
 
 

Delft University of Technology

EffFix
Efficient and Effective Repair of Pointer Manipulating Programs
Zhang, Yuntong; Costea, Andreea; Shariffdeen, Ridwan; McCall, Davin; Roychoudhury, Abhik

DOI
10.1145/3705310
Publication date
2025
Document Version
Final published version
Published in
ACM Transactions on Software Engineering and Methodology

Citation (APA)
Zhang, Y., Costea, A., Shariffdeen, R., McCall, D., & Roychoudhury, A. (2025). EffFix: Efficient and
Effective Repair of Pointer Manipulating Programs. ACM Transactions on Software Engineering and
Methodology, 34(3), Article 69. https://doi.org/10.1145/3705310

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3705310
https://doi.org/10.1145/3705310


EffFix: Efficient and Effective Repair of Pointer
Manipulating Programs

YUNTONG ZHANG, National University of Singapore, Singapore, Singapore
ANDREEA COSTEA, TU Delft, Delft, Netherlands
RIDWAN SHARIFFDEEN, National University of Singapore, Singapore, Singapore
DAVIN MCCALL, Oracle Labs, Brisbane, Australia
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore, Singapore

This work introduces EffFix, a tool that applies a novel static analysis-driven automated program repair
(APR) technique for fixing memory errors. APR tools typically rely on a given test-suite to guide the repair
process. Apart from the need to provide test oracles, this reliance is also one of the main contributors to
the over-fitting problem. Static analysis based APR techniques bypass these issues only to introduce new
ones, such as soundness, scalability, and generalizability. This work demonstrates how we can overcome
these challenges and achieve sound memory bug repair at scale by leveraging static analysis (specifically
incorrectness separation logic (ISL)) to guide repair. This is the first repair approach to use ISL. Our key insight
is that the abstract domain used by static analysis to detect the bugs also contains key information to derive
correct patches. Our proposed approach learns what a desirable patch is by inspecting how close a patch is
to fixing the bug based on the feedback from ISL based static analysis (specifically the Pulse analyzer), and
turning this information into a distribution of probabilities over context free grammars. This approach to
repair is generic in that its learning strategy allows for finding patches without relying on the commonly
used patch templates. Furthermore, to achieve efficient program repair, instead of focusing on heuristics
for reducing the search space of patches, we make repair scalable by creating classes of equivalent patches
according to the effect they have on the symbolic heap. We then conduct candidate patch validation only once
per patch equivalence class. This allows EffFix to efficiently discover quality repairs even in the presence of a
large pool of patch candidates. Experimental evaluation of fixing real world memory errors in medium to
large scale subjects like OpenSSL, Linux Kernel, swoole, shows the efficiency and effectiveness of EffFix— in
terms of automatically producing repairs from large search spaces. In particular, EffFix has a fix ratio of 66%
for memory leak bugs and 83% for Null Pointer Dereferences for the considered dataset.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Formal software ver-
ification; Maintaining software; • Security and privacy→ Logic and verification; • Theory of computation
→ Program analysis;

Additional Key Words and Phrases: Automated Program Repair, Incorrectness Separation Logic, Probabilistic
Context Free Grammars
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1 Introduction
Despite decades of efforts put into avoiding or mitigating memory safety errors (which are errors
in handling memory in native programming languages such as C), recent surveys show that this
class of issues still accounts for two of the three most dangerous software weaknesses reported
in 2021 [1]. For example, reports show that 60% of the high-severity security vulnerabilities and
millions of user-visible crashes in Android are due to incorrect memory handling, while Google
announced that 70% of all security bugs in Chrome in 2020 are memory safety issues. Given the
ever increasing reliance on software and its growing complexity, if left unattended, memory safety
bugs in legacy code will continue to prevail and will negatively impact the user experience and
trust in software. Therefore, providing the tools and technologies to fix such bugs in a timely and
efficient manner is a critical endeavour. Yet, this is easier said than done.

Approaches to automated program repair (APR). Advances in APR techniques [2] show promise
in dealing with the problem of bug repair. These techniques predominantly use test cases as a
specification of program correctness. However, providing only a loose specification, tests are
rarely exhaustive, thus making such techniques prone to over-fitting to the test. Furthermore, the
conventional generate-and-validate approach assumes the following sequence of steps for each
patch candidate: select a patch from a pre-defined search space and validate it for correctness by
running the patched program against the given test cases. Repeated for each candidate patch and
given a sufficiently large search space, this process turns out to be quite expensive.

FootPatch [3] and SAVER [4], the state-of-the-art techniques for repairing memory safety bugs,
reduce the reliance on test suites for patch validation in favour of using the advances in static
analysis to determine the correctness of patches. FootPatch demonstrates that this direction is
a promising one, managing to generate fixes for large codebases. SAVER further increases the
effectiveness of static-analysis based repair by designing a novel representation of the program
called object flow graph which summarizes the program’s heap-related behavior using static
analysis, and resulting in a methodology which generates only safe fixes. However, this is still not
quite enough. On the one hand, FootPatch is shown to produce unsound repairs [4], where fixing a
memory leak bug could potentially lead to double-free issues. On the other hand, SAVER’s reliance
on its object flow graph makes it a sound tool, but it restricts its bug-fixing capabilities to only
those identifiable by a specific heap access pattern. Consequently, SAVER cannot address bugs like
Null Pointer Dereference, which do not conform to a specific pattern.

Our Approach to APR. In this article, we present a scalable, sound and generic methodology to fix
memory related bugs without the need of test cases, implemented in a tool called EffFix. Inspired by
the state of the art in repairing memory errors, EffFix relies on existing static analysis tools that are
designed to find a semantically rich class of memory bugs. Differently than existing methods, EffFix
is a sound and generic repair engine which is not restricted to rigid repair patterns. EffFix replaces
the conventional patch synthesis followed by test-based validation with a novel synthesis and
validation technique which work in tandem towards discovering what a correct patch is. In doing so
it efficiently navigates the search space of candidate patches, and results in high repairability with
a generic synthesis engine. To achieve this we adapt the advances of incorrectness separation
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Fig. 1. An NPD bug and its fix in OpenSSL [7]. Fig. 2. A memory leak bug and its fix in p11-kit [4].

logic (ISL) [5, 6] for precise bug finding to the problem of automatically repairing memory leaks
and null pointer dereference bugs (NPD).

In a nutshell, our approach relies on ISL to describe the semantic effect the patch has on the
symbolic heap, and to choose correct patches. Since the search spacemight be quite large, we propose
to categorise patches into equivalence classes based on their semantic effect, and subsequently only
validate one representative patch per class. Furthermore, to increase the likelihood of producing
mostly correct patches, the synthesis checks how close a patch is to fixing the bug, by checking the
patch’s effect on the bug, and focuses on regions in the search space which have a high chance
of producing plausible patches. In particular, we describe the entire space of solutions using a
probabilistic context free grammar (PCFG) and learn which of its production rules are most
likely to be involved in a plausible patch. This allows for a generic, yet efficient synthesis engine,
which is not constrained by custom bug templates or specifications.

The contributions of this work are as follows:

—a scalable approach for static analysis driven repair; the approach partitions large search spaces
into semantic effect based equivalence classes, enabling efficient validation and scalability;

—a generic APR engine based on static analysis which does not require bug specific templates
or specifications to fix a given bug; instead it relies on the feedback from the analyser to
understand what a bug and its correct patch are. Patch location is the only bug-specific
component, and for this we provide an automatic solution to find it.

—an effective navigation of the solution space based on PCFG, which favours the production
rules with higher chance of deriving a plausible patch;

—an open source tool, EffFix, which implements our approach to fix memory safety issues.

2 Motivation and Overview
We next highlight some of the key aspects of our approach to APR for Null Pointer Dereferences
and memory leaks and support these choices by means of examples.

The Case for Static Analysis. Consider the NPD in Figure 1, a bug previously reported in OpenSSL.
Under low memory, OPENSSL_malloc returns NULL, thus leading to a null pointer dereference
during the call to memset which takes param as an argument. The issue here is that explicitly
checking param to be a non-null value—as per the fix indicated by (+) in the considered snippet—is
not a standard practice within this project since, unlike OPENSSL_malloc, most malloc wrappers
in OpenSSL abort if the result is NULL. The reservations developers have in acknowledging and
fixing such bugs is highlighted in the conversations the authors of a static analyser used at Meta
had with the OpenSSL maintainers [5]. The memory leak in Figure 2 happens only on a very
specific program path influenced by the outcome of the call to return_val_if_fail. Attempting
to resolve it on any other path could not fix the memory leak entirely, or lead to other memory
safety issues. For example, if the free(slots) introduced by a naïve patch gets executed on the
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same execution trace as the free(slots) that already exists later in the code (for brevity, not
shown in this snippet), it could lead to a use-after-free or a double-free issue.

