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A new reduction method for dynamical analsis of multi-body systems is presented in
this paper. It fundamentally differs from the ones previously published in the way kine-
matical constraints are handled. Our approach is based on component mode synthesis,
but the specificity of articulated mechanism, in which components are assembled through
connecting forces, is taken into account from the reduction level. This is achieved by using
a set of modes that are consistent with this type of assembly, namely the residual flexibility
modes and the free-free vibration modes. In this approach, Lagrange multipliers naturally
appear as generalized reduced coordinates together with the vibration modes’ amplitudes.
An other specific difficulty pertaining to articulated systems is the configuration depen-
dency of the residual flexibility modes. In order to overcome this obstacle a new strategy
to handle kinematical constraints has been developed, enabling us to ignore the current
direction of the constraint forces at the reduction level by splitting the constraint into
local and global contributions. The derived reduced matrices are remarkably simple and
the procedure is easy to implement. The validity of the approach will be investigated using
the crank-slider benchmark.

I. Introduction

A common way to include flexible components in multi-body dynamic analysis consists in generating
a linear Finite Element sub-model of the component, reduce it through component mode synthesis, then
embed it in a floating frame in order to allow large overall displacements and rotations. Such a co-rotated
super-element approach is very efficient and accurate when the deformations in the component remain small:
it is often used in simulations of robots or for actuated aeronautical and aerospace systems (flapping wings,
landing gears or deployable antennas).

In all co-rotated super-element techniques, the modal synthesis of the reduced component is based on
dynamic modes and attachment modes, such that the reduced sub-model is described by internal general
coordinates and physical displacements (and rotations) at its interface.1,2 When assembled to neighboring
components in the multi-body dynamic analysis, the interface degrees of freedom are usually connected
through Lagrange multipliers, namely by applying interface forces in order to impose the inter-body con-
straints (revolute joints, sliders ...).

In this contribution we show that a natural way to apply mode synthesis for components of multi-
body systems consists in using free interface modes and attachments modes so that the interface degrees
of freedom of the reduced component are interface forces instead of interface displacements and rotations.
Such a reduction method, called Dual Craig-Bampton reduction, was proposed earlier in3 for linear systems
and will be extended here to multi-body systems. The Dual Craig-Bampton reduction is in fact well suited
for multi-bodies since the reduction basis corresponds to the response of the component to interface forces,
namely the Lagrange multipliers in the case of multi-body dynamics. In this contribution we show that the
reduced matrices (both locally and after co-rotation in the global frames) exhibit a high degree of sparsity
thanks to the fact that the local free-interface modes and the rigid co-rotations are uncoupled in the equations
of motion.
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In order to extend the Dual Craig-Bampton to multi-body simulations, we introduce a new variational
principle based on a four field formulation of the interface constraints. Such a formulation allows us to
separately consider the local and global degrees of freedom at the interface, thereby simplifying the appli-
cation of model reduction in the local frame of the component. This formulation and the extension of the
Dual Craig-Bampton to multi-body analysis leads to a clean, simple and accurate formulation of flexible
multi-body dynamics. To the best of our knowledge, such a formulation has not been proposed previously.

In the remainder of this extended abstract we first recall how the dynamic equation of a single co-rotated
flexible body (locally linear) can be derived. To simplify the discussion, the outline is given for motion in the
two-dimensional space, the theory applying as well to the general three-dimensional case. Then in section
II we introduce a four-field formulation allowing to distinguish between local and global interface degrees of
freedom. In section III we apply the Dual Craig-Bampton reduction to a co-rotated component and show
how the assembled equations simplifies for the dynamics analysis of a multi-body systems. The simplicity
of the equations physically originates from the fact that our choice of reduction basis automatically leads to
choosing the Tisserand reference axis for the floating frame.

In section IV we show results obtained by applying the proposed approach to a crank-slider benchmark.
We compare the results so obtained to the outcome of simulations when no reduction is applied. The
obtained results illustrate the efficiency and the accuracy of the proposed strategy when only a small number
of deformation modes are considered in the local reduction basis.

II. Notations and conventions

For greater clarity, let us start by introducing the conventions adopted by the authors. Throughout this
article, vectors of Euclidian space will be underlined once, tensors underlined twice, matrices bolded, and
uni-column matrices represented between braces:{}. For the sake of readability, the braces of the set of
generalised coordinates will be dropped, and will instead be represented in bold character. Unless specified
differently in the beginning of a section; superscript s designate entities pertaining to the component s,
whereas the collection of all the components’ entities are represented without superscripts. For instance, if
we denote Ns the number of components, the stiffness matrix K and the generalised coordinate vector p

write as follow: K =




K1 0 0
. . . 0

sym KNs


 and p =





p1

...
pNs





.

