
Reasoning about MDPs Abstractly:
Bayesian Policy Search with Uncertain

Prior Knowledge

Master’s Thesis

Jord Molhoek

Reasoning about MDPs Abstractly:
Bayesian Policy Search with Uncertain

Prior Knowledge

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jord Molhoek
born in Delft, the Netherlands

Interactive Intelligence Research Group, Algorithmics Research Group
Department of Intelligent Systems, Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.tudelft.nl/ewi

www.tudelft.nl/ewi

© 2024 Jord Molhoek.

Cover art generated by DALL·E 2; color-spectrum and shape edited by Jord Molhoek.

Reasoning about MDPs Abstractly:
Bayesian Policy Search with Uncertain

Prior Knowledge

Author:
Student id:

Jord Molhoek
4932919

Thesis Defense Date: February 1, 2024

Abstract

Many real-world problems fall in the category of sequential decision-making un-
der uncertainty; Markov Decision Processes (MDPs) are a common method for model-
ing such problems. To solve an MDP, one could start from scratch or one could already
have an idea of what good policies look like. Furthermore, there could be uncertainty
in this idea. In existing literature, a policy search procedure is accelerated by encod-
ing this prior knowledge in an action distribution which is used for policy sampling.
Moreover, this is then extended by inferring these action distributions while inferring
the policy through Gibbs sampling. Implicitly, this approach assumes a generalization
of good and bad actions over the entire state space.

This thesis extends the existing method by leveraging a division of the state space
into regions and inferring action distributions over these regions, rather than over the
entire state space. We show that this can accelerate the policy search. We also show
that the algorithm manages to recover if the division is unjustified. The division into
regions can hence also be considered a form of prior knowledge of the policy with
uncertainty. Finally, inference of the regions themselves is also explored and yields
promising results.

Thesis Committee:

Thesis advisor: Dr. F. A. Oliehoek, Faculty EEMCS, TU Delft
Daily supervisor: Dr. S. Dumančić, Faculty EEMCS, TU Delft

j.molhoek@student.tudelft.nl

Preface

This thesis lies on the intersection of probabilistic programming and sequential decision-
making under uncertainty. Throughout the 30 weeks I worked on this thesis, I have learned
a lot, not only about technical details of probabilistic programming and sequential decision-
making but also about performing extensive academic research. In this thesis, I delve into
the theory of sequential decision-making under uncertainty, examining specifically how
some prior idea of a solution can be leveraged to find a solution more quickly. Additionally,
this prior idea can have some uncertainty as it may turn out that it is unjustified. I also
extend this to automatically inferring abstract representations of the underlying problem,
represented as a decision tree.

Ever since I learned about automatically learning decision trees, I have been fascinated
by them. Specifically, I love that anyone can put their finger on the start node and follow
the lines to understand the logic. I believe that such white-box models will become more
and more essential as humans realize that decisions made by Artificial Intelligence often
need to be understandable, making it safe and effective to use Artificial Intelligence as a
tool without completely giving up control. Meanwhile, I also love the expressive freedom
that probabilistic programs provide. Again, generative models presented as human-readable
code can provide meaningful insight into why an agent made a decision. Moreover, I think
that Probabilistic Programming is a promising scientific field, and I can’t wait to see what
the coming years will bring.

I would like to express my gratitude to my supervisors Sebastijan Dumančić and Frans
Oliehoek for their support and feedback throughout this project. Next, I want to thank
the TU Delft PONY (PrObabilistic Neurosymbolic sYnthesis) lab for all the interesting
meetings and discussions. Finally, I would like to thank my family and friends for their
support throughout the journey of my Bachelor’s and Master’s degrees.

Jord Molhoek
Delft, the Netherlands

January 24, 2024

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Preliminaries 5
2.1 Markov Decision Processes . 5
2.2 Dynamic Programming for Solving MDPs 7
2.3 Probabilistic Programming . 8
2.4 Metropolis-Hastings . 12
2.5 Bayesian Policy Search with Policy Priors 12

3 Related Work 15
3.1 Planning as Inference . 15
3.2 Planning by Probabilistic Programming 16
3.3 Leveraging Prior Policy Knowledge . 17
3.4 State Abstraction for MDPs . 18

4 Methodology 19
4.1 Problem Setting . 19
4.2 The Approach: Priors over Regions . 19
4.3 Generative Model . 23
4.4 Inferring Policies . 26
4.5 Inferring Region Configurations . 29

5 Experimental Evaluation 33
5.1 MDP Instances . 33
5.2 Policy Inference Given a Region Configuration 35
5.3 Generalization of θ . 44
5.4 Inference of Region Configurations . 45

v

CONTENTS

6 Conclusions and Future Work 51
6.1 Conclusions and Limitations . 51
6.2 Future Work . 52
6.3 Broader Implications . 54

Bibliography 55

A Glossary 61

B Hyperparameter Analysis 63

vi

Chapter 1

Introduction

Many real-world problems fall in the category of sequential decision-making under uncer-
tainty; Markov Decision Processes (MDPs)[31] are a common method for modeling such
problems. For example, imagine an agent in a two-dimensional maze where the goal is to
move to the top (Figure 1.1 (left)). A solution to an MDP is a policy, often denoted as π. A
policy is essentially a description of the behavior of an Artificially Intelligent Agent (AIA),
mapping the possible situations the agent could be in (referred to as ‘states’) to appropriate
actions. One could think of a policy as a treasure map, specifying exactly what to do in
which state (Figure 1.1 (middle)). Many methods for finding a policy exist. If a policy is
found by interacting with and learning from the environment, this is known as Reinforce-
ment Learning[33]. Meanwhile, if the dynamics of the environment are known beforehand,
finding a policy is known as planning[31]. This thesis focuses on Bayesian policy search: a
search for a good - or even optimal - policy in the space of policies, making use of Bayesian
inference (Section 2.5). This can be seen as either planning or reinforcement learning based
on whether a policy is evaluated using a given model of the environment, or using interac-
tions with the environment respectively.

To find a good policy, one could start from scratch or one could already have an idea
of what good policies look like. In other words, one could have prior knowledge of good
policies. Note that there is an important difference between prior knowledge of the envi-
ronment and prior knowledge of the policy. In planning problems, the full dynamics of the
environment are known. Prior knowledge of good policies relates to the shape or contents
of a policy, or it could be extra information we have about the environment that is useful
towards a certain goal. For example, we know that an agent does not have to care about the
color of their hat when their goal is to exit a maze. If such knowledge is very well-defined,
leveraging such knowledge is trivial; e.g. certain irrelevant state factors or irrelevant actions
can be ignored, or certain state-to-action mappings can be fixed before the policy search
is started. Occasionally, the prior knowledge of the policy is not as well-defined. In other
words: there can be some uncertainty in the knowledge. From now on, we will refer to prior
knowledge of the policy with uncertainty as soft prior knowledge.

In the previous example (Figure 1.1 (left)), one might have the soft prior knowledge that
a good policy has a preference for the action ↑. In existing literature, such as the work of
Wingate et al.[39], such knowledge is leveraged in the policy search. Specifically, policies

1

1. INTRODUCTION

Figure 1.1: Left: an example grid-world where the goal is to move to the top row. Middle:
an example policy corresponding to the left figure; mapping each state to an appropriate
action. Right: another example of a grid-world that can be modeled as an MDP.

that contain the action ↑ often are made more probable. Next, their work aims to accelerate
the search without having to specify which action should be preferred. This is done by
optimizing the policy while optimizing the distribution of actions. Intuitively, learning that
↑ is a good action in e.g. the upper part of the maze will make ↑ also more likely in the
lower part of the maze. A similar internal generalization can also work for actions that are
learned to be bad.

This internal generalization of good and bad actions works well for the example from
Figure 1.1 (left)[39]. However, it might not be the case in another environment (Figure 1.1
(right)). In this case, moving to the right would move agent 1 closer to the treasure. The
information that moving right is a good action also generalizes to the location of agent 2.
Nevertheless, this information would not generalize to the location of agent 3. There, the
agent would first have to move to the bottom left to walk around the wall. This example
illustrates how knowledge of good and bad actions can generalize within parts of the state
space, while not generalizing over the state space entirely. Being able to identify subsets of
states in which we suspect good and bad actions to generalize can be interpreted as another
form of soft prior knowledge.

The aforementioned aspects motivate the main research question of this thesis, which
reads:

How can we improve Bayesian policy search by incorporating soft prior infor-
mation on good policies?

Other questions that are explored are: “how do we define and represent this soft prior knowl-
edge?”, “how do we leverage it in the inference procedure?” and “how can we also (par-
tially) infer this soft prior knowledge for generalization purposes?”

As a direct result of this thesis, the Bayesian policy search method from Wingate
et al.[39] is improved by leveraging a division of the state space into regions and infer-
ring action distributions over these regions, rather than over the entire state space. We show

2

that this can accelerate the policy search. We also show that the algorithm manages to re-
cover if the division is unjustified. The division into regions can hence also be considered
a form of prior knowledge of the policy with uncertainty. Finally, inference of the regions
themselves is also explored and yields promising results.

The scope of this thesis is limited to MDPs with factored discrete states and un-factored
discrete actions. For more information on factored MDPs, see Section 2.1 and the work of
Boutilier et al.[5].

Possible broader implications of this thesis include a better understanding between hu-
mans and AI, and artificially intelligent agents (AIAs) that think more like humans. Infer-
ring the relevant regions within the state space with a certain goal in mind yields an abstract
representation of the problem. Equipping AIAs with the capability to reason about prob-
lems in an abstract way brings them closer to humans. Furthermore, by pushing the limits
of this work, policies could be represented as decision trees; making the behavior of AIAs
more interpretable and understandable for humans[25].

3

Chapter 2

Preliminaries

This chapter provides the background material for this thesis. Markov Decision Processes
and relevant related concepts are explained in Sections 2.1 and 2.2. Next, Section 2.3 ex-
plains the basics of Probabilistic Programming, and Section 2.4 explains the Metropolis-
Hastings algorithm. Finally, the relevant parts of the paper “Bayesian Policy Search with
Policy Priors” by Wingate et al.[39] are explained in detail in Section 2.5, as this thesis
builds on top of their work.

2.1 Markov Decision Processes

In sequential decision problems, an agent needs to make decisions in some environment, and
the decision at one time step potentially influences the state of the (agent in the) environment
in the next time step. Markov Decision Processes (MDPs) are commonly used to model such
sequential decision problems. This thesis assumes the definitions of MDPs adapted from
Kaelbling et al.[18]. An MDP is a tuple (S ,A ,ρ,T,R) where

• S is the set of states;

• A is the set of actions;

• T : S ×A →Π(S) is the transition model. I.e. p(s′|s,a) represents the probability of
transitioning from state s ∈ S to state s′ ∈ S after taking action a ∈ A ;

• ρ : Π(S) is the distribution of the initial state;

• R : S ×A → Π(R) is the reward distribution. I.e. R(s,a) is the (possibly stochastic)
reward the agent receives after taking action a in state s. Occasionally, rather than
mapping a (s,a)-tuple to a reward, the reward distribution is represented as R(s) (e.g.
by Russell and Norvig[31]) or as R(s,a,s′) (e.g. by Rodriguez-Sanchez et al.[27]).
R̄(s,a) is often used to abbreviate E[R(s,a)].

Note that Π(·) indicates a probability distribution over the given set. Additionally, some
states in S can be terminal states, which end trajectories automatically.

5

2. PRELIMINARIES

States and actions can be continuous or discrete. Occasionally, factored representa-
tions are used [5]. This means that a state s ∈ S can be represented as a set of vari-
ables. For example, the state of an agent in a maze with a door could be represented as
(x coordinate,y coordinate,has key)∈Z×Z×B. Such factored representations can again
be continuous or discrete. Additionally, a factored representation can be hybrid, meaning
that there is at least one discrete state factor and at least one continuous state factor. In
theory, actions can also be factored in the same way. However, for simplicity, this thesis
assumes factored discrete states and un-factored discrete actions.

In the example grid-world from before (Figure 1.1 (left)), S would be the set of all grid
cells that are not walls, and states would be represented as (x,y)-coordinates. A would be
the set of actions that the agent could take: {↑,↓,←,→}. Furthermore, the transition model
would specify that e.g. the action ↑ has a large probability of increasing the y-coordinate
by one but also has a small probability of adding or subtracting one from the x-coordinate,
representing a small probability that the agent could ‘slip’. Moreover, a possible initial state
distribution specifies that the agent has an equal probability of starting at any of the states on
the bottom row: ρ((2,2)) = ρ((3,2)) = ρ((4,2)) = ρ((5,2)) = ρ((6,2)) = 0.2. Finally, the
reward model R(s,a) would specify that in any of the blue states, upon taking any action, a
large reward is achieved. For more examples of MDPs, see Sections 4.2.1 and 5.1.