To uncover and fix difficult to detect pointer manipulating bugs, the bug detector should un-
derstand the semantic effect a statement may have on the heap even in exceptional cases. This is
hardly possible by means of dynamic testing because of the non-deterministic nature of dynami-
cally allocated data structures and the difficulty of tracking alias information, which explains why
so many memory related errors in production remain uncovered or unfixed for many years. In
contrast, it has been empirically shown that static analysis is capable of uncovering even such
corner cases since static analyses generally quantify over all possible effects a program may have
[5]. We leverage the advances in ISL, a logic tailored for proving the presence of memory bugs, to
describe the semantic effects programs have on the heap, and to guide the repair process towards
the correct patch, i.e., a patch removing the unwanted semantic effects.

We shall use the potential NPD in Figure 1 as our running example. An ISL bug detector is
able to infer that a call to OPENSSL_malloc may result in two different valid program states, one
corresponding to an empty memory footprint when the allocation fails, and another one where
the allocation succeeds with a footprint comprising a single memory cell abstracted by a symbolic
variable - :

[emp] param = OPENSSL_malloc(. . .) [ok : param ↦→ nil]
[emp] param = OPENSSL_malloc(. . .) [ok : param ↦→ - ∗ - ↦→ _]

Informally, the above abstract states (simplified for brevity) read as follows: starting from an
empty heap, the program may result in a valid state (indicated by the label ok) where the resulting
pointer points to nil, or in a valid state where the param points to a symbolic heap location X that
stores an unspecified value _. The first state causes issues at the call to memset at line 95 (ignoring
the fix) since it requires param to point to a valid memory location. This possible Null Pointer
Dereference is captured by the abstract states after the call to memset as follows:

[param ↦→ nil] memset(param, . . .) [err : param ↦→ nil]
[param ↦→ - ∗ - ↦→ _] memset(param, . . .) [ok : param ↦→- ∗ - ↦→ 0]

Since there is no modification in the erroneous symbolic state other than the label which changed
from ok to err, it seems difficult to automatically derive a fix by simply looking at the program’s
abstract state. That is why, instead of adopting the abstract-state driven template-based patch search
[3] which restricts the classes of derivable patches, we opt for a generic synthesis based on context
free grammars (CFG), and only use the abstract state for validation purposes. We seek to derive
patches that always lead to valid abstract states, i.e., no memory safety bugs, while keeping the
code’s functionality unchanged.

TheCase for Equivalence Classes.The advantages of a CFG driven synthesis are clear, i.e., genericity
and simple machinery, and so are its disadvantages, i.e., poor efficiency due to a large search space
which makes validation expensive. We aim to keep the advantages of our approach, while striving
for efficiency. To this purpose, as we gradually derive more patches, we refine the search space of
patches into equivalence classes, i.e., patches with indistinguishable effects on the symbolic heap,
and, by doing so, we need not validate every generated patch but only one representative patch per
equivalence class.

Consider the patches in Figure 3—patches that could be generated for the example in Figure 1.
Although there are small syntactic differences between them, semantically they are equivalent. This
equivalence is made obvious by the representation of the semantic effects these patches have on
the symbolic heap depicted below each patch. We simplified the view of the heap, from formulae in
ISL to sets of disjoint symbolic memory locations; in particular we use the empty set {} to denote

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 69. Publication date: February 2025.



EffFix: Efficient and Effective Repair of Pointer Manipulating Programs 69:5

Fig. 3. Equivalent patches and their effects for the bug in Figure 1.

Fig. 4. Non-solutions for the bug in Figure 1.

an empty memory footprint, the singleton {- } to denote a memory footprint comprising a single
memory cell, and the implication param = nil =⇒ ok : {} ∧ ret = nil to denote the pair of path
condition param = nil on the left hand side of the implication, and corresponding heap abstraction
on the right hand side of the implication (ret is a dedicated keyword indicating the returned value).
In this new notation, where we no longer use ISL, the specification of the buggy program in Figure 1
looks as follows:

param = nil =⇒ err : {} ∧ ret = nil
param ≠ nil =⇒ ok : {- } ∧ ret = param

It becomes evident that all the patches in Figure 3 have the same effects on the symbolic heap,
and we need only validate one of them to conclude the validity of all the others. The size of one
such class may exponentially grow with the size of the symbolic heap and the number of existing
aliases.

Fig. 5. Randomly navigate the space of patches (1)
until a patch that affects the buggy path (2) is dis-
covered. Continue the exploration in its vicinity until
we hit a sub-space that only affects the buggy path
(3), thus moving the exploration closer to discovering
plausible patches. The sub-space of patches that fix
the bug (4) is further refined into one with patches
that preserve the code’s functionality (5).

The Case for PCFG. Exploring a large search
space of patches may yield significant time spent
on incorrect patches. Ideally, we would like to
spend less time exploring patches belonging to
classes of incorrect patches, and instead focus
in regions in the search space (in the form of
CFG productions) which are more likely to pro-
duce correct patches. To do this we equip the
CFG with probabilities which indicate the like-
lihood of a certain production rule to be fired in
a correct patch. However, understanding what a
correct patch is in the absence of a specification
is tricky. We break the patch correctness crite-
rion into three simple requirements, and show
how the probabilities ascribed to the CFG change
according to how many of these requirements the
generated patch respects, or in other words, ac-
cording to how close the patch is to fixing the bug.

To simplify our explanation, we refer to the
diagram in Figure 5: the circle labelled with (1) is
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the set of all possible patches, while the intersection of spaces (3) and (5) is the set of plausible
patches—(3) is the set of patches that only affect the buggy path and (5) is the set of patches that fix
the bug without changing the program’s returned values (we informally call this weak-functionality
preservation). (2) is the sub-space of patches which have an effect on the buggy path but do not
necessarily fix the bug and, in addition, they might affect other paths too. (4) is the sub-space of
patches that fix the bug, but may break functionality. Ideally, we would like to gradually bias the
search spaces towards the intersection of sub-spaces (3) and (5).

The first and most obvious requirement is for the patch to actually fix the bug. For example, all
patches in Figure 3 and the one in Figure 4(b) fix the bug, however, the patches in Figure 4(a) and
(b) are non-solutions since they change nothing on the buggy path and therefore NULL can still
flow into memset. We reward the production rules used in generating the patches which fix the bug
(they are all in space (4) of solutions), while offering no rewards for those in the incorrect patches
since they have no effect on the buggy path, i.e., patches outside space (2). An if − then production
rule was used in generating both plausible and incorrect patches. Choosing not to reward it in
the incorrect patches, instead of, say, penalizing it, allows us to still explore the space of patches
containing if − then with the reward obtained from the correct patches, albeit guarded by different
conditional expressions.

A closer inspection of the code in Figure 4(c) reveals that although it fixes the NPD, this patch
is actually a non-solution: apart from fixing the bug it also changes the intended functionality of
the program since it affects the case where param is not NULL and introduces a potential memory
leak. This leads us to the second requirement which states that the patch should only affect the path
on which the considered bug manifests, e.g., when param is NULL, and the third requirement which
states that the patch should introduce no new bugs; in other words, the patch in Figure 4(b) is in the
sub-space (4) in Figure 5 since it fixes the bug, but not in sub-space (3) since it affects more than
just the buggy path. Although a non-solution since it does not respect these two requirements, we
still choose to reward the patch in Figure 4(b), albeit with a smaller reward than the patches in
Figure 3 receive. The reason for this design choice is that non-solutions may offer insights into how
to remove the bug according to the sub-space they are in. For example, so far we have learnt that
if − then is highly likely to be part of a correct patch, and that, although with a lesser probability,
app_malloc can also fix the bug. This setup could potentially lead to a correct patch that wraps the
app_malloc into a conditional affecting only the buggy path.

Generally, we choose to bias the search towards the space of plausible patches from two different
but complementary dimensions which are evolving in parallel after a while: discovering the correct
path and discovering the correct effect. To do that, the PCFG-based synthesis offers:

—no reward for the patches outside sub-space (2) since we learn nothing about a plausible fix
from such patches—it is likely that at the beginning of the synthesis process most randomly
generated patches will fall into this category;

—partial reward for path discovery for non-solutions in sub-space (2) but not in (3)—they offer
information about the path on which we should look for a plausible patch;

— full reward for path discovery for patches in sub-space (3)—they only affect the buggy path;
—no reward for effect discovery for patches outside sub-space (4)—they do not fix the bug;
—partial reward for effect discovery for patches in (4) but not in (5)—they fix the bug but may
change the program’s behavior.

— full reward for effect discovery for patches in (5)—they fix the bug and preserve weak-
functionality.

Section 3 formalises the proposed PCFG, and Section 5 discusses how we choose some of its
parameters.
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Fig. 6. Framework overview.

Getting back to the patch in Figure 4(c)—a patch in sub-space (4) but not in (3)—we mentioned
earlier that this patch receives a smaller reward than the patches in Figure 3 receive. Yet, according
to the guidelines on rewards we just mentioned it seems as if it should receive a full reward, hence
seemingly contradicting our earlier statement. What happens is that the patch in Figure 4(c) gets
full reward for effect discovery, but gets only partial reward for path discovery, while the patches in
Figure 3 are fully rewarded for both path and effect discovery. In other words, the rewards on path
and effect discovery compose leading to a smaller overall reward for the patch in Figure 4(c). This
explains how non-solutions may still reveal useful information allowing the exploration of patches
to get closer to plausible ones since generating solutions like those in Figure 3 may be harder to
come by as the space of plausible patches is often small, while useful non-solutions lie in larger
spaces.

