircraft Simulation Model and Analysis Tool
(DASMAT) is available for performing simulations.

For the development of a pitch rate command system, the full DASMAT simulation model is reduced to a longitudinal
model with state vector x, shown in Equation 13, containing the pitch rate 𝑞, velocity 𝑉 , angle of attack 𝛼 and pitch
angle 𝜃. An auto-throttle is applied to maintain constant velocity, hence the only degree of freedom for the controller is
the elevator deflection 𝛿𝑒, which is also referred to as the control input u. Furthermore, the altitude of the aircraft ℎ is
assumed to remain constant for the simulations. The sampling rate of the model is 100 Hz and the sensors are assumed
to be ideal, hence no additional sensor dynamics are included. The actuator is modelled as a first order transfer function
with deflection angle limits in the range of [-17, 15] deg and rate limits of [-20, 20] deg/s [27].

x = [𝑞,𝑉, 𝛼, 𝜃]𝑇 (13) u = [𝛿𝑒] (14)

2. Reference Model
As mentioned before, for CSAS controllers, a reference model is used to shape the aircraft’s response to adhere to

the desired HQ. A second order reference model is selected for the implementation of the pitch rate command controller
as presented in Equation 15, as the parameters of such a model are directly related to the short period HQ. Note that the
reference model is very similar to Equation 11, but there is no time delay as the model prescribes the ideal behaviour of
the aircraft. The desired CAP𝑟𝑒 𝑓 , damping ratio 𝜁𝑟𝑒 𝑓 and incidence lag 𝑇𝑟𝑒 𝑓 can be selected by the designer of the
control system and the natural frequency 𝜔𝑟𝑒 𝑓 and gain 𝐾𝑟𝑒 𝑓 follow from Equation 12 (with ¤𝑞𝑛𝑑 = 1) and the DC gain.
The underlying theory is that when the controller is able to follow the reference model commands accurately, the HQ of
the full control system will be close to the ones set by the reference model [28].

𝑞𝑟𝑒 𝑓 (𝑠)
𝑞𝑐𝑚𝑑 (𝑠)

=
𝐾𝑟𝑒 𝑓

(
𝑠 + 1/𝑇𝑟𝑒 𝑓

)
𝑠2 + 2𝜁𝑟𝑒 𝑓𝜔𝑟𝑒 𝑓 + 𝜔2

𝑟𝑒 𝑓

(15)

B. Controller Implementation
Two SAC flight controllers were developed for this research. Additionally, a linear controller was designed with the

purpose of performance comparison.

1. Baseline SAC Flight Controller
An overview of the pitch rate command system, showing the interactions of the SAC controller with the reference

model and high-fidelity aircraft model, is presented in Figure 3. The goal of the SAC controller is to track the reference
pitch rate 𝑞𝑟𝑒 𝑓 and therefore the reference error 𝑞𝑟𝑒 𝑓 − 𝑞 is used in the observed state vector s as shown in Equation 16.
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The reward is the negative of the squared tracking error, where a reward scaling factor 𝜅 is included, as given in
Equation 17. The scaling factor is also used in the observed state vector and preliminary research showed that the SAC
controller performance is sensitive to the selection of this factor. Furthermore, the pitch acceleration ¤𝑞 is included in the
observed state vector, as it provides information to the controller on the transient response. The inclusion of the pitch
acceleration ¤𝑞 does require the aircraft to be equipped with an angular accelerometer.

The elevator deflection angle 𝛿𝑒 is controlled in an incremental manner. The reparameterized output of the actor is
squashed with a hyperbolic tangent function such that values of the action a remain between [-1,1]. Subsequently, the
action is scaled with the elevator rate limits, to get the current elevator rate ¤𝛿𝑒,𝑡 . It is multiplied with the sampling time
Δ𝑡 to get the control input increment and then added to the previous state of the elevator deflection: 𝛿𝑒,𝑡 = 𝛿𝑒,𝑡−1 +Δ𝑡 ¤𝛿𝑒,𝑡 .
The incremental control causes smoother and less aggressive changes of the elevator deflection angle. The elevator
deflection angle needs to be added to the observed state vector, however, in order for the SAC agent to know its current
position. In general, the training of the SAC controller takes longer and becomes more complex as states are added to the
observation vector. The states that are included are therefore the minimum required states for satisfactory performance.

s = [ ¤𝑞, 𝜅(𝑞𝑟𝑒 𝑓 − 𝑞), 𝛿𝑒]𝑇 (16) 𝑟 = −(𝜅(𝑞𝑟𝑒 𝑓 − 𝑞))2 (17)

Aircraft ModelReference Model SAC Controller
+ ++

_

Fig. 3 Overview of the SAC pitch rate control system, with the interactions between the controller, aircraft
model and reference model.

2. SAC Flight Controller with Conditioning for Action Policy Smoothness
Preliminary experiments have shown that even though incremental elevator control is used, the SAC agent still

shows high gain tracking behaviour. Therefore, a second SAC controller was developed which includes Conditioning for
Action Policy Smoothness (CAPS). With this approach, two additional loss terms are added to the actor loss function to
further smoothen the SAC agent’s policy [29]:

𝐿𝐶𝐴𝑃𝑆
𝜋𝝓

= 𝐿 𝜋𝝓 + 𝜆𝑇𝐿𝑇 + 𝜆𝑆𝐿𝑆 (18)

The temporal loss term 𝐿𝑇 is computed as the L2-norm of the deterministic actions at time 𝑡 and time 𝑡 + 1. It is
scaled with the temporal smoothing factor 𝜆𝑇 , which is a new hyperparameter. Likewise, the spatial loss term 𝐿𝑇 is
weighted with a spatial smoothing factor 𝜆𝑆 and calculated with the L2-norm of the deterministic action of the policy
and the action for a normally sampled state s̄ with a standard deviation of 𝜎 = 0.035.

𝐿𝑇 = | |𝜋𝝓 (s𝑡 ) − 𝜋𝝓 (s𝑡+1) | |2 (19) 𝐿𝑆 = | |𝜋𝝓 (s) − 𝜋𝝓 (s̄) | |2 (20)

3. Linear Flight Controller
To compare the SAC agents to a classical controller, a Linear Controller (LC) was developed for the same flight

control framework. For fair comparison, pitch rate reference error 𝑞𝑟𝑒 𝑓 −𝑞 and pitch acceleration ¤𝑞 are used for selecting
the elevator deflection angle 𝛿𝑒. It is not considered necessary to use the incremental control approach, because the
controller is linear and aggressiveness of the controller can be adapted with the control gains. The elevator deflection
angle is determined with the gains 𝐾𝑝 and 𝐾𝑑 by the following equation:

𝛿𝑒 = −𝐾𝑝 (𝑞𝑟𝑒 𝑓 − 𝑞) − 𝐾𝑑 ¤𝑞 (21)
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C. Training Approach
The selection of the hyperparameters and training signal is an important aspect of the design of the SAC controllers.

This section will explain why certain design choices are made with respect to these parameters.

1. Hyperparameters
The hyperparameters of the SAC agents are of significant influence on the tracking performance and HQ. As the

scope of this research is limited to the proof-of-concept of HQ evaluation for RL flight control, instead of optimizing
an RL agent itself, the hyperparameters are based on earlier research as they were already tuned succesfully for the
SAC framework [16]. All the hyperparameters are presented in Table 2 and it can be observed that the actor and critic
network architectures are similar in terms of hidden layers, as well as the initial learning rates. Similar to earlier work,
the two hidden layers of the actor and critic DNNs contain normalization layers with ReLu activation functions and the
gradient-descent parameter updates are performed with the Adam optimizer [16]. It should be noted that the temporal
smoothing factor 𝜆𝑇 is set to 0 for the SAC with CAPS, because temporal smoothness was found to lead to poor short
period HQ in preliminary experiments, as it makes the controller very sluggish.

Table 2 Hyperparameters of the SAC agents, partially adapted from [16].

Parameter Symbol Value

Discount factor 𝛾 0.99
Target critic smoothing factor 𝜏 0.005
Actor and critic hidden layer sizes 𝑙1, 𝑙2 64,64
Actor and critic initial learning rates 𝜂𝑎𝜂𝑐 9.4e-4, 9.4e-4
Replay buffer batch size |B| 256
Replay buffer maximum size |D| 50000
Initial entropy coefficient 𝜂0 1.0
Number of episodes 𝑁𝑒 200
Reward scaling factor 𝜅 1

4
180
𝜋

Temporal smoothing factor 𝜆𝑇 0.0 (CAPS only)
Spatial smoothing factor 𝜆𝑆 100.0 (CAPS only)

2. Simulation Strategy
The simulations during training were performed with episodes that last 30 seconds, where every 5 seconds a random

step input on the pitch rate command 𝑞𝑐𝑚𝑑 between [-2,2] degrees is fed to the two SAC agents. Using random step
inputs ensures that the SAC agents can explore the full state-action domain within the given range, as long as there are
enough episodes to learn. Training is performed with the linearized aircraft model and does not contain the saturation
limits. In the context of the SAC framework, this training phase is often referred to as offline learning. This is done
with a simulation model of the aircraft and crashes are permitted. After the offline learning phase, online evaluation is
performed where the agent is controlling the aircraft in real-time and crashes are not tolerated. Since all experiments
in this research are carried out through simulations, the online evaluation requires a simulation model as well, but it
mimics the situation as if the SAC controller were controlling the aircraft in reality.

After 200 episodes of offline learning, the SAC agents are evaluated online with a 3-2-1-1 step input signal for the
nonlinear aircraft model. This signal was selected as is commonly used for system identification. The magnitudes of the
step inputs are selected between [-1,1] degrees, such that the evaluation is done within the domain that the SAC has
covered while training. During the 30 seconds evaluation, the normalized Mean Absolute Error (nMAE) is monitored
as well as the elevator activity 𝛿𝑒,𝑎𝑐𝑡 . The former provides information on the tracking performance, whilst the latter
gives insight in the degree of aggressiveness of the SAC controllers. The elevator activity is calculated with the integral
of the elevator rate, divided by the simulation time 𝑇 [30]:

𝛿𝑒,𝑎𝑐𝑡 =

∫ 𝑇

0 | ¤𝛿𝑒 |Δ𝑡
𝑇

(22)
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3. Handling Qualities Evaluation
During training, the longitudinal HQ are evaluated after the completion of each episode. The SAC controllers are

linearized with the perturbation approach and combined with the reference model and linearized aircraft model they
form the HOS of the full pitch rate command system. To obtain the LOES, the frequencies of the HOS and LOES
are matched between 0.1 and 10 rad/s, as this is the region where the pilot is the most sensitive [19]. The LOES fit is
optimized by minimizing the cost function specified by Equation 23, where 𝑁𝜔 is the number of logarithmically spaced
frequency datapoints, 𝜙 the phase angle, 𝐺 the gain and 𝜔 the frequency. The optimization was performed using the
Scipy Nelder-Mead algorithm in Python*. The Maximum Unnoticable Added Dynamics (MUAD) bounds determine the
scaling factors 𝜅𝐺 and 𝜅𝜙 . These bounds were developed to further specify the frequencies at which the pilot feels the
most, and at which frequency additional dynamics could be added without the pilot noticing it [31]. A successful LOES
fit is defined as a fit where the fit error for all frequencies, for both the gain and phase, remain within the MUAD bounds.

𝐽 =
20
𝑁𝜔

𝑁𝜔∑︁
𝑘=1

[
𝜅𝐺 (𝜔𝑘 ) (𝐺 (𝜔𝑘)𝐻𝑂𝑆 − 𝐺 (𝜔𝑘)𝐿𝑂𝐸𝑆)2 + 𝜅𝜙 (𝜔𝑘 ) (𝜙(𝜔𝑘)𝐻𝑂𝑆 − 𝜙(𝜔𝑘)𝐿𝑂𝐸𝑆)2] (23)

The parameters of the LOES are related to the shortperiod HQ as explained in subsection II.B. The attenuation
factor ¤𝑞𝑛𝑑 that compensates the CAP for higher order dynamics, not captured by the LOES, is determined with a time
response simulation of the pitch rate command system. A step input is given on the system and the resulting maximum
pitch acceleration is used for computing the equivalent CAP𝑒.

IV. Results and Discussion
In this section the results of the offline training phase and online evaluation will be presented. The results for

multiple flight conditions with forward and aft Center of Gravity (CG) shifts and the effect of biased sensor noised will
be discussed as well. The results of the SAC controllers will be compared to the LCs.

A. Offline Training
The offline training phase was performed for both SAC controllers for the nominal flight condition, which is at

an altitude of H = 2000 m and velocity of V = 90 m/s. This was done for multiple realizations of random parameter
initializations, to assess the robustness to the initialization of the DNNs. Two criteria were applied for determining
whether a training run was successful or not. A run is labelled successful when the trained controller evaluated on
the 3-2-1-1 evaluation signal has a nMAE smaller or equal to 5% and an elevator activity 𝛿𝑒,𝑎𝑐𝑡 of no more than 0.5
deg/s. For a total of 76 training runs, the SAC baseline controller was successful 26% of the time, whereas for the SAC
controller with CAPS a success rate of 53% was reached.

Figure 4 shows the episode return, which is the sum of rewards for one episode, during training for all successful
runs for both SAC controllers. It can be observed that the median of the SAC baseline controller reaches a better average
return than the SAC controller with CAPS. The SAC baseline controller, however, contains runs that had very low values
of episode returns during the training, but climb to higher values only at the very end of training. The SAC controller
with CAPS shows considerably more stable behaviour during training; after around 50 episodes the average return has
stabilized to around a value of approximately -50. The probable cause for this effect is that the SAC baseline controller
tracks the reference signal more aggressively, resulting in smaller tracking errors and higher final returns.