An MDP adheres to the (first-order) Markov property. This means that the next state is
conditionally independent of all preceding states and actions, given the previous state and
action. In mathematical terms, we can say:

p(st+1|st ,st−1, ...,s0,at ,at−1, ...,a0) = p(st+1|st ,at) (2.1)

A sequence of states and actions is known as a rollout or a trajectory, usually denoted by
τ. Up to horizon H (in this thesis, H is infinite) we can say that τ = (s0,a0,s1,a1, ...,sH ,aH).
Since each (st ,at)-tuple is associated with some reward, some reward value can also be
attributed to a trajectory. The reward of a trajectory is often called the return. The returns
can be additive or discounted [31]. Discounted returns are calculated as

R(τ) =
H

∑
t=0

γ
tR(st ,at), (2.2)

where γ∈ [0,1] is known as the discount factor. It indicates the trade-off between immediate
rewards and future rewards. The case of additive return is a special case of the discounted
return, i.e. when γ = 1. Moreover, since γ is a fixed parameter and the expectation of a sum
is the sum of expectations we can say that

R̄(τ) =
H

∑
t=0

γ
t R̄(st ,at) (2.3)

A solution to an MDP is known as a policy, which is typically denoted as a mapping
π : S → A as a deterministic policy or π : S ×A → [0,1] as a stochastic policy. When the
dynamics of the environment are known, finding such a policy is known as planning. Like-
wise, when the agent is tasked with finding a policy without (complete) knowledge of the

6

2.2. Dynamic Programming for Solving MDPs

dynamics of the environment, i.e. the agent needs to explore, this is known as reinforcement
learning. The value of such a policy can be calculated as the expected return of the policy:

Jπ =
∫

R̄(τ)pπ(τ)dτ (2.4)

where pπ(τ) is the probability of observing trajectory τ given that we follow the policy
π. I.e.:

pπ(τ) = p(s0)
H

∏
t=0

π(at |st)p(st+1|st ,at) (2.5)

2.2 Dynamic Programming for Solving MDPs

Finding the optimal policy for a Markov Decision Process in a planning setting can be done
using dynamic programming. A popular algorithm is Value Iteration. Before Value Iteration
can be understood, some common functions need to be defined. First of all, V π(s) describes
the value of being in state s and following policy π from there. Formally this can be denoted
as1:

V π(s) = E

[
∞

∑
t=0

γ
tR(st ,at)

∣∣∣∣∣s0 = s,at = π(st)

]
(2.6)

= R̄(s,π(s))+E

[
∞

∑
t=1

γ
tR(st ,π(st))

]
(2.7)

= R̄(s,π(s))+ γ ∑
s′∈S

p(s′|s,π(s))V π(s′) (2.8)

By extension, Qπ(s,a) describes the value of being in state s, taking action a, and fol-
lowing policy π afterwards. This is formally denoted as:

Qπ(s,a) = E

[
∞

∑
t=0

γ
tR(st ,at)

∣∣∣∣∣s0 = s,a0 = a,at = π(st)

]
(2.9)

= R̄(s,a)+E

[
∞

∑
t=1

γ
tR(st ,π(st))

]
(2.10)

= R̄(s,a)+ γ ∑
s′∈S

p(s′|s,a)V π(s′) (2.11)

With the V and Q functions understood, we now inspect the Value Iteration (VI) al-
gorithm. The Value Iteration algorithm initializes an estimation of V (s) for each s ∈ S
arbitrarily and repeatedly updates these estimates. This is done until some convergence cri-
terion is met. Value Iteration itself returns only these estimations of V (s) for all states, and
not a policy. However, given these converged estimations, the optimal policy can be greed-
ily extracted using equation 2.12. Pseudocode for the Value Iteration algorithm, adapted
from Kaelbling et al.[18], can be found in Algorithm 1.

1All definitions in this subsection are adapted from Bellman[2] and Kaelbling et al.[18].

7

2. PRELIMINARIES

Algorithm 1 Value Iteration
1: procedure VALUEITERATION(S ,A ,T,R,γ,ε)
2: Initialize V (s) := 0 for all s ∈ S
3: repeat
4: Vprev(s) :=V (s) for all s ∈ S
5: for s ∈ S do
6: for a ∈ A do
7: Q(s,a) := R̄(s,a)+ γ∑s′∈S p(s′|s,a)Vprev(s′)
8: end for
9: V (s) := maxa Q(s,a)

10: end for
11: until |V (s)−Vprev(s)|< ε for all s ∈ S
12: return V
13: end procedure

π(s) = argmax
a

[
R̄(s,a)+ γ ∑

s′∈S
p(s′|s,a)V (s′)

]
(2.12)

Similarly to VI, an algorithm named Policy Iteration also exists. This algorithm itera-
tively evaluates a policy and then updates the policy until it converges. Policy evaluation
boils down to VI with a fixed policy; following a given π rather than taking the optimal
action over the current Q estimates. This is referred to as simplified Value Iteration. Pseu-
docode for the Policy Iteration algorithm can be found in Algorithm 2. More details can be
found in Chapter 17 of Russell and Norvig[31].

2.3 Probabilistic Programming

Occasionally, one could face a problem where one has some knowledge Y and wants to use
this to infer some other knowledge X . For example, one could wonder what the probability
is that a burglary happened at their home, given that their neighbor called about the alarm
system sounding. Likewise, one could wonder what the probability is that it has rained,
given that the grass is wet [30]. These kinds of problems can be answered by characterizing
the posterior probability distribution P(X |Y); the goal is to infer X , conditioned on Y .

Probabilistic programming is a useful paradigm for such probabilistic modeling and in-
ference problems. At the heart of a probabilistic program lies a generative model. This is a
function that can generate data from a distribution specified as a program. This means that
the distribution can be specified using a combination of sample statements and deterministic
statements. Sample statements define random variables. An assignment of values to the ran-
dom variables is called an execution or a trace of the program. Next to the ability to sample
from distributions, the other added construct that distinguishes probabilistic programming
from ‘regular’ programming is the ability to condition on values of random variables. This

8

2.3. Probabilistic Programming

Algorithm 2 Policy Iteration
1: procedure POLICYITERATION(S ,A ,T,R,γ,ε)
2: Initialize policy π(s) arbitrarily for all s ∈ S
3: repeat
4: // Policy Evaluation (Simplified Value Iteration)
5: Initialize V (s) := 0 for all s ∈ S
6: repeat
7: Vprev(s) :=V (s) for all s ∈ S
8: for s ∈ S do
9: V (s) := R(s,π(s))+ γ∑s′∈S p(s′|s,π(s))Vprev(s′)

10: end for
11: until |V (s)−Vprev(s)|< ε for all s ∈ S
12:

13: // Policy Improvement
14: policy is unchanged := true
15: for s ∈ S do
16: a := π(s)
17: π(s)← argmaxa′ R(s,a

′)+ γ∑s′∈S p(s′|s,a′)V (s′)
18: if a ̸= π(s) then
19: policy is unchanged := f alse
20: end if
21: end for
22: until policy is unchanged
23: return π,V
24: end procedure

is done using observe and condition statements2. condition(b) invalidates traces of
the program in which the Boolean expression b is false. When a variable x is sampled
from a continuous distribution and we want to condition x to be equal to some fixed value
a, we could use condition(x == a). However, we might want to allow some margin of
error around a as well. In these cases, e.g. observe(Normal(x, 0.1), a) can be used;
observe conditions a variable to follow a certain distribution. [15, 16]

To understand these concepts better, let us inspect an example. The example in Algo-
rithm 3 is slightly adapted from Gordon et al. [16]. In this example, two values are sampled
from a Bernoulli distribution. Next, the sum of these values is calculated and it is observed
that the sum is always larger than 0. Finally, the sampled values are returned. An execution
of this program will return (1, 0), (0, 1), or (1, 1) each with a probability of 1

3 . Note
that a return value of (0, 0) has a probability of 0.0; this is ensured by the condition
statement.

Now that we have an intuitive understanding, we proceed to a more formal characteriza-
tion. A probabilistic program specifies a distribution over traces. Let X be the set of random

2observe and condition are sometimes used interchangeably in existing literature. E.g. Gordon et al.[16]
call observe what Goodman et al.[15] call condition. We stick to the terminology from Goodman et al.[15].

9

2. PRELIMINARIES

Algorithm 3 Simple Probabilistic Program
1: procedure FLIP2COINS

2: c1 ∼ Bernoulli(0.5)
3: c2 ∼ Bernoulli(0.5)
4: csum = c1 + c2
5: condition(csum > 0)
6: return c1,c2
7: end procedure

variables in a trace that are not observed, and Y be the set of observed random variables. A
probabilistic program defines the joint distribution:

p(X ,Y) = p(Y |X)p(X) (2.13)

= ∏
y∈Y

p(y|PA(y))∏
x∈X

p(x|PA(x)) (2.14)

where PA(x) is the set of random variables that precede and influence x.
Meanwhile, the overall goal of probabilistic programming is to perform probabilistic

inference. For example, we might need the mean or mode of some variable under specified
conditions. Or we may need to be able to draw samples from the posterior distribution. In
other words, the goal is to characterize the posterior: [38]

p(X |Y) = p(X ,Y)
p(Y)

, (2.15)

where

p(Y) =
∫

p(X ,Y)dX . (2.16)

Fortunately, many out-of-the-box inference procedures exist. For an overview of some well-
known inference algorithms, we refer to chapter 8 of Goodman et al.[15]. The Metropolis-
Hastings algorithm is highlighted in Section 2.4.

2.3.1 Factoring

Recall that condition(b) invalidates traces of the program in which the Boolean expres-
sion b is false. Occasionally, one might not want such hard constraints, and simply make
traces where b is false less probable rather than invalid. In such cases, the factor(·)
functionality can be used. The factor(·) functionality provides a ‘soft’ version of con-
ditioning. Specifically, factor(n) adds n to the unnormalized log probability of the trace
[14, 15]. Note that n is a numerical value and not a Boolean expression.

To understand how this functionality works, let us inspect an example (Algorithm 4).
Ignoring the factor(·) statements, we can see that p(c1 = true) = p(c1 = f alse) = 0.5.
Now we take the natural logarithms to find the log probabilities of these traces:

ln(p(c1 = true)) = ln(0.5) (2.17)

ln(p(c1 = f alse)) = ln(0.5) (2.18)

10

2.3. Probabilistic Programming

Algorithm 4 Simple Probabilistic Program that Uses Factor
1: procedure FLIPANDFACTOR

2: c1 ∼ Bernoulli(0.5)
3: if c1 then
4: factor(1.0)
5: else
6: factor(0.0)
7: end if
8: return c1
9: end procedure

Next, we add the factors to the corresponding log probabilities. Since we are adding to the
log probabilities, they become unnormalized log probabilities:

ln(punnorm(c1 = true)) = ln(0.5)+1 (2.19)

ln(punnorm(c1 = f alse)) = ln(0.5)+0 (2.20)

Getting rid of the logarithms on the left sides of the equations, we get:

punnorm(c1 = true) = eln(0.5)+1 (2.21)

= eln(0.5)+ln(e1) (2.22)

= eln(0.5e) (2.23)

= 0.5e (2.24)

and

punnorm(c1 = f alse) = eln(0.5)+0 (2.25)

= 0.5 (2.26)

Finally, normalizing these probabilities yields:

p(c1 = true) =
0.5e

0.5e+0.5
(2.27)

=
e

e+1
(2.28)

≈ 0,73 (2.29)

and

p(c1 = f alse) =
0.5

0.5e+0.5
(2.30)

=
1

e+1
(2.31)

≈ 0,27 (2.32)

As we can see, the trace where c1 = f alse is now successfully made less probable than the
other trace. Nevertheless, it still has a non-zero probability.

11

2. PRELIMINARIES

2.4 Metropolis-Hastings

A popular method for sample-based approximate probabilistic inference is Markov Chain
Monte Carlo (MCMC). On a high level, the goal is to find the right Markov Chain [29]
such that the stationary distribution of this Markov Chain is equal to the target distribution:
the distribution that we want to sample from. A recipe to find this Markov Chain is the
Metropolis-Hastings (MH) algorithm [15]. The goal of the Metropolis-Hastings algorithm
is to draw samples from a target distribution p(x). Given an initial sample x, first, xproposal
is sampled from q(xproposal|x), which is known as the proposal distribution. The proposal
xproposal is accepted or rejected with probability α(xproposal|x) which is calculated as: [31]

α(xproposal|x) = min
(

1,
p(xproposal)q(x|xproposal)

p(x)q(xproposal|x)

)
(2.33)

If xproposal is rejected, the sample that is drawn after x is again x. Meanwhile, if xproposal
is accepted, the sample that is drawn after x is xproposal . Then, the procedure is repeated
in order to draw the next sample. If the sample x that was used to initialize this procedure
has a very low probability under the target distribution p(x), then the first samples from
the MH algorithm should be discarded; the Markov Chain has to converge to its stationary
distribution first. This is known as the burn-in phase. [15]

2.5 Bayesian Policy Search with Policy Priors

A fundamental building block of this thesis is the work of Wingate et al.[39], titled “Bayesian
Policy Search with Policy Priors”. Their work presents a technique for policy search with a
prior distribution over policies.

A policy π is represented as a dictionary, mapping π(s) to an action for each s ∈ S .
Each π(s) of a policy is sampled from a categorical(θ) distribution. One could embed prior
knowledge of the policy into the problem by biasing θ. For example, if it is known that an
agent should generally move up in a grid-world, θ could be set to [0.4,0.2,0.2,0.2] over the
ordered action set {↑,↓,←,→}. If we have no prior knowledge of the policy, θ would be set
to [0.25,0.25,0.25,0.25]. After a policy is sampled, it needs to be evaluated; the quality of
a policy guides the search procedure. The work assumes that the value of a policy (equation
2.4) can be evaluated. In a practical reinforcement learning setting, this would be estimated
using sampled trajectories of the policy.

So far, there is the assumption that a domain expert can define a good action distribution
θ manually. To eliminate this assumption, the value of θ is learned by the algorithm. To
this end, a hierarchical Bayesian model is used. As before, π(s)|θ follows a categorical(θ)
distribution for each s. As an added layer above this, θ follows a Dirichlet(·)3 distribution.
θ is now a random variable rather than a manually defined parameter. As a result, θ can
be learned besides π. This learning is done using the Metropolis-Hastings algorithm where

3Think of the Dirichlet distribution as a probability distribution over vectors that sum to one. For more
information, see Bishop[3].

12

2.5. Bayesian Policy Search with Policy Priors

Figure 2.1: The MDP on the right is solved with four set-ups. The “No bias” case is
the baseline (unbiased MH). The “North bias” and “South bias” cases bias the prior over
policies to the North and South respectively. The “learned bias” case shows what happens
when θ is learned besides π. Image copied from Wingate et al.[39].

updates are done both to π (to learn better policies) and to θ (to learn the prior action
distribution). As mentioned before, the quality of the policy guides this search procedure.