SAVER [4], the state-of-the-art in repairing memory related bugs, is unable to generate a fix for
our running example since the object flow analysis on which it operates manipulates events and
non-allocation cannot be modelled as an event. FootPatch does handle null pointer dereferences
but its search and template-based methodology cannot always generate fixes on specific paths, if
the fix template has not been seen before—leading to restrictive fixes.

3 Methodology
This section describes how bugs are detected, how patches are synthesised using PCFG and sub-
sequently classified into equivalence classes according to the effect they have on the program’s
footprint.

3.1 Repair Framework Overview
Figure 6 offers a summary view of our APR framework based on static analysis. In our approach,
the static analysis is responsible for detecting the bug, for computing the semantic effects the bug
and its corresponding patch have on the program’s memory footprint, and for validating the patch.
To start with, the analysis defined on an abstract domain D (ISL in our case) and taking a buggy
program as input, detects the bug (1), computes the bug’s semantic effect (2) and it then creates
a summary of the bug (the footprint of the buggy method, the path condition on which the bugs
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manifests, and the culprit statement). The bug’s summary is then used by the repair engine for
extracting the ingredients for the patch (3) and for identifying the fix location (4). A patch is then
synthesised using a PCFG (5). We investigate the effects the patch has on the memory footprint
by creating a summary of the buggy method after having applied the newly created patch (6).
Synthesised patches are then clustered into equivalence classes according to their effect on the
symbolic heap (7). Only one representative patch per class (8) is then send out for validation (9).
The results of the validation, e.g., does the representative patch remove the considered bug or does
it affect other paths than the buggy ones, are transmitted back to the repair engine in order for
it to fine-tune the probabilities ascribed to the PCFG. In other words, the probabilities implicitly
reflect how the search space should be navigated. We note that, to break the dependency on the
static analysis, that is, on the ISL domain, we further abstract the bug and patch summaries using a
simplified abstract (meta-)domain, D′, on which the repair functions. This meta-domain mostly
retains information about what memory cells have been allocated and deallocated, and about the
program paths and exit conditions.

3.2 Bug Detection
We build our approach on top of Pulse [8], an industry-grade static analysis tool which soundly
detects memory safety violations. Pulse uses the latest advances in ISL, a logic tailored to reason
about the presence of bugs for heap-manipulating programs. Pulse first abstracts the C input
program to an intermediate language, the smallfoot intermediate language (SIL), and then runs
an abstract interpretation engine to check for safety bugs.

Program Model. A SIL core set of expressions and commands is depicted in Figure 7. A program in
SIL is a sequence of procedures, and a procedure is a composition of heap manipulating commands
and standard commands, such as allocation, deallocation, conditionals, etc. The storage model
comprises a stack and a heap, where the stack is a function from the set of program and logical
variables to values, and the heap is a partial function from symbolic heap locations to values.
A state thus models a stack and a heap, and together with an environment which tracks the values
associated with program and logical variables it models a Pulse world.

The Abstract Domain (D). The abstract domain on which Pulse operates when symbolically
executing the SIL commands is depicted in Figure 8: a symbolic heap Δ comprises a spatial term k
and a pure, first order logical formula, c to account for pointer aliasing and non-heap information.
The spatial term emp is an assertion to denote an empty heap, v ↦→ X is the points-to assertion for
the program variable v, while Y ↦→ X is the points-to for logical variables. X 6↦→ denotes memory
deallocation, and the separation logic conjunction k ∗ k denotes disjoint sub-heaps. An abstract
state Φ is defined as a pair of a program path c and a symbolic heap Δ.

Bug Detection. Pulse uses summaries (specifications) of predefined instructions to infer the
summary (specification) of a given piece of code [5]. At the core of Pulse is the ISL (under-
approximate) triple [Φpre] 2 [n : Φpost] which asserts that any final state satisfying Φpost is reachable
by executing 2 starting from an initial state satisfying Φpre . Furthermore, the exit condition n

indicates either a normal termination, i.e., ok, or a buggy one, i.e., err. The pair (Φpre, n : Φpost)
describes the effect 2 has on one program path, and a set � (Figure 8) of such effects describes the
memory footprint of 2 where each effect in the set corresponds to a unique program path.

Bug Description. A bug report in Pulse comprises the information n about the bug kind, e.g., null
dereference, and the culprit statement 2 , e.g., the statement which dereferences a null pointer. On
top, we record the summary of the method which contains the bug, � , and the path c , written as a
first order logic formula, onwhich the bugmanifests. A bug is defined in terms of the following tuple:

1 ::= 〈n, c, 2, � 〉.
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Fig. 7. Core (simplified) programming language.

Fig. 8. Abstract domain for bug detection (D).
Fig. 9. Abstract domain for equivalence checking
(D′).

For a bug 1 we will often refer to an element of the tuple using the dot notation, e.g., 1.� . The
same notation is used throughout the article for other kinds of tuples as well.

3.3 Patch Synthesis with Probabilistic CFGs
This section discusses the basic element of the engine for patch synthesis: the search space of all
possible solutions.

CFG. Instead of working with fixed templates, we propose a synthesis engine that works over a
generic CFG as the one introduced in Figure 7 to define the search space of all possible patches. A
patch % is either additive, INSERT 2 loc, which inserts a command 2 at location loc, or a deletion,
COND False loc, which removes the command at line loc.

PCFG. We further refine the CFG in Figure 7 into a PCFG tailored for our approach to APR. In a
CFG, a non-terminal symbol may be expanded in n different ways, e.g., a command 2 in Figure 7
may be expanded in 8 different ways. In a PCFG, each production rule comes annotated with a
probability ? , denoting the probability of this rule being selected, with the proviso that the sum
of probabilities of all n production rules should be 1, e.g.,

∑8
8=1 ?8 = 1 for the production rules of

command 2 .
In our approach, instead of annotating the production rules with one probability, we do so

with a pair of probabilities denoted by 〈?c , ?4〉, with the same proviso holding separately for each
probability in the pair, e.g.,

∑8
8=1 ?

c
8
= 1 and

∑8
8=1 ?

4
8 = 1 for the production rules of command 2 . This

design choice was made so as to be able to navigate the search space of patches from two different
dimensions in parallel: finding patches with a high-probability of affecting only the path on which
the bug was found (corresponding to probability ?c ), and finding patches with a high-probability of
having an effect on the heap state which fixes the considered bug (corresponding to probability ?4 ).

Assuming this pair of probabilities is set for each production rule (we detail in Section 3.4 how
the probabilities are learnt), we generate patches by simply traversing the grammar and choosing
production rules based on the product ?c ∗ ?4 , since we treat the event of generating a patch which
affects the buggy path and the event of generating a patch with the correct memory effect to be
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independent of each other. To avoid the risk of leading to a very large (possibly infinite) parsing tree,
we bound the size of the tree to a height ℎ. However, this poses the risk of generating syntactically
incorrect patches when the height ℎ is reached. To avoid this, choosing the next production rule
is a function of the rule’s given probability and height: if the height of the generated tree is ℎ, we
prioritise production rules which lead to syntactically correct patches regardless of their probability;
else, the probability is the sole deciding factor in choosing the next production rule.

3.4 Learning Probabilities
Starting from a PCFG with a uniform distribution (with regards to the pair of probabilities), we
ascribe probabilities to this PCFG with the aim of increasing the likelihood of mostly navigating
regions of plausible patches in the search space. Our strategy is to reward the production rules
which lead to a patch that impacts the path the bug manifests on and those which lead to a patch that
favourably affects the bug’s memory footprint. This strategy allows us to learn the path the patch
should affect even in the absence of a desirable effect on the memory footprint. And vice-versa.

Once a patch % has been generated from the PCFG and its effect derived, this effect is further
examined to decide in which sub-space (as per Figure 5) % belongs to and then reward the production
rules which led to it accordingly. In other words, the outcome of this examination suggests how ?c

and ?4 of the production rules used to derive % should be adjusted, i.e., learnt. The adjustments
can either be partial or full, as discussed in Section 2. For partial/full adjustment, our strategy uses
pre-defined adjustment factors to determine how the probabilities are reassigned.

Let us assume a production rule A1 was used in deriving % , and that the current probability of
A1 for path discovery is ?c1 = 0.4. Also assume that the grammar has only three rules 2 := A1 |A2 |A3,
and that the adjustment factors for partial/full adjustments are U? and U 5 , respectively. If the
examination of the effect indicates that A1 should be given full reward for path discovery, then
all probabilities for the rules in 2 should be adjusted. This adjustment involves re-distributing
probabilities from A2 and A3 (the rules that were not used in deriving % ) to A1, essentially rewarding
production rules that were used to derive a correct/partially correct patch. Our strategy computes
the probability of not choosing A1 and reassigns part of it proportional to U? to A1, thus implicitly
de-prioritizing A2 and A3. Suppose ?c2 = 0.2, and ?c3 = 0.4. The probability of not choosing A1 is then
0.2+ 0.4 = 0.6. The adjustment of the probabilities for path discovery are as follows: ?c1 is increased
by 0.6 ∗ U? , while ?c2 is decreased by 0.2 ∗ U? and ?c3 is decreased by 0.4 ∗ U? .

