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Summary

Structural deformation monitoring is crucial for the identification of early

signs of tunnelling-induced damage to adjacent structures and for the improve-

ment of current damage assessment procedures. Satellite multi-temporal inter-

ferometric synthetic aperture radar (MT-InSAR) techniques enable

measurement of building displacements over time with millimetre-scale accu-

racy. Compared to traditional ground-based monitoring, MT-InSAR can yield

denser and cheaper building observations, representing a cost-effective moni-

toring tool. However, without integrating MT-InSAR techniques and structural

assessment, the potential of InSAR monitoring cannot be fully exploited. This

integration is particularly demanding for large construction projects, where big

datasets need to be processed. In this paper, we present a new automated

methodology that integrates MT-InSAR-based building deformations and dam-

age assessment procedures to evaluate settlement-induced damage to buildings

adjacent to tunnel excavations. The developed methodology was applied to the

buildings along an 8-km segment of the Crossrail tunnel route in London,

using COSMO-SkyMed MT-InSAR data from 2011 to 2015. The methodology

enabled the identification of damage levels for 858 buildings along the

Crossrail twin tunnels, providing an unprecedented number of high quality

field observations for building response to settlements. The proposed method-

ology can be used to improve current damage assessment procedures, for the

benefit of future underground excavation projects in urban areas.
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1 | INTRODUCTION

Large underground transportation systems reduce traffic, improve air quality and free surface space in urban areas.1

The development of underground construction projects is supported by multi-billion dollar investments worldwide.2–5

As an example, the Crossrail project in London, UK, costed more than £18 billion.6

A common feature of underground construction projects is the risk of subsidence as a consequence of the excava-
tion. Whilst current tunnelling technologies enable the ground volume lost during the excavation to be minimised,7

ground movements cannot be completely avoided, leading to surface differential settlements.8 These settlements are
transmitted through the foundations to the whole building. Depending on the construction material, the building stiff-
ness and the foundation typology, tunnelling-induced settlements can affect adjacent structures with a different level of
severity. Evaluating the settlement impact to buildings and structures is a primary concern for the construction indus-
try, and large budgets are usually allocated to (i) monitor building deformations and (ii) estimate the potential
building damage.7,9

Traditional monitoring techniques utilise established ground-based instruments such as precise levellings,
electrolevels, tape extensometers, displacement gauges and robotic total stations.8,10,11 These instruments enable the
inspection of sparse points on the structure, providing a direct measurement of their displacement over time. Due to
the high cost of the installation and maintenance of ground-based monitoring systems, only a limited number of build-
ings are typically monitored.12 Priority is usually given to buildings with higher historical value and vulnerable struc-
tures. As a consequence, the preliminary assessment of settlement-induced damage is typically performed through
simplified and over-conservative procedures which neglect some of the most complex yet critical aspects of the problem,
like the interaction between the structure and the soil. A conservative preliminary assessment can lead to unnecessary
operations, such as more advanced assessments for a high number of buildings—for example , time-consuming finite
element analyses - and potential mitigation measures—for example, compensation grouting - with an increase of the
final project cost. Furthermore, without the increased availability of monitored building deformations, it is not
possible to advance the understanding of the real building response to tunnelling, nor to improve existing damage
assessment procedures.

Space-borne interferometric synthetic aperture radar (InSAR) systems operate remotely and, by imaging large areas
of the Earth's surface every few days, can provide a high number of measurements with weekly update.13,14 In particu-
lar, recent multi-temporal (MT) InSAR techniques can be used to extract surface deformations over time from long tem-
poral series of InSAR images15 with millimetre accuracy.16,17 Such accuracy is comparable with modern robotic total
stations, which enable measurements of vertical movements with an accuracy of approximately 1 mm.18 Several studies
looked at the use of MT-InSAR techniques for investigating natural hazards and human-induced processes, such as
earthquakes,19 glaciers,20 landslides,21,22 subsidence,23,24 tectonic motions25 and volcanic activity.26–28 Among the avail-
able MT-InSAR techniques, Persistent Scatterer (PS) Interferometry29,30 is capable of extracting temporal series defor-
mations for a high number of points located on buildings and structures.31 The application of PS Interferometry to
buildings,32–41 archaeological sites,42 bridges,43–45 dams,46–48 railways49 and roadways50 and the cross-validation of PS-
InSAR-based measurements against GPS,51–54 traditional levellings36,38,55–58 and other in situ instruments46,59–62 dem-
onstrate the reliability of this approach for structural-health monitoring.

Few studies also investigated the possibility to use PS-InSAR for monitoring tunnelling-induced
deformations.36,38,63–67,68 Milillo et al.38 validated the good quality of PS-InSAR-based measurements for estimating
tunnelling-induced settlements. Giardina et al.36 proposed a PS-InSAR-based approach for the assessment of
settlement-induced building damage. The amount of buildings affected by tunnelling excavations, combined with the
current availability of PS-InSAR-based measurements, can provide large datasets of field observations previously not
available. These datasets can be used for the quasi-real time monitoring of excavation progression and to evaluate
trends in structural response to settlements as a function of building characteristics, with the possibility to complement
ground-based monitoring systems. Furthermore, PS-InSAR data could be used retrospectively to monitor the buildings
which were not equipped with in situ instruments, providing the inputs for more accurate prediction procedures. How-
ever, without integration between InSAR techniques and structural models of the building response, the full potential
of InSAR monitoring could not be exploited.37

In this paper, we present a semi-automated methodology integrating PS-InSAR data and damage assessment proce-
dures to evaluate the settlement-induced building damage in tunnelling scenarios. The methodology combines PS-
InSAR-based building displacements and semi-empirical models of the building response to tunnelling to provide a
more realistic estimate of the settlement profile for each building. On the basis of the estimated building deformation,
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a level of damage is assigned to each building, and damage maps showing the distribution of damage levels for the
buildings along the excavation are created. We applied the proposed methodology to a test area of 5 km � 5 km above
the Crossrail twin tunnels in central London, UK. Crossrail construction works started in May 2012, and led to the real-
isation of 10 stations and 21-km tunnel tracks.69 To minimise the magnitude of ground movements related to the exca-
vation, tunnelling activities were executed by using modern soft-ground pressure-balance tunnel-boring machines. The
analysed area refers to an 8.1-km-long segment of the whole Crossrail route, and consists of traditional masonry and
framed buildings, built in diverse historical periods and characterised by different types of foundation. We used
COSMO-SkyMed PS-InSAR data from April 2011 to December 2015 to reconstruct the displacement field of 858 build-
ings, obtaining a large dataset of field information on building response to tunnelling. We used this dataset to infer rela-
tionships between structural characteristics and building deformations.