For an interesting example see Figure 2.1. From this, it can be seen that a good manually
defined bias (North bias) helps, but a bad one (South bias) deteriorates the performance.
The learned bias asymptotically approaches the manually defined good bias. Intuitively
what happens is that “learning that north in one part of a maze is good will bias the search
towards north in other parts of the maze”[39].

The difference between the work of Wingate et al.[39] and this thesis is that Wingate
et al. use a single θ for the whole state space. In contrast, this thesis allows a user to define n
subsets/regions of the state space, with n θs; one θ per region. This does not lose generality,
as it could still turn out that θi ≈ θ j where i ̸= j after inference.

13

Chapter 3

Related Work

This chapter maps out related literature about Planning as Inference, Planning by Probabilis-
tic Programming, Leveraging Prior Policy Knowledge, and State Abstraction for MDPs.
These topics are discussed in Sections 3.1, 3.2, 3.3, and 3.4 respectively. Furthermore, the
most notable differences between the related works and this thesis are explained.

3.1 Planning as Inference

Many methods exist that cast the problem of planning as a probabilistic inference problem.
They all differ from this thesis in that the following methods do not make use of probabilistic
programming (Section 2.3).

Botvinick and Toussaint[4] explain the concept of planning as inference as using a gen-
erative model to allow the agent to attach a probability score to any action-outcome-reward
sequence. With this, one can condition on reward and infer the actions that lead to obtaining
the reward. This can be mathematically formalized as minimizing Kullback-Leibler diver-
gence between the marginal distribution over states and actions under the agent’s current
policy, and the corresponding posterior distribution conditioned on reward. They also show
that approaching planning as a problem of probabilistic inference is more similar to how
a brain performs planning. Finally, they argue that sample-based approximate inference
might be related to how humans process information with limited rationality.

Attias[1] performs planning as inference by treating actions at as hidden variables and
inferring them. Only discrete states and actions are considered, and planning is considered
as reaching a goal state rather than finding a policy for an MDP that optimizes the expected
return. Actions are inferred using Maximum-A-Posteriori, conditioned on the given initial
state and the fact that the agent should be in the goal state at time step T . The limitation of
this approach is that the time to reach the goal is typically unknown beforehand; then the
algorithm would need to run multiple times, decreasing T at every iteration. Furthermore,
the technique is different from planning in MDPs because it infers an action sequence and
not a policy.

Comparably to Botvinick and Toussaint[4], the work of Toussaint and Storkey[35] also
translates planning to probabilistic inference. Where Attias[1] inferred an action sequence

15

3. RELATED WORK

and total time T needed to be known beforehand, here a policy is inferred and T needs
not to be known in advance. The approach uses an Expectation-Maximization algorithm,
where in essence the E-step performs policy evaluation and the M-step performs a policy
update. Under exact inference, this method is analogous to policy iteration. This analogy
no longer holds under approximate inference. The most important contribution is that the
use of approximate inference is now possible for planning in MDPs. The work of Toussaint
et al.[36] generalizes this to POMDPs.

Levine[21] presented a technique for reinforcement learning as inference. His formu-
lation of casting the policy search to probabilistic inference provides useful insights. An
‘optimality’ variable Ot is introduced, which denotes that the behavior of the agent at time
step t is optimal. The distribution of this variable is defined as:

p(Ot = 1|st ,at) = exp(R(st ,at)) (3.1)

Then the posterior distribution of a trajectory conditioned on Ot = 1 for all t = 1, ..,H is:

p(τ|O1:H) ∝ p(τ,O1:H) = ρ(s1)
H

∏
t=1

p(Ot = 1|st ,at)p(st+1|st ,at) (3.2)

= ρ(s1)
H

∏
t=1

exp(R(st ,at))p(st+1|st ,at) (3.3)

=

[
ρ(s1)

H

∏
t=1

p(st+1|st ,at)

]
exp

(
H

∑
t=1

R(st ,at)

)
(3.4)

From this, we can see that the probability of observing trajectory τ given that we be-
have optimally is the probability of τ given the dynamics of the world multiplied by the
exponential of the sum of rewards obtained over τ. This idea of an optimality variable is
loosely related to the way conditioning on reward is done in this thesis using the factor
functionality of probabilistic programs as explained in section 4.3.1.

3.2 Planning by Probabilistic Programming

Little work on solving MDP planning problems with probabilistic programming exists.
Thon et al.[34] presented a short paper arguing in favor of using the probabilistic program-
ming language ProbLog to naturally represent and solve planning problems. However, in
their work, this again entails planning in the sense of inferring an action sequence rather
than inferring a policy. Furthermore, there is no mention of MDPs, only planning to reach
one of a set of goal states.

The work of Nitti et al.[26] introduces HYPE, which is an off-policy online tech-
nique for sample-based planning for MDPs using the probabilistic programming language
ProbLog. An importance sampling strategy is used, where the probabilities of the transition
model are exploited for the weights. This is in contrast to similar methods that only need
to be able to sample from the transition model instead of accessing the probabilities, such

16

3.3. Leveraging Prior Policy Knowledge

as Sparse Sampling, as introduced by Kearns et al.[19]. The virtue of HYPE is that it al-
lows estimating Q–values for states that have never been accessed before. It works well in
discrete, continuous, and hybrid domains.

Similar to but different from HYPE is the work of Bueno et al.[7]. It extends the proba-
bilistic programming language ProbLog to allow the representation of infinite-horizon fac-
tored MDPs. A method for VI is presented that makes use of weighted model counting.
Although only a simple VI scheme is presented, the mapping to this framework opens the
door to more sophisticated inference approaches. In comparison, HYPE[26] is for domains
involving mixtures of discrete and continuous state variables whereas the work of Bueno
et al.[7] is restricted to boolean factored state representations. HYPE uses importance sam-
pling and Monte-Carlo methods to solve finite-horizon problems whereas MDP-ProbLog
uses weighted model counting techniques to solve infinite-horizon problems.

The work of van de Meent et al.[37] introduced Black Box Policy Learning/Black Box
Policy Search, which uses black-box variational inference in a probabilistic program to
infer a policy. Both the world (i.e. the dynamics of the MDP) and the agent are modeled as
probabilistic programs. The probabilistic program representing the agent is parameterized,
while the distribution of this parameter is variationally learned.

3.3 Leveraging Prior Policy Knowledge

Rodriguez-Sanchez et al.[27] presented RLang, which is a framework for incorporating
many variants of (partial) domain knowledge into reinforcement learning tasks. Many of
the domain knowledge categories encompass knowledge of the environment, which is irrel-
evant in planning problems since the full dynamics of the environment are known. However,
one category is prior policy knowledge. This is incorporated by manually defining an ini-
tial advice policy. This advice policy is then probabilistically mixed with a learned policy
network using a mixing parameter that is annealed over time.

Similarly, Yang et al.[40] proposed Policy-Guided Planning for Generalized Policy Gen-
eration (PG3). This technique performs generalized policy search where a candidate policy
needs to be provided and guides the search procedure. The score of a policy is then based
both on its quality (from policy evaluation) and on its similarity with the candidate policy.
This technique can be useful when there is already a high-level idea of the form of the pol-
icy, but some gaps still need to be filled in. Unfortunately, this method is designed only for
PDDL[24] domains and not for MDPs. This means that stochasticity in the environment is
unsupported. The most prominent difference between PG3 and this thesis is that this thesis
considers MDPs, and hence does support stochastic environments. Furthermore, PG3 is a
method for generalized planning, which means that multiple problems from the same fam-
ily of planning problems are given to the algorithm and the solution is a generalized policy
that works well for all problems. Meanwhile, the techniques presented in this thesis can be
seen as classical policy search with elements that can be useful for generalization.

Finally, rather than leveraging an advice/candidate policy, Wingate et al.[39] presented
a technique for policy search with a prior distribution over policies. This technique is ex-
plained in detail in Section 2.5.

17

3. RELATED WORK

3.4 State Abstraction for MDPs

According to Giunchiglia and Walsh[13] “one can think of abstraction as the process which
allows people to consider what is relevant and to forget a lot of irrelevant details which
would get in the way of what they are trying to do.” In the context of MDPs, we can think
of abstraction as simplifying an MDP while retaining (to some extent) the essential infor-
mation. Having a simplified version of an MDP can result in more efficient solving and in a
more concise and interpretable policy. Meanwhile, too much simplification can result in the
loss of essential information and in suboptimal behavior. This loss of essential information
is known as hidden state as explained and examined by McCallum[23].

A well-studied type of MDP abstraction is state abstraction. In this case, ground states
are clustered together to form abstract states. The ground states are the states of the orig-
inal MDP and the abstract states are the states of the simplified MDP [22, 8]. Interesting
overviews of state abstraction approaches for MDPs are provided by Li et al.[22] and by
Congeduti and Oliehoek[8]. Moreover, the work of Starre et al.[32] shows how state ab-
stractions can efficiently and effectively be applied to model-based reinforcement learning.

One method to discover state abstractions is proposed by Jong and Stone[17]. By elim-
inating state factors of a factored MDP that prove to be irrelevant, the MDP is simplified.
Irrelevance of state factors is intuitively defined as a state factor for which an agent can still
behave optimally if it ignores it. This irrelevance is related to the UNLOCK and LAVA MDPs
(Section 5.1) evaluated in this work, where respectively the state factors has key and y are
irrelevant.

This thesis is different from state abstractions in that the ground MDP is still solved,
rather than a simplified MDP. Nevertheless, the division of the state space into regions where
actions are similar, as proposed in this thesis, can be interpreted as a layer of abstraction.

18

Chapter 4

Methodology

This chapter explains how policy search for MDPs is done with probabilistic programs. The
two main ingredients for probabilistic programs are the generative model and the inference
procedure. Section 4.1 introduces the problem setting and specifies performance metrics
for evaluation, and Section 4.2 explains the overall approach. Then, Section 4.3 states the
generative model and explains it in detail. Additionally, Section 4.4 explains the inference
procedure that is used to infer good policies, given the soft prior knowledge. Finally, Section
4.5 explains how the soft prior knowledge itself can be (partially) conditioned and inferred.
For modeling and inference, the Probabilistic Programming Language Gen [9] is used.

4.1 Problem Setting

This thesis considers the problem class of finding policies for factored Markov Decision
Processes (Section 2.1) with and without a given transition model of the environment.
Within this problem class, we can define two cases specifically: (1) factored MDPs where a
user has some soft prior knowledge (Section 4.2.2 specifies how this is represented) and (2)
factored MDPs where one can benefit from uncovering such knowledge for a better insight
into the underlying problem or for generalization purposes.

For the first case, we are interested in the acceleration of the policy inference. This is
measured by comparing the convergence progress of the policy inference that leverages the
prior knowledge of the policy, to an analogous algorithm where the prior knowledge of the
policy is not considered. Moreover, this is evaluated in terms of wall-clock time and in
terms of the number of policy evaluations.

For the second case, we are interested in the correctness of the inferred knowledge. This
is simply measured as the amount of times the inferred knowledge is correct, out of the total
amount of repetitions of the algorithm.

4.2 The Approach: Priors over Regions

The approach by Wingate et al.[39] as explained in Section 2.5 introduces a prior parameter
θ representing the action distribution. The inference is done on the action distribution θ

19

4. METHODOLOGY

as well as the policy π by means of the Metropolis-Hastings algorithm (Section 2.4). The
result of this is that after learning that action a performs well in one part of the state space,
the search is biased towards a in other parts of the state space as well. This formalization
implicitly assumes that we can expect generalization of good and bad actions over the entire
state space. This might not always be the case.

Rather than considering the entire state space, we could also consider subsets of S . If
we can identify regions of the state space in which we expect actions to be similar, we
can associate each region i with its own action distribution parameter vector θi. This is a
clear extension of the approach of Wingate et al.[39]. The divisions of the state spaces into
regions are a form of soft prior knowledge of the policy; it formulates a suspicion that a
certain subset of S has some similarity towards the goal. Furthermore, if it turns out that the
division of regions is unjustified, it can still be inferred that θi ≈ θ j where i ̸= j. Hence, we
do not expect a lot of deterioration when the division is wrong.

Another beneficial property of this approach is that it is asymptotically correct. In this
case, it means that if we run the algorithm long enough, we are guaranteed to find the
optimal policy eventually. This property is a direct result of following the Metropolis-
Hastings algorithm.

4.2.1 Motivating Examples

To illustrate this idea of dividing a state space into regions, let us have a look at a simple
example (Figure 4.1 (left)). In this example, the states are the white grid cells and the
actions are {↑,↓,←,→, IDLE} and there is a treasure in the top-right corner. This is where
the agent receives a large reward. Furthermore, the transitions are stochastic; there is a 20%
chance an agent will “slip” and move one step in any perpendicular direction. Within a
world like this, we do not see a clear dominant action a, like the action ↑ in the example
from Figure 1.1 (left). The only clear aspect we can infer about the action distribution if we
consider it over the entire state space is that IDLE is never a good action. However, perhaps
we can come up with different strategies to divide the state space into regions in which we
might expect some more generalization of good and bad actions. These ways to divide the
state space we name “region configurations” (RC). A naive region configuration would be
to consider the entire state space as one big region1. If we divide the state space according to
one of the RCs as marked in Figure 4.1 (right), we can expect more generalization of good
actions within the regions. For example, let us consider region 1 in RC 3 (the yellow strip).
When it is found out that→ is a good action in the right part of this strip, it makes sense to
bias the action distribution over this region in favor of→, so that it becomes more likely in
the left part of the yellow strip as well. Similar reasoning holds for the other regions.

