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Abstract

Object-Relational Mapping (ORM) frameworks can be used to fetch entities from

a relational database. The entities that are referenced through properties are normally

not fetched initially, instead they are fetched automatically by the ORM framework,

when they are used by the application. This is called lazy-fetching and can result in

many queries, causing overhead. The number of queries can be reduced by prefetch-

ing multiple entities at once. There are two types of prefetching techniques, static

and dynamic. Static techniques perform optimization during compilation and dynamic

techniques collect information during runtime in order to perform prefetching. Multi-

ple static prefetching techniques are implemented into WebDSL that all use the same

static code analysis, however, they generate different queries. The static analysis de-

termines the entities that are going to be used and should be prefetched. These static

techniques are compared to the dynamic techniques already present inside the Hiber-

nate ORM framework. The evaluation is performed using the OO7 benchmark and

complete WebDSL applications. The results of the OO7 benchmark show a response

time improvement of up to 69% over lazy-fetching. On complete web applications

some of the static techniques implemented in WebDSL improve the performance on

average, however, the performance may be improved further, using a more fine-grained

method of choosing an optimization technique.
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Chapter 1

Introduction

The number of web applications on the Web keeps increasing. Examples of web applica-

tions include wikis like Wikipedia, webshops like Amazon and social networking services

like Facebook. Web applications can also replace traditional desktop applications, for exam-

ple, Gmail and Hotmail are web applications that implement an e-mail client, like Mozilla

Thunderbird or Microsoft Outlook. The main advantage of using web applications over

desktop applications is that they run on a web server and do not need to be installed or up-

dated on individual client computers. The client computer only needs to have a compatible

webbrowser, like Mozilla Firefox or Google Chrome, which can be used to access the web

application on the web server.

Web applications generate responses for requests that are send to the web server, often

using and storing data in a relational database. Data that is or will be stored inside the

database is also called persistent data, because that data persists after a request has been

fulfilled and even if the web server is restarted. Other data, like generated responses or

intermediate values, are discarded after fulfilling a request. Persistent data can be accessed

from a relational database directly, by executing a query that will return a recordset con-

taining the requested data. When working in an object oriented programming language,

persistent data is often accessed through an Object-Relational Mapping (ORM) framework.

The ORM framework will send the queries to the database and expose the persistent data

through persistent objects, also known as entities. Entities are the same as regular objects,

except that they represent persistent data. Using objects instead of recordsets is preferred

in an object oriented language, because they can use all the features of the language, like

inheritance or dynamic dispatch.

Recordsets can also be turned into objects manually, however, an ORM framework does

more than just that. For example, an ORM framework can write changes made to entities

back to the database automatically. Another advantage of an ORM framework is that it will

automatically generate SQL queries, which can often also be generated in different vendor

specific SQL dialects, making a web application easily portable to another database.

An entity can have properties that contain a reference to another entity or even a col-

lection of entities. Loading an entity or collection from the database is called fetching and

an ORM framework can have configuration options to specify when and how an entity or

collection property is to be fetched. By default a property should be fetched when it is used,
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1. INTRODUCTION

by executing a query that fetches just that entity or collection. Not fetching an entity or

collection until it is used is called lazy-fetching and prevents the fetching of entities and

collections that are never used. The downside is that properties are accessed one by one

and each access could execute its own query to fetch the referenced entity or collection.

An ORM generally caches entities it has fetched before, to prevent fetching the same entity

again. However, fetching only one entity or collection per query will still lead to an exces-

sive number of queries. Sending too many queries is bad for performance, because every

query is a round trip to the database and causes a little overhead. This problem is called

the 1+ n query problem, because accessing a property inside a loop over a collection of n

elements, will execute 1 query for the collection and 1 query during each iteration to fetch

the property.

The 1+ n query problem can be solved by prefetching properties that are going to be

accessed, using fewer queries. There are multiple methods that can be used to do so. For ex-

ample, when fetching an entity, a query could be generated that uses joins to prefetch some

of its properties. Without joins it is also possible to fetch more than one entity at a time, by

using a different condition, which can be as simple as matching a list of entity identifiers

instead of only one. These prefetch queries can be specified manually, however, manual

queries are hard to maintain, because they also need to be updated manually every time the

data requirement of the application changes. Therefore, this thesis project implements and

evaluates multiple techniques, to generate and execute these prefetch queries automatically.

By using an ORM framework it is possible to completely remove the need to write

queries manually, however, most ORM frameworks still offer interfaces through which cus-

tom queries can be specified and executed. These interfaces allow a developer to request

specific persistent data, which the ORM framework will translate into a SQL query, allow-

ing for efficient execution by the relational database. This is useful when searching for

entities. For example, to get all the recent posts of a specific user on a forum. This can

be implemented without custom queries, by accessing a property on the user that stores all

of its posts and then checking one by one if they are recent. Accessing such property will

fetch all post and not just the recent ones. Alternatively, a custom query can be used to ask

the database for just the posts of the user that are recent, without fetching the older posts of

the user. The implementation using a custom query is more efficient, because less data is

returned from the database. This thesis project implements a static code analysis that is able

to detect these kinds of conditions on collections. The detected conditions are added to the

queries that fetch these collections whenever possible. This will have the same performance

benefits of using custom queries, without the developer having to specify or maintain them.

Custom queries can also be used to perform aggregation operations, like summing up all

salaries of all employees of a specific department. This kind of operation is harder to detect

using a static code analysis and is still left for the developer to optimize.

1.1 Goal and Research Questions

Websites that use an ORM framework can often be optimized by prefetching entities and

collections that are used in the future. Prefetching usually fetches more than one entity or

2



1.2. Outline

collection using a single query, which avoids having to fetch them using individual queries.

The goal of this project is to add automatic prefetching to WebDSL, which uses Hibernate

as ORM framework. WebDSL is a domain specific language that targets web applications.

Prefetching is added to WebDSL by changing the WebDSL compiler to generate extra code

that performs the prefetching. To generate efficient prefetching code, the compiler can use

a static analysis on the abstract syntax tree. The static analysis determines which properties

are accessed in the future and should be prefetched. The static analysis also detects the

conditions under which the elements of a collection are used. These conditions are then

added to queries that fetch these collections and allow these collections to be initialized

partially, whenever possible. The research questions are defined as follows.

How to best prefetch data under various circumstances?

As discussed in the introduction, there are two ways to fetch multiple entities or collections

using a single query. By using joins or by using a less restrictive condition, for example,

by matching a list of identifiers instead of just one. Both methods can be used to prefetch

entities or collections that are going to be used, yet they perform differently. To answer this

question we look at both types of queries and their resulting recordsets, to determine when

it is beneficial to use one over the other.

When do the prefetching techniques included in Hibernate improve performance?

Hibernate includes its own prefetching techniques, which can easily be enabled inside its

configuration. These techniques can be enabled selectively for individual classes and prop-

erties, however, since this thesis project strives for automatic optimization, they are enabled

for all classes and properties. Response time is the most important measurement for the

evaluation of the performance. Factors that have an influence on the response time are also

measured, which includes the number of queries executed, the number of fetched entities

and memory consumption.

How do the prefetching techniques implemented in WebDSL compare to the tech-

niques provided by Hibernate?

To answer this question different prefetching techniques will be implemented in WebDSL.

The implemented techniques will all use the same static analysis to predict future property

accesses. The techniques will perform prefetching at different locations and use different

queries, for example, by allowing joins or not. The techniques that are implemented in

WebDSL are evaluated in the same way as the techniques from Hibernate and a comparison

is made.

1.2 Outline

This section describes the structure of this thesis. Chapter 2 provides a brief introduc-

tion into WebDSL. The different methods to perform prefetching and their benefits are

discussed in Chapter 3. Additions to the WebDSL syntax to define prefetch specifications

are also explained in Chapter 3. Chapter 4 continues by introducing the prefetching tech-

3



1. INTRODUCTION

niques that will later be evaluated. Chapter 5 explains how the performance of the prefetch-

ing techniques is evaluated and also presents improvements to the prefetching techniques,

which were implemented after initial testing. The static analysis that has been implemented

in WebDSL, to automatically generate prefetch specifications, is described in Chapter 6.

Chapter 7 provides a brief introduction into the OO7 benchmark and uses this benchmark

to evaluate the prefetching techniques. Chapter 8 evaluates the prefetching techniques us-

ing complete WebDSL applications. Related work will then be discussed in Chapter 9. To

conclude, Chapter 10 answers the research questions and discusses possible future work.

4



Chapter 2

WebDSL

WebDSL [18] is a domain-specific language for developing dynamic web applications with

a rich data model. The WebDSL language is a combination of multiple sub-languages,

that each provide abstractions for common tasks, making it possible to perform those tasks

using fewer lines of code. Ultimately making development easier and more efficient. For

example, WebDSL includes sub-languages for defining the data model, pages and access

control rules.

WebDSL also includes previously existing languages, like XHTML and the Hibernate

Query Language (HQL), which can also be found in web applications that are developed

in other languages, like Java. However, in other languages these sub-languages are often

contained inside strings and are not checked for errors during compilation. Any errors

may go undetected until unexpected behavior is noticed. Including these existing languages

inside WebDSL allows them to be checked for errors during compilation. Their inclusion

also allows them to be used as regular WebDSL expressions and statements, without having

to place them inside strings or otherwise separate them from WebDSL code.

The WebDSL language is implemented by a compiler that transforms a WebDSL ap-

plication into a Java Servlet, which can be deployed to a web server, like Apache Tom-

cat. Entity definitions from the data model and page definitions are all translated into Java

classes. Generated entity classes are configured so that they can be persisted using the Hi-

bernate framework. A Java Servlet class is also generated, that dispatches requests to the

corresponding generated page classes. The WebDSL compiler is implemented using Syntax

Definition Formalism (SDF) [16] and the transformation language Stratego [17], however,

these languages will not be described in further detail.

2.1 Data Model

The data model in a WebDSL application is defined by a set of entity definitions. An

entity definition has a name, a set of properties and a set of functions. Figure 2.1 shows an

example of the entity definitions User and Message . Each property has a name and a type.

A property type can be of a primitive type, like Int , Bool , String , or a domain-specific

variation of a String . For example, the Secret type is a String type, which is mostly

5



2. WEBDSL

used for passwords, because its input and output fields on pages show asterisks for its value.

Similarly a WikiText type is a String that contains markup instructions, which can be

converted into HTML when the property is shown on a page. Properties of these primitive

types can be recognized by the :: between the property name and the type.

Properties can also contain a reference to another entity, or a collection of entities. These

properties are recognized by an -> between the property name and the type. The type can

be an entity-type, or a collection that contains elements of an entity-type. A collection type

is a List or Set , with its element type appended between < and > characters, so a

List with elements of type Entity becomes List<Entity> .

A property can also have annotations, which are added between parentheses behind the

property type. These can be used to define validation (constraints), or to define an inverse

property, which is a property, of the referenced entity, that contains a reference back. This

creates a relation between two entities that can be accessed from both sides. An example is

a previous and a next property, where accessing the previous property and then the

next property on an entity, or the other way around, will return the same starting entity.

Another example is shown in Figure 2.1 on lines 16 to 21, where entities are constructed

and their properties are given a value. After constructing the Message entity, the inbox

property of the recipient will contain the new message automatically. Since the inverse

annotation ensures that setting the recipient property of a message automatically adds

that message to the inbox of the recipient.

From the entity definitions WebDSL generates Java classes. These classes contain an-

notations of Hibernate and the Java Persistence API (JPA), so that they can be persisted

using Hibernate[13]. The generated classes also contain getters and setters for properties

and for inverse properties these setters will include code that updates the other side of the

relation. Inverse properties will also create foreign keys inside the database to enforce these

kinds of relations. The functions that are defined on an entity are directly translated into

Java methods, so they behave mostly the same, however, function overloading is handled

within the WebDSL compiler and behaves slightly different. Static functions can also be

defined on entities and are translated to static Java methods. Global functions are functions

defined outside of entities and are also translated to static Java methods.

6



2.2. Pages

1 entity User {

2 name :: String

3 password :: Password

4 inbox -> List <Message > (inverse=Message.recipient)

5 }

6 entity Message {

7 subject :: String

8 body :: WikiText

9 sender -> User

10 recipient -> User

11 function getSize() : Int {

12 return subject.length + body.length;

13 }

14 }

15

16 var sender : User := User{ name := "User1" password := "pass" };

17 var recipient : User := User{ name := "User2" password := "pwrd" };

18 var m : Message := Message { subject := ""

19 body := ""

20 sender := sender

21 recipient := recipient };

Figure 2.1: An example of the entity definitions named User and Message .

2.2 Pages

A page in WebDSL is directly accessible through a URL, so links can point to them. The

home page of the application is called root and does not take arguments. Other pages

can have arguments of primitive types and entity types. Collections are not allowed as page

arguments. Figure 2.2 shows an example of a page that displays a link to the inbox page of

”User1”. The for-loop that is shown iterates over all User entities and all users are fetched

from the database. However, the body of the for-loop is only executed for one user that has

the name ”User1”, because of the where and limit clauses. The navigate keyword

takes a call to a page and generates a link to that page, on top of the following group of

elements. In this case that group contains only one call to the built-in output template,

which writes a value onto the page. The inbox page calls the showMessages template,

which is defined in the next example to explain templates.
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1 page root () {

2 for(u : User where u.name == "User1" limit 1) {

3 navigate(inbox(u)) { output(u.name) }

4 }

5 }

6 page inbox(user : User) {

7 showMessages (user.inbox)

8 }

Figure 2.2: An example page showing a link to the inbox page of a User .

1 template showMessages (messages : List <Message >)

2 table {

3 row {

4 column { "Sender" }

5 column { "Subject" }

6 }

7 for(m : Message in messages) {

8 row {

9 column { output(m.sender.name) }

10 column { output(m.subject) }

11 }

12 }

13 }

14 }

15 template table(){

16 <table > elements() </table >

17 }

Figure 2.3: An example template showing the inbox of a User .

2.3 Templates

Pages can be made reusable by declaring them as templates. Templates are not accessible

through a URL like pages, however, they can be called from pages and other templates.

Templates can even take collections as arguments, which is shown by the example in figure

2.3. The example calls the built-in table , row and column templates. These templates

take the body of a template as argument. At the bottom of the example a simplified definition

of the table template is shown, where the provided template body is called by the call to

elements , so that the provided template body is placed inside a table XHTML-tag.

2.3.1 Dynamic Scoping of Template Definitions

Another important feature of templates is the ability to dynamically redefine a template

definition within the current scope. In figure 2.4 there is a definition of a main template. It

is common for WebDSL applications to call a main template from every page and redefine

templates as needed. For example, the showUser page calls the main template and

8
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1 template main () {

2 header

3 body

4 footer

5 }

6 template header() { "Header" }

7 template body () { "Default body" }

8 template footer() { "Footer" }

9

10 page showUser(user : User) {

11 main ()

12 template body() {

13 output(user.name)

14 }

15 }

Figure 2.4: An example of a scoped dynamic template redefinition, where body is redefined

within the scope of showUser .

1 template main () requires body() {

2 header body footer

3 }

4 page showUser(user : User) {

5 main () with {

6 body() {

7 output(user.name)

8 } } }

Figure 2.5: A required template example.

redefines the body template. A redefinition stays in effect until the template or page that

performed the redefinition is finished, binding the redefinition to the scope of that template

or page. A template can also redefine a template that has already been redefined. When such

a redefinition goes out of scope, then the previous redefinition will be restored. A redefined

template can also use variables and arguments from the template or page that performed the

redefinition.

2.3.2 Required Templates

Templates can require its callers to define a set of templates. A template defines the tem-

plates it requires using the requires keyword, followed by the required template sig-

natures. A template signature is just a template name, with argument types as argument.

A caller must define all the required templates when calling a template, using the with

keyword. Take for example Figure 2.5, where the main template is similar to that of Fig-

ure 2.4, except that it now requires the definition of a body template. As a result every call

to main must have a with block that defines the body template for that call.
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Chapter 3

Prefetch Considerations

Lazy properties are normally fetched when they are first used, using a separate query for

each property. When a property is accessed inside a loop, then this causes the 1+ n query

problem (Chapter 1). One solution is to use joins inside the query, to prefetch properties

that are used within the loop. This is called join-fetching and in some cases it can improve

the performance. Join-fetching can also degrade the performance, because some data may

be fetched multiple times. This is most noticeable when prefetching collection properties,

as is explained in Section 3.1, and can be avoided by using batch-fetching. Section 3.2

explains that batch-fetching can also be used to avoid prefetching duplicate entities for non-

collection properties. Section 3.3 describes additions to the WebDSL language that allow

prefetching to be defined within the code.

3.1 Prefetching Collections Properties

A collection property of an entity can be prefetched, by adding a join to the query that

fetches the entity. Prefetching collection properties using joins can cause Cartesian products

inside the recordset. Cartesian products make join-fetching inefficient, because this causes

unnecessary data duplication inside the recordset. For example, if there are Person , Color ,

Cat and Dog entities and each person has a favorite color and a set of cats and dogs.

Fetching all person entities with their favorite color, cats and dogs join-fetched, results in the

recordset shown in Table 3.1. In this example recordset every person is returned four times,

because there is a Cartesian product between the cats and dogs of a person. Non-collection

joins, like the favorite color, are returned as many times as a person. A Cartesian product

will become a large influence on the performance of a query when the joined collections are

large. The average size of a collection is hard to predict and can change over the lifetime of

an application. Therefore, Cartesian products should always be avoided.

Cartesian products can be avoided by joining no more than one collection property. All

other collection properties need to be fetched by additional queries. In the example, the

Cartesian product can be avoided by executing two queries, returning the two recordsets

shown in Table 3.2. Person entities and non-collection joins are still returned multiple

times. These duplicates should also be avoided, because the data duplication per element
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Person Color Cat Dog

Id Name Id Name Id Name Id Name

1 Peter 1 Red 1 Oscar 1 Max

1 Peter 1 Red 1 Oscar 2 Lucky

1 Peter 1 Red 2 Felix 1 Max

1 Peter 1 Red 2 Felix 2 Lucky

2 Alice 2 Blue 3 Rosey 3 Charlie

2 Alice 2 Blue 3 Rosey 4 Sammy

2 Alice 2 Blue 4 Holly 3 Charlie

2 Alice 2 Blue 4 Holly 4 Sammy

Table 3.1: The recordset when all properties are join-fetched.

Person Color Cat

Id Name Id Name Id Name

1 Peter 1 Red 1 Oscar

1 Peter 1 Red 2 Felix

2 Alice 2 Blue 3 Rosey

2 Alice 2 Blue 4 Holly

Person Dog

Id Id Name

1 1 Max

1 2 Lucky

2 3 Charlie

2 4 Sammy

Table 3.2: The recordsets when only one collection is join-fetched.

and the number of elements in the joined collection can both be large. The amount of

data duplication per element is especially large when there are many non-collection joins or

long text fields. A separate query can be used for every collection property, to avoid these

duplicates, which will only cost one more extra query.

The second recordset in Table 3.2 contains two dog sets. Both sets can be fetched by

the same query, because they both have the same collection-role, meaning that they both

represent the same property, for different instances of the same entity-type. This means that

both collections are normally fetched by similar queries, where only the Person identifier

inside the where-clause is different. To fetch both collections using the same query, only

the where-clause of the query has to be changed, in order to allow for multiple Person

identifiers. Using one query to fetch multiple collections with the same role is called batch-

fetching and uses fewer queries than lazy-fetching.