The content of the paper is organised as follows. The traditional steps adopted in current damage assessment proce-
dures are reviewed in Section 2.1. A brief overview of MT-InSAR techniques is provided in Section 2.2. Section 3
describes in details the proposed methodology, presenting the required inputs (Section 3.1) and the workflow on which
the semi-automated algorithm is based (Section 3.2). A description of the Crossrail case study and the study area is pro-
vided in Section 4, while Section 5 presents the results showing a comparison between building levels of damage
obtained through the PS-InSAR-based assessment and the greenfield-based assessment. In Section 5.1, the effect of the
building position relative to the tunnels on the settlement and vertical displacement is analysed. Finally, in Section 5.2
we used PS-InSAR-based deformation parameters to investigate the building response to settlement for buildings
characterised by different structural and foundation systems.

2 | BACKGROUND

2.1 | The traditional damage assessment: A review

Damage assessment procedures are typically used during the design phase to predict the magnitude of the expected set-
tlements and the consequent risk of building damage. Based on this information, mitigation measures can be applied
where needed, minimising the tunnelling impact on the existing built environment. Due to the large number of build-
ings involved, tunnelling-induced damage assessment is traditionally developed as a staged procedure,70 along which
the level of the adopted conservatism is progressively decreased.

The first stage of the assessment enables the identification of structures within the influence area of
the settlement.71

In the second stage of the assessment, a provisional level of damage is assigned to the buildings identified during
Stage 1.70 Stage 2 uses a semi-empirical method to estimate the ground movements caused by the excavation and calcu-
late the associated building strains. The tunnelling-induced settlement is estimated without accounting for the presence
of the structure, an assumption referred to as greenfield condition.72 According to Peck,73 the greenfield settlement
trough can be modelled as a Gaussian function (Figure 1), and the vertical ground movements Sv(x) are calculated as

SvðxÞ¼
ffiffiffi
π

2

r
VLD2

4i
e�

x2

2i2 , ð1Þ

where D is the tunnel diameter, VL is the volume loss which corresponds to the percentage of volume loss that occurs
at the ground surface during the excavation as a percentage of the total tunnel volume per unit length of tunnel drive,
and i is the trough width parameter which corresponds to the horizontal distance between the tunnel centreline and
the point of inflection (Figure 1). The trough width parameter i is given by a linear combination of the tunnel depth
z and the soil parameter K: i¼Kz.74 It is noted that the Gaussian function of Equation (1) is only a first approximation
of the effect of ground movements, which is in reality a three-dimensional problem.75,76 However, three-dimensional
effects are usually strong during tunnel progression, while the residual settlement occurring after tunnel completion is
well described by bi-dimensional cross sections. The horizontal ground movements can be determined by relating the
horizontal displacement Sh(x) to the vertical settlement profile Sv(x), as in O'Reilly and New74:

ShðxÞ¼ x
z
SvðxÞ: ð2Þ

INTEGRATED INSAR AND STRUCTURAL ASSESSMENT OF BUILDING DEFORMATIONS 3 of 26



In the second stage assessment, the building is assumed to follow the behaviour of the ground and it is modelled as a
weightless, uniform, elastic beam,77 undergoing sagging and hogging deformations (Figure 1). Relevant building dimen-
sions, L and H, are used in combination with the relative deflection Δ to calculate the maximum bending and diagonal
strains, both for the sagging and the hogging zone:

εb,max ¼
Δ
L

L
12tþ 3I

2tLH
E
G

, ð3Þ

εd,max ¼
Δ
L

1þHL2

18I
G
E

, ð4Þ

The parameter t indicates the distance of the neutral axis from the edge of the beam, under the assumption t¼H in
the hogging region and t¼H=2 in the sagging part of the beam. I is the moment of inertia of the equivalent beam, with
I¼H3=3 in the hogging zone and I¼H3=12 in the sagging zone. E and G are the Young's and shear modulus, respec-
tively. The influence of the horizontal ground movements on the building can be measured in terms of the average
horizontal strain, which corresponds to the maximum variation in length of the part of the building located in hogging.
The average horizontal strain εh can be calculated as

εh ¼ δhog

Lhog , ð5Þ

where δhog is the difference between the horizontal displacements at the two ends of the beam located in hogging, and
Lhog is defined in Figure 1. It should be noted that the part of the beam located in sagging experiences only compressive
strains, which are not as dangerous for the structure. Maximum strains, both in bending and shear, are selected by the
comparison of the two deformation modes, namely hogging and sagging, and then combined with the horizontal strain,
as follows:

εbt ¼ εhþ εb,max , ð6Þ

FIGURE 1 Greenfield settlement trough induced by a tunnel of diameter D located at a depth z beneath the ground. The trough width

parameter i corresponds to the horizontal distance from the tunnel centreline to the point of inflection on the settlement curve and separates

the sagging (sag) from the hogging (hog) zone. The relative deflection, the building length and the building height are indicated with Δ, L
and H, respectively
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εdt ¼ 0:35εhþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:65εhÞ2þ ε2d,max

q
: ð7Þ

The building critical strain εc is the highest value between the resultant diagonal strain εdt and the resultant bending
strain εbt. Depending on the value of the critical strain, the classification proposed by Boscardin and Cording78 enables the
identification of a category of damage. Such classification establishes a link between the estimated building deformation
and the possible level of damage, providing an estimate of the settlement impact on the structure. It should be noted that
the assumption of a greenfield settlement is typically conservative. Numerical modelling79–83 and centrifuge testing84–87

have highlighted how the presence of buildings on the ground tends to flatten the settlement profile. Furthermore, field
and experimental observations have indicated that relatively small horizontal strains are typically transferred to the
buildings.8,86,88–90 As a consequence, the greenfield-based approach typically leads to an overestimation of damage.

The third and final stage of the assessment involves time-consuming numerical analysis of the buildings which were
predicted to have a moderate or higher level of damage by the second stage assessment.70 Depending on their structural
features, different guidelines and procedures can be adopted. Due to the high conservatism of the working assumption
adopted in the second stage of the assessment, buildings that would not need further analysis are sometimes processed
in the third stage, leading to a significant increase of the final project cost. The need for a more accurate damage assess-
ment on a city-scale level is a strong motivator for this work.