This rewarding scheme gives a higher reward when the current probability of rule being rewarded
is low, and gives a lower reward when the current probability becomes higher. This design choice
makes the probability learning faster initially, and smooth down later on.

3.5 Patch Clustering
To reduce the cost of patch validation we progressively refine the solution space by identifying
classes of equivalent patches, and proceed with only validating one representative patch per class.
Two patches are equivalent if we can show that they lead to patched programswhich have equivalent
memory footprints, or, stated differently, they have the same effect when applied on the buggy
program. Given an ISL triple [Φpre] fnc [n : Φpost], the memory footprint of fnc is described by the
two memory snapshots/states, Φpre and n : Φpost, respectively. Reasoning about equivalent memory
footprints would require reasoning about equivalent ISL formulas, which in turn requires ISL logic
entailment checking. These requirements seem costly and highly dependent on the bug detector’s
domain. To break this dependency and make our approach agnostic to the bug detector, we design
a meta abstraction on top of ISL which simplifies the description of the memory snapshot. Figure 9
describes the meta domainD′ used for equivalence checking, while, defined as a recursive function
abs, Figure 10 introduces some of the main abstraction rules for translating a state from ISL to
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Fig. 10. Abstract domain transformation (D→D′).

D′. A memory snapshot in D′ is described by a tuple q comprising a path c in first order logic, a
return value ret described in first order logic, a set of allocated symbolic memory cells H, a set of
deallocated symbolic memory cells D, and a set of pointer aliases A. A meta-effect is a tuple 4 which
comprises the exit condition n ( ok or err) and two memory snapshots qpre and qpost, corresponding
to the inferred precondition and postcondition, respectively.

Considering the definition of a meta domain D′ as per Figure 9, we can now define indistin-
guishable meta-effects in terms of indistinguishable states in this meta domain.

Definition 1 (Indistinguishable Meta-states). Two states q1 and q2 are said to be indistinguishable,
denoted by q1 ≈ q2 if and only if the following condition holds:

q1.c ⇔ q2 .c ∧ q1.� = q2.� ∧ q1.� = q2.�,

where the equality on sets is defined modulo the alias information in q1 .� and q2.�, respectively.

Definition 2 (Indistinguishable Meta-effects). Two meta effects 41 and 42 are said to be indistin-
guishable, denoted by 41 ≈ 42, if and only if the following condition holds:

41 .n = 42 .n ∧ 41.pre ≈ 42.pre ∧ 41.post ≈ 42 .post.
So far we talked about a memory footprint as if it comprises a single pair of pre- and post-

conditions. However, programs are often ascribed multiple such pairs to account for different
behaviours on different program paths. A memory footprint is thus a set of pair of states in ISL, �
in Figure 8, which corresponds to a set of effect tuples in the meta-domain D′, F in Figure 9. We
define indistinguishable footprints as follows:

Definition 3 (Indistinguishable Meta-footprints). Two footprints F1 and F2 are said to be indistin-
guishable, denoted by F1 ≈ F2, if and only if the following condition holds:

(∀41 ∈ F1, ∃42 ∈ F2 : 41 ≈ 42) ∧ (∀42 ∈ F2, ∃41 ∈ F1 : 41 ≈ 42).
In other words, two footprints are indistinguishable if they have indistinguishable meta-effects

on each path. Equivalent patches are now simply defined as:

Definition 4 (Equivalent Patches). Two patches %1 and %2 which lead to footprints �1 and �2,
respectively, when applied to the same buggy program, are said to be equivalent if and only if their
corresponding footprint meta-abstractions, F1 and F2, respectively, are indistinguishable: F1 ≈ F2.

We use the above definition of equivalent patches to progressively partition the search space
into classes of equivalent patches. The benefit of this partitioning is that we only need to validate
one patch per class of plausible patches. Given a bug 1, a class of plausible patches is one where all
patches % meet the following condition:

∀4 ∈ % .F : (4.post.c ⇒ 1.c) ⇒ 4.n = ok.
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In other words, the path on which the bug manifests is now labelled with an ok exit condition,
i.e., the bug is fixed.

3.6 Patch Location and Ingredients
Pulse reports the location where the bug manifests, but we would like a fix at its source. For this
purpose we adopt and further adapt the Spectrum Based Fault Localization or SBFL [9] to static
analysis settings. SBFL identifies faulty program locations by considering control-flow differences
in the program executions on passing and failing test cases. These control-flow differences are then
used to compute a suspiciousness score for each program element (e.g., statements or basic blocks)
using various metrics such as Tarantula [10] or Ochiai [9]. SBFL requires a test suite to generate
passing and failing program execution traces. We adapt SBFL to the static analysis setting where
no concrete test cases are available. Our observation is that a path-based static analysis considers
the program behaviors on each possible program paths, and these path-associated behaviors can
be considered as “abstract tests” used in an SBFL algorithm. Concretely, based on the bug detection
abstract domain described in Figure 8, we additionally record the program statements ( appeared
on each path during the analysis. For each program path, we obtain the pair 〈n, (〉 where n is the
exit condition of the path (i.e., one of {ok, err, 01>AC}). The pair 〈n, (〉 can be considered as the
“execution result” and the “execution trace” of an “abstract test” that drives the program through
a specific path. We then compute the SBFL metric (Ochiai in our case) based on the collection of
〈n, (〉 pairs from all program paths analyzed by Pulse. We note that since Pulse already computes
the exit condition n for each analyzed path, our adaptation only requires minimal modification to
the analysis, which is to record the statements covered during the symbolic analysis.

The SBFL result is a ranked list of statements, which serve as the candidate fix locations. We
further run a simple control flow graph based CodeQL query to filter out unlikely fix locations
based on the bug type. For example, for memory leaks, we only keep the descendant statements
to the leak location. Users can optionally provide additional queries to refine the list of candidate
locations. Finally, the filtered top-ranked locations from SBFL are used as the final set of fix locations
in EffFix. We note that the patch localization is fully automated.

The patch ingredients such as variables are computed by a simple taint analysis starting from
the culprit object. Other ingredients such as constants and labels are collected within the same
function scope as the fix location.

3.7 Putting It All Together
Now that we have identified most phases of our approach to APR, we outline how they are
interconnected in Algorithm 1. Given a buggy program P, the algorithm incrementally populates a
map " with classes of plausible patches for the bugs detected by Pulse (line 4). For each bug 1, it
determines all the possible locations where the patch could be inserted (lines 6) and collects the
ingredients for the patch synthesis (line 7). Starting from a uniform distribution of a PCFG � (line
8), the synthesis of each new patch (line 11) triggers a refinement of the patch equivalence classes
and an update of the probabilities (line 12). Lastly, we validate only the classes of plausible patches
(lines 13–14) by choosing a representative patch per class - we use a simple ranking metric which
measures the size of the patch’s AST.

Optimization. We mentioned in Section 3.5 that two patches are equivalent if their footprints
are indistinguishable. This implies that every time we generate a new patch we should test it
against every other already generated patch to check whether they are indistinguishable, or in
other words whether they belong to the say equivalence class. Although correct, this would be an
expensive process. Instead, we expand on the definition of indistinguishable effects to define what
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Algorithm 1: Main
1 Input: a buggy program P
2 Output: a map M from bugs to sets of patches
3 M← InitMap()
4 � = detect the bugs in P
5 for 1 ∈ � do
6 locs← determine the fix location for bug 1 /* see Sec. 3.6 */

7 I ← collect vars and constants in P related to bug 1
8 G← construct a PCFG with terminals I and uniform distribution /* see Sec. 3.3 */

9 C ← ∅ /* empty set of patch clusters */

10 for loc ∈ locs do
11 while % = synthesise a patch using �,I, loc do /* see Sec. 3.3 */
12 C,G← RefineEqivClasses(C,% ,G,1)
13 C′← filter C for classes of plausible patches
14 C′′← validate C′ picking one patch per class
15 M← update M with 1 → rank(C′′)/* rank returns the highest ranked patches */

a summary of an equivalence class is, and subsequently only compare a newly generated patch
against equivalence class summaries.

This optimizations states that two patches are equivalent if they affect the buggy program in
which a bug 1 manifests in the same way. To this purpose, we define a distance relation between
a patch and a bug as the symmetric set difference between the sets of allocated and deallocated
symbolic heaps for each effect in % and its corresponding effect in 1:

% .F − 1.F , {4% − 41 |4% ∈ % .F and 41 ∈ 1.F },
where 4% − 41 , the difference between effects, tracks how the exit condition changed, 4% .n → 41 .n ,
the difference between pre-conditions, and the difference between post-conditions. % .F and 1.F
are the result of recursively applying the abstraction function abs on % .� and 1.� , respectively. The
difference between meta-states is defined as follows (where A flags whether the patch changes the
returned value, or in other words whether weak functionality is preserved):

q − q1 , {(c, A, � 	 �1, � 	 �1, � ∪�1) | c ⇒ c1 and A = (ret⇔ ret1)
(c, ret, �, �,�) = q and (c1, ret1, �1, �1, �1) = q1}.