III. Equations of motion for a single unconstrained component

We recall, in this first section, the governing equations of motion for a single component free of kinematical
constraints. The kinematics’ description based on a co-rotational formalism is first briefly recalled in the
following subsection. Based on this formulation the derivation of the equations of motion for a single
component free of kinematical constraints is next shortly outlined. For a more detailed presentation the
reader can refer to.1,2

We will in this study focus on two-dimensional flexible mechanisms. The more general case of flexible multi-
body systems in three dimensions can also be treated with the proposed approach. However, for clarity, we
outline the fundamental ideas of the reduction approach only in the two-dimensional case.
In this section, the superscript s will be omitted as only a single component is considered.

A. Floating frame of reference: kinematics

The key idea of the floating frame of reference approach relies on the use of a local frame associated to
each flexible component. In the framework of linear mechanisms those frames are required to be such that
the elastic displacements measured in the reference frame are small enough to use a linearised expression of
strain. Let us assume that an inertial frame has been defined, and designate it by R0 (we might later refer
to it as the global frame). As depicted in Fig. 1, the position of a material point of the component can be
expressed in terms of the global and local variables:

x = R + A(θ)w = R + A(θ) (r + N{ue}) (1)
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Figure 1. Inertia and reference frames

where the global variables R and θ denote the position and orientation of the floating frame. A(θ) represents
the rotation matrix transforming coordinates in the local frame into coordinates in the global inertia frame.
Assuming the elastic displacements to be approximated by a finite element approach, the position w in the
local frame can be approximated by r + N{ue}, where r locates the position of the current point P in the
undeformed configuration, N designates the finite element shape function matrix, and {ue} the nodal elastic
displacements. The expression of the velocity follows from Eq. (2) by deriving once according to time.

ẋ = Ṙ + θ̇A(θ +
π

2
)w + A(θ)ẇ (2)

If we gather the generalised coordinates R, θ, and {ue} in p:

p =

{
pr

ue

}
with pr =

{
R

θ

}
(3)

the position and velocity then write:

x =
[

I 0 A(θ)N
]
p + A(θ)r (4)

ẋ =
[

I A(θ + π
2 )w A(θ)N

]
ṗ (5)

Let us denote ne the number of elastic degrees of freedom; the generalised coordinate p is of dimension
ne + 3 . The three extra degrees of freedom represent the degrees of freedom describing the motion of the
reference frame, which is not yet linked to the component. There is indeed an infinity of frames suitable
for the floating frame reference approach, and associated elastic displacement . One has to make a choice
by specifying how the frame is linked to the component, by imposing 3 kinematical constraints between the
reference frame and the component. Once the reference is connected to the component, the dimension of p
reduces to ne, and the coordinates pr are representative of the overall motion of the component.

B. Equations of motion

Using the kinematical description introduced in the previous section, the derivation of the equations of
motion for a single component is briefly outlined in this subsection. The kinematical constraints linking the
components are not considered yet. So that in the inertial frame R0, the component is submitted only to
internal stresses due to elastic deformations, and externally applied forces.

We denote Ω the domain delimiting this component, on which external volume forces Fv are applied. It’s
boundary ∂Ω is assumed to be partitioned into a Neumann boundary ∂F Ω on which external surface forces Fs

are applied, and a Dirichlet boundary ∂uΩ on which the displacement field ud is applied: ∂Ω = ∂F Ω
⋃

∂uΩ.
The Lagrangian for this component writes:

L(x, ẋ, t) = T − (WF +We) (6)
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T denotes the kinetic energy, WF the work of applied forces, and We the work of the internal elastic stresses.

T =
∫

Ω

ρẋ2dV (7)

We =
∫

Ω

1
2
tr[σ : ε]dV (8)

WF = −
(∫

Ω

u.FvdV +
∫

∂F Ω

u.FsdS

)
(9)

The equations of motion in terms of the generalised coordinates p, can be easily derived from the Lagrange
equations

∂L
∂p

− d

dt

∂L
∂ṗ

= 0 (10)

The contributions of kinetic energy, strain energy, and applied forces’ work being

∂T
∂p

− d

dt

∂T
∂ṗ

= −M(p)p̈ + {f(p, ṗ)}

−∂WF

∂p
= {F (p)}

−∂We

∂p
= −Kp

The equations governing the motion of a single component non-constrained kinematically are

M(p)p̈ + Kp = {F (p)}+ {f(ṗ,p)} (11)

where M(p) and K are the mass and stiffness matrices. {f(p, ṗ)} represents the generalised Coriolis forces
and part of the generalised transport forces, and {F (p)} stands for the generalised applied forces.
The contribution of the strain energy and applied forces’ work are easily derivable, and are therefore not
reminded in this article. The contribution of the kinematic energy being less straightforward, details of it’s
derivation are described in appendix A. The expressions of the mass matrix and the generalised inertia forces
are there recalled for the most general case.
However, in the remainder of this article, we will assume that the reference frame is initially located at the
center of mass. It has also been assumed that the elastic displacements are small enough to neglect the
second order terms in {ue}. Within those assumptions the mass and stiffness matrices and the generalised
inertia forces have the following expressions:

M(p) =




mtotId A(θ + π
2 )L1{ue} A(θ)L1

Iz + 2I1{ue} I3 + {ue}T L3

sym Mee


 =




MRR MRθ MRe

Mθθ Mθe

sym Mee


 (12)

K =




0 0 0
0 0 0
0 0 Kee


 (13)

{f(p, ṗ)} =





fR

fθ

fe





= θ̇2





A(θ)L1{ue}
0

IT
1 + Mee{ue}




− 2θ̇




A(θ + π
2 )L1

I1 + {ue}T Mee

LT
3


 {u̇e} (14)

using the following notations:

Mee, Kee: Linear finite element mass and stiffness matrices in the local axis
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mtot O′Gi =
∫

Ω

ρrdV

I1 =
∫

Ω

ρrT NdV

I3 =
∫

Ω

ρrT A(−π

2
)NdV

Iz =
∫

Ω

ρr2dV

L1 =
∫

Ω

ρNdV

L3 =
∫

Ω

ρNT A(−π

2
)NdV

IV. Components assembly using a 4 field formulation

The equations governing the motion of a component undergoing possibly large translation and rotations
within its unconstrained motion have been recalled in the previous section. In this section, we now con-
sider the kinematical constraints linking each single component to form the assembled mechanism. The
approach proposed hereafter significantly differs from the classical assembly method. The scope of our study
is restrained to holonomic constraints that are usually expressed in the following form

{
h(xb, t)

}
= 0 (15)

where in accordance with our convention, {h} collects the set of all the kinematical constrains at the joints,
and xb the set of all the positions of the components’ boundaries.

In multi-body dynamics, the constraints are commonly enforced in a dual fashion, i.e., through intercon-
necting forces by introducing Lagrange multipliers. In section III., it will be shown that in order to be in
line with this assembly method, the elastic displacement should be expanded on the Dual Craig-Bampton
modal basis.

The residual flexibility modes, which belong to this set, depend on the elastic part of the Jacobian
of the constraints, Bs

e = ∂h
∂us

e
. While in linear sub-structuring (or domain decomposition) analysis, Bs

e

is nearly always a signed boolean, therefore constant, matrix. It is unfortunately no longer the case for
articulated mechanism. The Jacobian of the constraints indeed contains the directions of the connecting
forces, that obviously depend on the configuration of the mechanism. To avoid the recursiveness entailed by

Figure 2. Local and global interfaces

such a dependency, we hereby propose an alternative way to handle these constraints, that is based on two
observations:

• At the reduction step, the current direction of the loads at the interface does not need to be known.
The knowledge of a basis containing the possible directions for the loads is in fact sufficient. The
amplitude of the loads on each direction can then be computed at each time step.

• At the global level the deformations at the interface and the orientations of the concerned component
have to be known to enforce the constraints.

The constraint equations have thus been split into local and global parts, by introducing a local interface Γs

for each component s and a global interface Γ per joint. See Fig. 2.
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A set of local constraints defined for each component s, attaches the interface Γs to the component’s
boundary.

Ls
b{us

e} − {us
Γ} = 0 on the local interface Γs (16)

Ls
b denotes the boolean localization matrix that returns the components boundary displacements: {us

b} =
Ls

b{us
e}. The nodal displacements of the local boundary Γ are denoted {us

Γ}, they initially coincides with
boundary in the undeformed configuration.

A second set of global constraints then connects the local boundaries Γs to the joints.
{
h(xb, t)

}
=

{
h(pr, uΓ, t)

}
= 0 at the global joints Γ (17)

where xs
b now writes: xs

b = Rs + A(θs)(rs
b + N{us

Γ})
Two sets of multipliers are associated to each type of constraints, the local multipliers are denoted gs,

and the global ones λ (see Fig. 2).
The components’ boundary displacements values are transferred to the global level via {us

Γ}, whereas
the current directions of the loads at the joints are transferred via gs to the local components’ level. In our
approach, four different types of fields are thus needed to enforce the kinematical constraints. Namely the
degrees of freedom us

b and us
Γ, and the forces fields gs and λ. Therefore we will refer to this formulation as

a four-field formulation.
The Lagrangian for the assembled system now writes:

L =
∑

s

[
T s − (Ws

e +Ws
F +Ws

cons loc)
]
−Wcons glob (18)

where Ws
cons loc and Wcons glob are the work introduced by the local and global constraints forces:

Ws
cons loc = − (Ls

b{ue}s − {us
Γ})T {gs} (19)

Wcons glob = −{
h(pr, uΓ, t)

}T {λ} (20)

The expression of the kinematic energy and strain energy have been derived in the previous section. So that
only the contributions of the work of global constraints Wcons glob and local constraints Wcons loc need to be
computed. We denote Wcons loc =

∑
sWs

cons loc = − (Lb{ue} − {uΓ})T {g}.
The contribution of the global and local constraint forces’ work being