2.2 | Multi-temporal InSAR

Synthetic Aperture Radar Interferometry (InSAR) is a remote sensing technique which uses the difference in phase
between two or more radar images acquired at distinct times to measure surface deformations.91,92 A typical satellite
InSAR system consists of a space-borne radar antenna which is pointed toward the Earth's surface. The looking direc-
tion of the satellite radar antenna is called the Line Of Sight (LOS) or slant-range, and its inclination θ relative to the
nadir is between 20� and 50�, depending on the satellite platform. Figure 2a shows a simple sketch of a typical InSAR
imaging system.

The radar antenna emits an electromagnetic signal in the microwave band toward the Earth's surface. The incident
radar signal interacts with the ground, which reflects the signal back to the satellite. The backscattered signal is
received and recorded by the onboard radar system and used to generate a SAR image. The area illuminated by the
radar on the ground is called the antenna footprint, and it is characterised by a dimension parallel to the satellite orbit,
i.e. azimuth, and a dimension orthogonal to the orbit, i.e. slant-range (Figure 2a). A SAR image can be described as a

FIGURE 2 (a) Simplified satellite InSAR acquisition geometry. (b) Simplified sketch of the InSAR capability to measure building

deformations
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bi-dimensional array with the azimuth coordinate in the rows and the slant-range coordinate in the columns. Each ele-
ment of the array is a pixel which corresponds to a small area of the illuminated surface, and each pixel is characterised
by an amplitude and phase information about the backscattered signal. Space-borne InSAR systems are
characterised by day-and-night operability, can work in any weather condition and can currently provide images with a
spatial resolution up to 1 m and a temporal resolution of a few days.26

For simplicity, the radar signal can be approximated to a sinusoidal wave, whereas in reality it corresponds to a
chirp characterised by a certain bandwidth. The two-way travel distance between the radar antenna and the target cor-
responds to an integer number of whole wavelengths plus some fraction of a wavelength. The number of whole wave-
lengths corresponds to the travel distance taken by the signal to complete a round trip back to the satellite, while the
extra fraction of a wavelength depends on the distance of the scatterers to the radar. The phase, Φ, of a given SAR
image is the measure of the last fraction of the travel path, and it is proportional to the two-way travel distance of the
radiation, 2R, and the wavelength, λ, of the transmitted signal:

Φ¼ 4π
λ
R: ð8Þ

Interferometric SAR (InSAR) techniques can be adopted to retrieve relative displacements from two SAR images of
the same area, acquired in different times.14 If a point on the Earth's surface moved between the two acquisitions, such
movement produces an extra fraction, Δr, of the wave radar signal (Figure 2b) which is then reflected and recorded.
This extra fraction of wavelength produces a phase difference between the two acquisitions, which can be used by
InSAR techniques for the retrieval of the occurred displacement. The phase difference ΔΦ is proportional to Δr divided
by the wavelength λ of the signal:

ΔΦ¼ 4π
λ
Δr : ð9Þ

Whilst traditional InSAR is based on a two-image configuration, recent MT-InSAR techniques enable the analysis
of long series of InSAR images.15,30 In particular, Persistent Scatterer Interferometry (PSI or PS-InSAR)29,30 is a power-
ful signal processing technique which enables the retrieval of the temporal and spatial evolution of surface displace-
ments, located on ground and structures, from long temporal series of InSAR images.93 PS-InSAR is based on the
identification of natural reflectors which remain stable within the time series of InSAR images. These natural reflectors,
called permanent or persistent scatterers (PSs), are commonly identified in architectural elements and metallic struc-
tures, making PS-InSAR extremely effective in urban areas.31

However, PS-InSAR typically provides a huge amount of measurements for different targets, such as buildings, brid-
ges and roadways, located within the monitored area. To evaluate the structural condition of specific buildings, such
measurements need to be analysed in combination with large building databases and structural models. When a large
number of buildings is involved, like in underground construction projects, only an automated integration of PS-
InSAR-derived displacements, building geo-spatial databases and building structural models can provide useful build-
ing information at city-scale level.

3 | METHODOLOGY

We developed a semi-automated methodology based on the integration of PS-InSAR-based displacements and damage
assessment procedures to predict the risk of damage to buildings adjacent to tunnel excavations. The developed meth-
odology combines satellite radar interferometric data, geotechnical information and a Geographical Information System
(GIS)-database of building features. Specifically, PS-InSAR-measured displacements were used to estimate the actual
settlement profile for each building. This curve was used to quantify the soil–structure interaction, which is typically
neglected during current assessment procedures. On the basis of the maximum building strain, we assigned a level of
damage to each building, and produced damage maps showing the distribution of building damage along the excava-
tion. Results were compared with the damage based on the traditional greenfield procedure. Details about the datasets
used as an input and the processing chain are presented in Sections 3.1 and 3.2, respectively. Their dependencies are
shown in the flowchart of Figure 3.
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3.1 | The input datasets

The proposed methodology requires three datasets as an input:
1. tunnel and soil features, i.e. diameter D, local depth z, measured values of volume loss VL and trough width

parameter K;
2. building geometrical dimensions and characteristics, i.e. structural typology, foundation type and historical age;
3. PS-InSAR-based displacements.

3.1.1 | The tunnel dataset

We applied the proposed methodology to the Crossrail tunnel excavation in London, UK, analysing an 8.1-km-long seg-
ment of the alignment between the stations of Paddington and Liverpool Street (Section 4). The Crossrail alignment is
characterised by two tunnels of 7.18-m diameter and a variable depth, up to 40 m. Since the tunnel depth z can vary
considerably along the route, geometrical data related to different tunnel sections were interpolated to reconstruct the
whole tunnel geometry, establishing a precise correspondence between the monitored buildings and the local depth of
the tunnel. The soil parameter K, which is used to calculate the tunnel trough width i (i.e., i¼Kz), depends on the type
of soil in which the tunnel is excavated.71,74 Thanks to levelling measurements at the ground level along the transects,
measured values of the soil parameter and the volume loss were available for several tunnel sections in Drive X, while
between the stations of Farringdon and Liverpool Street (beginning of Drive Y) we had no measurements. Consequently,
for the buildings located in Drive X we interpolated the available measurements along the different tunnel sections and
used punctual values of K and VL, while for the buildings located in Drive Y (13% of the total) these two parameters were
approximated to the average of measured values. For the soil parameter we obtained an average of 0.5 and a standard
deviation of 0.1. For the volume loss we found an average of 0.7% and a standard deviation of 0.3%.12,36

3.1.2 | The building database

The building database contains the footprints of the buildings along the tunnel track, and provides for each building
geographical coordinates and additional information, including the construction material, the period in which the
edifice was built and the type of foundation.