This effect can also be observed in Figure 5, where the CAP𝑒 during training is shown for both controllers. The
successful runs of the SAC baseline controller show more widely spread values of the CAP𝑒, whereas the values for
the SAC controller with CAPS lie within a more compact region. Even though both controllers reach a L1 HQ rating
at the final stage of training, the median of the SAC baseline controller is almost exactly equal to the CAP of the
reference model, CAP𝑟𝑒 𝑓 . Again, this is probably caused by the aggressive tracking of the SAC baseline controller. The
SAC controller with CAPS has a slightly more sluggish value of the CAP𝑒, which could be the cause of the spatial
smoothening of the policy.

∗https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
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Fig. 4 Training curves, showing the episode return for the SAC baseline controller and SAC controller with
CAPS during offline learning. Solid blue and green lines present the median and shaded regions in blue and
green show all successful runs.
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Fig. 5 The development of the equivalent CAP𝑒 for the SAC baseline controller and SAC controller with CAPS
during offline learning. Solid blue and green lines present the median and shaded regions in blue and green show
all successful runs. The levels of HQ ratings are indicated with the red shaded areas.

Next to the CAP, the other short period HQ were also monitored during the training of both SAC controllers. The
short period parameters obtained from LOES fits are shown in Figure 6 and Figure 7 for the SAC baseline controller
and SAC controller with CAPS respectively. The main conclusion that can be drawn from the figures is that the SAC
baseline controllers show more widely spread results, but the median approaches the short period reference model
parameters, whereas the training runs of the SAC controller with CAPS yield results short period parameters with less
variance. The SAC controller with CAPS has an offset from the reference for most of the short period parameters, which
could be caused by the aggressiveness limitations posed by the action policy smoothness.
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Fig. 6 Short period parameters obtained from LOES fits during offline learning for the SAC baseline controller.
Solid blue lines present the median and shaded regions in blue show all successful runs.
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Fig. 7 Short period parameters obtained from LOES fits during offline learning for the SAC controller with
CAPS. Solid green lines present the median and shaded regions in green show all successful runs.
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B. Online Evaluation
For the online evaluation of the SAC controllers, a 3-2-1-1 step input signal is used. Figure 8 shows the time

responses of realizations of a successful run for both SAC controllers as well as the desired behaviour posed by the
reference model. From the figure, it can be observed that the SAC baseline controller tracks the reference model more
accurately, which is also supported by the low nMAE of 0.95%. The SAC controller with CAPS, however, seems to
have a minor steady state error which integrates over time to a nMAE of 3.53%, worse than the baseline. The figure also
shows that the SAC baseline controller reaches the elevator rate saturation limits (-20 and 20 deg/s) at some instances in
time. This further indicates more aggressive tracking. Overall, both controllers are able to track the reference model
succesfully and there are no major differences between the other states (𝑉 , 𝛼 and 𝜃). The figure also shows the Power
Lever Angle (PLA), which indicates the thrust setting and it can be seen that the autothrottle actively keeps the velocity
more or less constant around the nominal flight condition of V = 90 m/s.

For the sake of comparison, similar simulations of the 3-2-1-1 step input signal have been performed for two LCs.
The pitch acceleration gain 𝐾𝑑 was set to 0.15 for both LCs and the pitch rate reference gain 𝐾𝑝 was set to 0.07 (low
gain LC) and 0.7 (high gain LC). The gains were used to control the elevator deflection as specified by Equation 21.
The gains were selected by manual tuning and the low and high gains were chosen to demonstrate the effect on the
aggressiveness of the tracking. Figure 9 shows the results for both LCs, where it can be observed that the high gain
LC tracks the reference model better than the low gain LC, which also supported by the nMAEs of 1.27% and 7.69%
respectively. The high gain LC reaches the elevator rate saturation limits several times while the low gain LC is too slow
and diverges away from the reference signal (visible between 𝑡 = 8 and 𝑡 = 13 seconds).
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Fig. 8 Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation
signal.
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Fig. 9 Time response of the LCs with low and high gains for the 3-2-1-1 evaluation signal.

Table 3 The nMAE and elevator activity for various flight conditions and CG shifts, for both SAC controllers
and LCs.

SAC baseline SAC with CAPS LC - low gain LC - high gain
FC CG nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡

[%] [deg/s] [%] [deg/s] [%] [deg/s] [%] [deg/s]

H = 2000 m
V = 90 m/s

Normal 1.26 0.44 3.61 0.38 7.69 0.12 1.27 0.45

H = 2000 m
V = 140 m/s

Normal 10.80 2.30 4.61 0.29 5.67 0.10 0.86 0.28

H = 5000 m
V = 90 m/s

Normal 10.13 1.08 4.46 0.59 8.35 0.17 1.48 0.67

H = 5000 m
V = 140 m/s

Normal 16.82 1.91 4.30 0.38 6.03 0.11 0.96 0.43

H = 2000 m
V = 90 m/s

Aft 9.49 1.75 5.48 0.47 5.76 0.16 0.96 0.5

H = 2000 m
V = 90 m/s

Fwd 11.21 1.66 4.43 0.45 9.36 0.14 1.68 0.47

Online evaluation was performed for four different flight conditions. Additionally, simulations were performed
for the nominal flight condition with CG shifts of 0.25 m forward and aft. The average nMAE and elevator activity
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values for all online evaluations are presented in Table 3, for both SAC controllers and LCs. Although the SAC baseline
controller performs well for the nominal flight condition, the tracking is significantly worse for all other conditions. The
conditions for successful runs are not met, therefore indicating poor robustness properties of the baseline controller. The
SAC controller with CAPS on the other hand, shows very similar performance for all flight conditions and CG shifts.
The nMAE is worse than the one for the nominal flight condition for the SAC baseline controller, but the requirements
for succesful runs are almost all met (with some values just above the threshold for a successful run). When looking at
the LCs, it can be seen that the low gain LC does not meet the requirements for successful tracking, but the high gain LC
is successful and as a matter of fact the best of all of the four controllers.
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Additionally, the equivalent CAP𝑒 in combination with the short period damping ratio 𝜁𝑠𝑝 is presented for all flight
conditions, CG shifts and the four controllers in Figure 10. The main conclusion that can be drawn from this figure is
that all controllers satisfy the Level 1 HQ ratings for all flight conditions, but the low gain LC and SAC controller with
CAPS are slightly more sluggish and less damped. The high gain LC and SAC baseline controller have HQ that are
closer to the reference model. It should be noted however, that only the successful LOES fits are shown in this figure,
hence the poor tracking characteristics of the SAC baseline controller for off-nominal flight conditions are not reflected
here.

C. Online Evaluation with Biased Sensor Noise
To demonstrate how the developed controllers operate in reality, biased sensor noise is added to the measurements

used by the controllers. For the PH-LAB, the pitch rate sensor has a bias of 3.0e-5 deg/s and variance of 4.0e-7 deg/s
and the angular accelerometer is set to have a bias of 0.04 deg/s2 and variance of 1.5e-6 deg/s2, both implemented as
Gaussian noise [27]. The results of online evaluation for the nominal flight condition for the SAC controllers and LCs
are shown in Figure 11 and Figure 12 respectively. It can be immediately seen that the SAC baseline controller and high
gain LC get an extreme level of oscillation in the elevator deflection due to the presence of noise. The reason for this is
that both controllers are too aggressive and become infeasible in practice because of elevator wear.

The low gain LC and SAC controller with CAPS are significantly less affected by the oscillatory component of
the noise, as they are less aggressive. The bias of the sensors, however, does increase the steady-state errors of both
controllers. In further research, a potential solution for this problem could be including an integral term. This could be
realized by adding the pitch angle 𝜃 to the state observation vector of the SAC controller with CAPS.
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Fig. 11 Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation
signal, subject to biased sensor noise.
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Fig. 12 Time response of the LC controllers with low and high gains for the 3-2-1-1 evaluation signal, subject to
biased sensor noise.

An overview of the nMAE and elevator activity of the four controllers for the nominal flight condition with and
without biased sensor noise is presented in Table 4. For the SAC controllers, the average nMAE and elevator activity are
taken from the successful training runs. Again, it can be observed that the high gain LC and SAC baseline controller
produce unrealistically high elevator activity values when sensor noise is included, which further demonstrates that
these controllers are not feasible in practice. The SAC controller with CAPS and low gain LC have acceptable levels of
elevator activity in the presence of noise. The SAC controller with CAPS performs better in terms of tracking compared
to the low gain LC, which is indicated by the nMAE. This was also shown in Table 3 for the different flight conditions,
making the SAC controller with CAPS the best controller in terms of robustness, while maintaining Level 1 longitudinal
HQ. In the future, the SAC controller with CAPS could be further optimized in terms of hyperparameters and the pitch
angle 𝜃 could be included in the state observation vector. This can increase tracking performance and ensure even better
HQ, while keeping the fault-tolerant property of the controller.

Table 4 The nMAE and elevator activity for both SAC controllers and LCs, subject to biased sensor noise.

SAC baseline SAC with CAPS LC - low gain LC - high gain
FC Sensor noise nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡

[%] [deg/s] [%] [deg/s] [%] [deg/s] [%] [deg/s]

H = 2000 m
V = 90 m/s

No 1.26 0.44 3.61 0.38 7.69 0.12 1.27 0.45

H = 2000 m
V = 90 m/s

Yes 10.75 6.87 8.36 0.44 9.30 0.45 1.79 4.27
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V. Conclusion
In this research, the evaluation of longitudinal Handling Qualities (HQ) was applied to Reinforcement Learning (RL)

flight control. The Soft Actor-Critic (SAC) framework was implemented in a Control and Stability Augmentation System
(CSAS) to control the pitch rate of the TU Delft Cessna Citation-II research aircraft, the PH-LAB. Several longitudinal
HQ were evaluated like the Control Anticipation Parameter (CAP) and other second order short period parameters.
The HQ were evaluated during and after training for a regular baseline SAC controller and one were Conditioning for
Action Policy Smoothness (CAPS) was applied. Training was successful for the SAC baseline controller 26% of the
time and for the SAC controller with CAPS 53% of the time. For the nominal flight condition, which was used for
training, the SAC baseline controller outperformed the SAC controller with CAPS in terms of tracking performance
(nMAE of 1.26% versus 3.61%) and approximated the reference model with the desired short period HQ more closely.
The SAC controller with CAPS showed more stable behaviour during training.

Both controllers were evaluated online for off-nominal flight conditions and Center of Gravity (CG) shifts and
results showed that the SAC controller with CAPS is more robust to these altering conditions, while both controllers
maintained Level 1 short period HQ. When biased sensor noise was introduced to the nominal flight condition, the SAC
baseline controller showed too aggressive behaviour leading to actuator wear and making the implementation in practice
infeasible. A comparison for both controllers was made with two classical Linear Controllers (LCs), one with a high
and one with a lower gain. The high gain LC showed comparable aggressive behaviour as the SAC baseline controller,
whereas the low gain LC contained similarities with the SAC controller with CAPS.

This paper contributes to moving civil aviation towards RL flight control, as a fault-tolerant pitch rate command
system, using SAC with CAPS, was shown to be robust to off-nominal flight conditions and biased sensor noise while
maintaining Level 1 longitudinal HQ. The controller outperforms LCs within the same CSAS flight control framework
in terms of tracking performance. It is therefore a step towards the implementation of RL flight control in practice and
eliminates the need for gain scheduling. For future research, it is recommended to spend more time on optimizing the
hyperparameters of the controller to increase the performance even further. Additionally, the pitch angle could be added
to the state observation vector as an integral term, such that the controller is able remove the steady state errors.
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3
Reinforcement Learning for Flight Control

This chapter will cover the application of Reinforcement Learning (RL) to flight control. The aim of this

research is to evaluate and integrate Handling Qualities and Stability properties (HQ&S) in RL flight

control applications and therefore it is not considered desired a RL framework from scratch. The focus

of this research fill rather be selecting an existing state-of-the-art framework and use it to apply HQ&S

analysis. Therefore, this chapter will provide an analysis of the core principle of RL in Section 3.1 for the

understanding of RL in general. Subsequently, the key characterizing feature of RL frameworks will be

discussed in Section 3.2 after which three state-of-the-art RL frameworks and their application to flight

control will be presented in Section 3.3. To conclude, a summary with the main findings and answers to

the first research questions will be given in Section 3.4.

3.1. Core Principle of Reinforcement Learning
The general idea behind RL is that the learning process is based on interaction with the environment,

primarily inspired by how animals learn through trial and error. RL can be distinguished from the two other

main fields within Machine Learning (ML); i.e. supervised and unsupervised learning. Where supervised

learning uses labeled data from the training set and generalizes for unseen cases during testing, RL rather

focusses on learning from its own experiences while interacting with the environment. The distinction

between unsupervised learning and RL is more delicate, as both methods use unlabeled data. The

difference, however, is that unsupervised learning is more about classification and structuring of the

unlabeled data, whereas the main goal of RL is to maximize the reward with the help of unlabeled data [7].

This section will provide an overview of the key concepts and core principle behind RL, necessary to

understand the application of RL to flight control. The fundamental theory discussed in this section is

based on the approach developed by Sutton and Barto [7].