As a second example, imagine a grid-world with a key in the top-left corner and a
treasure in the bottom-right corner (Figure 4.2). The state space of this MDP is the
Cartesian product of the grid-cells and {has key, !has key}. The possible actions are
{↑,↓,←,→,PICKUP,OPEN, IDLE}, where PICKUP picks up the key when the agent
is on top of it and is identical to IDLE in all other cases. Furthermore, OPEN yields a

1We refer to this naive region configuration as RC 1, it functions as a baseline.

20

4.2. The Approach: Priors over Regions

Figure 4.1: Left: an example grid-world with a treasure in the top-right corner. Right:
two example ways to divide the state space into regions; visualized in the grid-world and
represented as a decision tree over state factors. For ease of reference, regions are labeled
with numbers.

large reward when the agent is on the treasure and has the key, or when the agent is on the
treasure and it is unlocked. Similarly, OPEN is identical to IDLE in all other cases. The
stochasticity of the state transitions is identical to that of the previous MDP. Again, except
for IDLE, there are no clearly good or bad actions that can be inferred if we consider the
state space in its entirety; when we do not have the key, the agent should clearly favor ↑ and
← and when we have the key, the agent should clearly favor ↓ and→. Making a split based
on the state-factor has key, therefore, seems a sensible choice. Furthermore, we could split
the state space even further by taking into account that the locations of the key and treasure
are special states. These two region configurations are visualized in Figure 4.3.

4.2.2 Representation of the Soft Prior Knowledge

The division of S into regions is visually represented for two example MDPs in Figure 4.1
(right) and Figure 4.3. The next step is a method to represent this soft prior knowledge more
formally.

The approach used in this thesis is to represent it as a decision tree [6] where a decision
node is based on a factor of the MDP and a leaf node is a region label. Region label i
means that the region is associated with the action distribution parameter vector θi. The
region configurations visualized in Figures 4.1 (right) and 4.3 are accompanied by their

21

4. METHODOLOGY

Figure 4.2: An example MDP with a key in the top-left corner and a treasure in the bottom-
right corner. Note that this grid visualizes the x and y state-factors and not the has key state
factor.

Figure 4.3: Two examples of ways to divide the state space from Figure 4.2 into regions;
visualized in the grid-world and represented as a decision tree over state factors. For ease
of reference, regions are labeled with numbers.

22

4.3. Generative Model

corresponding decision trees over state factors2. The trees in the figures follow the standard
convention; the left of a decision node means false and the right of a decision node means
true.

Besides the visual representation of the tree, they can also be represented formally. In
this thesis, any tree is of an abstract type Node which has two concrete subtypes: LeafNode
and DecisionNode. A LeafNode has only one attribute: region index, i.e. a label of the
region. Meanwhile, a DecisionNode has five attributes:

• state factor, which stores a state factor of the MDP (Section 2.1);

• pivot value, which stores a value from the domain of state factor;

• comparator, which stores a function that can compare two values (for now: <, > or
==);

• left, which stores a Node representing the left sub-tree;

• right, which stores a Node representing the right sub-tree.

Since left and right are of type Node, they could be leaves or decision nodes. Hence, this
is a recursive data structure.

4.3 Generative Model

The generative model for the policy search (Algorithm 5) first samples a decision tree that
divides the state space into regions. Then, for each region i, an action distribution parameter
vector θi is sampled uniformly from the (|A |−1)-simplex. With these prior action distribu-
tions per region, a policy π is sampled. Finally, the policy π is evaluated and the result of
the evaluation procedure is used to make better policies more likely. The evaluate policy
function is now a simplified value iteration procedure where the policy is fixed to the given
π (Section 2.2). In situations when the transition dynamics are unknown but an agent can
interact with the environment, this policy-evaluation step could also be based on sampled
trajectories. Firstly, Section 4.3.1 explains how the factor functionality is used to make
better policies more likely. Secondly, Section 4.3.2 explains why and how the decision trees
are sampled.

4.3.1 Making Better Policies More Likely

As the goal is to generate good policies, we need to condition the distribution on the policy
being good; we want to maximize the policy quality. This conditioning can be done in vari-
ous ways. Perhaps the most naive way is to sample a start state s0 from ρ (Section 2.1), and
condition that V π(s0) is equal to some high value. Somewhat defeating the purpose, let us
assume that the best possible value V π∗(s0) is already known beforehand3. Given this value,

2Note that has key in the decision trees in Figure 4.3 is syntactic sugar for has key == 1
3This is typically not the case as you would need to know the optimal policy, which is what we are trying

to find in the first place.

23

4. METHODOLOGY

Algorithm 5 Generative Model for Good Policies
1: procedure GENERATE POLICY(mdp, υ, max num regions, max tree depth)
2: Sample tree ∼ generate tree(mdp, max num regions, max tree depth)
3:

4: // Sample θs
5: Let α be a vector of ones of length |A |
6: for region index ∈ {1..max num regions} do
7: Sample θ[region index]∼ Dirichlet(α)
8: end for
9:

10: // Sample policy
11: for s ∈ S do
12: Sample π(s)∼ categorical(θ[tree(s)])
13: end for
14:

15: // Make better policies more likely
16: Let V π = evaluate policy(π)
17: for s ∈ S do
18: factor(υ ·V π(s))
19: end for
20:

21: return π, V π

22: end procedure

it can be conditioned that V π(s0) is equal to V π∗(s0). Rather than a condition(V π(s0) ==
V π∗(s0)) statement, one should use an observe(N(V π(s0),σ

2),V π∗(s0)) statement with
some large σ2. This provides “a hill to climb” for the algorithm, rather than providing an
equality that should magically hold (Section 2.3). More realistically, if V π∗(s0) is unknown
beforehand, an estimate of V π∗(s0) (that needs to be at least somewhere in its neighborhood)
could also be used analogously. Multiple values can be manually tried or a line search can
be done. All of these methods are somewhat of a workaround, and not a natural solution to
the underlying maximization problem.

Since we are facing a maximization problem, conditioning on a variable assuming some
given value is not the most natural way. More natural would be to use the factor function-
ality. Recall that factor(n) adds n to the unnormalized log probability of the trace [14, 15]
(Section 2.3.1). This functionality makes it much more natural to phrase the maximization
of expected return as an inference problem because no assumptions about the knowledge
of values need to be made. In this thesis, factor(υ ·V π(s)) for all s ∈ S is used, where
υ is the rationality parameter. Firstly, the rationality parameter υ is introduced to strike a
balance between randomness (υ = 0) and perfect maximization (υ = ∞) [11]. Secondly, the
factoring is done for all s ∈ S rather than only for s0 because policies that have high values
for many states but not for s0 are still preferred over policies that have low values for all
states.

24

4.3. Generative Model

Since the probabilistic programming language Gen does not have built-in factor func-
tionality, the same functionality is achieved indirectly. This is inspired by van de Meent
et al.[38]. First, let us recall that the probability density function of an exponential(λ)
distribution is:[28]

f (x;λ) =

{
λe−λx, if x≥ 0
0, if x < 0

(4.1)

Hence, conditioning a random variable that is sampled from this distribution to be equal to
zero yields λe−λ·0 = λ. Thus, for any trace in which a random variable is sampled from a
exponential(λ) distribution and conditioned to be equal to 0, the unnormalized probability
of the trace will get multiplied by λ. Equivalently, we can say that ln(λ) is added to the un-
normalized log probability of the trace. This is leveraged to achieve the factor functionality
by sampling an auxiliary random variable factors from an exponential distribution with a
λ-parameter of exp(υ ·V π(s)). By conditioning that factors is equal to 0, the unnormalized
probability of the trace then gets multiplied with exp(υ ·V π(s)). Analogously, we can say
that υ ·V π(s) is added to the unnormalized log probability of the trace. This is exactly the
desired behaviour of factor(υ ·V π(s)) (Section 2.3.1). By repeating this for all s ∈ S (with
υ > 0) and observing all these factors to be equal to 0, we have successfully made better
policies more likely.

4.3.2 Sampling the Trees

The decision tree representing the soft prior knowledge decides which states are “batched
together” in regions; it decides which θi corresponds to a state s. Examples of such trees are
shown in Figure 4.1 (right) and Figure 4.3. An expert in the domain of the MDP might be
able to define such a tree. When such a tree is given, we can simply condition the sampled
tree in the probabilistic program to be equal to the given tree. Next, we can perform policy
inference that leverages this provided soft prior knowledge (Section 4.4).

In situations when it is not the case that a (complete) tree is given, inferring these trees
could be an interesting research direction since such an abstract representation of the prob-
lem can provide insight into the behavior of the agent (Section 4.5). To open the door to
this kind of inference, the trees need to be a part of the trace of the probabilistic program.
When a tree is given by a domain expert, this information can still be used by conditioning
the program on the given tree. One could even imagine constructions where a partial tree is
given and the rest is inferred (Section 4.5.1).

To make the tree part of the trace, a generative model for decision trees is needed (Algo-
rithm 6). In essence, it is first decided if the current node should be a leaf node or a decision
node. If it is a leaf node, the index of the region is sampled. If it is a decision node, then
a state factor is sampled, along with a pivot value from the domain of the sampled state
factor. Then a comparator (for now: <, > or ==) is sampled. Since the decision tree is a
recursive data structure, the left and right sub-trees are then sampled with a recursive call to
the generative model.

To make sure the trees do not grow infinitely deep, a max tree depth parameter is used.
Furthermore, to encode a preference for shallow trees over deep trees, is lea f is sampled

25

4. METHODOLOGY

Algorithm 6 Generative Model for Region Configuration Trees on Factored MDPs
1: procedure GENERATE TREE(mdp, max num regions, max tree depth)
2: if max tree depth≤ 0 then
3: Sample is leaf ∼ Bernoulli(1.0)
4: else
5: Sample is leaf ∼ Bernoulli(0.6)
6: end if
7:

8: if is leaf then
9: Sample region index ∼ uniform discrete(1,max num regions)

10: return LeafNode(region index)
11: else
12: Sample a state factor
13: Sample a pivot value (from the domain of state factor)
14: Sample a comparator
15:

16: Sample left ∼ Generate Tree(max num regions,max tree depth−1)
17: Sample right ∼ Generate Tree(max num regions,max tree depth−1)
18:

19: return DecisionNode(state factor, pivot value, comparator, left, right)
20: end if
21: end procedure

from a Bernoulli distribution that is biased towards true. This is done to prevent trees
from ‘overfitting’. The Bernoulli parameter is set to 0.6. This value is chosen somewhat
arbitrarily, but still to indicate a preference for shallow trees over deep trees. A better
approach might be to refactor this as a hyperparameter. However, for simplicity, this is left
as future work.

Note that the generative model can sample invalid trees. For example, a decision node
"x > 5" can be sampled, followed by a decision node "x > 6" in the left subtree. This
means that no states will ever reach the right sub-tree of "x > 6". This limitation is however
easily solved with a post-processing step.

4.4 Inferring Policies

Assuming that a decision tree encoding of the soft prior information is given, we can then
condition Algorithm 5 such that the variable at address tree is equal to the given tree. Given
a region configuration (represented as a tree), this section explains how a good policy π and
the prior parameter vectors θs are inferred.

26

4.4. Inferring Policies

4.4.1 Metropolis-Hastings on π and θ

First, a trace is generated where the tree is conditioned to be equal to the given tree and all
factors are conditioned to be equal to zero. Furthermore, all θs are conditioned to be equal
to vectors of length |A | repeating the scalar 1

|A | . In other words, all θs are initialized in the
middle of the corresponding (|A |−1)-simplex.

Second, a loop is initiated where this trace is updated iteratively. The number of times
evaluate policy(·) is called is counted; the loop terminates when this counter exceeds a
given threshold or when a time limit is exceeded. The Metropolis-Hastings algorithm can
be interpreted as a stochastic search for a good policy. Therefore, the final policy is not
necessarily the best policy found overall. Hence, the best policy found so far is memorized
during the search.

An update to the trace within this loop can be an update to the policy or an update to
any of the θs. This is decided randomly. The probability of updating one or the other is set
with a parameter (Section 4.4.3). This results in two possible update steps:

(1) When the policy needs to be updated, a state s is sampled first. Next, using
the tree, the region i corresponding to s is retrieved. Then πproposal(s) is sampled from
categorical(θi). Furthermore, πproposal(s′) := π(s′) for all s ̸= s′. The proposed policy is
accepted or rejected according to the Metropolis-Hastings algorithm.

(2) When the prior needs to be updated, a region index i is sampled first. Then θi,proposal
is proposed as a random walk on the simplex starting at θi (Section 4.4.2). Again, the
proposed vector is accepted or rejected according to the Metropolis-Hastings algorithm.

4.4.2 Random Walk over Simplex

To be able to perform random-walk Metropolis-Hastings steps on the θs, a random walk in
the space of vectors summing to one would be needed. This means that given θ we need
to propose a θproposal that lies in the neighborhood of θ. We assume the strategy proposed
by Larget and Simon[20]. The proposal θproposal is sampled from a Dirichlet distribution
where the concentration parameter is θ multiplied by a precision parameter:

α = precision ·θ (4.2)

θproposal ∼ Dirichlet(α) (4.3)

Note that after defining α a check needs to be performed to make sure that no entry αi is
equal to 0.0. If that is the case, it is overridden to a very small value (1×10−7) and α is re-
normalized. Given this formulation, E[θproposal] = θ and Var[θproposal] scales approximately
as 1

precision [12]. In this thesis, the precision parameter is always 30.0.
According to Fernandes and Atchley[12], this sampling strategy becomes inefficient

as the dimensionality of the simplex increases. They also propose a different strategy for
the random walk. For this thesis, the dimensionality of the simplex is always |A |, and
no experiments are done with large action spaces. Experimenting with the strategy from
Fernandes and Atchley[12] and with larger action spaces, as well as optimizing the precision
parameter are left as future work.

27

4. METHODOLOGY

4.4.3 Implementation Details

The inference algorithm for inferring policies is explained in the previous sections. How-
ever, some implementation details are omitted because they are unimportant for a solid
understanding of the overall approach. For completeness, these details are explained here.