It is this difference, namely % .F − 1.F , that is used as equivalence class summary. With each new
patch the equivalence classes are refined as depicted in algorithm 2, where the difference between
meta-states is used to determine the patch equivalence (line 4). A benefit of refining the patch
equivalence using this relation is that it allows us to compute the rewards for the PCFG (according
to the case analysis described at the end of Section 2) at the equivalence class level, instead of
computing them separately for each synthesised patch (line 6 and line 9).

4 Implementation
We implemented our approach on top of Pulse,1 a sound static analyser for bug finding in the
Infer toolchain used at Meta. We use Pulse to detect bugs, to derive method summaries which
we then use to inspect the effect patches have on the symbolic heap, and to validate patches.

1The version which comes shipped with Infer-7499c03
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Algorithm 2: RefineEqivClasses
1 Input: a set of existing patch clusters C, a patch % , a PCFG � , a bug 1
2 Output: updated patch clusters C, updated PCFG �

3 for cls ∈ C do
4 if % .F − 1.F == summary(cls) then
5 C ← add patch % to the class cls of C
6 G← update � according to % and cls /* see Sec. 3.4 */

7 if % ∉ C then
8 C, cls← add % to a new class in C
9 G← update � according to % and cls /* see Sec. 3.4 */

We use a number of custom CodeQL queries for collecting patch ingredients. For finding fix
locations we use a bespoke instance of SBFL. For checking program path subsumptions we invoke
CVC4, and for quantifier elimination when dealing with logical variables in path formulas we
use Z3.

4.1 PCFG Parameters
Patch size. We mentioned in Section 3.3 that we limit the height of a patch tree to a constant ℎ.
Initial experiments on our dataset indicated that a tree height of at most 10 allows EffFix to discover
patches for most of the considered subjects. A smaller height generally yields no results since
patches would be larger than that, while a larger height entails a larger timeout due to the increase
of the patch search space. We found the height limit of 10 to be a good compromise between efficacy
and performance, and thus imposed this limit through out the evaluation.

Adjustment factors. In the current implementation we set the adjustment factors in probability
learning to be 0.1 and 0.2 for partial and full rewards, respectively.The adjustment factors are chosen
such that it takes a moderate number of continuous adjustments for the learning of probability to be
evident. Starting from an initial low probability for a rule (e.g., 0.1), if it takes very few adjustments
to reach a high probability (e.g., 0.9), the learning process would not be gradual. On the other hand,
if it takes too many adjustments, the learning process might require an extended period to take
effect. With such considerations, we set the adjustment factors to be 0.1 and 0.2 in the current
implementation. These values allow a probability to increase from 0.1 to 0.9 in around 10 to 20
continuous adjustments.

5 Evaluation
To empirically validate the currently proposed static analysis driven APR, we have implemented
our approach in a tool called EffFix. In our empirical study, we aim to answer the following research
questions:

—RQ1 (efficacy): How does EffFix perform against other similar tools?
—RQ2 (efficiency): How efficient are the equivalence classes in reducing the validation costs?
—RQ3 (effectiveness): How effective is the PCFG in navigating the search space of program patches?

Dataset. We constructed our dataset of bugs to be fixed, by collecting (1) memory leak bugs
from the benchmarks of SAVER [4], and (2) memory leaks and NPD bugs from OpenSSL in Pulse’s
benchmark [5]. In other words, we consider in our evaluation those bugs that can be detected both
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Table 1. Comparison with Static Analysis Based Memory Error Repair Tools in Repairing C Programs

Subject kLoC
EffFix vs. Saver EffFix vs. FootPatch

#Bugs
Plausible Correct

#Bugs
Plausible Correct

EffFix Saver EffFix Saver EffFix FootPatch EffFix FootPatch
Memory Leaks

Swoole (a4256e4) 43.0 3 2 2 2 2 3 2 2 2 1
p11-kit (ead7ara) 62.9 1 1 0 0 0 1 1 1 0 0
x264 (d4099dd) 73.2 6 6 6 4 3 6 6 0 4 0
Snort-2.9.13 320.8 8 6 8 4 8 8 6 0 4 0

OpenSSL-1.0.1h 279.2 4 4 0 3 0 1 1 0 1 0
LinuxKernel-v5.0 17184.7 2 2 2 0 0 0 0 0 0 0

Total 24 21 18 13 13 19 16 3 11 1
Null-Pointer Dereferences

OpenSSL-1.0.1h 279.2 5 4 NA 3 NA 3 3 0 3 0
OpenSSL-3.0.0 480.86 3 2 NA 2 NA 3 2 0 2 0

LinuxKernel-v5.0 17184.7 1 1 NA 1 NA 0 0 0 0 0
Total 9 7 0 6 0 6 5 0 5 0

kLoC: lines of code in the subject program (in thousands). #Bugs: total number of bugs being considered in the subject (we
only consider bugs that can be detected by all tools). Plausible: number of bugs for which a tool can find plausible patches.
Correct: number of bugs for which a tool can find correct patches. Green color denotes the better-performing tool in the
comparison. Bold denotes the total count across subjects.

by the versions of Infer used by SAVER and FootPatch, and by a more recent version of Infer2
used by EffFix. Additionally, we collected some bugs found in the Linux kernel3 and added bugs
to our dataset which were reproducible using both Infer and Pulse. SAVER and FootPatch rely on
Separation Logic, a logic which over-approximates program states. This conservative approach may
discover more bugs but it is prone to false positives, thus risking to put APR tools in the position of
fixing non-bugs, e.g., fixing a false memory leak may lead to a double free. Instead, we built on
Pulse’s ISL, which under-approximates states, thus missing some bugs, but it guarantees EffFix
only fixes true bugs. In total, there are 33 memory issues in our benchmark: 24 memory leaks and 9
NPDs. Table 1 contains a summary of these bugs, as well as the size of the subjects (43K–17M lines
of code) in which these bugs are witnessed.

Baseline Tools. For comparison with the state-of-the-art tools, we omit general-purpose repair
tools and restrict them to special-purpose repair tools tailored for static analysis. General purpose
techniques [11, 12] in theory should be able to fix all types of bugs, however, most of them are test-
based techniques that rely on test cases to validate program correctness. Hence, general-purpose
techniques are less effective than special-purpose techniques tailored to use static analysis output.
For instance, a memory leak error cannot be fully specified using a test case. Hence, our evaluation
uses two special-purpose static analysis-driven repair tools SAVER [4] and FootPatch [3] as baseline
tools.

More recently, large language model (LLM)-based APR techniques have been proposed for
vulnerability repair [13, 14]. These techniques leverage pre-trained models which are trained
using existing vulnerability-fixing commits. This could introduce data leakage in the evaluation,
potentially including the fixed commits for the subjects in our evaluation data set. Furthermore,

2Infer-7499c03
3https://github.com/tapaswenipathak/Linux-Kernel-Infer
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these techniques assume perfect fault localization, which requires the fix location to be provided as
an input. Hence, we do not include these techniques in our evaluation.

Setup. Before conducting experiments with EffFix, we ran CodeQL and Pulse checker on each
subject to generate static analysis database and bug detection reports, which serve as inputs to
EffFix. Since the patch generation component in EffFix is probabilistic, we conducted all EffFix
experiments with 10 repetition trials and reported the average across those 10 trials. All experiments
of EffFix and comparative tools were conducted using the Cerberus framework [15].

5.1 RQ1: Comparison with Other Tools
We compare the efficacy of EffFix against SAVER [4] and FootPatch [3], the state-of-the-art static
analysis driven APR tools for memory bugs. We set a timeout of 20 minutes for EffFix and SAVER,
since most developers prefer APR tools to produce repairs in under 30 minutes [16]. FootPatch was
given a timeout of 1 hour because no patch was produced with the 20 minute timeout.

Table 1 summarizes the results of comparing EffFix to SAVER and to FootPatch, respectively. The
two #Bugs columns indicate the number of bugs found by both EffFix’s underlying Pulse checker
and the tool against which we compare. For example, EffFix’s Pulse finds 4 memory leaks for
the openssl-1 subject, but FootPatch only finds 1 which explains why we consider 4 bugs when
comparing against SAVER and only 1 bug when comparing against FootPatch for the same subject.
Columns Plausible and Correct indicate the number of bugs for which each tool is able to find
plausible and correct patches, respectively. A patch is plausible if it passes the analysis check, e.g.,
Pulse or Infer, and correct if it additionally passes manual inspection. The ground truth for the fixes
in the openssl-X and LinuxKernel-v5.0 subjects is provided in the form of developers’ fixes,
by checking the commit history of the corresponding projects. Since there is no ground truth for
the benchmark of SAVER, we solely rely on manual inspection to conclude the correctness of the
generated patches for the subjects pertaining to this benchmark.