3.1.1. Agent and Environment Concept
As mentioned before, RL evolves around the principle of learning from interaction. Figure 3.1 shows

schematically how the interaction between the learning agent and the environment is realized. The agent

performs an action a and in turn receives a state s and reward r from the environment. The goal in RL is

to take the best possible set of sequential actions in order to maximize the cumulative reward over time.

Note that the selected action a is dependent on the state s received by the agent. When reinforcement

learning is applied to a control problem, the agent, environment and action correspond to the controller,

plant and control input respectively.

3.1.2. Markov Decision Processes
When the agent interacts with the environment at a time step t, it receives a state st ∈ S and based on
that state it selects the corresponding action at ∈ A(s), where S and A(s) are the state and action spaces
respectively. As a result, the environment provides a new state st+1 and returns a reward rt+1 ∈ R. The
agent has to make a decision about which action to take at every time step t, hence the process becomes
a sequential decision making problem. The state and reward are random variables and the mathematical

representation of the probability of reaching a state and reward at time t+ 1, given all previous states the
agent has observed and actions it has taken is given by Equation 3.1.
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Figure 3.1: Interface between the agent and the environment in Reinforcement Learning with the action, state and

reward.

P{st+1, rt+1|st, at, ...s0, a0} (3.1)

Equation 3.1 is said to have the Markov property when the state at time t+ 1 is independent of all states
and actions up until time t− 1 given the states and actions at time t. The resulting probabilistic equation
then becomes:

P{st+1, rt+1|st, at} (3.2)

Equation 3.2 represents the full dynamics of a Markov Decision Process (MDP). When the sets S, A(s)
and R have a finite number of elements, the process becomes a finite MDP.

3.1.3. Reward and Return
The goal of the agent is to maximize the sum of expected future rewards over time, which is often referred

to as the expected return Gt in RL terminology. Maximizing the expected return does not necessarily mean

taking all the actions that yield the best instantaneous rewards, as future rewards should also be taken

into account. The expected return for a task with finite time, i.e. an episodic task, can be computed with

Equation 3.3.

Gt = rt+1 + rt+2 . . . rt+n =

n∑
k=1

rt+k (3.3)

When there is a task with infinite duration, in other words a continuing task, Equation 3.3 might reach

infinity as well. Therefore a discount factor γ is introduced, ensuring that the total expected return remains

definite. The newly formulated expected return can now be described by Equation 3.4, where the discount

factor takes a value within the range 0 ≤ γ < 1.

Gt = rt+1 + γrt+2 + γ2rt+3 · · · =
∞∑
k=0

γkrt+k+1 (3.4)

The recursive property of the expected return can already be noted:

Gt = rt+1 + γGt+1 (3.5)

The reward signal that the agent achieves from the environment is up to the designer of the RL framework.

For instance, it is possible to only provide a positive reward to the agent when the final goal of the task is
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reached or give the agent rewards for intermediate goals to aid in reaching the final goal faster. The latter

of course takes some freedom away and might lead to the designer supervising the RL agent in the end

after all.

3.1.4. Policy and Value Functions
The policy of a RL agent, denoted by π, is defined by the probability of taking an action, given a state at
time step t, as represented by Equation 3.6. In other words, it is a mathematical representation of telling
the agent what to do at each state it encounters.

π(at|st) = P{at|st} (3.6)

In order for the agent to know what policy yields the maximum expected return, which is in the end the

goal of RL, a value function is required. Equation 3.7 shows the definition of the state-value function V π;

the expected return, given the current state while taking policy π. It describes how favorable the current

state is based on the policy of the agent and the resulting expected return.

V π(st) = Eπ [Gt|st] = Eπ

[ ∞∑
k=0

γkrt+k+1|st

]
(3.7)

In a similar fashion, an action-value function Qπ can be formulated by not merely including the current state

but also the current action. Equation 3.8 shows the relationship between the action-value, also known as

Q-value, and the expected return.

Qπ(st, at) = Eπ [Gt|st, at] = Eπ

[ ∞∑
k=0

γkrt+k+1|st, at

]
(3.8)

3.1.5. Bellman Optimality Equations
The recursive property of the expected return, as introduced by Equation 3.5, can be combined with the

relation for the state-value function of Equation 3.7 to demonstrate that the state-value function experiences

a similar recursive property as shown by Equation 3.9. Exactly the same could be done for the Q-value

function, resulting in Equation 3.10.

V π(st) = Eπ

[ ∞∑
k=0

γkrt+k+1|st

]
= Eπ [rt+1 + γGt+1]

= rt+1 + γV π(st+1)

(3.9)

Qπ(st, at) = rt+1 + γQπ(st+1, at+1) (3.10)

These relations are better known as the Bellman equations and are the foundation for update laws in RL,

due to the recursive property. The expected return can be maximized by taking an optimal policy π∗, i.e. a

policy with higher expected return than all other policies. It is possible that several optimal policies exist

that yield exactly the same return. The optimal value functions are reached when the optimal policy is

used as shown in Equation 3.11 and Equation 3.12 for the state- and action-value functions respectively.

These equations, combined with the recursive properties from Equation 3.9 and Equation 3.10 are known

as the Bellman optimality equations. Updating and learning the optimal versions of the policies and value

functions is an iterative process, for which multiple methods exist.

V ∗(st) = maxπV
π(st) (3.11)

Q∗(st, at) = maxπQ
π(st, at) (3.12)
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3.2. Key Characterizing Features
In this section an overview of the key characterizing features in RL will be presented. These features

distinguish RL frameworks from each other and will aid in the selection of the framework best suited for

this research. The theory described in this section is based on the concepts defined by Dong et al. [8].

3.2.1. Update Laws
Within RL, there are three main approaches for providing a solution to the RL problem through the use of

update laws. These are Monte Carlo (MC) methods, Dynamic Programming (DP) and Temporal Difference

(TD) learning.

The working mechanism behind MC methods in RL is that they rely on running through a series of states

and actions, during which rewards are received. After an episode is completed, the policy of the RL

agent is updated. This already highlights the weakness of MC methods, because the parameters are

updated episodically and thus not at every time step. The benefit of MC methods, however, is that no prior

knowledge of the environment is required. Furthermore, bootstrapping, which is the reliance of the current

estimate on the previous estimate, does not occur.

In contradiction with MC methods, the framework of DP does require full knowledge of the environment

and heavily relies on it. DP generally uses policy evaluation and policy improvement, where the Bellman

equations are used as update rule. The value function is iteratively improved at every time step by

evaluating the current policy and subsequently the policy is improved using the improved value function.

In this way bootstrapping occurs, as the current estimates of the value functions and policies rely on the

previous estimates.

TD learning is a balance between MC methods and DP; it does rely on bootstrapping but does not require

complete knowledge of the environment it interacts with. Equation 3.13 expresses the TD update rule for

the current value function V (st), based on its own estimate, the reward, the target value function V (st+1)
and the TD learning rate λ.

V (st)← V (st) + λ [rt+1 + γV (st+1)− V (st)] (3.13)

3.2.2. Exploration vs. Exploitation
One of the common trade-offs that needs to be made in RL is the one between exploration and exploitation.

When the agents takes random actions it has a higher chance of exploring unseen or unknown areas of the

environment. This could be beneficial for finding an optimal policy. An agent that relies fully on exploitation

on the other hand, always takes the greedy action, i.e. the action that leads to highest immediate reward

according to the value function. The downside of this is that if the value function is not accurate, it will

never find the optimal value function.

In practice, the trade-off between exploration and exploration is not binary. It is for example possible to

add some noise to a greedy agent for exploration when the policy is not already stochastic. An alternative

approach is to apply a ratio between exploration and exploitation with a factor ε, where exploration is

multiplied with ε and exploitation with (1− ε). In such an update law the factor ε can be decayed over time,
such that the agent has an exploring nature in the beginning whilst becoming more greedy the longer the

learning process takes.

3.2.3. On-policy vs. Off-policy Learning
On-policy and off-policy learning can be distinguished by the way the executed action is used for learning.

With on-policy learning the agent uses the executed action directly for updating its policy. Off-policy learning,

however, is based on improving a policy that is not used for executing the actions. This is approach has

the benefit that it can use more exploration for better generalization, but has the disadvantage of slow

convergence.

3.2.4. Model-based vs. Model-free
The knowledge of the environment significantly influences the way RL agents learn. When a state-transition

model is required for the agent, the learning framework is called model-based. DP methods fall under this

category as they require full knowledge of the environment.
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For model-free RL, there is no need for a state-transition model and the agent treats the environment as a

black box. The agent can directly try to optimize its policy or develop a model by itself through the use of

model identification. The latter utilizes a model of the environment, but it is not required before the learning

process starts and therefore it is still considered to be model-free.

3.2.5. Offline vs. Online Learning
The learning process of the agent can be either performed offline or online. The latter requires very

sample-efficient algorithms, as there is usually no room for mistakes while learning during interaction.

When online learning is applied to fault tolerant flight control, it is often referred to as adaptive control.

On the other side, for offline learning it is not required to learn as quickly as possible and mistakes are

allowed. It can however be used for fault-tolerant flight control, in the form of robust control. This is because

methods using offline learning, like Deep Reinforcement Learning (DRL) frameworks commonly have a

higher generalization power. It is not uncommon to use both offline and online learning during training. A

hybrid form could be used where offline learning can be implemented to learn basic knowledge about the

system after which online learning can be applied during real-time interaction with the environment.

3.2.6. Discrete vs. Continuous Learning
Most of the theory developed so far holds for discrete RL problems. The flight control application, however,

contains continuous state and action spaces and when these are discretized the problem can grow

very large resulting in the curse of dimensionality. Nevertheless, function approximation can provide a

solution for this issue. Numerous methods of function approximation exist, like least-square methods,

nearest-neighbour and multivariate splines.

Most state-of-the-art RL frameworks implement Artificial Neural Networks (ANNs) as function approximators

due to their nonlinear nature and high generalization power. Recent advances have led to ANNs with

multiple hidden layers known as Deep Neural Networks (DNN), resulting even better generalization power,

but also a higher complexity and thus longer learning time.

3.3. State-of-the-art Reinforcement Learning Frameworks
Now that the basic principles of and key characterizing features of RL have been discussed, the state-

of-the-art algorithms will be outlined in this section. Since the goal of this research is not to develop or

optimize a RL framework itself, but rather using an existing framework for higher-level analysis in terms of

Handling Qualities and Stability properties (HQ&S), only a brief analysis of the work mechanism behind

each framework will be provided. Furthermore, an example of the flight control application for each of the

frameworks will be presented based on recently performed research.

3.3.1. Approximate Dynamic Programming Algorithms
In essence, Approximate Dynamic Programming (ADP) is a class of RL, where DP is used in combination

with function approximators such that it can be applied in continuous state and action spaces, by avoiding

the curse of dimensionality [9]. ADP algorithms frequently use actor-critic structures, where the actor

maps the state to the action, resembling the policy, and the critic approximates the value function. Several

on-policy Adaptive Critic Designs (ACDs) have been developed and can be distinguished by multiple

parameters [10]. Heuristic Dynamic Programming (HDP) uses the state-value function as an input for the

critic, whereas Dual Heuristic Programming (DHP) uses the gradient of the state-value function. Global Dual

Heuristic Programming (GDHP) uses both the state-value and its gradient for as input for the critic. These

three versions can become action-dependent when the action is added to the critic input, or incremental

when the environment is approximated by an incremental model to remove the model-dependency.

Flight Control Application

The concept of ACDs has been successfully applied to flight control, for example to the Cessna Citation II [3].

In the study, an Incremental Dual Heuristic Programming (IDHP) is used to control a 6-degree-of-freedom

model in a decoupled fashion, where a target critic is added to decrease learning instability. As can be

seen in Figure 3.2, PID controllers are used to give rate commands and the IDHP agent is charge of the

control surface deflections. The agent is trained fully online and it is demonstrated that the controlled

aircraft shows fault tolerant behaviour.
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Figure 3.2: Block diagram of decoupled IDHP agent for altitude and attitude control applied to the Cessna Citation II

[3].

Another example of the implementation of ACDs is the application of Incremental Global Dual Heuristic

Programming (IGDHP) to a nonlinear longitudinal model of the F-16 [11]. It shows that the IGDHP has

superior tracking performance on an online attitude tracking problem over regular GDHP. Next to that, it

shows better fault-tolerance for experiments with a decrease in elevator bandwith, control effectiveness

and partial horizontal stabilizer damage.

3.3.2. Twin-Delayed Deep Deterministic Policy Gradient
The working mechanism behind Deep Deterministic Policy Gradient (DDPG) algorithms is an actor-

critic structure, similar to ACDs, where stochastic policies are integrated over the state space to form a

deterministic policy. It is a model-free, off-policy learning algorithm, where DNNs are used for function

approximation. Furthermore, experience replay is used for learning, meaning that samples are taken from

a replay buffer that stores states, actions and rewards from the past. DDPG algorithms use target networks

for the actor and critic to avoid divergence [12].

Twin-Delay DDPG (TD3) builds upon the approach of DDPG and is adapted with multiple improvements,

one of which is the use of two critic networks. This helps reducing the overestimation of the value function,

as the minimum of the two networks is selected for updating the target networks. Next to that, some noise

is added to the target action for updating the actor such that exploitation of minor improvements is avoided.

As a last improvement, TD3 uses delayed policy updates, meaning that the policies are updated at a lower

rate than the Q-values with aim of improving stability [13].