Re-use of V Sampled policies are evaluated by means of simplified value iteration (Sec-
tion 2.2). After the policy in the first trace is sampled, this policy evaluation procedure is
initialized with V π(s) = 0.0 for each state s. Afterward, every time the policy is updated,
the policy evaluation procedure for πproposal is initialized with V π; i.e. the values of the
previous policy. When πproposal is accepted, V π is overwritten to V πproposal and memorized
for the next update. This is a reasonable initialization because π and πproposal differ at most
one entry of the dictionary. Consequently, it is likely that their values will often be similar4.

Omitting Policy Re-evaluations When one of the θs is updated, this means that the pol-
icy is unchanged. In these cases, there is no need to re-evaluate the policy. However,
when a trace is updated in Gen it re-runs the program and copies the values that are not
updated from the previous trace. Unfortunately, this means that the policy evaluation pro-
cedure is re-run for every update, even when it is unnecessary as the policy is unchanged.
To be able to configure when this procedure is run and when it is not, the values V need
to be a part of the trace rather than the output of a deterministic procedure. To overcome
this, the policy evaluation function is “disguised” as a probability distribution. A proba-
bility distribution policy evaluation distribution is defined. The distribution has no gradi-
ents and the logarithm of the probability density function is always 0.0. This ensures that
this distribution does not influence the probabilities of traces. Furthermore, sampling from
policy evaluation distribution given π and Vinit evaluates the policy as expected and returns
V π. This formulation makes it easily configurable when and when not to execute the policy
evaluation procedure; V π can be “re-sampled” or copied from the previous trace, just like
any other random variable in the trace.

Updating θ or π To decide whether θ or π needs to be updated, a hyper-parameter is
introduced. This parameter defines the expected number of steps on the θs per |S | steps on
π. We denote this parameter by ψ. The probability of updating π is then sampled from a
Bernoulli

(
|S |
|S |+ψ

)
distribution. This formulation is deemed more informative than sampling

from e.g. Bernoulli(ψ) directly because the size of the state space |S | is irrelevant in the
current formulation. We also call this parameter ψ the inference balance parameter as it
indicates how much computational effort is put into inferring the priors compared to how
much computational effort is put into inferring the policy.

Picking π(s) to Update When it is decided that an update to the policy needs to happen,
the next question is for which s to update π(s). The most simple solution would be to sample

4Note that this is not always the case. Occasionally, a small change can make a big difference. In these
cases, the output of the policy evaluation procedure is still valid; it will simply take a bit longer to converge.

28

4.5. Inferring Region Configurations

any state s uniformly from S . A somewhat more sophisticated solution, which is used in this
thesis, first samples a region uniformly. Next, a state s is sampled uniformly from all the
states within this region. This strategy is used because it re-weighs the uniform distribution
over S by taking into account the size of the regions.

Domain of υ The rationality parameter υ is explained to balance randomness (υ = 0) and
perfect maximization (υ = ∞) (Section 4.3.1). Since factoring is implemented by sampling
from an exponential distribution with a rate parameter of exp(υ ·V π(s)), a maximum value
for υ needs to be considered. The maximum value of a Float64 in Julia is 1.798× 10308.
Now we solve the following equation for υ:

exp(υ ·V π(s)) = 1.798×10308 (4.4)

υ =
ln(1.798×10308)

V π(s)
(4.5)

When we take for example V π(s) = 100, we get a maximum value for υ of 7.1. Hence,
taking the rationality to large values is infeasible. Fortunately, the experiments in Chapter 5
show that υ = 1.0 can already work very well.

4.5 Inferring Region Configurations

4.5.1 Conditioning Partial Trees

Since the decision tree representations of the soft prior knowledge are a part of the trace of
the probabilistic program, we can perform conditioning and inference over the trees. The
two simplest settings for conditioning are to have a given complete tree (as assumed in
Section 4.4), or no given tree at all. In between these extremes is partial knowledge of the
tree. In this section, various conditioning methods are illustrated.

Hard Conditioning Looking back at Algorithm 6, each of the variables that are defined
by a sample statement can be fixed through conditioning. For example, condition(is leaf
== 0)5 would make sure that the first node is a decision node and not a leaf. Likewise, the
condition statement:

condition(is_leaf == 0, state_factor == x, pivot_value == 3,
comparator == "==")

would define a root note "x == 3", while leaving the rest of the tree up to inference. By
extension, we can also fix the left sub-tree to be a leaf node immediately:

5Note that conditioning in Gen looks somewhat differently, in this case: tree constraints =
Gen.choicemap(); tree constraints[:is leaf] = 0. Notation is kept consistent with the prevailing no-
tation as introduced in Section 2.3.

29

4. METHODOLOGY

Figure 4.4: Four examples of partially conditioned trees. A question mark means that the
value(s) under the address is unconditioned. An orange circle means that is lea f == 1 at
that address. Only a question mark and no circle means that is lea f is unconditioned at that
address and it can therefore become any sub-tree or a leaf.

condition(is_leaf == 0, state_factor == x, pivot_value == 3,
comparator == "==", left=>is_leaf == 1)

Furthermore, we can even define the region index for the leaf node:

condition(is_leaf == 0, state_factor == x, pivot_value == 3,
comparator == "==", left=>is_leaf == 1, left=>region_index == 2)

The aforementioned four examples are visualized in Figure 4.4 from left to right respec-
tively. To avoid large written condition statements, six more examples of the possibilities
with partial conditioning are visualized in Figure 4.5.

Soft Conditioning It is also possible that there is some knowledge about the tree that does
not directly translate to the fixing of variables through condition statements. For example,
we might have a suspicion that the tree should make a split on the state factor x somewhere,
but we are not 100% sure and we do not know where in the tree this split should be located.
Perhaps splitting on x only makes sense after we have split on has key. Then, imposing a
split on x in the root node would be undesired. In these cases, the factor functionality can
be used again. After a tree is sampled, a tree traversal combined with if-statements can be
used to decide if the tree matches our suspicions. If it does, factor(·) with some positive
number between the parentheses will make those traces more important.

Similarly, we could have a suspicion for the value of a pivot without absolute certainty.
For example, imagine a state factor x with a domain of [1,5] and we suspect that a split
should probably happen at x == 3. By default, the pivot for a split on x will be sampled
from a discrete uniform(1,5) distribution. However, we can edit the generative function
to sample the pivot from a categorical([0.05,0.2,0.5,0.2,0.05]) distribution if the sampled
state factor is x. Nevertheless, updating the generative model in this way could be tedious.
Instead, another strategy using factor(·) can be used again. After a tree is sampled, it can
again be traversed. When a node with state factor== x is found, the probability of the
corresponding pivot under the suspected distribution can be added to the unnormalized log
probability of the trace. This probability can also be multiplied with some rationality factor,
as was explained in Section 4.3.1.

30

4.5. Inferring Region Configurations

Figure 4.5: Six examples of partially conditioned trees. A question mark means that the
value(s) under the address is unconditioned. Notation is identical to that of Figure 4.4.

4.5.2 Inference

Perhaps the most challenging aspect of inferring a tree is the stochastic support; the very
existence of variables is uncertain. For example, imagine a decision tree in which the root
is already a leaf node. There can be uncertainty about the region index of the leaf, but at
least it is known that a value needs to be filled in for the random variable region index.
Meanwhile, a variable at address state factor does not even exist. The uncertainty about the
very existence of random variables is something that can make inference challenging. We
resolve this with two different approaches: circumventing stochastic support and ancestral
sampling. These two approaches are explained respectively.

Circumventing Stochastic Support The first strategy is to circumvent the stochastic sup-
port by conditioning the structure of a tree (Figure 4.5). This way, the addresses of the
random variables that are to be inferred are known beforehand. Inference on these random
variables is again performed by means of Gibbs sampling.

Ancestral Sampling The second strategy is to again use the Metropolis-Hastings algo-
rithm and use ancestral sampling for tree proposals. This means that trees are proposed by
simply running Algorithm 6 forward, and not by proposing only a new value for a certain
random variable. Hence, any proposed tree is independent of its predecessor. This method
is not expected to scale well to large trees, as sampling the correct tree will become more

31

4. METHODOLOGY

unlikely the larger the tree. Resolving this by means of a random walk in the space of deci-
sion trees is left as future work.

Finally, one could wonder how the computational effort is divided over inferring the tree,
inferring the θs, and inferring π. Remember that previously (Section 4.4) the goal was to
infer the θs while inferring π. To strike a balance on how much computational effort is
put into inferring the θs or π, the inference balance parameter ψ was introduced (Section
4.4.3). Recall that ψ is the expected number of Metropolis-Hastings steps on the θs per |S |
steps on π. Now, the goal of the algorithm is to infer the region configuration (represented
as a decision tree) while inferring the θs while inferring π. Instead of introducing another
hyperparameter to control this balance, the updates on the decision tree simply piggyback
on the updates to the θs: after any MH step on a θ, an MH step on the decision tree is also
taken. This holds for both tree inference approaches.

32

Chapter 5

Experimental Evaluation

In essence, we need to evaluate three aspects. The first aspect is the algorithm that per-
forms inference to find a good policy given a region configuration. We inspect how the
algorithm accelerates if we leverage the soft prior knowledge represented as decision trees.
The baseline is the same algorithm, but with the trivial region configuration, i.e. no soft
prior knowledge is added. Furthermore, we inspect this acceleration in terms of the number
of calls to the policy evaluation procedure and in terms of wall-clock time. The second as-
pect is the generalizability potential of the inferred action distributions per region. The final
aspect is the inference of the soft priors (i.e. the region configurations) themselves. These
three aspects are evaluated and discussed respectively in Sections 5.2, 5.3, and 5.4. Each
of these sections starts by listing the concrete questions that are investigated and answered.
Of course, the answers to these questions are limited in scope to the MDPs on which they
are evaluated. Before any algorithms are evaluated, the MDP instances and their respec-
tive region configurations are defined in Section 5.1. All experiments are conducted on a
DelftBlue[10] compute node with 40 CPUs and a maximum of 2GB per CPU. An exception
is made when the results of experiments are expressed in terms of wall-clock time: then the
number of CPUs is decreased to 1 for a fair comparison.

5.1 MDP Instances

To experimentally evaluate the inference algorithm, the example MDPs described in Section
4.2.1 and one additional MDP are used. For each MDP, three region configurations are
investigated. The first, RC 1, is always the trivial region configuration. I.e. S is considered
as one region. RC 1 functions as a baseline. The other two region configurations depend on
the MDP instance. As the region configuration number increases, the level of sophistication
of the soft prior knowledge increases. This allows us to observe how big the impact of more
(sophisticated) soft prior knowledge is on the performance of the inference algorithm.

For ease of reference, each MDP instance is labeled with a short name. The MDP visu-
alized in Figure 4.1 (left) is named NAV, as in “navigation”. The three region configurations
for this MDP that are investigated are RC 1, and the two region configurations given in
Figure 4.1 (right).

33

5. EXPERIMENTAL EVALUATION

Figure 5.1: the LAVA MDP and its region configurations.

Next, let us inspect the second MDP introduced in Section 4.2.1 (Figure 4.2) and its
corresponding region configurations (Figure 4.3). We consider two variants of this MDP. In
the first variant, the treasure is locked. In the second variant, the treasure is unlocked. That
means that the agent does not need to pick up the key; i.e. the state factor has key is irrele-
vant considering the goal. We refer to these two variants as LOCK and UNLOCK respectively.
Considering these two variants allows us to inspect what happens when we add unjustified
soft prior knowledge.

Finally, we introduce an MDP named LAVA. This MDP consists of a pathway with lava
lakes on both sides (Figure 5.1 (left)). The available actions are {↑,↓,←,→, IDLE}. When
the agent reaches the finish line, the agent receives a positive reward. However, when the
agent falls into the lava, it receives a large negative reward. Furthermore, there is again a
slip probability of 20%. This means that walking downwards or upwards when the agent is
directly next to the lava bears a 10% risk of falling into it. Hence, stepping away from the
lava - even though this does not bring the agent any closer to the finish - is often beneficial.
Again, two region configurations are considered (Figure 5.1 (middle and right)) in addition
to the trivial RC 1. RC 2 considers both edges next to the lava as one region, whereas RC 3
considers each edge as a separate region.

The exact sizes of the state and action spaces of each MDP are given in Table 5.1. Note

34

5.2. Policy Inference Given a Region Configuration

Table 5.1: Sizes of state and action spaces per example MDP.

MDP |S | |A |
NAV 155 5
LOCK 50 7
UNLOCK 50 7
LOCK BIG 98 7
UNLOCK BIG 98 7
LOCK 2 50 7
UNLOCK 2 50 7
LAVA 60 5

that this table also contains variants of the LOCK and UNLOCK MDPs that will be explained
further in Section 5.3. For every MDP: γ = 0.99.

5.2 Policy Inference Given a Region Configuration

In this section, the algorithm that infers policies given a region configuration is evaluated.
There are two use cases of the algorithm: policy search when we do and when we do not
have access to the transition model of the environment. These use cases can be referred
to as the planning use case and the reinforcement learning use case respectively. For the
planning use case, simplified value iteration can be used for policy evaluation. In this case,
the acceleration of the algorithm in terms of wall-clock time is informative. In the case when
we do not have access to the transition model, policies can be evaluated through sampled
trajectories; i.e. let n agents follow the policy for some amount of time steps and see how
well they perform on average. This latter policy evaluation strategy can be costly. Hence,
for the reinforcement learning use case, the acceleration of the algorithm in terms of the
number of policies that are evaluated is informative. In this section, the following questions
will be investigated and answered:

Q1 Does the policy inference algorithm accelerate by leveraging soft prior knowledge in
the reinforcement learning use case?

Q2 Does the policy inference algorithm accelerate by leveraging soft prior knowledge in
the planning use case?