−∂Wcons loc

∂ue
= Lb

T {g}

−∂Wcons loc

∂pr
= 0

−∂Wcons loc

∂uΓ
= −{g}

−∂Wcons loc

∂g
= Lb{ue} − {uΓ}

−∂Wcons loc

∂λ
= 0

−∂Wcons glob

∂ue
= 0

−∂Wcons glob

∂pr
= Br

T {λ}

−∂Wcons glob

∂uΓ
= BΓ

T {λ}

−∂Wcons glob

∂g
= 0

−∂Wcons glob

∂λ
=

{
h(pr, uΓ, t)

}

we obtain the following set of equations of motion for the flexible multi-body system:

M(p)p̈ + Kp = {F (p)}+ {f(ṗ,p)}+

{
Br

T {λ}
Lb

T {g}

}
(21)

0 = BΓ
T λ− {g} (22)

0 = Lb{ue} − {uΓ} (23)

0 =
{
h(pr, uΓ, t)

}
(24)

where the matrices Br and BΓ are parts of the Jacobian of the constrains corresponding to variables {pr} and
{uΓ}. Equation Eq. (21), corresponds to the dynamic equilibrium for each of the components of the flexible
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multi-body system, that are submitted to external, inertia and constraint forces. Note that elastic degrees
of freedom are constrained by local multipliers {g} whereas rigid body degrees of freedom are constrained
by global multipliers {λ}. Eq .(22) expresses the equilibrium between local and global constraint forces .
Eq. (23) and Eq. (24) respectively corresponds to the local and global constraints as stated earlier.

The set of differential and algebraic equations of motion can also be rewritten in the following matrix
form:



Mrr(p) Mre(p) 0 0

MT
re(p) Mee 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
Ma

¨



pr

ue

g

uΓ





+




0 0 0 0

0 Kee −LT
b 0

0 −Lb 0 I

0 0 I 0




︸ ︷︷ ︸
Ka





pr

ue

g

uΓ





︸ ︷︷ ︸
pa

=





Fr(p)

Fe(p)

0

0





︸ ︷︷ ︸
Fa

+





fr(p, ṗ)

fe(p, ṗ)

0

0





︸ ︷︷ ︸
fa

+




BT
r

0

0

BT
Γ




︸ ︷︷ ︸
BT

{λ}

(25)
{
h(pr, uΓ, t)

}
= 0

where pa is the new set of generalised coordinates for the assembled system. Although the third block-line
is not a real dynamic equilibrium equation but rather a constraint equation, we will refer to Ma and Ka as
the generalised mass and stiffness matrices of the assembled system. Similarly, {Fa} and {fa} designate the
generalised applied and inertia forces for the assembled system.
Remark:
If the Jacobian B wouldn’t be configuration dependent, one could find a null space for equations Eq. (22) and
Eq. (23) that wouldn’t be configuration dependent. A projection on this subspace would thereafter eliminate
the last two block-lines of Eq. (25), along with the last two block-columns of the generalised assembled mass
and stiffness matrices. Thereby leading to the classical assembled set of equations of motion in structure
dynamic analysis.

V. Dual Craig-Bampton

The Craig-Bampton method4 has been successfully used in structural analysis over the past 40 years, and
is nowadays among the most widely used Component Mode Synthesis (CMS) methods for flexible multi-body
systems, together with the MacNeal and Rubin’s method. Its computational efficiency mainly relies on the
sparse structure of the reduced matrices.

In,3 a new component mode synthesis method has been proposed, where substructures are seen as being
attached through interconnecting forces at the boundaries. Based on this vision, the system is consistently
assembled, leading to a method totally dual to Craig-Bampton. A similarly sparse structure is indeed
obtained, but with a similar modal basis as MacNeal and Rubin’s approaches.

If the Craig-Bampton method is well suited for structure analysis using finite elements, we believe that
the Dual Craig-Bampton is the best suited for articulated mechanisms. As in the framework of multi-body
systems, it features the advantages of the afore mentioned approaches. Namely, the sparse structure of the
Craig-Bampton reduced matrices, and the same modes as in both Mac Neal and Rubin’s reduction which
are the most suitable for flexible multi-body systems.

In the present section, an extension of the Dual Craig-Bampton to flexible multi-body analysis is proposed,
the choice of the reduction basis is first justified and its properties recalled. The reduced matrices are then
derived.

A. Reduction basis and its properties

Let us consider the equations governing the dynamics of the nodal elastic displacements of the component
s, {us

e}. The equations of interest are the following ne lines of system Eq. (25):

Ms
ee{üs

e}+ Ks
ee{us

e} = Ls
b
T {gs}+ {F s

e (p)}+ {fs
e (p, ṗ)} −Ms

er{ẍs
r} (26)

The local constraint forces Ls
b
T {gs}, the inertia forces {fs

e (p, ṗ)} −Ms
er{ẍs

r} and generalised applied forces
{F s

e (p)}, are seen as excitations at the component’s nodes. The solution of this second order differential
equation splits into a particular and homogeneous solution.
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The homogenous solution belongs to the subspace spanned by the eigenmodes of the component free at
its interface, those modes (the set of ns

k kept ones) are collected in the columns of the matrix Φs.
The particular solution is generally more difficult to obtain. Although, if one could easily compute it,

there would be no need to reduce the system in the view of solving it. However, in the static case the
particular solution is easy to compute, it solves the following equation:

Ks
ee{us

e} = Ls
b
T {gs}+ {F s

e (p)} (27)

Note, that the generalised inertia and applied forces have not been taken into account. Since the generalised
inertia forces are usually well distributed and of relatively low frequency, they should be well represented by
quasi-static modes. However, if the modal approximation basis representing the quasi-static solution is too
poor, one can choose to enrich it using Modal Truncation Augmentation (MTA) modes for instance, more
details can be found in.5 The particular solution in the static case is hence {us

e} = Ks
ee
−1Ls

b
T {gs}.

Note that when interconnecting boundaries are left free, if the component admits rigid body motions,
the matrix Ks

ee becomes singular. In that case, a generalised inverse should be used and the rigid body
modes added to the static solution, see3 for details. Moreover, the inverse of the stiffness matrix Ks

ee
−1 can

be expanded on the free eigenmodes, the part that is not spanned by the ns
k kept ones is represented by the

residual flexibility matrix: Gs
res = Ks

ee
−1 −∑ns

k
i

φs
i φs

i
T

ωs
i
2

Consequently, the nodal elastic displacement for a component attached to the system via interconnecting
forces can be spanned on a basis containing the free vibration modes and the residual flexibility modes:

{us
e} = Φs{ηs}+ Gs

resL
s
b

T {gs} (28)

Some of the remarkable properties of the modes Φ and Gres, are hereunder recalled

• Orthogonality between the free-free modes of vibration and the residual flexibility modes:

ΦsT Ks
eeG

s
res = 0 (29)

ΦsT Ms
eeG

s
res = 0 (30)

• Normalised free-free modes of vibration:

ΦsT Ms
eeΦ

s = I and ΦsT Ks
eeΦ

s = Ωs2 (31)

• Properties of Gs
res:

Gs
res

T = Gs
res and Gs

res
T Ks

eeG
s
res = Gs

res (32)

• Orthogonality between rigid body modes and free-free vibration modes:
Although, orthogonality between purely translational rigid body modes and free vibration modes always
holds; for rigid body modes involving rotations, the orthogonality holds for small rotations only. this
will be further discussed next.

Let usdetail the orthogonality property between rigid and elastic eigenmodes. Consider an arbitrary rigid
body motion of component s. If δRs and δαs are the translation and rotation increment, we deduce from
Eq. (1) the expression of the new position

xs + δxs = Rs + δRs + A(θs + δαs)rs (33)

and subsequently, the displacement within a rigid body motion:

us
r = δxs = δRs + (A(θs + δαs)−A(θs))rs (34)

For small rotation increments, the first order approximation of displacement is

us
r = δRs + δαsA(θs +

π

2
)rs (35)
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We can now write the orthogonality relation between rigid modes us
r and free-free modes φs, expressed in

the local frame
∫

Ωs

ρsus
r
T A(θs).φsdV = 0 (36)

The orthogonality with the purely translational rigid body displacement is therefore for any free-free mode,
that in the finite element approximation writes Ns{φs}:

δRsT A(θs)
∫

Ωs

ρsNsdV {φs} = 0 ∀θs, δRs ⇐⇒ Ls
1{φs} = 0 (37)

and for the purely rotational rigid body displacements fulfilling the small displacement assumption:

δαs

∫

Ωs

ρsrsT A
(
−π

2

)
NsdV {φs} = 0 ∀δαs ⇐⇒ Is

3{φs} = 0 (38)

Each colones of the matrices Φs and Gs
res being in the space of of the free-free elastic modes, we have:

Ls
1Φ

s = 0 Ls
1G

s
res = 0 (39)

Is
3Φ

s = 0 Is
3G

s
res = 0 (40)

Contrarily to equations Eq. (29-32), Eq. (36) sets a relation between rigid and elastic displacements (for
planar systems, 3 scalar relations in total). In fact, since we do not include the rigid body modes in the
approximation Eq. (28) of the local displacements, it dictates how the reference frame (that is initially
located at the center of mass and oriented collinear to the inertia axis) has to move in order to follow the
current center of mass and the orientation of the inertia axis.

It has already been emphasised in earlier works,6,7 that the choice of the reference frames is closely
related to the choice of the modal basis. We here see how the Dual Craig and Bampton modal basis is
naturally associated to the Tisserand axis, which is one of most interesting reference frame, as it brings
the mass matrix to it’s simplest expression. We will indeed see in the following subsection how the inertia
terms considerably simplifies. This results from the fact that we chose the frame that is physically the most
relevant for flexible multi-body systems. We also did not introduce any cumbersomeness by trying to enforce
constraints in a primal fashion when they are already used in their dual form in the governing equations.