A batch for batch-fetching can be generated automatically in various ways, however, it

is often possible to generate a batch from a collection. For example, when prefetching a

property for a loop, then the collection that the loop iterates over can be used to generate

a batch, by taking all elements for which the property is uninitialized. In the previous

example, the first query fetched a collection of Person entities. This collection is then

used as a batch to prefetch the associated dog collections, which ultimately results in the

second recordset of Table 3.2. From now on this method of batch-fetching is called guided

batch-fetching, to distinguish it from methods that use different batch generation techniques.

12



3.2. Prefetching Non-Collections Properties

3.2 Prefetching Non-Collections Properties

Prefetching non-collection properties using join-fetching will never increase the number of

returned rows, like it does for collection properties that contain more than one element.

However, there is still a risk of fetching duplicate entities. In the example from Section 3.1

both Person entities could have had the same favorite color, for example. The colors could

also have been fetched earlier for another purpose and join-fetching them again will also

cause duplicate entities. Avoiding these duplicates can increase performance, especially

when there are many duplicates or when the duplicates are large.

Duplicate fetches for non-collection properties can also be avoided by using guided

batch-fetching instead of join-fetching. This avoids fetching duplicate entities, because

guided batch-fetching first checks for which entities the property is uninitialized. For unini-

tialized properties it remembers the identifier of the entity that should be fetched. After

batch generation, guided batch-fetching executes one query, using the remembered identi-

fiers, if there are any. This initializes all uninitialized properties and if two properties had

the same entity as a value, then that entity is fetched only once1.

Guided batch-fetching also allows for more flexibility in the placement of optimization

code than join-fetching. Join-fetching should not be used after an entity is fetched, because

fetching an entity again, just to join-fetch its properties, is inefficient. Guided batch-fetching

can perform prefetching after entities have been fetched. Take for example the code in

Figure 3.1, which shows donations to charities made in a given year. Guided batch-fetching

can fetch all required entities and collections with three simple queries. The first one fetches

all Charity entities, the second one fetches all donations collections and the last query

fetches all madeBy properties. For join-fetching the donations and madeBy properties

could be joined on the query fetching all Charity entities. The resulting query will

probably fetch duplicate Charity entities, because of the collection join. The query can

also fetch duplicate entities for the madeBy property, when the property has the same

value for two donations. Not placing the joins on the query fetching Charity entities will

increase the number of queries.

The disadvantage of guided batch-fetching is that it does not work for single entities,

because in that case it uses at least as many queries as lazy-fetching. Take for example an

entity that represents a node in a tree, where the parent property is the parent node. To

find the root of the tree the parent property can be accessed recursively. In this case join-

fetching can prefetch the next n parent properties using a single query, by selecting the

first one and joining the next n−1 parent properties. This allows join-fetching to reduce

the number of queries with a factor of n, while batch-fetching does not reduce the number

of queries, because the identifiers of multiple parent nodes need to be known in order to

prefetch them all at once, however, only one is known at a time.

1Guided batch-fetching cannot avoid fetching duplicates for the inverse side of bidirectional one-to-one

properties, because the identifier of their associated entity is unknown if uninitialized. The absence of these

identifiers is explained in subsection A.2.3
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1 page showDonations (year : Int) {

2 for(charity : Charity) {

3 section {

4 header{ output(charity.name) }

5 showDonationsOfCharity (charity , year)

6 }

7 }

8 }

9 template showDonationsOfCharity (charity : Charity , year : Int) {

10 list {

11 for(d : Donation in charity.donations where d.year == year) {

12 listitem {

13 output(d.value)

14 if(!d.anonymous) {

15 "(" output(d.madeBy.name) ")"

16 }

17 }

18 }

19 }

20 }

Figure 3.1: A page showing donations to charities.

1 page showDonations (year : Int) {

2 for(charity : Charity) {

3 prefetch-for charity {

4 donations {

5 madeBy

6 }

7 }

8 section {

9 header{ output(charity.name) }

10 showDonationsOfCharity (charity , year)

11 }

12 }

13 }

Figure 3.2: A manual prefetch specification for the code in figure 3.1

3.3 Manual Prefetch Specification

New syntax has been added to the WebDSL language to define prefetch specifications. A

prefetch specification specifies the properties that are accessed on a specific variable, which

are also the properties that need to be prefetched. The new syntax allows prefetch specifi-

cations to be defined manually. The syntax also allows automatically generated prefetch

specifications to be displayed. Take for example Figure 3.1, where the for-loop in the

showDonations page can prefetch all the used properties, by adding the prefetch speci-

fication shown in Figure 3.2.
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The prefetch specifications inside Figure 3.2 shows that properties can be nested to

form a tree like structure, which is useful for both join-fetching and batch-fetching. For

batch-fetching the tree structure is useful, because parent nodes need to be fetched before

batches can be generated for their children. For example, the donations properties are

prefetched before madeBy properties, because the Donation entities are used by guided

batch-fetching to determine which madeBy properties are uninitialized. For join-fetching,

the nesting is also useful, because child properties need to be joined on their parent property.

For the example, this means that the donations property needs to be joined on the root

entity of the query, which are the Charity entities, and that the madeBy property is joined

on the donations property. Prefetch specifications can be defined for for-loop iterator

variables and for the arguments of pages, templates and functions.

The provided prefetch specification fetches all Donation entities, while only the ones

that are of the specified year are used. The donations collection can be prefetched par-

tially, so that only the used elements are fetched. This can be specified by adding a where-

clause on a collection, like is shown in Figure 3.3. The conditions inside the where-clause

can only access properties of a primitive type, which are always defined directly on the

elements of the collection. This limitation is imposed on the conditions to prevent joins in-

side queries. Variables of a primitive type are also allowed, however, the variables must be

declared before prefetching and their values should not change after prefetching, because

that changes the condition and the elements that are required. Prefetch specifications for

for-loop iterator variables can also define a where-clause on the root variable. The where-

clause on the root variable of a prefetch specification can describe the same conditions as

the where-clause of the for-loop. The difference between both where-clauses, is that the

where-clause of the for-loop can contain any valid expression, because it is never translated

into a query and is always evaluated after the collection has been fetched.

Figure 3.3 also shows an if-clause on the madeBy property, which may be defined

on any property inside the prefetch specification, even in conjunction with a where-clause.

The if-clause specifies a condition under which the property should be fetched. The same

limitations are opposed on an if-clause as on a where-clause, except that properties accessed

within the condition should be defined on the parent property instead. This limitation is

no longer imposed to prevent joins, instead it prevents lazy-fetching of properties used by

the condition. The parent property has already been prefetched by guided batch-fetching,

therefore, accessing primitive properties on those entities will not result in a lazy-fetch

query. Properties referencing other entities may not have been fetched yet and are not

allowed. In the example, the madeBy properties are only prefetched for donations that are

not anonymous.

Currently only one prefetch specification has been added, however, the specification

in Figure 3.4 can also be added to the for-loop in the showDonationsOfCharity tem-

plate. Everything in this specification has already been prefetched if the template is called

from the showDonations page. The prefetch specification should still be added, because

the template may also have been called by another page or template that did not perform

prefetching. Because it is inexpensive to check if all properties have been fetched, the

addition of the prefetch specification will barely be noticeable in the performance of the

showDonations page.
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1 prefetch-for charity {

2 donations where(.year==year) {

3 madeBy if(!.anonymous)

4 }

5 }

Figure 3.3: Adding partial initialization of collections to a prefetch specification.

1 prefetch-for donations where (.year==year) {

2 madeBy if(!. anonymous)

3 }

Figure 3.4: Adding prefetch specifications.

There are still a number of syntax additions that have not been explained yet. These ad-

ditions are more complicated and their explanation is left for Chapter 6, where their analysis

is also explained.
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Chapter 4

Prefetch Techniques

This chapter describes different techniques to prefetch multiple entities and collections at

once, using only a single query. This will reduce the total number of queries, resulting

in increased performance when the number of fetched entities does not increase. Some of

these techniques use knowledge about the properties that will be used by the application in

the future, which is determined by a static analysis that is explained in Chapter 6.

4.1 Hibernate Batch-fetching

Hibernate batch-fetching is a feature of Hibernate, which can be used to reduce the 1+ n

query problem (Chapter 1). Instead of using a query to fetch just a single entity or collec-

tion, Hibernate will try to prefetch other instances of the same entity-type or collection-role,

using that same query. This technique is very similar to guided batch-fetching from Chap-

ter 3, except that it uses a different method to generate batches.

To generate batches, Hibernate maintains a list of uninitialized entities and collections.

Entities and collections get added to this list as soon as their uninitialized proxies are cre-

ated. A proxy is a wrapper for an entity or collection to implement lazy-fetching, because a

proxy does not fetch the entity or collection it represents until it is used. Proxies are created

for lazy properties when an entity is fetched. This means that the order of the maintained

list depends on the order in which entities and collections are fetched from the database.

When a single entity or collection is requested from the database, Hibernate will generate

a batch that includes the requested entity or collection. Additional entities or collections of

the correct type or role are added to the batch, from the list of uninitialized proxies, up to

a configured maximum batch size. If the requested entity or collection occurs within the

list of uninitialized proxies, then Hibernate first adds proxies that follow it. The entities or

collections of those proxies are likely to be requested next, because they probably represent

properties of entities that were fetched around the same time.

Take for example the code in Figure 4.1, which shows a list of all Item entities, with

their corresponding owner . With lazy-fetching 1+n queries are used, one to fetch all Item

entities and then one per iteration to fetch the corresponding owner . Since the Person

proxies are created in the order in which they are used, Hibernate batch-fetching will fetch
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1 entity Item {

2 name :: String

3 owner -> Person

4 }

5 entity Person {

6 name :: String

7 }

8 page root () {

9 list {

10 for(item : Item) {

11 list-item {

12 output(item.name) " - " output(item.owner.name)

13 }

14 }

15 }

16 }

Figure 4.1: Batch-fetching the owner property.

the owner properties for the next b iterations using a single query, where b is the configured

batch size. This means that Hibernate batch-fetching needs only 1+ n
b

queries.

However, in more complex cases Hibernate batch-fetching may fetch entities and col-

lection that are never used. For example, when the owner property is used for only some

Item entities, then the unused owner properties are still fetched, because of their position

in the uninitialized entities list. Another example is when the Item entity has another prop-

erty of type Person that is never used. This new property will also get fetched by Hibernate

batch-fetching, because its values have the same entity-type as the owner property.

Hibernate batch-fetching is not suitable for every situation, because fetching unused

entities and collection may cost more time than that is saved by reducing the number of

queries. However, Hibernate batch-fetching is still a useful feature, because it can improve

the performance of an application with a simple configuration change.

4.2 Hibernate Subselect-fetching

Subselect-fetching is another feature of Hibernate that can be enabled for collection roles.

When such a collection property is accessed on an entity, then the query that fetched the

entity is used as a subquery, to prefetch the collection property for all other entities that were

fetched using that query. The advantage over Hibernate batch-fetching is that all collection

properties are fetched by one query, instead of being limited by a maximum batch size.

A limitation of subselect-fetching is that it cannot be enabled for single value proper-

ties. This means that after fetching a number of collections, every accessed single value

property is fetched using a separate query, because lazy-fetching is used. This limitation

can be overcome by combining this technique with Hibernate batch-fetching. When both

subselect-fetching and Hibernate batch-fetching are enabled for a collection, then subselect-

fetching is used when a subquery is available, otherwise Hibernate batch-fetching is used.
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Just like with Hibernate batch-fetching, subselect-fetching can fetch more collections

than necessary, because it prefetches a collection property for a set of entities, while the

collection property may only be required for a number of elements. Another disadvantage is

that the used subquery should be simple, because the database has to re-evaluate the query.

When a subquery is too expensive, then the performance can even be reduced instead of

increased. A query from Hibernate subselect-fetching can also be used as a subquery to

fetch a collection property for the resulting elements. This causes subqueries to be nested,

making it increasingly more important that the first query is simple, because it will be re-

evaluated every time.

4.3 Join-fetching

Join-fetching is another way to fetch more than one entity using only one query and has al-

ready been discussed in Chapter 3. This prefetch technique uses the prefetch specifications

for page, template and function arguments. For functions defined on entities the this key-

word is also handled as if it was a function argument. Queries are placed at the beginning of

pages, templates and functions, because they should be placed as early as possible, because

at those locations there is the highest chance that entities have not been fetched yet. Even

though this approach uses join-fetching, collection properties are never joined and always

get their own query. Adding collection joins has been attempted and causes out-of-memory

exceptions, because there were too many collection joins in a single query.

4.4 Guided Batch-fetching

For for-loops that iterate over a persistent collection, it is possible to prefetch the properties

that are used inside the for-loop, using guided batch-fetching, which has been discussed

in Chapter 3. Before the first iteration of the for-loop is performed, guided batch-fetching

iterates over the same collection, generating batches for the properties that are specified in

a prefetch specification.

Take for example the code in Figure 4.2, which shows a list of Publication enti-

ties. The example has a manually defined prefetch specification, telling which properties

should be prefetched. Guided batch-fetching will iterate over the pubs collection to gen-

erate batches for the authors and journal properties. A property is only included in a

batch when it has not been fetched before. After iterating over all Publication entities

in the collection, both batches are complete and guided batch-fetching will execute queries

to prefetch them, making sure that both properties are initialized for all elements in the col-

lection. After prefetching both properties a batch will be generated for the alias property

in the same way, by iterating over the elements of all authors collection properties.

Guided batch-fetching can use the same methods that Hibernate batch-fetching uses to

generate and executes its queries. The methods used by Hibernate batch-fetching normally

do not allow an application to specify their own batches for prefetching, however, Hibernate

can be extended to allow it. Alternatively, queries can be generated using the provided

HQL or Criteria APIs. However, both APIs do not offer a way to batch-fetch collection
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1 template showPublications (pubs : List <Publication >) {

2 for(pub : Publication in pubs) {

3 prefetch-for pub {

4 authors {

5 alias

6 }

7 journal

8 }

9 }

10 section {

11 header{ output(pub.name) }

12 "Journal:" output(pub.journal.name)

13 break

14 "Authors:"

15 for(aut : Author in pub.authors) {

16 output(aut.alias.name)

17 } separated-by { "," }

18 }

19 }

20 }

Figure 4.2: Example for Guided batch-fetching.

properties, without join-fetching them on the entities they belong to, making those queries

less suitable for batch-fetching. Another advantage of using the same methods as Hibernate

batch-fetching is that it generates static queries when the application starts, for various

batch sizes up to the configured maximum. Guided batch-fetching can be implemented in

the same way, by splitting the larger generated batches into multiple smaller batches that

fit the generated static queries. The advantage is that queries for guided batch-fetching will

also have to be generated only once.

Instead of using static queries, a query can also be generated dynamically to fit the gen-

erated batch, which ensures that every batch requires only one query. Since query generation

is fast and the number of required queries is reduced, this is likely to be more efficient. If

queries are generated dynamically, then those queries can also contain joins, to prefetch

properties for the entities being batch-fetched. However, this will increase the complexity

of the queries and will also increase the risk of fetching duplicate entities. Allowing join-

fetching in batch queries also makes this technique very similar to the one in section 4.3,

because they mainly differ in code placement.
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Chapter 5

Improving Prefetch Techniques

This chapter discusses subtle changes to the implementations of the prefetching techniques

from Chapter 4. These changes address some of the shortcoming that were noticed during

the implementation and initial testing of the prefetching techniques. The initial testing also

lead to other optimizations that are unrelated to prefetching, which are therefore discussed

in Appendix A. These other optimization are not irrelevant, because they do influence test

results.

Section 5.1 explains the method that is used for measuring the performance of the

prefetching techniques. Section 5.2 gives a short introduction of the page that was used

for most of the initial testing and shows the results for that page. The following sections

each discuss the preliminary results of a prefetching technique and how a technique is al-

tered to overcome its initial shortcomings.

5.1 Measuring Performance of Prefetch Techniques

There are several performance indicators that are important when comparing prefetch tech-

niques. The most important one is the response time of a request. The response time is

related to the number of queries executed and the number of entities and collections re-

turned. The same entity may be fetched more than once, which has a negative effect on

the response time. Also, besides improving the response time, a prefetch technique should

not use much more memory, which is also related to the number of entities and collections

fetched.

All these performance indicators are measured by a script, which accepts a set of

WebDSL applications and performs measurements for a configured page. These WebDSL

applications are all the same, except that they are compiled using different prefetching tech-

niques. The script measures the performance of the prefetching techniques individually, by

deploying only one application to Tomcat at a time. Tomcat is then launched with an initial

and maximum heap memory size of 4 GB. Setting the initial heap size reduces the chance

that memory allocation interferes with the test results. The same is done for the PermGen

memory, which has a capacity of 256 MB. The script also adds the -Xloggc:<file> and

-XX:+PrintGCDetails Java arguments when launching Tomcat, so that Java logs detailed
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e e.another e.another.another

MyEntity-1 AnotherEntity-1 AnotherEntity-2

MyEntity-2 AnotherEntity-3 AnotherEntity-4

SQLs = 5, Time = 13 ms, Entities = 7, Duplicates = 0, Collections = 1

Entity/Collection Instances Duplicates

AnotherEntity 4 0

MyEntity 2 0

SessionManager 1 0

SessionManager._messages 1

Query 1: time=1ms, hydrated=1, template=/root

    select

        sessionman0_.id as id7_0_,

        sessionman0_.`_lastUse` as column3_7_0_,

        sessionman0_.`_logsqlMessage` as column4_7_0_,

        sessionman0_.version_opt_lock as version5_7_0_ 

    from

        _SessionManager sessionman0_ 

    where

        sessionman0_.id='d81abb1d74684af09696be091bc042d4'

Query 2: time=0ms, hydrated=0, template=/root

    select

Figure 5.1: A screenshot of a request with a ?logsql suffix. The table above the horizontal

line is the content of the requested page and everything below the line has been added

because of the ?logsql suffix.

information about its garbage collection to the specified file, later referred to as the gc-log.

After starting Tomcat, the test script requests the test page 500 times, with additional Hi-

bernate logging enabled. The additional Hibernate logging is enabled by adding a ?logsql

suffix to a request and is automatically disabled when there are no more requests that re-

quire the additional logging. A unique request identifier is inserted into log entries to iden-

tify the request they belong to. The response time and memory usage are not measured for

these requests, because the additional logging has a significant impact on these performance

indicators. The initial requests also serve to warm-up caches and to trigger automatic op-

timizations from the JVM for the tested code, like just-in-time compilation or dead code

elimination.

Adding a ?logsql suffix to a request also adds information from the Hibernate log

and the Hibernate session to the end of the response, as shown in Figure 5.1. This includes

the SQL queries that were executed. The Hibernate log also has entries that list entity-

type/entity-id pairs for the entities present in recordsets returned from the database. This

information is used to count the number of duplicate entity fetches. This is not simply

the sum of all duplicate entity-type/entity-id pairs, because the actual entity-type may be a

sub-type of the mentioned entity-type. To ensure that all duplicates are found, the actual

entity-type is always used and determined by loading the entity from the Hibernate session.

The number of unique entities and collections fetched is also shown at the end of a ?logsql

response, which is collected from the Hibernate session.

