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 A B S T R A C T

The partitioning problem is of central relevance for designing and implementing non-centralized Model 
Predictive Control (MPC) strategies for large-scale systems. These control approaches include decentralized 
MPC, distributed MPC, hierarchical MPC, and coalitional MPC. Partitioning a system for the application of non-
centralized MPC consists of finding the best definition of the subsystems, and their allocation into groups for the 
definition of local controllers, to maximize the relevant performance indicators. The present survey proposes a 
novel systematization of the partitioning approaches in the literature in five main classes: optimization-based, 
algorithmic, community-detection-based, game-theoretic-oriented, and heuristic approaches. A unified graph-
theoretical formalism, a mathematical re-formulation of the problem in terms of mixed-integer programming, 
the novel concepts of predictive partitioning and multi-topological representations, and a methodological 
formulation of quality metrics are developed to support the classification and further developments of the 
field. We analyze the different classes of partitioning techniques, and we present an overview of their strengths 
and limitations, which include a technical discussion about the different approaches. Representative case 
studies are discussed to illustrate the application of partitioning techniques for non-centralized MPC in various 
sectors, including power systems, water networks, wind farms, chemical processes, transportation systems, 
communication networks, industrial automation, smart buildings, and cyber–physical systems. An outlook of 
future challenges completes the survey.
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1. Introduction

1.1. Motivation

Modern systems are increasingly characterized by architectural 
scales and implementation complexities that challenge the implemen-
tation of centralized control strategies (Kordestani et al., 2021; Šiljak, 
2008). This trend is supported by the advancements and availability 
of information transmission networks, as well as by the wide acces-
sibility of computing resources (Kamel et al., 2016). When the scale 
of a system grows, it is common and advisable to structure it as 
a collection of autonomous interconnected components (subsystems). 
These subsystems should coordinate or be coordinated to achieve a 
common goal. To this aim, these entities necessitate local computing 
power, and communication and negotiation abilities: this is why, when 
these features are available, these advanced subsystems are usually 
2 
defined as control agents. A schematic representation of a network 
of control agents is proposed in Fig.  1. Consequently, modern sys-
tems constituted by multiple agents having scales that exceed specific 
(hardware) operational thresholds are commonly referred to as large-
scale multi-agent systems (LS-MASs) (Dorri et al., 2018). Examples of 
LS-MASs can be found in infrastructural systems such as power gener-
ation and distribution networks (Javid et al., 2024; Kundur & Malik, 
2022; Poullikkas, 2013; Rakhshani et al., 2019); urban and freeway 
networks (Siri et al., 2021); railway and subway networks (Louf et al., 
2014); water distribution networks (Bello et al., 2019); oil and gas 
distribution networks; large groups of mobile robots such as swarms of 
UAVs (Zhou et al., 2020), or of terrestrial and maritime autonomous 
vehicles; large plants for chemical processing (Metzger & Polakow, 
2011), which might also integrate autonomous energy generation; 
large industrial networks (Galloway & Hancke, 2013); and satellite 
constellations (Curzi et al., 2020); where this list of applications keeps 
growing and evolving with the introduction of new technologies.
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Fig. 1. A network of control agents. Subsystems are indicated by , local 
controllers by , and control agents by . The solid lines represent the 
interactions at the physical level, i.e. the dynamical couplings; instead, the 
dashed lines represent interactions at the information level.

Conventional control methodologies such as proportional–integral 
control and pole placement (Ogata, 2022), loop-shaping and h-infinity 
synthesis, Skogestad and Postlethwaite (2001), or feedback lineariza-
tion (Khalil, 2002) are not directly applicable to LS-MASs because of 
the presence of a large number of input–output channels and the large 
spatial distribution of such networks, which complicate centralized 
controller design and parameter tuning. Therefore, deployment of non-
centralized control strategies (Bakule, 2008; Šiljak, 1991) is necessary 
for LS-MASs, and the level of sophistication of such approaches is 
tightly related to the availability of reliable communication channels 
and local computing power.

1.2. Non-centralized MPC: Control architectures

One of the most advanced modern control strategies is model pre-
dictive control (MPC) (Rawlings et al., 2017), which integrates the use 
of a mathematical model of the system dynamics with optimal control 
methodologies to compute predictive control actions that optimize 
performance while guaranteeing the stability of the controlled system, 
as well as the respect of operational constraints (Machowski, 2002; 
Mesbah, 2016), according to the receding horizon paradigm. The MPC 
framework has also significantly evolved thanks to its design flexibility, 
which allows a relatively easy development of non-centralized predic-
tive control strategies (NCen-MPC) (Christofides et al., 2013; Maestre 
& Negenborn, 2014), i.e. of MPC strategies in which the computation 
of the control action for the overall system is not performed by a 
single central unit, but divided across control agents. The traditional 
classification of these strategies (Scattolini, 2009) comprehends decen-
tralized MPC (Dec-MPC), distributed MPC (DMPC), and hierarchical 
MPC (HMPC). A conceptual representation of these architectures is 
proposed in Fig.  2. More recently, a novel NCen-MPC methodology in-
corporating concepts from game theory has emerged, called coalitional 
predictive control (Coal-MPC) (Fele et al., 2017). In this survey, we 
3 
will abbreviate centralized MPC as CMPC, to distinguish it from NCen-
MPC. A list of these abbreviations is reported in Table  1. The single 
common characteristic of all NCen-MPC approaches is that they assume 
to operate in a network of agents, where, for each individual subsystem, 
a local optimization problem is solved. Then, the various techniques 
are distinguished according to how they handle communication and 
coordination of the local control actions.

When referring to NCen-MPC techniques, the simplest coordination 
technique is Dec-MPC, in which there is no communication among 
agents, but the effect of neighboring subsystems on local dynamics 
is generally assumed to be contained in invariant sets, thus allowing 
stable operation of such networks while preserving privacy, security, 
and resilience since there is no information sharing. A communication 
and coordination protocol is instead at the basis of DMPC approaches, 
where the agents in the network usually share their measurements or 
predicted evolution of local variables with neighbors, thus allowing 
for iterative or non-iterative adjustments of local control actions. In 
the context of linear systems, this distributed control approach can 
achieve global performance close to CMPC while drastically reducing 
computation times, and allowing real-time operation of the networks 
where centralized predictive control would not be possible. In HMPC, 
the control architecture is structured across multiple vertical layers, 
with at least the presence of a global coordinator and a set of local 
controllers. These strategies pose as an alternative to DMPC, and can 
enhance global coordination, as well as network resilience, introduce 
privacy features, or allow for multi-time-scale operation of different 
network models at different aggregation layers. Finally, the Coal-MPC 
strategy arises as the result of the combination of predictive control 
with game theory. In fact, in Coal-MPC, the network is seen as a 
collection of agents that participate in a cooperative game with the 
objective of maximizing the global collective outcome, which is the 
global operation cost of the network.

In conclusion, NCen-MPC strategies allow for the introduction of 
complex control features, such as advanced algorithmic coordination 
procedures, plug-and-play capabilities, and privacy and security preser-
vation strategies, into LS-MASs. At the same time, NCen-MPC strategies 
can ensure stable real-time control of LS-MASs while preserving the 
optimality of their operation as much as possible.

1.3. The partitioning problem

The underlying assumption of the above discussion about NCen-
MPC of LS-MASs is that the network is provided as a collection of 
agents with full autonomy. While this assumption may seem simple 
to satisfy, this is not always true in practice. In fact, the definition 
of the agents themselves may be challenging, especially for large and 
interconnected networks. Additionally, even if the network is given as a 
collection of individual agents, it might be more convenient for network 
operation to aggregate them into bigger entities. These two distinct 
classes of problems, i.e. the definition of the agents of the network and 
the problem of their aggregation, fall both into the category of network 
partitioning (Chanfreut et al., 2021b; Šiljak, 1991).

Formally speaking, the partitioning problem consists of finding the 
optimal allocation of a group of elements into given sets according to 
a given metric. If the network   is provided as a collection of agents 
𝑁, i.e.  = {1,… ,𝑁

}, and we have a number 𝑁 of possible 
sets for the allocation, whose quality is defined by a cost function ℎ(⋅), 
then the optimal partitioning problem consists in finding the set  (i.e. 
the partition) defined as  = {1,… ,𝑁

}, where the elements 𝑖 are 
groups of agents 𝑗 , such that the quality measure ℎ() is optimized. 
On the other hand, if the network   is provided as a monolithic system 
that does not show any natural decomposition, the partitioning problem 
consists of selecting several subsystems 𝑁 for which control agents 
can be defined, which allows to interpret the network as a collection of 
agents  = { ,… , }. Also in this case, the subsystem selection is 
1 𝑁
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Fig. 2. Main categories of non-centralized control architectures. In decentralized control, there is no information-level interaction among control agents. In 
distributed control, the information-level interaction is horizontal, i.e. each control agent can communicate with the others. In hierarchical control, the information-
level interaction among control agents is vertical, i.e. they should, in principle, communicate with the coordinator. Mixed approaches are also possible.
generally guided by a cost function ℎ(⋅). Both these problems are known 
to be NP-hard (Brandes et al., 2006; Karp, 1972; Sandholm et al., 1999).

When the partitioning problem is applied to NCen-MPC, several 
further features can be developed and extended for both the parti-
tioning and the MPC. Many questions may arise, such as: What is the 
best definition for the individual agents? How can agents be allocated 
optimally into sets to maximize the performance of the NCen-MPC 
architecture? How can the partitioning strategy handle topological 
changes in the network or different operating conditions? These are a 
few examples of profound technical challenges that researchers in this 
field have encountered in the last decades, finding answers and new 
open problems.

Many of the partitioning strategies that will be presented in this 
survey are borrowed from other scientific sectors, such as network 
and graph theory, machine learning, or computer science in general. 
A general overview of clustering methodologies applied to distributed 
network control can be found in Chanfreut et al. (2021b), which can 
serve as a general reference for these methods, while the current survey 
is tailored specifically for NCen-MPC. We also refer to the work (Xu 
& Wunsch, 2005) to explore further general clustering methodologies 
such as 𝑘-means, fuzzy 𝑐-means, and hierarchical clustering. Other gen-
eral approaches that have been applied to partitioning for NCen-MPC 
are community detection methodologies (Fortunato, 2010; Fortunato & 
Hric, 2016), such as modularity maximization and spectral algorithms; 
and coalition formation approaches (Apt & Witzel, 2009), which have 
led to the development of game-theory-based MPC architectures.

1.4. Survey objectives and contributions

Under these considerations, the present survey has two main over-
arching goals:

1. Unifying in a common framework all the results currently
present in the literature addressing the partitioning problem for 
NCen-MPC.

2. Laying foundations for further systematic developments of this 
field.

These two objectives are achieved through the following series of 
steps: a systematization of fundamental notions for graph representa-
tion of dynamical systems and networks; the introduction of precise 
key performance indicators that are comparable across strategies and 
application domains, as well as a precise assessment methodology of 
the quality of a partition; a categorization of the known partition-
ing strategies for NCen-MPC in terms of methodology, partitioning 
objective, and relative control strategy; a discussion of the main par-
titioning methodologies to highlight their strengths and limitations; a 
brief technical discussion of each partitioning technique found in the 
literature; and a classification of the current application domains of the 
partitioning techniques.
4 
Table 1
List of abbreviations.
 MPC Model Predictive Control  
 CMPC Centralized Model Predictive Control  
 NCen-MPC Non-Centralized Model Predictive Control 
 Dec-MPC Decentralized Model Predictive Control  
 DMPC Distributed Model Predictive Control  
 HMPC Hierarchical Model Predictive Control  
 Coal-MPC Coalitional Model Predictive Control  
 NLin-MPC Nonlinear Model Predictive Control  
 LS-MAS Large-Scale Multi-Agent System  
 MIMO Multiple-Input Multiple-Output  

Further, we extend the analysis and classification of the partitioning 
techniques with novel theoretical insights, which are: the introduction 
of multi-topological graph representations to model variable topologies, 
and their link to hybrid systems; a formal definition of the partitioning 
problem for performance optimization in terms of a bi-level mixed-
integer program (MIP); and a re-definition of the problem of time-
varying partitioning, introducing the concept of predictive partitioning 
for control.

Given the extension of this survey, and the amount of different 
topics explored in detail, we provide an overview of its organization 
in Section 2 below, briefly describing the contents and the objectives 
of each section.

2. Organization of the survey

In this section, we present the structure of the survey, briefly 
describing the content of each section. This will provide the reader with 
an organic view of the material presented, and will help to navigate 
the content, having a general knowledge of all the topics that will be 
discussed throughout the survey.
Graph representations. Most partitioning techniques, both involving 
NCen-MPC or other control strategies, are based on abstract repre-
sentations of the underlying system dynamics (Šiljak, 1991). This 
representation is generally provided in the form of a graph (Diestel, 
2017); therefore, it is natural to start the discussion about partitioning 
techniques by introducing graph representations in Section 3. In this 
section, we classify the graph representations used in partitioning and 
presented in Fig.  3. This classification is supported by a technical 
discussion of each type of representation in dedicated subsections.
Partitioning for predictive control. Once the abstract representation of 
the network is available, the partitioning problem for NCen-MPC can 
be formally introduced and discussed in Section 4. In this section, we 
discuss the general problem definition and its common characteristics 
usually present in the partitioning techniques. In addition, we provide 
metrics and an evaluation methodology to assess the quality of a parti-
tion, and we complete the discussion by introducing the novel concept 
of predictive partitioning as a component of the MPC formulation.
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Fig. 3. Graph representations used in partitioning for NCen-MPC.

Classification of the partitioning techniques. In Section 5, we will provide 
a classification of the partitioning methodologies for the application 
of NCen-MPC according to three criteria: (1) the general partitioning 
class; (2) the subclass defined by the main structure of the method or 
by its objective; and (3) the control architecture to which it has been 
applied. The classification performed according to the first two criteria 
is proposed in Fig.  4, where the first level of the classification tree 
defines the main class, and the second level defines the subclass. The 
main theoretical characteristics as well as the strengths and limitations 
of the five main partitioning classes are discussed in Section 5.1, for 
the subclasses in Section 5.2, and for the methodologies in Section 5.3. 
Finally, in Section 5.4 we classify the techniques according to the 
control methodology for which they have been designed.
Analysis of the individual partitioning techniques. Once the classification 
of the partitioning strategies has been presented, and the main charac-
teristics of each class and subclass have been highlighted, we deepen 
the technical discussion by providing further details about the methods 
in each class in Fig.  4. Therefore, an extensive analysis of the individual 
methodologies in the literature can be found in the dedicated sections, 
which are: Section 6 for optimization-based partitioning; Section 7 for 
algorithmic partitioning; Section 8 for community-detection-based par-
titioning; Section 9 for game-theory-based partitioning; and Section 10 
for heuristic partitioning.
Applications. In Section 11, we discuss the main case studies that have 
been used in the literature about partitioning for NCen-MPC. These 
are divided by application sector, and, when possible, we also provide 
reference systems with further details about the systems considered. 
In addition, we discuss for each application domain how different 
partitioning methodologies have been used in the literature.
Conclusions and future work. The overall discussion of the main topic 
of the survey is completed in Section 12 with final considerations 
about the state of this research field, and with recommendations for 
future work, identifying the current research gaps and potential new 
directions to explore.

3. Graph representations

At the basis of almost all partitioning approaches, there is a graph 
representation of the system to be decomposed. Accordingly, specific 
graph representations can be deployed when defining a partitioning 
strategy for applying an NCen-MPC method. These representations 
belong to three main categories: (1) graphs equivalent to dynamical sys-
tems; (2) graphs representing networks of dynamical systems; and (3) 
graph representations of an optimization problem. In this section, we 
first introduce graph theory terminology that will be used throughout 
the article. Then, we present the classes of graphs introduced above. 
We close the section by conceptually reformulating the graph repre-
sentation of a network of dynamical systems linking multi-topological 
graphs and hybrid systems. 
5 
3.1. Fundamentals of graph theory

A graph (Diestel, 2017) is an ordered pair of sets  = ( , ) where 
 = {1,… , 𝑛} is the set of 𝑛 vertices (or nodes), and  ⊆  ×  is 
the set of the edges (or arcs, links). The edges are associated to the 
vertices through an 𝑛× 𝑛 binary adjacency matrix 𝐴adj, where 𝐴adj(𝑖,𝑗) = 1
if and only if an edge 𝜖𝑖𝑗 = (𝑖, 𝑗) ∈  exists. Therefore, the topology 
of the graph is specified by the adjacency matrix 𝐴adj, and the set of 
the edges can also be written as  = {(𝑖, 𝑗) ∣ [𝑖, 𝑗 ∈ ] ∧ [𝐴adj(𝑖,𝑗) = 1]}. A 
subgraph of  is a graph 𝓁 = (𝓁 , 𝓁) representing a part of . The set 
of vertices 𝓁 is a subset of  , i.e. 𝓁 ⊆  , and the set of the edges is 
𝓁 = {(𝑖, 𝑗) ∣ [𝑖, 𝑗 ∈ 𝓁]∧[𝐴

adj
(𝑖,𝑗) = 1]}, where the topology is still specified 

by the relevant entries of 𝐴adj. For a directed graph , an edge 𝜖𝑖𝑗 = (𝑖, 𝑗)
denotes an arrow starting from node 𝑖 and ending in node 𝑗. A graph 
is weighted if a weighting matrix 𝑊 adj assigning to each edge a number 
is specified in addition to 𝐴adj. For each vertex 𝑖 ∈  we denote by 𝑑𝑖
its degree, i.e. the number of edges entering or exiting that vertex. In 
directed graphs, we can specify an in-degree (𝑑in𝑖 ) and an out-degree 
(𝑑out𝑖 ), if the edge is respectively ending or starting in the vertex 𝑖. For 
a vertex 𝑖, the neighborhood of 𝑖 is the set of all vertices connected to it, 
and we denoted it by 𝑖 = {𝑗 ∈  ∣ [(𝑖, 𝑗) ∨ (𝑗, 𝑖)] ∈ }. For a subgraph 
𝓁 = (𝓁 , 𝓁), the frontier is its set of nodes that are connected to nodes 
outside the subgraph, i.e. 𝓁 = {𝑖 ∈ 𝓁 ∣ [(𝑖, 𝑗) ∨ (𝑗, 𝑖)] ∈  , 𝑗 ∈  ⧵ 𝓁}. 
These fundamental concepts will be extended throughout the survey for 
specific topics when necessary.