B. Reduced set of equations of motion

We showed in the previous subsection (Eq. (28)) that the nodal elastic displacements can be expressed in
terms of the reduced generalised coordinates {η} and {g}. The assembled generalised coordinates p can
be represented in terms of the assembled reduced set of generalised coordinates q using the Rayleigh-Ritz
transformation: pa = Tq, where:

pa =





pr

ue

g

uΓ





,q =





pr

η

g

uΓ





,T =




I 0 0 0
0 Φ GresLb

T 0
0 0 I 0
0 0 0 I




Thanks to the assembly method introduced in section III., the reduction matrix T is constant. We therefore
also have ṗ = Tq̇, and we can use the following chain rule to derive the equations of motion starting from
Eq. (25):

∂L
∂q

− d

dt

∂L
∂q̇

= TT

(
∂L
∂p

− d

dt

∂L
∂ṗ

)
(41)

So the reduced set of equation for the assembled system is given by:

TT Ma(q)T︸ ︷︷ ︸
Mred

q̈ + TT KaT︸ ︷︷ ︸
Kred

q = TT {Fa(q)}︸ ︷︷ ︸
Fred

+TT {fa(q, q̇)}︸ ︷︷ ︸
fred

+BT {λ} (42)

{
h(ps

r, u
s
Γ, t)

}
= 0
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Recalling that the inertia terms writes:

Ma(p) =




mtotId A(θ + π
2 )L1{ue} A(θ)L1 0 0

Iz + 2I1{ue} I3 + {ue}T L3 0 0
sym Mee 0 0

0 0
0




{fa(p, ṗ)} = θ̇2





L1{ue}
0

IT
1 + Mee{ue}

0
0





− 2θ̇




A(θ + π
2 )L1

I1 + {ue}T Mee

LT
3

0
0



{u̇e}

and using the orthogonality properties Eq. (29-32) and Eq. (39,40) we obtain:

Mred(q) =




mtotId 0 0 0 0
0 Iz + 2I1(Φ{η}+ GresLT

b {g}) {η}T ΦT L3Φ {g}T LbGresL3GresLT
b 0

0 −ΦT L3Φ{η} I 0 0
0 − LbGresL3GresLT

b {g} 0 Mres 0
0 0 0 0 0




(43)

Kred =




0 0 0 0 0
0 0 0 0 0
0 0 Ω2 −ΦT LT

b 0
0 0 −LbΦ −Fres I
0 0 0 I 0




(44)

where Mres = LbGresMGresLb
T and Fres = LbGresLb

T .

{fred(q, q̇)} = θ̇2





0
0

ΦT IT
1 + {η}

LbGresIT
1 + Mres{g}

0





− 2θ̇




0
I1Φ + {η}T

ΦT LT
3 Φ

LbGresLT
3 Φ

0



{η̇} − 2θ̇




0
I1GresLT

b + {g}T Mres

ΦT LT
3 GresLT

b

LbGresLT
3 GresLT

b

0



{ġ}

(45)

where we also made use of the anti-symmetry property of L3.

{Fred(q)} =





FR

Fθ

ΦT Fe

LbGresFe

0





(46)

The reduced vectors and matrices can easily be computed from the system’s global vectors and matrices
using the transformation matrix T that can be formed using independent finite element software. The
matrices Eq. (43-46) do not contain the inter-body constraints. Those constraints are enforced by the λ as
indicated in Eq. (25). Hence the matrices Eq. (43-46) can be constructed at the level of each body separately
exactly like the contributions of substructures in usual sub-structuring approaches. Elements of the reduced
matrices can also be build in the finite element package, before being assembled to form the reduced system
and solved using software dedicated to multi-body systems.
Remarks
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• In the Dual Craig-Bampton method, here applied to flexible multi-bodies, the reduction space for the
displacement is in fact identical to the basis used in the methods of Rubin and MacNeal.8,9 However,
whereas in those methods the reduction basis is further transformed to eliminate the interface forces,
the Dual Craig-Bampton method retains the interface forces as generalised degrees of freedom and
reduces the problem assembled in its dual form. This also implies that the compatibility on the
interface Eq. (16) is weakened in this approach. For more details see.3

• In case all the free-free modes are kept, the operator T no longer represents a reduction, but merely a
change of basis. In that case Gres = 0 as well as Fres = Mres = 0 and the interface compatibility is
strongly enforced. In that case the present method is equivalent to formulations sometimes found in
commercial multi-body codes, like Adams.
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2 elements

OA = 0.1524 m
l0 = 0.3048 m
d=0.00635 m

rho=7834.56 kg/m3

E=2.06843*10
11

 N/m2

mplunger=0.033375 kg

omega=124.8 rad/s

Figure 3. Dimensionless deflection of the midpoint of the connecting rod, computed without reduction using
the dimensions of10

VI. Test on the slider crank system

We have introduced in the previous sections a Dual Craig-Bampton reduction method for multi-body
systems. In the present section, the transient response of a slider-crank mechanism is studied in order to
investigate the validity of the proposed model. This simple problem having been widely studied, an abundant
collection of data is available. We will here refer to the work of Meijaard10 and Schwab.11

The mechanism consists of a rigid crank OA, a flexible connecting rod of uniform section AB, and a
sliding block B. Dimensions and material properties of the system have been chosen identical to those in
the references. They are reminded, together with the rotation speed, on each figure.