A GIS layer containing the geographical extent of the PS-InSAR data were used to extract from the building data-
base only the buildings within the monitored area. The information contained in the building database was used to
create three different GIS layers. In each layer, we grouped the buildings on the basis of structural typology, type of

FIGURE 3 Flowchart describing the developed methodology
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foundation and age of construction, according to the classes of interest defined in Table 1. The classification used for
the age of construction was based on the criteria adopted in the UK for recognising historical value buildings.94

The building footprints were processed to obtain the geometry of each building, which was used as an input in the
developed algorithm. Since adjacent buildings with the same construction properties and similar geometrical features
respond to the settlement as a unique structural block, we were interested in the identification of independent struc-
tural units. The layers previously defined, i.e the structural typology layer, the foundation type layer and the period of
construction layer, were overlaid in the GIS environment to identify buildings sharing similar features and recognise
buildings which are part of the same structural block. The footprints of the interconnected buildings were merged to
create a single geometry. Furthermore, since the algorithm implements the equivalent beam model proposed by
Burland and Wroth,77 the building footprints were simplified and each geometry was approximated to the closest quad-
rilateral. Buildings with central holes were treated as full buildings and complex shapes, such as “L” shapes, were cut.
These simplifications are in line with the assumptions typically adopted in the second stage assessment (Section 2.1)
and are expected to have a negligible effect on the final results. An example of a building footprint before and after the
processing is shown in Figure 4.

TABLE 1 Classes of interest for the

analysed buildings
Parameter Classification

Age Pre-1700

1700–1840

1840–1945

Post-1945

Structure Load-bearing masonry

Framed

Foundation Shallow

Piled

FIGURE 4 Building footprint (a) before and (b) after the processing
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Similarly, structural details of roof, foundations and facade opening, such as windows and door, were neglected.
These simplifications can lead to conservative results. A higher level of detail is adopted in the third stage of the assess-
ment (Section 2.1), where each building is analysed separately through complex finite element models.

3.1.3 | The PS-InSAR dataset

The PS-InSAR dataset was obtained by processing 72 descending images acquired between April 2011 and December
201538 by the COSMO-SkyMed constellation. The COSMO-SkyMed constellation includes four identical satellites with
a 16-day revisit time each. COSMO-SkyMed satellites are equipped with X-band SAR antennas (3.1-cm wavelength),
enabling the measurement of surface deformation with 3-m resolution.26 The series of InSAR images was processed by
implementing the PS-InSAR time series analysis (Section 2.2) through the use of the SARPROZ software package,95

which enabled the identification of PS points within the analysed area.
The interferometric data refer to an area of about 5 km � 5 km in central London. The dataset contains the coordi-

nates of points extracted from the series of InSAR images, as well as the estimated elevations, average deformation
velocities, cumulative displacements and displacement time series. The accuracy of the PS-InSAR data used in this
work was validated through comparison with measurements acquired by Precise Levelling Points.36,38 Figure 5 shows
the map of cumulative displacements along the satellite LOS obtained after the time series analysis. Negative values
correspond to PSs moving away from the satellite and positive values refer to displacements toward the satellite. Red
and orange points indicate large movements associated with ground settlement above the Crossrail twin tunnels.

3.2 | The processing algorithm

The automated algorithm presented in this paper was built on the methodology proposed by Giardina et al.36 The three
datasets described in Section 3.1, i.e. the tunnel geometry, the database of building features and the PS-InSAR dataset,
were used as an input of the developed methodology. The workflow of the developed methodology is based on the

FIGURE 5 Cumulative displacement map of the analysed area in London, obtained by processing COSMO-SkyMed data between 2011

and 2015.38 The map shows the distribution of the cumulative displacements measured along the satellite LOS over the Crossrail route. Each

point corresponds to a permanent scatterer
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procedure adopted in the second stage assessment (Section 2.1), with the innovation that PS-based building displace-
ments are used to perform a more realistic prediction of the building level of damage.

In the first step, we assumed that each tunnel generates a Gaussian shaped settlement.73 The soil parameter K, the
volume loss VL, the tunnel diameter D and the tunnel depth z, defined as in Section 3.1.1, were used to calculate
the greenfield settlement profile for each tunnel (Equation 1). These settlement profiles were calculated disregarding
the influence of surface structures, i.e., under the greenfield assumption. Depending on the distance between the tunnel
centrelines, the effect of the twin tunnels was combined as defined in the Crossrail second phase assessment.96 Figure 6
shows the three possible configurations. If the separation between the tunnel centrelines is less than 2i, two hogging
zones and one sagging zone are identified, i.e. the three-zone scenario of Figure 6a. If the separation is between 2i and
6i, three hogging zones and two sagging zones are recognised, i.e. the five-zone scenario of Figure 6b. If the tunnel
centrelines are 6i apart, four hogging zones and two sagging zones can be observed, i.e. the six-zone scenario of
Figure 6c. In this latter case, the two tunnels act like independent tunnels.

In the second step, the building footprints, which were defined in Section 3.1.2, were used to identify all the PSs
within the corresponding building aggregate. To identify only scatterers belonging to the building and not to the gro-
und, only PSs with an elevation of more than 5 m with respect to the ground level were selected. Furthermore, to guar-
antee the reliability of processed measurements, only PSs with a coherence greater than 0.8 were selected. Building PSs
were processed to remove any phase unwrapping error and ground reference point offset, as in Giardina et al.36 It
should be noted that the PS-InSAR-based displacements correspond to movements of the monitored radar targets mea-
sured along the satellite LOS in the elapsed time. Since for the specific case of tunnelling-induced settlements vertical
displacements are dominant, we processed the InSAR-based LOS displacements within the assumption of zero horizon-
tal movements.97 As a consequence, vertical displacements were obtained by projecting the LOS displacements into the
vertical direction with the use of the radar incidence-angle, which is 30� in our specific case.