Before measuring the response time and memory usage, the test script forces garbage
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5.2. Initial Test Page

collection. This is done by using jmap with the -histo:live argument, that returns a list

of live objects, which it gets by garbage collecting first. After garbage collection, the script

sums up the memory that was collected thus far, from the gc-log. The script remembers the

amount of memory that was freed, so that the memory usage of the first 500 requests can be

removed, when summing up the gc-log later.

Next, the script sends 2500 requests using ab [7], which measures the response time

for the requests it sends. After ab terminates, another garbage collection is forced. By

summing up the gc-log again and by removing the memory that was used by the first 500

requests, the script knows the total amount of memory that was used during the last 2500

requests. This number is divided by the number of requests, to get the average amount of

heap memory that is required to respond to a request. Finally the script writes all collected

results to a file, terminates Tomcat and starts again for the next prefetch technique, while

there are more left.

5.2 Initial Test Page

To compare the prefetch techniques during the implementation, performance was measured

for an actual WebDSL page from Researchr. The version of Researchr used during the

implementation is older and contains fewer manual optimizations, than the version used for

the evaluation in Chapter 8. The used test page is shown in Figure 5.2. This page uses

paging to show only a subset of a collection, containing PublicationCategory entities.

The PublicationCategory entities represent a year and contain a set of Publication

entities that were published in that year. The division of PublicationCategory entities

into pages is non-trivial and hard to translate into a query, because a page does not contain

a fixed number of PublicationCategory or Publication entities. The test page

shows 21 of the 40 categories and 92 of the 144 publications. There is also a second page

that shows the remaining categories and publications and the prefetching techniques are

challenged not to prefetch entities that are only required by this second page.

Performance is measured using the script from Section 5.1. The script is executed on

an Intel Core i7-860 at 2.8 Ghz with 8 GB of memory. MySQL is used as the database,

running on the same machine. The results are shown in Table 5.1 and Figure 5.3. The

following sections discuss the results and how the techniques were changed to deal with

their shortcomings.
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researchr Home Profile Library Search Explore Calendar inbox (2) | Christoffer Gersen | Sign Off

Download

Bibtex

Compact Bibtex

JSON

Maintained by

testgroup

All Publications

Publications by Year

Publications by Type

Publications by Tag

Publications by Venue

Publications by Author

Recently Added

Recently Removed

New Entries

About Publications Reviews Discussions Settings Copy Add Classifications

Bibliography: maintest

2010

On a disparity between relative cliquewidth and relative {NLC}-width

Haiko M\"{u}ller, Ruth Urner.

dam, 158:828-840, 2010. [X] [classification]

Normality of cut polytopes of graphs is a minor closed property

Hidefumi Ohsugi.

dm, 310:1160-1166, 2010. [X] [classification]

Minimum congestion spanning trees in planar graphs

M. I. Ostrovskii.

dm, 310:1204-1209, 2010. [X] [classification]

2009

A problem kernelization for graph packing

Hannes Moser.

In sofsem09. 2009: 401-412 [X] [classification]

The parameterized complexity of the induced matching problem

Hannes Moser, Somnath Sikdar.

dam, 157:715-727, 2009. [X] [classification]

Graph searching with advice

Figure 5.2: A screenshot of the top of the webpage that was used for the test
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Min. response time (ms) 111 102 109 97 122 84 82 82

Mean response time (ms) 141 122 130 111 142 100 96 98

Max. response (ms) 236 188 210 147 180 131 130 137

Queries executed 290 73 178 46 32 54 28 27

Entities fetched 540 902 817 902 1170 537 537 537

Duplicates fetched 93 377 557 561 867 145 145 200

Collections fetched 124 306 389 395 396 148 148 148

Garbage collections 133 140 138 138 166 130 130 129

Garbage collection time (s) 5.16 4.94 5.01 4.80 5.99 4.76 5.15 4.84

Total heap memory (GB) 175.47 184.93 182.50 181.81 219.38 171.37 171.19 170.12

Heap per request (MB) 71.87 75.74 74.75 74.46 89.85 70.19 70.12 69.68

Table 5.1: Results for 2500 requests send to the page shown in figure 5.2.
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0. Lazy

1. Hibernate batching

2. Hibernate subselect

3. Hibernate batching/subselect

4. Join-fetching at arguments

5. Guided batching (max)

6. Guided batching (single)

7. Guided batching (joins)
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Figure 5.3: Visualized results from table 5.1.
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5.3 Lazy

The Lazy prefetch technique does not perform prefetching and relies on the lazy-fetching

mechanism of Hibernate. Lazy-fetching only fetches entities when they are used and that

is why this technique fetches the least number of entities and collections. The downside is

that this technique executes the most queries, because queries fetch only a single entity or

collection. The average response time is not among the fastest as a result, because the Lazy

technique suffers from the overhead of executing many small queries.

5.4 Hibernate batching

Hibernate batching was configured with a maximum batch size of 10, meaning that when-

ever an entity or collection is fetched, Hibernate will try to prefetch up to 9 similar entities

or collections, using the same query. As discussed in Section 4.1, this technique does not

know which entities are going to be used and as a result it may prefetch entities and col-

lections for the second page. The batch generation process works as expected for entity

properties, yet seems to provide random results for collection properties, which should not

happen with a deterministic batch generation algorithm. The problem was that Hibernate

copied the list with collection proxies into a set before batch generation, losing the sequence

in the process. This has been fixed for WebDSL, by copying the list of properties into an-

other list, instead of a set, maintaining the original sequence. As a result, batch-fetching for

collection properties also provides reproducible results.

This technique is slightly faster than lazy-fetching, because the number of queries has

been reduced. However, it could have been faster if fewer unused entities and collections

were fetched. The number of duplicate entities fetched is also increased, because more

unused collections are fetched and some of those collections contain elements that were

already fetched. The large number of unused entities and collections is also shown by the

increase in memory usage.

5.5 Hibernate subselect

Hibernate subselect attempts to use subqueries to prefetch multiple collection properties at

once. Single value properties are lazy-fetched and still require individual queries. Queries

are remembered for subselect-fetching, when the returned entity-type of the query has col-

lection properties. However, a query may also return entities of a sub-type and the sub-type

can contain collection properties, while the entity-type of the query does not. Hibernate

does not remember these queries, because not all returned entities are guaranteed to have a

collection property. When entities are cast to their correct sub-type and a collection property

is accessed, then there will be no query available to use as a subquery. The Hibernate behav-

ior is altered to also remember queries, when they return an entity-type that has sub-types

with collection properties.

This technique is slower than Hibernate batching, because it executes more queries and

fetches more collections. However, Hibernate subselect is still faster than lazy-fetching,
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because of the reduction in the number of queries.

5.6 Hibernate batching/subselect

Hibernate batching/subselect combines the previous two prefetching techniques. A collec-

tion property is fetched by Hibernate subselect if there is a query that can be used as a

subquery and otherwise it is fetched using Hibernate batching. Hibernate batching is also

used for fetching single value properties. This combination reduces the number of queries

even further than using Hibernate subselect or Hibernate batching alone and because of that

this technique is faster than both. However, this approach still fetches many more entities

than necessary and uses more memory.

5.7 Join-fetching at arguments

The Join-fetching at arguments technique prefetches entities and collections at the begin-

ning of pages, templates and functions. It join-fetches properties to support the traversals

made on the arguments, as specified by a prefetch specification. Collection properties are

prefetched using a separate query, instead of using joins, in order to avoid Cartesian prod-

ucts. This technique also prefetches entities and collections that are only required by the

second page, because the template that shows the collection performs prefetching before the

elements of the second page are removed. Therefore this technique fetches the most entities

and collections and uses the most memory, which makes this technique slow. However, this

technique does execute fewer queries than the previous techniques.

5.8 Guided batching (max)

Guided batching (max) performs prefetching for a collection just before a for-loop starts

iterating over the elements (Section 4.4). Batches are split into smaller batches of size 10,

which makes it possible to use the same loaders that are used by Hibernate batching. Sin-

gle value properties accessed on page arguments are never prefetched by Guided batching

(max). This can be solved by using join-fetching for non-collection properties when fetch-

ing page arguments. Since a page argument is one of the first entities that get fetched, it

unlikely that join-fetching here will cause duplicate entity fetches. However, this reduces

the number of queries only slightly and generating a query with joins can be slower than

allowing lazy to use its prepared queries. The joins can also prefetch entities that are not

used, which is unacceptable for such a small reduction in the number of queries. There-

fore, Guided batching (max) does not perform prefetching for page arguments. For tem-

plate and function arguments that are uninitialized proxies, join-fetching is only performed

for recursively accessed properties, otherwise Guided batching (max) is unable to prefetch

single-value properties inside a recursive function/template.

This technique is the first one that is able to reduce the number of queries, while only

slightly increasing the number of fetched entities and collections. It is also the first tech-
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nique that does not use more memory than lazy-fetching, which is also related to the number

of fetched entities and collections.

5.9 Guided batching (single)

This technique is a variation of Guided batching (max), that does not use static queries and

instead generates new queries, so that the generated batches fit perfectly. Essentially this

technique just reduces the number of queries at the cost of generating new queries. The

generated queries also cost slightly more memory, however, the amount is neglectable.

5.10 Guided batching (joins)

Guided batching (joins) does the same as Guided batching (single), except that it also gener-

ates joins for batch queries. These joins prefetch entities that would otherwise be fetched by

another batch. On the test page this resulted in one less query, because one join prefetched

all entities from another batch. This difference is not noticeable by looking at the response

time. Join-fetching did fetch more duplicate entities, because some of the join-fetched prop-

erties were fetched already. Generating a query with joins is more complex and it does not

provide a significant improvement and as a result Guided batching (single) is more promis-

ing.
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Chapter 6

Static Analysis

The prefetch techniques from Chapter 4 will generate prefetch queries at the beginning of

pages, templates, functions and for-loops, based on a static analysis of these code blocks.

This chapter describes that static analysis. The static analysis is based on the work by Wie-

dermann et al. [19, 20]. Table 6.1 describes the static analysis using a rewriting semantics

and shows how each language element is rewritten to its analysis result. The analysis as-

sumes that the compiler has performed name binding and gave variables and definitions a

unique name to avoid name clashes. Furthermore, it expects function and template calls to

be resolved, taking overloading into account. The rewrite function is called QA. resolve in-

dicates retrieving the definition a call is pointing to from the compiler and resolve-multiple

indicates that there are multiple possible definitions, which occurs when a template has lo-

cal overrides. extract-condition is a utility function that selects conditions that can be used

for prefetching. subst indicates a global substitution in the element that precedes it. It is

possible that not all variables are substituted, because the value of a variable may be un-

known. Therefore parts of the analysis results may become invalid after substitution and are

removed. Invalid variables inside conditions are removed by applying extract-condition

again, which extracts the parts of the condition that are still valid.

Analysis blocks are pages, templates, functions, and for-loops that iterate over a per-

sistent collection. The analysis results of these analysis blocks are stored for reuse, which

prevents the same analysis block from being analyzed multiple times. The stored analy-

sis results are also used after the analysis has been performed on the entire application, to

automatically generate prefetch specifications for the persistent root variables (vr) of the

analysis block. Persistent root variables are the inputs of an analysis block that can contain

a persistent value. For pages, templates and functions these persistent roots are their argu-

ments. For functions that are defined on entities, the this keyword is also a persistent

root. For-loops occur inside other analysis blocks and they inherit the persistent roots of

their parent analysis block, with the addition of the persistent iterator. For-loops that do

not loop over a persistent collection are not considered analysis blocks, because they do not

require prefetching.

During the analysis of an analysis block the properties accessed on a persistent root

variable are recorded in the analysis results. The detection of property accesses on a persis-

tent root is straightforward, because a property access is a node inside the abstract syntax
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tree. In some cases it may be useful to detect the condition under which a property is ac-

cessed, because if the condition is false, then the property does not need to be fetched. The

detection of conditions is discussed in Section 6.1. Section 6.2 walks through the analysis

of an example step-by-step and describes how the analysis results can be transformed into

a prefetch specification. The analysis of the different analysis blocks are discussed in more

detail in sections 6.3, 6.4, and 6.5, for for-loops, functions, and templates, respectively.
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signature QA: (vr , east ) ⇒ (t , evalue, ereturn)

t = (epath, cond, effectful)

(vr , |[ v ]|) ⇒ ([(v, true, false)], [v], [])

where v ∈ vr

(vr , |[ e. f ]|) ⇒ ([t, tv], evalue2, [])

where (t, evalue1, ) = QA(vr , e)

evalue2 = evalue1[subst x → x. f ]

tv = { (x, true, false) | x ∈ evalue2 }

(vr , |[ e. f (e0 . . .en) ]|) ⇒ ([t, tthis, t0 . . . tn , tv], ereturn , [])

where |[ function f d(a0 . . .an) { . . . } ]| = resolve( f )

(tthis, evaluethis, ) = QA(vr , e)

(t0 , evalue0, ) = QA(vr , e0)...
(tn , evaluen, ) = QA(vr , en)

(t, , ereturn) = QA([], f d)[subst this → evaluethis, a0 → evalue0 . . . an → evaluen]

tv = { (x, true, false) | x ∈ ereturn }

(vr , |[ f (e0 . . .en) ]|) ⇒ ([t , t0 . . . tn , tv], ereturn , [])

where |[ function f d(a0 . . .an) { . . . } ]| = resolve( f )

(t0 , evalue0, ) = QA(vr , e0)
...
(tn , evaluen, ) = QA(vr , en)

(t, , ereturn) = QA([], f d)[subst a0 → evalue0 . . . an → evaluen]

tv = { (x, true, false) | x ∈ ereturn }

(vr , |[ return e ]|) ⇒ (t, [], evalue)

where (t, evalue, ) = QA(vr , e)

(vr , |[ if ( e ) { s1 } else { s2 } ]|) ⇒ ([tc, t1[subst cond→cond ∧c], t2[subst cond→cond ∧¬c]], [], [ereturn1 , ereturn2])

where c = extract-condition(e)

(tc, , ) = QA(vr , e)

(t1 , , ereturn1) = QA(vr , s1)

(t2 , , ereturn2) = QA(vr , s2)

(vr , |[ for(v : Type in e where order limit offset) { b } ]|) ⇒ ([tearly,t0[subst cond→cond∧c],t1],[],ereturn)[subst v→evalue]

where vrnew = [v, vr]

(tearly, , ) = QA(vrnew , [where,order,limit,offset])

c = extract-condition(where)

(t0 , , ereturn) = QA(vrnew , b)

(t1 , evalue, ) = QA(vr , e)

( , |[ function f d(a0 . . .an) { b } ]|) ⇒ (t, , ereturn)

where vrnew= [this, a0 . . .an]

(t, , ereturn) = QA(vrnew, b)

( , |[ template td(a0 . . .an) { b } ]|) ⇒ (t, , )

where vrnew= [a0 . . .an]

((t0 → do0) . . . (tn → don)) = local-overrides(td)

(t, , ) = QA(vrnew, b) [subst t0 = do0 → true . . . tn = don → true,

t0 = d0 → false where d0! = do0 . . . tn = dn → false where dn! = don]

(vr , |[ t(e0 . . . en) ]|) ⇒ ([t, t0 . . . tn , tu], [], [])

where |[ template td(a0 . . .an) { . . . } ]| = resolve(t)

(t0 , evalue0, ) = QA(vr , e0)...
(tn , evaluen, ) = QA(vr , en)

(t, , ) = QA([],td)[subst a0 → evalue0 . . . an → evaluen]

(vr , |[ t(e0 . . .en) ]|) ⇒ ([t0 . . . tn], [], [])

where [td0 . . . tdn] = resolve-multiple(t)

(t0 , , ) = QA(vr , td0 (e0 . . .en)) [subst cond→cond∧ t = td0]...
(tn , , ) = QA(vr , tdn (e0 . . .en)) [subst cond→cond∧ t = tdn]

(vr , otherwise) ⇒ ([t1,t2], evalue, ereturn)

where (t1 , evalue, ereturn) = QA(vr , AST-children)[subst effectful → true]

t2 = { (v, true, true) | v ∈ vr }

Table 6.1: Definition of the static analysis. Elements are rewritten to their analysis result.
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6.1 Conditions and Effectful Statements

The conditions of if-statements can have an effect on the persistent values that are used by an

analysis block. Initially traversals are given a true condition, meaning that they are accessed

unconditionally. A traversal is the tuple of the path to a persistent value (a persistent root

variable with property accesses to reach the value), the condition under which it is accessed,

and its effectful flag. The effectful flag is initially set to false and is discussed later in this

section. The extracted condition of an if-statement can be added to the traversals in the

analysis results of the if-block, using the logical and-operator. The same can be done for

traversals inside the analysis results of the else-block, except that a negated condition should

be used. Take for example, Figure 6.1. It loops over all Employee entities, yet only uses

them if their salary is above 65000, because the condition on line 4 is just used to filter

employees. For-loops like this one, already execute a query to fetch all entities of a given

type and because of that the condition can be placed inside that query, to fetch only the

employees that are used. There are two requirements for a condition to be extracted and

added to traversals in the analysis results.

1. The condition must be portable to the database and have the same semantics. This

can be achieved by translating expressions to use basic comparators that compare

primitive types.

2. The condition contains only:

a) Persistent roots or properties accessed on them

b) Constants of a primitive type

If only a part of a condition adheres to these requirements, then only that part will be added

to the traversal inside the analysis results. The requirements on conditions do not allow

conditions with local variables to be extracted. This makes the analysis simpler, because it

removes the need for a data flow analysis, to determine the value of those local variables

at different places inside the code. Within templates assignments are only allowed at the

beginning, which would make the data flow analysis unnecessary in many cases anyway.

Statements that can affect non-local state should be handled differently by the analysis,

because they determine when a persistent value is required. For example, the statements

on lines 5-8 in Figure 6.1 affect non-local state and are effectful, because they write to the

response stream of a HTTP request. As a result the Employee entities need to be fetched

for those statements, yet not for the condition on line 4. Possibly effectful operations, like

writing to a stream or assignments, fall into the otherwise rewrite rule, at the bottom of

Table 6.1. The rewrite rule analyzes the AST-children and sets the effectful flag to true for

all traversals in the analysis result.

The analysis also records an effectful traversal, on every persistent root, for each ef-

fectful statement, even if an effectful statement does not use any persistent data. This is to

record conditions on those effectful statements, because their execution may change non-

local state based on the existence of persistent data. Take for example Figure 6.2, which

shows the salary of employees. The condition on line 3 should not be used, because both
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1 page root() {

2 list {

3 for(e : Employee) {

4 if(e.salary > 65000)

5 listitem {

6 output(e.name) ", "

7 output(e.manager.name)

8 }

9 }

10 }

11 }

12 }

Figure 6.1: A condition in a for-loop

1 template showSalary () {

2 for(e : Employee) {

3 if (e.salary > 65000) {

4 output(e.salary)

5 } else {

6 "Salary too low"

7 }

8 }

9 }

Figure 6.2: Showing the salary of em-

ployees. The underlined template ele-

ments affect the state outside of the for-

loop and depend on the existence of em-

ployees.

underlined template elements write to the response stream. The template element on line

6 does not use the Employee entities and simply writes a string literal to the response

stream, yet it must be executed for employees with a salary of 65000 and below. There-

fore, the analysis result of the for-loop will include an effectful traversal on e , with an

(e.salary <= 65000) condition. The traversals for line 4 ultimately get a condition

of (e.salary > 65000) and combining the conditions of all effectful traversals on e ,

using the or-operator, will result in the tautology (e.salary > 65000 || e.salary <=

65000) and is replaced with true . As a result all employees will be fetched, as is required

to ensure the correct output.