Flight Control Application

TD3 has been applied to the Flying-V aircraft developed by the TU Delft recently [14]. The main goal of the

research was to investigate how a TD3 agent could be used to cope with aerodynamic model uncertainty,

using offline learning. The control diagram of the developed longitudinal controller with the purpose of

tracking altitude is shown in Figure 3.3. The outcome of the research was that TD3 is able to track reference

signals related to the altitude and showed robustness to aerodynamic model uncertainty of 25%.

Figure 3.3: Block diagram of TD3 agent for altitude control applied to the Flying-V [14].
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3.3.3. Soft Actor-Critic
The Soft Actor-Critic (SAC) is another improved version of the DDPG algorithm explained in the previous

subsection. It is an off-policy learning algorithm with a stochastic policy, which is favourable for exploration.

The SAC algorithm adds an entropy term to the Q-function, which is a metric of the randomness in the

policy at the given state. This ensures that states with high randomness and thus uncertainty are explored,

which makes the probability of reaching a superior solution more likely. Similar to TD3, the SAC algorithm

learns two Q-functions to avoid overestimating the value. When the SAC agent is used for evaluation, the

mean of the stochastic policy is used, such that randomness is removed [15].

Flight Control Application

The SAC controller has been implemented to the Cessna Citation II, in the form of a cascaded control

system shown in Figure 3.4 [4]. Offline training was performed for the nonlinear coupled aircraft model.

Results of the research show that the algorithm is robust to several failure cases, related to reduced control

effectiveness, center of gravity shifts and structural failures.

Three state-of-the-art RL algorithms have been presented in this brief analysis. For the implementation of

this research, the preferred method of training is offline, as the evaluation and integration of HQ&S in RL

flight control is proof-of-concept. This leaves the TD3 and SAC algorithms, as the strength of ACDs is its

online adaptability. The SAC is preferred over the TD3 algorithm, as it has a better sampling efficiency

than TD3. Furthermore, the code used for the SAC flight control implementation is readily available, which

means more time can be spent on the HQ&S research.

Figure 3.4: Block diagram of SAC agent for altitude and attitude control applied to the Cessna Citation II [4].

3.4. Synopsis
This chapter provided an analysis of the application of RL in flight control. It started with the core principle

of RL, which forms a foundation for the understanding of the state-of-the-art algorithms. Furthermore, an

overview of the key characterizing features of RL was presented, with the aim of clarifying the distinction

between individual RL frameworks. Lastly, three state-of-the-art RL frameworks were presented, together

with their implementation to flight control problems. The SAC algorithm was selected as state-of-the-art RL

framework due its high generalization power, robustness, sample efficiency and ease of implementation

as the code is readily available. The latter is an important criterion, as this research puts emphasis on the

evaluation of HQ&S instead of designing a RL framework. With the selection of the SAC algorithm, RQ 1.1

has been answered.

As the code presented in the research by Dally et al. will be used, some design choices are already made

[4]. The algorithm is applied to the Cessna Citation II, hence the aircraft model and flight control framework

is selected. Furthermore, the integration of the RL and flight control frameworks are already done. This

provides answers to RQ 1.2 and RQ 1.3 and thus RQ 1 is answered entirely.



4
Handling Qualities and Stability Properties

The state-of-the-art Reinforcement Learning (RL) frameworks applied to flight control that were analyzed in

Chapter 3 have one key element in common, their performance was assessed primarily on aspects related

to the tracking error. There is however the need for a more general description of the performance of RL

flight control systems, including how a pilot will experience flying such systems. This is where the Handling

Qualities (HQ) can come into play, as they describe how the pilot experiences the (augmented) aircraft’s

response to pilot inputs [16]. Next to that, the stability properties of an aircraft give more insight in how an

aircraft responds to disturbances and if it is able to return to a steady state. Furthermore, it might also

aid in the design of RL flight control systems when using the Handling Qualities and Stability properties

(HQ&S) in the learning process, e.g. by reward signal adaptation.

Before diving deeper into the world of HQ&S, two aspects have to be discussed. First of all, it should

be noted that in literature the terms Flying Qualities (FQ) and Handling Qualities (HQ) are sometimes

used interchangeably, but there is a clear distinction between them. The FQ are related to how the

pilot experiences the aircraft’s behaviours with respect to the mission task, whereas the HQ address the

response. Figure 4.1 illustrates the distinction between FQ and HQ for a fly-by-wire controlled aircraft,

where the pilot gives commands to the flight control system. FQ are therefore higher-level performance

metrics, but are harder to quantify as it often involves the pilot’s opinion.

Figure 4.1: Schematic representation of a pilot performing a flight mission task. The relation of the pilot to the Flying

and Handling Qualities is shown [16].

Secondly, this chapter will address the longitudinal motion of the aircraft and the short period response

in particular, because there is an extensive amount of literature written on this subject. Besides that, to

the best of the author’s knowledge, it is one of the first researches in which the HQ&S are evaluated and

adapted for a RL flight control system and therefore it is considered to be a proof-of-concept.

This chapter will start with an overview of the most relevant HQ&S that might be applied to a RL flight

control system in Section 4.1. The analysis of HQ&S of nonlinear or intelligent flight control systems is

31
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not trivial. As a RL flight control system falls inside this category, Section 4.2 is dedicated to this matter.

Several potential methods for placing the HQ&S at certain design points, will be discussed in Section 4.3.

Finally, the main take-aways of this chapter will be summarized in Section 4.4.

4.1. Overview of Relevant Handling Qualities and Stability Properties
Civil aviation authorities have set a wide range of requirements for the safety of the aircraft, but there are no

strict requirements or elaborate guidelines of the FQ and HQ [16]. The military standards (MIL-STD-1797A),

however, provide detailed descriptions of the FQ and HQ&S requirements and on their acceptable means

of compliance to aid the design of aircraft [6]. These standards are commonly used and will therefore be

applied to this thesis as well.

The military standards apply to different aircraft classes and flight phase categories, for which the flying

qualities are rated with three individual levels. The aircraft are subdivided into classes according to their

weight and manoeuvrability as specified by Table 4.1.

Table 4.1: The four aircraft classes for FQ and HQ&S qualification according to the military standards [6, 16].

Class I Small light aeroplanes.

Class II Medium weight, low to medium manoeuvrability aeroplanes.

Class III Large, heavy, low to medium manoeuvrability aeroplanes.

Class IV High manoeuvrability aeroplanes.

The FQ and HQ requirements are also dependent on the flight phase. As one can imagine, the requirements

during normal operating conditions in cruise alter from the ones that apply during a terminal flight phase.

Table 4.2 shows the three different categories related to the flight phase.

Table 4.2: The three categories of flight phases for FQ and HQ&S qualification according to the military standards [6,

16].

Category A Non-terminal flight phases that require rapid manoeuvring,

precision tracking, or precise flight path control.

Category B Non-terminal flight phases that require gradual manoeuvring,

less precise tracking and accurate flight path control.

Category C Terminal flight phases that require gradual manoeuvring

and precision flight path control.

Finally, the FQ and HQ can be divided into three different levels that specify the pilot workload as shown in

Table 4.3.

Table 4.3: Three levels of FQ and HQ&S according to the military standards [6, 16].

Level 1 Flying qualities clearly adequate for the mission flight phase.

Level 2 Flying qualities adequate to accomplish the mission flight phase,

but with an increase in pilot workload and, or, degradation in mission effectiveness.

Level 3 Degraded flying qualities, but such that the aeroplane can be controlled,

inadequate mission effectiveness and high, or, limiting, pilot workload.

4.1.1. Cooper-Harper rating scale
Translating the pilot workload into mathematically quantifiable guidelines or requirements is not trivial. A

rating scale was developed which had the aim to express the pilot’s experience into a number between 1

to 10, with 1 being the value for the lowest workload and 10 for the highest [17]. The full scale is visualized

in Figure 4.2. Note that the FQ and HQ&S levels expressed in Table 4.3 correspond to the ratings of the

Cooper-Harper rating scale as follows: Level 1 is equal to Cooper-Harper ratings 1-3, Level 2 corresponds

to 4-6 and Level 3 to 7-9 [16].
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Figure 4.2: Cooper-Harper rating scale quantifying pilot’s workload ratings [17].

The Cooper-Harper rating scale is especially useful for experiments with pilots, but for an initial evaluation

of the HQ&S of RL flight control systems it is recommended to start testing with simulations that do not

involve a pilot (yet). Hence, from this point onwards, HQ&S that can be obtained from numerical simulation

will be discussed.

4.1.2. Longitudinal Modes
The aircraft longitudinal motion is subject to two characteristic eigenmodes; the phugoid and the short

period [18]. The pitch rate q to a pilot control-deflection in δe,s transfer function in the longitudinal case can
be expressed by the following model [6]:

q(s)

δe,s(s)
=

Kθs (s+ 1/Tθ1) (s+ 1/Tθ2) e
−τes[

s2 + 2ζpωp + ω2
p

] [
s2 + 2ζspωsp + ω2

sp

] (4.1)

It should be noted that this is a representation of the linear simplified model for the longitudinal motion of

an aircraft, which in reality can be of higher order due to added control, sensor or actuator dynamics. For

now, the higher order dynamics are captured in the time delay τe, but a more deliberate analysis with Low
Order Equivalent System (LOES) fits will be provided later on in this chapter. There are several HQ&S

requirements posed by the military standards that apply to the transfer function parameters in Equation 4.1,

which are provided in Table 4.4 [6]. The requirements are set for the different levels of pilot workload

as defined in Table 4.3. It can be observed that the phugoid mode is allowed to be unstable for Level 3

(negative damping ratio), as long as the time constant Tθ1 is larger than 55 seconds.
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Table 4.4: HQ&S requirements of the aircraft’s longitudinal response for the three levels of pilot workload [6].

Level 1 Level 2 Level 3

Damping ratio short period [-] 0.35 ≤ ζsp ≤ 1.3 0.25 ≤ ζsp ≤ 2.0 0.15 ≤ ζsp

Damping ratio phugoid [-] ζp > 0.04 ζp > 0.0 Tθ1 > 55 s

Natural frequency short period [rad/s] ωsp ≥ 1.0 ωsp ≥ 0.6 -

Time delay [s] τe < 0.1 τe < 0.2 τe < 0.25

For most aircraft, the short period mode can be isolated from the phugoid mode, as it is a much quicker

response. The model for the short period is then represented by the following equation [6]:

q(s)

δe,s(s)
=

Kθ (s+ 1/Tθ2) e
−τes

s2 + 2ζspωsp + ω2
sp

(4.2)

4.1.3. Control Anticipation Parameter
The guideline for the design and analysis of the aircraft’s short period behaviour that has the highest priority

according to the military standards is the Control Anticipation Parameter (CAP) [6]. It was defined in a

study by Bihrle, as a metric that describes the pilot’s anticipation on how the aircraft responds in the future

based on the initial angular pitch acceleration after a longitudinal stick deflection [19]. More concretely, the

CAP is the instantaneous angular pitch acceleration θ̈0 over the steady state normal load factor nzss as

represented by Equation 4.3.

CAP =
θ̈0
nzss

(4.3)

When a change in flight path is required and the CAP is too low the aircraft tends to feel sluggish and the

pilot might increase the stick deflection which in turn could result into Pilot Induced Oscillations (PIO). On

the other hand, when the CAP is too high the aircraft tends to feel much more sensitive and could result

into oscillatory behaviour as well. Therefore, boundaries were set on the CAP and short period damping

ratio ζsp for the various flight phase categories [6]. Figure 4.3 shows the CAP and damping ratio bounds for

an aircraft in flight phase category A with Level 1, 2 and 3 pilot workload ratings, as defined in Section 4.1.
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Figure 4.3: CAP boundaries for the three levels of pilot workload [6].
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The CAP as specified in Equation 4.3 can be obtained in the time domain from a step response analysis.

It was found, however, that the CAP is also related to the short period undamped natural frequency ωsp

and the acceleration sensitivity parameter nα [19]:

CAP =
ω2
sp

nα
(4.4)

From a frequency domain analysis and the Laplace final value theorem the CAP could be related to the

short period time constant Tθ2 as described in Equation 4.5. Here the constant aircraft velocity V and

gravitational constant g are used. It should be noted, however, that this relationship is only valid for second
order short period models.

CAP =
ω2
sp

V
g

1
Tθ2

(4.5)

Bischoff further extended the CAP definition to higher order systems and augmented aircraft, where control

dynamics are no longer neglected [20]. Figure 4.4 illustrates the pitch acceleration step response of a

Higher Order System (HOS) and clearly shows that the maximum pitch acceleration is reached at some

time t after t = 0, which is not the case for second order systems. To account for this effect, an attenuation
factor was developed. Initially, DiFranco added this factor for a feel system [21] and thereafter it was

further developed to account for additional higher order dynamics as well by Bischoff [20]. In essence,

the attenuation factor merely scales the CAP found from the second order model with the ratio between

the maximum acceleration of the HOS θ̈mas and the instantaneous acceleration of the second order short

period model θ̈0,sp. Hence, the resulting CAP of the HOS, also referred to as CAP ′, becomes:

θ̈nd =
θ̈max

θ̈0,sp
(4.6)

CAP ′ =
θ̈max

nzss

=
ω2
sp

V
g

1
Tθ2

θ̈nd (4.7)

Figure 4.4: Pitch acceleration of a HOS as the result of a step input by the pilot [6].