Results. For memory leaks, EffFix and SAVER have similar results. Given a total of 24 considered
bugs, both tools found a correct patch for 13 bugs. In other words, the tools have each a fix ratio of
54%. When comparing against FootPatch on a total of 19 memory leaks, EffFix found correct fixes
for 11 bugs out of 16 bugs for which it generated plausible patches, while FootPatch found 1 correct
patch out of 3 with plausible patches. That leads to a fix ratio of 57% for EffFix in this context, and
of 5% for FootPatch. For Null Pointer Dereferences, EffFix finds correct patches for 6 bugs out of the
9 considered in the comparison with SAVER, and for 5 bugs out of the 6 bugs considered in relation
to FootPatch. That is a fix ratio of 66% and 83% for EffFix corresponding to the two considered
evaluation contexts. SAVER is not applicable (NA) to NPDs since it uses pre-defined fix strategies.
FootPatch, although it has capabilities to fix NPDs, generated no plausible patches.

Figure 11(a) captures the number of unique bugs each tool finds plausible patches for. EffFix found
plausible patches for 11 unique bugs while SAVER found for 2 and FootPatch for 1. Figure 11(b)
depicts a similar diagram for correct patches, which shows EffFix finds correct patches for 10
unique bugs.

We note that although EffFix applies to NPD while SAVER does not, EffFix still correctly fixes 4
additional unique memory leaks compared to SAVER (out of the 10 unique bugs in Figure 11(b)). For
these 4 bugs, SAVER’s custom analysis either fails to analyse the bug report, or produces a patch
with wrong path condition. On the other hand, SAVER generated a correct patch for 4 bugs for
which EffFix did not. EffFix failed to generate a patch due to the large (automatically) constructed
search space, which could have been alleviated by using a more strict selection criteria for patch
ingredients or by increasing its timeout.

Compared to EffFix and SAVER, FootPatch found plausible/correct patches for fewer bugs. One
possible reason is that FootPatch searches for candidate repair statements within the program,
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Fig. 11. Number of bugs for which each repair tool was able to generate a plausible/correct patch. The
common bugs that multiple tools can generate a plausible/correct patch for are indicated by the overlaps.

Table 2. Time Costs of Different Stages in EffFix and SAVER

EffFix SAVER
Time (Localization + Ingredients gathering) Time (Patch generation) Time (Pre-analysis) Time (Patch generation)

Average 302.4 s 180.5 s 856.2 s 2.7 s

“Time (Patch generation)” for EffFix refers to the time taken from the start of PCFG exploration to finding the first plausible patch. “Time
(Patch generation)” for SAVER refers to the time taken for constructing and relabeling its object flow graph and creating a patch.

which could have two consequences. One is that it does not scale well for large codebases such as
Snort and OpenSSL. In fact, FootPatch times out for these programs in our experiments. Another
consequence is that it fails to find a patch which requires new expressions.

Time Cost. Beyond efficacy, we further examine the efficiency of the repair tools in our exper-
iments. Table 2 shows the average time costs required by the repair tools for each bug where a
plausible patch was successfully generated. In this context, we exclude the time spent by external
tools prior to the repair experiments, including tasks like running Pulse/Infer for bug detection and
building the CodeQL database. Since FootPatch combines bug detection and repair in a single run,
we do not report the repair time cost of FootPatch in Table 2.

For EffFix and SAVER, Table 2 illustrates the time costs for each of their main stages. EffFix
takes an average of 302.4 seconds to perform fix localization and gather patch ingredients (as
discussed in Section 3.6). With the identified fix locations and ingredients, EffFix takes another
180.5 seconds to find the first plausible patch. On the other hand, SAVER takes a longer time in its
“pre-ananlysis,” 856.2 seconds on average, which is to slice the input program to reduce the cost
during patch generation. During the patch generation stage, SAVER takes a shorter time of 2.7
seconds since its custom analysis is bug-specific and can be lightweight. It is possible to optimize
the SAVER pre-analysis cost by running it only once per project [4]; however, since the experiments
are conducted on a per-bug basis, we report the timing cost as is.

Overall, EffFix takes a comparable time to find a plausible patch as SAVER, while employing a
generic technique. We note that both EffFix and SAVER take less than 20 minutes, which is within
the execution time limit of APR tools acceptable to developers [16].

Answer to RQ1. For memory leaks, the results of EffFix are similar or better than the state-of-the-art
in repairing such bugs. Furthermore, owning to its generic patch synthesis engine, EffFix is also effective
in fixing other kind of memory safety bugs such as Null Pointer Dereferences, where the outcomes
indicate better overall results than the state-of-the-art.
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Table 3. Details of EffFix (and EffFixu) in Fixing Memory Errors

ID Subject Type #Loc #PIp #PInp #PIc
EffFix EffFixu

#Ps #C #Pp #Prp #Ps #C #Pp #Prp

1 p11-kit Leak 1 7 2 3 352 90 39.2 9.7 363 100 15.2 7.5
2

Snort

Leak 1 4 3 3 214 76 0.4 0.2 297 116 0.0 0.0
3 Leak 1 4 3 3 229 59 2.5 0.6 331 77 0.2 0.2
4 Leak 2 2 5 3 165 46 0.0 0.0 300 91 0.1 0.1
5 Leak 2 3 6 3 176 78 0.0 0.0 252 106 0.2 0.2
6 Leak 2 3 7 4 185 85 0.1 0.1 241 108 0.0 0.0
7 Leak 1 6 1 2 183 84 9.3 1.1 237 130 0.0 0.0
8 Leak 1 7 1 3 231 107 5.9 0.9 236 135 0.2 0.2
9 Leak 2 3 2 3 242 68 0.2 0.2 249 89 0.0 0.0
10

Swoole
Leak 2 5 8 6 100 43 0.0 0.0 98 44 0.0 0.0

11 Leak 2 2 3 3 273 77 57.4 13.0 272 70 20.3 8.6
12 Leak 2 3 1 3 372 82 66.6 15.2 411 67 26.0 10.2
13

x264

Leak 1 3 6 3 241 38 50.0 3.7 250 40 14.5 3.2
14 Leak 1 3 4 3 1102 215 131.5 26.0 1186 180 57.0 17.6
15 Leak 1 1 1 3 498 47 85.2 9.4 605 55 38.1 8.2
16 Leak 1 3 4 3 352 156 25.7 4.9 377 168 9.8 3.1
17 Leak 1 5 5 3 323 76 34.3 8.4 333 60 11.4 5.3
18 Leak 1 6 3 5 347 97 101.0 19.8 371 108 63.5 17.6
19

OpenSSL-1.0.1h

NPD 1 1 0 3 667 39 61.8 1.3 918 38 38.8 1.5
20 NPD - - - - - - - - - - - -
21 NPD 1 1 1 4 514 22 26.7 2.0 466 28 7.8 2.0
22 NPD 1 2 0 3 744 132 130.9 4.8 1141 212 78.7 5.9
23 NPD 1 5 1 2 173 86 7.7 1.8 199 125 2.3 1.6
24 Leak 1 1 0 4 700 14 216.5 4.0 1144 16 105.2 4.0
25 Leak 2 5 4 5 216 35 15.7 5.5 225 41 11.4 5.6
26 Leak 2 9 0 4 194 48 13.9 3.6 192 49 5.6 3.9
27 Leak 2 3 0 3 140 20 16.3 5.5 153 17 5.9 3.3
28

OpenSSL-3.0.0
NPD 1 1 0 2 406 45 36.4 2.2 592 44 24.4 2.1

29 NPD - - - - - - - - - - - -
30 NPD 1 1 1 4 376 37 24.2 1.8 425 43 5.8 1.2
31

Linux-5.0.0
NPD 1 1 2 3 829 194 26.8 6.0 1073 202 11.7 2.5

32 Leak 1 6 9 2 569 78 22.4 4.8 636 66 7.8 3.4
33 Leak 2 10 5 65 449 141 39.7 15.3 485 136 16.3 12.9

Mean 3.5 2.7 5.0 350 73 37.8 5.2 426 84 17.5 4.0

#Loc: number of different fix locations considered during repair. #PIp, #PInp, and #PIc: number of pointer variables,
non-pointer variables and constants that are used as patch ingredients, respectively. #Ps: count of syntactically different
synthesized patches; #C: number of equivalence classes; #Pp: count of plausible patches; #Prp: count of representative
plausible patches. Mean denotes the arithmetic means across bugs. Bold highlights important aggregated statistics.

5.2 RQ2: Efficiency of Patch Clustering
We evaluated EffFix’s strategy of clustering patches based on their effects. Table 3 details our
results. We focus on the columns under EffFix, and postpone the discussion of those under EffFixu
to Section 5.3. To counter for the randomness in the patch synthesis component, we conducted the
experiments for ten trials and report the average results where appropriate. We used a 20-minute
timeout for each run, which includes ingredients collection, patch synthesis and clustering. After
the timeout, all patches that removed the targeted bug from the underlying Pulse analysis are
considered as plausible (column #Pp). Since all patches within one cluster are equivalent in the
defined abstract domain, only one representative patch per cluster is selected as candidate for

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 69. Publication date: February 2025.