As in10 and,11 we focus on the deflection of the midpoint, the dimensionless parameter obtained by
dividing the transversal displacement of the midpoint by the length of the connecting rod. The results are
represented as a function of the crank angle.

The generalized HHT-alpha method has been implemented to time-integrate the assembled set of equa-
tions of motion. In the initial configuration both the connecting rod and the crank are horizontal. A constant
rotation speed is applied to the crank. In the performed tests, only the connecting rod has been discretised
into finite elements. Beam elements were used for the discretisation, each having 6 degrees of freedom (2
translational and 1 rotational at each node).
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Figure 4. Dimensionless deflection of the midpoint of the connecting rod, computed without reduction using
the dimensions of11
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4 field assembly

Figure 5. Comparison of classic assembly and 4 field assembly approaches
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Figure 6. Comparison of reduced and non reduced responses assembled through a 4 field approach
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Figure 7. Close-up view of the reduced and non reduced response assembled through a 4 field approach
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First, few tests were carried out (with classic assembly and no reduction) in order to validate the multi-
body dynamic solver and the integration scheme. Fig. 3 and Fig. 4, depict the deflection obtained using
the dimensions of respectively10 and.11 They are in good agreement with their previous investigations. For
those tests, two elements were used to describe the connecting rod.

Next, responses obtained through classical and 4 field assembly approaches have been compared. Results
are depicted in Fig. 5, as can be observed, both plots perfectly match. No instabilities were observe during
time integration, the two assembly methods seem to be equivalent.

Finally, solutions to the reduced and non reduced equations of movement assembled using the 4 field
approach have been compared. As illustrated by Fig. 7, for this simple problem relatively few modes are
needed to reliably represent the response of the system. Fig. 7 represents a zoom on the two last peaks of
Fig. 6, where reduced and non reduced deflection differ the most. As can be observed, the relative error on
the deflection is under the percent when using 5 modes. And is even better when using 8 modes. For those
plots the connecting rod was discretised into 4 beam elements, and the time integration performed with the
spectral radii in the infinite limit ρ∞ set to 0.8.

In this section the validity of both the 4 field assembly and the Dual Craig-Bampton based reduction
approaches have been proven. Further simulations need to be processed in order to test the performance of
the presented reduction method. However, we are confident on the potential of the presented method for
reducing multi-body systems.

VII. Concluding remarks

In this contribution, a new reduction method for multi-body systems has been introduced. As in all co-
rotated super-elements techniques, the reduced components were described through internal general coordi-
nates and interface coordinates. However, the components having been reduced using a Dual Craig-Bampton
technique, the interface coordinates are now representing attachment forces instead of displacements.

The reduction methods of MacNeal and Rubin, and the Dual Craig-Bampton technique, all share the
same modal basis, which consists of free interface modes and residual flexibility (or attachment) modes.
This basis being naturally related to the Tisserand frame it allows for a highly sparse expression of the mass
matrix.

The difference with the approaches of MacNeal and Rubin mainly resides in the way constraints are
handled. In those approaches further transformations are processed in order to enforce the constraints in a
primal fashion (through interface displacements). This reveals to be unnecessary when dealing with Multi-
body systems, and often causes dispensable cumbersomeness. In order to simplify the formulation, while
keeping attachment forces as interface degrees of freedom, a novel assembly approach have been introduced.
As result, the sparsity of the reduced mass matrix could be preserved.

However, in our approach the constraints in the reduced system are only weakly enforced, which might
causes instability as negative eigen frequencies can arise. It would thus be interesting to carry out further
simulations on mechanisms of higher complexity in order to investigate the performances and limitations of
the method.

Appendix: Details on the derivation of the inertia terms

The equations of motion for a single component of a flexible multi-body mechanism have been introduced
in section III.B. In this appendix we detail the derivation of inertia terms arising from the kinetic energy
T =

∫
Ω

1
2ρẋ2dΩ.

∂T
∂p

− d

dt

∂T
∂ṗ

(47)

denoting T = 1
2ρẋ2, we have:

∫

Ω

(
∂T

∂p
− d

dt

∂T

∂ṗ

)
dΩ (48)
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Let us recall the expressions of position, velocity and acceleration:

x = R + A(θ)w = R + A(θ) (r + N{ue})
ẋ = Ṙ + θ̇A(θ +

π

2
)w + A(θ)ẇ

ẍ = R̈ + θ̈A(θ +
π

2
)w − θ̇2A(θ)w

︸ ︷︷ ︸
transport

+2θ̇A(θ +
π

2
)ẇ

︸ ︷︷ ︸
corriolis

+A(θ)ẅ︸ ︷︷ ︸
relative

They can be expressed in term of the generalized coordinate p =





R

θ

ue





:

x =
[

I 0 A(θ)N
]
p + A(θ)r (49)