Finally, from linear analysis it can be shown that the CAP is a function of the center of gravity x̄cg and

aerodynamic center x̄ac. Roskam translates these parameters, together with other aircraft parameters into

the so-called maneuver margin [22]. Hence, the CAP regions specified by Figure 4.3 can be converted to

the maneuver margins of the airplane, which be useful for a sensitivity analysis.
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4.1.4. Bandwidth and Phase Delay Criteria
The bandwidth ωBW is defined as the highest frequency at which the pilot can close the loop, without

the possibility of unstable behaviour [23]. It is the frequency at which the Gain Margin (GM) is at least 6

dB and the Phase Margin (PM) is no less than 45 degrees. The bandwidth is therefore either gain- or

phase-limited, in general it could be said that the larger the bandwidth the better, because the pilot is able

to follow all commands below this frequency. Nevertheless, it does not necessarily mean that aircraft with

the same bandwidth have similar HQ. The shape of the phase diagram significantly influences the HQ, as

a steeper roll-off at the point of neutral stability (-180 degrees) results in a more rapid decrease of the PM

when the pilot increases its gain [6]. Therefore, a phase delay parameter τp was introduced [23]:

τp =
∆φ2ω−180◦

57.3(2ω−180◦)
(4.8)

In this equation, ∆φ2ω−180◦ denotes the phase at twice the frequency where the phase φ is -180 degrees

and 2ω−180◦ is the corresponding frequency. Figure 4.5 shows the effect of the bandwidth and phase delay

on the HQ.

Figure 4.5: HQ shown as pilot workload levels for a category A flight phase, as a function of bandwith and phase

delay [6].

4.1.5. Neal-Smith Criterion
The Neal-Smith criterion was developed for pitch angle tracking tasks and used as a metric for Pilot

Induced Oscillation (PIO) [24]. A fixed bandwidth ωBW and pilot time delay taup are set for the tracking task

illustrated in Figure 4.6, where the goal is to find the pilot compensation parameters to meet a ”droop” of no

more than 3 dB. The Neal-Smith criterion can be rated on HQ levels as a function of the pilot compensation

and the maximum closed loop resonance, for a bandwidth of 3.5 rad/s, according to Figure 4.7 and

Figure 4.8, where the latter includes qualitative pilot ratings [23]. The pilot time delay τp was originally set
at 0.3 seconds, but later it was adapted to 0.25 [6].

Figure 4.6: Pitch rate tracking control loop for Neal-Smith criterion [23].
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Figure 4.7: Neal-Smith criterion showing the pilot

compensation versus the closed loop resonance [23].

Figure 4.8: Neal-Smith criterion with pilot comments

[23].

4.1.6. Gibson Criterion
TheGibson criterion was developed for highly augmented aircraft and consists of two individual components;

the pitch attitude dropback and the phase rate [25]. The former is based on an step input response where

the following parameters are used:

• qmax, the maximum pitch rate

• qss, the steady state pitch rate

• DB, the dropback parameter, which is the peak value of the pitch attitude θpeak minus the steady
state pitch angle θss when the step input is taken away

The effect of the abovementioned parameters on the experience of the pilot when flying the aircraft are

qualitatively discribed in Figure 4.9.

Figure 4.9: Bounds of the Gibson dropback criterion [26].

The other component of the Gibson criterion, the phase rate, is comparable to the phase delay defined in

Section 4.1.4. The average phase rate, is a function of the frequency where the phase is -180◦ and the

phase at twice that frequency as defined in Equation 4.9. The relation to the HQ ratings is portrayed in

Figure 4.10, where the frequencies are shown in Hz instead of rad/s.

Average phase rate =
−φ2ω−180◦ + 180◦

ω−180◦
(4.9)
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Figure 4.10: Pilot HQ ratings for the Gibson phase rate criterion [25].

4.2. Analysis of HQ&S for nonlinear Flight Control Systems
Most of the previously mentioned HQ&S guidelines have been widely applied to linear flight control systems

[6]. When nonlinearities are present in the control system however, for instance due to actuator limiters,

the analysis of HQ&S as discussed in the preceding section is not entirely applicable any more. For that

reason, this section will cover methods found in literature that demonstrate how to evaluate HQ&S for

nonlinear flight control systems.

4.2.1. Time Domain Analysis
Simulation in the time domain is one of the methods to extract HQ&S from an intelligent or nonlinear flight

control system. Several of the guidelines mentioned in Section 4.1 can be directly retrieved from step

response simulation and therefore it is not considered complicated. Next to that, time domain simulation

with the full flight control system has the benefit that none of the higher order or nonlinear dynamics are lost,

since no linearization or order reduction is required. Hence, it captures the full properties of the system.

The downside however, is that a full step response simulation requires additional computational power,

when it is desired to analyse the HQ&S during the training of an RL agent at every time step for example.

Recently, a research was performed where the objective was to learn autopilot gains with a Deep Determin-

istic Policy Gradient (DDPG) algorithm [27]. An input gain k and time delay ∆t were placed in the control
block diagram according to Figure 4.11 and Figure 4.12 respectively. Numerical time domain simulation

was performed to examine at which values the of the gain and time delay the control system would get

unstable. Together with the crossover frequency f , which can be obtained from the time response, the

values at the point of instability were taken to compute the Gain Margin (GM) and Phase Margin (PM)

according to following equations:

GM = 20log(k) (4.10)

PM = 360f∆t (4.11)

Figure 4.11: Control diagram with an input gain for

determining the GM [27].

Figure 4.12: Control diagram with a time delay for

determining the PM [27].
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Although some of the nonlinear dynamics get lost with linearization, it is still a feasible option for examining

HQ&S in the time domain. For instance, a research was performed on the Flying-V aircraft where

the nonlinear equations of motion obtained from wind tunnel data were linearized. Subsequently, the

eigenvalues of the linear system were evaluated and translated into damping ratio’s and natural frequencies

of the response modes [28]. The model was reduced to second order by isolating the longitudinal states

that affect the short period response the most, with the purpose of evaluating the CAP. One of the findings

was that the CAP was lower for an aft center of gravity location compared to a more forward location, in line

with the theory discussed by Roskam [22]. Another paper by the same author on the Flying-V demonstrated

that the HQ&S could be steered towards more desired locations with an Incremental nonlinear Dynamic

Inversion (INDI) flight control system. The second order model used for HQ&S evaluation was, nevertheless,

not the most accurate representation of the higher order linear model and it was recommend to develop a

Low Order Equivalent System [29].

4.2.2. Low Order Equivalent Systems
The development of augmented flight control systems in the 1960’s lead to higher order flight control

systems due to additional sensor, actuator and control dynamics. It was found that a higher order linear

control system for the longitudinal short period motion could be represented reasonably well by a second

order model with an equivalent time delay that captures the higher order dynamics [30]. The so-called Low

Order Equivalent System (LOES), in the form of Equation 4.2, can be found by matching the gain and

phase at a range of frequencies [31]. It is recommended to match at frequencies between 0.1 rad/s and

10 rad/s, because this the range where pilots are most sensitive to feel the dynamics [6]. Equation 4.12

contains the cost function used for matching the gain G and phase φ of the Higher Order System (HOS)

and the LOES, with a scaling factor κ for the phase (usually 0.02 [6]), at a number of logarithmically spaced
frequencies Nω The scaling factor 20

Nω
is incorporated for the sake of comparison with other studies, as

typically 20 frequency points are used [31]. The objective is to minimize cost function J to achieve the

most optimal LOES fit.

J =
20

Nω

Nω∑
k=1

[
(G(ωk)HOS −G(ωk)LOES)

2 + κ(φ(ωk)HOS − φ(ωk)LOES)
2
]

(4.12)

An alternative, though similar fitting method, was developed where the cost function was weighted with

metrics that contemplate to what extent dynamics could be added to the flight control system without the

pilot noticing it. These metrics are better known as the Maximum Unnoticable Added Dynamics (MUAD),

which put emphasis on the frequencies where the pilot is the most sensitive [32]. Figure 4.13 shows

the bounds for both the gain and phase plots in purple, where it can be observed that the frequencies

in between 1 and 4 rad/s are the most significant. In order to have a fit that is satisfactory, the error

between the HOS and the LOES at the entire frequency range should fall within these bounds. Additionally,

verification of the MUAD concept was performed through human-in-the-loop experiments, where the results

were consistent with the developed MUAD bounds [33].

One of the primary topics of discussion concerning the LOES fit optimization in literature is the ”galloping

time constant”. When the second order model parameter Tθ2 is left free during optimization, it might

occur that the parameter takes unrealistic values. One approach is to keep the constant at a fixed value,

but this might lead to suboptimal fits. Currently, the best method for fixing this issue is by performing a

simultaneous load factor fit in addition to the pitch rate transfer function fit. This takes away a degree of

freedom and therefore keeps the time constant within realistic bounds [34].

When the aircraft model is (partially) unknown the LOES approach can be used on flight test data to identify

and validate the aircraft’s full closed loop flight control system. Morelli showed this for the NASA’s F-18

research aircraft [35]. Determining the LOES from flight test data requires a slightly different approach, as

not the entire bandwith for frequency matching is available. In the research, the Fourier transform was

used to convert the flight test data from the time domain to the frequency domain, after which the LOES

was fit to the data with output and equation errors [35].

Application to nonlinear flight control systems

The LOES method can not be directly applied to nonlinear flight control systems, as the principle solely

holds for linear control theory. A recent study provides a clear overview on how to convert a nonlinear
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Figure 4.13: MUAD bounds for gain and phase [32].

longitudinal flight control system to a second order short period model [36]. In this research, incremental

backstepping is applied to a F/A-18 aircraft model to aid in the design of nonlinear control laws, whilst

keeping track of HQ&S. Figure 4.14 shows the general procedure for the reduction of a nonlinear control

system, where the complete system is linearized to a HOS and subsequently fitted with a LOES. One of

the main findings of the research was how the incremental backstepping parameters affect the CAP [36].

Several other studies have been performed where the HQ&S are evaluated for nonlinear flight control

systems. For example, the application of a nonlinear adaptive backstepping controller on a high-fidelity

F-16 model, with online aircraft model identification [37]. In this study command filters were used to

smoothen the pilot input and steer the aircraft to the desired behaviour. Afterwards, HQ&S were evaluated

for verification through the use of simulation data. Time domain data was converted into frequency domain

data and then fitted with a LOES. This approach is more similar to the one posed by Morelli, as it uses

time domain data as a basis [35]. Furthermore, LOES fits were applied to the lateral modes and dynamics

of the aircraft as well [37].

Additionally, Smit et al. investigated the effect of the control effectiveness and center of gravity shifts on

HQ&S for an INDI controller. A second order command filter was applied and when it was accurately

followed, the control system satisfied the desired HQ&S [38]. In the research, a software package named

CONDUIT® was used for the optimization of flight control design with HQ&S compliance. The optimization

software for all relevant HQ&S evolves around the same principles as LOES fits [39]. After optimization

a decrease in HQ&S variation due to changes in control effectiveness and center of gravity shifts was

observed [38].

As a final example, a research was performed wherein a model reference nonlinear dynamic inversion

controller was developed and applied to Nasa’s F/A-18 testbed aircraft[40]. The study showed a comparison

based on the HQ&S for simulation and flight data. A LOES fit with MUAD bounds was applied to the

flight data and as it gave smooth fits that represented the dynamics very well, the fits were used for the

Neal-Smith criterion instead of raw flight data. Pilot’s comments were used to verify the HQ&S analysis.

To conclude, HQ&S evaluation and analysis for nonlinear flight control systems is common and typically

done by linearization and model order reduction. However, as far as known, the methodology described in

this section applied to RL flight control systems remains absent.
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Figure 4.14: Linearization of a nonlinear flight control system and LOES fitting procedure [36].

4.3. Adaptation to HQ&S for nonlinear Flight Control Systems
Now that methods for the evaluation of HQ&S for nonlinear flight control methods have been discussed,

the question is whether it is possible to steer the HQ&S in the desired direction. This section will cover

two potential approaches for the adaptation of RL flight control systems to the preferred HQ&S. First, the

concept of reference model following will be explained, which has been applied to several nonlinear flight

control systems and might thus be feasible to implement to an RL agent as well. Secondly, two studies

with RL agents that learn from reference models are discussed. When the reference model contains the

preferred behaviour, the RL aims to learn the similar properties. Note that this is different from reference

model following, as now it directly learns and tries to mimic the behaviour of the reference model instead

of following the commands.

4.3.1. Reference Model Following
The basic principle of reference model following in flight control is that when a reference model is placed

between the pilot and the control system and he is able to follow the reference model commands closely,

the full flight control system feels like flying the reference model. An example of reference model following

is posed by Rysdyk et al [41]. In the research, a tiltrotor aircraft with an adaptive nonlinear dynamic

inversion controller is commanded to follow a reference model. It shows that when the aircraft is able to

follow commands up to a certain frequency bandwidth, it has L1 handling qualities [41].

Another field of study, that is often interconnected with reference model following, is the design of Variable

Stability (VS) flight control systems, where the dynamics of the aircraft, or simulator, can be adapted for a

variable flying experience. Two studies performed on the Cessna Citation II with VS flight control systems

use methodologies that might be used for HQ&S adaptation in RL flight control. The first study incorporates

a VS system through response feedback, where the gains are tuned manually for the desired HQ&S [42].

The research shows that it is not entirely possible to exactly place the HQ&S on the desired location, but

compliance with Level 1 pilot work load ratings is possible. The second study uses a form of reference

model following [43]. The parameters of the second order reference model are tuned such that it has

the desired CAP and damping ratio of the short period motion. An INDI controller is then used to follow

the commands of the reference model closely. The basic principle is similar to the control block diagram

shown in Figure 4.14.