EffFix: Efficient and Effective Repair of Pointer Manipulating Programs 69:19

(manual) validation (the patch with smallest AST size is selected as the representative). We refer to
these patches as the representative plausible patches (column #Prp).

Results. Column #Pp and #Prp highlight the effect of patch clustering. On average, EffFix generated
37.8 plausible patches for each bug, and, courtesy to patch clustering only an average of 5.2 patches
are selected for validation purposes. In other words, patch clustering reduced the validation efforts
by about ∼7x in our experiments, with the validation oracle being invoked 5.2 times on average for
each bug instead of 37.8 times. The reduction in validation costs benefits not only the automated
validation oracles such as static analyzers, but also the human developers who examine the plausible
patches.

To give a complete picture to the reader, we discuss the bugs that could not be handled by EffFix.
We note that EffFix did not generate plausible patches for 3 bugs (Bug 4, 5 and 10) in all trials. The
main reason for not finding plausible patches within the timeout is likely the large search space.
This larger search space is due to the relatively higher numbers of fix locations and other patch
ingredients. Besides, EffFix did not work for Bug 20 because its bug trace spans multiple functions,
which is not supported by our prototype implementation. Furthermore, EffFix also did not produce
reliable results on Bug 29 because the program’s abstract state hits the limit of disjuncts allowed by
Pulse once the patches were applied to fix the buggy code. What this means is that although Pulse
detects the bug in the original code, it is not guaranteed that it can still prove its presence after
applying a possible incorrect patch if the patch increased the number of disjuncts above the limit
which guarantees the soundness of the tool. Nevertheless, for other bugs which EffFix can find
plausible patches for, patch clustering significantly reduces the validation effort. For example, for
several bugs (e.g Bug 13, 19, 24, etc.), more than 90% of the plausible patches were identified as
equivalent to the others, which means they can be excluded in future validation processes.

Answer to RQ2. Partitioning large search spaces into semantic effect based equivalence classes
increases the efficiency of patch validation by up to 7x even for large scale codebases.

5.3 RQ3: Effectiveness of Probabilistic Grammar
We next investigate the effects of using a PCFG to navigate the search space. We performed an
ablation study by disabling the probability learning in the PCFG. In other words, the same PCFG
with a uniform probability distribution is used for both the patch synthesis and the clustering
process. We refer to this version of our tool as EffFixu (with uniform probability distribution).

Results. The results of evaluating EffFixu are shown in Table 3, under the columns for EffFixu.
Overall, the results show that EffFixu finds lesser plausible patches on average, compared to EffFix
(17.5 vs. 37.8). The difference in numbers of plausible patches for individual bugs is also captured in
Figure 12, which shows the numbers of plausible patches for each bug in log scale. Figure 12 shows
that, for the bugs in the benchmark, EffFix consistently generated more plausible patches than
EffFixu. This difference is likely due to the search bias: if the search is gradually guided towards
regions of plausible patches by updating the PCFG, more plausible patches would be synthesized
within the same time budget. Finding more plausible patches can also lead to more correct patches
to be found. This is evident for the Snort subject, where EffFixu finds few or no plausible patches
(for Bugs 2–9), and correct patches for 0/8 bugs. On the other hand, EffFix explores significantly
more plausible patches, and finds correct patches for 4/8 bugs (as reflected in Table 1).

Furthermore, apart from exploring more plausible patches, EffFix also explores a higher number
of plausible regions. On average, EffFix finds 5.2 plausible clusters while EffFixu finds 4. Nonetheless,
EffFixu synthesized more patches on average (426 vs. 350) and created more clusters (84 vs. 73). This
indicates that, although EffFixu explores more different regions in the search space, it explores more
implausible regions compared to EffFix. EffFix, although synthesized less patches and explored
fewer regions, was able to spend the time budget focusing on a larger number of plausible regions.
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Fig. 12. Average number of plausible patches generated by EffFix and EffFixu for each bug, across 10 trials.
Numbers are plotted in symmetric log scale. Bugs for which both tools found no plausible patches are excluded.

Table 4. Effect of Adjustment Factors in EffFix

U? = 0.025, U5 = 0.05 U? = 0.1, U5 = 0.2 U? = 0.25, U5 = 0.5

# Equivalence classes
Mean 128 114 91
Median 119 106 79

# Plausible patches
Mean 59 58 43
Median 20 30 27

U? and U5 are the adjustment factors for partial and full rewards, respectively.

Answer to RQ3. Augmenting the CFG with probabilities makes the navigation of the solution space
more effective, guiding the search towards spaces more likely to contain plausible patches.

5.4 Effects of Parameters
We further conducted another set of experiments to study the effect of different parameter values
in EffFix. Specifically, we alter the values of adjustment factors and patch tree height limit and run
EffFix on our benchmark subjects again. Under different parameter values, we examine how these
parameters affect the number of equivalence classes and plausible patches found on average.

Table 4 shows the results from different adjustment factors U? and U 5 . Adjustment factors
control the rate of probability learning in the PCFG. With a set of large adjustment factors (e.g.,
U? = 0.25, U 5 = 0.5), certain production rules in the PCFG may reach a very high probability (e.g.,
> 0.9) after a few rewards, which will make other production rules very unlikely to be used. This
may result in a less diverse set of patches being discovered. As shown in Table 4, large adjustment
factors resulted in a lower number of equivalence classes and plausible patches being found. On
the other hand, smaller adjustment factors (e.g., U? = 0.025, U 5 = 0.05) permits the usage of various
production rules and can result in a more diverse set of patches: with this setting, EffFix discovered
more equivalence classes of patches. However, although boosting patch diversity, smaller adjustment
factors may fall short in generating more plausible patches from the few favorable classes. For
example, U? = 0.025, U 5 = 0.05 resulted in a lower median number of plausible patches. The default
adjustment factors used in the evaluation of EffFix (i.e., U? = 0.1, U 5 = 0.2) set a moderate rate of
probability learning, striking a balance between generating more plausible patches and exploring
different equivalence classes.

Table 5 shows the result from altering the maximum patch tree height limit. A small height limit
(e.g., height = 5) only allows patches with smaller syntactic size to be generated from the grammar,
thus limiting the kinds of patches explored. As a result, a small height limit resulted in both lower
numbers of equivalence classes and plausible patches, as shown in Table 5. Increasing the height
limit from 10 to 20 resulted in more equivalence classes of patches, but did not significantly increase
the number of plausible patches (e.g., 61 vs. 60). This result suggests that although a larger height
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Table 5. Effect of Maximum Patch Tree Height in EffFix

Height = 5 Height = 10 Height = 20

# Equivalence classes
Mean 88 99 119
Median 71 90 112

# Plausible patches
Mean 41 60 61
Median 30 37 35

limit can result in more diverse patches, having a height limit of 10 equal to the one we used to
evaluate EffFix is sufficient in the context of fixing memory safety errors.

5.5 Case Study
We conduct a case study on a memory leak bug in the x264 library. x264 is a library and application
for encoding video streams into a specific compression format. The relevant buggy code snippet,
together with the patches generated by EffFix and SAVER for this bug, are shown in Figure 13.
FootPatch did not generate a patch for this bug within our experimental timeout. This bug was
detected by Pulse, and the bug manifests because of the buffer allocation on Line 3 to the pointer
h which was not freed on the path ending at Line 10. Thus, when __return_val4 evaluates to a
non-zero value in the condition, the function exits with a leaked memory buffer.

To fix the bug, a correct patch should free the leaked memory buffer on the erroneous path
(i.e., the path in which FAIL_IF_ERROR returns from the function). However, it would be difficult
to precisely identify the correct path on which the buffer should be freed, since FAIL_IF_ERROR
is defined as a macro. Lines 14–26 in Figure 13 shows the actual macro definitions, where the
actual if statement is hidden inside nested macro definitions (FAIL_IF_ERROR -> FAIL_IF_ERR ->
RETURN_IF_ERR), and these macros are even defined in different source code files. For this bug,
SAVER generated the patch on Line 9, which frees the buffer h with the wrong path condition
(true). This patch removes the memory leak, but introduces a new memory safety issue. If the
function does not return at Line 10, the variable h will be used in the rest of the function (e.g., on
Line 11), resulting in a use-after-free since h has been freed in all subsequent paths. Since SAVER
performs its own custom analysis to compute the path conditions, the analysis may miss certain
conditions, resulting in a patch that manipulates the memory on a wrong path. In contrast, EffFix
analyzes the semantic effect of a patch on top of the abstract domain used by existing analyzers
for bug detection. Since ISL accurately captures the erroneous path condition (even though it is
defined in nested macros), EffFix utilizes this information to identify the semantic effect that leads
to a safe patch. In this case, EffFix synthesized the patch shown on Line 8, and this patch correctly
fixes the memory leak without introducing new bugs.