3.2. Graph associated to a dynamical system

The most direct and intuitive graph representation of a dynamical 
system is the so-called associated graph. According to Šiljak (1991), 
the earliest formulation of this type of graph representation for linear 
systems can be traced back to Lin (1974). We start by presenting 
associated graph representations for linear discrete-time systems, where 
the same formulation proposed in Šiljak (1991) for the continuous-time 
version holds. Consider the dynamics: 

 ∶
{

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘)

, (1)

where 𝑥 ∈ R𝑛𝑥 , 𝑢 ∈ R𝑛𝑢 , 𝑦 ∈ R𝑛𝑦  are respectively the state, input, 
and output of the system; and 𝐴, 𝐵, 𝐶 are matrices of appropriate 
dimensions. The graph  = ( , ) associated to (1) is constructed by first 
defining one node for each variable, which provides the set of vertices 
 = {𝑥1,… , 𝑥𝑛𝑥 , 𝑢1,… , 𝑢𝑛𝑢 , 𝑦1,… , 𝑦𝑛𝑦}, where this set can be considered 
as the union of the sets for the individual state, input, and output 
variables, i.e.  = 𝑥∪𝑢∪𝑦, || = 𝑛𝑥+𝑛𝑢+𝑛𝑦. Then, the set of edges 
is built looking at the nonzero entries of matrices 𝐴, 𝐵, 𝐶, and as before, 
it can be thought of as the union of three different sets  = 𝑢𝑥∪𝑥𝑥∪𝑥𝑦. 
These sets of edges define the interactions among variables, and are 
derived respectively as 𝑢𝑥 = {(𝑖, 𝑗) ∣ 𝑖 ∈ 𝑢, 𝑗 ∈ 𝑥, 𝐵(𝑖,𝑗) ≠ 0}, 
𝑥𝑥 = {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈ 𝑥, 𝐴(𝑖,𝑗) ≠ 0}, 𝑥𝑦 = {(𝑖, 𝑗) ∣ 𝑖 ∈ 𝑥, 𝑗 ∈ 𝑦, 𝐶(𝑖,𝑗) ≠
0}. This graph  associated with the dynamics (1) is static because 
the dynamical system is time-invariant. Moreover, the graph represents 
the interactions among the variables in the system. A measure of this 
interaction is provided by the weighting matrix that can be constructed 
considering the entries of matrices 𝐴, 𝐵, 𝐶: 

𝑊 adj =
⎡

⎢

⎢

⎣

𝐴 𝐵 0
0 0 0
𝐶 0 0

⎤

⎥

⎥

⎦

. (2)

A more recent evolution in the associated graph representation 
is found in Riccardi et al. (2025c), where the following nonlinear 
dynamics is considered: 

 ∶
{

𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)) . (3)

𝑦(𝑘) = ℎ(𝑥(𝑘))
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Fig. 4. Categorization of the partitioning techniques in classes and subclasses. The methodologies in each subclass can be further distinguished between the 
approaches based on the structure of the network, and the ones oriented at achieving a given objective, whether it is a control or another functional specification.
The scope in Riccardi et al. (2025c) is to obtain a weighted and time-
varying representation (𝑘) = ( , (𝑘)) of the system (3). To this aim, 
using the same vertices definition introduced for (1), the following 
weighting function is defined: 

𝑤(𝑖,𝑗)(𝑘) =

⎧

⎪

⎨

⎪

⎩

𝜕𝑓𝑗 (𝑥(𝑘),𝑢(𝑘))
𝜕𝑖 for 𝑖 ∈ 𝑢 ∪ 𝑥, 𝑗 ∈ 𝑥
0 for 𝑖 ∈  , 𝑗 ∈ 𝑢

𝜕ℎ𝑗 (𝑥(𝑘))
𝜕𝑖 for 𝑖 ∈ 𝑥, 𝑗 ∈ 𝑦

. (4)

Accordingly, a time-varying set of edges (𝑘) is defined as: 
(𝑘) = {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈  , 𝑤(𝑖,𝑗)(𝑘) ≠ 0}. (5)

This time-varying graph can capture the instantaneous interactions 
among the system variables at each time step. In the most general case, 
a different topological representation exists at each time step. Accord-
ingly, a different choice of graph partition might be the best option 
for non-centralized predictive control. However, such an approach is 
computationally demanding. 

Example 1.  We consider the following linear discrete-time system to 
show how to construct the graph associated with a dynamical system. 
Consider the system: 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (6)

with 𝑥 ∈  ⊆ R10, 𝑢 ∈  ⊆ R3, where the matrices 𝐴 and 𝐵 are defined 
by the entries 
𝑎2,1 = 0.5 𝑎6,1 = 0.1 𝑎8,2 = 0.84 𝑎9,2 = 0.57
𝑎8,4 = 0.54 𝑎9,5 = 0.91 𝑎2,6 = 0.98 𝑎3,6 = 0.96
𝑎5,6 = 0.8 𝑎6,7 = 0.6 𝑎2,8 = 0.31 𝑏4,1 = 0.04
𝑏9,1 = 0.6 𝑏10,1 = 0.63 𝑏2,2 = 0.02 𝑏4,2 = 0.6
𝑏10,2 = 0.11 𝑏1,3 = 0.19 𝑏2,3 = 0.03,

(7)

and zero elsewhere. According to the definition of a graph  asso-
ciated with a dynamical system, we define the set of vertices  =
{𝑢 ,… , 𝑢 , 𝑥 ,… , 𝑥 }, while the nonzero entries of matrices 𝐴, 𝐵 define 
1 3 1 10

6 
Fig. 5. Graph associated with the dynamical system (7). The vertices are the 
system variables and are colored in red if they are inputs and cyan if they 
are states. The arrows represent the edges, and their opacity the strength of 
interaction, i.e. the weight, defined by the entries of matrices 𝐴 and 𝐵.

the edges in  of the graph and their weights in the matrix 𝑊 adj. 
The representation of this graph is given in Fig.  5. This example will 
be continued in Section 4.1 to show how to select subsystems for 
constructing control agents.
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Table 2
Randomly generated topology of the network in Fig.  7. The entries 𝑤𝑖,𝑗 are the 𝑖th row and 𝑗th column of the weighted adjacency matrix 𝑊 adj.
 𝑤1,25 = 0.53 𝑤2,3 = 0.36 𝑤2,12 = 0.01 𝑤3,33 = 0.60 𝑤4,26 = 0.41 𝑤5,31 = 0.47 𝑤6,38 = 0.32 𝑤7,33 = 0.24 𝑤8,19 = 0.24 𝑤9,49 = 0.20  
 𝑤10,40 = 0.36 𝑤11,35 = 0.72 𝑤12,2 = 0.01 𝑤12,10 = 0.42 𝑤13,7 = 0.17 𝑤14,44 = 0.44 𝑤15,31 = 0.67 𝑤16,7 = 0.46 𝑤17,28 = 0.42 𝑤18,40 = 0.76 
 𝑤19,14 = 0.67 𝑤20,31 = 0.55 𝑤21,34 = 0.37 𝑤22,4 = 0.66 𝑤23,1 = 0.20 𝑤24,47 = 0.51 𝑤25,46 = 0.78 𝑤26,41 = 0.10 𝑤27,40 = 0.60 𝑤28,22 = 0.35 
 𝑤29,47 = 0.43 𝑤30,46 = 0.16 𝑤31,13 = 0.68 𝑤32,15 = 0.34 𝑤33,10 = 0.66 𝑤34,29 = 0.19 𝑤35,6 = 0.43 𝑤36,33 = 0.60 𝑤37,7 = 0.41 𝑤38,36 = 0.40 
 𝑤39,46 = 0.23 𝑤40,36 = 0.44 𝑤41,35 = 0.31 𝑤42,39 = 0.66 𝑤43,38 = 0.39 𝑤44,29 = 0.19 𝑤45,39 = 0.49 𝑤46,21 = 0.69 𝑤47,16 = 0.40 𝑤48,12 = 0.29 
 𝑤49,12 = 0.13 𝑤50,40 = 0.77  
3.3. Graph representation of a network of systems

A different type of graph representation is considered when the 
dynamical system is a network admitting a natural decomposition 
into fundamental subsystems interacting through their dynamics. In 
this case, the network admits a graph representation  where the 
individual subsystems constitute the elements of the set of vertices 
 = {1,… ,𝑁

}. The set of edges  is defined by state-to-state 
interactions. Accordingly, to each subsystem 𝑖 are associated a local 
state 𝑥𝑖 ∈ R𝑛𝑥𝑖  and input 𝑢𝑖 ∈ R𝑛𝑢𝑖 . The neighbors of a node of 
the network, i.e. of a subsystem 𝑖, is the set 𝑖 = {𝑗 ∣ (𝑖, 𝑗) ∈ }. 
The definition of an output vector 𝑦𝑖 ∈ R𝑛𝑦𝑖  can also be included, 
but it will be omitted in the following for simplicity. In other words, 
for a general nonlinear system of the form (3), there exists a natural 
subdivision of the state and input vectors such that every individual 
subsystem is described by: 
𝑖 ∶ 𝑥𝑖 (𝑘 + 1) = 𝑓𝑖 (𝑥𝑖 (𝑘), (𝑥𝑗 (𝑘))𝑗∈𝑖

, 𝑢𝑖 (𝑘)). (8)

This type of representation has been extensively used in partitioning 
for non-centralized predictive control, especially in the form of linear 
interacting systems, where each subsystem takes the form: 

𝑖 ∶

⎧

⎪

⎨

⎪

⎩

𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝐵𝑖𝑢𝑖 (𝑘) +𝑤𝑖 (𝑘)
𝑤𝑖 (𝑘) =

∑

𝑗∈𝑖

𝐴𝑖𝑗𝑥𝑗 (𝑘) . (9)

Each subsystem 𝑖 is affected only by its local input, and is coupled to 
its neighbors through dynamic interactions defined by matrices 𝐴𝑖𝑗 . 
This coupling is seen by subsystem 𝑖 as an exogenous signal 𝑤𝑖
whose nature is determined by the coordination protocol used in the 
control strategy, i.e. it is considered a disturbance in decentralized 
control, or it is known or measurable for cooperative strategies. Further 
details about this topic are given in Section 3.5 where multi-topological 
representations are introduced. 

Remark 1.  From the discussion above, it is clear that each subsystem 
defined by (8) can itself be seen as a graph as described in Section 3.2. 
A possible algorithmic approach to link the graph associated with a dy-
namical system and the graph associated with a network of dynamical 
systems is proposed in Riccardi et al. (2025c).

Remark 2.  In the definition of subsystem (8), we assumed that each 𝑖
is driven only by its local input 𝑢𝑖 . There is, however, the mathematical 
possibility that dynamics (8) may be driven also by 𝑢𝑗  with 𝑗 ∈ 𝑖 . 
The resulting networks are constituted by input-coupled subsystems. 
We decided to treat these networks in separate subsections.

Example 2.  In this example, we propose two different network 
representations of control agents, one having a modular topology, the 
other having a random one. According to the discussion above, a 
control agent will incorporate subsystem dynamics and all the con-
trol, communication, coordination, and algorithmic requirements for 
deploying an NCen-MPC strategy.

A network can be considered modular if it exhibits a high level of 
modularity, which can be quantified using the modularity metric, but 
also visually because it will present recurring patterns. An example of 
such a network with 64 control agents is reported in Fig.  6, where the 
7 
Fig. 6. Graph representation of a modular network with 64 agents. The width 
of the edges represents the strength of the interaction among the agents. This 
network exhibits a repeating modular pattern.

recurring structure of 4 and 16 agents is evident. The topology of this 
network is defined as follows: from the thickest to the thinnest lines, 
the bidirectional interactions have a strength of 𝑤𝑖,𝑗 = 0.1, 0.01, 0.001.

The second network has 50 control agents and a randomly gen-
erated topology, which is reported in Table  2, and which shows the 
presence of directed arcs. The network representation is proposed in 
Fig.  7.

We will use these modular and random networks in Section 4.4 to 
show an application of optimization-based and algorithmic partition-
ing approaches and the evaluation methodology for the quality of a 
partition.

3.4. Bipartite graph representations

In a bipartite graph (Diestel, 2017), the set of the nodes is divided 
into two groups  = 𝑎 ∪𝑏, 𝑎 ∩𝑏 = ∅, and all the edges start in one 
group and end in another. This type of graph representation has two 
main use cases in partitioning for non-centralized control. In the first 
case, a bipartite graph is used to represent the relations between the 
variables and the constraints of an optimization problem, e.g. as done 
in Tang, Allman et al. (2018). This approach is used to decompose the 
optimization problem by minimizing the number of complicating1 con-
straints that are removed in the distributed solution of the problem. In 

1 Complicating constraints are those that introduce an interdependence into 
subproblems, thus affecting (complicating) the separability of the original 
problem. In this discussion, complicating constraints are those that involve 
variables of different subsystems.
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Fig. 7. Graph representation of a random network with 50 agents. The nodes 
are sorted according to their degree, which is also reflected in the strength of 
their color. The randomly generated topology is detailed in Table  2.

the second case, a bipartite graph is used to represent the input–output 
paths of the network, as done in Tang and Daoutidis (2018) and Wang 
et al. (2023). In these approaches, the relationships between output 
and input variables are made explicit. Then, among all possible paths 
between each pair, the shortest is chosen. Accordingly, partitioning is 
used to minimize the interactions between input and output dynamics, 
an approach that is conceptually similar to the quantification of input–
output interactions in MIMO systems using an RGA matrix (Skogestad 
& Postlethwaite, 2001).

Example 3.  In this example, we propose the use of a bipartite graph 
representation for a network subject to complicating constraints.2 Con-
sider the following optimization problem representing MPC optimiza-
tion at a generic time step 𝑘 for a network of linear systems, each with 
two states and one input, with no dynamical coupling, but subject to 
complicating constraints: 
min
𝑥̃,𝑢̃

𝐽 (𝑥̃, 𝑢̃)

s.t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑐1(𝑘) ∶ 𝑥1(𝑘) + 𝑥2(𝑘) ≤ 0
𝑐2(𝑘) ∶ 𝑥1(𝑘) + 𝑥3(𝑘) ≤ 0
𝑐3(𝑘) ∶ 𝑢1(𝑘) + 𝑢2(𝑘) + 𝑥4(𝑘) + 5 ≤ 0
𝑐4(𝑘) ∶ 𝑢2(𝑘) + 𝑥1(𝑘) + 𝑥3(𝑘) ≤ 0

, (10)

where 𝑥̃, 𝑢̃ represent state and input sequences over an optimization 
horizon 𝑁 , and 𝑘 = 0,… , 𝑁 . The constraints 𝑐𝑖 introduce interactions 
among the subsystems of the network, which can be, e.g.  interpreted 
as a set of specifications on shared resources. This coupling can be 
captured by the bipartite graph in Fig.  8, where the nodes in one set 
are the variables, the nodes in the other set are the constraints, and the 
arcs represent the participation of variables in constraints. To partition 
a network subject to complicating constraints, it is possible to develop 
algorithmic procedures to maximize the effect of constraint couplings 
among cooperating agents in the same coalition, and to minimize the 
coupling between agents in different coalitions. These inter-coalition 

2 The reader can refer to Table  5 for examples of bipartite representations 
used to capture input–output interactions in MIMO systems.
8 
Fig. 8. The bipartite graph representation of a set of complicating constraints. 
The graph is constituted by two sets of node, one for the optimization 
variables, one for the problem constraints. The arcs represents the participation 
of a variable in a constraint. The graph is bipartite because it is formed by two 
sets of nodes for which arcs only go from one set to another.

constraints can be ignored in solving local problems at first, and they 
can then be accounted for in a later step of the network optimization.

3.5. Multi-topological network representations

Consider a network of dynamical systems where the connections 
are determined by a variable topology whose nature will be specified 
later in this section. The presence of a link introduces a directed rela-
tionship between two subsystems that represents a dynamic coupling 
as described in Fig.  9. Concerning the representation of a network of 
systems in Section 3.3, here we consider only macro links connecting 
subsystems, thus omitting the subscript notation related to the topo-
logical representation of the interactions among variables of different 
subsystems. Moreover, we index each subsystem 𝑖 with the letter 𝑖, 
so that the network of subsystems is made by the set of nodes  =
{1,… , 𝑁}. These choices simplify the presentation of the following 
concepts.  The existence of a link between the subsystem 𝑖 and 𝑗 at a 
time step 𝑘 can be represented by the binary variable 𝜖𝑖𝑗 (𝑘) such that: 

𝜖𝑖𝑗 (𝑘) =
{

1 if 𝑖 is connected to 𝑗 at time step 𝑘
0 otherwise . (11)

The collection of these links determines the topology of the network. In 
the context of control systems, a link representing a dynamical coupling 
in this network can have three different natures:

• The existence of the link depends on the input-state configuration 
of the network, i.e. the network has an input-state-dependent 
topology. This happens when the dynamical coupling is deter-
mined by the regions of the input-state configuration of the 
system, such as in PWA dynamics (Bemporad & Morari, 1999; 
Heemels et al., 2001).

• The link can be activated or deactivated as a part of the control 
strategy of the network, i.e. it is a decision variable.

• The link activation is driven by an external function, either known 
or unknown.

A possible topology can co-exist for each of the above-mentioned 
link classes. Consequently, the overall topology of the network will 
result from the composition of these superposed topologies, i.e. a 
multi-topological network representation, as in Fig.  9.

In the general case, we assume a number of 𝑁𝜖 distinct topological 
levels characterizing the network. We associate a binary variable 𝜖𝑞𝑖𝑗 (𝑘)
representing the connection between areas 𝑖 and 𝑗 in the topological 
level 𝑞 at time step 𝑘. According to the nature of the topology with 
which this variable is associated, it can be an input-state-dependent 
variable, a decision variable, or a signal. Since all binary variables must 
be equal to one for a connection to exist, the state of variable 𝜖𝑖𝑗 (𝑘) is 
directly determined by the product: 

𝜖𝑖𝑗 (𝑘) =
𝑁𝜖
∏

𝜖𝑞𝑖𝑗 (𝑘). (12)

𝑞=1
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Incorporating binary variables 𝜖𝑖𝑗 (𝑘) in the network description is 
straightforward. For this, consider the network of nonlinear systems:
𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)), (13)

and assume it admits a decomposition in 𝑁 subsystems according 
to the discussion in Section 3.3. Then, their time-varying topological 
dynamics is:
𝑥𝑖(𝑘 + 1) = 𝑓𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘), 𝜔𝑖(𝑘)) (14)

𝜔𝑖𝑗 (𝑘) = 𝜖𝑗𝑖(𝑘)𝑥𝑗 (𝑘) ∀𝑗 ∈ 𝑖, (15)

where 𝑥𝑖 ∈ R𝑛𝑥𝑖 , 𝑢𝑖 ∈ R𝑛𝑢𝑖  are the state and input vectors of subsystem 
𝑖; and the vector 𝜔𝑖 constituted by the elements 𝜔𝑖𝑗 incorporates all 
topologically defined dynamical couplings of subsystem 𝑖 with the its 
neighborhood 𝑖.