This methodology might be useful for steering the HQ&S properties of an RL agent towards the desired goal.

Further research on RL flight control with a reference model used as a command filter will be performed by
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means of preliminary experiments in Chapter 5.

4.3.2. Reference Model RL
Instead of using the reference model as a command filter, it can be used as a model where a RL agent

learns from. A recent study shows how a SAC agent runs in parallel with a baseline controller . The latter

is used for basic control and ensuring stability, whilst the SAC agent learns from a nominal model which

contains the desired performance. A schematic of the control system is given in Figure 4.15. The results

of the study show that the control system with a nominal model is superior over the control system without

the model (only SAC) in terms of stability and tracking performance [44].

Figure 4.15: Control diagram for reference model RL applied to an autonomous surface vehicle [44].

A similar study assesses how Model Reference Adapative Control (MRAC) can be use to provide stability

for DRL algorithms. An overview of the control system is illustrated in Figure 4.16, where DRL is used to

cope with the uncertainties of the plant. A reference model is implemented in parallel and the goal of the

controller is to follow the desired response posed by the reference model. The controller itself consists

of a linear feedback and feedforward term, together with an adaptive term resulting from the uncertainty

approximation by the DRL agent. Simulation are performed with a 6 degree-of-freedom quadrotor and

results show that the combined system shows better performance the traditional MRAC, as DRL has more

generalization power [45].

Figure 4.16: Control diagram of DRL MRAC [45].
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The general concept of using a reference model parallel to the RL agent to prescribe the desired behaviour

might be suitable for the adaptation to HQ&S. A more elaborate analysis of this principle will be performed

in Chapter 5.

4.4. Synopsis
This chapter provided an overview of relevant HQ&S for flight control, specifically applied to the longitudinal

motion of the aircraft. In particular, quantitative HQ&S were addressed, as piloted experiments with RL

agents and thus qualitative assessment is not feasible (yet). The three different levels of HQ&S applied

the various flight phases and aircraft categories were explained, all together providing the groundwork

for the analysis of HQ&S for RL flight control. According to the military standards, the CAP and short

period parameters have priority in the design of longitudinal flight control systems and will be therefore

considered first in further analysis, whereas the additional HQ&S outlined in this chapter could be assessed

and integrated in a later stage of this research, when time allows [6]. Thereby, RQ 2.1 is answered.

Besides that, it was shown that the HQ&S can be extracted from nonlinear flight control systems by either

time domain or frequency domain analysis. The former requires step response simulations for determining

the CAP, which increases the computational load. Furthermore, a method has been shown where the GM

and PM could be determined by numerically increasing the gain and delay until instability was observed in

the time response. For frequency domain analysis it was found that for nonlinear flight control systems

linearization is required, after which order reduction should be applied. The LOES fit approach was found

to be a widely applied method for reducing a HOS to an equivalent second order model from which HQ&S

could be assessed directly. The overview of time and frequency domain methods for evaluating HQ&S

provide a starting point for their application to RL flight control, which gives an answer to RQ 2.2.

Finally, two potential methods for the adaptation of RL flight control systems to the desired HQ&S were

presented. One of the approaches is to use a second order reference model as a command filter with

pre-selected HQ&S. In this framework, the goal of the RL is to follow the commands of the reference model

as closely as possible, such that the full control system have similar HQ&S as the reference model. The

alternative option is to use a reference model in parallel, inspired partially on MRAC. In this case, the RL

agent aims to mimic the reference model’s behaviour, with the goal of reaching comparable HQ&S. These

approaches already partially answer RQ 2.3 and RQ 3.3, but in order to investigate whether these methods

are feasible for shaping the RL agent to the preferred behaviour, further analysis is provided in Chapter 5.



5
Preliminary Analysis

This chapter will provide an overview of the preliminary experiments that were performed to get an initial

insight in the feasibility of evaluating HQ&S and in RL flight control and steering them towards the desired

values. The code is based on the code for a SAC controller developed by Dally et al. and will be referred

to throughout this chapter [4]. It should be noted that the preliminary experiments are a way of showing

the proof-of-concept and therefore only longitudinal dynamics and the most important HQ&S, according to

the military standards [6], are considered. First, the environment in which the SAC agent acts, the Cessna

Citation II, is briefly explained in Section 5.1. The SAC agent that is used will be outlined in Section 5.2,

where the hyperparameters of the agent are presented. The two ways of implementing the reference model

for HQ&S adaptation, as explained in the previous chapter, will be visualized in Section 5.3. Subsequently,

the tracking tasks are provided in Section 5.4. The results are presented in Section 5.5 and the preliminary

analysis will be concluded in Section 5.6.

5.1. Environment
The original research of the SAC controller was performed with a nonlinear model of the Cessna Citation II

[46, 4]. For the scope of the preliminary analysis, the same aircraft, but some simplifications are applied.

The envionment that will be used throughout this chapter is a linearized reduced longitudinal short period

model of the Cessna Citation II, as developed in [18]. The model is represented by a state space system:

ẋ = Ax+Bu (5.1)

Or, in discretized form:

xt+1 = xt + (Axt +But)∆t (5.2)

The state vector x consists of the angle of attack α and pitch rate q:

x =

[
α

q

]
(5.3)

The only control input u is the elevator deflection δe:

u =
[
δe

]
(5.4)

The system matrix A and input matrix B are defined by Equation 5.5 and Equation 5.6 respectively. The

values of the geometric properties, stability derivatives and the velocity V are presented in Table 5.1.

A =

 V
c̄

CZα

2µc−CZα̇

2µc+CZq

2µc−CZα̇

V 2

c̄2

Cmα+CZα

Cmα̇
2µc−CZα̇

2µcK2
Y

V
c̄

Cmq+Cmα̇

2µc+CZq
2µc−CZα̇

2µcK2
Y

 (5.5)
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B =

 V
c̄

CZδe

2µc−CZα̇

V 2

c̄2

Cmδe
+CZδe

Cmα̇
2µc−CZα̇

2µcK2
Y

 (5.6)

Table 5.1: Simplified longitudinal short period model parameters of the Cessna Citation II [18].

V = 59.9 m/s CZα
= -5.16 Cmα

= -0.43

c̄ = 2.022 m CZα̇
= -1.43 Cmα̇

= -3.7

µc = 102.7 CZq
= -3.86 Cmq

= -7.04

K2
Y = 0.98 CZδe

= -0.6238 Cmδe
= -1.553

5.2. Agent
The SAC agent used in this analysis is directly taken from [4]. The schematic of the actor-critic structure is

shown in Figure 5.1. Furthermore, the hyperparamters are presented in Table 5.2. These parameters

were not adapted, as they are already tuned. Besides that, it is not the goal of the project to optimize

hyperparameters.

Figure 5.1: Detailed schematic of the SAC framework, adapted from [4].

Table 5.2: Hyperparameters of the SAC agent, adapted from [4]

Parameter Symbol Value

Discount factor γ 0.99

Target critic smoothing factor τ 0.005

Actor and critic hidden layer sizes l1, l2 [64,64]

Actor and critic initial learning rates η 9.4e-4

Replay buffer batch size |B| 256

Replay buffer maximum size |D| 50000

Initial entropy coefficient η0 1.0

Number of episodes Ne 100
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5.3. Reference Model Placement
Now that the agent and environment are developed, the methodology for HQ&S evaluation and adaptation,

as explained in Chapter 4, can be applied. It was found that a reference model is necessary for steering

the HQ&S towards the desired values. The reference model used for the preliminary analysis is formulated

as follows:

qr,m(s)

qr(s)
=

Kθ (s+ 1/Tθ2)

s2 + 2ζspωsp + ω2
sp

(5.7)

Note that in this case, the pilot is directly controlling reference pitch rate qr and the output of the reference
model is qr,m. The parameters of the reference model are presented in Table 5.3. These values were
selected such that the model has a damping ratio of 0.707 and CAP of 1.0, which are in the center of the

L1 region for the CAP criterion Figure 4.3.

Table 5.3: Parameters of the second order reference model.

Parameter Value Unit

Kθ 6.1 -

Tθ2 0.5 s

ζsp 0.707 -

ωsp 3.49 rad/s

This section will present two approaches of placing the reference model in the SAC flight control system:

reference model following and reference model reward modification.

5.3.1. Reference Model Following
With Reference Model Following (RMF), the reference model is used as a command filter and placed in

front of the SAC controller Figure 5.2. Here, the goal of the SAC controller is to track the reference model

pitch rate signal qr,m as closesly as possible in order to approach the desired CAP. The observation that

the agent uses consists of the reference model pitch rate tracking error (q − qr,m) and the reward signal is
the negative squared pitch rate tracking error.

Reference model Agent Aircraft model
+

-

Figure 5.2: Block diagram of the SAC controller for RMF.

5.3.2. Reference Model Reward Modification
The second approach is to use the reference model as a way of modifying the reward signal. A schematic

overview of this method, for now named as Reference Model Reward Modification (RMR), is illustrated in

Figure 5.3. In this case, the pilot command qr is directly send to the agent and the reference model pitch
rate qr,m is used to give the agent feedback of its action by incorporating it in the reward signal. The agent

therefore tries to mimic the reference model behaviour, without receiving reference model commands (only

feedback through the reward afterwards). It turned out this is not a straightforward process and in order to

make it work additional information should be provided to the agent.

The observation of the agent consists of the reference pitch rate tracking error (q − qr), the pitch rate q,
the pitch acceleration q̇ and the elevator deflection δe. The reason that the pitch acceleration is added
is that the agent needs information on how fast the pitch rate is changing and results in more smooth



5.4. Task 47

step responses. Furthermore, the agent does not directly control the elevator deflection δe, but it uses
an incremental approach where the agent controls the elevator deflection derivative ˙deltae. Hence, the
elevator deflection is added to the observation of the agent, such that it knows the current deflection. A

rate limit of 100 deg/s was set on the incremental, to prevent aggressive behaviour of the agent.

The reward of the agent is defined by Equation 5.8. Note that instead of taking the square, the absolute

values are taken. The reason for this is that it showed better results compared to the squared error.

Furthermore, the pitch acceleration error is added to the reward signal, to aid the agent in approaching the

reference model HQ&S. A scaling factor of 1
10 is multiplied with the pitch acceleration error, as this value

led to the best results.

One final addition to the RMR approach was made to reach a more smooth behaviour, namely condition

for action policy smoothness [47]. This methods adds two loss terms related to temporal smoothness,

meaning that the action at time t+ 1 should be similar to the action at time t, and a spatial smoothness
term ensuring that actions should be the same for similar states.

All these adaptation were made to the RMR SAC controller, because without it, the controller would only

receive the reference pitch rate qr. When that is the case it would try to track the reference signal as

closely as possible, whereas this is not desired. For instance, when a step input is commanded, the HQ&S

guidelines prescribe a smooth response with a short rise time and small overshoot. To accurately follow

this behaviour, derivative terms are needed. This will be further demonstrated in Section 5.5.

r = −|q − qr,m| −
|q̇ − q̇r,m|

10
(5.8)

Reference model

Agent Aircraft model
+

-

Figure 5.3: Block diagram of the SAC controller for RMR.

5.4. Task
The training process for the RMF approach is done without the command filter, as it is not part of the closed

loop. A signal consisting of several superimposed sinusoids was therefore developed as a reference model

pitch rate tracking task qr, shown in Figure 5.4. For the RMR approach, on the other hand, the reference

model is part of the closed loop system as it it is used in the reward signal. Hence, it is necessary to

use step inputs as tracking tasks, as the step response is crucial for the correct adaptation to the HQ&S

guidelines. A sequence of step inputs with random magnitudes between -4 and 4 degrees was generated

and a realization of such a training task is illustrated in Figure 5.5.

For the evaluation of the two SAC controller, a similar task is considered to be useful for the sake of

comparison. A 3-2-1-1 step input sequences with magnitudes of -3 and 3 degrees for the reference pitch

rate is used, to assess the controller’s performance. An illustration of the evaluation task is given in

Figure 5.6. The 3-2-1-1 signal is chosen to investigate whether the duration of the step response has a

significant influence on the behaviour of the controllers or not.
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Figure 5.4: Training task for the SAC controller with RMF.

Figure 5.5: Training task for the SAC controller with RMR.
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Figure 5.6: Evaluation task for the SAC agent for both reference model following and reward modification.

5.5. Results
This section will present the results of the developed SAC controller with the RMF and RMR approach.

First, the training and evaluation results are shown, after which the HQ&S evaluation and adaptation is

highlighted. Furthermore, a sensitivity analysis on the effect of measurement noise for both controller will

be presented.

5.5.1. Training
The training processes of both controllers have a duration of 100 episodes. The training curves with the

total return for each episode is visualized in Figure 5.7. It should be noted that the results of both controllers

can not be compared accurately, because the reward signals are different. Since the reward signal of the

RMF is squared, it results in smaller values of the return, but does not mean that it has better performance.

The RMF approach shows convergence and the RMR seems to converge too, but has more variation in its

total return value.

The final episode of training is shown in Figure 5.8 and Figure 5.9 for RMF and RMR respectively. It can

be observed that the elevator deflection of both controllers shows oscillatory behaviour for exploration, but

the magnitude of the oscillations is significantly higher for RMF. This could be due to the fact that the RMR

controller contains various measures for smoothening the policy.
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Figure 5.7: Training curves with average return for the SAC controllers with RMF and RMR.

Figure 5.8: Training of the SAC controller during the final episode for RMF.
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Figure 5.9: Training of the SAC controller during the final episode for RMR.