In the third step, we used the PS-InSAR-based displacements to quantify the actual building deformation. Building
PSs belonging to the same block of connected edifices were interpolated over the building length using a modified
Gaussian function.36 The modified Gaussian function is based on the greenfield settlement profile which was calculated
in the first step of the method. Only buildings with at least three available PSs were included in the analysis. The fit-
based profile allowed the determination of three fitting coefficients α, β and γ, which were used to generate three modi-
fied parameters: the modified horizontal coordinate, xm ¼ αþx , the modified volume loss, VL,m ¼ βVeb,wb

L and the
modified trough width, im ¼ γi . Such parameters enabled the retrieval of a more realistic settlement profile for each
building. The modified parameters were introduced in Equation (1) to obtain the modified settlement equation:

SmðxÞ¼
ffiffiffi
π

2

r
D2

4im
VL,me

� x2m
2i2m ð10Þ

The PS-InSAR-based settlement was used to estimate deflection ratios for each building aggregate.
The fourth step aims to retrieve the building strains from the PS-InSAR-based deflection ratios. Each building aggre-

gate was modelled as a weightless, linear elastic beam of length L, height H and unit thickness.77 The building height
H was estimated by using the elevation of the PSs located on the building roof. A material parameter E=G¼ 2:6 was
assumed for all the buildings, as in Crossrail.96 The parts of the structure undergoing hogging and sagging deformations

FIGURE 6 Three possible scenarios for the settlement trough given by the combination of two tunnels (after Crossrail96 and Giardina

et al.36): (a) three-zone scenario, (b) five-zone scenario and (c) six-zone scenario. d corresponds to the horizontal distance between the

centrelines of the Eastbound (EB) and Westbound (WB) tunnels
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were analysed separately. Timoshenko's equations98 were used to calculate the bending strain, εb, and the shear strain,
εd, for each sagging and hogging part (Equation 3–4). Then, we calculated the building critical strain as defined in
Section 2.1. The building critical strain was used to estimate the building level of damage, according to an adapted
version of the classification proposed by Boscardin and Cording,78 as defined in Section 5.

In the fifth and final step of the algorithm, the building levels of damage were stored in the attribute table of the
building-GIS layer used as an input (Section 3.1.2), and damage maps were generated.

It should be noted that the fit-based approach defined in step 3 enables the evaluation of the influence of the building
on the settlement trough, providing a quantification of the soil–structure interaction. To compare the performance of the
PS-InSAR-based prediction with the traditional greenfield-based approach, the Steps 1, 3, 4 and 5 were used to perform a
greenfield-based assessment, and building deflection ratios were estimated from the greenfield settlement profile.

4 | THE CROSSRAIL CASE STUDY

The methodology presented in Section 3 was used to assess the structural damage to buildings located above the
Crossrail twin tunnels in London, UK. The entire Crossrail alignment runs from Royal Oak to Pudding Mill Lane and
Plumstead (Figure 7a) and consists of 21-km twin tunnels of 7.2-m diameter and up to 40-m depth. This work relates to
a 5 km � 5 km sub-area of the total Crossrail route. The area is between Paddington and Liverpool Street, and covers
most of the Drive X section and the beginning of Drive Y, as shown in Figure 7a.

In the monitored area, the local soil shows a stratigraphy given by layers of Terrace Deposits, London clay, the Lam-
beth Group, Thanet sands and Chalk, as schematised in Figure 7b. The geological section of Figure 7b shows that the
London Clay is at its thickest in Paddington Station. Then, the interface between the London Clay and the underlying
Lambeth Group rises and the tunnels become deeper, reaching their maximum depth in Liverpool Street. The Lambeth
Group and the Thanet sands typically present some difficulties for tunnelling. The hydrogeology of the London area is
mainly controlled by two aquifers, commonly referred to as the upper and lower aquifers. The piezometric surfaces are
at approximately zero Ordnance Datum (OD), that is, 5–6 m below the ground level, and between �40 and �50 m OD,
respectively.9 Due to the different ground features and groundwater conditions, diverse tunnelling methods were
adopted. Specifically, the excavation was executed by using slurry tunnel-boring machines in the London Clay and by
using earth pressure-balance tunnel-boring machines in the Lambeth Group. To limit possible ground subsidence, com-
pensation grouting was adopted in several locations during the excavation.

The monitored area in London is exceptionally rich in buildings with a wide range of features, such as masonry build-
ings of historical value and from different periods and styles, and modern framed buildings, relying on piles or shallow
foundations. Most of the historical buildings belong to the Victorian age or to the early 20th century, but there are also sev-
eral Georgian houses and a few older buildings.99 Specifically, the area between Paddington Station and Bond Street is
home of many Grade II listed buildings, as well as from Fisher Street Shaft to Farringdon Station. A few Grade I buildings
are around Bond Street and Tottenham Court Road Station, while some other structures in the zone have been designated

FIGURE 7 (a) Location map and overview of the Crossrail alignment in London; the rectangle highlights the study area, which is

between Paddington and Liverpool Street. (b) Longitudinal geological cross-section of the Crossrail route from Royal Oak to Liverpool

Street96
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as Grade II* listed buildings. Georgian buildings generally show regular and symmetric shapes and are mainly organised
in rows of terraced houses. Victorian buildings can be found as detached houses or in terraces. For both Georgian houses
and Victorian buildings, the construction materials are typically bricks and local stones.

Survey activities, assessments, monitoring, intervention works and soil investigations cost Crossrail about £1 billion.
To identify the type of structures potentially affected by the settlement,96,100 a high number of studies and monitoring
activities were carried out before the tunnelling construction. Looking at the potential interaction between adjacent
structures in blocks of buildings, Crossrail identified the following configurations of interest:

• isolated masonry buildings with lime mortar, uniform facades and small openings were expected not to be very sensi-
tive to the settlement;

• masonry structures with large openings and located between stiffer framed buildings were expected to be susceptible
to small movements;

• buildings which concentrate all their movements in one location as a consequence of their structural form, were
expected to have a higher probability of cracking.