3.6. Multi-topological representations and hybrid systems

When applying the concept of multi-topological time-varying repre-
sentations to networks of linear systems, the result is a hybrid network 
system (Tabuada, 2009). For the sake of simplicity, and without any 
loss of generality, in what follows, we consider the case of three 
topological levels of different nature, but the more general case of 
𝑁𝜖 > 3 topological levels follows similarly. In particular, the network 
is described as:
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘) + 𝜔𝑖(𝑘) (16)

𝜔𝑖(𝑘) =
∑

𝑗∈𝑖

𝜖𝑖𝑗 (𝑘)𝐴𝑖𝑗𝑥𝑗 (𝑘) (17)

𝜖𝑖𝑗 (𝑘) = 𝜖1𝑖𝑗 (𝑘)𝜖
2
𝑖𝑗 (𝑘)𝜖

3
𝑖𝑗 (𝑘) (18)

s.t. 𝜖1𝑖𝑗 (𝑘) = 1 ⇔

[

𝑥𝑗 (𝑘)
𝑢𝑗 (𝑘)

]

∈ 𝛺a
𝑗 , (19)

where 𝐴𝑖𝑖 ∈ R𝑛𝑥𝑖×𝑛𝑥𝑖 , 𝐵𝑖𝑖 ∈ R𝑛𝑥𝑖×𝑛𝑢𝑖 , 𝐴𝑖𝑗 ∈ R𝑛𝑥𝑖×𝑛𝑥𝑗 ; 𝜖1 is the logical 
variable related to the input-state-dependence of a link; 𝛺a is the 
convex polyhedron for which the link 𝜖1 is activated; 𝜖2 is a control 
action; and 𝜖3 an external signal affecting the topology.

This multi-topological network description admits a reformulation 
into Mixed-Logical Dynamical (MLD) form (Bemporad & Morari, 1999), 
allowing the direct application of MPC control. To this, assume that 
the directed dynamical coupling of the 𝑗th system is defined over the 
polytope 𝛺a

𝑗 =
{[

𝑥⊺𝑗 ; 𝑢
⊺
𝑗

]⊺
∶ 𝑆a𝑗 𝑥𝑗 + 𝑅a𝑗 𝑢𝑗 ≤ 𝑇 a𝑗

}

, and we compute the 
constant 𝑀∗

𝑗
▵
= max𝛺𝑗

𝑆a𝑗 𝑥𝑗 + 𝑅a𝑗 𝑢𝑗 − 𝑇 a𝑗 . Then, we introduce auxiliary 
variables 𝑧1, 𝑧2, 𝑧3 for each edge of the graph, with 𝑖, 𝑗 ∈  :

𝐴𝑖𝑗𝜖
1
𝑖𝑗 (𝑘)𝑥𝑗 (𝑘) = 𝑧1𝑖𝑗 (𝑘) (20)

𝜖2𝑖𝑗 (𝑘)𝑧
1
𝑖𝑗 (𝑘) = 𝑧2𝑖𝑗 (𝑘) (21)

𝜖3𝑖𝑗 (𝑘)𝑧
2
𝑖𝑗 (𝑘) = 𝑧3𝑖𝑗 (𝑘), (22)

and the set of constraints that ensure the satisfaction of the logical 
conditions, and the correct definition of auxiliary variables:
𝑆a𝑗 𝑥𝑗 (𝑘) − 𝑇 a𝑗 ≤ 𝑀∗

𝑗 (1 − 𝜖1𝑖𝑗 (𝑘)) (23)

𝑧1𝑖𝑗 (𝑘) ≤ 𝑀𝑗𝜖
1
𝑖𝑗 (𝑘) (24)

𝑧1𝑖𝑗 (𝑘) ≥ 𝑚𝑗𝜖
1
𝑖𝑗 (𝑘) (25)

𝑧1𝑖𝑗 (𝑘) ≤ 𝐴𝑖𝑗𝑥𝑗 (𝑘) − 𝑚𝑗 (1 − 𝜖1𝑖𝑗 (𝑘)) (26)

𝑧1𝑖𝑗 (𝑘) ≥ 𝐴𝑖𝑗𝑥𝑗 (𝑘) −𝑀𝑗 (1 − 𝜖1𝑖𝑗 (𝑘)) (27)

𝑧𝓁𝑖𝑗 (𝑘) ≤ 𝑀𝑗𝜖
𝓁
𝑖𝑗 (𝑘) (28)

𝑧𝓁𝑖𝑗 (𝑘) ≥ 𝑚𝑗𝜖
𝓁
𝑖𝑗 (𝑘) (29)

𝑧𝓁𝑖𝑗 (𝑘) ≤ 𝑧𝓁−1𝑖𝑗 (𝑘) − 𝑚𝑗 (1 − 𝜖𝓁𝑖𝑗 (𝑘)) (30)

𝑧𝓁𝑖𝑗 (𝑘) ≥ 𝑧𝓁−1𝑖𝑗 (𝑘) −𝑀𝑗 (1 − 𝜖𝓁𝑖𝑗 (𝑘)), (31)
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Fig. 9. General representation of the connections between agents 𝑖 and 𝑗 at a 
time-step 𝑘. The topology describing the dynamical coupling among agents at 
a time step 𝑘 results from multiple topological levels all acting simultaneously 
on the network.

for 𝓁 = 2, 3, allowing the definition of constraints related to the second 
and third variables; and 𝑀𝑗 = −𝑚𝑗 = max𝛺𝑗

𝐴𝑖𝑗𝑥𝑗 are constants. The 
resulting system dynamics is then:
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘) + 𝜔𝑖(𝑘) (32)

𝜔𝑖(𝑘) =
∑

𝑗∈𝑖

𝑧3𝑖𝑗 (𝑘). (33)

The Eqs. (23)–(33) constitute the MLD form of (16)–(19). 

Remark 3.  The procedure to obtain multi-topological representations 
presented in this section is also valid for more complex classes of 
systems, other than the linear ones. However, for a general nonlinear 
system, obtaining an MLD representation might not be possible, and 
more complex approaches to incorporate variable topologies into the 
dynamics could be required.

Remark 4.  The existence of an input-state-dependent link between two 
areas can also be based on the configuration of both areas. In this case, 
the condition (19) must include variables of both areas.

4. Partitioning for predictive control

This section introduces the main ideas behind the partitioning prob-
lem for non-centralized predictive control. To this aim, we first define 
a specific terminology for the network components, then we introduce 
the metrics and the evaluation methodology to assess the quality of 
a partition, and finally, we present a formulation of the partitioning 
problem for the maximization of the performance of the control archi-
tecture. This section aims to provide the reader with a clear perspective 
of what partitioning optimally means, and the consequent effect on the 
non-centralized control architecture. 

4.1. The general partitioning problem

Consider a network described by the nonlinear dynamics (3), and 
denoted by  . The state, input, and output vectors are respectively 
𝑥 ∈ R𝑛𝑥 , 𝑢 ∈ R𝑛𝑢 , and 𝑦 ∈ R𝑛𝑦 . The act of partitioning consists in finding 
a subdivision of the vectors 𝑥, 𝑢, 𝑦 into a number 𝑁 of subvectors 
𝑥𝑖 ∈ R𝑛𝑥𝑖 , 𝑢𝑖 ∈ R𝑛𝑢𝑖 , and 𝑦𝑖 ∈ R𝑛𝑦𝑖  for 𝑖 = 1,… , 𝑁 , and of the respective 
vector fields into 𝑓𝑖, ℎ𝑖, which describe the local subsystem dynamics: 

𝑖 ∶
{

𝑥𝑖(𝑘 + 1) = 𝑓𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘), 𝑤𝑖(𝑘)) , (34)

𝑦𝑖(𝑘) = ℎ𝑖(𝑥𝑖(𝑘), 𝑤𝑖(𝑘))
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where 𝑤𝑖(𝑘) represents the coupling of subsystem 𝑖 with its neighboring 
subsystems 𝑗 ∈ 𝑖. The partition of the network is thus constituted by 
the set of subsystem dynamics: 
 = {1,… ,𝑁

}. (35)

Depending on the context, we call these groups 𝑗 sets or collections 
of subsystems, clusters, or coalitions. This general formulation of the 
partitioning problem is generally too broad to be considered directly 
in defining a partitioning strategy. Instead, this setting has several 
simplified reformulations, most notably the ones reported next.
Complete non-overlapping partitioning. In (34), there is no limitation on 
the structure of local vectors and dynamics. However, the prevalent set-
ting in partitioning for non-centralized predictive control is to assume 
that the partitioning is complete and non-overlapping, and it covers 
the entirety of the original dynamics. Using set notation, a complete 
non-overlapping partitioning  is such that:
𝑁
⋃

𝑖=1
𝑖 =  and (36)

𝑖 ∩ 𝑗 = ∅ ∀𝑖, 𝑗 ∈ {1,… , 𝑁} with
𝑖 ≠ 0 ∀𝑖.

 A complete non-overlapping partitioning allows the straightforward 
definition of local controllers and coordination protocols, making it the 
preferred choice in non-centralized control. Overlapping partitionings, 
on the other hand, are generally used to achieve performance or 
resilience improvements in the network.
Coupling through state dynamics. The coupling term 𝑤𝑖(𝑘) in (34) can, 
in general, comprehend both state and input interactions with neigh-
bors, i.e. 𝑤𝑖(𝑘) = [(𝑥𝑗 (𝑘))𝑗∈𝑖

; (𝑢𝑗 (𝑘))𝑗∈𝑖
]. However, in most 

settings, only state couplings are considered, yielding the vector field 
𝑓𝑖(𝑥𝑖(𝑘), (𝑥𝑗 (𝑘))𝑗∈𝑖

, 𝑢𝑖(𝑘)). This approach is the most intuitive and 
represents most real-world scenarios in which a local controller would 
be designed to steer local dynamics through the input channel 𝑢𝑖 with-
out directly interfering with the neighbor dynamics 𝑥𝑗 . Moreover, it is 
often assumed that the output function depends only on the local state, 
thus taking the form ℎ𝑖(𝑥𝑖(𝑘)). However, even if this is the most used 
setting in the partitioning literature, we acknowledge the presence and 
relevance of studies for input-coupled subsystems. We decided to treat 
these approaches separately in Sections 6.6, 7.7, 7.8, and 9.6. In fact, 
studies for input-coupled subsystems generally consider a small number 
of subsystems, or neglect the existence of delays in the input coupling 
that would introduce dynamics in the interaction among subsystems.
Fundamental subsystems. A common assumption in partitioning for 
non-centralized predictive control is that the network   in (3) admits 
a natural decomposition into a number 𝑁 of atomic or fundamental 
subsystems that cannot be further divided for the definition of local 
controllers. Moreover, fundamental subsystems are coupled exclusively 
by state dynamics interactions, as formalized in Riccardi et al. (2025c). 
Therefore, the network is given as a collection of subsystems  =
{1,… ,𝑁

}. In this network setting, partitioning consists in grouping 
the subsystems 𝑖 into a number 𝑁 ≤ 𝑁 of bigger units 𝑗 , i.e. 
using the notation (35) in defining the partition  = {1,… ,𝑁

}. Two 
extreme partitions are possible, one where each group is an individual 
subsystem, i.e.  ≡  , 𝑁 = 𝑁 , and one that comprises the entire 
network, i.e.  = {1}, 𝑁 = 1.

Remark 5.  The selection of fundamental subsystems does not require 
them to satisfy any specific control property. This choice is made 
because it allows us to define the fundamental subsystems for any 
network of systems that admits an equivalent graph representation. 
However, fundamental subsystems may be required to satisfy properties 
of interest, and for this to occur, it is sufficient to add the desired test for 
the property any time a new node is added to the subsystem. Moreover, 
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Fig. 10. A possible selection of the subsystems for the network in Example 
1. The green areas indicate the subsystems and comprehend several input and 
state variables. The arrows that go from one subsystem to the other can be 
interpreted as the dynamical coupling among control agents.

additional procedures that guarantee the termination of the algorithms 
might be required. For example, in a network of linear systems, the 
selection might require the fundamental subsystems to be controllable, 
thus obtaining a collection of controllable fundamental subsystems, if 
possible.

Example 4.  We continue Example  1 by showing a possible selection 
of the fundamental subsystems for that network. To this aim, we apply 
the algorithm for selecting fundamental subsystems defined in Riccardi 
et al. (2025c), which iterates over network nodes allocating them to 
subsystems according to coupling strengths. The resulting definition 
of the subsystems is given in Fig.  10. This is one definition of the 
subsystems, and others are possible.

Top-down and bottom-up approaches. From the discussion above, it is 
clear that the problem of partitioning a network can be approached 
from two different directions: a top-down and a bottom-up approach. 
In the top-down approach, a network   is considered a monolithic 
system (generally without any natural decomposition) that must be 
divided into smaller units. This approach is generally considered when 
complex nonlinear plants have to be decomposed for non-centralized 
control. In the bottom-up approach, instead, the problem is solved by 
aggregating fundamental subsystems that are given a priori, i.e. the 
network is assumed as  = {1,… ,𝑁

}. Both top-down and bottom-
up strategies are generally valid approaches, and the preferred direction 
is usually dictated by the application considered.

Remark 6.  When referring to a group of subsystems, we can also call 
it a set, cluster, or coalition. All these terms are necessarily used inter-
changeably throughout the survey because they all represent the same 
concept of a group of objects. There are subtle distinctions between 
the terms that will be remarked on in the specific sections. In general, 
the term cluster is used in the machine learning literature to indicate 
a group of objects that are strongly connected (Xu & Wunsch, 2005), 
while coalition is a term used in cooperative game theory to denote a 
group of players (Apt & Witzel, 2009).
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4.2. Metrics and evaluation methodology

The fundamental question that each partitioning strategy in this 
survey tries to answer is: What is the best partition for non-centralized 
predictive control? This question only admits a posterior quantitative 
answer independently from the control strategy considered. A formal 
motivation for this fact is given in Section 4.3; instead, in this sec-
tion, we focus on the metrics that allow us to assess the quality of 
a partition, and on the methodologies to do it. First of all, the best 
partition for a selected evaluation criterion must be defined for a spe-
cific non-centralized predictive control, i.e. Dec-MPC, DMPC, HMPC, 
or Coal-MPC, and w.r.t. CMPC. Throughout the section, we assume 
that the partition associated with CMPC is denoted by CMPC (this 
is the entire network), the one under evaluation by NMPC, i.e. the 
partitioning for the application of a desired NCen-MPC strategy, and 
one generic partition by gen. In this section, we first present the main 
metrics used to assess the quality of a partition, and then we briefly 
discuss the evaluation methodologies.
Metrics. In the literature, four main key performance indicators are 
used to assess the quality of a partition: (1) the cumulative stage 
cost 𝐽 stage; (2) the computation time 𝐽 time; (3) the computational 
cost 𝐽 comp.; and (4) the communication cost 𝐽 comm.. To validate the 
partition, it is necessary to simulate the system using both CMPC 
and NCen-MPC using the desired partitioning strategy. Then, the key 
performance indicators are computed as follows.
Cumulative stage cost. Assume that the stage cost for CMPC at the time 
step 𝑘 is defined by the cost function 𝐽 (𝑥(𝑘), 𝑢(𝑘−1)). Moreover, assume 
a simulation horizon of 𝑁sim time steps. At time step 𝑘, the optimal 
control problem for CMPC is solved over a horizon 𝑁 , yielding a 
solution control sequence 𝑢̃∗CMPC(𝑘), of which the first element 𝑢∗CMPC(𝑘)
is applied to the system, providing the next step value for the state 
𝑥CMPC(𝑘). Consequently, the cumulative stage cost for CMPC is 

𝐽 stage(CMPC) =
𝑁sim
∑

𝑘=1
𝐽 (𝑥CMPC(𝑘), 𝑢∗CMPC(𝑘 − 1)). (37)

The cumulative stage cost for the non-centralized strategy and a se-
lected partitioning NMPC is obtained similarly. However, in this case, 
a number 𝑁 = |NMPC| of local problems is solved in parallel, 
providing local solutions 𝑢∗NMPC,𝑖(𝑘) for 𝑖 = 1,… , 𝑁 . Then, a global 
vector 𝑢∗NMPC(𝑘) is obtained by grouping local solutions, and is applied 
to the plant to compute the global state transition 𝑥NMPC(𝑘). This 
procedure allows the computation of the cumulative stage cost for 
NMPC, i.e. 𝐽 stage(NMPC), as done in (37) but using the non-centralized 
vectors. In general, for cost minimization it holds that 𝐽 stage(CMPC) ≤
𝐽 stage(NMPC). There are exceptions if the dynamics is nonlinear and the 
solution is obtained for a linearized version around an operating point, 
or if the network is subject to external uncertain signals. However, 
the centralized solution of the optimization problem is the reference to 
assess the optimality of the selected partition (and of the partitioning 
methodology) for a given non-centralized strategy.

An approach to compare the cumulative stage cost of different 
architectures consists in normalizing these results such that, for a given 
partition gen under evaluation, the normalized cumulative stage cost 
is given by: 

𝐽 stagenorm.(gen) =
𝐽 stage(gen)
𝐽 stage(CMPC)

. (38)

It holds that 𝐽 stagenorm.(CMPC) = 1, and in general 𝐽 stagenorm.(gen) ≥ 1, so 
various partitions can be evaluated easily according to a metric that is 
valid across all possible strategies and applications.
Computation time. This metric is straightforward to obtain. It is suffi-
cient to measure the execution time in seconds necessary to execute 
the simulation over a horizon 𝑁 . For CMPC, one CPU core is used to 
sim
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execute this task,3 and the time in seconds to perform the simulation 
constitutes the computation time cost 𝐽 time(CMPC). For NMPC, local 
optimization problems are solved in parallel at each time step, which 
requires 𝑁 CPUs4 The time required for this parallel execution consti-
tutes the computation time cost for NMPC, i.e. 𝐽 time(NMPC). For any 
well-designed non-centralized strategy and good choice of partition, 
it holds that 𝐽 time(NMPC) < 𝐽 time(CMPC). The gain in computation 
time is often one of the main reasons for deploying a non-centralized 
strategy. In fact, centralized computations may be prohibitive in several 
settings. For a partition gen under evaluation, the normalized version 
of the computation time is: 

𝐽 timenorm.(
gen) =

𝐽 time(gen)
𝐽 time(CMPC)

. (39)

where 𝐽 timenorm.(
CMPC) = 1, and for a well-designed non-centralized 

strategy and partition 𝐽 timenorm.(
gen) < 1.