5.5.2. Evaluation
The evaluation of the fully trained SAC controllers for RMF and RMR is shown Figure 5.10 and Figure 5.11

respectively. It can be observed that the RMF SAC controller is able to track the reference model pitch rate

qr,m very well. This could possibly be explained by the fact that the pilot reference pitch rate qr is command
filtered to a signal that is more easy to be tracked qr,m as it does not include the sudden changes of the

step input, but merely the desired response.

When looking at the evaluation of the task for RMR controller it can be concluded that it is worse in

approximating the reference model pitch rate qr,m than the RMF approach. This is obviously due to the

fact that the RMR controller does not directly receive the reference model pitch rate, but only knows the

pitch rate applied by the pilot qr and the other observations as mentioned in Section 5.3. It is observable,
however, that the agent is able to adapt to the general shape of the reference model behaviour, which is

one of the main goals. Further analysis of the HQ&S will be provided in the next section.
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Figure 5.10: Evaluation of the SAC controller after the final episode for RMF.

Figure 5.11: Evaluation of the SAC controller after the final episode for RMR.
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5.5.3. HQ&S Analysis
For the analysis of the HQ&S, the procedure developed in Chapter 4 was used. Linearization of the flight

control system and a subsequent Low Order Equivalent System (LOES) fit, was applied after every episode

for both controllers. Figure 5.12 shows the LOES fitting cost of the RMF and RMR approach during training.

It can be concluded that the LOES fits are better for the RMF SAC control system, which can be also

observed from the LOES fits at after training shown in Figure 5.13 and Figure 5.14 respectively. The RMF

controller has an almost perfect fit, while the fit of the RMR controller is slightly off. It should be noted that

the fit of the RMR controller remains within the bounds of the Maximum Unnoticable Added Dynamics

(MUAD) and is therefore considered still to be an accurate enough fit.

The mismatch of the RMR controller is also visible when zooming in on the individual LOES model

parameters shown in Figure 5.15 to Figure 5.19, where the reference model values are indicated with the

black dotted line. The RMF controller approaches the reference model parameters very closely, already

suggesting that the CAP might be accurate as well. The reason for the mismatch of the RMR controller

could be the linearization procedure. Linearization is performed at the trimming point of the aircraft by

using small perturbations. The smoothing factor and derivative terms for RMR, however, could potentially

manipulate the linearization as might result in delay effects. This is an issue that should be further analyzed

in the next stage of the research.

Figure 5.12: LOES fiting cost during training for the SAC controllers with RMF and RMR.
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Figure 5.13: LOES fits and MUAD bounds for the SAC controller with RMF after the final episode.

Figure 5.14: LOES fits and MUAD bounds for the SAC controller with RMR after the final episode.
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Figure 5.15: LOES gain comparison of the SAC controllers with RMF and RMR.

Figure 5.16: LOES time constant comparison of the SAC controllers with RMF and RMR.
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Figure 5.17: LOES damping ratio comparison of the SAC controllers with RMF and RMR.

Figure 5.18: LOES natural frequency comparison of the SAC controllers with RMF and RMR.
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Figure 5.19: LOES time delay comparison of the SAC controllers with RMF and RMR.

Further anlaysis was performed by zooming in on a single step response. As explained in Chapter 4, the

CAP can be determined from a step response in the time domain, by using the maximum pitch accelration

and steady state pitch rate. These can be taken directly from the step responses shown in Figure 5.20 and

Figure 5.21 for RMF and RMR respectively. Again, from the step responses it can be concluded that the

RMF approach reaches better tracking performance.

The time domain analysis of the CAP was performed at each episode for both controllers. The CAP

obtained from the frequency response using the LOES parameters is also determined after each episode.

The results and are shown in Figure 5.22 and Figure 5.23 respectively. One of the main conclusions that

can be drawn from these figures is that both controllers show a L1 rating for the CAP at the end of training.

Furthermore, the time domain CAP of the RMR approach seems to be more stable over time. This could

be due to the fact that the RMF is very sensitive to minor offsets, for example due to trimming. Hence, a

sensitivity study of measurement noise was performed, to further assess this phenomenon.
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Figure 5.20: Step response of the SAC controller with RMF.

Figure 5.21: Step response of the SAC controller with RMR.
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Figure 5.22: CAP during training, obtained from the LOES and time domain response for the SAC controller with RMF.

Figure 5.23: CAP during training, obtained from the LOES and time domain response for the SAC controller with

RMR.
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5.5.4. Measurement Noise Sensitivity
To assess the sensitivity of both controller to measurement noise, a zero-mean gaussian noise signal was

added to the pitch rate measurements. A standard deviation of 0.01 deg/s and 0.1 deg/s was applied and

the results in the form of step response are shown in Figure 5.24 to Figure 5.27. From close inspection

of the step responses, it can be seen that the RMF approach is much more sensitive to noise than the

RMR approach. The most probable explanation is that the RMF approximates a very high gain controller,

while the RMR does not. The RMR controller learns to mimic the behaviour of the reference model and is

therefore less sensitive too small offsets, while the RMF controller is tracking the reference model and

corrects small offsets with high deflections. This is an interesting finding and will be further anlysed in the

next phase of the research.

Figure 5.24: Step response of the SAC controller with RMF with a measurement noise standard deviation on the pitch

rate of 0.01 deg/s.
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Figure 5.25: Step response of the SAC controller with RMR with a measurement noise standard deviation on the

pitch rate of 0.01 deg/s.

Figure 5.26: Step response of the SAC controller with RMF with a measurement noise standard deviation on the pitch

rate of 0.1 deg/s.



Figure 5.27: Step response of the SAC controller with RMR with a measurement noise standard deviation on the

pitch rate of 0.1 deg/s.

5.6. Conclusion
This chapter showed the first experiments performed on the evaluation of HQ&S of an RL flight control

system. The SAC framework was used on a simplified longitudinal short period model of the Cessna

Citation II. The relation between the Cessna Citation II flight control framework and HQ&S was therefore

determined to be the short period motion and its corresponding HQ&S like the CAP and short period

damping. For now, this gives an answer to RQ 3.2. Two approaches were used for the implementation

of a second order reference model. The first approach, RMF, is a command filter approach, where the

reference model is placed between the pilot and the closed-loop SAC controller to shape the pilot’s input

according to desired HQ&S. The second method, RMR, is based on imitating the behaviour of the reference

model. The agent receives the pilot pitch rate tracking error, the elevator deflection and the pitch rate and

acceleration of the aircraft. The reference model error is not fed to the agent as an observation, but as part

of the reward signal, aiming to steer the agent in the direction with the desired HQ&S. This provides an

answer to RQ 3.1.

Both approaches were applied to the SAC controller before being trained and evaluated. From the results

it can be concluded that the RFM approach shows superior performance over the RMR approach in terms

of tracking. Furthermore, the LOES fit was better and the HQ&S from the frequency domain analysis

showed comparable values to the ones of the reference model. The RMR approach had more mismatch in

the LOES fits, which might be due to inaccurate linearization. In the time domain analysis, however, it was

shown that the CAP is more stable for the RMR approach. The RMF turned out to be very sensitive to small

disturbances. The consequences of this property should be further research and if possible avoided. All in

all, both approaches led to a L1 HQ rating for the CAP and therefore the adaptation to HQ&S properties is

considered to be performed successfully, thereby answering RQ 3.3.
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6
Robustness Analysis

This chapter shows the time response simulation for the online evaluation signal for the flight conditions

and CG shifts specified in Part I. The responses for one selected successful run for each SAC controller

will be presented and discussed to get more insight in the effect of altering flight conditions and CG shifts.

For the selected successful runs the nMAEs are 0.95% and 3.53% and the values for the elevator activity

are 0.37 deg/s and 0.39 deg/s for the SAC baseline controller and SAC controller with CAPS respectively,

as outlined in Part I.

6.1. H = 2000 m, V = 140 m/s
For the flight condition with H = 2000 m and V = 140 m/s, the results for both SAC controllers are presented

in Figure 6.1. This specific successful training run of the SAC baseline controller has a nMAE of 2.35%

and an elevator activity of 0.37 deg/s for the given flight condition. The SAC controller with CAPS results

in an nMAE of 3.82% and an elevator activity of 0.28 deg/s.

The most significant difference with the nominal flight condition is that the Power Lever Angle (PLA) gets

saturated from around t = 9 seconds. For both controllers, the velocity gradually decreases after the

saturation occurs, but other than that there are no major tracking issues. The nMAEs of both controllers

are slightly worse than the nominal flight condition for this reason.

6.2. H = 5000 m, V = 90 m/s
For the flight condition with H = 5000 m and V = 90 m/s, the results for both SAC controllers are presented

in Figure 6.2. This specific successful training run of the SAC baseline controller has a nMAE of 3.01%

and an elevator activity of 0.54 deg/s for the given flight condition. The SAC controller with CAPS results

in an nMAE of 5.19 % and an elevator activity of 0.55 deg/s.

This flight condition is the condition with the lowest dynamic pressure, which decreases the elevator

effectiveness. It results in reduced tracking performance and the SAC controller with CAPS does not

satisfy the bound of the nMAE anymore. Both controllers are still stable and keep following the reference

signal.

6.3. H = 5000 m, V = 140 m/s
For the flight condition with H = 5000 m and V = 140 m/s, the results for both SAC controllers are presented

in Figure 6.3. This specific successful training run of the SAC baseline controller has a nMAE of 1.71%

and an elevator activity of 0.42 deg/s for the given flight condition. The SAC controller with CAPS results

in an nMAE of 4.69% and an elevator activity of 0.41 deg/s.

For this specific flight condition, the PLA gets saturated again due to the increased reference velocity.

Therefore the autothrottle can not keep up with the reference velocity.
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6.4. Aft CG
For the nominal flight condition (H = 2000 m and V = 90 m/s) with an aft CG shift, the results for both

SAC controllers are presented in Figure 6.4. This specific successful training run of the SAC baseline

controller has a nMAE of 3.12% and an elevator activity of 0.44 deg/s for the given flight condition. The

SAC controller with CAPS results in an nMAE of 4.23% and an elevator activity of 0.47 deg/s.

6.5. Forward CG
For the nominal flight condition (H = 2000 m and V = 90 m/s) with a forward CG shift, the results for both

SAC controllers are presented in Figure 6.5. This specific successful training run of the SAC baseline

controller has a nMAE of 6.90% and an elevator activity of 0.38 deg/s for the given flight condition. The

SAC controller with CAPS results in an nMAE of 5.52% and an elevator activity of 0.47 deg/s.

For the forward CG shift, both controllers have difficulty with removing the steady-state error. There is an

offset in the elevator trim angle, which is caused by this CG shift. Therefore, the nMAEs of both controllers

are slightly above the threshold of 5%.
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Figure 6.1: Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation

signal, for H = 2000 m and V = 140 m/s
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Figure 6.2: Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation

signal, for H = 5000 m and V = 90 m/s.
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Figure 6.3: Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation

signal, for H = 5000 m and V = 140 m/s.
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Figure 6.4: Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation

signal, for nominal flight conditions and aft CG shift.
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Figure 6.5: Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation

signal, for nominal flight conditions and forward CG shift.
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6.6. Additional Remarks
In general, it can be concluded that the PLA saturation limits are reached when the reference velocity is

increased and velocity thereby decreases. This is also due to the design of the tracking task, which takes

too long resulting in relatively high pitch angles, which in turn lead to a higher thrust demand. Furthermore,

it can be noticed that the SAC baseline controller reaches the elevator rate saturation limits for all of the

simulations, indicating its aggressive policy.

In Part I it was shown that the SAC controller with CAPS is generally more robust to altering flight conditions,

which is not directly visible from the results presented in this chapter. The reason for this is that the results

presented in Part I are the average of all successful runs, whereas the results shown in this chapter are

only single selected successful runs. This means that of all successful runs, there are several runs of

the SAC baseline controller that lead to very bad results and therefore the average tracking performance

becomes worse as well. This is not the case for the SAC controller with CAPS and therefore can be said

to be more robust against off-nominal flight conditions.



7
Threshold Sensitivity Analysis

In Part I the nMAE and elevator activity, δe,act, bounds were set to 5% and 0.5 deg/s respectively. These

were used to determine whether a training run was successful and used for further analysis. The values of

the nMAE and elevator activity were calculated for the online evaluation of the 3-2-1-1 step input signal.

This chapter shows the impact of relaxing the thresholds for successful runs.

7.1. Elevator Activity Relaxation
In the first sensitivity analysis the nMAE bound is kept at 5% and the elevator activity bound is relaxed to a

value of 1 deg/s. Figure 7.1 and Figure 7.2 show the training curves and the progression of the equivalent

CAPe during training. The percentage of successful runs increased significantly for the SAC baseline

controller to a value of 75%, whereas the success rate of the SAC controller with CAPS increases only

slightly to 57%. The increased successful runs percentage of the SAC baseline controller is clearly visible

in the figures, as the shaded blue areas are even more widely spread than they were in the results shown

in the article in Part I. This also implies that the SAC baseline controller is mainly limited by the elevator

activity bound, which could be explained by the fact that the policy is more aggressive and therefore exerts

a higher elevator activity.