Thousands of buildings were initially assessed using a procedure based on the Limiting Tensile Strain Method
(LTSM) developed by Burland and Wroth,77 meaning that the stiffness of the structures was neglected until the last
stage of the assessment.96 To deal with buildings affected by the settlement, a detailed plan for post-construction
surveys and commitments to repair damage which tunnelling operations have caused was developed.100

5 | RESULTS AND DISCUSSION

To investigate the effects of the excavation on different building categories, the buildings within the monitored area
were reported in a Geographic Information System (GIS) and classified on the basis of structural typology, foundation
type and age of construction, as defined in Section 3.1.2. Figure 8 shows the results of the classification based on age of
construction. Results indicate that more than 50% of the analysed buildings were constructed between 1840 and 1945.
Georgian houses and more ancient buildings represent about 6% and 2% of buildings, respectively. About 8% of build-
ings were built after 1945, and mainly consist of large concrete framed structures, relying on piles or deep foundations.
For the remaining 35% of buildings, the period of construction is not known.

FIGURE 8 Age-based classification of the buildings between Paddington and Liverpool Street, along the Crossrail twin tunnels in

central London. The Crossrail alignment is represented with a blue line
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Figure 9 shows the distribution of the structural typologies and foundation types for the buildings within the moni-
tored area. The classification is based on the classes of interest defined in Section 3.1.2. About 44% are masonry struc-
tures, 17.6% are framed structures, and for about 39% of buildings the structural type is unknown. Furthermore, 58.7%
of buildings were built on shallow foundations, 5.3% of buildings are resting on piles, and for the remaining 36% of
buildings the foundation type is unknown.

The integration of the PS-InSAR dataset with the building database led to the identification of 9146 PSs on the
analysed buildings, corresponding to an average of six PSs per structure. The distribution of the number of PSs identi-
fied for each structure is shown in Figure 10. Specifically, three or more PSs were identified for about 55.6% of struc-
tures, one or two PSs for 18.6% of buildings and 25.8% of buildings did not show a PS. Since ground-based sensors were
only installed on a few tens of structures along the tunnel, the possibility to identify at least one PS for about 74% of
buildings is the first notable achievement of the proposed methodology. Furthermore, it is noted that only one acquisi-
tion geometry was used in this analysis. The combined use of ascending and descending acquisition geometries can pro-
vide an even higher number of PSs per building.

The GIS layers in Figures 8 and 9 were used to identify the buildings which are part of the same structural block
(Section 3.1.2), leading to the identification of 1153 independent building aggregates. These buildings were processed
using the algorithm described in Section 3.2. To perform a reliable fit, only building aggregates with at least three PSs
were selected, accounting for a total of 858 buildings. The PS-InSAR-based assessment demonstrated that the buildings
within the monitored area experienced a ‘negligible’ risk of damage.101 To relate the building critical strains to the level
of severity, an adapted version of the classification proposed by Burland et al.101 was adopted. Three ranges of maxi-
mum deformations were identified and used to define three categories of damage, that is, A, B and C, which increase in
level of severity. Then, critical strains calculated for each building aggregate were associated with the corresponding
level of damage, as described in Section 3.2. The results were used to generate the damage maps shown in Figure 11.
Specifically, Figure 11a shows the damage classification obtained through a greenfield-based assessment, while
Figure 11b refers to the damage prediction based on the PS-InSAR-based assessment. The maps highlight that the
greenfield-based assessment overestimates the predicted damage level. In the greenfield scenario, 43% of buildings expe-
rienced the highest category of damage, that is category C, 12% of buildings fit category B, and 45% of buildings fit cate-
gory A. The PS-InSAR-based assessment led to 38% of buildings experiencing critical strains in the range associated
with category C, 16% of buildings falling into category B, and 46% of buildings fitting the lowest category damage, that
is A. Building critical strains used to retrieve the damage levels shown in Figures 11a,b, were calculated by considering

FIGURE 9 Classification based on the structural typology and the foundation type of the buildings between Paddington and Liverpool

Street, along the Crossrail twin tunnels in London. The Crossrail alignment is represented with a blue line
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only the contribution of the vertical settlement, based on the assumption that most of the deformations occur vertically,
and that relatively small horizontal strains are typically transferred to the building, as reported in Section 2.1. Further-
more, the strain calculation was based on the use of a unique material parameter E/G for all the buildings (Section 2.1).
It should be noted that given the higher flexibility of framed structures, several authors suggested different E/G values,
e.g. 12.5,102 for this class of buildings. As the scope of this study is to show a comparison between the InSAR-based
results and the greenfield-based assessment, and no definitive consensus exists on the E/G value to be used for framed
structures,103 E=G¼ 2:6 was adopted for all the buildings. However, the developed procedure is flexible to the use of dif-
ferent E/G values for different structures. As an example, when a value of E=G¼ 12:5 is used for framed structures, for
these buildings we observed a reduction of the critical strains up to 50%.

5.1 | Effects of the building-tunnel position on vertical cumulative displacement

Thanks to the high density of InSAR measurements and their automated integration with building data, it was possible
to analyse settlement profiles for buildings with different structure, foundations, and position relative to the tunnels,
and identify trends in the building behaviours.

As an example, Figure 12 shows four buildings with different structural typology and position relative to the tun-
nels: one is a framed building with unknown foundation type and symmetric position relative to the tunnels, one is a
load-bearing masonry building on pile foundations and with symmetric position relative to the tunnels, and two are
framed buildings, both on pile foundations and entirely positioned on one side of the tunnels.

Figure 13 shows four framed structures positioned asymmetrically to one of the tunnels and with one end located
above or nearly above one of the settlement trough minima: three of them are on shallow foundations, and one is on
piled foundations.

It is noted that for most of the cases in Figures 12 and 13, the presence of the building led to a flattening of the set-
tlement curve. However, this does not necessarily imply a reduction of the magnitude of vertical settlements.104 As an
example, the buildings in Figure 13 experienced a vertical displacement larger than the equivalent greenfield. These
observations match results obtained through centrifuge tests for the same building-tunnel configurations.86

FIGURE 10 PS density on the buildings between Paddington and Liverpool Street, along the Crossrail twin tunnels in London. The

Crossrail alignment is represented with a blue line
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5.2 | Effects of building stiffness on deflection ratio

The availability of PS-InSAR-based measurements for a large number of buildings enabled the investigation of the
building response to tunnelling-induced settlement in relation with building deformation parameters, for buildings
characterised by different structure, i.e., masonry or framed, and foundations, i.e., shallow foundations or piles.