Computation cost. We discussed how, to assess the computation time in 
non-centralized control, it is necessary to deploy the strategy in paral-
lel, or alternatively, perform a simulation replicating such a situation. 
The computation cost is a metric that quantifies the cost associated 
with the usage of CPUs for these parallel operations, and was intro-
duced in Riccardi et al. (2024c, 2025c) for the evaluation of different 
partitions of the same network in DMPC. The best way to do so is to 
look at the CPU usage time, which translates immediately into power 
and monetary requirements once a specific technology is selected. 
Consequently, the unit measure of the computation cost is [core ⋅
seconds], i.e. how much CPU time in parallel is required to perform 
the distributed computation. For a generic predictive control strategy, 
being it centralized or non-centralized, the computation cost is thus 
assessed by computing for the simulation horizon 𝑁sim the sum over 
the number of CPUs of the active CPUs usage time for that time step, 
which for a CPU 𝑖 we denote by 𝜏𝑖(𝑘). If we assume that, in the non-
centralized control strategy considered, one CPU is available for each 
agent in the partition NMPC, then it holds that 𝑁CPU = 𝑁 , and the 
computation cost can be written as: 

𝐽 comp.(NMPC) =
𝑁sim
∑

𝑘=1

𝑁
∑

𝑖=1
𝜏𝑖(𝑘). (40)

It is possible to simplify this expression further if we assume that at 
each time step 𝑁sim all local controllers will wait and idle for the 
slowest controller to obtain its result without performing any opera-
tion. Then, the computation cost can be written as 𝐽 comp.(NMPC) =
∑𝑁sim

𝑘=1 𝑁𝜏slowest(𝑘). For both definitions of 𝐽 comp., the normalized ver-
sion of the metric for a generic partition gen is given by: 

𝐽 comp.norm. (gen) =
𝐽 comp.(gen)
𝐽 comp.(CMPC)

, (41)

where 𝐽 comp.norm. (CMPC) = 1. In general 𝐽 comp.norm. (gen) > 1, but very efficient 
strategies can also achieve 𝐽 comp.norm. (gen) < 1.

Remark 7.  In literature, to the authors’ best knowledge, the only a 
priori assessment of the computational cost associated with a specific 
non-centralized predictive control strategy has been performed in Aras-
tou et al. (2025). However, in that work, the determination is rather 

3 In some cases, parallel computing can also be used for CMPC. An example 
is when the network is constituted by hybrid systems. In this case, the MPC 
problem requires mixed-integer optimization, for which parallel execution 
algorithms are available. In such cases, instead of using one CPU for CMPC, it 
is possible to use any available number, given that each set of subsystems in 
the non-centralized strategy has such CPUs available at each time step.

4 The analysis of the computation time can be easily extended to the 
case in which the number of CPUs is time-varying, i.e. for 𝑁 (𝑘). This case 
occurs either when there is a time-varying partitioning (𝑘), or when the 
computational resources can change over time. Such extension also applies 
to other performance indicators.
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qualitative since it is performed through a Big-O analysis of the com-
putational complexity of the algorithm for non-centralized predictive 
control. In practice, such an approach cannot always establish which is 
better among algorithms with the same Big-O complexity, as in iterative 
schemes.

Communication cost. The communication cost assesses the impact of 
information transmission in different non-centralized control architec-
tures. In its original formulation, see e.g. Barreiro-Gomez et al. (2019), 
Fele et al. (2017), Maestre and Ishii (2017) and Masero et al. (2020a) 
among others, the communication cost is a function of the information 
topology defining how coalitions in a network share information to 
achieve a coordinated control action. Therefore, to the non-centralized 
control architecture an information graph NMPCinfo = (NMPCinfo , NMPCinfo ) is 
assigned, where the set of the nodes is constituted by the coalitions 
in the network, and the set of the edges by the active communication 
links. Then, to each link 𝜖𝑖𝑗 ∈ NMPCinfo  a cost is assigned, i.e. 𝜈(𝜖𝑖𝑗 ), and 
the communication cost is therefore computed as: 
𝐽 comm(NMPC) =

∑

𝜖𝑖𝑗∈NMPCinfo

𝜈(𝜖𝑖𝑗 ). (42)

This formulation of the communication cost has been used consistently 
in deriving coalitional control strategies, leading to partitions of the 
network minimizing the information sharing. The communication cost 
of CMPC is obtained by considering the cost associated with each possi-
ble active link in the network. The value of the cost of communication 
can be quantified using distance-based criteria, or the operational costs 
of the lines. Additionally, we stress that this approach in defining the 
communication cost can be used to obtain a partition, i.e. it is available 
a priori since it is a pure topological metric, whereas the other costs 
introduced before are only available a posteriori after the simulation.

While this formulation of the communication cost is direct and 
straightforward, it can be insufficient to establish the cost associated 
with iterative non-centralized control strategies. In fact, if the coordi-
nation protocol relies on the iterative sharing of information among 
agents to achieve an agreement about the control action to deploy, then 
a static topological metric can only be used to quantify the maximum 
amount of information shared once the maximum number of iterations 
of the coordination protocol is given. Posterior measurement of the true 
amount of information shared is, therefore, a more precise way to assess 
communication cost in this case. For example, assume that for an NMPC 
iterative strategy with information topology NMPCinfo = (NMPCinfo , NMPCinfo ), 
at each time step 𝑘 several iterations 𝑁iter(𝑘), and at every iteration 
a sequence of state-input predictions of length 𝑁seq is shared among 
the controllers. Then, for a simulation horizon 𝑁sim, and assuming that 
each state and input variables vectors have an information transmission 
cost 𝜈(𝑥𝑖), 𝜈(𝑢𝑖), 𝑖 ∈ NMPCinfo , then the communication cost can be defined 
as: 

𝐽 comm(NMPC) =
𝑁sim
∑

𝑘=1
𝑁iter(𝑘)

∑

𝑖∈NMPCinfo

∑

𝑗∈𝑖

𝑁seq(𝜈(𝑥𝑖) + 𝜈(𝑢𝑖)), (43)

where the cost 𝜈 associated with the information transmission can 
then be directly translated into network operation or economic require-
ments. The CMPC strategy does not need any iteration; only variables 
at the current time step are shared. Therefore, its communication cost 
is: 
𝐽 comm(CMPC) = 𝑁sim

∑

𝑖∈CMPCinfo

𝜈(𝑥𝑖) + 𝜈(𝑢𝑖). (44)

For both formulations of the communication cost, a normalization 
assessment is possible. Therefore, for a given partition gen associated 
with a non-centralized MPC strategy, its normalized version is: 

𝐽 commnorm (gen) = 𝐽 comm(gen)
𝐽 comm(CMPC)

, (45)

where 𝐽 commnorm (CMPC) = 1, for decentralized MPC or non-iterative 
strategies usually holds 𝐽 commnorm (gen) ≤ 1, while for iterative strategies 
𝐽 comm(gen) ≥ 1.
norm
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Evaluation methodology. From the above discussion about metrics, it is 
clear that assessing the quality of a partition is mainly a task performed 
after a simulation or experiment is completed. This fundamental fact, 
i.e. the impossibility of establishing the best partitioning prior to the 
deployment of the strategy, is one of the main limiting factors in devel-
oping partitioning strategies for non-centralized predictive control. In 
fact, once a partition is selected, computationally intensive simulations 
involving often large (in number or size) optimization problems have 
to be performed. Once the metrics of interest are selected for a specific 
problem and control strategy, the only effective way to determine the 
best partition is by complete enumeration, see e.g. Atam and Kerrigan 
(2021). However, enumerating and testing all possible partitioning 
quickly becomes intractable once the number of subsystems grows 
by more than a few units, due to a combinatorial explosion in the 
number of possible partitions. Therefore, most partitioning strategies 
have either developed paradigms for the topological a priori evaluation 
of partitions, or approached the problem by maximizing the immedi-
ate gain of a performance criterion by iterative exchange of agents. 
A definitive statement about what is the best approach cannot be 
formulated yet with the current literature, which leaves open many 
directions for future research. In practice, there might not even be a 
single partition minimizing simultaneously all four indicators 𝐽 stage, 
𝐽 time, 𝐽 comp., and 𝐽 comm.. Therefore, the desired partition should be 
selected according to control requirements among the most promising 
ones. 

Example 5.  We show how to apply the evaluation methodology 
proposed in this section by comparing some of the partitioning tech-
niques and the resulting control architectures that we found in the 
literature. The studies we consider report at least the cost associated 
with running a CMPC implementation of the controller, the one related 
to the NCen-MPC controller, and the respective computation times.

The results of the comparison are reported in Table  3. We con-
sidered techniques across all the partitioning classes and for different 
applications. The aim of this comparison is to show how different 
partitioning approaches affect the performance of the control strategy 
and the respective computation times. The values we report are in 
percentages. In some works, data is available for CMPC, a standard 
NCen-MPC technique, such as Dec-MPC or traditional DMPC, and for 
the NCen-MPC approach based on the partitioning method proposed. 
Regarding the metrics, for 𝐽 stagenorm , a value smaller than 1 means that 
the NCen-MPC based on partitioning is performing better than the 
reference controller, and worse otherwise. The same considerations 
applies to 𝐽 timenorm. We stress the fact that this comparison is for the sole 
purpose of showing what can be the effect of partitioning in NCen-MPC, 
and cannot be used directly as a guide to compare techniques, because 
they have been applied to different systems, control architectures, and 
with different tunings of the parameters. A fair assessment of the 
control performance that can be obtained with different partitioning 
techniques requires a dedicated study. Instead, what is interesting 
to notice is that NCen-MPC controllers based on partitioning often 
outperform more traditional DMPC or Dec-MPC approaches, and can 
sometimes outperform CMPC when nonlinear systems are considered.

Unfortunately, since a methodological assessment of the quality of 
the partition was not present in the literature, information about the 
computation and the communication cost of almost all the methods is 
not available. We suggest reporting such metrics for comparisons in 
future works.

4.3. Optimal partition for performance maximization

An agent 𝑖 in the network is a structure with autonomy constituted 
by a group of subsystems 𝑖, a local controller 𝑖, and further devices 
allowing communication with other agents, or other digital features, 
such as the execution of algorithmic procedures.
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Table 3
Comparison of different NCen-MPC control simulations for different partitioning techniques. The tables report the reference control technique w.r.t. which the 
metrics 𝐽 stagenorm (control performance), 𝐽 timenorm (computation time) are computed. A value smaller than 1 means that the NCen-MPC based on partitioning is performing 
better than the reference controller, and worse otherwise.
 Reference study Control and partitioning 

technique
Application Reference 

controller
𝐽 stagenorm 𝐽 timenorm  

 Riccardi et al. (2025c) DMPC-ADMM: based on partition 
index (MIQP)

Random network of hybrid 
dynamical systems

CMPC 1.0020 0.1660 

 DMPC 0.8925 4.3971 
 Riccardi et al. (2025c) DMPC-ADMM: based on partition 

index (Algorithm)
Random network of hybrid 
dynamical systems

CMPC 1.0109 0.1346 

 DMPC 0.9001 3.5659 
 Riccardi et al. (2024c) DMPC-ADMM: based on partition 

index (Genetic Algorithm)
The EEA-ENB CMPC 1.0441 0.0364 

 DMPC 1.0413 0.6548 
 Masero et al. (2022) Coalition control: market-based ACUREX plant 100 loops CMPC 0.9320 0.1540 
 Dec-MPC 0.9939 11.315 
 Masero, Frejo et al. 
(2021)

Coalition control: pairwise 
clustering

ACUREX plant 100 loops CMPC 0.9340 0.0606 

 Dec-MPC 0.9960 4.4565 
 Ocampo-Martinez 
et al. (2011)

Decentralized MPC: 
graph-partitioning-based ordering 
algorithm

Barcelona drinking water 
transport network

CMPC 1.1159 0.4698 

 Ocampo-Martinez 
et al. (2012)

Decentralized MPC: nested 
𝜖-decomposition

Barcelona drinking water 
transport network

CMPC 1.0040 0.7030 

 He and Li (2023) DMPC: multiway spectral 
community detection algorithm

Reactor-separator process CMPC 1.0139 0.0486 

 DMPC 0.9677 0.9559 
 Chanfreut et al. 
(2021a)

Coalitional MPC: hierarchical 
formulation

Freeway traffic control CMPC 1.0170 0.3860 
The problem of partitioning consists of finding an allocation of the 
agents of the network into groups such that a set of specifications is 
satisfied. Different criteria, including geographical distribution, com-
munication and coordination effort, operational constraints, security 
and privacy guarantees, and design choices, can guide the selection 
of these groups. Often, these criteria are application-dependent and, 
in almost all cases, are related to the control strategy to deploy. 
Consequently, there is no common rationale underlying all the differ-
ent partitioning approaches. However, when the partitioning problem 
is considered in the context of non-centralized predictive control, it 
assumes a more precise connotation, and an optimal version can be 
formulated.

Assume to have a network with 𝑁 agents, i.e. a collection  =
{1,… ,𝑁

}. A set 𝑖 of 𝑁𝑖  agents is defined as 𝑖 = {𝑖,1,… ,
𝑖,𝑁𝑖

}. We introduce a matrix of binary variables 𝛿 ∈ M𝑁
(0, 1)5 

s.t. 𝛿𝑖𝑗 = 1 ⇔ 𝑖 ∈ 𝑗 . In general, we can assume 𝛿 to be time-
dependent, i.e. 𝛿(𝑘), but time-dependence is omitted in the following 
for simplicity, and only used when essentially required. For a given 
choice 𝛿, we denote a partition of network   into 𝑁(𝛿) sets of agents 
by (𝛿) = {1,… ,𝑁(𝛿)

}. Now we consider the control performance of 
the network that is measured through a cost function 𝐽 (𝑥, 𝑢, 𝛿), where 
𝑥 is the state of the network, 𝑢 is the applied control action, and 𝛿
is the selected partitioning, a set of binary decision variables. Once 
the non-centralized predictive control strategy is selected, the cost 𝐽
is minimized iteratively at each time step over a selected horizon 𝑁 . 
For this, we use the vector notation 𝑥̃𝑘 = [𝑥⊺(1|𝑘),… , 𝑥⊺(𝑁|𝑘)]⊺, 𝑢̃𝑘 =
[𝑢⊺(0|𝑘),… , 𝑢⊺(𝑁 − 1|𝑘)]⊺, 𝛿𝑘 = [𝛿⊺(0|𝑘),… , 𝛿⊺(𝑁 − 1|𝑘)]⊺ to define state 
and input sequences over the horizon 𝑁 . The global control problem is 
then defined as:

min
𝑥̃𝑘 ,𝑢̃𝑘 ,𝛿𝑘

𝐽 (𝑥̃𝑘, 𝑢̃𝑘, 𝛿𝑘) =
𝑁−1
∑

𝑖=1
𝐽s(𝑥(𝑖|𝑘), 𝑢(𝑖 − 1|𝑘), 𝛿(𝑖 − 1|𝑘)) (46)

+ 𝐽f(𝑥(𝑁|𝑘), 𝑢(𝑁 − 1|𝑘), 𝛿(𝑁 − 1|𝑘))

5 The class of square binary matrices of dimension 𝑁 .

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s.t. 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘))

𝑥(0|𝑘) = 𝑥(𝑘)

𝑔(𝑥̃𝑘, 𝑢̃𝑘, 𝛿𝑘) ≤ 0,

where 𝐽s is the stage cost, 𝐽f the terminal cost, and 𝑔 a set of inequal-
ity constraints. This formulation of the optimal partitioning problem 
assumes that it is possible to simultaneously select the variables in 
matrix 𝛿, and perform the steps to deploy the non-centralized control 
strategy. Conceptually, this contemporaneous optimization is not al-
ways possible for non-centralized control, especially if communication 
and coordination protocols are involved, i.e. in all cases except for 
purely decentralized MPC. This limitation can be overcome with a 
nested reformulation of (46). Specifically, the outer level is an integer 
optimization problem for the selection of 𝛿, and the inner level is 
associated with the solution of the non-centralized control problem: 
min
𝛿𝑘

𝐽 ∗(𝛿𝑘)

s.t. 𝑔out(𝛿𝑘) ≤ 0

𝐽 ∗(𝛿𝑘) = min
𝑥̃𝑘 ,𝑢̃𝑘

𝑁−1
∑

𝑖=1
𝐽s(𝑥(𝑖|𝑘), 𝑢(𝑖 − 1|𝑘))|𝛿𝑘

+ 𝐽f(𝑥(𝑁|𝑘), 𝑢(𝑁 − 1|𝑘))|𝛿𝑘
s.t. 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘))

𝑥(0|𝑘) = 𝑥(𝑘)
𝑔in(𝑥̃𝑘, 𝑢̃𝑘) ≤ 0,

(47)

where, at the inner level, algorithmic procedures that ensure coor-
dination among the agents might be present. In this formulation we 
assumed that the inequalities 𝑔 in (46) can be split in an outer 𝑔out
and inner 𝑔in sets depending on variables 𝛿𝑘, and (𝑥̃𝑘, 𝑢̃𝑘) respectively. 
This assumption usually holds since once variables 𝛿𝑘 are fixed, they 
do not affect further the non-centralized control strategy. Moreover, 
the set of constraints 𝑔out can be used to impose desired properties 
on the partitioning. One common choice is to assume that sets 𝑖 are 
non-overlapping, which can be codified with the constraints 

∀𝑖
𝑁
∑

𝛿𝑖𝑗 = 1. (48)

𝑗=1
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The complexity of the nested optimization problem (47) is NP-hard due 
to the outer mixed-integer layer. Moreover, from an implementation 
perspective, the time requirements to find the optimal partitioning 
and the optimal control action with this approach can quickly become 
prohibitive with a growing number of agents because, for each choice 
of 𝛿, the inner non-centralized predictive control strategy might be 
required to perform many iterative steps involving optimization.

Remark 8.  Optimal partitioning is intended for performance, but 
partitioning can be done according to other criteria, for which the 
optimal solution can be different. See Section 4.2 for a list of common 
metrics that can be used.

4.4. Solution methodologies

Partitioning approaches in current literature usually do not consider 
the level of complexity of the problem formulation (47). Instead, sim-
plified formulations, often application-oriented, are considered. These 
solution approaches can be broadly categorized into the following four 
methodologies:

• Static partitioning : this is the case in which the selection of 𝛿 is 
made prior to the deployment of the non-centralized strategy, 
and the partitioning (𝛿) is fixed at all instants. Most approaches 
follow this logic due to its simplicity and the fact that the parti-
tioning can be computed offline. The disadvantage is that changes 
in the network’s topology cannot be compensated for with this 
method, making it a viable option only for stationary networks.