The template call to output on line 4 of Figure 6.2 is effectful, however, the analysis of

the call does not fall into the otherwise rule, because there is a rule for template calls. The

template call rule knows that the called template is effectful, when its analysis result con-

tains at least one effectful traversal. Templates without arguments have an empty analysis

result and are also considered effectful. For effectful template calls, new effectful traversals

are also recorded for persistent roots that do not yet have an effectful traversal inside the

analysis result of the called template. Just like with other effectful statements, these effect-

ful traversals are recorded, because the template call can depend on the existence of those

persistent roots. Effectful function calls are handled in the same way as effectful template

calls.

6.2 Example Analysis and Transformation

6.2.1 Example Analysis

This subsection demonstrates how Table 6.1 can be applied to a simple example, shown in

Figure 6.3. The steps performed by the static analysis are shown in Table 6.2. Template

elements and expressions have been given a unique identifier inside the first column for

easy reference. The second column shows the code fragment that is to be rewritten to its
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analysis result. Referenced code fragments are listed in column three, with the traversals (t)

of their analysis result listed inside the last column. Substitutions have already been applied

to the last column. If the last column is empty, then no substitution was required and the

traversals of the referenced code fragment are copied without changes. The table does not

show evalue and ereturn of the analysis results, because inside this example they are easily

derived from the code fragments. For template elements (t∗) the evalue is always empty and

for expressions (e∗) the evalue contains only the input expression, except for e3 and e7. These

two expressions have an empty evalue, because they contain operators. The ereturn is empty

for all code fragments, because the example does not contain return-statements.

We walk through the example table from the bottom up, because higher code fragments

may require the analysis results of lower ones. In the example, t9 is a built-in template of

WebDSL, which writes a string value to the response stream. The single effectful traversal

comes from the otherwise rewrite rule that is applied to the text-call. The rewrite rule

adds an effectful traversal for every persistent root variable, which is just s , since the

output template has only one argument. The same is done for t6 and t8, however, these

code fragments occur inside t1 and t3, meaning that their persistent roots are c and d ,

resulting in two effectful traversals.

The code fragments t7 and e8 show how template calls and expressions are handled.

The expression is rewritten to three traversals, using the first two rewrite rules of Table 6.1.

The analysis of t8 uses the analysis results of e8 and t9. For the results of t9 the s variable

is substituted with d.madeBy.name , since that is the evalue of e8 and serves as the first

argument of the template call. The template call is effectful, because the analysis result

of t9 contains an effectful traversal. Therefore, the results of t7 should contain an effectful

traversal for every persistent root, resulting in a second effectful traversal on c .

Expression e7 uses only the first two rewrite rules, just like e8. Expression e6 is a

special case, because it does not fall under the otherwise rule, since operators like these can

be seen as function calls that are not effectful. The evalue for e6 is empty, because function

calls are not allowed inside evalue or ereturn. For t5 the evalue of e6 is unimportant, because the

extract-condition utility function is used to extract the condition. The extracted condition

is !d.anonymous and is substituted into the conditions of traversals from t6, t7, and t8.

The next interesting rewrite step is that of t3. The substitution of d to c.donations

has already been performed on the analysis result. The analysis result before the substitution

is also remembered, in order to generate a prefetch specification for variable d later on. The

condition extracted from e3 is substituted into the conditions of t4 and t5. Some traversals

from t5 already had a non-true condition, so not all traversals have the same condition,

because the and-operator is used to combine the extracted conditions. The remaining rewrite

steps are not discusses in further detail, because those steps are similar to previous ones.
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6.2. Example Analysis and Transformation

Id Code Ref. t

t1
for(c : Charity) {

t2 t3
}

t2, t3 See Table 6.3

t2 output(e1)
e1

t9 ( c.name , true , true )

e1 c.name ( c , true , false ), ( c.name , true , false )

t3

for(d : Donation

in e2

where e3) {

t4
t5

}

e2

e3
( c.donations , true , false ),

( c.donations.year , true , false )

t4
( c , cond2 , true ), ( c.donations , cond2 , true ),

( c.donations.value , cond2 , true ),

t5

( c.donations , cond2 , false ),

( c.donations.anonymous, cond2 , false ) ,

( c , cond3 , true ), ( c.donations , cond3 , true ),

( c.donations.madeBy , cond3 , false ),

( c.donations.madeBy.name , cond3 , true )

e2 c.donations ( c , true , false ), ( c.donations , true , false )

e3 e4 == 2013 e4

e4 d.year ( d , true , false ), ( d.year , true , false )

t4 output(e5)
e5

t9 ( c , true , true ), ( d.value , true , true )

e5 d.value ( d , true , false ), ( d.value , true , false )

t5

if(e6) {

t6
t7
t8

}

e6

t6, t8 ( c , cond1 , true ), ( d , cond1 , true ),

t7

( c , cond1 , true ), ( d , cond1 , true ),

( d.madeBy , cond1 , false ),

( d.madeBy.name , cond1 , true )

e6 !e7 e7

e7 d.anonymous ( d , true , false ), ( d.anonymous , true , false )

t6 "(" ( c , true , true ), ( d , true , true )

t7 output(e8)
e8

t9 ( c , true , true ), ( d.madeBy.name , true , true )

e8 d.madeBy.name
( d , true , false ), ( d.madeBy , true , false ),

( d.madeBy.name , true , false )

t8 ")" ( c , true , true ), ( d , true , true )

t9

template

output(s:String} {

text(s)

}

( s , true , true )

Table 6.2: Example of rewriting code to their analysis result. Conditions are replaced by the

following labels: cond1 = !d.anonymous , cond2 = c.donations == 2013 , and cond3 =

c.donations == 2013 && !c.donations.anonymous .
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1 for(c : Charity) { // t1
2 output(c.name) // t2(e1)

3 for(d : Donation in c.donations where d.year == 2013) { // t3(e2,e3,e4)

4 output(d.value) // t4(e5)

5 if(!d.anonymous) { // t5(e6,e7)

6 "(" // t6
7 output(d.madeBy.name) // t7(e8)

8 ")" // t8
9 } } }

Figure 6.3: Listing donations to charities. This is a simplified version of Figure 3.1.

Path Condition Effectful

c true true

c.name true true

c.donations.year true false

c.donations c.donations.year==2013 true

c.donations.value c.donations.year==2013 true

c.donations.anonymous c.donations.year==2013 false

c c.donations.year==2013 && !c.donations.anonymous true

c.donations c.donations.year==2013 && !c.donations.anonymous true

c.donations.madeBy c.donations.year==2013 && !c.donations.anonymous false

c.donations.madeBy.name c.donations.year==2013 && !c.donations.anonymous true

Table 6.3: Recorded traversals for the outer for-loop in Figure 6.3.

1 prefetch-for c {

2 donations where(.year ==2013) {

3 madeBy if(.year ==2013 && !.anonymous)

4 }

5 }

Figure 6.4: The automatically generated prefetch specification for the outer for-loop in

Figure 6.3.

6.2.2 Transforming Traversals to a Prefetch Specification

The traversals recorded by the static analysis can be transformed into a prefetch specifica-

tion. Take for example the code in Figure 6.3, and the recorded traversals shown in Ta-

ble 6.3. The prefetch specification generated by the transformation of the analysis result is

shown in Figure 6.4. The tree structure of the c , c.donations and c.donations.madeBy

nodes of the prefetch specification is already visible in the table, after sorting the paths. The

name , year , value and anonymous properties are not placed inside the prefetch speci-

fication, because they are of a primitive type, which will be fetched with the entity they are

accessed on.
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Next, it is attempted to extract a where-clause for the root variable. To do this all effect-

ful conditions for traversals on c are collected from Table 6.3. Conditions that do not meet

the requirements for a where-clause are replaced with a true condition. These requirements

state that properties may only be accessed on c and that those properties should be of a

primitive type. Constant values and primitive template/function arguments are also allowed.

All effectful conditions that are collected for c are combined using the or-operator and this

results in a true condition, which can be left out. The same is done for the collection property

c.donations , where collecting all effectful conditions for traversals on c.donations ,

combined using the or-operator, yields the condition (c.donations.year == 2013 ||

(c.donations.year == 2013 && !c.donations.anonymous)) , which is simplified to

(c.donations.year == 2013) and provides the where-clause (.year == 2013) .

If-clauses are extracted in a similar fashion, however, also conditions for non-effectful

traversals are used, because even if a property is only used in the condition of an if-

statement to filter a collection, then it still needs to be prefetched. Otherwise the evalu-

ation of the if-statement will execute a lazy-fetch query. Conditions that do not meet the

requirements for an if-clause are also replaced with a true condition, just like with where-

clauses. For example, collecting conditions for c.donations.madeBy yields the condi-

tion (c.donations.year == 2013 && !c.donations.anonymous) . Instead of allow-

ing property accesses on c.donations.madeBy , they are only allowed on c.donations ,

because if-clauses are executed on parent nodes in the prefetch specification. This provides

the condition (.year == 2013 && !.anonymous) for the if-clause.

6.3 For-loops

For-loops are analysis blocks that collect information about the use of the elements in a

collection, by adding the iterator as a persistent root variable. The analysis result is stored

without the substitution of the iterator. During the generation of the prefetch specification

for the iterator, only traversals on the iterator are used. For for-loops without an in-clause

or when the in-clause does not contain a traversal on a persistent root of the parent analysis

block, then the substitution cannot be applied. As a result all traversals on the iterator are

removed from the analysis result that is returned to the parent analysis block. An example

of such an in-clause is a manual HQL query, which is never optimized further and does not

need to be captured by the analysis.

6.3.1 Conditions on Collections

The collection of entities that a for-loop iterates over can be a collection property of an en-

tity, like is shown in Figure 6.5. These for-loops do not always require a query, because the

collection may have been fetched already. For example, the d.employees collection may

or may not have been fetched before line 7, however, it has certainly been fetched on line

14, where the previously fetched collection will be reused. This will cause incorrect output

when the collection is fetched on line 7, using the condition of the prefetch specification for

variable e1 , because then the collection will not contain the elements that are required by

the for-loop on line 14.
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1 template showEmployees (d : Department ) {

2 prefetch-for d {

3 employees where hint (.salary > 60000 || .salary < 30000)

4 }

5 section {

6 header { "Salary above 60000" }

7 for(e1 : Employee in d.employees where e1.salary > 60000) {

8 prefetch-for e1 where (.salary > 60000) {}

9 output(e1)

10 } separated-by { break }

11 }

12 section {

13 header { "Salary below 30000" }

14 for(e2 : Employee in d.employees where e2.salary < 30000) {

15 prefetch-for e2 where (.salary < 30000) {}

16 output(e2)

17 } separated-by { break }

18 }

19 }

Figure 6.5: Multiple conditions on the same collection

A solution is to keep track of the condition that is used to fetch a collection and to

re-fetch the collection when a different filtering is required. To do this conditions on col-

lections are implemented by defining Hibernate filters. Hibernate filters are defined for the

element type of a collection and have a name, a query string and parameters. A limitation of

Hibernate filters is that conditions may not require joins inside the query, excluding prop-

erties that reference other entities from being used. A Hibernate filter is generated during

compilation for every condition defined in the where -clauses of prefetch specifications. If

a condition is a disjunction, then every part of the disjunction gets its own filter. If a filter

with the same query string and parameter types already exists, then that filter is reused. Af-

ter defining filters for all parts of a disjunction, the filters are combined into a new combined

filter. A combined filter is similar to a regular filter, except that it also has a list with the

names of its sub-filters, in the order they are combined in. Combining filters is important,

because a filter can only be active once and enabling a second instance of the same filter

with different parameters will disable the previous instance.

At runtime these filters can be temporarily enabled when a collection is accessed. The

collection wrappers of Hibernate are replaced with new ones that also remember the filter

used to fetch a collection. When an initialized collection is accessed, then the new collection

wrappers will re-fetch the collection without filters, if the enabled filter is not represented

by or not equal to the remembered filter. Filters are equal if they have the same name and

parameter values. A filter is represented by a combined filter, when all the required elements

of a collection are still present after applying the combined filter. Combined filters are

always disjunctions, so a combined filter is represented by a second combined filter, when

the sub-filters of the first one are a subset of the second one. For example, the combined filter

of f1 ∨ f2 is represented by the combined filter f1 ∨ f2 ∨ f3, because { f1, f2} ∈ { f1, f2, f3}.
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Using filters this way will ensure the correct output. Unfortunately it will also use

an extra query to fetch the same collection again, when a different filter is required. A

better solution is to fetch the collection using a disjunction of all required filters, before

the collection is used, for example at the beginning of a template. However, the guided

batch-fetching technique performs prefetching before for-loops and not at the beginning of

templates.This means that the d.employees collection could be fetched at the first for-

loop. Transferring conditions between for-loops during compilation is difficult, especially

if they are located in different templates or functions, because then the condition may also

depend on the call stack. Since one caller may call multiple templates or functions that each

require a different filter, while another caller may call only one of them and does not require

multiple filters to be combined.

While guided batch-fetching does not prefetch collections at the beginning of templates,

it can attach filters to uninitialized collections, to be used when it is fetched. When a col-

lection is fetched at a for-loop, then the attached filter will be used, if that filter represents

the filter enabled by the for-loop. If the attached filter does not represent the enabled filter,

then the collection should be fetched without any filters, because there apparently is another

for-loop that requires a conflicting filter.

Uninitialized properties may have to be accessed, in order to reach the collections for

which there are filters to attach, causing lazy-fetch queries. Therefore, filters will only be at-

tached to collections, when the analysis result contains conditions from different for-loops.

When substituting the conditions in the analysis result of a for-loop, then the conditions

are also annotated to reflect that they come from the for-loop. When extracting the where-

clauses for collection properties of a prefetch specification from the analysis results, then

the resulting condition can contain annotations from more than one for-loop. When there

are annotations for more than one for-loop, then a hint keyword will be added to the re-

sulting where-clause. The keyword states that parent properties may be accessed to attach a

condition to the uninitialized property. Figure 6.5 shows a generated prefetch specification

with the hint keyword on line 3.

6.3.2 Where, Order By, Limit and Offset

Besides a where clause a for-loop can also have order by , limit and offset clauses.

Translating these into a query is useful, because it reduces the number of fetched entities.

However, the limit and offset clauses may only be translated into a query if both the

where and order by clauses are completely translated into the query, otherwise they will

select the wrong entities. For batch queries these extra clauses are extremely difficult to

translate, because setting a limit and an offset on a query applies to the recordset and not

to the individual collections it contains. As a result the order by , limit and offset

clauses are never translated into a query.

For guided batch-fetching, prefetching occurs after applying the where , order by ,

limit and offset clauses. This allows guided batch-fetching to perform prefetching for

the correct elements, even when these clauses are not translated, or only partially translated,

into the query that fetches the collection. However, any persistent data required by these

clauses should be prefetched before their execution. Inside a prefetch specification this can
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1 for(e : Employee where e.active order by e.projects.length desc limit 10){

2 prefetch-for e where (.active == true) {

3 projects fetch-early

4 department

5 }

6 output(e.name) ", "

7 output(e.projects.length) ", "

8 output(e.department .name)

9 } separated-by { break }

Figure 6.6: This example shows the prefetching of a property before applying the where ,

order by and limit clauses.

be specified by adding a fetch-early modifier on a property, as is shown in Figure 6.6.

Such a property will be prefetched after the collection is fetched and before the filtering and

ordering clauses of the for-loop are executed. Traversals coming from these clauses of the

for-loop are annotated by the analysis. In the analysis described by Table 6.1, the annotated

traversals are all inside tearly. When the analysis result is transformed into a prefetch speci-

fication, then the fetch-early modifier is placed automatically on properties that have at

least one traversal with the annotation. The annotations resulting in a fetch-early modi-

fier are dropped, when the analysis results are returned to the parent analysis block, because

there the properties can be prefetched in their regular order.

6.4 Functions

The static analysis follows calls to functions and analyzes them. After the function is ana-

lyzed, the persistent root variables are substituted for their persistent value inside the call.

Functions that are declared on entities may be overridden by sub-entities and the called

definition will depend on the subtype of the entity on which the function is called, which

is not known until runtime. It is possible to check if a sub-entity overrides a function dur-

ing compilation, and if no sub-entity does, then the called definition is known, under the

assumption that entity-types are not changed or added after compilation. Besides entity

functions, WebDSL also has static and global functions. Both function types cannot be

overridden by sub-entities, because they are not defined for entity instances. As a result

their called definition is always known.

When the called definition of an entity function is not known, because there are multiple

definitions, then the call is not resolved and is considered an effectful operation. As a result

the analysis does not include information about the properties that are accessed inside the

called function. Take for example Figure 6.7, where there are two possible definitions for

the call to callee on line 5. Inside the analysis result of caller there will be no traversal

on property prop . While unimplemented, it would be possible to analyze all definitions of

callee , and add a different condition to traversals for each definition, where the conditions

check the type of e . This alternative approach is unimplemented, because it requires batch

generation to keep track of a context. For example, the caller function can be called
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1 entity Super {

2 name :: String

3 prop -> Super

4 function caller(e : Super) {

5 e.callee();

6 }

7 function callee() : String {

8 return this.name;

9 }

10 }

11 entity Sub : Super {

12 function callee() : String {

13 return this.prop.name;

14 }

15 }

Figure 6.7: A caller and a callee.

from within a for-loop, where the value of e changes every iteration. Batch generation

then requires more than just a collection of entities for which it should prefetch a property,

because it also needs to know the iteration that each entity comes from, so that the type of

e can be computed.

6.4.1 Recursion

The analysis follows calls to functions and analyzes those function definitions, however,

this will never terminate for recursive functions. One solution would be to capture the

properties that are accessed recursively and to let guided batch-fetching prefetch for those

properties until a generated batch is empty, meaning that the entire recursive data structure

has been prefetched. This solution risks fetching an excessive number of unused entities,

for example, when a depth-first-search is performed on a tree. The chosen alternative is to

resolve the same function only a finite number of times. If the number of times is too low,

then the resulting optimization may be unnoticeable, however, when it is set higher and the

recursion stops early, then more unused properties are prefetched. The analysis resolves the

same call up to four times by default, however, this can be customized.

Guided batch-fetching normally checks if a property has been fetched before, and if it

is not, then it will be included in a batch for prefetching. This initialization check is cheap,

however, for a recursive functions it can be performed many times for the same property.

The check is performed more than once per property, because after a recursive function

calls itself, it may check properties again, which were already checked and prefetched in a

previous invocation.

A solution is to stop batch generation earlier. Figure 6.8 shows a prefetch specifica-

tion, which stops batch generation at properties with a no-empty-batch modifier. The

no-empty-batch modifier following a property specifies that if the batch for that property

is empty, then no batches should be generated for its sub-properties. Without this modi-

fier every collection property would be checked four times for initialization and with the
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1 function getSize(dir : Directoy) : Int {

2 var size : Int := dir.size;

3 for(subDir : Directoy in dir.directories ) {

4 prefetch-for subDir {

5 directories no-empty-batch {

6 directories no-empty-batch {

7 directories no-empty-batch {

8 directories no-empty-batch

9 }

10 }

11 }

12 }

13 size := size + getSize(subDir);

14 }

15 return size;

16 }

Figure 6.8: A prefetch specification that avoids checking recursive properties multiple

times.

modifier only twice. Traversals that were added by resolving a recursive function call are

annotated as such during the analysis. This allows the no-empty-batch modifier to be

added automatically to properties inside a prefetch specification, when all traversals from

the analysis containing the property are annotated as coming from a recursive call.