ẋ =
[

I A(θ + π
2 )w A(θ)N

]
ṗ (50)

ẍ =
[

I A(θ + π
2 )w A(θ)N

]
p̈− θ̇2A(θ)w + 2θ̇A(θ +

π

2
)ẇ (51)

Using the derivation chain rule, the integrand of Eq. (48) also writes:

∂T

∂p
− d

dt

∂T

∂ṗ
=

(
∂ẋ

∂p
− d

dt

∂ẋ

∂ṗ

)
∂T

∂ẋ
− ∂ẋ

∂ṗ
d

dt

∂T

∂ẋ
(52)

Each term of the above equation details as follows:

∂T

∂ẋ
= ρẋ (53)

∂ẋ

∂ṗ
=




I(
A(θ + π

2 )w
)T

(A(θ)N)T


 (54)

∂ẋ

∂p
=




0
−θ̇ (A(θ)w)T +

(
A(θ + π

2 )ẇ
)T

θ̇
(
A(θ + π

2 )N
)T


 =

d

dt

∂ẋ

∂ṗ
(55)

As ∂ẋ
∂p = d

dt
∂ẋ
∂ṗ , the first term of the RHS vanishes and Eq. (48) simply writes:

∫

Ω

(
∂T

∂p
− d

dt

∂T

∂ṗ

)
dΩ =

∫

Ω

ρ




I(
A(θ + π

2 )w
)T

(A(θ)N)T


 ẍ dΩ (56)

which corresponds to the virtual power of the accelerations forces. If the constraints on the system are
holonomic, this also corresponds to the virtual work of the inertia forces. The velocity indeed writes:
ẋ = ∂x

∂t + ∂x
∂p ṗ so that ∂x

∂p = ∂ẋ
∂ṗ . Using Eq. (51), we obtain:

∫

Ω

(
∂T

∂p
− d

dt

∂T

∂ṗ

)
dΩ =

∫

Ω

ρ




I(
A(θ + π

2 )w
)T

(A(θ)N)T




[
I A(θ + π

2 )w A(θ)N
]

dΩp̈ (57)

− θ̇2

∫

Ω

ρ




A(θ)w
0

NT w


 dΩ (58)

+ 2θ̇

∫

Ω

ρ




A(θ + π
2 )N

wT N
NT A(π

2 )N


 {u̇e} dΩ (59)

= −M(p)p̈ + {f(p, ṗ)} (60)
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where:

M(p) =




mtotId mtot A(θ + π
2 )O′G A(θ)L1

Iz + 2I1{ue}+ {ue}T Mee{ue} I3 + {ue}T L3

sym Mee


 (61)

{f(p, ṗ)} =





fR

fθ

fe





= θ̇2





mtotA(θ)O′G
0

IT
1 + Mee{ue}




− 2θ̇




A(θ + π
2 )L1

I1 + {ue}T Mee

LT
3


 {u̇e} (62)

The following notations have been used:

mtot O′Gi =
∫

Ω

ρrdV

I1 =
∫

Ω

ρrT NdV

I3 =
∫

Ω

ρrT A(−π

2
)NdV

Iz =
∫

Ω

ρr2dV

L1 =
∫

Ω

ρNdV

L3 =
∫

Ω

ρNT A(−π

2
)NdV

mtot O′G =
∫
Ω

ρwdV = mtot O′Gi + L1{ue} (63)

Mee, Kee: Linear finite element mass and stiffness matrices in the local axis

Remarks

• Depending on the choice of the reference frame, the expressions of the mass matrix and the generalized
inertia forces simplify. For instance if the reference is initially attached to the center of mass of the
undeformed configuration, the term O′Gi vanishes.

• In the framework of small deformations, the term {ue}T Mee{ue} being a second order term in {ue},
can almost always be neglected compared to Iz. This corresponds to neglecting an effect sometimes
called ”centrifugal stiffening” which typically introduces negative stiffness-like effects.

In this study we assume that the reference frame is initially positioned at the center of mass of the undeformed
body, and that the dynamics of the system is such that the second order terms in {ue} can be neglected.
The mass matrix and the generalized inertia forces thus have the following form:

M(p) =




mtotId A(θ + π
2 )L1{ue} A(θ)L1

Iz + 2I1{ue} I3 + {ue}T L3

sym Mee


 (64)

{f(p, ṗ)} =





fR

fθ

fe





= θ̇2





A(θ)L1{ue}
0

IT
1 + Mee{ue}




− 2θ̇




A(θ + π
2 )L1

I1 + {ue}T Mee

LT
3


 {u̇e} (65)

• When the reference frame is located at all time at the current center of mass, the terms O′G, vG/R′ =
L1{u̇e}, and aG/R′ = L1{üe} vanish. Where vG/R′ and aG/R′ denote the velocity and acceleration of
the center of mass relative to the reference frame R′. This condition corresponds to the one impled by
the orthogonality relation between rigid and free vibration modes (see section V.A).
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