• Event driven partitioning : it is the first extension of static parti-
tioning. When a topological change is detected, a new network 
partitioning is deployed. This strategy is reactive since network al-
terations can be detected, but no assumptions or predictions about 
their future behavior are made. Suppose the number of possible 
different topologies of the network is known a priori. In that case, 
all the associated partitionings of the network can be computed 
offline and only deployed when necessary. In other cases, the 
new partitioning is computed as soon as the topological change 
is detected, implying that the partitioning method is fast enough 
to be executed between two distinct MPC computations. For large 
networks, this is not usually suitable through optimization-based 
approaches. Therefore, algorithmic solutions can be considered 
to perform local adjustments to partitioning in the neighborhood 
of the topological change. Also, tabular methods can be imple-
mented to track the topology-partitioning couples, thus avoiding 
re-computations in known situations.

• Fixed partitioning over the prediction horizon: in this case, it is 
assumed that the topological changes that will occur over the net-
work during the prediction horizon are known at the current time 
step, either accurately or with some uncertainty. Consequently, 
before the start of the optimization process in the MPC, a fixed 
sequence 𝛿 can be established, and the non-centralized MPC is 
deployed knowing all the changes in topology and partitioning 
during the prediction horizon. A limited number of techniques of 
this type are currently available in the literature.

• Time-varying partitioning : this is the most complex case, where a 
potentially different network partitioning is allowed for each time 
step. In this way, all possible input-state-dependent topological 
changes that will occur in the network according to the available 
prediction model can be compensated, and uncertain topological 
changes might be accounted for using robustness arguments. This 
approach is also the only one that might guarantee the stability of 
the resulting non-centralized predictive control architecture un-
der predictable topological changes. In current literature, no work 
is present in this category, and future research might consider 
addressing this problem.
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Formally speaking, the last two approaches assume that a predictive 
partitioning of the network can be implemented for the NCen-MPC 
strategy developed. Such partitioning can assume the network topology 
to be static, or to change according to known rules or dynamical 
models. In the first case, the predictive partitioning is performed purely 
to improve the NCen-MPC approach. For the other two cases, there is no 
known approach in the literature, making predictive partitioning using 
models of the network topology dynamics an open problem.

We conclude this section by showing two examples of how to obtain 
the partition of two networks with different structures in Example  6, 
and of how to perform the posterior assessment of the performance of 
an NCen-MPC strategy applied to different partitionings of the same 
network in Example  7.

Example 6.  We continue the examples started in Example  2 by 
showing possible partitions of the modular and random networks.

We start by considering the modular network with 64 agents, 
and we apply the optimization-based partitioning technique developed 
in Riccardi et al. (2025c). This methodology returns different optimal 
partitions according to a selected value for the granularity parameter, 
which balances coupling strengths with the size of the resulting sets of 
agents. Applying this partitioning methodology to the modular network 
returns four different partitions: the one constituted by individual 
agents, two partitions aggregating groups of four agents according to 
their modules, and the grand coalition accounting for all the agents. 
The examples of the two intermediate partitions are shown in Fig. 
11. We also show the application of partitioning procedures defined 
in Riccardi et al. (2025c) to the random network with 50 agents. The 
use of an algorithmic approach here is advised because the previously 
deployed optimization-based strategy has a slow convergence rate, 
which is a consequence of the NP-hard nature of the problem. The algo-
rithmic approach is instead known to have a computational complexity 
of at most 𝑂(𝑛4), where 𝑛 is the number of nodes of the graph, after 
which improvements in the partitioning quality are usually marginal, 
and it can be potentially optimized and parallelized as commonly 
done in clustering procedures (Xu & Wunsch, 2005). However, which 
method provides the best partitions cannot be established a priori, and 
the results should be validated through control experiments, which 
we show in the next example. Two different network partitions, one 
obtained through the optimization-based approach, the other through 
the algorithmic approach, are shown in Fig.  12.

Example 7.  For this example, we consider again the random network 
with 50 agents. We further assume that each agent 𝑖 controls a 
subsystem with hybrid dynamics, defined as:
𝑥𝑖(𝑘 + 1) = 0.5𝑥𝑖(𝑘) + 𝑢𝑖(𝑘) +

∑

𝑗∈𝑖

𝑤𝑖,𝑗𝑥𝑗 (𝑘) if 𝑥𝑖(𝑘) ≥ 0

𝑥𝑖(𝑘 + 1) = −0.5𝑥𝑖(𝑘) + 𝑢𝑖(𝑘) +
∑

𝑗∈𝑖

𝑤𝑖,𝑗𝑥𝑗 (𝑘) if 𝑥𝑖(𝑘) < 0.

Thus, subsystem 𝑖 is coupled through state interactions to its neigh-
boring subsystems 𝑗 with 𝑗 ∈ 𝑖, and is subject to local constraints 
𝑢𝑖 ∈ [−0.5; 0.5], 𝑥𝑗 ∈ [−0.9; 0.9] ∀𝑖, 𝑗, but not to coupling constraints 
or objectives. The dynamical coupling occurs through the weights 𝑤𝑖,𝑗 , 
which define the topology of the network and are reported in Table  2. 
We want to deploy a DMPC strategy based on the alternating-direction 
method of multipliers (ADMM). We use hybrid dynamics because these 
are nonlinear systems, for which the effect of partitioning on pure 
network control performance is evident. Additional technical details 
about the case study are in Riccardi et al. (2025c). Here we focus 
on the results of control simulations to show how the metrics and 
the evaluation methodology developed in Section 4.2 can be used to 
assess the quality of the partitions, and to select the most appropri-
ate partitioning strategy for the considered application. To this end, 
we compare CMPC and the respective coalition denoted by CMPC, 
which is made by all agents; conventional DMPC, where each agent 
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(a) 

  
(b) 

 

Fig. 11. Two different partitions for the modular network. The green areas represent the control agents, the black links are the interactions inside the same 
control agent, while the links in red represent the interactions among the control agents.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
 
(a) Optimization-based partition.

  
(b) Algorithmic partition.

 

Fig. 12. Two possible different partitions of the random network for selected levels of the granularity parameter obtained with different strategies. These partitions 
are obtained with the scope of minimizing the strength of the interaction among control agents in different sets, while maximizing the interaction among control 
agents in the same set. While these two partitions appear to be very similar, the effects they have on network control can be quite different, as shown in Example 
7.
Table 4
Comparison of DMPC-ADMM performance applied to a random network of hybrid systems for different partitioning strategies. In bold we have reported the 
values that show the strengths of the techniques. For example, optimization-based partitioning with DMPC Opt has a loss in optimality w.r.t. CMPC of the 
0.24%. Instead, the partition obtained through the algorithm Alg

1  has a loss in performance of 1.2%, while being the least expensive from a computational 
perspective, which is represented with a reference value of 1.00. This partition is also the fastest in terms of computation speed w.r.t. traditional DMPC, with a 
loss in this regard limited to the 75%.
 Partition Cores Cost fun. value Opt. loss % Comp. time [s] Comp. time ratio Core seconds [s] Core seconds ratio 
 CMPC 1 6899 0.00 2628 26.48 2628 1.37  
 ADMM 50 7749 12.31 99 1.00 4960 2.59  
 Opt 6 6916 0.24 436 4.39 2617 1.36  
 Alg

1 11 6982 1.20 173 1.75 1913 1.00  
 Alg

2 9 6975 1.09 353 3.56 3184 1.66  
 Alg

3 5 6911 0.16 2818 28.40 14093 7.36  
acts independently, denoted by ADMM; one of the partitions obtained 
using the optimization-based method Opt and reported in Fig.  12; 
and three partitions Alg𝑖  obtained with the algorithmic partitioning 
procedure. We propose only one optimization-based partition because 
they produce control simulations that are generally similar w.r.t. the 
algorithmic approaches that have more interesting aspects to show. 
The results of the control simulations are reported in Table  4. The 
CMPC approach has the best control performance, and is used as 
a reference in this category, while conventional ADMM presents a 
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noticeable gap in performance, above the 12%. However, it is the 
fastest control approach, more than 26 times faster than CMPC, which 
can be the determining factor for selecting a specific partition in many 
applications. On the other hand, the computational cost in terms of 
core seconds w.r.t. CMPC is approximately double. The optimization-
based and algorithmic control approaches provide a trade-off regarding 
performance gain, computation time, and cost. The strategy based on 
Opt has a negligible loss in terms of optimality, while being 6 times 
faster than CMPC and having approximately the same computational 
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(a) 

(b) 

Fig. 13. Computation times and costs for solving the same NCen-MPC problem 
using different partitions. The data points represented with squares refer 
to partitions obtained through an optimization-based technique, and they 
approximately follow well-defined exponential or linear patterns, represented 
by the dashed lines. The data points using circles refer instead to the results 
of simulations using partitions obtained through algorithmic approaches. We 
see that the latter have a less clear evolution across the number of sets, which 
might be related to the suboptimality of algorithmic approach.

cost. Therefore, if these are a priority over speed, Opt is preferable 
w.r.t. conventional DMPC. Algorithmic partitioning approaches have 
mixed results. The strategy based on Alg3  will give the best results in 
terms of optimality gap, but it is also slower and more computationally 
expensive than CMPC; therefore, it is undoubtedly an option to discard. 
The approach that uses Alg1  has a relatively small loss in optimality, 
but it is also the least expensive in terms of computational cost, while 
retaining a good computation time. It is thus a good alternative to 
Opt. The partition Alg2 , which is the one reported in Fig.  12, offers 
similar results, and can also be considered. In the end, the most 
appropriate partition to use will depend on the requirements for the 
specific application, and can be selected among the listed options with 
a clear indication of the gains and tradeoffs. A possible way to visualize 
computational time and costs for different partitions, which can help 
guide such decisions, is reported in Fig.  13.

This illustrative example shows how posterior evaluation of oper-
ational performance for different partitions is fundamental in NCen-
MPC. In particular, for the same partitioning strategy, variations in the 
parameters to perform the partition can lead to very different control 
results. This fact motivates using a solid methodological assessment of 
control performance under different partitions.

5. Analysis and classification of the partitioning techniques for 
non-centralized predictive control

In this section, we analyze and classify the partitioning techniques 
for NCen-MPC that we found in the literature. The analysis we perform 
here is oriented toward the definition of the main characteristic of 
each methodology, highlighting their strengths and limitations, which 
generally apply to all techniques belonging to that category. For a 
detailed technical discussion both about the general methodologies and 
the specific papers presented, we developed instead the sections from 
Sections 6 to 10.

Regarding the classification of the partitioning techniques, we pro-
pose and discuss in the following three different perspectives:
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1. A categorization according to the general partitioning class, i.e. 
optimization-based, algorithmic, community-detection-based,
game-theory-based, and heuristic.

2. A categorization in subclasses of the partitioning methods based 
on specific structures in the problem, or objectives to achieve 
through its deployment.

3. A classification according to the NCen-MPC control architecture 
used in the strategy.

The classification tables for the techniques in this survey are provided 
in Tables  5 and 7. In the first table, we collocate the works found in 
the literature according to class and subclass. In the second table, we 
classify them according to the control approach used.

5.1. Classification according to the partitioning class

Optimization-based partitioning. As introduced in Section 4, the problem 
of partitioning can be seen, in an abstract way, as the problem of 
assigning a set of objects to several given sets. This type of problem 
can be naturally formulated as an MIP, see e.g. Section 4.3, whose 
solution will provide the optimal network partitioning according to 
the selected metric. At the basis of this formulation, there is a binary 
decision variable 𝛿𝑖𝑗 that equals 1 if the object 𝑖 belongs to the set 
𝑗. All partitioning methodologies based on this descriptive approach 
using binary variables fall into the category of optimization-based 
partitioning and are discussed in Section 6. When considering an 
optimization-based partitioning technique, it is essential to consider the 
fact that the associated MIP is NP-hard (Brandes et al., 2006; Karp, 
1972; Sandholm et al., 1999). Consequently, their scalability is limited, 
and optimization-based partitioning is suitable only for relatively small 
problems and static network topologies. This also means that online 
re-partitioning of a network using optimization-based approaches is 
prohibitive. Approximate solutions of mixed-integer problems can be 
found using, e.g.  the genetic algorithm (Goldberg, 1989; Srinivas & 
Patnaik, 1994), which does not guarantee global optimality, and still 
suffers from considerable computational complexity.
Algorithmic partitioning. Partitioning approaches based on algorithmic 
procedures are a faster and computationally less intensive alternative 
to optimization-based ones. The trade-off for these gains is that, unless 
extensive search is performed, their results are suboptimal w.r.t. the 
alternative optimization-based strategies, which constitutes their main 
disadvantage. However, for large problems or in time-varying set-
tings, algorithmic partitioning approaches result to be the only viable 
option thanks to their scalability. Additionally, through algorithmic 
procedures, it is possible to obtain partitions according to more so-
phisticated requirements, such as the satisfaction of control properties, 
more directly and straightforwardly than through optimization-based 
strategies. All the approaches discussed in Section 7 fall in this cat-
egory of algorithmic partitioning. However, we also stress that the 
works based on the community detection method reported in Section 8 
are algorithmic procedures. Despite this fact, we decided to discuss 
community detection methods separately because: (1) it represents by 
itself a branch of graph and network methods, in this case applied 
to partitioning for NCen-MPC control; (2) a rich body of studies and 
approaches has been developed in partitioning for NCen-MPC control 
exclusively through this method; (3) in this survey, almost every com-
munity detection methodology is based on a metric called modularity. 
Considering these characteristics, we dedicate Section 7 to all the algo-
rithmic methods in the literature that do not belong to the community 
detection approaches, and are not based on the modularity metric or 
its extensions. A similar consideration holds for the game-theoretic ori-
ented partitioning approaches of Section 9. In fact, these approaches are 
also mainly based on algorithms; however, the fundamental presence of 
game-theoretic arguments in the selection of the partitions, as well as 
the extensive development of the coalition control methodology rooted 
in this technique, deserves a separate discussion in a dedicated section. 
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Table 5
Categorization of the partitioning techniques according to class and subclass.
 Partitioning 
subclass

Partitioning class

 Optimization-based Algorithmic Community detection Game-theory-based Heuristics  
 Unique 
techniques

Barreiro-Gomez 
et al. (2019), Núñez 
et al. (2015) and 
Xie et al. (2016)

Arastou et al. (2025), 
Kamelian and Salahshoor 
(2015), Ocampo-Martinez 
et al. (2012, 2011), Rocha 
et al. (2018) and Zheng 
et al. (2018); 𝑘-means: 
Chanfreut et al. (2023), 
Changqing et al. (2022), 
La Bella et al. (2022), Lin 
et al. (2020), Zhang et al. 
(2019) and Zhao et al. 
(2023)

Jogwar (2019), 
Jogwar and Daoutidis 
(2017) and 
Pourkargar et al. 
(2017)

Baldivieso Monasterios and 
Trodden (2021), Muros et al. 
(2018) and Sánchez-Amores, 
Martinez-Piazuelo et al. (2023)

Huanca et al. 
(2023), Jain et al. 
(2018) and 
Pourkargar et al. 
(2017)

 

 Hierarchical Chen et al. (2020) and 
Wang and Koeln (2023)

Guo et al. (2019)  

 Time-varying Kamelian and Salahshoor 
(2015), Rocha et al. (2018) 
and Wei et al. (2020)

Arastou et al. (2025) 
and Wang et al. 
(2022)

Fele et al. (2018, 2017) and 
Maestre and Ishii (2017)

Ananduta and 
Ocampo-Martinez 
(2021) and Liu 
et al. (2019)

 

 Hierarchical 
time-varying

Riccardi et al. 
(2025c)

Chanfreut et al. (2023) Riccardi et al. (2025c) Chanfreut et al. (2021a), 
Chanfreut, Maestre, Ferramosca 
et al. (2022), Masero, Frejo 
et al. (2021), Masero et al. 
(2022), Masero, Maestre et al. 
(2021), Masero, Ruiz-Moreno 
et al. (2023) and 
Sánchez-Amores, 
Martinez-Piazuelo et al. (2023)

Ye et al. (2019)  

 Problem de-
composition

Kersbergen, van den 
Boom et al. (2016)

Segovia et al. (2021) 
and Tang, Allman 
et al. (2018)

 

 Input 
coupling

Chanfreut, Maestre, 
Hatanaka et al. 
(2022)

Wang and Koeln (2023) and 
Wei et al. (2020)

Masero, Baldivieso-Monasterios 
et al. (2023), Masero et al. 
(2020b), Sánchez-Amores et al. 
(2022) and Sánchez-Amores, 
Chanfreut et al. (2023)

 

 Frequency-
based

Tang, Pourkargar et al. 
(2018)

Wang et al. (2023)  

 Applications Atam and Kerrigan 
(2021) and 
Siniscalchi-Minna 
et al. (2020)

Guo et al. (2019), He 
and Li (2023), 
Moharir et al. (2018), 
Pourkargar et al. 
(2019), Tang et al. 
(2023) and Wang 
et al. (2022)

Chanfreut et al. (2021a), Fele 
et al. (2014), Maxim and 
Caruntu (2021, 2022) and 
Maxim et al. (2023, 2024)

 

Despite the differences among the several partitioning approaches 
devised for the application of NCen-MPC considered in this survey, 
there are some fundamental algorithms that have been consistently 
used, directly or as a basis, to achieve the desired subdivision of 
the network. Such algorithms have usually been developed for more 
abstract purposes, such as graph partitioning or data clustering, and 
have been used across the different classes proposed in this survey. For 
these reasons, in Table  6 we provide an organization of the algorithmic 
procedures used in partitioning for NCen-MPC. We divide the algo-
rithms into: general approaches, which are well-known strategies in the 
literature, and for which a reference technique is available, where their 
structure and pseudocode is also provided; and specialized approaches, 
which are techniques derived for specific problems or strictly tied to 
the control problem considered. For the latter case, we also provide 
relevant references that explain the procedure and give algorithmic 
details. 
Community-detection-based partitioning. As mentioned in the discussion 
for algorithmic approaches, community detection methodologies have 
been developed in graph and network theory for the identification of 
strongly connected components of a graph for various applications (For-
tunato & Hric, 2016). Among all the techniques, great attention has 
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been devoted to community-detection-based partitioning to methods 
based on the maximization of the modularity metric (Newman, 2006). 
Most of the techniques in this section are conceptually based on this ap-
proach. The maximization of modularity can be either sought through 
the solution of an optimization problem, an NP-hard problem, or with 
a heuristic or greedy algorithm, where the latter approach will, in 
general, provide a suboptimal result. All the techniques presented here 
are based on the aforementioned algorithmic approaches, thus allowing 
for scalability and real-time applicability for time-varying partitioning. 
The maximization of modularity and other derived metrics will provide 
groups of agents that exhibit weak inter-group coupling strengths, 
and, potentially, strong intra-group coupling. The unproven paradigm 
at the basis of modularity maximization for control problems is that 
a partition maximizing modularity will also provide optimal NCen-
MPC performance. While this statement has not been proven true or 
false yet, a large body of studies, presented in Section 8, has shown 
that partitions maximizing modularity will, in general, improve control 
performance w.r.t. heuristic, expert, or random partitions.
Game-theory-based partitioning. The partitioning approaches based on 
game-theoretic methodologies find their roots in the theory of coalition 
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Table 6
Algorithmic procedures used for developing partitioning approaches for NCen-MPC. The table is divided into general and specialized approaches. For general 
approaches, reference strategies with details about the algorithms are provided first, then the partitioning strategy for NCen-MPC is given in the application 
column. For specialized approaches instead, the partitioning algorithm is usually developed specifically for the problem considered, therefore details about their 
structure are contained in the references introducing them. 
 General approaches Specialized approaches
 Algorithm Reference technique Application Algorithm Reference and application  
 Graph-partitioning-based 
ordering