When an entity argument of a recursive function is uninitialized, then guided batch-

fetching should prefetch that argument, with joins for single-value properties accessed re-

cursively on that argument. Batch queries are unable to prefetch the joined properties,

as was discussed at the end of Section 3.2. There is a small risk of fetching more du-

plicates. The risk is small, because the initial entity is uninitialized, which mean that

is was not prefetched at a for-loop and makes it likely that the joined properties are not

prefetched either. To select properties for join-fetching, guided batch-fetching also uses

the no-empty-batch modifier from the prefetch specification of the function argument. It

will join all single-value properties with a no-empty-batch modifier, which are reachable

from the root, without having to prefetch collection properties. All single-value properties

along the path are also join-fetched.

6.4.2 Return values

Properties can be accessed on persistent values that are returned by functions. These prop-

erty accesses benefit from prefetching and thus should be recorded by the static analysis.

The persistent value returned by a return-statement can frequently be described by an ex-

pression that performs a series of property accesses on a persistent root. These expressions

are recorded inside the ereturn part of the analysis result. These expressions can be used to

describe the persistent value of a function call, after performing the substitution for the call

arguments. Having expressions that describe the persistent values of function calls allows

traversals to be recorded for any property accessed on their results. Take Figure 6.9 for
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1 function getManager (e : Emplopyee) : Employee {

2 if(e.manager == null) {

3 return e;

4 }

5 return e.manager;

6 }

7 function getManagerAddress (e : Emplopyee) : Address {

8 return getManager (e).address;

9 }

10 function getManagersManager (e : Emplopyee) : Emplopyee {

11 return getManager (getManager (e));

12 }

Figure 6.9: A property is accessed on a persistent return value.

example, where the call to getManager on line 8 returns one of two possible persistent

values. The analysis result for the getManagerAddress function will contain traversals

and return expressions for both e.address and e.manager.address .

Return values are not only important for properties accessed directly on function calls,

because function calls can also occur inside the arguments of function calls and template

call, and also inside the in-clause of for-loops. These places all describe the persistent value

that a persistent root has inside the called or containing analysis block. As a result, sub-

stitution may have to replace one persistent root with multiple expressions, when a call

argument or in-clause contains a function call. For each replacement expression the traver-

sals and return expressions inside the analysis result are copied and the persistent root is

replaced with the expression. Invalid variables are removed after substitution as usual. For

example, in Figure 6.9 on line 11, the inner call to getManager can return two possible

values. However, the outer call, which is passed the result of the inner call, can return three

values, which are e , e.manager , and e.manager.manager .

6.5 Templates

For the static code analysis, templates are similar to global function calls that do not re-

turn values, because they are both not defined on entities and cannot be overridden within

sub-entities. However, WebDSL provides two other means to override the called template

definition for template calls. These are dynamic scoping of template definitions, and re-

quired templates. Both features were introduced in Section 2.3 and require special attention

during the analysis.

6.5.1 Dynamic Scoping of Template Definitions

Dynamic scoping of template definitions can be used to redefine a template within the scope

of another, as discussed in subsection 2.3.1. This means that the called template defini-

tion depends on the call stack, because it could have been redefined by any caller on the

call stack. The call stack is unavailable during compilation, so for calls to templates that
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1 entity Collection { elements -> Set<Element > }

2 entity Element {

3 name :: String

4 default -> Element

5 alt -> Element

6 }

7 template dynamic(elem : Element) {

8 output(elem.default.name)

9 }

10 template caller1(col : Collection ) {

11 template dynamic(elem : Element) {

12 output(elem.alt.name)

13 }

14 callee(col)

15 }

16 template caller2(col : Collection ) {

17 callee(col)

18 }

19 template callee(col : Collection ) {

20 for(elem : Element in col.elements) {

21 prefetch-for elem {

22 alt if(dynamic(Element) from caller(Collection ))

23 default if(dynamic(Element))

24 }

25 dynamic(elem)

26 }

27 }

Figure 6.10: A prefetch specification checking the definition of a template at runtime.

have dynamic redefinitions somewhere in the code, the called definition may be unknown

until runtime. The compiler constructs a list of all templates that have dynamic redefini-

tions. For calls to templates in that list resolve will fail. Instead the rewrite rule using

resolve-multiple, from Table 6.1, is used. This rule calls the static analysis for all possible

definitions, including the default definition, and adds conditions to the resulting traversals,

checking the current definition of the template. These conditions can be evaluated at run-

time. Take Figure 6.10, for example, where the definition for the call to dynamic , on line

25, is unknown during compilation. In the prefetch specification on lines 21-24, the correct

property is prefetched by evaluating the if-statements. The if-statements contain template

signatures, which are a combination of template name and argument types. The condition

on line 22, checks if the definition for dynamic comes from caller1 . Without a second

template signature a condition checks if the global definition is active, like on line 23

When a template locally redefines a template, then conditions on that template can be

evaluated during compilation. The rewrite rule analyzing template definitions does so by

substituting the conditions with true or false, based on the now statically known definitions.

This removes all conditions on the locally redefined templates and also removes traversals if

they have a false condition. The substitution is also performed at for-loops inside templates,
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1 template caller1(col : Collection) {

2 template dynamic(elem : Element) {

3 output(elem.alt.name)

4 }

5 for(elem : Element in col.elements) {

6 prefetch-for elem { alt }

7 dynamic(elem)

8 }

9 }

10 template caller2(col : Collection) {

11 for(elem : Element in col.elements) {

12 prefetch-for elem {

13 alt if(dynamic(Element) from caller(Collection ))

14 default if(dynamic(Element))

15 }

16 dynamic(elem)

17 }

18 }

Figure 6.11: The caller templates from Figure 6.10, with callee inlined. The prefetch

specification inside template caller1 no longer requires the checks on the definition of

dynamic .

because there the definitions are also statically known. Table 6.1 does not state this to keep

the definition on a single page.

6.5.2 Required Templates

A template can require its caller to define certain templates, as discussed in subsection

2.3.2. Required templates can be viewed as a special case of dynamic scoping of template

definition. Since required templates are always defined by the caller, conditions checking

the current template definition can always be removed from the analysis result of the caller.

6.6 Implementation Differences

The actual implementation of the static analysis algorithm is slightly different than de-

scribed in this chapter thus far. Recursive calls and dynamic scoping of template definitions

are both handled differently in order to reduce the size of the generated prefetching code.

Reducing the code size avoids running into the method size limitation of Java and can also

improves performance.

6.6.1 Recursion

Resolving and analyzing recursive template or function calls directly may cause an ex-

cessive number of traversals, when multiple templates or functions are part of the same

recursion. A simple example is shown in Figure 6.12, where all possible combinations of
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1 entity Item { name :: String }

2 entity ItemA : Item { subItemA -> Item }

3 entity ItemB : Item { subItemB -> Item }

4 template output(i : Item) {

5 output(i.name)

6 if(i is a ItemA) { output(i as ItemA) }

7 if(i is a ItemB) { output(i as ItemB) }

8 }

9 template output(a : ItemA) {

10 output(a.subItemA) // Calls output(Item)

11 }

12 template output(b : ItemB) {

13 output(b.subItemB) // Calls output(Item)

14 }

Figure 6.12: A complex recursion that will generate too much prefetch code when extra

entity-types are added.

subItemA and subItemB , up to a maximum depth of four, will be prefetched. This means

24 = 16 different combinations, like subItemA.subItemB.subItemB.subItemA . While

the generated code size is still acceptable for this example, it will grow very fast when more

sub-types of Item are added to the example.

In order to avoid resolving too many recursive calls, there is an additional limit on the

total number of recursive calls. Recursive calls are not resolved directly, instead they are

placed inside the analysis results, alongside t, evalue and ereturn. Variable substitutions are

also performed on the recursive calls. After all analysis results are collected for all analysis

blocks, then the analysis results can be visited again to resolve the recorded recursive calls.

Resolving and analyzing a recursive call will result in new unresolved recursive calls, which

are placed inside a new list. The calls inside the new list are not resolved until the previous

list has been completely resolved. Resolving in this breath-first order is important, oth-

erwise one recursion may be resolved completely, while another recursive call is ignored.

Resolving recursive calls stops for an analysis block, when the total number of recursive

calls has been reached. In the current implementation a maximum of 50 calls was chosen,

because that was high enough to allow most common recursions to be resolved, while still

limiting extreme cases.

6.6.2 Dynamic Scoping of Template Definitions

Using resolve-multiple to inline the prefetch specifications of all possible redefinitions will

generate many conditions, which increases the generated code size. A simpler and faster

solution would be to call the prefetch specification for possibly redefined templates at run-

time. The analysis uses resolve-multiple to determine if the called template has multiple

definitions, yet does not add conditions. Instead the template call remains unresolved and

is placed inside the analysis result, just like is done with recursive calls. The unresolved

template calls are used during the transformation into a prefetch specification, to generate
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1 template callee(col : Collection) {

2 for(elem : Element in col.elements) {

3 prefetch-for elem templates [dynamic(this as Element)] {}

4 dynamic(elem)

5 }

6 }

Figure 6.13: Prefetch specification for callee inside Figure 6.10, using the actual

WebDSL syntax, calling the correct prefetch specification at runtime.

calls. Take for example Figure 6.13, where a list with one template call has been added

on the root of the prefetch specification. The template call is actually a template signature,

where one argument type is replaced with the this keyword and an optional cast. These

template calls can also be added to properties inside a prefetch specification. Each argu-

ment of a template has a prefetch specification and the specification for the argument with

the this keyword will be called. The called prefetch specification is given all the values

for the root variable or property on which the call has been defined, so in the example this

will be the col.elements collection.

When transforming the analysis result into a prefetch specification, then for the root

variable and each property inside the prefetch specification, the list with unresolved tem-

plate calls will be searched. The search looks for calls that are passed the root variable or

property in question. For the calls that are found the matching argument is replaced with

the this keyword and the other arguments are replaced with their types, resulting in the

list of template calls inside the prefetch specification.
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Chapter 7

Evaluation with OO7 Benchmark

This chapter will evaluate the previously discussed prefetching techniques using the OO7

benchmark. Section 7.1 describes the evaluation method and the OO7 benchmark and Sec-

tion 7.2 discusses the results.

7.1 Evaluation Method

To evaluate the prefetching techniques, a WebDSL implementation of the OO7 benchmark

[3, 2, 4] was created. The OO7 benchmark is widely used to measure performance benefits

of optimization techniques for Object Oriented Database Management Systems and Object

Relational Mapping tools, including some of the techniques [11, 9, 10, 1, 20] discussed

in Chapter 9. The OO7 benchmark does not model any specific application, however, it

is intended as a benchmark for the CAD/CAM/CASE type of applications. This means

that the intended domain of the OO7 benchmark is not that of web applications. Therefore

Chapter 8 performs another evaluation, using complete WebDSL applications. The results

of the OO7 benchmark are still discussed here, because it is so frequently used in related

work.

7.1.1 Test Cases

The test cases of the OO7 benchmark are divided into the categories ”queries” and ”traver-

sals”. The query cases are labeled Q1 to Q8, and traversals as T1 to T9. The difference

between queries and traversals is that traversals perform operations from a single root en-

tity, and queries fetch a collection of root entities on which operations are performed. Some

traversals change the database, which are excluded from this evaluation, because they are

variations of other traversals that perform updates. They provide no extra information, be-

cause updates are not optimized.

Every test case is implemented as a separate page in the WebDSL application, so that

they can be accessed through an URL. Some of these test cases use random number gen-

eration. To make these test cases deterministic, every request gets its own random number

generator that is always created using the same seed. For the traversals T1 and T6 a second

variation is implemented that uses templates instead of functions and are labeled T1T and

49



7. EVALUATION WITH OO7 BENCHMARK

Entity Number of instances Total

Modules 1 1

Manual 1 per Module 1

CompositePart 500 per Module 500

Document 1 per CompositePart 500

AtomicPart 20 per CompositePart 10000

Connection 3, 6 or 9 per AtomicPart 30k, 60k or 90k

ComplexAssembly ∑
5
i=0 3i per Module 364

BaseAssembly 36 per Module 729

Table 7.1: Number of entities in the small OO7 database.

T6T respectively. The query Q8 also has two implementations. The one from OO7 is Q8,

where a related entity is accessed by loading it manually using its identifier, instead of a

regular property access. The implementation that is labeled Q8P uses a regular property

access, because manually fetching by identifier is unusual in a WebDSL application.

Two new cases have also been added, to evaluate the effect of partial collection initial-

ization and the traversal depth of recursive calls. The first test case is called Query Condition

(QC for short), which uses only some elements from a collection, by using a condition. This

condition is detected by the static analysis and is placed inside the query that fetches the col-

lection, to perform partial initialization for the collection. The second test case is Traversal

Depth (TD for short), which performs a depth first traversal up to a maximum depth. The

maximum depth is changed to evaluate the prefetching techniques for low and high traversal

depths.

7.1.2 Database

The OO7 database comes in the sizes small, medium and large. For this evaluation the small

database is used. The small database is chosen in favor of the larger databases, because the

most interesting test cases already use many more entities than that is typical for a web

application. The number of entities and relations inside the database is always the same,

yet some of the relations are randomly generated. The random number generator is always

created using the same seed, which ensures that database generation is deterministic. The

number of entities per entity-type of the small database is shown in Table 7.1. The table

shows that the number of connections can be configured differently. For most test cases, 9

connections per atomic part are used. The databases with 3 or 6 connections per atomic part

are only tested for the T1 and T1T test cases.

The structure of a module entity, which is the root of traversal test cases, is shown in

Figure 7.1. The figure shows fewer instances and relations than that are present in the small

database, for space and readability. The entity-relationship diagram, in Figure 7.2, is also

useful while the module structure is explained. In the small database each Module has a

Manual and a root ComplexAssembly . This is also the root of an Assembly tree of seven

levels, with three children per Assembly . Every leaf is a BaseAssembly and the other

entities are a ComplexAssembly .
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Module

Complex assemblies

Base assemblies

Composite parts

Root atomic parts

Connections and

atomic parts

designRoot

subAssemblies

componentsPriv

rootPart

to

Figure 7.1: The structure of a module in the OO7 database. The labels on the left side

describe what the entities on that level represent, and labels on the right side do the same

for relations.

Every BaseAssembly has two collections, each containing three randomly selected

CompositePart entities. Both of these collections should be implemented using a bag,

however, bags are not supported by WebDSL. Instead a set is used, which disallows a

BaseAssembly to be connected to the same CompositePart more than once. If a

CompositePart is selected to be added to a set that already contains it, then the next

available CompositePart that is not in the set is added.

Every CompositePart has a Document and a set of twenty AtomicPart entities.

The AtomicPart entities are all connected through Connection entities. AtomicPart

entities are connected as a ring, with extra random connections to get three, six or nine

connections per AtomicPart . The first generated AtomicPart is chosen to act as a root,

which is directly accessible from its CompositePart .
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Figure 7.2: Entity-relationship diagram of the OO7 database.

7.1.3 Test Setup

The method used to measure the performance of the OO7 benchmark is very similar to the

one described in Section 5.1. The test script that was used has only been changed slightly.

The test script still accepts a set of WebDSL applications and additionally accepts a set of

database creation scripts and a list of pages. The database creation scripts are of the three

variations of the small OO7 database and are executed before deploying an application to

Tomcat. And the URL of every included test case is listed in the list of pages. Some test

cases require much time, so the number of initial requests with logging enabled is reduced

from 500 to 5 and the number of requests without logging is reduced from 2500 to 50, in

order to reduce the time required to run the test script.

7.2 Results

The results of the OO7 benchmark are shown in Table 7.2, Figure 7.3 and Figure 7.4. All test

cases execute 2 queries and fetch 2 entities and 1 collection. These operations are shown

in the results, however, they are unrelated to the test cases themselves. In the following

subsections the results for traversals 1 and 6 and the queries 5, 6 and 8 are discussed in more

detail. The query condition and traversal depth test cases are discussed in more detail as
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well. The other test cases did not get optimized and as a result their performance remained

about the same.

Lazy Guided batching (single)

Case DB Time Queries Entities Dupl. Col. Time Queries Entities Dupl. Col. %

Q1 S9 22 12 12 0 1 22 12 12 0 1 0.0

Q2 S9 34 3 107 0 1 31 3 107 0 1 8.8

Q3 S9 39 3 947 0 1 39 3 947 0 1 0.0

Q4 S9 40 32 79 1 11 40 32 79 1 11 0.0

Q5 S9 203 733 1227 1692 731 63 5 1227 1692 731 69.0

Q6 S9 290 1097 1591 1692 1094 123 171 1591 1692 1094 57.6

Q7 S9 294 3 10002 0 1 294 3 10002 0 1 0.0

Q8 S9 387 503 10502 0 1 382 503 10502 0 1 1.3

Q8P S9 369 503 10502 0 1 319 4 10502 0 1 13.6

T1

S3 12496 20897 41191 1692 10994 6004 4693 41191 1692 10994 52.0

S6 14071 21057 71455 1688 11074 6942 3631 71455 1688 11074 50.7

S9 15301 20897 100591 1692 10994 7973 3217 100591 1692 10994 47.9

T1T

S3 15112 20897 41191 1692 10994 8174 5562 41191 1692 10994 45.9

S6 16822 21057 71455 1688 11074 8901 3981 71455 1688 11074 47.1

S9 17870 20897 100591 1692 10994 9732 3314 100591 1692 10994 45.5

T6 S9 430 1592 2086 1692 1094 7511 3217 100591 1692 10994 -1646.7

T6T S9 497 1592 2086 1692 1094 281 473 2086 1692 1094 43.5

T8 S9 21 4 4 0 1 20 4 4 0 1 4.8

T9 S9 18 4 4 0 1 18 4 4 0 1 0.0

QC S9 9293 10687 77882 24092 10685 2956 6 72974 24092 10685 68.2

Table 7.2: Results from running the OO7 benchmark, using the small9 database configu-

ration and also small3 and small6 for T1 and T1T. The improvement in response time is

shown by the percentages in the last column.
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Figure 7.3: Response times for the OO7 benchmark. The boxes show the average response

time and the error bars show the minimum and maximum response time.
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Figure 7.4: Number of queries executed for the OO7 benchmark.
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7.2.1 Traversal 1

Traversal 1 traverses the entire module structure displayed in Figure 7.1. This includes

all entities associated with a Module , with the exception of Manual and Document

entities. An implementation of this test case is shown in Figure 7.5. Traversal 1 accesses

all associated Assembly and AtomicPart entities. The Assembly entities form a tree

structure, which does not contain cycles. The AtomicPart entities are connected through

Connection entities, which can contain many cycles.

The traversal on a data structure with cycles makes join-fetching techniques less effi-

cient, because the joins are likely to fetch duplicates. A join will fetch a duplicate entity,

when the joined property leads back to a previously fetched entity. Figure 7.6 shows that

the join-fetching techniques do indeed fetch many more duplicates and that they can still

provide a small performance improvement regardless. This improvement is possible, be-

cause collection properties are never join-fetched, to avoid Cartesian products. If the im-

plementation of the prefetching techniques would allow joins of collection properties, then

the number of fetched duplicates would increase significantly and the performance would

decrease.