Figure 14a,b show the building deflection ratios against the height-to-length ratio H/L for hogging and sagging
deformation, respectively. Both load-bearing masonry and framed buildings on shallow foundations exhibit larger
deflection ratios for H/L values smaller than one, as the building geometry makes them more vulnerable to

FIGURE 11 Damage maps for the buildings between Paddington and Liverpool Street, along the Crossrail twin tunnels in London. The

building levels of damage are based on the building critical strains calculated through (a) the greenfield-based assessment and (b) the

PS-InSAR-based assessment. εc, 0 indicates the building critical strain calculated by neglecting the horizontal component
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deformations. Furthermore, greenfield-based deflection ratios are typically higher than actual deflection ratios, espe-
cially in sagging and for lower values of H/L (Figure 14b).

To compare the building response to settlement for load-bearing masonry and framed buildings on shallow founda-
tions, we implemented a fit on the values of the deflection ratio shown in Figure 14a,b. We defined our fit function on
the basis of the Timoshenko's equation for an idealised central point loaded (P) beam:

Δ
L
¼ PL2

48EI
1þ 18EI

L2HG

� �
ð11Þ

where, Ihog ¼H3=3 and Isag ¼H3=12 are the moments of inertia for hogging and sagging, respectively, and P is the
applied load. If we distinguish between hogging and sagging, and assume that x¼H=L is the independent variable,
a= p/E and b¼E=G are the fit coefficients, where p is the load applied per meter of beam, i.e., relative load,
Equation (11) leads to the following fit functions:

Δ
L

� �hog

¼ a
16

1
x3

1þ6bx2
� �

, ð12Þ

FIGURE 12 Examples of building effects on vertical settlements: (a) framed building with unknown foundation type and symmetric

position relative to the tunnel, (b) load-bearing masonry building on pile foundations and symmetric position relative to the tunnel,

(c) framed building on pile foundations and positioned on the side of the tunnels, and (d) framed building on pile foundations and

positioned on the side of the tunnels. VL and K were measured at (a) 157 m, (b) 22 m, (c) 120 m and (d) 78 m from the respective building.

The building rectangles correspond to the projection of the medium building sections along the transect. Though some PSs can exceed the

projected building section, they are part of the building footprint and can be found in buildings characterised by a non-zero alignment with

respect to the tunnel axis
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We constrained the fit coefficients a and b to ranges larger than realistic intervals: 1 ∗ 10�7 < a<1 ∗ 10�3 and
2< b<100, which were selected on the basis of numerical tests and literature values. The coefficients returned by the
fit are shown in Table 2, and quantify the different response of analysed building categories in terms of global
flexibility.

The corresponding fit curves in hogging and sagging are shown in Figure 15a,b, respectively. For each deformation
mode, load-bearing masonry buildings show lower values of p/E, indicating that for similar values of p they are stiffer
than framed structures. Similarly, load-bearing masonry buildings show E/G values lower than framed buildings. The
difference is larger in hogging than in sagging. The curves of Figure 15 reflect the different stiffness between the two
classes of structures, highlighting the different behaviour in hogging and sagging.

We then compared actual and greenfield deflection ratios for buildings with the same structural and foundation
typology. Figures 16 and 17 show the actual and the greenfield deflection ratio, in hogging and sagging, for load-bearing
masonry and framed buildings, respectively, on shallow foundations. Figures 18 and 19 show the same parameters for

FIGURE 13 Examples of building effects on vertical settlements for buildings positioned asymmetrically to one of the tunnels and with

one end located above or nearly above one of the settlement trough minima: (a) framed building on shallow foundations, (b) framed

building on pile foundations, (c) framed building on shallow foundations and (d) framed building on shallow foundations. VL and K were

measured at (a) 16 m, (b) 9 m, (c) 1 m and (d) 65 m from the respective building. The building rectangles correspond to the projection of the

medium building sections along the transect. Though some PSs can exceed the projected building section, they are part of the building

footprint and can be found in buildings characterised by a non-zero alignment with respect to the tunnel axis
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FIGURE 14 Deflection ratio DR against the building aspect ratio H/L (a) in hogging and (b) in sagging. Orange and blue dots indicate

actual values of the deflection ratio for load-bearing masonry and framed buildings, respectively, on shallow foundations. Black dots indicate

greenfield-based deflection ratios

TABLE 2 Coefficients obtained by

fitting the actual deflection ratios for

load-bearing masonry (lbm) and framed

(frm) buildings on shallow foundations

(sh), distinguishing between hogging

and sagging

p/E E/G

Hogging albm,sh ¼ 1:098∗10�5 blbm,sh ¼ 3:325

af rm,sh ¼ 2:237∗10�5 bf rm,sh ¼ 5:431

Sagging albm,sh ¼ 2:501∗10�6 blbm,sh ¼ 3:0871

af rm,sh ¼ 1:278∗10�5 bf rm,sh ¼ 3:762

FIGURE 15 Deflection ratio DR against the building aspect ratio H/L (a) in hogging and (b) in sagging. Orange and blue dots indicate

actual values of the deflection ratio for load-bearing masonry and framed buildings, respectively, on shallow foundations. The lines indicate

the fitting curves, which vary according to the coefficients a= p/E and b¼E=G
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load-bearing masonry and framed buildings, respectively, on piled foundations. It can be observed that the actual
deflection ratio is not always lower than the corresponding greenfield estimation. This means that greenfield predic-
tions are not consistently conservative, and the effect of buildings should be carefully evaluated in damage assessment
procedure. The effect is more evident in hogging than in sagging. This behaviour can be observed for three of the four
categories, i.e. load-bearing masonry buildings on shallow foundations, framed buildings on shallow foundations and
framed buildings on piled foundations, while the load-bearing masonry buildings on piled foundations are not enough
to enable the observation of a trend. About 40% of load-bearing masonry buildings on shallow foundations, 49% of
framed buildings on shallow foundations and 64% of framed buildings on piled foundations showed deflection ratios
higher than the corresponding greenfield prediction, when the hogging deformation mode is analysed. About 20% of
load-bearing masonry buildings on shallow foundations, 17% of framed buildings on shallow foundations and 3% of
framed buildings on piled foundations showed deflection ratios higher than the corresponding greenfield prediction in
sagging.