Q3 Can the policy inference algorithm still infer good policies if the soft prior knowledge
is unjustified?

Q4 Is putting more effort into inferring the action distributions (i.e. a higher inference
balance parameter ψ) always beneficial?

Q5 Does the policy inference algorithm also infer the right action distributions?

Q6 Does the policy inference algorithm also infer the right action distributions, even
when the soft prior knowledge is unjustified?

35

5. EXPERIMENTAL EVALUATION

5.2.1 Experimental Setup

The MDPs and region configurations from Section 5.1 are used to evaluate the policy infer-
ence algorithm (Section 4.4). The algorithm is initialized with a random policy and is run
until the number of calls to the policy evaluation procedure exceeds some threshold. For
NAV, this threshold is 1700. For LOCK and UNLOCK, this threshold is 1500, and is 600 for
LAVA. The quality of a policy, expressed as υ∑s∈S V π(s) is tracked over the number of calls
to the policy evaluation procedure (Q1) and over the wall-clock time (Q2). This evalua-
tion is repeated 40 times and the mean policy performances are reported. Furthermore, the
standard errors of these means are reported as well. This analysis for the UNLOCK MDP can
provide insights to answer Q3.

For the rationality parameter υ a value of 1.0 is used. For the hyper-parameter ψ a value
of 1000 is used. To answer Q4, more values of ψ are investigated for LOCK. For a complete
comparison of ψ-values [0,100,1000,10000] alongside υ-values [1,5], see Appendix B.
Recall that the inference balance parameter ψ is the expected number of MH steps on the
θs per |S | steps on π (Section 4.4.3) and that υ is the rationality multiplier (Section 4.3.1).

The most important goal of the inference algorithm is to find a good policy. However,
the inference procedure also infers an action distribution θi for each region i. To verify that
the inferred action distributions correspond to our expectations and to answer Q5, the final
θs are also averaged and visualized. Furthermore, analyzing this for the UNLOCK MDP can
provide insight to answer Q6.

5.2.2 Results and Discussion

The progress of the mean policy performance over the number of policy evaluations is visu-
alized for MDPs NAV, LOCK, UNLOCK, and LAVA (Figure 5.2). The ribbon around the means
displays the standard error of the mean. Occasionally this ribbon cannot be seen; in those
cases, the standard error is as big as or smaller than the thickness of the line representing
the mean. Similar plots are shown in Figure 5.3; the difference is that the horizontal axis
now contains the wall-clock time rather than the number of policy evaluations.

We can see that generally, a more sophisticated region configuration results in accel-
erated policy learning in the reinforcement learning use case (Figure 5.2) (Q1). From the
UNLOCK MDP we can see what happens when unjustified soft prior knowledge is added.
Fortunately, we see that the performance does not deteriorate much (Q3). Furthermore, we
can see that added soft prior knowledge occasionally improves and occasionally deterio-
rates the performance in the planning use case (Figure 5.3) (Q2). Especially the LOCK MDP
illustrates nicely how sometimes a more simplistic region configuration can result in faster
convergence. This is a clear trade-off that should be considered depending on the use case
of the algorithm.

The Influence of ψ (Q4) Next, let us further inspect the influence of the amount of com-
putational effort put into inferring the action distributions. This amount of effort is ex-
pressed as ψ; as ψ increases, more effort is put into inferring the θs. These results for the

36

5.2. Policy Inference Given a Region Configuration

LOCK MDP can be seen in Figure 5.4 for the number of policy evaluations on the horizontal
axis and in Figure 5.5 for the wall-clock time on the horizontal axis.

In the reinforcement learning use case, we can see that more effort into inferring the
θs results in faster convergence, the more sophisticated the region configuration. When we
now consider the planning use case - we plot the wall-clock time on the horizontal axis - we
see that a higher ψ is not always beneficial. Of course, inferring the action distribution takes
time. Meanwhile, if we have inferred a good action distribution, we make sampling good
policies more likely. There is again a clear trade-off: if we are in the planning use case, it
can be beneficial to put some effort into inferring the θs, but we should also not overdo it.

Correctness of θs (Q5, Q6) The inferred θs are averaged per region over the 40 repeats
of the experiment and are visualized (Figures 5.6-5.14). These action distributions are the
results of the same experiments that are shown in Figure 5.2. By looking back at the visual-
izations of the region configurations (Figures 4.1, 4.3 (right), and 5.1) and inspecting these
action distributions we can see that the majority roughly is as expected, with a little bit of
noise due to sampling (Q5).

For each MDP, we can see that the baseline (RC 1) is already able to infer that IDLE is
never a good action (Figures 5.6, 5.9, 5.12, and 5.15). Furthermore, we can see that there is
a preference for moving to the top-left if the agent does not yet have the key and that there
is a preference for moving to the bottom right once the agent has picked up the key (Figure
5.10). Analogously, we can see that the inferred action distributions are roughly equal and
both encode a preference for moving towards the bottom right when the state factor has key
is irrelevant (Figure 5.13). This illustrates how the algorithm leverages soft prior knowledge
but is still able to recover if the soft prior knowledge turns out to be unjustified (Q6).

Although the majority of the action distributions capture what one would expect, there
are still some unexpected aspects. For example, in Figures 5.11 and 5.14 in region 1 one
would expect PICKUP to be the clearly dominant action and in region 2 one would expect
OPEN to be the best. These are in fact the actions with the highest probability respectively.
However, we see relatively much noise, as the difference with other actions is not large. We
speculate that this is because these regions only comprise a single state.

We can see another unexpected aspect in the UNLOCK MDP when the agent does not have
the key, but the treasure is also not locked (Figure 5.14 (region 4)). Here, the actions ↑ and
← are more likely than we would expect. A distribution that majorly favors ↓ and→, and
favors PICKUP slightly would be more expected. However, remember that policies that do
pick up the key before heading to the treasure also receive the large reward. We suspect that
these policies are ‘not unlikely enough’ due to the high value of γ used: 0.99. To verify this
suspicion, an extra experiment is done, where now γ = 0.9. The inferred action distribution
for UNLOCK for region 4 in region configuration 3 is visualized again (Figure 5.18). What
we can see is that now that γ is decreased, the probabilities of ↑ and ← have indeed also
decreased.

37

5. EXPERIMENTAL EVALUATION

Figure 5.2: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the NAV, LOCK, UNLOCK, and LAVA MDPs for the three different region con-
figurations. The ribbon around the means displays the standard error of the mean.

Figure 5.3: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the NAV, LOCK, UNLOCK, and LAVA MDPs for the three different region configurations. Note
that the black and grey lines overlap for NAV.

38

5.2. Policy Inference Given a Region Configuration

Figure 5.4: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the LOCK MDP for the three different region configurations and increasing
values of ψ.

Figure 5.5: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the LOCK MDP for the three different region configurations and increasing values of ψ.

39

5. EXPERIMENTAL EVALUATION

Figure 5.6: Visualization of θ for NAV inferred from region configuration 1. Region 1 is
simply S .

Figure 5.7: Visualization of the θs for NAV inferred from region configuration 2. Region 1
is the “room” in the bottom right and region 2 is the L-shaped “hallway”. See Figure 4.1
(right) for a visualization of the regions.

Figure 5.8: Visualization of the θs for NAV inferred from region configuration 3. Regions 1,
2, and 3 are numbered and marked yellow, red, and blue respectively in Figure 4.1 (right).

40

5.2. Policy Inference Given a Region Configuration

Figure 5.9: Visualization of θ for LOCK inferred from region configuration 1. Region 1 is
simply S .

Figure 5.10: Visualization of the θs for LOCK inferred from region configuration 2. In region
1 the agent does not yet have the key. In region 2, the agent has picked up the key. See Figure
4.3 for a visualization of the regions.

Figure 5.11: Visualization of the θs for UNLOCK inferred from region configuration 3. In
regions 1 and 2, the agent is at the key or the treasure respectively. In region 4 the agent
does not yet have the key. In region 3, the agent has picked up the key. See Figure 4.3 for a
visualization of the regions.

41

5. EXPERIMENTAL EVALUATION

Figure 5.12: Visualization of θ for UNLOCK inferred from region configuration 1. Region 1
is simply S .

Figure 5.13: Visualization of the θs for UNLOCK inferred from region configuration 2. In
region 1 the agent does not yet have the key. In region 2, the agent has picked up the key.
See Figure 4.3 for a visualization of the regions.

Figure 5.14: Visualization of the θs for UNLOCK inferred from region configuration 3. In
regions 1 and 2, the agent is at the key or the treasure respectively. In region 4 the agent
does not yet have the key. In region 3, the agent has picked up the key. See Figure 4.3 for a
visualization of the regions.

42

5.2. Policy Inference Given a Region Configuration

Figure 5.15: Visualization of θ for LAVA inferred from region configuration 1. Region 1 is
simply S .

Figure 5.16: Visualization of the θs for LAVA inferred from region configuration 2. Region
1 is all the states directly next to the lava and region 2 is the path in the middle. See Figure
5.1 for a visualization of the regions.

Figure 5.17: Visualization of the θs for LAVA inferred from region configuration 3. Region
1 is all the states directly next to the lava on the right side, region 2 is the path in the middle,
and region 3 is all the states directly next to the lava on the left side. See Figure 5.1 for a
visualization of the regions.

43

5. EXPERIMENTAL EVALUATION

Figure 5.18: Visualization of θ for region 4 of UNLOCK inferred from region configuration 3.
γ = 0.9

5.3 Generalization of θ

In this section, the generalizability potential of the inferred action distributions over regions
is assessed. This is done specifically for the LOCK and UNLOCK MDPs. The following ques-
tions will be investigated and answered:

Q7 Does initializing the θs with inferred action distributions over regions from the LOCK
MDP accelerate the policy search in unseen but similar environments?

Q8 Does initializing the θs with inferred action distributions over regions from the UNLOCK
MDP accelerate the policy search in unseen but similar environments?

5.3.1 Experimental Setup

To be able to answer Q7 and Q8, four additional MDPs are introduced: LOCK BIG, LOCK 2,
UNLOCK BIG, and UNLOCK 2. LOCK BIG is identical to the LOCK MDP, except the grid is now
7x7 instead of 5x5. UNLOCK BIG is identical to LOCK BIG except the key is not needed to
open the treasure. Furthermore, LOCK 2 is identical to the LOCK MDP, except the key is
replaced from the top-left corner to the top-right corner, and the treasure is replaced from
the bottom-right corner to the bottom-left. Finally, the UNLOCK 2 MDP is again identical to
LOCK 2 except the key is not needed to open the treasure.

The introduced MDPs are clearly adaptations of the LOCK and UNLOCK MDPs. The
inference algorithm from before is now repeated for these adapted MDPs. This is done in
two setups:

• θ init uniform: the original setup;

• θ init learned: the inferred θs from the LOCK and UNLOCK MDPs (as visualized in
Figures 5.9 until 5.14) are reused as initialization for the θs of the corresponding
regions.

Reusing the inferred action distributions per region can provide an indication of how
well the inferred soft prior knowledge generalizes to unseen but similar environments. For
this experiment: υ = 1,ψ = 1000.

44

5.4. Inference of Region Configurations

Figure 5.19: Analysis of the generalization of the inferred action distribution from MDP
LOCK to LOCK BIG.

5.3.2 Results and Discussion

From the results (Figures 5.19, 5.20, 5.21, and 5.22) it can be seen that if the state space
is not divided into regions (RC 1), the initialization does not seem to make a difference for
how quickly a good policy is found. Likewise, when the state space is divided based on
only has key, no significant acceleration can be observed. Finally, we can see that for each
MDP with region configuration 3, the learned initialization of the θs accelerates the policy
learning. Hence, the situation where the most soft prior knowledge is added has clear merits
for generalization to unseen but similar environments (Q7, Q8).

Interestingly, we can see in Figure 5.21 (RC 3) that the learned initialization very
quickly results in good policies compared to the baseline. However, after this steep climb,
the average quality of the best policy found seems to stagnate. In the limit, this will still
converge to the optimal policy eventually, albeit much later than the baseline. Considering
that the θs, in this case, were initialized with the distributions visualized in Figure 5.14, we
can phrase a suspicion as to why the algorithm is struggling to find the optimal policy. In
region 4 (i.e. the agent does not have the key), an optimal agent would move to the bottom
right as the key is not needed to open the treasure. However, the initial action distribution
makes policies that do move to the key likely as well. The discount factor γ is still 0.99, but
as the grid is larger the agent needs to travel more and the drawback of unnecessarily mov-
ing to the key is amplified. To overcome this, the θ of region 4 would need to be updated
such that probability mass is moved from ↑ and← to ↓ and→. As it turns out, overcoming
this takes longer than simply initializing the θs uniform.

5.4 Inference of Region Configurations

To evaluate the two tree inference approaches “circumventing stochastic support” and “an-
cestral sampling” (Section 4.5.2), some experiments are done. The following two questions
will be explored and answered:

Q9 Can the “circumventing stochastic support” tree inference approach be used to suc-
cessfully infer partial trees?

45

5. EXPERIMENTAL EVALUATION

Figure 5.20: Analysis of the generalization of the inferred action distribution from MDP
LOCK to LOCK 2.

Figure 5.21: Analysis of the generalization of the inferred action distribution from MDP
UNLOCK to UNLOCK BIG.

Figure 5.22: Analysis of the generalization of the inferred action distribution from MDP
UNLOCK to UNLOCK 2.

46

5.4. Inference of Region Configurations

Figure 5.23: Conditioned trees for pivot inference of MDPs NAV, LOCK, and LAVA from left
to right respectively.

Figure 5.24: Eight equivalent decision trees over the LAVA MDP.

Q10 Can the “ancestral sampling” tree inference approach be used to successfully infer
trees from scratch?