The batch-fetching techniques 1, 3, 5 and 6 all show a significant improvement in per-

formance, which is the result of fetching the same data using fewer queries. Hibernate

batch-fetching executes fewer queries than guided batch-fetching for this test case, because

Hibernate batch-fetching performs well when most entities are accessed. In that case Hi-

bernate batch-fetching does not fetch entities that are never used and most queries fetch 10

entities or collections. Guided batch-fetching is more careful with regard to fetching unused

data and because of that the analysis only follows recursive calls four times, which causes

many collection batch queries to fetch less than 10 collections. The guided batch-fetching

techniques does use less memory than Hibernate batch-fetching, because of the way Hiber-

nate generates batches for collections, which first copies the list of proxies it picks from.

This is a problem with the Hibernate version used by WebDSL, the batch generation has

been improved in the latest version of Hibernate.

Hibernate subselect-fetching does fetch the Assembly entities more efficiently that

the other techniques, because there is only one query per level of the tree. The traversal

through AtomicPart and Connection entities does not get optimized by subselect-

fetching, because the to property on Connection entities is fetched by a lazy-fetch

query. The query is not suitable as a subquery for subselect-fetching, because it returns

only one AtomicPart entity.

For prefetching technique 6 the response time and number of queries can be reduced

beyond that of Hibernate batch-fetching, by using the manual prefetch specification in Fig-

ure 7.7. The prefetch specification describes all accessed properties for case T1T using the

small9 database configuration. Using the manual specification reduces the response time

from 9732ms to 4381ms and the number of queries from 3314 to 19. This manual prefetch

specification exploits prior knowledge about the database, which makes it an unfair com-

parison. However, it still shows the flexibility of prefetching technique 6, because the other

prefetching techniques are unable to use this prefetch specification as effectively. Prefetch-

ing techniques 4 and 7 would fetch more duplicates and prefetching technique 5 is still
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1 page traversal1template () {

2 var count : Int := 0;

3

4 traverse(Module.getRandomProxy ())

5 output(count)

6

7 template traverse(part : CompositePart ) { traverse(part.rootPart) }

8 template traverse(part : AtomicPart ) {

9 var visited : List <AtomicPart >;

10 traverseDFS (part , visited)

11 }

12 template traversalOp (part : AtomicPart , first : Bool) {

13 init {

14 count := count + 1;

15 part.DoNothing ();

16 }

17 }

18 }

19 // The following definitions are shared with other traversal cases

20 // These definitions are dynamically redefined by cases when needed

21 template traverseDFS (part : AtomicPart , visited : Ref<List <AtomicPart >>) {

22 init { visited.add(part); }

23 traversalOp (part , visited.length == 0)

24 for (connection : Connection in part.to) {

25 if (!(connection .to in visited)) {

26 traverseDFS (connection .to, visited)

27 }

28 }

29 }

30 template traverse(mod : Module) { traverse(mod.designRoot ) }

31 template traverse(assembly : Assembly) {

32 if(assembly is a ComplexAssembly ) {

33 traverse(assembly as ComplexAssembly )

34 } else {

35 if(assembly is a BaseAssembly ) {

36 traverse(assembly as BaseAssembly )

37 }

38 }

39 }

40 template traverse(assembly : ComplexAssembly ) {

41 for(subAssembly : Assembly in assembly.subAssemblies ) {

42 traverse(subAssembly )

43 }

44 }

45 template traverse(assembly : BaseAssembly ) {

46 for (component : CompositePart in assembly.componentsPriv ) {

47 traverse(component)

48 }

49 }

50 template traverse(part : CompositePart ) { }

51 template traverse(part : AtomicPart) { }

52 template traversalOp (part : AtomicPart , first : Bool) { }

Figure 7.5: The implementation of T1T (T1 using templates).
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Figure 7.6: Results for the T1 and T1T test cases of the OO7 benchmark, using the small9

database configuration. The number of entities and collections fetched are similar for all

prefetching techniques for both cases and these results are excluded from this figure.

limited to fetch only 10 entities or collections per query.
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1 template traverse(mod : Module) {

2 init {

3 for(module : Module in [mod]) { // Forces batch-fetching on one value

4 prefetch-for module {

5 designRoot {

6 ComplexAssembly .subAssemblies {

7 ComplexAssembly .subAssemblies {

8 ComplexAssembly .subAssemblies {

9 ComplexAssembly .subAssemblies {

10 ComplexAssembly .subAssemblies {

11 ComplexAssembly .subAssemblies {

12 BaseAssembly .componentsPriv {

13 rootPart {

14 to {

15 to {

16 to {

17 to {

18 to {

19 to {

20 to {

21 to

22 } } } } } } } } } } } } } } } } } } }

23 traverse(mod.designRoot )

24 }

Figure 7.7: A manual prefetch specification for T1T, exploiting prior knowledge about the

database.

7.2.2 Traversal 6

Traversal 6 is similar to traversal 1, except that traversal 6 stops after reaching the root

atomic parts. As a result this case does not access a recursive data structure with cycles.

The function implementation fetches more entities, because it also fetches some entities that

are required by traversal 1. The incorrect entities are fetched, because the analysis did not

handle a return-statement properly. The return-statement occurs within an if-statement and

causes an early exit out of the function. Therefore a negated condition should be attached

to traversals from statements following the if-statement, however, this is not implemented.

The response time increased the most for prefetching techniques 5 and 6, because they fetch

the most unused entities. Prefetching techniques 4 and 7 do not fetch as much unused enti-

ties, because join-fetching prefetches the entire next recursive batch and no-empty-batch

causes prefetching to stop early. The template implementation does not have this problem

and does show a performance improvement.

Hibernate subselect fetching with batch-fetching (technique 3) performs the best on this

test case. Hibernate subselect fetching is able to fetch the tree of Assembly entities using

only one query per level, with the query of the previous level as subquery. The query that

fetched the leaves of the tree is used as a subquery to fetch all CompositePart entities.

Finally, Hibernate batch-fetching takes over to fetch the root AtomicPart entities of the

CompositePart entities. This is very efficient, because the subqueries that are used are
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1 page traversal6template () {

2 var count : Int := 0;

3

4 traverse(Module.getRandomProxy ())

5 output(count)

6

7 template traverse(part : CompositePart ) { traverse(part.rootPart) }

8 template traverse(part : AtomicPart) {

9 init {

10 count := count + 1;

11 part.DoNothing ();

12 }

13 }

14 }

Figure 7.8: The implementation of T6T (T6 using templates), using some definitions from

Figure 7.5.

very simple. However, if the first query was more complex and slower, then it would also

have been included in the following few queries, making those queries slower as well.

Hibernate subselect fetching alone also improves performance, yet is still slower, be-

cause every root AtomicPart is fetched by its own query. The other prefetching tech-

niques also improve performance, however, they have to fetch the Assembly entities using

more queries, which makes them slower. Traversal 6 also shows that guided batch-fetching

techniques use more queries than Hibernate batch-fetching when prefetching for a complete

traversal of a tree. This is because guided batch-fetching only prefetches for the next four

recursive calls, using one query for each. When it finds another uninitialized node it repeats

this process. This means that some collection batches contain less than 10 collections to

fetch, while Hibernate batch-fetching will do its best to create batches with 10 collections.
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Figure 7.9: Results for the T6 and T6T test cases of the OO7 benchmark.
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1 page query5() {

2 var count : Int := 0;

3 init {

4 for(module : Module) {

5 for(assembly : Assembly in module.assemblies) {

6 for(compositePart : CompositePart in (assembly as BaseAssembly )

7 .componentsPriv ) {

8 if (compositePart .buildDate > assembly.buildDate) {

9 assembly.DoNothing ();

10 count := count + 1;

11 }

12 }

13 }

14 }

15 }

16 output(count)

17 }

Figure 7.10: The implementation of query 5.

7.2.3 Query 5

Query 5 is a test case that uses nested loops to iterate over collections, as seen in Figure 7.10.

The results in Figure 7.11 show that all prefetching techniques perform well for this test

case, because it is a simple example of the n+1 query problem, which all techniques try to

avoid. However, prefetching techniques 1 and 5 execute a few more queries and are slightly

slower, because their queries can only fetch ten collections with a single query.
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Figure 7.11: Results for the Q5 test case of the OO7 benchmark. The number of entities,

duplicates and collections fetched are the same for all prefetching techniques and these

results are excluded from this figure.
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7.2.4 Query 6

Query 6 is very similar to traversal 6, because they both traverse the assembly hierarchy.

However, query 6 does this for all modules, instead of a single one and query 6 does not

traverse to the root part of a CompositePart . Unlike the function implementation of

traversal 6, query 6 does not fetched unused entities because of an early exit. As a result

this test case is optimized correctly and the response time and number of queries have both

been reduced, by all prefetching techniques.

Hibernate subselect fetching is again the fastest prefetching technique for this test case,

because of the balanced tree structure of Assembly entities.Prefetching technique 4 exe-

cutes more queries than technique 6, because the recursive prefetching resumes at different

levels of the tree of Assembly entities. Prefetching technique 4 resumes recursive prefetch-

ing at a lower level in the tree, where there are more entities. Every entity on that level will

be a root for the prefetch specification and this determines the number of batches and queries

that are generated.
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Figure 7.12: Results for the Q6 test case of the OO7 benchmark. The number of entities,

duplicates and collections fetched are the same for all prefetching techniques and these

results are excluded from this figure.

7.2.5 Query 8

Query 8 iterates over all atomic parts and manually loads a Document entity by its identifier,

which has been stored inside a UUID property on the atomic parts. A manual load is unusual

in WebDSL and because of that the related Document is also stored inside a document

property of an AtomicPart . The Q8P test case uses this property instead of a manual load.

Hibernate batch-fetching seems to be the only technique that optimizes the manual load-

ing test case. However, the technique uses the document property that was added for the

Q8P test case. In the original OO7 benchmark this property does not exist and Hibernate

batch-fetching would also fail to optimize the Q8 test case.

For the Q8P test case most prefetching techniques are able to reduce the number of

queries, except for Hibernate subselect fetching which does nothing, because there are no

collection properties involved. The prefetching techniques that use joins (4 and 7) slightly
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Figure 7.13: Results for the Q8 and Q8P test cases of the OO7 benchmark. The number of

entities and collections fetched are similar for all prefetching techniques for both cases and

these results are excluded from this figure.

reduce performance and use more memory, which is caused by the high number of duplicate

entity fetches. The duplicate entities also contain a text property with 2000 bytes, which in-

creases the time and memory cost of the data duplication. The other prefetching techniques

all perform about the same, however, of those techniques number 6 reduces the number of

queries the most, because it has no maximum batch size.

7.2.6 Query Condition

This test case is not included in the standard OO7 benchmark and is added to show the

benefits of adding a condition to a query, for partial collection initialization. This test case

has nested loops, where the outer-loop iterates over all CompositePart entities. The inner-

loop iterates over the list of related AtomicPart entities. The inner-loop has a where-clause

that selects about half of the AtomicPart elements, by checking if the x property has a

higher value than the y property. Inside the inner-loop the largest connection is found by

iterating over the to and from properties. The length of the largest connection is added

to a variable, which is eventually shown on the page.

For this test case the Hibernate techniques all prefetch too many entities, yet some still

improve the performance, because of the reduction in number of queries. Both techniques
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Figure 7.14: Results for the QC test case.

with a maximum batch size (1 and 5) are slower, because they require more queries. Join-

fetching has no influence on this test case, because collection properties are never join-

fetched, making techniques 4, 6 and 7 all similar. Technique 5 fetches more entities than

technique 6, because it uses static queries instead of dynamically generated ones, meaning

that the condition to partially initialize collections is not present.

7.2.7 Traversal Depth

This traversal test case is not part of the standard OO7 benchmark, yet it is similar to traver-

sal 1 and traversal 6. However, when reaching a CompositePart it does not visit all

connected parts or just the root part, like in traversal 1 and 6, respectively. Instead it tries to

visit previously unvisited AtomicPart entities from the root part, up to a traversal depth

that varies from 1 to 19. A traversal depth of 0 would make this case identical to traversal

6 and a traversal depth of 19 will visit all AtomicPart entities for the used test database1,

like traversal 1, except that the traversed paths are different.

By increasing the traversal depth, the number of required entities and collection also

increases. Using lazy-fetching the required number of queries, fetched entities and fetched

collections will all increase linearly when the traversal depth is increased. Hibernate subs-

119 parts + 1 root part = 20 AtomicPart entities, which are all parts of a CompositePart , see Table 7.1.
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elect is very similar to lazy-fetching for this test case, because only the assembly hierarchy

is prefetched, however, that part does not change as the traversal depth is changed.

The prefetching techniques that use Hibernate batch-fetching are very slow for a low

traversal depth. They do use the least amount of queries, at the cost of prefetching most of

the AtomicPart entities early on, when not even half of the entities are required. Hiber-

nate batch-fetching does become more interesting when more entities and collections are

actually used, making it the best technique for a high traversal depth. However, because Hi-

bernate batch-fetching is unable to take into account the traversal depth, it is unsuitable as

a prefetching technique for a recursive traversal that does not traverse most of the recursive

structure. It is hard to automatically determine if a recursive traversal will traverse most

of the data structure, because that may require information about the database, which can

change over time.

The other prefetching techniques are all able to take the traversal depth into account and

that results in lower values for number of queries, entities and collections compared to lazy-

fetching. The join-fetching techniques 4 and 7 fetch more duplicates, which results in more

memory consumption making them less ideal. The performance of prefetching techniques

5 and 6 are very similar for this test case and provide the best overall performance, because

they use fewer queries than lazy-fetching, without fetching many more entities, duplicates

and collections.
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Figure 7.15: Results for the TD test case.
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Chapter 8

Evaluation with Applications

In this chapter we evaluate the performance of the previously discussed prefetching tech-

niques on complete web applications. The evaluation is performed on Researchr, Yellow-

grass, WebDSL.org and Weblab. These are all web applications that have been developed

using WebDSL. The web applications and benchmarking method used in this chapter are

better suited for the evaluation of prefetching techniques on web applications, when com-

pared to the OO7 benchmark from Chapter 7. The version of Researchr that has been used

here is more recent than the one used during initial testing, which was discussed in Chap-

ter 5. This newer version contains more manual optimizations. Section 8.1 discusses the

method used to benchmark the web applications. Section 8.2 discusses the results.

8.1 Evaluation Method

A set of URLs is required in order to benchmark the performance of a web application.

This set of URLs is generated beforehand for each web application. The database is used

to select entities for page arguments. For page arguments of a primitive type there exists

a list of predefined test values. However, this list is not used when there is at least one

suitable constant value inside the source of the page. Here a suitable constant means that

there is an (in)equality comparison with the page argument. The web applications also have

access control rules. However, access control errors are avoided by sending requests using

the session of a user that has sufficient rights.

The applications use a copy of the database from their production environment. All

these databases are stored inside one local MySQL server, which has its query cache dis-

abled and is not restarted during benchmarking.

The applications are compiled multiple times using different prefetching techniques.

The performance is measured by deploying each technique-application combination to Tom-

cat one at a time. Tomcat is started after a deploy and all the generated URLs are requested

one by one, before stopping Tomcat again and continuing to the next technique-application

combination. An URL is not requested multiple times in a row, because that is not a typ-

ical access pattern of a web application user. Successively accessing the same URL will

introduce many opportunities for caching, which normally are less beneficial, because a
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8. EVALUATION WITH APPLICATIONS

user typically visits an URL only a few times. Between requests Java is forced to perform

garbage collection using jmap -histo:live .

Deploying all technique-application combinations and requesting their URLs once is

called a benchmark run. The measured response time is discarded for the first benchmark

run, because extra logging has been enabled with the ?logsql URL suffix from Sec-

tion 5.1. These first requests determine the number of executed queries, and the number of

fetched entities, duplicate entities, and collections. After the first benchmark run, another

ten runs are performed without extra logging enabled, measuring only the response time.

Finally, the ten measured response times for each URL-application-technique combination

are combined, by taking the average.

8.2 Results

The results are shown in Table 8.1. In this table the response times have been normalized,

by dividing the response time of a technique by the response time of the lazy version, of

the same URL. So 100% means that there was no improvement, everything below is faster

and everything above is slower. If the response time differs only 5ms or less from lazy, then

the normalized response time is also 100%, because the difference is not significant and is

likely a measurement error. The table shows the total number of URLs for an application

and the number of URLs that are faster and slower, followed by a percentage that shows

how many URLs that are compared to the total. For both the faster and slower URLs an

average is calculated, showing the average improvement for faster requests, and the average

decrease in performance for slower requests.

Guided batching (single) is able to improve the performance for many URLs, when

compared to the other prefetching techniques for an application, while the number of slower

URLs is among the lowest. The average improvement is also more significant than the aver-

age performance decrease for slower URLs, except for Yellowgrass, however, the extreme

low number of slower URLs makes up for this. The average performance decrease for

slower URLs is so close to 100%, because the difference is often small and just a few mil-

liseconds. The minor slowdown is caused by generating batches for smaller collections,

making lazy slightly more efficient in these few cases. This is also the case for Weblab,

where it makes the results look negative, because there are more slower than faster URLs.

However, even for Weblab the faster URLs provide a more significant improvement. Com-

pared to the other prefetching techniques guided batch-fetching also fetches the least du-

plicate entities. Duplicate entities can always be considered overhead. For WebDSL.org

the number of duplicates is even lower than lazy, because of conditions that are added to

queries.