Gupta (1996) Ocampo-Martinez et al. 
(2011)

Based on the incidence 
matrix

Kamelian and Salahshoor 
(2015)

 

 Nested 𝜖-decomposition Sezer and Siljak (1986) Ocampo-Martinez et al. 
(2012)

Coupling degree 
clustering

Zheng et al. (2018)  

 METIS algorithm Karypis and Kumar (1998) La Bella et al. (2022) For equivalent graph 
representations

Rocha et al. (2018)  

 Louvain fast unfolding 
algorithm

Blondel et al. (2008) and 
Girvan and Newman 
(2002)

Segovia et al. (2021), 
Tang, Allman et al. (2018), 
Tang, Pourkargar et al. 
(2018) and Wang et al. 
(2022)

Topological hierarchy 
decomposition algorithm

Chen et al. (2020)  

 𝑘-means Xu and Wunsch (2005) Chanfreut et al. (2023) and 
Changqing et al. (2022)

Subsystems selection 
based on Kalman 
canonical form

Wei et al. (2020)  

 Crow search (based on 
k-means)

Lakshmi et al. (2018) Zhao et al. (2023) Maximization of partition 
index

Riccardi et al. (2025c)  

 Global fuzzy 𝑐-means Heo and Gader (2010) and 
Siringoringo and 
Jamaluddin (2019)

Lin et al. (2020) Based on macroscopic 
fundamental diagram 
(modularity 
maximization)

Guo et al. (2019)  

 𝑘-shape Paparrizos and Gravano 
(2015)

Zhang et al. (2019) Game-theory-based 
algorithm

Fele et al. (2017), Masero 
et al. (2020b), Masero, 
Maestre et al. (2021), Maxim 
and Caruntu (2021, 2022) and 
Maxim et al. (2018, 2023)

 

 Linkage-based 
Agglomerative Hierarchical 
Clustering (AHC)

Xu and Wunsch (2005) Wang and Koeln (2023) Self-organizing agents Fele et al. (2018) and Muros 
et al. (2018)

 

 Kernighan–Lin algorithm Kernighan and Lin (1970) Arastou et al. (2025) Consensus-based 
aggregation

Baldivieso Monasterios and 
Trodden (2021)

 

 Leicht and Newman 
algorithm (iterative 
bipartition)

Leicht and Newman (2008) Jogwar and Daoutidis 
(2017), Moharir et al. 
(2018) and Pourkargar 
et al. (2017, 2019)

Market-based coalition 
formation

Masero et al. (2022), Masero, 
Ruiz-Moreno et al. (2023) and 
Sánchez-Amores, 
Martinez-Piazuelo et al. (2023)

 

 Multiway spectral 
community detection 
algorithm

Zhang and Newman (2015) Arastou et al. (2025), He 
and Li (2023) and Jogwar 
(2019)

Pairwise clustering for 
coalition formation

Masero, Frejo et al. (2021) 
and Sánchez-Amores, 
Martinez-Piazuelo et al. (2023)

 

 Modified version of 
Barber’s algorithm

Barber (2007) Wang et al. (2023) Inputs decomposition 
into private and public 
variables

La Bella et al. (2019), Masero, 
Baldivieso-Monasterios et al. 
(2023), Sánchez-Amores et al. 
(2022) and Sánchez-Amores, 
Chanfreut et al. (2023)

 

 Iterative bisection with 
resolution parameter

Newman (2006) and 
Reichardt and Bornholdt 
(2006)

Tang et al. (2023) Based on modal 
participation matrix

Jain et al. (2018)  

 PageRank Brin and Page (1998) and 
Ishii and Tempo (2014)

Maestre and Ishii (2017) 
and Muros et al. (2018)

Based on wind forecast Ye et al. (2019)  

 Modified 
graph-partitioning-based 
ordering

Ocampo-Martinez et al. 
(2011)

Chanfreut, Maestre, 
Ferramosca et al. (2022) 
and Maestre et al. (2014)

For vehicle platoons Liu et al. (2019)  

 Genetic algorithm Goldberg (1989) Chanfreut et al. (2021a) 
and Riccardi et al. (2024c)

For economic dispatch Ananduta and 
Ocampo-Martinez (2021)

 

 Based on the sphere 
packing problem

Conway and Sloane (1988) Christofides et al. (2013)  
formation (Ray, 2007). Agents in such networks participate in a game 
in which they seek their best allocation in a coalition to maximize 
the collective outcome, which, in this context, corresponds to the 
global cost function of the MPC problem. Most of the partitioning 
strategies developed in this field are based on algorithmic procedures; 
however, the prominent presence of game-theoretic techniques, and 
the fact that a whole body of literature has been developed about 
the resulting control strategy, i.e. Coal-MPC, motivate the treatment of 
18 
these methodologies in a dedicated section. Game-theoretic partitioning 
methodologies are, in general, more complex to develop w.r.t. other 
algorithmic approaches, and require the clear definition of cooperative 
games and the associated cost functions. However, these approaches 
also allow for obtaining interpretable performance gains in the de-
ployment of the Coal-MPC strategy, a point often missing in most 
algorithmic approaches.
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Heuristic partitioning. In this class, we include all the partitioning 
strategies for NCen-MPC that we found in the literature based on 
heuristic methodologies, which have not been developed originally to 
be extended to other applications. While the scope and generalizability 
of these strategies may appear limited, they can still be highly effective 
in specific contexts, and may offer inspiration for developing more 
broadly applicable methods.

5.2. Classification according to the partitioning subclass

As it is possible to see in Table  5, there are common features shared 
among partitioning techniques across different general partitioning 
strategies.

First, we can identify hierarchical strategies, in which we collo-
cate approaches that either have multiple aggregation levels for the 
resulting partition, or are developed using a partitioning layer dis-
tinguished from the control layer. All purely hierarchical approaches 
presented in Table  5 belong to the first category. Among these, we 
find works that use a hierarchy to introduce a sequential decision-
making ordering into the NCen-MPC strategy, or works with multi-level 
partitioning approaches, generally used for partition refinement. The 
former approaches allow obtaining coordinated actions prioritizing 
the performance of the controllers at the highest level of the hierar-
chy, and sacrificing the others; the latter generally use purely topo-
logical metrics, thus not being directly oriented toward performance 
optimization. 

Time-varying approaches include the techniques that allow for a 
reconfiguration of the network, either online during the execution of 
the control strategy or offline through the derivation of look-up tables. 
These methods are developed to react to topological changes in the net-
work with the objective of maximizing the global operation cost. While 
real-time adaptability of the partition is advisable (when possible) to 
improve performance, the computational complexity of the partitioning 
problem can make it prohibitive if the network has fast dynamics. On 
the other hand, the offline computation of pre-defined partitions will 
surely allow for fast online reaction to topological changes, but on the 
other hand, it assumes either that it is possible to compute all these 
desired partitions, or there is a trade-off between performance and 
quality of the partition according to heuristics. 

Hierarchical time-varying strategies are obtained by combining the 
two previous concepts. The most common setting is the following: a 
partitioning layer generally operates at a higher hierarchy level and a 
slower time scale w.r.t. a control layer. This approach has been exten-
sively explored because the execution of a partitioning strategy cannot 
generally be performed in real time according to the control sam-
pling time. Therefore, a slower time scale is used for the partitioning 
layer, allowing either periodic or event-driven network reconfigura-
tion. Hierarchical time-varying strategies allow to obtain enhanced 
control performance, generally adapting the partitioning (reactively) 
w.r.t. network performance; however, two main aspects deserve some 
attention: (1) these are complex strategies, and therefore they require 
a higher level of coordination and communication w.r.t. more direct 
approaches (2) operating at different time scales allows for online re-
partitioning, but assumes that the performance degradation during the 
partitioning intervals is acceptable, and eventual topological changes 
between re-partitioning intervals will not harm network operation. 

Partitioning for input-coupled dynamics has been addressed sepa-
rately because the underlying dynamics lead to strategies that present 
unique features, such as the definition of private and public control 
actions and related negotiation strategies, which are usually not consid-
ered when the dynamics present coupling through state interactions. In 
theory, most of the techniques defined for dynamical coupling among 
network subsystems can be extended to input-coupled dynamics with 
the necessary care. The most critical aspect for these systems is their 
limited applicability to real-world problems, which is also reflected in 
the limited amount of related studies. 
19 
Frequency-based approaches are defined based on the network’s 
transfer functions that link input–output channels. These approaches 
find their roots in the MIMO decoupling approaches (Skogestad & 
Postlethwaite, 2001) for selecting control channels. Frequency-based 
approaches are generally developed for linear or linearized systems, 
and instead of using a direct performance assessment for partitioning, 
they use frequency-based performance metrics. 

A range of approaches in the literature can be seen as applicative 
work of previously developed strategies, or as prototype techniques 
that have been extended later. These works can be used to develop 
comparative case studies for future developments.

Finally, a range of techniques has been uniquely defined in each 
partitioning methodology. These works do not share their direct scope 
with others; thus, we have placed them in a separate category. How-
ever, their features can potentially be extended to other techniques, and 
direct comparisons might be possible.

5.3. Classification according to the partitioning methodology

A further classification of the partitioning techniques can be pro-
vided in terms of the methodology they are designed for. Specifically, 
a partitioning strategy can be either developed to operate on a given 
structure, or to address a specific problem. This classification is pro-
vided in Fig.  4 as a coloring scheme to distinguish the methodology to 
which all the subclass entries belong, where mixed approaches indicate 
that both methodologies have been used in the same subclass. In the 
following, we discuss their characteristics.

Structure-based partitioning strategies leverage the presence of a 
structure in the topology of the network or optimization problem to 
obtain the partition. Generally speaking, these approaches only require 
information about the network connections, and can use well-known 
tools from network and graph theory, such as spectral clustering or 𝑘-
means. One reason to use such approaches is that for some applications, 
knowing the dynamics of the network is not essential for the specific 
partitioning problem, and other factors, such as achieving a particu-
lar decomposition for ease of operation, accessibility, or maintenance 
of the network, must be taken into account. Additionally, structure-
based approaches do not generally need any information about the 
dynamics of the subsystems in the network, which can be advantageous 
in settings where security and privacy are of main concern. In this 
context, pairing structure-based partitioning with Dec-MPC approaches 
can be advisable. In such settings, there will be no requirement for 
real-time data or a communication infrastructure, and the approach 
can work well in situations where the network does not change over 
time, or changes slowly and predictably. The main trade-off in such 
implementations will be the loss in control performance, and the adapt-
ability of the control structure. However, it is important to stress that 
structure-based approaches should not be limited to static networks, 
because they can also be developed for time-varying networks and 
be used with communication-based NCen-MPC approaches. Their main 
drawback in this sense is that they do not generally account directly 
for the dynamics of the subsystems; therefore, their actual impact on 
the performance should be quantified a posteriori.

Goal-oriented partitioning strategies are, in a sense, oriented toward 
the opposite direction compared to structure-based ones. In fact, they 
are developed to achieve a given goal without explicitly accounting 
for the structure of the problem. Usually, this is a control goal, and 
often, performance optimization. To this, goal-oriented partitioning 
must have access to some form of information that can relate to the 
predictable behaviors of the network, such as subsystem dynamics, 
time-series predictions from local controllers, or the operation cost 
of the local optimization problems. Additionally, communication and 
coordination structures are required to leverage and process such in-
formation, which increases development costs and complexity; but 
also affects the privacy of agents and security of network operation. 
Additionally, goal-oriented partitioning is naturally suited to work with 
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time-varying networks, because it already requires real-time data about 
the current operation. It also follows that goal-oriented partitioning can 
be paired effectively with communication-based NCen-MPC, such as 
DMPC, HMPC, and Coal-MPC. The advantage here is generally sought 
in performance optimization, or to achieve particular configurations of 
agents for specific tasks.

From this discussion, it is clear that both partitioning methodologies 
are fundamental in the literature, and research in the field of MPC 
should keep addressing both themes. 

5.4. Classification according to the control strategy

In Table  7, we categorize the works in partitioning according to the 
control architecture to which they have been applied. Other than the 
more conventional Dec-MPC, DMPC, and HMPC strategies, we report 
that extensive work has been performed on the Coal-MPC method-
ology. Instead, few studies involve nonlinear MPC strategies. Finally, 
we mention the presence of a few mixed control strategies that allow 
for switching between control architectures according to control ne-
cessities. In the following, we briefly discuss each strategy, but for a 
detailed discussion, we refer the reader to Fele et al. (2017), Maestre 
and Negenborn (2014) and Scattolini (2009).

Starting from the simplest form of NCen-MPC, we have Dec-MPC in 
which local controllers do not share any information with their neigh-
bors and compute the local control actions either independently, or 
using some approximated or estimated information about the strength 
of the incoming dynamical coupling. Robustness arguments are used 
to ensure the stability of the network under uncoordinated opera-
tion. The biggest strength of Dec-MPC, other than the non-centralized 
computation of the control action, lies in the ability to preserve the 
privacy of local subsystems during network operation, since there is 
no information sharing. The main drawback is the loss of performance 
w.r.t. CMPC, given the conservative nature of local actions.

In the DMPC approach, information about the current state of the 
local subsystem, the current control action, or even the predicted state-
input sequence is shared among local controllers. This communication 
is supported by a coordination protocol, which allows local controllers 
to refine the local actions to achieve superior global performance 
for the network. The communication and coordination strategy can 
be structured according to different criteria, thus producing different 
DMPC approaches. In linear settings, DMPC strategies can converge 
to near CMPC performance, which is the main advantage of DMPC. 
However, DMPC also has drawbacks: more expensive hardware require-
ments w.r.t. Dec-MPC, due to the communication infrastructure and 
the necessity of more advanced abilities for local controllers; complex 
coordination algorithms, which can also be iterative and must operate 
within the limits of real-time control; information sharing, which is not 
always guaranteed to be possible or real-time.

HMPC includes any control strategy having local controllers and a 
coordination layer in the form of a centralized decision maker. Such 
approaches are usually designed to achieve performance advantages, 
while allowing to overcome other technical challenges, such as model 
complexity reduction, multi-scale network operation, privacy preser-
vation, or optimization of global coordination. Given the flexibility of 
HMPC approaches, the specific drawbacks of each technique depend 
on its implementation, but all approaches unquestionably come at 
the cost of an increased technical complexity and increased hardware 
requirements w.r.t. simpler NCen-MPC approaches.

The Coal-MPC strategy was born to fuse MPC with game theory 
in a non-centralized control setting. The result is a control strategy 
in which local control agents can merge into coalitions according 
to game-theoretic strategies to achieve superior control performance. 
Therefore, the Coal-MPC strategy can also be interpreted by itself as a 
game-theoretic-oriented partitioning strategy for distributed MPC, with 
dynamic allocation of local controllers into time-varying coalitions. In 
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this regard, the Coal-MPC problem inherits the computational complex-
ity of the general partitioning problem, or coalition formation problem, 
i.e. it requires the online solution of an NP-hard problem. This main 
drawback has been solved through different algorithmic procedures, 
which has led to the development of a large body of literature also 
discussed in this survey. The main theoretical advantage of Coal-MPC 
is that it allows for online dynamic partitioning with the objective of 
global performance optimization in a game-theoretic sense.

Regarding NLin-MPC, the above considerations have to be extended 
in a setting where the MPC model is nonlinear. This approach can 
allow for superior operational performance, but has several drawbacks, 
mainly: the complexity of defining an appropriate nonlinear model, the 
computational complexity related to nonlinear optimization, the even-
tual presence of local minima in the cost function, and the difficulty in 
ensuring stability of operation.

Mixed strategies for NCen-MPC use any combination of the previous 
techniques, trying to balance their strengths and limitations with online 
reconfiguration of the controllers’ settings and (sometimes) partitions. 
This fact necessarily implies that such strategies have a high implemen-
tation complexity, and a combinatorial number of possible approaches 
at each time step, which is usually addressed through the use of 
heuristics. 

6. Optimization-based partitioning

6.1. General techniques

In the (Núñez et al., 2015), a partitioning strategy is proposed 
that allows deploying a decentralized, distributed, or hierarchical MPC 
controller as a function of the operating conditions of the network. This 
is achieved by introducing an integer variable 𝛿𝑖𝑗 for each edge 𝜖𝑖𝑗 of 
the information graph.

Input–output decomposition of large-scale linear systems is per-
formed in Xie et al. (2016) for the application of DMPC. The work 
proposes a two-stage procedure consisting of an input clustering decom-
position (ICD) first, and then of an input–output pairing decomposition 
(IOPD). The scope of the IOPD partitioning here is to minimize the 
coupling effect among the subsystems, defined as: 

𝐽 coupling =
‖𝑂 − diag(𝑂11,… , 𝑂𝑀𝑀 )‖F

‖𝑂‖F
, (49)

where the matrix 𝑂 is a function of the ICD and of the stage cost of the 
MPC program.

6.2. Multi-objective optimization in partitioning

Network Partitioning is achieved through a multiobjective optimiza-
tion program in Barreiro-Gomez et al. (2019), where, at each time step 
𝑘, the following problem is considered:

min
(𝑘)

4
∑

𝑖=1
𝜑𝑖𝜎𝑖((𝑘)) (50)

s.t.
⋃

𝑖
𝑖(𝑘) = (𝑘)

⋂

𝑖
𝑖(𝑘) = ∅.