FIGURE 16 Actual deflection ratio, DRact, versus greenfield-based deflection ratio, DRgr, for load-bearing masonry buildings on

shallow foundations in (a) hogging and (b) sagging

FIGURE 17 Actual deflection ratio, DRact, versus greenfield-based deflection ratio, DRgr, for framed buildings on shallow foundations

in (a) hogging and (b) sagging
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We then investigated the relation of actual and greenfield deflection ratios with the building geometry, H/L, dis-
tinguishing between different structure and foundation types, and between hogging and sagging. Buildings were
grouped in three different classes according to their geometry: H/L≤ 0.5, 0.5 <H/L≤ 2 and H/L>2. Then, for each of
the following structural and foundation categories: load-bearing masonry buildings on shallow foundations; framed
buildings on shallow foundations; framed buildings on piled foundations, and for each range of H/L, actual and green-
field deflection ratios were compared. Table 3 shows the number of buildings with actual deflection ratio higher than
the predicted greenfield, for each structural and foundation category and in each defined range of the height-to-length
ratio, when hogging or sagging deformation modes are analysed. In hogging and when H/L≤ 2, the greenfield underes-
timates the actual prediction for more than 70% of load-bearing masonry and framed buildings on shallow foundations,
and for more than 80% of framed buildings on piled foundations. In sagging, the greenfield tends to overestimate the
actual prediction for most of the buildings in each structural and foundation category and in each range of H/L.

FIGURE 18 Actual deflection ratio, DRact, versus greenfield-based deflection ratio, DRgr, for load-bearing masonry buildings on piled

foundations in (a) hogging and (b) sagging

FIGURE 19 Actual deflection ratio, DRact, versus greenfield-based deflection ratio, DRgr, for framed buildings on piled foundations in

(a) hogging and (b) sagging
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It should be noted that all of these observed trends are dependent upon the assumption that the PS points can be
adequately fit with the modified Gaussian curve described by Equation (10). While this assumption has been previously
adopted,36 its validity may vary depending on the quality of the data for a given building. Further investigation of the
effects of curve fitting of the InSAR data is the subject of ongoing work.

6 | CONCLUSION

We presented a semi-automated methodology based on the integration of PS-InSAR monitoring data and damage
assessment procedures for the identification of tunnelling-induced damage to buildings. The methodology was tested
on a 25-km2 area between Paddington and Liverpool Stre et along the Crossrail twin tunnel route in London. We used
descending COSMO-SkyMed PS-InSAR data acquired between 2011 and 2015 to retrieve the building displacements
over the monitored area. The COSMO-SkyMed dataset provided 9146 monitoring points (PSs) on the buildings along
the alignment, enabling the tunnelling-induced settlement to be reconstructed for 858 buildings. Each settlement pro-
file was used to retrieve critical strains for the corresponding building. On the basis of the retrieved strain a category of
damage was assigned to each structure and used to generate damage maps. A comparison between the PS-InSAR-based
assessment and the traditional greenfield-based assessment confirmed that the greenfield assumption overestimates the
damage prediction, providing a number of observations larger than any field of experimental campaign up to date.
The analysed area consists of buildings built in diverse historical periods, exhibiting different structural typologies and
types of foundation. This offered the possibility to investigate the structural response to tunnelling-induced settlement
for different classes of buildings. The following conclusions can be drawn:

• InSAR monitoring techniques can provide a dense amount of building measurements which is not available through
ground-based monitoring systems traditionally used in underground construction projects;

• the integration of InSAR measurements and building information at city-scale level provided an unprecedented
amount of high quality field data on the building response to tunnelling;

• the comparison between damage indicators retrieved through InSAR-based displacements and the conventional
greenfield approach quantifies the greenfield-based overestimation of building damage, giving a measure of the prac-
tical benefit of the developed approach;

• a comparison between greenfield and InSAR-derived settlement profiles showed that the presence of buildings tend
to flatten the settlement curves, but not always reduce the magnitude of vertical settlements. This was observed for
buildings positioned asymmetrically to the tunnels and with one end above the tunnel axis, which led to an induced
vertical displacement larger than the corresponding greenfield.

TABLE 3 Percentage number of load-bearing masonry buildings on shallow foundations (lbm,sh), framed buildings on shallow

foundations (frm,sh) and framed buildings on piled foundations (frm,pl) showing actual deflection ratios (DRact) higher than the

corresponding greenfield (DRgr), in hogging and sagging

Building category
Number of buildings
(H/L≤ 0.5)

Number of buildings
(0.5<H/L≤ 2)

Number of buildings
(H/L>2)

DRact
hog >DRgr

hog

� �
lbm;sh

71% 72% 9%

DRact
sag >DRgr

sag

� �
lbm;sh

30% 32% 2%

DRact
hog >DRgr

hog

� �
frm;sh

100% 72% 11%

DRact
sag >DRgr

sag

� �
frm;sh

29% 32% 6%

DRact
hog >DRgr

hog

� �
frm;pl

80% 87% 31%

DRact
sag >DRgr

sag

� �
frm;pl

0% 12% 0%

Note: Buildings in each category are grouped according to their height-to-length ratio H/L.
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• PS-InSAR-based deflection ratios reflected a different behaviour for load-bearing masonry and framed buildings on
shallow foundations. Specifically, framed buildings showed a reduced stiffness and higher deflection ratios. This was
more evident in hogging than in sagging;

• a comparison between actual and greenfield deflection ratios for different classes of structure and foundation showed
that the greenfield overestimation is larger in hogging than in sagging;

• actual and greenfield deflection ratios were analysed in relation with the building height-to-length ratio H/L for dif-
ferent classes of structure and foundation. In hogging, the greenfield-based assessment underestimated the actual
deformation for more than 70% of load-bearing and framed buildings on shallow foundations with H/L<2, for more
than 80% of framed buildings on piled foundations with H/L<2, and for more than 30% of framed buildings on piled
foundations with H/L>2. In sagging, the greenfield-based assessment overestimated the actual deformation for most
of the buildings in each structural and foundation category and in every range of H/L.

The presented methodology enables the identification of vulnerable buildings along the tunnel track, with an excel-
lent compromise between accuracy and economical constraints. This work can positively impact the construction
industry, enabling to improve traditional damage assessment strategies and to complement ground-based monitoring
systems. Thanks to the large amount of building measurements available with InSAR, this methodology can be used to
advance the knowledge on the soil–structure interaction and improve prediction procedures for future excavation
projects.
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