Guided batching (max) shows that generating queries up to a maximum batch size be-

forehand can have a beneficial effect on the response time. This improvement becomes clear

when comparing techniques 5 and 6 for Researchr. The other three applications do not show

this improvement. The additional improvement of technique 5 on Researchr comes mostly

from simple publication pages, showing only data that is relevant to a single publication en-

tity. These pages already use a few number of queries and do not get optimized as much by
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Faster Faster Unchanged Slower Slower Avg Avg Avg Avg

App URLs Technique # URLs (%) Avg % # URLs (%) # URLs (%) Avg % # SQL # Ent # Dup # Col

Researchr 705

0. Lazy 58.43 243.37 14.67 19.71

1. Hib. batch 119 ( 16.8) 79.28 400 (56.7) 186 ( 26.3) 111.07 26.62 335.55 18.85 35.25

2. Hib. subselect 48 ( 6.8) 83.25 529 (75.0) 128 ( 18.1) 16511.41 49.68 427.06 24.34 106.17

3. Hib. batch/subsel. 55 ( 7.8) 78.65 409 (58.0) 241 ( 34.1) 6852.19 25.63 509.81 28.10 116.00

4. Joins at arguments 22 ( 3.1) 84.27 172 (24.3) 511 ( 72.4) 1255.24 51.83 902.27 1061.08 128.14

5. Guided batch (M) 189 ( 26.8) 84.35 498 (70.6) 18 ( 2.5) 114.00 24.16 247.00 18.47 25.13

6. Guided batch (S) 145 ( 20.5) 79.70 536 (76.0) 24 ( 3.4) 112.04 20.54 246.49 18.47 25.13

7. Guided batch (J) 153 ( 21.7) 81.46 520 (73.7) 32 ( 4.5) 111.59 21.08 252.12 197.63 25.10

Yellowgrass 179

0. Lazy 83.37 160.51 136.56 72.93

1. Hib. batch 84 ( 46.9) 89.89 86 (48.0) 9 ( 5.0) 112.33 28.00 203.73 296.96 134.54

2. Hib. subselect 4 ( 2.2) 83.75 2 ( 1.1) 173 ( 96.6) 441.08 33.45 201.35 307.48 130.34

3. Hib. batch/subsel. 5 ( 2.7) 87.00 2 ( 1.1) 172 ( 96.0) 452.60 18.16 205.21 324.31 139.79

4. Joins at arguments 1 ( 0.5) 97.00 1 ( 0.5) 177 ( 98.8) 143.70 135.40 200.93 276.15 125.68

5. Guided batch (M) 89 ( 49.7) 90.36 81 (45.2) 9 ( 5.0) 109.33 31.89 200.93 276.63 124.98

6. Guided batch (S) 163 ( 91.0) 87.20 12 ( 6.7) 4 ( 2.2) 116.75 21.28 200.93 276.63 124.98

7. Guided batch (J) 162 ( 90.5) 86.38 12 ( 6.7) 5 ( 2.7) 113.00 21.28 200.93 276.63 124.98

WebDSL.org 94

0. Lazy 76.97 198.19 12.04 36.48

1. Hib. batch 43 ( 45.7) 83.37 49 (52.1) 2 ( 2.1) 106.50 27.90 216.02 14.68 44.35

2. Hib. subselect 2 ( 2.1) 95.00 37 (39.3) 55 ( 58.5) 297.93 76.97 198.19 12.04 36.48

3. Hib. batch/subsel. 4 ( 4.2) 88.50 40 (42.5) 50 ( 53.1) 136.32 28.00 216.62 15.63 44.65

4. Joins at arguments 9 ( 9.5) 92.67 42 (44.6) 43 ( 45.7) 116.58 69.05 185.33 58.04 40.32

5. Guided batch (M) 49 ( 52.1) 85.02 42 (44.6) 3 ( 3.1) 111.00 23.10 184.29 0.54 40.19

6. Guided batch (S) 49 ( 52.1) 83.94 42 (44.6) 3 ( 3.1) 112.33 19.17 184.29 0.54 40.19

7. Guided batch (J) 24 ( 25.5) 88.38 63 (67.0) 7 ( 7.4) 102.43 39.76 181.07 62.15 36.48

Weblab 428

0. Lazy 55.94 61.27 17.82 14.09

1. Hib. batch 49 ( 11.4) 81.22 302 (70.5) 77 ( 17.9) 111.73 32.49 79.24 44.77 33.98

2. Hib. subselect 4 ( 0.9) 91.25 221 (51.6) 203 ( 47.4) 121.51 54.11 65.81 46.72 28.25

3. Hib. batch/subsel. 45 ( 10.5) 80.96 237 (55.3) 146 ( 34.1) 128.68 32.40 78.30 56.32 41.78

4. Joins at arguments 0 ( 0.0) 71 (16.5) 357 ( 83.4) 122.75 62.83 65.02 27.36 21.81

5. Guided batch (M) 22 ( 5.1) 83.55 378 (88.3) 28 ( 6.5) 118.61 45.17 61.70 19.23 16.85

6. Guided batch (S) 22 ( 5.1) 81.27 368 (85.9) 38 ( 8.8) 107.68 42.48 61.73 20.25 16.85

7. Guided batch (J) 20 ( 4.6) 82.10 315 (73.5) 93 ( 21.7) 109.67 42.43 61.73 27.17 16.85

Table 8.1: Test results with normalized response times, where above 100% is slower and

below is faster. The URLs are divided into the faster, unchanged and slower columns. The

faster and slower columns also have a column showing the average normalized time. The

final columns show the average number of executed queries, and the average number of

fetched entities, duplicate entities and collections, for all URLs.

batch-fetching. Since the generated batches are small and do not have to be split up, Guided

batching (max) can directly fit them into its prepared queries. Having to generate new

queries for these small batches is too expensive. Therefore, technique 6 may be improved

by only generating new queries for batches larger than 10 and using prepared queries for

the smaller batches. Comparing the two techniques on Yellowgrass clearly shows that tech-

nique 5 has fewer faster URLs than technique 6. This is caused by the low maximum batch

size, which significantly increases the average number of queries. Increasing the maximum

batch size can make this technique faster, however, it is unlikely to improve the performance

beyond that of Guided batching (single). Batch queries are normally not generated for every

batch size, because of the memory requirement. Therefore, batches will still have to be split

up, which still executes more queries than Guided batching (single), reducing the benefit of

not having to generate a new query.

The performance of Guided batching (joins) is similar to Guided batching (single).

However, the joins do fetch more duplicate entities, which is bad for performance. In Re-

searchr there are a few cases where the joins perform better. These cases contain a recursion,
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which is prefetched using joins. The joins trick guided batch-fetching into thinking that all

properties have been prefetched by itself in a previous call, because it recognized that the

join-fetched property has been prefetched already. This means that guided batch-fetching

with joins stops earlier, which also results in more queries than guided batch-fetching with-

out joins. This indicates that prefetching for up to four recursive calls is too aggressive for

these cases.

Join-fetching at arguments is the final technique that uses the static analysis. This tech-

nique does not perform well. It is unable to improve the performance for any URL of

Weblab and only one URL on Yellowgrass. An important reason is that this technique is

unable to handle custom queries. When prefetching at the beginning of a function or tem-

plate, then it is not possible to prefetch for custom queries inside of them, because those

queries have not been executed yet. The analysis also does not provide information for it,

because the custom query is not a traversal on one of the function or template arguments.

As a result the called functions or templates within a for-loop will perform prefetching for

their arguments. So the 1+n query problem is not always solved for custom queries. Join-

fetching at arguments also fetches many duplicate entities, which is clearly shown in the

results for Researchr.

Hibernate batching shows a performance improvement similar to guided batch-fetching,

yet Hibernate batching has many more slower URLs for Researchr and Weblab. The URLs

are slower, because more unused entities are fetched. These extra entities are fetched, be-

cause Hibernate can prefetch the entities for properties that are never accessed, as long as

they have the same type as a property that is accessed. This is also the reason for the aver-

age number of fetched entities being higher, when compared to guided batch-fetching for

all applications.

Hibernate subselect rarely improves performance, however, performance is decreased

for a large number of URLs. Besides fetching more entities and collections, the decrease in

performance is also caused by custom queries. These queries can be reused as a subquery,

which reduces performance for expensive queries. Hibernate subselect can also use its own

queries as new subqueries, causing the nesting of subqueries, making those queries even

more expensive.

Combining Hibernate subselect with Hibernate batching does overcome the limitation

that subselect-fetching can only prefetch collection properties. However, the combination

of both Hibernate techniques still suffers from expensive subqueries. From the results it is

clear that Hibernate batching alone performs better than the combination of both techniques.

Guided batching (max) and Guided batching (single) both show the best performance.

Both techniques improve the performance on average, however, there are pages that become

slightly slower. These pages would be better off with the lazy technique. A combination

of both techniques, where some batch queries are generated at launch, will be even better,

because generating new queries for small batches is too expensive. A more fine-grained

method of choosing an optimization technique is required to improve the results further.

Possible solutions are a more detailed static analysis to find patterns in templates where cer-

tain optimizations work best, or a more dynamic approach where the optimization technique

can be swapped at run-time based on repeated benchmarks in the background.
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Chapter 9

Related Work

Existing prefetching techniques are discussed in this chapter, which are divided into dy-

namic profiling and static approaches.

9.1 Dynamic Profiling Approaches

Dynamic profiling approaches gather and maintain extra information during runtime that is

useful for prefetching. For example the AutoFetch, Fido and data compression approaches

discussed below construct a probabilistic model that is used to predict future data accesses

that should be prefetched.

9.1.1 AutoFetch

Ibrahim and Cook presented AutoFetch [11] that builds a probabilistic traversal profile for

similar queries, by profiling the properties accessed on their results during runtime. The

first time that a query is executed no prefetching is performed and a traversal profile will

be constructed. When a query has a traversal profile and is about to be executed, then the

traversal profile will be used to add joins to the query, to prefetch properties with a high

probability of being accessed. Using joins instead of separate queries uses fewer queries

and also increases the risk of fetching duplicates, as is discussed in Chapter 3. AutoFetch

also prefetches a property for all entities returned by a query, where guided batch-fetching

could use a detected condition to prefetch a property for only some elements. However,

using probability to determine if a property should be prefetched allows AutoFetch to reason

about complex conditions that are hard to translate into a query.

9.1.2 PrefetchGuide and Type-level Access Pattern

Han et al. [9, 10, 8] do not change queries and instead detect iterative and recursive access

patterns on their results. The detected patterns can then be used to perform prefetching.

They build a type-level path graph from a root node that represents the results of a query.

In this graph the nodes are the types of the entities and the edges are property accesses. If a

property access occurs that is already in the graph, then an iterative pattern has been detected
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and the graph can be used to prefetch entities for the remaining iterations. The same is done

for recursive patterns, which are detected when a cycle is introduced inside the type-level

path graph. When a property is accessed that is not in the cache, then it requires fetching

and prefetching will be performed for the captured access patterns on that property. This

method of prefetching has also been refined to create views inside the database, minimizing

disk I/O during prefetching [8].

The downside of this method is that once a property is recorded in an access pattern,

then it will get prefetched, even when that property may only be required in very few cases.

A probabilistic model, like the one that is used by AutoFetch, avoids this by assigning a

low probability to such a property. Guided batch-fetching tries to prevent this by evaluating

conditions during batch generation or by placing conditions inside queries.

9.1.3 Context-based Prefetch

Bernstein et al. [1] proposed prefetching properties for all entities in a context, whenever a

property is accessed on one of them. Entitiess within the same context are similar, because

they are all fetched by the same query or belong to the same collection. The set of identifiers,

for entities within a context, are not placed inside queries, instead they are stored inside a

temporary table, giving every context an identifier within the database. Using the context

identifier and the temporary table in queries makes queries smaller for larger contexts, which

may be faster and avoids a possible limit on query size, at the cost of inserting a context into

the temporary table.

Context-based prefetch does not perform well when properties are only accessed for

some entities within a context, just like PrefetchGuide. Guided batch-fetching can do bet-

ter, by detecting the conditions under which properties are accessed. Guided batch-fetching

also uses the actual collections that an applications loops over, when prefetching properties,

instead of remembering the context in which an entity was fetched. Using the actual col-

lection for prefetching is important when the context of an entity is changed, for example,

when entities are removed from or added to query results.

9.1.4 Fido

Palmer and Zdonik [14] used a learning algorithm to predict future entity accesses. Given

the last few entities accessed, the algorithm may recognize a previous pattern. The pattern

may contain entities that are not inside the cache and these entities can be prefetched. They

also used their own eviction policy, which tries to predict which cached entities are likely

to be used last, so that those entities can be removed from the cache, making space for new

entities. Since patterns are detected on entity instances, this approach only works well if the

same entities are accessed repeatedly, because a pattern detected on an entity instance does

not apply to other entities of the same type.

9.1.5 Data compression

Curewitz et al. [6] proposed using compression algorithms to detect patterns in database

page accesses. Compression algorithms try to determine the probability that a character se-
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quence will occur and encode sequences with a high probability using fewer bits. Curewitz

et al. assign a character to each page, so that a page access sequence can be encoded as a

character sequence. This allows a compression algorithm to be executed on a sequence of

previous page accesses, and the resulting probabilities can be used to predict future page

accesses. This technique only works well if the same pages are accessed repeatedly.

9.1.6 Sprint

Raman et al. presented Sprint [15], which creates and optimist and a pessimist version of

an application. The pessimist is similar to the original program, except that it has points

where it spawns the optimist. The optimist serves as a prefetcher for the pessimist and is

executed on another thread. The optimist excludes code that reads input or has external

side effects, like writing to a file. The optimist stays ahead of the pessimist by parallelizing

one or more loops or recursive calls, making the optimist multi-threaded. The loops and

calls to parallelize are annotated manually. A method is described for automatic annotation

placement. The optimist adds entities to a batch instead of fetching them directly. The batch

is fetched when the batch is full or when the pessimist forces it. As a result the pessimist is

likely to read values from the cache, instead of remote servers. The optimist can speculate

on input values and return values of recursive calls, however, this speculation can cause

the optimist to prefetch the wrong data. This is detected by monitoring cache misses and

restarting the optimist using the current data from the pessimist.

Sprint can be seen as another approach to batch generation and in that way it is similar

to guided batch-fetching. Since Sprint uses an altered version of the original program to

generate batches, it can use more complex conditions during batch generation. However,

the evaluation of those conditions is not always accurate, because of the speculation about

the values.

9.2 Static Approaches

Static approaches perform optimizations during compilation. This can be the reordering

of operations, in order to bundle remote operations as with remote batch invocation, or a

source code analysis from which prefetch queries are generated as with Query Extraction.

9.2.1 Remote Batch Invocation

For remote batch invocation [12, 5] a batch statement is added to Java, which specifies

a remote root and a block of statements. The block of statements can contain a mix of

local and remote operations. The operations are reordered, possibly duplicating loops and

conditions, so that remote operations can be performed in one round trip to the server,

which is only possible if there are no back and forth interdependencies between local and

remote operations. The remote operations are then translated into a batch script that can be

send to the server. Remote batch invocation can be used to optimize queries by translating

these batch scripts to SQL queries. The returned values can then be used to execute the

local operations. The advantage of remote batch invocation is that it can batch both read
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and write operations. Aggregation operations are also supported, when they are performed

using the provided functions, so that aggregation can be easily detected. The downside is

that batches should be specified manually.

9.2.2 Query Extraction

Wiedermann et al. [19, 20] proposed a source-to-source transformation that transforms an

object-oriented program that accesses persistent data transparently, into an equivalent pro-

gram that contains explicit queries. Query extraction has two stages. First a path based

analysis makes a description of the persistent data each method requires. Then the program

is transformed so that each method can execute an explicit query that prefetches the persis-

tent data specified by the analysis. The static analysis described in Chapter 6 is based on

this technique, which is why these papers are discussed in more detail.

Traversal Summary

The analysis phase uses paths to describe persistent values that are used by a method. A

path consists of four components:

1. A persistent root, from which a method can reach other persistent values.

2. A sequence of field names that the method traverses on the persistent root to reach a

persistent value.

3. The condition(s) under which the method performs the traversals.

4. A data dependence flag, that indicates if the source statement or expression of the

path can affect non-local state.

A set of paths is called a traversal summary.

Persistent root

Query extraction models the persistent data store as a rooted directed graph of persistent

records, which represent persistent entities. The root of this graph is represented by a special

root variable, which is a persistent root. Persistent method arguments and persistent values

returned by method calls are also considered persistent roots. The analysis phase describes

the persistent values a method uses, relative to these persistent roots.

Query Condition

Some persistent values are only required under certain conditions. For example, the condi-

tion of an if-statement determines if the persistent values that are used within the if-block are

required. These conditions may be attached to paths if they can be shipped to the database

as conditions inside a query, to filter the persistent data that is fetched. A condition can be

placed inside a query if it meets the following requirements:
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1 for(Department d : root.getDepartments ()) {

2 for(Employee e : d.getEmployees ()) {

3 if(d.size > 100 || e.salary > 35000)

4 System.out.println(d.name + " - " + e.name );

5 }

6 }

Figure 9.1: An example of two nested loops with a master-detail relationship.

1. The condition may contain only portable operators. Operators are portable if they

can be executed and have the same semantics in both the database and the program.

This may need some translation. For example, to make the handling of null values

consistent.

2. The condition can be evaluated on every element of a collection, independently of all

other elements in the collection.

3. Conditions in nested loops must participate in a master-detail relationship. The inner-

loop is a detail of the outer-loop, if the inner-collection is a traversal on the iterator

variable of the outer-loop. The condition on line 3, in figure 9.1, is a query condition,

because the nested loops have a master-detail relationship.

4. Local variables used by the condition must be bindable. A variable is bindable if

its last assignment occurs before the execution of the query that uses it. The Java

prototype only executes queries at the beginning of methods, so in that case final

arguments are always bindable.

Data Dependence Flag and Iterators

The data dependence flag is true for any statement or expression that can affect non-local

state. For example, the statement on line 5 of Figure 9.2 is data dependent, because it in-

crements a variable outside of its local scope. This statement does not use persistent data

directly, however, it does depend on the existence of employees that have at least a certain

salary. As such, it has an effect on the employees that need to be fetched. The analysis

records data dependencies like this, by generating an extra path for every data dependent

expression. This extra path records the data dependence on the last iterator in the iterator

context. The iterator context maintains a list of inner-iteration variable paths that extend

outer-iteration paths. The iteration context is also used to check the master-detail restriction

for query conditions. The paths that the analysis would generate for Figure 9.2 are in Ta-

ble 9.1. The last path in the table is generated by the statement at line 5. The path has the

root and traversal of the iterator in the iterator context and the condition and dependence

flag of the statement. The iterator is included in the paths to symbolize a traversal on the

elements of a collection.
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1 int countBySalary (final int salary) {

2 int count = 0;

3 for(Employee e : root.getEmployees ()) {

4 if(e.salary >= salary) {

5 count++;

6 }

7 }

8 return count;

9 }

Figure 9.2: A Java method that counts the number of employees that make a certain salary.

Root Traversal Condition Dependent

root employees true false

root employees.e true false

root employees.e.salary true false

root employees.e root.employees.e.salary >= salary true

Table 9.1: Traversal summary generated from Figure 9.2.

Method Calls

How is dealt with method calls depends on whether the called implementation is known

statically. This is always the case for static or final methods, yet not for virtual methods.

Virtual methods may be overridden by subclasses and the called implementation is deter-

mined at runtime, based on the actual type of the entity on which the method is called. If

none of the subclasses override a virtual method, then the called implementation is also

known statically, under the assumption that no additional classes are loaded and classes

remain unchanged. This is called devirtualization.

If the called implementation is known statically, then the caller can prefetch the traver-

sals made on the persistent method arguments of the callee. This is done by combining all

the paths that represent an argument in the caller, with every path that is rooted at the argu-

ment in the traversal summary of the callee. The resulting paths should also be prefetched

by the caller. If a path is defined as a (r,
−→
f ,c,d) tuple, where the variables represent the root,

fields, condition and data dependence flag, respectively, then two paths can be combined as

follows:

(r,
−→
f ,c,d)◦ (r′,

−→
f ′ ,c′,d′) = (r,

−→
f .
−→
f ′ ,c∧ c′,d ∨d′)

The left path represents a value that the caller passes on to the callee, and the right path is a

path in the callee that is rooted at the corresponding argument. After combining conditions,

they may contain arguments and local variables of the callee. Arguments should be replaced

by their value in the caller and conditions containing local variables should be changed to

true.

For method calls that cannot be devirtualized, only the traversals made to compute the

arguments are prefetched by the caller. These traversals are also marked as data dependent.
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The callee should perform its own queries to prefetch data to support traversals made from

method arguments.

Return Values

Every method that returns a persistent value is changed to accept extra arguments. This

allows a caller to pass on its traversals on the return value at runtime, which are detected by

treating method calls as persistent roots. The callee combines these traversals with its own

traversal summary and generates new prefetch queries that support these traversals. After

combining the traversals, the conditions may reference local variables of the caller, which

the caller also passes on to the callee. A caller can also prefetch its own traversals on a return

value, when the return value of a callee is a traversal from one of its method arguments, also

called a pass-through traversal. Another requirement is that the callee is not a virtual method

or that it can be devirtualized. When a caller has performed prefetching for pass-through

traversals, then the callee only has to perform addition prefetching for return values that are

not pass-through traversals.