5.4.1 Experimental Setup

The two tree inference approaches “circumventing stochastic support” and “ancestral sam-
pling” (Section 4.5.2) are evaluated by running the inference algorithms to infer (parts of)
the region configurations of MDPs NAV, LOCK, and LAVA. To evaluate the “circumventing
stochastic support” approach and to answer Q9, the entire decision trees are conditioned
except for the pivot values (Figure 5.23). The pivot values considered ‘correct’ are those
of the corresponding trees used in previous experiments, given in Figures 4.1 (RC 3), 4.3
(RC 3), and 5.1 (RC 3) for MDPs NAV, LOCK, and LAVA respectively. Occasionally, some
leniency is allowed for these pivots. Specifically, for the NAV MDP 12 and 11 are acceptable
y-pivots, and 5 and 6 are acceptable x-pivots. Likewise, for the LAVA MDP the pivots have
to be 1 and 4 but their location can be swapped. The inference algorithm is repeated 100
times for various maximum number of policy evaluations and for υ = {1,5}.

To evaluate the “ancestral sampling” approach and to answer Q10, no parts of the tree

47

5. EXPERIMENTAL EVALUATION

are conditioned and the entire tree needs to be inferred. One aspect that needs to be taken
into account is that different trees can represent the same region configuration. Firstly, the
most obvious aspect of this is the permutation invariance of the region labels; any permuta-
tion of the labels represents the same region configuration as it is just a naming convention.
Secondly, different pivots and/or different tree structures can also represent the same region
configuration. To illustrate this, eight equivalent trees over the LAVA MDP are visualized
in Figure 5.24. Many more equivalent trees can be constructed1. Note that these trees are
empirically equivalent for the state space of the LAVA MDP; the story would have been dif-
ferent had there been states for which x is smaller than 1 or larger than 4. This empirical
equivalence of decision trees is taken into account for the tree inference by iterating over all
pairs of states, and verifying that two trees agree about whether the two states belong to the
same region. Any pair of states for which the trees disagree is a counterexample, meaning
that the trees are not empirically equivalent. If no counterexample can be found, the trees
are considered empirically equivalent.

Another aspect to consider for the tree inference is the parameters of the generative
model max num regions and max tree depth. These values need to be defined before-
hand. For the NAV and the LAVA MDPs, the values are set to max num regions = 3 and
max tree depth = 2. The trees considered correct are again those from Figures 4.1 (RC
3) and 5.1 (RC 3) respectively, or any empirically equivalent tree. Again, the same le-
niency in pivot values as before is allowed. In contrast, for the LOCK MDP two setups
are evaluated: one where max num regions = 2 and max tree depth = 1 and one where
max num regions = 4 and max tree depth = 3. For these two setups, RC 2 and RC 3 of
LOCK (Figure 4.3) are considered the correct trees respectively. The inference algorithm is
repeated 10 times for various maximum number of policy evaluations and for υ = {1,5}.
For all experiments in this section ψ = 1000.

5.4.2 Results and Discussion

The pivot inference algorithm is repeated 100 times and the number of times the inferred
tree is correct is reported (Table 5.2). From this, we can see that the algorithm manages
to infer the correct pivots for all experiments, given that the maximum number of policy
evaluations is large enough (Q9). There is also no substantial difference visible between
υ = 1 and υ = 5. The observed difference is likely a result of the random sampling.

Furthermore, the inference algorithm for complete trees is repeated 10 times and the
number of times the inferred tree is correct is reported (Table 5.3). These results indicate
that the algorithm works well on the LAVA MDP and that the success rate of the algorithm
again grows with the maximum number of policy evaluations. Inspecting the case of the
LOCK MDP a bit more, we see that the algorithm is able to infer that a split on has key is
beneficial in the d = 1 case. However, in the d = 3 case, the algorithm again consistently
infers a decision tree that only splits on has key and nothing else. This yields a success rate
of 0 as it never identifies the location of the key or the location of the treasure as a separate

1In total there are 108. There are 3 possible decision nodes to single out the "x = 1"-column, 3 possible
decision nodes to single out the "x = 4"-column times, 2 ways to combine these decision nodes, 6 permutations
of the region labels. 3×3×2×6 = 108

48

5.4. Inference of Region Configurations

region. This can have two possible reasons. First of all, it is simply unlikely that a correct
tree of depth 3 is sampled by forward sampling from the generative model. Secondly, it
might be the case that identifying these regions is simply not worth it as the regions consist
of only one state. After all, a slight preference for shallow trees is encoded (Section 4.3.2);
the single-state regions might not provide enough advantage to overcome this preference.
A hint for this second interpretation is seen in Figure 5.11: the action distributions in the
single-state regions are spread much more than the action distributions of other regions.
The results suggest that the “ancestral sampling” approach works well for simple trees but
struggles as the trees get deeper and more sophisticated (Q10).

Table 5.2: Results for “circumventing stochastic support” (where only pivots are inferred).
Reported are the number of correctly inferred trees out of 100 repeats of the algorithm.

max policy NAV LOCK LAVA
evaluations υ = 1 υ = 5 υ = 1 υ = 5 υ = 1 υ = 5

500 7 9 6 2 49 40
1000 39 25 24 19 69 75
2000 78 76 71 62 89 92
4000 98 98 97 99 98 92
6000 100 100 100 100 100 97

Table 5.3: Results for “ancestral sampling” (where complete trees are inferred). Reported
are the number of correctly inferred trees out of 10 repeats of the algorithm. d indicates the
max tree depth parameter.

max policy NAV LOCK (d=1) LOCK (d=3) LAVA
evaluations υ = 1 υ = 5 υ = 1 υ = 5 υ = 1 υ = 5 υ = 1 υ = 5

500 0 0 7 3 0 0 6 1
1000 0 0 9 9 0 0 7 10
2000 2 0 10 10 0 0 10 10
4000 4 5 10 10 0 0 10 10
6000 4 6 10 10 0 0 10 10

49

Chapter 6

Conclusions and Future Work

6.1 Conclusions and Limitations

This thesis has introduced the idea of prior action distributions over regions of the state
space of MDPs, which are leveraged to accelerate Bayesian policy search. The region
configurations are represented as decision trees over state factors. A domain expert can
define how the state space should be divided into regions, this division is then leveraged to
find good policies sooner than when no division into regions is used. This works because
action distributions over regions are inferred while a policy is inferred. As a result, when a
good action is found in a region, that action will automatically become more likely in the
rest of the region. Similarly, when an action is found to often yield low or even negative
reward, that action will automatically become less likely in the rest of the region.

The algorithm can work for two use cases: policy search when we do and when we do
not have access to the transition model of the environment. These use cases are referred to as
the planning use case and the reinforcement learning use case respectively. For the planning
use case, the acceleration of the algorithm in terms of the wall-clock time is informative.
Meanwhile, for the reinforcement learning use case, the acceleration of the algorithm in
terms of the number of policies that are evaluated is informative as empirically evaluating a
policy can be expensive. On the one hand, more sophisticated region configurations show
acceleration for the reinforcement learning use case for all MDPs that are evaluated. On
the other hand, the experiments indicate that informative region configurations that do not
divide the state space into too many regions lead to improved performance in the planning
use case. This is a clear trade-off that should be considered depending on the use case of
the algorithm.

Occasionally a domain expert could make a mistake and provide an unjustified region
configuration. For example, dividing the state space by whether or not the agent is in pos-
session of a key when it turns out this key is not needed. It is demonstrated that given
such an incorrect region configuration, the algorithm still manages to infer (near) optimal
policies eventually. In some cases, the inferred action distributions over regions can even
be useful for generalization to unseen but similar MDPs. In other cases, the inferred action
distributions do not generalize well at all.

51

6. CONCLUSIONS AND FUTURE WORK

Other than having a domain expert specify the region configuration, we also investigated
initial inference strategies for inferring these decision trees themselves. Two setups are eval-
uated. In the first setup, the structure of the tree is given and only the pivots of the decision
nodes are inferred. In the second setup, the entire tree is inferred from scratch. The first
setup is shown to work successfully for all evaluated MDP instances, given that we run the
algorithm long enough. The second setup also provides promising results as it successfully
infers small trees, but is unsuccessful for more sophisticated region configurations.

Finally, let us highlight two more limitations of this work. Firstly, a limitation is
that multiple (hyper)parameters are introduced. Guessing appropriate values for the (hy-
per)parameters might be challenging, but executing an extensive (hyper)parameters opti-
mization procedure might not be worth it for certain problems. This is a trade-off that is
further addressed in Section 6.2. Secondly, it is worth considering that the leveraging of a
division of S into regions would not work for all possible MDPs. For example, the state
space might be exceptionally small or there might be no natural way to batch states that
are similar towards a certain goal. Hence, the methodology proposed in this thesis is not a
one-size-fits-all approach.

6.2 Future Work

The insights provided by this thesis open many potential directions for future research. Five
interesting directions are outlined in this section.

Further Analysis of Parameters As mentioned before, this work introduces multiple
(hyper)parameters. Although the inference balance parameter ψ (Section 4.4.3) and the
rationality parameter υ (Section 4.3.1) are investigated in Chapter 5 and Appendix B, the
precision of the action simplex random walk (Section 4.4.2) is not optimized nor inves-
tigated. Optimizing and investigating the impact of this precision parameter potentially
accelerates inference. Furthermore, for υ only the values 1 and 5 are evaluated. Higher
values of υ break the algorithm since the factor functionality is not natively built into Gen
(Section 4.4.3). However, when the maximum reward is lower than 100, higher values of υ

can be evaluated. Moreover, the is leaf Bernoulli parameter as described in Section 4.3.2
can also be refactored as a hyperparameter and optimized.

Other than that, the max depth and max num regions parameters of the decision tree
need to be known before inference can start. Since these are maximum values, they can be
set preposterously high in the case of uncertainty. Future work could evaluate the potential
deterioration of the algorithm when these bounds are defined too loosely.

Continuous States and/or Actions The methodology of this thesis assumes a discrete
set of states and a discrete set of actions. Real-world problems, however, often contain for
example continuous sensor readings or continuous decisions: e.g. how fast should we go or
how much force should we apply. The real world is simply not nicely divided in a grid. One
simple strategy to deal with this is the discretization of the state and action space. Another
strategy is to extend this thesis to work directly on continuous MDPs.

52

6.2. Future Work

Furthermore, the state and action spaces of the MDPs evaluated in this thesis have a
maximum size of 155 and 7 respectively. Future work can explore the idea of prior ac-
tion distributions over regions with larger state and action spaces. The work of Fernandes
and Atchley[12] might help for the efficiency of the random walk over the action simplex
(Section 4.4.2).

Extension to POMDPs In Markov Decision Processes, it is assumed that the agent can
observe exactly what the state of the (agent in the) world is. This assumption is false in
many real-world scenarios, for example when the agent has sensors of limited quality. It
is more realistic to assume that there is some observation that provides information about
the current state but without 100% certainty. These cases can be modeled with Partially
Observable Markov Decision Processes (POMDPs) [18]. An extension of this thesis to
POMDPs has the potential to solve more realistic real-world problems.

More Sophisticated Tree Inference The current approach for unconditioned tree infer-
ence is relatively simplistic; if the correct tree is never generated through forward sampling
from the generative model, it is never inferred correctly. Perhaps the most interesting direc-
tion of future work is investigating more sophisticated tree inference algorithms. Possible
approaches apply, and accept or reject, updates to a current tree rather than proposing a
completely new tree in each step. Growing a decision tree by first inferring the root and
repeatedly inferring the rest of the tree is also a strategy worth investigating. Instead of such
a top-down approach, a bottom-up approach where states are repeatedly merged to form
regions might also be worth exploring.

A valuable observation might be that a good region configuration identifies regions in
which actions are similar. In other words, the entropy of action distributions over regions
is low. Hence, the entropy of the action distributions might be a useful measure to guide a
complex tree inference procedure. This can be used as a proxy for which tree is better than
other trees, but also as guidance for what part of a tree to update.

Pushing the Limits of Tree Inference The methodology explained and evaluated in this
thesis leverages a decision tree that divides the state space into regions, to find good policies
sooner than when no division into regions is used. The policies themselves, however, are
still defined enumeratively as a dictionary that maps states to actions. For each region, an
action distribution is inferred which is meanwhile used to infer the policy. By continuing
until the action distributions are each completely concentrated on a single action, the policy
itself can be represented as a decision tree. A great merit of this is that policies represented
as a decision tree are interpretable for humans[25]. Furthermore, a policy represented as a
(size-limited) decision tree will likely occupy less memory than a policy represented as a
dictionary. Perhaps a size-limited decision tree as a policy does not always gain as much
reward as the optimal policy. However, one can imagine use cases when one is willing to
trade off a little bit of performance for a more compact and understandable representation
of the policy.

53

6. CONCLUSIONS AND FUTURE WORK

6.3 Broader Implications

A potential broader implication of this thesis is the creation of artificially intelligent agents
that exhibit thought processes closer to those of humans. The capability to divide the state
space into regions can be interpreted as generating an abstract representation of the prob-
lem. Being able to reason abstractly about problems makes AIAs ‘think’ more like humans.
Furthermore, when a human wonders why an AIA made a certain decision, this abstract rep-
resentation of the state space might provide meaningful insight. Additionally, by pushing
the boundaries of this research, there is the prospect of completely eliminating the enumer-
ative policy representation and representing policies as decision trees for some MDPs. This
can also make the behavior of AIAs more interpretable and understandable for humans.

54

Bibliography

[1] Hagai Attias. Planning by probabilistic inference. In Christopher M. Bishop and
Brendan J. Frey, editors, Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, volume R4 of Proceedings of Machine Learning Research,
pages 9–16. PMLR, 2003. URL https://proceedings.mlr.press/r4/attias03a
.html. Reissued by PMLR on 01 April 2021.

[2] Richard Ernest Bellman. Markovian Decision Processes, chapter 11, pages 317–330.
Princeton University Press, 1957. URL https://gwern.net/doc/statistics/dec
ision/1957-bellman-dynamicprogramming.pdf.