25 50 75 100 125 150 175 200
Episode [ ]

105

104

103

102

101

100

Ep
is

od
er

et
ur

n 
[

]

25 50 75 100 125 150 175 200
Episode [ ]

105

104

103

102

101

100

Ep
is

od
er

et
ur

n 
[

]

SAC baseline SAC with CAPS

Figure 7.1: Training curves with elevator activity relaxation, showing the episode return for the SAC baseline

controller and SAC controller with CAPS during offline learning. Solid blue and green lines present the mean and

shaded regions in blue and green show all successful runs.
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Figure 7.2: The development of the equivalent CAPe for the SAC baseline controller and SAC controller with CAPS

during offline learning with elevator activity and elevator activity relaxation. Solid blue and green lines present the

mean and shaded regions in blue and green show all successful runs. The levels of pilot workload ratings are

indicated with the red shaded areas.

7.2. Normalized Mean Absolute Error Relaxation
A similar analysis is performed for the nMAE, where the value of the bound is relaxed from 5% to 10%, while

the elevator activity bound is kept at 0.5 deg/s. The results of the learning curves and CAPe during training

are shown in Figure 7.3 and Figure 7.4. In this case the SAC baseline success rate stays the same as for

the nominal bound, at 26%. The SAC controller with CAPS on the other hand sees a significantly increased

number of successful runs with a success rate of 79%. The effects of the additional successful runs for the

SAC controller are less visible in the figures, especially the training curve remains fairly constant from 50

episodes onwards. The results indicate that the SAC controller with CAPS is mainly limited due to the

nMAE bound, which is in contrast with the SAC baseline controller. This could be explained by the effect

that the smooth policy makes the controller slightly more sluggish, reducing the tracking performance and

thus the nMAE (compared to the SAC baseline controller).

7.3. Elevator Activity and Normalized Mean Absolute Error Relaxation
When both the elevator activity and nMAE are relaxed to values of 1 deg/s and 10% respectively, the

highest number of successful runs is realized for both SAC controller. The SAC baseline controller has a

success rate 75% for this scenario and the SAC controller with CAPS reaches 86%. Results are shown in

Figure 7.5 and Figure 7.6 for the training curves and equivalent CAPe development respectively.
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Figure 7.3: Training curves with nMAE relaxation, showing the episode return for the SAC baseline controller and

SAC controller with CAPS during offline learning. Solid blue and green lines present the mean and shaded regions in

blue and green show all successful runs.
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Figure 7.4: The development of the equivalent CAPe for the SAC baseline controller and SAC controller with CAPS

during offline learning with nMAE relaxation. Solid blue and green lines present the mean and shaded regions in blue

and green show all successful runs. The levels of pilot workload ratings are indicated with the red shaded areas.
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Figure 7.5: Training curves with elevator activity and nMAE relaxation, showing the episode return for the SAC

baseline controller and SAC controller with CAPS during offline learning. Solid blue and green lines present the mean

and shaded regions in blue and green show all successful runs.
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Figure 7.6: The development of the equivalent CAPe for the SAC baseline controller and SAC controller with CAPS

during offline learning with elevator activity and nMAE relaxation. Solid blue and green lines present the mean and

shaded regions in blue and green show all successful runs. The levels of pilot workload ratings are indicated with the

red shaded areas.



8
Verification and Validation

To ensure that the SAC controller and the tools that are used throughout the research project are imple-

mented correctly, this chapter is devoted to verification and validation. It is required to perform verification

and validation of the work to allow for proper further research as well.

8.1. High-fidelity Simulation Model
The nonlinear high-fidelity simulation of the Cessna Citation 500 developed with the Delft University of

Technology Aircraft Simulation Model and Analysis Tool (DASMAT) [46] is only available in Matlab and

therefore it has to be compiled with C code to use it in Python. It should be verified whether this process is

implemented correctly. Figure 8.1 shows the time response of the nonlinear simulation model to a double

step input on the elevator deflection angle δe for both Matlab and Python. From visual inspection, it can

already be observed that there is almost no distinction between the simulation outputs of Matlab and

Python. This is further supported by the fact that the average nMAE of all the states is equal to 0.045 %.

Furthermore, the nonlinear was found to be a valid representation of the Cessna Citation II PH-LAB [48].
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Figure 8.1: Time response of Matlab and Python nonlinear aircraft models to a double step input on the elevator.
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8.2. SAC Controller
To ensure that the SAC controllers are implemented correctly, the positive training curves that are presented

throughout this report can be used as a reference. These indicate that the SAC controllers have learnt from

the environment. The tracking performance of the SAC controller with CAPS in the presence of biased

sensor noise as presented in the article in Part I, shows that the controller can be implemented in reality.

Furthermore, the implementation of the code is partially based on earlier work [4].

8.3. Linearization
During training a linearizedmodel of the high-fidelity simulation model is used. The linearization is performed

with state and input perturbations. To verify whether the linearization of the aircraft model is implemented

correctly, the results of a successfully trained SAC controller applied to both the linear and nonlinear aircraft

model, subject to the 3-2-1-1 step input evaluation signal are shown in Figure 8.2. In the figure, it can be

observed that there are minor differences in the elevator deflection δe, velocity V and PLA. These could be

the effect of saturation limits and other nonlinearities. However, for the evaluation of the SAC controllers

the nonlinear aircraft model is alway used throughout this project, so the nonlinearities will be present

there.
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Figure 8.2: Time response for the online 3-2-1-1 evaluation signal, showing the SAC with the linear and nonlinear

aircraft model.

8.4. LOES fit
To ensure that the LOES fit algorithm, used throughout the project, is implemented correctly the time

response of a step input on the elevator deflection is shown for a HOS (derived from a linearized succesfully

trained SAC controller) and the corresponding LOES is plotted in Figure 8.3. It can be seen that the

transient response is nearly identical and the steady state pitch rates are slightly different for the LOES

and HOS, but sufficiently accurate to determine the short period HQ.



This is further supported by Figure 8.4, where the frequency domain plots of the LOES and HOS are shown.

The fit error remains well within the MUAD bounds and therefore the fit is considered succesful. It shows

that the LOES fit algorithm is able to fit a LOES to a HOS accurately and correctly.
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Figure 8.3: Pitch rate and acceleration response to a step input on the elevator for the HOS and LOES.
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9
Conclusion

The aim of this research is to contribute to the development of RL flight control systems by assessing and

integrating HQ&S requirements in the control loop. This report presented the development of two SAC

controllers, which both comply with Level 1 short period HQ as outlined in the scientific article in Part I.

Furthermore, the report contains a literature survey, in which relevant studies have been highlighted and

used as a foundation of this project. Preliminary experiments were performed to get an initial insight in the

feasibility of the research. The research is considered to be a proof-of-concept, because to the best of the

author’s knowledge, no significant studies have been done on the evaluation of HQ&S for RL flight control

systems. The research questions have been answered throughout the report and will be summarized here.

RQ 1 Which RL framework is the most suitable for continuous flight control and the integration of

handling qualities and stability properties?

RQ 1.1 What are the state-of-the-art RL frameworks for continuous flight control?

RQ 1.2 What flight control frameworks will be used for the analysis?

RQ 1.3 How will the RL framework be integrated with the flight control framework?

Research Question 1

RQ 1 was answered fully in Chapter 3, where an analysis of the general principle behind RL was given

and key characterizing concepts were presented to develop a basic understanding of RL. State-of-the-art

RL frameworks were discussed and their flight control application was reviewed. The three potential

candidates were the TD3 algorithm, ACDs and the SAC framework, which answers RQ 1.1. It was found

that offline training is the most applicable to this research, as online training is most likely not feasible for

a proof-of-concept, eliminating ACDs. The SAC was selected as the best candidate, as it has a better

sample efficiency than TD3 methods. Furthermore, the code of a fully developed SAC framework applied

to the Cessna Citation II was readily available for use. In the scientific article the Command and Stability

Augmentation System (CSAS) was presented as the final flight control framework and the integration with

the SAC controller was explained as well, and thus RQ 1.2 and RQ 1.3 were answered.

RQ 2 How will the performance of the RL flight controller be assessed?

RQ 2.1 Which handling qualities and stability requirements will be considered as performance

criteria?

RQ 2.2 How can the selected performance criteria be obtained from flight data?

RQ 2.3 How will the selected performance criteria be included in the optimization process?

Research Question 2
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Chapter 4 provided an overview of all relevant HQ&S guidelines. In the scientific article the short period

parameters and CAP were used as HQ&S requirements, which answers RQ 2.1. Furthermore, two

methodologies were presented for the extraction of HQ&S from nonlinear flight control systems. Time

domain analysis is useful, as no linearization is required and higher order dynamics are incorporated, but

has the downside that step response simulation is required which might add more computational load.

An alternative approach is frequency domain analysis. The LOES concept was presented, which is a

method that linearizes nonlinear systems and reduces it to a second order model for direct HQ&S analysis.

A combination of both methods is used for the evaluation of the short period HQ in the final version of

the SAC controllers, thereby answering RQ 2.2. Finally, two methods were suggested for the placement

of HQ&S at the desired design point. These methods are based on second order reference models. In

the end, the CSAS flight control framework was used to incorporate short period reference HQ, which is

basically the same as the RMF method proposed in Chapter 5, which answers RQ 2.3. Alltogheter, RQ 2

has been answered and the performance criteria were established.

RQ 3 How can the performance criteria be integrated in the RL flight control loop?

RQ 3.1 How can the reward function be modified such that the stability and handling qualities

requirements are complied with?

RQ 3.2 What is the relation between the flight control framework structure and the selected

performance parameters?

RQ 3.3 How can the RL framework and flight control framework structures be adapted to

reach the best integration of the performance parameters?

Research Question 3

In the preliminary analysis, described in Chapter 5, two methods for placing HQ&S at the desired location

were proposed. One of the methods uses the reference model as a command filter, and applies reference

model following. The other approach is based on imitating the behaviour of the reference model, by using

reference model feedback in the reward signal. These approaches were not directly used in the final

results of the scientific article, but the CSAS structure was used. The reward function is not modified in this

case, but the reference model with desired short period HQ is placed in the feedforward path of the pitch

rate command system. Two SAC controllers were designed, trained and evaluated. The SAC controller

with CAPS showed better tracking performance in realistic simulations with biased sensor noise and was

therefore selected as the final controller. This controller was adapted to comply with Level 1 short period

HQ. In conclusion, this answers RQ 3.1, RQ 3.2 and RQ 3.3 and so it provides the answer to RQ 3.

RQ 4 What is the performance of the adapted RL flight controller?

RQ 4.1 How can the RL controller be verified and validated?

RQ 4.2 How does the adapted RL flight controller compare with the same RL flight controller

that uses only the tracking error as performance parameter?

Research Question 4

The SAC controllers, high-fidelity simulation model of the PH-LAB and LOES fit algorithm were all verified

and validated in Chapter 8, which answers RQ 4.1. There is no significant distinction between a SAC

controller that uses HQ&S as additional performance parameters and a controller that does not. The

HQ&S do not change the controller itself but are rather a property of the controller. The reference HQ

however do have influence on the HQ of the final SAC controller, and they are left to be selected by the

designer of the flight controller in the future. This answerRQ 4.2 and thereforeRQ 4 is answered completely.
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The aim of this research is to contribute to the development of Reinforcement Learning for

continuous flight control, by assessing handling qualities and stability properties and integrating

them in the control loop.

Research Objective

To conclude, this research has contributed to the development of RL to continuous flight control and

stimulates civil aviation to move towards the implementation in practice. The evaluation of longitudinal HQ

has provided more insight in the unpredictable black box of the SAC framework, by translating the unknown

into well known classical flight control terminology. In future work, it should be investigated whether the

RL controller works well in a real-time environment. Next to that, tests of the developed RL controller

with hardware should be performed. These two aspects are crucial for the real-world implementation and

together with this research they can enable RL flight control for civil aviation.



10
Recommendations

The scope of this research was limited to developing a proof-of-concept of the evaluation of HQ for a

state-of-the-art framework, hence it provides a foundation for future work. The main recommendation for

future research are highlighted here:

• Most of the hyperparameters were adapted from earlier work on the development of a SAC controller

for the PH-LAB [4]. The flight control framework in this research is, however, not exactly the same

and therefore different hyperparameters could provide better results. Optimizing the hyperparameters

is one of the key points that could improve this research, making the controller even more robust.

• Currently, the actor and critic use the same number of layers and similar initial learning rates. This is

probably not ideal and therefore they should be treated as separate hyperparameters to yield better

results.

• The different flight conditions used in this research provided an initial insight in the robustness of

the developed SAC controllers. It would be interesting to find out how the controllers would react

to more extreme flight conditions. Next to that, more failures should be incorporated, like reduced

elevator effectiveness or even an inverted elevator.

• An integral term should be added to the state observation vector to remove the steady state error.

For the pitch rate command system developed for this research, the integral term would be the pitch

angle θ.

• The training could be done for a wider range of pitch rate commands. Different reference signals

could be developed, as the more different state-transitions the SAC controller experiences, the better

it could generalize for larger state and action spaces. This will increase training complexity and

duration.

• More HQ could be added like stability margins and bandwidth criteria, as described in the literature

survey of this research project. These could give more insight into the black box of the RL controllers.

• The HQ could be taken into account in the reward function, such that the controller not only learns

with the tracking error. This is not straightforward, but could lead to further increased authority over

the exact placement of the HQ.

• Research could be performed on the hardware implementation of the developed controller. The goal

is to eventually do real flight tests, but in order to realize that, more research should be done on how

this controller would operate in real-time.

• A similar approach, with the CSAS flight control framework, could be applied to online learning

state-of-the-art RL frameworks such as IDHP. These frameworks have high adaptive capabilities

and in combination with HQ evaluation and integration these frameworks could provide further

improvements.
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