5.6 Discussion
Extension to Other Kinds of Bugs and Languages. EffFix is driven by static analysis, meaning its
effectiveness is directly tied to the quality of the analysis tool, that of Pulse in this case. We
showcased how repair can be achieved for the two kinds of bugs Pulse was designed to work for,
namely memory leaks and Null Pointer Dereferences. If the analysis would be able to soundly
discover other kinds of bugs, e.g., buffer overflows, then we conjecture that EffFix could work with
those bugs too, since its CFG for patch generation is generic enough to account for the repair of
other memory safety issues, e.g., insert appropriate symbolic bounds check to avoid buffer overflows

4The program was instrumented beforehand to store the return values of the function calls into variables so that the repair
tools can use them.
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Fig. 13. A memory leak in x264 and the patches from EffFix and SAVER.

or overruns. Furthermore, we have only experimented with C programs, which is what Pulse was
designed to work best for. Adapting EffFix to generate patches for a new language would simply
involve tailoring the CFG to align with the specific features of the target language. The operations
at the meta domain level would remain unchanged, meaning that no additional modifications would
be necessary for EffFix to work with the new language. However, the bottleneck lies in having a
static analysis tool that (1) soundly identifies these bugs and (2) can symbolically represent the
method’s footprint, similar to how ISL does, therefore enabling the derivation of equivalence classes
based on the symbolic effects of the patches on the method’s footprint.

Soundness of Equivalence Classes. The translation from the analysis abstract domain D to the
meta-domain of the patch equivalence check D′ is an overapproximation, so it could potentially
cluster together patches that are not strictly equivalent if we consider the functionality changes.
In other words, with regards to their semantic heap effect, a class of equivalent patches contains
only equivalent patches. The information contained by an abstract state in the meta-domain D′
is equivalent to the corresponding abstract state in the ISL domain D, with the exception of
the non-aliasing information implicitly contained by the separating conjunction. This additional
information is crucial for the soundness of the analysis where abstract states are discovered as
the analysis for bug detection advances. However, for the purpose of checking equivalence classes
this information is not crucial since the abstract state is already soundly computed by ISL—the
aliasing information captured by the alias set � in the meta-state suffices. In that sense, D′ is an
overapproximation ofD, so two originally equivalent classes inD can never become not equivalent
inD′. However, theoretically, due to the overapproximation some originally not equivalent patches
in D could become equivalent in D′. This overapproximation could lead to EffFix missing some
correct patches.

Limitations. A human oracle currently checks for plausible but incorrect patches which break
functionality beyond changes in the heap’s shape. To ensure that we do not fix false positive bugs,
we chose to build on top of Pulse since it has been shown to be sound with regards to bug finding,
although incomplete. This takes care of the false positives concern specific to static analysis.
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Threats to Validity. The benchmarks we chose for evaluation might not be representative for the
classes of bugs we tackle, but we are constrained by the bugs discovered by both Pulse via EffFix,
and by Infer via SAVER and FootPatch—the state-of-the-art in fixing memory errors for C/C++
programs. Furthermore, these APR tools are built for different categories of bugs, e.g., SAVER
cannot handle NPD but fixes use-after-free/double-free, while FootPatch targets resource leaks too.
Lastly, EffFix relies on the availability of the full source code involved in a memory safety issue. To
mitigate this restriction, we modelled in Pulse the library calls whose source code is unavailable -
we instructed Pulse with models for operations on string, such as strlen, strdup, strcpy, etc.

6 Related Work
APR. Many program repair techniques have been studied in the last decade, largely to fix logical
errors. Recently the research community has studied fixing security vulnerabilities [17, 18], race
conditions [19], students’ programming assignments [20], and so on. Program repair techniques
can be classified into semantic repair [12, 21], search-based repair [11, 22, 23], or learning-based
repair [24, 25]. Search-based repair techniques are known as generate-and-validate techniques,
which heuristically search for a candidate patch in the space of program edits and validate to find
a correct patch. Generally, validation is done using dynamic analysis with the aid of a test suite.
EffFix uses static analysis to validate the generated patches. Using logic-based semantic reasoning,
EffFix provides additional evidence of correctness for the generated patches, thereby avoiding the
patch over-fitting problem [26, 27] as well.

Fixing memory errors has been studied previously using dynamic analysis [17, 18, 28, 29], static
analysis [3, 4, 30–32] and combination of both [33]. Dynamic approaches require a running test case
as a witness for the memory error and are effective in fixing buffer-overflows [17, 18], NPD errors
[28, 32, 34]. NPEX [32] and CONCH [34] are both specialized techniques focused on fixing Null
Pointer Dereference issues. NPEX [32] uses symbolic execution to infer a program specification and
a learning model to generate patches. The inferred specification is reused to verify the correctness
of the generated patch. CONCH [34] constructs the inter-procedural CFG to extract the context,
identify the fix location, and validate the generated patch. In both techniques, the repair capability
is tailored to fixing null pointers only, whereas EffFix can be extended to other kinds of bugs too
by extending its CFG, e.g., memory leaks.

Our work is closely related to the static analysis-based repair of memory errors [3, 4]. FootPatch
[3] generates patches for heap property violations detected using Infer [35]. Similarly, SAVER [4]
generates safe patches for memory errors detected by Infer [35] and was shown to be scalable
for larger programs. In both techniques, the patch generated is directly tied to the class of error
reported by the static analyser. In contrast, EffFix uses a generalized grammar to synthesize patches
of arbitrary types. Using a probabilistic grammar EffFix can dynamically adjust the probabilities
to guide the search to correctly identify repair patterns, i.e., towards a suitable path condition or
memory effect, which leads to finding more plausible patches. Developed at the same time with
EffFix, ProveNFix is a static analysis tool grounded in temporal logic to detect violations of temporal
properties at scale [36]. The authors show how memory bugs can be formalized as violations of
temporal properties, and enhance ProveNFix with repair capabilities to fix them. However, their
approach is not directly comparable to ours since it is not fully automated thus adding annotation
burden on users who have to describe the bugs as violations of temporal properties and annotate
the project accordingly.

Another line of work for APR is using advances in machine learning to train models capable of
repairing various classes of software vulnerabilities. VRepair [13] is a recently proposed approach
that employs an encoder-decoder transformer, with transfer learning from bug fixing commits to fix
vulnerabilities in C/C++ programs. VulRepair [14] utilizes a pre-trained Code-T5 model with BPE
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tokenization to handle out-of-vocabulary problems. VulMaster [37] proposed a FiD architecture to
extend the context limitation in LLMs, and combines it with an effective method to incorporate
a diverse set of information on the vulnerability. EffFix differs from this line of works which
requires training on a large data corpus and requires the user to provide a fix location. EffFix can
automatically determine the fix location for an identified vulnerability type and efficiently explore
the search space of program edits to find the correct patch.

More recently, InferFix [38] was proposed to use a combination of a fine-tuned LLM for program
repair and static analysis bug reports to detect and fix NPDs, resource leaks, and thread safety
violation bugs in C# and Java projects. While we are optimistic about the future of APR leveraging
generative AI, we believe our work is complementary and supports the continued advancements of
non-AI approaches since a combination of the two is more likely to yield superior results in the
future [39].

Equivalence Classes. Equivalence relations have been shown to benefit many search problems
involving large search spaces such as mutation testing [40–42] and compiler testing [43, 44].
Recently, it was demonstrated to be effective for APR as well [45]. Equivalence relations can be
used to explore larger patch spaces more efficiently. Value based test-equivalence used in [45],
partitions the patch space based on runtime values observed during test executions. In contrast,
EffFix defines an equivalence relation based on effect analysis.

Probabilistic Grammar. Augmenting probabilities with grammar production rules has been
shown to be useful in program synthesis [46–48] and software fuzzing [49, 50]. Using a probabilistic
grammar a software fuzzer can generate inputs based on production rule prioritization. In particular,
previous work [50] has shown that evolving a probabilistic grammar can direct the search towards
interesting inputs by favouring specific production rules. In contrast, EffFix uses a probabilistic
grammar to generate program edits rather than program inputs. It evolves the probabilities to find
a plausible patch by prioritizing the most promising production rules.

7 Concluding Remarks
This work introduced an APR approach guided by static analysis. Our repair technique fixes null
pointer dereferences and memory leaks. In our workflow, static analysis is used to both discover
and fix a bug, thus alleviating the classic over-fitting issue that test-based approaches normally
suffer from. The novelty of our approach is two-fold. First, modulo the patch location, it is generic,
requiring neither patch templates nor bug specifications. Instead, the repair engine incrementally
learns what a correct patch may look like based on its effect on the symbolic heap. It stores this
knowledge as a distribution of probabilities over a context-free grammar. Furthermore, we have
empirically shown that the use of probabilistic context-free grammars leads to an effective patch
space navigation. Second, to cope with the large search space of candidate patches, we proposed
an efficient patch validation mechanism by clustering patches into equivalence classes according
to the effect they have on the symbolic heap. The effect-analysis on patches can be potentially
extended to other use cases in the future, such as learning the effects of existing error handling
routines in the program.

Data Availability
The artifact accompanying this article is available from https://doi.org/10.5281/zenodo.8389675. For
the latest version of EffFix, we have open-sourced it at https://github.com/nus-apr/EffFix.
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