Recursion

For recursive method calls the traversal summary is not combined with itself recursively,

because that will never terminate. Instead the traversals that are made from its arguments,

to compute the arguments of the recursive call, are marked as recursive traversals in the

traversal summary. When generating a query these recursive paths are unfolded a finite

number of times.

Shortcomings

Query extraction may not prefetch all persistent data that is used by a method, because

persistent values can escape through object properties. This does not break the program,

because these values are fetched automatically by the persistence architecture through lazy-

fetching.

The persistence framework does not know about filtered collections, so if a persistent

collection escapes, then the persistence framework will not automatically reload the collec-

tion as an unfiltered collection. This changes the program when a filtered collection is used

by a part of the program that expects a different filtering. One solution is the remove con-

ditions from paths that represent collection values. Alternatively, it can be detected when

a collection escapes and a reload can be forced when that happens, which is what guided

batch-fetching does.

Difference with Guided batch-fetching

Query extraction executes queries at the beginning of methods, where guided batch-fetching

executes queries just before for-loops. Query extraction uses join-fetching to prefetch prop-

erties, while guided batch-fetching executes another query instead of placing a join, to pre-

vent duplicate entity fetches. Despite these differences both approaches use a similar static
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analysis. However, the static analysis from Chapter 6 also considers a persistent for-loop

iterator to be a persistent root, in order to collect information about individual for-loops.

The static analysis for guided batch-fetching also makes some simplifications. For exam-

ple, local variables are not allowed to occur in conditions and property accesses on values

returned from method calls are only recorded for pass-through traversals. These features

can be added, however, they are less important for WebDSL, because templates only allow

variable assignment at the beginning of a template and templates do not return values.
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Chapter 10

Conclusions and Future Work

This chapter will use the results of the evaluation to answer the research questions. Finally,

some ideas for future work will be discussed.

10.1 Conclusions

In this thesis project, multiple prefetching techniques are implemented in the WebDSL com-

piler. Some simply enable the techniques that are included in Hibernate, while the others

generate extra prefetching code, based on a static code analysis. All these techniques have

in common that they try to reduce the response time by executing fewer queries. Some

optimizations that are unrelated to prefetching are also implemented, as discussed in Ap-

pendix A, because without them negative effects of prefetching techniques could be exag-

gerated. The prefetching techniques are evaluated using the OO7 benchmark in Chapter 7

and using complete WebDSL applications in Chapter 8, which we will use to answer the

following research questions.

How to best prefetch data under various circumstances?

As discussed in Chapter 3 there are two types of queries that can fetch more than one en-

tity or collection at a time, join-fetch queries and queries using a less restrictive condition,

like batch-fetch queries. Join-fetch queries contain joins to prefetch properties of the en-

tity being fetched and batch-fetch queries use a list of identifiers to fetch multiple entities

or collections using a single query. Hibernate subselect-fetching uses sub-queries inside

conditions, which also results in a less restrictive condition.

Using multiple collection joins in a query has the risk of causing Cartesian products,

which results in much data duplication in the recordset and can easily lead to an out-

of-memory exception. To avoid these, collection properties are never join-fetched by the

prefetching techniques implemented in WebDSL. The evaluation shows that the techniques

that do use join-fetching for single-value properties are generally not the fastest, because

they fetch more duplicate entities. Entities are fetched again, because a join always fetches

the related entity, even when that entity has already been fetched.

Join-fetching is still useful when batch-fetching cannot be applied. For example, when
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finding the root of a tree, by accessing the single-value property parent recursively. Using

joins for recursive single-value properties can reduce the number of queries executed. How-

ever, the reduction in number queries should be significant in order to see any benefit, which

would require a deep recursive data structure that is not often found in web applications.

When do the prefetching techniques included in Hibernate improve performance?

The prefetching techniques included in Hibernate improve performance when the same

properties are accessed for all elements of a collection. Accessing a property on only some

elements is likely to prefetch that property for other elements as well. As shown in sub-

sections 7.2.6 and 7.2.7, this can result in increased response times for Hibernate batch-

fetching, caused by fetching too many entities. Entities are prefetched based on their type,

allowing any uninitialized proxy of the same type to be prefetched, even if it is unrelated

to the property being accessed. Therefore, Hibernate batch-fetching is also slower when an

entity has multiple properties of the same type and only one of them is used.

Hibernate subselect-fetching also prefetches a property for all elements in a collection.

This technique is often similar to lazy-fetching, because it only applies to collection prop-

erties. On the OO7 benchmark, subselect-fetching performed well, because a full traver-

sal of the assembly hierarchy is an ideal situation for subselect-fetching. However, when

benchmarking the performance on complete applications, then the subqueries were often

too expensive or prefetched too many entities.

Combining both Hibernate techniques does overcome the inability of subselect-fetching

to prefetch single-value properties, yet it also inherits the flaws of both techniques. Meaning

that subqueries can be quite expensive and the combination of techniques is likely to fetch

even more entities than the individual techniques.

How do the prefetching techniques implemented in WebDSL compare to the tech-

niques provided by Hibernate?

The prefetching code generated by WebDSL relies on a static code analysis from Chapter 6,

to determine the properties that are accessed on a variable. The entities and collections

fetched by guided batch-fetching reflect the actually used ones better than the entities and

collection fetched by the Hibernate techniques. The match between fetched and used en-

tities is better, because batch generation actually accesses the properties for which a batch

is being generated, unlike Hibernate batch-fetching. The static analysis also detects condi-

tions under which entities are used. These conditions are sometimes evaluated during batch

generation or they are placed inside queries. Placing conditions in queries can even reduce

the number of fetched entities below that of lazy-fetching.

From the four techniques that are implemented in WebDSL, two use join-fetching,

which is bad for performance and memory consumption, because they fetch more dupli-

cates. The other two are variations of guided batch-fetching and differ mostly in the number

of queries used. Using a single query per generated batch, or by first splitting batches into

smaller batches with a maximum size of 10. Generating a new query per batch is slightly

more expensive, yet it guarantees only one query per batch. Generating new queries for

small batches is too expensive, however, this can be prevented by combining both variations,

using the static batch queries only for those smaller batches. Both techniques improve the
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performance on the evaluated web applications on average, yet the results may be improved

further with a more fine-grained method of choosing a prefetching technique.

Besides showing better performance than the Hibernate techniques, the guided batch-

fetching techniques also provide more opportunities for a developer to influence the opti-

mizations. The Hibernate techniques can be enabled for individual entities or properties,

and that setting will affect the entire application. The WebDSL techniques allow a devel-

oper to place a manual prefetch specification, to add properties and conditions that the static

code analysis missed. Adding a prefetch specification does not affect the entire application,

because it is defined for a specific variable. The prefetch specification syntax can also be

extended in the future to provide even more control. For example, by allowing a developer

to force a sub-property to be join-fetched, or to exclude a property from prefetching.

10.2 Future Work

In this thesis project we have seen multiple techniques that apply prefetching, with as goal

to improve performance, by reducing the number of queries. Using the second-level cache

can also improve performance and reduce the number of queries, however, has not been

thoroughly evaluated. Appendix A shows how the second-level cache can be used, yet

leaves caching as an option to be enabled manually. Caching can be used in combination

with prefetching. One way is to enable caching for all entities and collections and by trying

to load a batch from the cache, before fetching any remaining elements using a query. This

may still require a similar amount of queries, because entities and collections are evicted

from the cache before they are required again. This may be avoided by caching only those

entities and collections that are likely to be used soon or frequently. One method is to iden-

tify frequently called templates and to generate code that caches any entities or collections

they use. Another way is to look at the links on a page to determine the next possible

requests and to cache entities and collections they have in common.

Currently a WebDSL application is compiled using only one of the implemented pre-

fetching techniques. The evaluation shows that no technique outperforms the others in

every situation. Therefore it may be better to use different techniques in different situations,

which does not need to be limited to techniques that are currently implemented and can, for

example, also include techniques from related work (Section 9). The evaluation also shows

that a combination of techniques can be better than its parts, which is the case for Hibernate

batch-fetching and Hibernate subselect-fetching on the OO7 benchmark. An example of

another possible combination would be guided batch-fetching with a profiling technique

like AutoFetch [11], where the probabilities from the profile can be used by guided batch-

fetching. This combination can avoid the prefetching of properties that are rarely used.

The selection of a prefetching technique to be used does not have to be static and could

be made dynamic, for example, by running a benchmark in be background. Dynamically

selecting a technique may be useful for recursive structures, where it can be unclear how

well a technique will perform. For example, when cycles are not present or very rare, then

join-fetching may be the most effective technique. With many cycles join-fetching is likely

to fetch many duplicates and another technique will be better suited.
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Appendix A

Other Hibernate Optimizations

This chapter presents other optimizations that have been implemented in WebDSL. While

these optimizations are unrelated to prefetching, they do influence test results. Section A.1

explains how the number of automatic flushes can be reduced. Section A.2 is about op-

timizations that prevent the fetching of unused entities. Without these optimizations the

negative effect of prefetching too many entities can be exaggerated, because flushing will

take longer and more uninitialized proxies may be fetched unintentionally. Section A.3 de-

scribes how Hibernate caching is used. Caching was used incorrectly, causing cache misses,

resulting in more lazy-fetch queries.

A.1 Automatic Flushing

Flushing is the operation that writes new and changed entities back to the database. New

entities could have been saved explicitly or they could have been assigned to a property of

an existing entity. Entities have changed, when a value of one of its properties has changed.

Therefore, Hibernate has to look at the properties of all loaded entities to find all the new

and changed entities.

Flushing is not only performed automatically when committing a transaction, because

flushing is also required before sending queries to the database, like those generated by the

HQL or Criteria APIs. Without flushing the queries send to the database will run on old

data and will not return the expected entities. For example, when saving a new entity, then

that new entity cannot be found by queries until a flush has occurred. However, if nothing

needs to be flushed to the database, then flushing is only overhead, because checking for

new or changed entities is done needlessly.

Flushing before queries can be avoided, when it is known that there are no new or

changed entities. Automatic flushing can be disabled by default, because initially there are

no new or changed entities. Automatic flushing can be enabled again inside the setters and

save-functions of entities, because those are the operations that will change entities or add

new entities, respectively. After a flush has occurred, automatic flushing is disabled again,

until another setter or save-function is called.
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A.2 Unintentional Entity Fetching

When working with an ORM framework like Hibernate it is possible to unintentionally fetch

entities. This is not desirable, because entities that are fetched unintentionally are not used

at all and cause unnecessary overhead. The following subsections all explain optimizations

that reduce the fetching of unused entities.

A.2.1 Load versus Get

One way to fetch an entity unintentionally is by calling the get method on the Hibernate

session instead of using the load method. It is easy to mix up the two, because the

difference is very subtle. The load method creates a proxy, which will not fetch the entity

until it is used, while the get method will fetch the entity immediately. Therefore the

load method should be used whenever possible, because this will not fetch entities that are

not used.

However, the load method is not always the right choice, because in some situations

where it is required that an entity is fetched immediately. For example, when an entity might

be used after the Hibernate session has been closed. If a proxy is first used after its session

has been closed, then it will raise a LazyInitializationException , because the entity

cannot be fetched from a closed session. The get method will return the actual entity, and

not a proxy, which can be used after the session has been closed. However, lazy properties

may still contain proxies, so using entities without an open session still requires caution.

Another problem with the load method is that the existence of the loaded entity is not

checked until it is used. The load method never returns a null value and always returns

a proxy. The proxy will try to fetch the actual entity when it is used, which will raise an

ObjectNotFoundException when that entity does not exist. So when it is uncertain if an

entity exists, then it is better to fetch that entity using the get method. The get method

will return a null value when an entity does not exist, allowing for existence checks.

A.2.2 Event Listeners and Interceptors

Another way to unintentionally fetch an entity is when custom event listeners or interceptors

use entities that are passed on to them. Event listeners and interceptors can both be used

to alter or extend Hibernate functionality. Most events have a default implementation, one

example is the DefaultFlushEntityEventListener , which performs dirty checking and

updates during flushes. One way to affect this implementation is by creating an interceptor

that implements the findDirty method, to perform custom dirty checking. An alternative

would be to replace the default event listener with a custom implementation.

Some event listeners or interceptor methods take an entity as argument, however, such

an entity may also be an uninitialized proxy. Custom event listeners or interceptors should

be careful not to initialize such proxies needlessly. Take for example, a custom subclass

of the DefaultSaveOrUpdateEventListener that ensures that all entities have a version

number of at least one before they are saved. That way a version number of one indicates

that the entity has been saved. This custom event listener could fetch unused entities, be-

cause the save-update event is also raised for uninitialized entities and checking the
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version number of those entities would initialize them. However, uninitialized entities have

already been saved and therefore already have a version number of at least one. So the

correct approach here is to skip the version number check for uninitialized entities.

A.2.3 Bidirectional One-to-One Associations

Take, for example, an entity with both a previous and next property, both referencing

another entity of the same type. If a.previous.next and a.next.previous both always

return entity a, given that there are no null values, then both properties are the inverse of

each other. This type of relation is called a bidirectional one-to-one association and only

requires one side of the association to be stored inside the database. Let’s say that only the

previous property is store inside the database, then that property is called the owning side.

The next property is then the inverse side. In order to fetch the next property of entity

a, a query needs to find an entity b, where the previous property points back to entity

a. Only storing one side of the association enforces the inverse relation between the two

properties.

The downside of storing only the owning side is that it becomes harder to configure

lazy-fetching for the inverse side. For the owning side the property is stored inside the

database row of the entity. If the column of the property is not NULL , then it is the identifier

of the associated entity and that identifier is used to create a proxy for the property. For

the inverse side this common scenario does not apply, because the association is not stored

inside the row of the entity. Creating a proxy for the inverse side is now impossible, because

the identifier of the associated entity is unknown, and more importantly, because it is un-

known if there even is an associated entity. If there is no associated entity, then the inverse

side property should be null , which it never is when a proxy has been assigned. Instead of

checking the database for the existence of an associated entity, the entity is fetched imme-

diately, because the fetch query is about as expensive and will prevent an extra round trip to

the database, when the entity is lazy-fetched later on. This is why Hibernate eagerly fetches

the inverse side of bidirectional one-to-one associations by default. When a single query

fetches multiple entities with these inverse side properties, then the eager fetching will still

use separate queries for each inverse side property of every entity, causing the 1+ n query

problem (Chapter 1). The 1+ n query problem is even present when none of the fetched

properties are used. This can be enough reason to store both properties inside the database,

using two unidirectional one-to-one associations that do not enforce the inverse relation

inside the database. Using two unidirectional associations is a performance trade-off, be-

cause unused entity fetches are reduced, at the cost of storing slightly more data and risking

database inconsistencies.

Another solution is to not use proxies and instead change the getters and setters of

inverse side properties, to fetch the associated entity the first time they are called. By

adding the @LazyToOne(LazyToOneOption.NO PROXY) annotation to a property, Hiber-

nate knows that the getter and setter perform lazy-fetching. Hibernate expects that a byte-

code instrumentation task is executed after compilation that changes the getters and setters,

however, the instrumented code will fetch all NO PROXY properties on the first NO PROXY

getter or setter that is called. Instead it is possible to implement the FieldHandled inter-
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face on entity classes, which Hibernate takes as a sign of byte-code instrumentation. After

that NO PROXY properties are not fetched by Hibernate automatically and getters can per-

form their own lazy-fetching, without fetching other NO PROXY properties. This does not

work for the setters, because then changes would not get flushed back to the database. So

setters still do what byte-code instrumentation did and fetch all NO PROXY properties. After

these changes the inverse side properties of bidirectional one-to-one associations are almost

lazy. It is not completely lazy, because the associated entity is fetched by the getter, instead

of the getter returning an uninitialized proxy. Setters are also not completely lazy, because

they may fetch other NO PROXY properties that remain unused.

A.3 Caching

Hibernate has three different caches. The session, second-level and query cache. The ses-

sion cache keeps track of all entities that are managed by that session and is always enabled.

The second-level cache can be used to cache entities across sessions. The query cache is

similar to the second-level cache, yet caches identifiers of query results instead of entities.

In this section we explain how the use of the second-level and query caches are improved.

A.3.1 Second-level Cache

The second-level cache can be used to cache entities across sessions. Caching for a Java

entity class can be enabled by adding a @Cache(...) annotation, that should at least

specify a caching strategy. The caching strategies vary in performance and the way they

handle concurrent updates. The read-only strategy, for example, is very fast, yet does

not handle updates, making it perfect for entities that do not change. The read-write

strategy does update the cache to reflect changes made to entities. Write locks are used

to prevent concurrent updates. As a result, the read-write strategy is slightly slower

than read-only . In WebDSL the read-write strategy is always used, because it is a

safe default. Caching can be enabled on a WebDSL entity by placing the cache keyword

somewhere within the entity declaration.

Sub-entities always inherit cache settings from their super entity, so @Cache(...) an-

notations on sub-entities are always ignored. Cached entities are automatically put into the

second-level cache by Hibernate as soon as they are fetched. The actual caching is handled

by a cache provider, which may have more configuration options. Common examples are

the cache size and eviction policy options. The cache size could, for example, specify the

number of entities that may be cached at one time. And an example of an eviction policy is

least-recently-used, which allows the least recently used entity to be evicted from to cache

to make room for a new one. In most cases it should be left to the developer to specify

which entities should be cached, because the trade-off between performance and memory

usage is hard to make automatically. However, when generating code there may be easy

ways to identify entities that benefit from caching. In WebDSL, for example, entities are

generated for enumeration types. Enumeration types typically have few instances, which

are also small and that is why they probably benefit from caching. Therefore, enumeration

types are cached by default.
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Caching entities alone is not always enough, because collection properties with entity

elements are not cached by default. This can be enabled by adding a @Cache(...) anno-

tation to the property in Java, just like with entities. It is important to note that this caches

just the identifiers of the elements and not the actual entities. The cached identifiers are

used to create a proxy for every element of the collection. The entities of these proxies are

not fetched until they are used. A program will use them one by one, causing a lazy-fetch

query for every proxy, resulting in the 1+ n query problem, unless all entities are found

inside the session or second-level cache. Without caching the collection, all of its elements

will be fetched using only one query, which is more efficient. That is why collections with

entity elements should only be cached when all of its elements are also cached inside the

second-level cache.

Simply enabling caching for the element-type of a collection, is not enough to ensure

that all of its elements are cached inside the second-level cache. Since elements of a col-

lection may be evicted from the cache, in order to make room for new entities of that type,

without evicting the cached collection. As a result, lazy-fetch queries will still be executed

for evicted elements. In order to avoid this problem, caching should only be enabled on

entities when the cache is large enough to hold all of its instances. Under the assumption

that a developer follows this guideline, collection properties are automatically cached when

their element-type is cached.

A.3.2 Query Cache

The query cache only stores the identifiers of resulting entities, which makes caching queries

similar to caching collections. It can also be automatically enabled for queries that return

cached entities, under the assumption that there is enough room inside the cache to store all

instances of the entity-type. There is, however, an extra complication for queries, because

queries may eagerly fetch properties of resulting entities. These eagerly fetched entities

may not be cached and the optimization that was intended by the query is lost when the re-

sults are loaded from the cache. Therefore, queries are not cached when they eagerly fetch

properties and it is assumed that the optimization performed by the query is more important

than caching the results.
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