[3] Christopher M. Bishop. Probability distributions. In Pattern Recognition and Machine
Learning, chapter 2, pages 76–78. Springer, first edition, 2006. ISBN 978-0-387-
31073-2.

[4] Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in Cognitive
Sciences, 16(10):485–488, 2012. ISSN 1364-6613. doi: https://doi.org/10.1016/j.
tics.2012.08.006. URL https://www.sciencedirect.com/science/article/pi
i/S1364661312001957.

[5] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic pro-
gramming with factored representations. Artificial Intelligence, 121(1):49–107, 2000.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(00)00033-3. URL https:
//www.sciencedirect.com/science/article/pii/S0004370200000333.

[6] Leo Breiman. Classification and Regression Trees. Routledge, first edition, 1984.
ISBN 9781315139470.

[7] Thiago P. Bueno, Denis D. Mauá, Leliane N. de Barros, and Fabio G. Cozman. Markov
decision processes specified by probabilistic logic programming: Representation and
solution. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pages
337–342, 2016. doi: 10.1109/BRACIS.2016.068.

[8] Elena Congeduti and Frans A. Oliehoek. A cross-field review of state abstraction
for markov decision processes. In 34th Benelux Conference on Artificial Intelligence

55

https://proceedings.mlr.press/r4/attias03a.html
https://proceedings.mlr.press/r4/attias03a.html
https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://www.sciencedirect.com/science/article/pii/S1364661312001957
https://www.sciencedirect.com/science/article/pii/S1364661312001957
https://www.sciencedirect.com/science/article/pii/S0004370200000333
https://www.sciencedirect.com/science/article/pii/S0004370200000333

BIBLIOGRAPHY

(BNAIC) and the 30th Belgian Dutch Conference on Machine Learning (Benelearn),
2022. URL https://bnaic2022.uantwerpen.be/wp-content/uploads/BNAIC
BeNeLearn_2022_submission_3386.pdf.

[9] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K.
Mansinghka. Gen: A general-purpose probabilistic programming system with pro-
grammable inference. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2019, pages 221–236, New
York, NY, USA, 2019. ACM. ISBN 978-1-4503-6712-7. doi: 10.1145/3314221.
3314642. URL http://doi.acm.org/10.1145/3314221.3314642.

[10] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase
1). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[11] Owain Evans, Andreas Stuhlmüller, John Salvatier, and Daniel Filan. Modeling agents
with probabilistic programs. http://agentmodels.org, 2017. Accessed: 2023-11-
21.

[12] Andrew D. Fernandes and William R. Atchley. Site-specific evolutionary rates in
proteins are better modeled as non-independent and strictly relative. Bioinformatics
(Oxford, England), 24(19):2177–2183, 2008. ISSN 1367-4803. doi: 10.1093/bioinfor
matics/btn395. URL https://doi.org/10.1093/bioinformatics/btn395.

[13] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial Intelligence,
57(2):323–389, 1992. ISSN 0004-3702. doi: 10.1016/0004-3702(92)90021-O. URL
https://www.sciencedirect.com/science/article/pii/000437029290021O.

[14] Noah D. Goodman and Andreas Stuhlmüller. The Design and Implementation of
Probabilistic Programming Languages. http://dippl.org, 2014. Accessed: 2023-
6-19.

[15] Noah D. Goodman, Joshua B. Tenenbaum, and The ProbMods Contributors. Proba-
bilistic Models of Cognition. http://probmods.org/, 2016. Accessed: 2023-12-6.

[16] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Raja-
mani. Probabilistic programming. In Future of Software Engineering Proceedings,
FOSE 2014, page 167–181, New York, NY, USA, 2014. Association for Comput-
ing Machinery. ISBN 9781450328654. doi: 10.1145/2593882.2593900. URL
https://doi.org/10.1145/2593882.2593900.

[17] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state
variables. In IJCAI, volume 8, pages 752–757, 2005.

[18] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelli-
gence, 101(1):99–134, 1998. ISSN 0004-3702. doi: https://doi.org/10.1016/
S0004-3702(98)00023-X. URL https://www.sciencedirect.com/science/ar
ticle/pii/S000437029800023X.

56

https://bnaic2022.uantwerpen.be/wp-content/uploads/BNAICBeNeLearn_2022_submission_3386.pdf
https://bnaic2022.uantwerpen.be/wp-content/uploads/BNAICBeNeLearn_2022_submission_3386.pdf
http://doi.acm.org/10.1145/3314221.3314642
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
http://agentmodels.org
https://doi.org/10.1093/bioinformatics/btn395
https://www.sciencedirect.com/science/article/pii/000437029290021O
http://dippl.org
http://probmods.org/
https://doi.org/10.1145/2593882.2593900
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X

Bibliography

[19] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Machine Learning, 49
(2):193–208, 2002. ISSN 1573-0565. doi: 10.1023/A:1017932429737.

[20] Bret Larget and Donald L. Simon. Markov Chain Monte Carlo Algorithms for the
Bayesian Analysis of Phylogenetic Trees. Molecular Biology and Evolution, 16(6):
750–750, 1999. ISSN 0737-4038. doi: 10.1093/oxfordjournals.molbev.a026160.
URL https://doi.org/10.1093/oxfordjournals.molbev.a026160.

[21] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. CoRR, abs/1805.00909, 2018. URL http://arxiv.org/abs/1805.
00909.

[22] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of
state abstraction for mdps. AI&M, 2006.

[23] Andrew Kachites McCallum. Reinforcement learning with selective perception and
hidden state. University of Rochester, 1996.

[24] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. Pddl - the planning domain defini-
tion language, 1998.

[25] Christoph Molnar. Interpretable machine learning. https://christophm.github.
io/interpretable-ml-book/, 2023. Accessed: 2023-11-24.

[26] Davide Nitti, Vaishak Belle, and Luc De Raedt. Planning in discrete and continu-
ous markov decision processes by probabilistic programming. In Annalisa Appice,
Pedro Pereira Rodrigues, Vı́tor Santos Costa, João Gama, Alı́pio Jorge, and Carlos
Soares, editors, Machine Learning and Knowledge Discovery in Databases, pages
327–342, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23525-7.
URL https://doi.org/10.1007/978-3-319-23525-7_20.

[27] Rafael Rodriguez-Sanchez, Benjamin Adin Spiegel, Jennifer Wang, Roma Patel, Ste-
fanie Tellex, and George Konidaris. RLang: A declarative language for describing
partial world knowledge to reinforcement learning agents. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 29161–29178. PMLR,
2023. URL https://proceedings.mlr.press/v202/rodriguez-sanchez23a.h
tml.

[28] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers and Scien-
tists. Elsevier Academic Press, fourth edition, 2009. ISBN 978-0-12-370483-2.

[29] Stuart Russell and Peter Norvig. Probabilistic reasoning over time. In Artificial In-
telligence A Modern Approach, chapter 15, pages 566–570. Pearson Education, third
edition, 2010. ISBN 978-0-13-604259-4.

57

https://doi.org/10.1093/oxfordjournals.molbev.a026160
http://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1805.00909
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-319-23525-7_20
https://proceedings.mlr.press/v202/rodriguez-sanchez23a.html
https://proceedings.mlr.press/v202/rodriguez-sanchez23a.html

BIBLIOGRAPHY

[30] Stuart Russell and Peter Norvig. Probabilistic reasoning. In Artificial Intelligence A
Modern Approach, chapter 14, pages 510–529. Pearson Education, third edition, 2010.
ISBN 978-0-13-604259-4.

[31] Stuart Russell and Peter Norvig. Making complex decisions. In Artificial Intelligence
A Modern Approach, chapter 17, pages 645–658. Pearson Education, third edition,
2010. ISBN 978-0-13-604259-4.

[32] Rolf A. N. Starre, Marco Loog, Elena Congeduti, and Frans A. Oliehoek. An analysis
of model-based reinforcement learning from abstracted observations. Transactions on
Machine Learning Research, 2023.

[33] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning - An Introduction.
The MIT Press, second edition, 2018. ISBN 978-0-262-19398-6.

[34] Ingo Thon, Bernd Gutmann, and Guy Van Den Broeck. Probabilistic programming
for planning problems. In Proceedings of the 6th AAAI Conference on Statistical
Relational Artificial Intelligence, AAAIWS’10-06, page 98–99. AAAI Press, 2010.
doi: 10.5555/2908567.2908586.

[35] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and
continuous state markov decision processes. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML ’06, page 945–952, New York, NY,
USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi: 10.1145/
1143844.1143963. URL https://dl.acm.org/doi/10.1145/1143844.1143963.

[36] Marc Toussaint, Amos Storkey, and Stefan Harmeling. Expectation-Maximization
methods for solving (PO) MDPs and optimal control problems. Cambridge University
Press, 2010. ISBN 9780511984679. doi: 10.1017/CBO9780511984679.019.

[37] Jan-Willem van de Meent, Brooks Paige, David Tolpin, and Frank Wood. Black-box
policy search with probabilistic programs. In Arthur Gretton and Christian C. Robert,
editors, Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine Learning Research, pages 1195–
1204, Cadiz, Spain, 2016. PMLR. URL https://proceedings.mlr.press/v51/
vandemeent16.html.

[38] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An intro-
duction to probabilistic programming, 2021. URL https://arxiv.org/pdf/1809.
10756.pdf.

[39] David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie P. Kaelbling, and Joshua B.
Tenenbaum. Bayesian policy search with policy priors. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Volume Two,
IJCAI’11, page 1565–1570. AAAI Press, 2011. ISBN 9781577355144. doi: 10.5555/
2283516.2283656.

58

https://dl.acm.org/doi/10.1145/1143844.1143963
https://proceedings.mlr.press/v51/vandemeent16.html
https://proceedings.mlr.press/v51/vandemeent16.html
https://arxiv.org/pdf/1809.10756.pdf
https://arxiv.org/pdf/1809.10756.pdf

Bibliography

[40] Ryan Yang, Tom Silver, Aidan Curtis, Tomas Lozano-Perez, and Leslie Kaelbling.
Pg3: Policy-guided planning for generalized policy generation. In Luc De Raedt,
editor, Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 4686–4692. International Joint Conferences on Artifi-
cial Intelligence Organization, 2022. doi: 10.24963/ijcai.2022/650. URL https:
//doi.org/10.24963/ijcai.2022/650. Main Track.

59

https://doi.org/10.24963/ijcai.2022/650
https://doi.org/10.24963/ijcai.2022/650

Appendix A

Glossary

In this appendix we provide an overview of frequently used abbreviations:

MDP: Markov Decision Process

AIA: Artificially Intelligent Agent

VI: Value Iteration

MCMC: Markov Chain Monte Carlo

MH: Metropolis-Hastings

RC: Region Configuration

POMDP: Partially Observable Markov Decision Process

61

Appendix B

Hyperparameter Analysis

In this appendix, we study the effect of the hyperparameters ψ and υ. Recall that ψ is the
expected number of MH updates on θ per |S | updates on π (Section 4.4.3); i.e. the amount
of computational effort that is put into inferring the θs. Furthermore, recall that υ is the
rationality multiplier (Section 4.3.1).

The progress of the mean policy performance over the number of policy evaluations
is visualized in Figures B.1, B.3, B.5, and B.7 for MDPs NAV, LOCK, UNLOCK, and LAVA
respectively. Likewise, the progress of the mean policy performance over the wall-clock
time is visualized in Figures B.2, B.4, B.6, and B.8. The ribbon around the means display
the standard error of the mean. Occasionally this ribbon cannot be seen; in those cases the
standard error is as big as or smaller than the thickness of the line representing the mean.
Each figure visualizes this for various values of ψ and υ to inspect the influence of these
hyperparameters. Note that ψ = 0 means that none of the MH steps perform an update to a
θ. In other words, the prior remains uniform no matter the region configuration. The results
are consistent with the discussion provided in Section 5.2.2.

63

B. HYPERPARAMETER ANALYSIS

Figure B.1: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the NAV MDP for the three different region configurations and various values
of ψ and υ.

64

Figure B.2: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the NAV MDP for the three different region configurations and various values of ψ and υ.

65

B. HYPERPARAMETER ANALYSIS

Figure B.3: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the LOCK MDP for the three different region configurations and various val-
ues of ψ and υ.

66

Figure B.4: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the LOCK MDP for the three different region configurations and various values of ψ and υ.

67

B. HYPERPARAMETER ANALYSIS

Figure B.5: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the UNLOCK MDP for the three different region configurations and various
values of ψ and υ.

68

Figure B.6: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the UNLOCK MDP for the three different region configurations and various values of ψ and
υ.

69

B. HYPERPARAMETER ANALYSIS

Figure B.7: Progress of the mean policy quality (υ∑s∈S V π(s)) over the number of policy
evaluations for the LAVA MDP for the three different region configurations and various val-
ues of ψ and υ.

70

Figure B.8: Progress of the mean policy quality (υ∑s∈S V π(s)) over the wall-clock time for
the LAVA MDP for the three different region configurations and various values of ψ and υ.

71

	Preface
	Contents
	Introduction
	Preliminaries
	Markov Decision Processes
	Dynamic Programming for Solving MDPs
	Probabilistic Programming
	Metropolis-Hastings
	Bayesian Policy Search with Policy Priors

	Related Work
	Planning as Inference
	Planning by Probabilistic Programming
	Leveraging Prior Policy Knowledge
	State Abstraction for MDPs

	Methodology
	Problem Setting
	The Approach: Priors over Regions
	Generative Model
	Inferring Policies
	Inferring Region Configurations

	Experimental Evaluation
	MDP Instances
	Policy Inference Given a Region Configuration
	Generalization of theta
	Inference of Region Configurations

	Conclusions and Future Work
	Conclusions and Limitations
	Future Work
	Broader Implications

	Bibliography
	Glossary
	Hyperparameter Analysis