Constraints on the sets 𝑖(𝑘) ensure retrieving a nonoverlapping par-
tition (𝑘) = {1(𝑘),… ,𝑁

(𝑘)}; the weights 𝜑𝑖 allow prioritizing 
the four topological indicators 𝜎𝑖. The problem is solved through the 
distributed approach using the Kernighan–Lin algorithm (Gupta, 1996).
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Table 7
Categorization of the partitioning techniques according to the control strategy deployed.
 Control 
approach

Partitioning class

 Optimization-based Algorithmic Community detection Game-theory-based Heuristics  
 Decentral-
ized MPC

Atam and Kerrigan 
(2021) and Núñez 
et al. (2015)

Kamelian and 
Salahshoor (2015), 
Ocampo-Martinez et al. 
(2012, 2011) and Wang 
and Koeln (2023)

Arastou et al. (2025) 
and Wang et al. (2022)

Baldivieso Monasterios and 
Trodden (2021)

Jain et al. (2018)  

 Distributed 
MPC

Barreiro-Gomez 
et al. (2019), 
Kersbergen, van den 
Boom et al. (2016), 
Núñez et al. (2015), 
Riccardi et al. 
(2025c) and Xie 
et al. (2016)

Arastou et al. (2025), 
La Bella et al. (2022), 
Rocha et al. (2018), 
Tang, Pourkargar et al. 
(2018), Wei et al. 
(2020), Zhang et al. 
(2019) and Zheng et al. 
(2018)

Arastou et al. (2025), 
Guo et al. (2019), 
Jogwar (2019), Moharir 
et al. (2018), 
Pourkargar et al. 
(2017, 2019), Riccardi 
et al. (2025c), Segovia 
et al. (2021), Tang, 
Allman et al. (2018), 
Tang et al. (2023) and 
Wang et al. (2023)

Maxim and Caruntu (2021) 
and Maxim et al. (2023)

Huanca et al. 
(2023), Liu et al. 
(2019) and 
Pourkargar et al. 
(2017)

 

 Hierarchical 
MPC

Núñez et al. (2015) 
and 
Siniscalchi-Minna 
et al. (2020)

Chanfreut et al. (2023), 
Changqing et al. 
(2022), Chen et al. 
(2020), Lin et al. 
(2020), 
Ocampo-Martinez et al. 
(2012) and Zhao et al. 
(2023)

He and Li (2023) Ye et al. (2019)  

 Coalitional 
MPC

Chanfreut, Maestre, 
Hatanaka et al. 
(2022)

Chanfreut et al. (2021a), 
Fele et al. (2018, 2017, 
2014), Maestre and Ishii 
(2017), Masero, 
Baldivieso-Monasterios et al. 
(2023), Masero et al. 
(2020b), Masero, Frejo et al. 
(2021), Masero et al. (2022), 
Masero, Maestre et al. 
(2021), Masero, Ruiz-Moreno 
et al. (2023), Maxim and 
Caruntu (2021, 2022), 
Maxim et al. (2023, 2024), 
Muros et al. (2018), 
Sánchez-Amores, Chanfreut 
et al. (2023) and 
Sánchez-Amores, 
Martinez-Piazuelo et al. 
(2023)

 

 Nonlinear 
MPC

Kamelian and 
Salahshoor (2015) and 
Rocha et al. (2018)

Tang, Allman et al. 
(2018)

 

 Mixed 
strategies

Núñez et al. (2015) Chanfreut, Maestre, 
Ferramosca et al. (2022), 
Maxim and Caruntu (2021) 
and Maxim et al. (2023)

Ananduta and 
Ocampo-Martinez 
(2021)

 

6.3. For optimization problem decomposition

In Kersbergen, van den Boom et al. (2016), DMPC for hybrid 
systems is considered. The centralized MPC problem provides MILP 
program, defined as:
min
𝑧(𝑘)

𝑐⊺(𝑘)𝑧(𝑘) (51)

s.t. 𝐴(𝑘)𝑧(𝑘) ≤ 𝑏(𝑘).

Such a program is partitioned into nonoverlapping subproblems such 
that constraints are decoupled, and the size and number of variables 
of the problems are approximately the same. Then the subproblems 
are solved in parallel in a DMPC fashion. The cost of the partitioning 
problem is: 

𝐽 = 𝜌𝑀MAX −
𝑛T2
∑

𝑛T2
∑

𝑁
∑

𝛿𝑗𝑖𝑄𝑗𝑘𝛿𝑘𝑖, (52)

𝑗=1 𝑘=1 𝑖=1

21 
where 𝑛T2  is the number of constraints of (51) and 𝑁 its the number 
of binary variables; matrix 𝑄 represents the topology of the constraints 
interconnection; 𝜌 is a tuning parameter; and 𝑀MAX the maximum 
difference in the number of constraints in the subproblems.

6.4. Ad-hoc performance indicators

Non-centralized hierarchical control of wind farms is considered 
in Siniscalchi-Minna et al. (2020), where MPC is used for reference 
point setting at the control partition level, while conventional con-
trollers are used for individual turbines. A weighted directed graph 
is constructed using the intensity of the wakes6 as labeling (Annoni 

6 The wake-effect refers to the wind reduction and increased turbulence 
that downstream turbines experience due to the extraction of wind power from 
upstream turbines.
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et al., 2018). Multiobjective integer optimization is used to maximize 
the wakes, minimize the distance of the turbines in the same groups, 
and balance the size of the groups.

6.5. Robust and stochastic optimization

Robust and stochastic methodologies for partitioning have been 
developed in Atam and Kerrigan (2021), where for Dec-MPC of the 
thermal zones of a building is considered. Thermal interactions among 
the zones are used to formulate a mixed-integer optimization problem 
for partitioning (Boulle, 2004). In the stochastic formulation, thermal 
interactions are replaced by their expectations, while in the robust 
formulation by their worst-case scenario.

6.6. Input-coupled dynamics

Binary quadratic programming (BQP) is used in Chanfreut, Maestre, 
Hatanaka et al. (2022) to partition input-coupled systems of the form:
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘) +𝑤𝑖(𝑘) (53)
𝑤𝑖(𝑘) =

∑

𝑗∈𝑖

𝐵𝑖𝑗𝑢𝑗 (𝑘).

The approach is based on the gradient approximation of the cost 
function 𝐽 , as defined in De Oliveira and Camponogara (2010), which, 
for a topology 𝛬, is defined as: 
𝑔𝛬 = ∇𝐽 (𝑥̃, 𝑢̃) ≈ 𝑔local +

∑

𝑖𝑗∈𝛬
𝛥𝑔𝛬𝑖𝑗 . (54)

In this approximation, 𝑔local are the local contributions, while 𝛥𝑔𝛬𝑖𝑗 are 
coupling contributions for 𝛬. Partitioning is then obtained through a 
BQP using 𝑔𝛬 in the cost function.

6.7. Hierarchical approaches for time-varying graphs

A BQP approach potentially applicable to time-varying topologies 
has been developed in Riccardi et al. (2025b, 2025c), allowing to 
obtain partitions at different levels of aggregation through a granularity 
parameter 𝛼. The strategy is based on the construction of a graph 
 = ( , ) with a weighting of the edges defined by (4), and on a 
preliminary selection of fundamental system units (FSUs) 𝑖 through 
the algorithm detailed in Section 8.6. The BQP aggregates FSUs into 
collections 𝐶𝑖, called composite system units (CSUs). Binary variables 
𝛿𝑖𝑗 = 1 ⇔ 𝑖 ∈ 𝑗 , are defined for this scope together with the weighting 
functions:

𝑊 inter(𝛿) =
𝑁FSU
∑

𝑚=1

𝑁FSU
∑

𝑖=1

𝑁FSU
∑

𝑗=1
𝑗≠𝑖

𝑁FSU
∑

𝑙=1
𝑙≠𝑚

𝛿𝑖,𝑚𝛿𝑗,𝑙 (|𝑤(𝑖, 𝑗)| + |𝑤(𝑗, 𝑖)|) (55)

𝑊 intra(𝛿) =
𝑁FSU
∑

𝑚=1

𝑁FSU
∑

𝑖=1

𝑁FSU
∑

𝑗=1
𝛿𝑖,𝑚𝛿𝑗,𝑚 (|𝑤(𝑖, 𝑖)| + |𝑤(𝑖, 𝑗)| (56)

+|𝑤(𝑗, 𝑖)| + |𝑤(𝑗, 𝑗)|)

𝑊 size(𝛿) =
𝑁FSU
∑

𝑚=1

(𝑁FSU
∑

𝑖=1
𝛿𝑖,𝑚

)2

.

These three weights represent the interaction strength within and 
among the collections for a given value of the parameter 𝛼 that influ-
ences the level of granularity:
min
𝛿

𝑊 inter(𝛿) −𝑊 intra(𝛿) + 𝛼𝑊 size(𝛿)

s.t.
𝑁FSU
∑

𝑗=1
𝛿𝑖𝑗 = 1 ∀𝑖 (57)

𝛿𝑖𝑗 ∈ {0, 1}.

The constraints ensure that nonoverlapping sets constitute the resulting 
partitioning, and varying 𝛼 allows for obtaining collections of different 
sizes.
22 
7. Algorithmic partitioning

7.1. Applied to equivalent graph-based representations

One of the first contributions to graph-based partitioning for the 
application of non-centralized predictive control is found in Ocampo-
Martinez et al. (2011). The starting point of the partitioning strategy 
is a graph-based representation, proposed as a control-oriented rep-
resentation described by an incidence matrix (Bondy & Murty, 2008; 
Zecevic & Siljak, 2010). The graph is divided into non-overlapping 
subgraphs according to an algorithm developed starting from the graph-
partitioning-based ordering algorithm (GPB) (Gupta, 1996), with var-
ious modifications and heuristics to adapt it for control of a complex 
system. One of the core components of the algorithm is the cut size, 
i.e. the number of links that belong to different subgraphs, which is an 
indirect measure of the desired subgraph size.

Partitioning based on nested 𝜖-decomposition (Sezer & Siljak, 1986) 
is proposed in Ocampo-Martinez et al. (2012) for decentralized predic-
tive control. For a linear causal system, the 𝜖-decomposition works as 
follows. Construct a matrix 𝑀 using all system variables as nodes of a 
graph, i.e. build the weighted adjacency matrix: 

𝑀 =
⎡

⎢

⎢

⎣

𝐴 𝐵 0
0 0 0
𝐶 0 0

⎤

⎥

⎥

⎦

. (58)

Then, for a given threshold 𝜖, compute the permutation matrix 𝑃  that 
provides a new block decomposed matrix 𝑀̃ = 𝑃 ⊺𝑀𝑃  consisting of 𝑁
block such that, for the off-diagonal terms, it holds that 𝑀̃𝑖𝑗 ≤ 𝜖. This 
decomposition transforms the network into 𝑁 connected subgraphs 
where interconnections are defined by the off-diagonal terms of 𝑀̃ and 
their strength constrained by the choice of 𝜖. A maximum number of 
|𝑀| nested 𝜖-decompositions is possible for any given 𝑀 . Further de-
tails and stability analysis of this decomposition are presented in Sezer 
and Siljak (1986).

An algorithmic approach for nonlinear systems is devised in
Kamelian and Salahshoor (2015). This approach is also based on the 
control-oriented representation and the derivation of the incidence 
matrix (Bondy & Murty, 2008); however, in this case the matrix is 
constructed accounting for relations among system variables, where 
each input state and output is considered as a distinct node. A general 
nonlinear dynamics of the form: 

 ∶
{

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘, 𝑤𝑘)
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

, (59)

is used to construct the graph; however, this dynamics is linearized 
around an operating point to derive a weighting of the associated 
graph; specifically, the matrices (𝐴,𝐵, 𝐶,𝐷) resulting from the lin-
earization are used. The algorithmic approach starts by the centers of 
the clusters as the input variables. Then, a sorting procedure is used to 
order the state and output vertices according to their degree. A merging 
phase groups subgraphs based on their number of edges. The procedure 
is regulated by the cut size, according to Jamoom et al. (1998), but also 
considering the number of resulting groups.

A partitioning approach based on the strength of interaction among 
subsystems is proposed in Zheng et al. (2018). The approach requires 
subsystems to be grouped into larger virtual middle-scale subsystems, 
which are selected to be weakly coupled according to a condition 
defined in the paper. Then, a variable adjacency matrix 𝐴(𝛿) = (𝑎)𝑖𝑗
function of the threshold 𝛿 is obtained as 𝑎𝑖𝑗 = 1 if ‖𝐴𝑖𝑗‖ ≥ 𝛿, and 
𝑎𝑖𝑗 = 1 otherwise. The algorithmic clustering approach consists of 
finding such 𝛿 and a permutation matrix 𝑇  such that 𝑇 ⊺𝐴̃𝑇  is block-
diagonal, and the overall system is weakly coupled. The clustering 
algorithm consists of gradually reducing 𝛿 from a given initial value 𝛿0
until the decomposition into weakly coupled middle-scale subsystems 
is achieved

A framework for algorithmic partitioning of nonlinear systems based 
on the equivalent graph representation of linearized dynamics around 
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an operating point is proposed in Rocha et al. (2018). In this approach, 
each time a re-linearization of the nonlinear dynamics is performed, the 
system might be re-partitioned. The partitioning algorithm proposed 
is based on the iterative grouping of input-state-output variables, fol-
lowed by a controllability check. The algorithm does not guarantee the 
terminability, or that controllable groups are achievable.

7.2. Applied to flow graph representations

Algorithmic partitioning for power networks using a flow-graph 
representation is considered in La Bella et al. (2022). First, the power 
network is divided into sources for generators (a set of nodes source), 
and sinks for the loads (a set of nodes sink), thus constructing a flow 
graph. Then, the optimal power flow problem (Frank & Rebennack, 
2016) for the best and worst case scenarios is solved The average 
of these two solutions allows defining the average transaction 𝑥∗𝑖𝑗 (𝑘)
between sources 𝑖 ∈ source, and sinks 𝑗 ∈ sink. Then, for each 
𝑖 ∈ source and 𝑗 ∈ sink the shortest path 𝑖𝑗 is defined (Dijkstra, 
1959), and the value 𝑥∗𝑖𝑗 (𝑘) is assigned to all edges in 𝜖 ∈ 𝑖𝑗 . Finally, 
the weight of each edge in the network is computed by summing all 
the values 𝑥∗𝑖𝑗 (𝑘) of the shortest paths passing by that edge. A weighted 
flow graph is thus constructed. A partitioning of this graph for a given 
number of clusters is obtained using the 𝑘-way partitioning method 
minimizing the edge cut using the METIS algorithm (Karypis & Kumar, 
1998). This procedure is performed at the time scale of the clustering 
procedure, slower than the time scale of the control process.

7.3. Using frequency-based performance indicators

The authors in Tang, Pourkargar et al. (2018) propose a new metric 
called Relative Time-Averaged Gain Array (RTAGA), based on the step 
response of the system averaged by an exponential distribution function 
𝑓 (𝑡, 𝜏) = (1∕𝜏) ⋅ 𝑒−𝑡∕𝜏 , for a parameter 𝜏 characterizing the decay of 
the exponential. Then, for matrix 𝐺 of transfer functions, the element 
𝑔𝑖𝑗 (1∕𝜏) is the intensity of the response 𝑦𝑖 for a step input 𝑢𝑖 weighted 
by the distribution 𝑓 (𝑡, 𝜏) decaying at time scale 𝜏. Accordingly, the 
RTAGA matrix is defined as 𝛬(1∕𝜏) = 𝐺(1∕𝜏) ⋅𝐺⊺(1∕𝜏). For partitioning 
the system using the RTGA, the authors of Tang, Pourkargar et al. 
(2018) rely on the input–output bipartite graph, and the weighting of 
each edge (𝑢𝑗 , 𝑦𝑖) representing input–output loops is given by the scalar 
𝑤𝑖𝑗 defined according to the entries of 𝛬(1∕𝜏) as: 

𝑤𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑖𝑗 0 ≤ 𝜆𝑖𝑗 ≤ 1
1∕𝜆𝑖𝑗 𝜆𝑖𝑗 > 1
0 𝜆𝑖𝑗 < 0

. (60)

Then the modularity 𝑄 of the bipartite weighted graph is defined 
according to Barber (2007), and modularity maximization is achieved 
through the Louvain fast unfolding algorithm (Blondel et al., 2008).

7.4. Using k-means

One of the most used algorithms for clustering is k-means (Xu & 
Wunsch, 2005). At the core of the algorithm there is the problem of or-
ganizing 𝑁 objects, e.g. vectors 𝑥 ∈ R𝑑 , into 𝐾 subsets. This is achieved 
by using the definition of Euclidean distance, and an algorithm is 
developed to minimize the squared error between each object and the 
center of the clusters. The algorithm starts with an initialization of the 
centers of the 𝐾 clusters (either random or informed). Then, each object 
is assigned to the nearest cluster. Accordingly, the prototype matrix, 
i.e. the matrix containing centroids or the means of the clustering, is 
updated with the given assignment. The last two steps are iterated until 
there is no further change in the clusters. The computational cost of 
the algorithm is 𝑂(𝑁 𝐾 𝑑). The k-means clustering is well developed, 
and parallel implementations are available (Stoffel & Belkoniene, 1999) 
to improve computation times. The interested reader can refer to the 
survey (Xu & Wunsch, 2005) for further information.
23 
The clustering of a wind farm using k-means has been performed 
in Changqing et al. (2022). The article focuses on the frequency regu-
lation of a double-fed induction generator, which is affected by both 
the operating conditions of the plant, and the wind orientation and 
strength. To improve the frequency regulation of the system, a multi-
layer control approach is proposed: MPC (Afram et al., 2017) is used 
for frequency regulation and power output maximization, whereas k-
means clustering (Vallee et al., 2011) based on wake-effect interaction 
is used to spatially cluster the wind turbines.

An improved version of 𝑘-means, i.e. crow search (Lakshmi et al., 
2018), is used in Zhao et al. (2023) to cluster a wind farm. Crow search 
is used in this approach for its improved clustering accuracy and cluster 
stability, allowing the authors of Zhao et al. (2023) to achieve superior 
cluster quality w.r.t. traditional 𝑘-means. The wind farm is partitioned 
according to four key performance indicators, which are the power 
characteristic of the turbine, the smooth coefficient, the generation 
potential coefficient, and the anomaly coefficient (Howlader et al., 
2015; Yin et al., 2022). Given this dataset, the algorithmic partitioning 
is performed for a given number of clusters.

An approach for clustering wind farms based on an approximate 
linear model of their power tracking (Chen et al., 2019; Jha, 2010) is 
proposed in Lin et al. (2020). Once an estimate of this transfer function 
is available for each turbine in the farm, Lin et al. (2020) proposes to 
apply a global fuzzy 𝑐-means algorithm for clustering the network (Heo 
& Gader, 2010; Siringoringo & Jamaluddin, 2019).

7.5. Data-driven decomposition

Partitioning in a data-driven application is discussed in Zhang et al. 
(2019). The scope of a data-driven approach is to capture the nonlinear 
dynamics that might not figure in purely model-based approaches 
as Ocampo-Martinez et al. (2012). Once time series data about inputs 
U = {𝑢̃𝓁}

𝑛𝑢
𝓁=1, states X = {𝑥̃𝓁}

𝑛𝑥
𝓁=1, and outputs Y = {𝑦̃𝓁}

𝑛𝑦
𝓁=1 are collected, 

a system model is defined as (U,X,Y). The partitioning problem is 
then formulated s.t. the network is divided into 𝑘 subsystems 𝑖, where 
𝑘 is a number defined by inspection depending on the shape of the 
time-series data in matrix Y. The underlying partitioning procedure 
is then provided by the 𝑘-shape clustering algorithm for time series 
sequences (Paparrizos & Gravano, 2015), and canonical correlation 
analysis to establish the strength of interaction among the groups of 
variables, which allows to define strong and weakly coupled neighbors 
according to heuristic thresholds. The algorithmic procedure for parti-
tioning allows to retrieve 𝑘 groups of strongly coupled non-overlapping 
subsystems with approximately the same number of variables.

7.6. Hierarchical clustering

The study (Chen et al., 2020) introduces a cooperative DMPC frame-
work based on topological hierarchy decomposition, aiming to opti-
mize communication efficiency while maintaining global system perfor-
mance. The theory at the basis of the approach is interpretive structural 
modeling (Attri et al., 2013), which allows to hierarchically structure 
subsystems based on their coupling strength, ensuring that strongly 
coupled subsystems are grouped within the same layer, while weakly 
coupled ones are placed in lower layers. Moreover, it is assumed, not 
without loss of generality, that only the upper layer influences the 
lower layer in a sequential cascade. This hierarchical order prioritizes 
the resolution of the local MPC problems, and their coordination, in 
the upper-layer subsystems, propagating their optimal control inputs 
downward, and iterating the process over the fixed down-streamed 
variables in the lower layer.

The architecture proposed in Chanfreut et al. (2023) has a two-layer 
structure. The bottom layer consists of local MPC agents controlling 
coalitions of loops, while the top layer dynamically clusters subsystems 
in the network. For this, the 𝑘-means clustering algorithm groups sub-
systems with similar dynamics, determined by operating parameters, 
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and recursive least squares estimation (Shaferman et al., 2021) adapts 
system parameters in real-time. Moreover, the top layer accounts for 
exogenous conditions to assign MPC constraints to local agents. The 
method allows scalability of the MPC architecture, but is sensitive to 
parameter estimation errors and relies on fixed cluster numbers

7.7. Input-coupled systems

An algorithmic partitioning approach for input-coupled systems is 
proposed in Wei et al. (2020), where the objective is to derive a novel 
iterative DMPC strategy with a dynamic communication topology The 
network is assumed to be composed by a number 𝑛 of coupled linear 
dynamics of the form 
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑖𝑢𝑖(𝑘) +

∑

𝑗∈𝑖

[

𝐴𝑖𝑗𝑥𝑗 (𝑘) + 𝐵𝑖𝑗𝑢𝑗 (𝑘)
]

. (61)

By using the Kalman canonical form, the state coupling can be avoided 
with an appropriate selection of the new subsystem states (Stewart 
et al., 2010), providing new input-coupled local dynamics7 𝑥̄𝑖(𝑘 + 1) =
𝐴̄𝑖𝑖𝑥̄𝑖(𝑘) + 𝐵̄𝑖𝑖𝑢̄𝑖(𝑘) +

∑

𝑗∈𝑖
𝐵̄𝑖𝑗 𝑢̄𝑗 (𝑘). A sensitivity analysis is performed 

to establish the effect of the coupling variables on the optimization 
problem. On this basis, a threshold triggering communication between 
local controllers is derived. Accordingly, an algorithmic procedure de-
termines the entries of a communication matrix at each time step, thus 
obtaining an event-triggered topology change for the communication 
networks defining the local controllers.

7.8. Hierarchical clustering for input-coupled systems

Hierarchical clustering for input-coupled systems is proposed in
Wang and Koeln (2023), where a distance function induced over mini-
mal robust positively invariant sets is used as an underlying metric for 
the clustering algorithm. Specifically, the hierarchical clustering of Xu 
and Wunsch (2005) is used to design a robust Dec-MPC, as the one 
of Trodden and Maestre (2017). The approach is iterative and defined 
for a given number of hierarchy levels, starting from the network 
considering each agent as an individual cluster. A tuning parameter 
𝛼 > 0 is defined to perform the clustering. At each step, the minimum 
distance 𝑑min = min𝑖𝑗 𝑑𝑖𝑗 is computed. Then, the procedure aggregates 
together the agents for which 𝑑𝑖𝑗 > (1 + 𝛼)𝑑min. Then, the procedure is 
iterated for the next hierarchy level until one single agent representing 
the entire network is obtained.

7.9. Computational complexity and controllability

An algorithmic partitioning approach oriented at the minimization 
of the computational complexity of the resulting DMPC architecture 
while ensuring the controllability of the resulting subsystems is de-
veloped in Arastou et al. (2025). To this aim, the authors develop 
an algorithm for the reduction of the number of iterations 𝑟̄ required 
to retrieve an (approximate) solution of a distributed optimization 
problem with a desired accuracy 𝜖. The idea behind this approach is 
that by finding the partitioning that minimizes the number of iterations 
of the DMPC, the amount of information shared among the agents will 
also be minimized. In Arastou et al. (2025), the desired partitioning is 
obtained through the minimization of the cost function 𝐹  dependent 
by the selected partitioning 𝑗 is defined as: 

𝐹 (𝑗 ) =

(

log𝛽(𝑗 )
𝜖

𝐽 (𝒙(0|𝑘), 𝒖0(0|𝑘))
− 1

)𝑁𝑎
∑

𝑖=1
𝑔(𝑛𝑖, 𝑚𝑖, 𝑁, 𝑛𝑐 ), (62)

where 𝑓 (𝑖) = 𝑔(𝑛𝑖, 𝑚𝑖, 𝑁, 𝑛𝑐 ) is a function of the number of states 
and inputs of the collection 𝑘, the prediction horizon 𝑁 , and of the 

7 Note that this state transformation can be already considered a 
partitioning of the state of the network.
24 
number of constraints 𝑛𝑐 ; and 𝐽 (𝒙(0|𝑘), 𝒖0(0|𝑘)) is the cost function for the 
first prediction step, evaluated with the first iteration of the control 
action. The minimization of (62) is sought using the Kernighan–Lin 
algorithm (Kernighan & Lin, 1970) based on iterative node exchange.

8. Community-detection-based partitioning

8.1. Fundamentals and modularity metric

Community detection is a fundamental branch of modern network 
theory, and its scope is the identification of groups of elements in 
the network that have a higher probability of being strictly connected 
to each other w.r.t. other member in the network (Fortunato & Hric, 
2016). Among the methodologies for community detection, we find 
optimization-based, algorithmic, dynamics-based, and consensus-based 
approaches, as well as methods based on statistical inference, and 
spectral or hierarchical clustering: an extended discussion about these 
topics can be found in Fortunato (2010) and Fortunato and Hric (2016). 
Partitioning approaches based on the quality function called modularity
belong to the broader class of methods for community-detection in 
graphs (Fortunato, 2010), i.e.  they are clustering methodologies, often 
algorithmic. In this context, modularity is a metric that has been 
consistently used to quantify the quality of the resulting clusters, not 
only in network theory, but also for control systems. Several studies 
in the field of partitioning for predictive control use modularity as 
a fundamental metric. Therefore, we treat this topic separately from 
other partitioning approaches.

In control theory, modularity has been applied to compute the par-
titioning of the graph associated with a dynamical system. The method 
to derive this graph has been discussed in Section 3.2. However, 
modularity-based partitioning can also be deployed over agent-based 
representations of the form Section 3.3, which is a conceptually differ-
ent use case. In general, for a network with a given adjacency matrix , 
and a partition into 𝑁 communities  = {1,… ,𝑁}, the modularity 
𝑄 index is constructed as: 

𝑄 = 1
2𝑚

∑

𝑖𝑗

(

(𝑖,𝑗) −
𝑘in𝑖 𝑘

out
𝑗

2𝑚

)

𝛿𝑖𝑗 , (63)

where (𝑖,𝑗) is the 𝑖𝑗th element of the adjacency matrix, 𝑘in𝑖  and 𝑘out𝑖  are 
respectively the in- and out-degree of node 𝑖 in the network, 𝑚 is the 
total number of edges, and the binary variable 𝛿𝑖𝑗 is equal to 1 if nodes 
𝑖 and 𝑗 are in the same community, and zero otherwise. Modularity-
based partitioning approaches all focus on finding the partitioning 
that maximizes the modularity 𝑄 (usually, for a given number 𝑁 of 
communities). In the remainder of this section, we will discuss how 
modularity-based partitioning has been used in predictive control, and 
provide different examples.

8.2. Maximization of modularity by iterative bipartition of the network

The most used methodology for modularity maximization in control 
has been presented in Jogwar and Daoutidis (2017). The approach is 
based on the construction of the modularity matrix , whose entries 
are defined as: 

(𝑖,𝑗) = (𝑖,𝑗) −
𝑘in𝑖 𝑘

out
𝑗

𝑚
. (64)

Then, the partitioning approach iteratively splits the network into 
two communities. To this aim, a vector 𝒔 with a size equal to the 
number of nodes in the network is defined as follows. When a split 
is performed, the network   is divided into two communities: 𝑎 and 
𝑏. Accordingly, the 𝑖th entry of 𝒔 is defined to be equal to 1 if 𝑖 ∈ 𝑎, 
and −1 if 𝑖 ∈ 𝑏. The modularity associated with this new partition of 
the network is then: 
𝑄 = 1 𝒔⊺

(

 + ⊺) 𝒔. (65)

4𝑚
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The specific partitioning algorithm used to perform the modularity 
maximization of the basis of the iterative division is Leicht and Newman 
(2008), which successively divides the network into communities using 
approximate spectral optimization for the divisions. Fine-tuning by 
node shifting (Newman, 2006) is performed at each step to improve 
the partitioning quality.

The paper (Pourkargar et al., 2017) investigates the impact of sys-
tem decomposition on the performance and computational efficiency of 
DMPC applied to nonlinear process networks (Liu, Chen et al., 2010). 
The study compares the partitioning of a network obtained through 
community detection with intuitive partitioning given by expert sub-
system selection according to energy or technical considerations. The 
metrics used for comparison are the closed-loop control performance 
and computational burden.

Extension of the partitioning methodology (Jogwar & Daoutidis, 
2017) to weighted graphs using the module of the partial deriva-
tives of the dynamics around the operating points for nonlinear sys-
tems is proposed in Jogwar (2019). The partitioning procedure relies 
on a modified version of the multiway spectral community detection 
algorithm (Zhang & Newman, 2015) developed for unweighted graphs.

8.3. For optimization problem decomposition

An algorithmic partitioning approach for the optimization problem 
decomposition using community detection has been proposed in Tang, 
Allman et al. (2018). The optimization problem related to DMPC con-
sidered in this work is assumed to be in a ‘‘separable’’ form:
min
𝑣

𝑓1(𝑣1) +⋯ + 𝑓𝑛(𝑣𝑛) (66)

s.t. 𝑐𝑗 (𝑣1,… , 𝑣𝑛) = 0, 𝑗 = 1,… , 𝑚 (67)

𝑣𝑖 ∈ 𝑖, 𝑖 = 1,… , 𝑛, (68)

where the scalar variables in 𝑣 belong to decoupled intervals, the objec-
tive function is separable, and the coupling in the problem only arises 
in the equality constraints. To decompose the problem, the authors 
of Tang, Allman et al. (2018) use two different graph representations. 
In the first, they use a bipartite graph, where variables are linked 
to constraints according to the existence of their partial derivatives, 
thus capturing their functional interaction. In the second graph, they 
use a unipartite representation using the variables as nodes, and the 
number of coupling constraints as arcs. From these two graphs, it 
is possible to obtain adjacency matrices, and accordingly find the 
partitioning of these graphs that minimizes the modularity, both for 
unipartite (Newman & Girvan, 2004), and bipartite (Barber, 2007) 
representations. Modularity optimization is achieved using the Louvain 
fast unfold algorithm (Blondel et al., 2008).

Optimization problem decomposition based on modularity opti-
mization is proposed in Segovia et al. (2021) through the use of 
optimality condition decomposition (OCD) (Conejo, 2006), to overcome 
the assumption that the cost function of the optimization problem 
must be separable to decompose it. For a given non-completely-coupled 
optimization problem:
min
𝒛

𝑓 (𝒛) (69)

s.t. 𝑏(𝒛) ≤ 0, (70)

the OCD allows the problem to be decomposed into 𝑁 subproblems, 
for which a relaxed formulation (Bertsekas, 1996) takes the form

min
{𝑧(𝑖)}𝑁𝑖=1

𝑁
∑

𝑖=1
𝑓 (𝑖)(𝑧(𝑖)) + 𝜆(𝑖)ℎ(𝑖)

(

𝑧(1),… , 𝑧(𝑁)) (71)

s.t. ℎ(𝑖)
(

𝑧(1),… , 𝑧(𝑁)) ≤ 0 𝑖 ∈ {1,… , 𝑁}

𝑔(𝑖)
(

𝑧(𝑖)
)

≤ 0 𝑖 ∈ {1,… , 𝑁},

where 𝑧(𝑖) is the variable of the 𝑖th subproblem, 𝒉 is a set of complicat-
ing constraints without which the subproblems would be independent, 
25 
𝒈 are the constraints resulting from the conversion of 𝑏(𝒛) ≤ 0, and 𝜆 are 
the Lagrange multipliers. To the problem (71) is associated the matrix 
of first-order Karush-Kuhn–Tucker condition (Boyd & Vandenberghe, 
2004) that can naturally be interpreted as a graph  = ( , ), for which 
modularity-based community detection can be applied. Modularity 
maximization is achieved through the fast unfold algorithm (Blondel 
et al., 2008), thus providing a decomposition of the optimization 
problem and consequently a partitioning of the system.

8.4. Frequency-based graph weighting

The use of a frequency-based index to perform partitioning through 
community detection is explored in Wang et al. (2023), where the net-
work is represented through an input–output bipartite graph, as in Sec-
tion 3.4. The edges connecting I/O variables are weighted through the 
linearized frequency response between each pair of variables. Specif-
ically, the integral of the magnitude of the transfer function between 
two variables (𝑢𝑖, 𝑦𝑗 ) for a given range of frequencies [𝜔1, 𝜔2] is com-
puted as: 

𝛽𝑖𝑗 = ∫

𝜔2

𝜔1

|𝐺𝑖𝑗 (𝑗𝜔)|
√

1 + |𝐺𝑖𝑗 (𝑗𝜔)|
2
𝑑(𝜔), (72)

and then a normalization is used to obtain the weights 𝑤𝑖𝑗 = 1 − 𝑒−𝛽𝑖𝑗 . 
This allows to retrieve a monotonically increasing weighting in the 
range [0, 1] for all the edges. The computation of the partitioning based 
on this weighting is performed through a modified version of Barber’s 
algorithm (Barber, 2007).

8.5. Time-varying graph representations

Exploration of a partitioning algorithm for time-varying systems is 
proposed in Arastou et al. (2025) where nonlinear dynamics of the 
following form are considered:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡), 𝑢(𝑡)) (73)
𝑦(𝑡) = ℎ(𝑥(𝑡)).

For this class of systems, an associated graph representation is con-
structed using as weighting for the edges the partial derivatives of 
the dynamics w.r.t. the variables. Specifically, denoting with an arrow 
an edge between variables, the corresponding weights are defined as 
in Kravaris and Kantor (1990): 

𝑢𝑖 → 𝑥𝑗 ∶
|

|

|

|

|

𝜕𝑔𝑗
𝑢𝑖

|

|

|

|

|

; 𝑥𝑖 → 𝑥𝑗 ∶
|

|

|

|

|

𝜕𝑓𝑗
𝑥𝑖

|

|

|

|

|

; 𝑥𝑖 → 𝑦𝑗 ∶
|

|

|

|

|

𝜕ℎ𝑗
𝑥𝑖

|

|

|

|

|

. (74)

Once all the weights are defined, the corresponding adjacency matrix 
𝐴adj is constructed, and accordingly, the modularity metric 𝑄 can be 
used for graph partitioning. The algorithm used in this case is the 
spectral community detection detailed in Zhang and Newman (2015).

8.6. Hierarchical approach for time-varying graphs

A hierarchical algorithmic approach for time-varying topologies is 
presented in Riccardi et al. (2025b, 2025c). Starting from the graph 
representation in Section 6.7, the partitioning problem is divided into 
two parts: first, a selection of fundamental and indivisible systems 
dynamics, called FSUs, is performed algorithmically; then the FSUs are 
aggregated into collections, called composite system units (CSUs), for 
which a controller is designed. The algorithm for this procedure is 
available in Riccardi et al. (2025c). Application of the algorithmic selec-
tion of FSUs allows to obtain a network structure  = {1,… ,𝑁FSU}
from any given dynamics of the form (3). The second part of the 
partitioning strategy is an aggregative procedure for merging FSUs into 
CSUs. To this aim, a modularity-inspired metric is designed to capture 
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the strength of the interaction intra- and inter-CSUs, while balancing 
their size. These individual components of the metric are:
𝑊 intra

𝑖
=

∑

𝑠,𝑡∈𝑖

|𝑤𝑖(𝑠, 𝑡)| (75)

𝑊 inter
𝑖

=
∑

𝑠∈𝑖

∑

𝑗∈𝑖

∑

𝑡∈𝑠∩𝑗

|𝑤𝑖(𝑠, 𝑡)| + |𝑤𝑗 (𝑡, 𝑠)| (76)

𝑊 size
𝑖

= |𝑖|2, (77)

where 𝑖 is the set of the nodes in the set 𝑖, and 𝑖 its frontier. Using 
these terms, the global metric for partitioning, named partition index, 
is defined as: 

𝑝idx() =

𝑚
∑

𝑖=1
𝑊 Intra

𝑖

1 +
𝑚
∑

𝑖=1
𝑊 Inter

𝑖

+ 𝛼

1 +
𝑚
∑

𝑖=1
𝑊 size

𝑖

, (78)

where 𝛼 is the parameter affecting the granularity, thus allowing bal-
ancing the effect of the size of the collections in the partitioning. A 
greedy algorithmic procedure is used to iteratively assign the sub-
systems 𝑖 to the collections 𝑖 such that at each assignment the 
variation 𝛥𝑝idx = 𝑝idx(new) − 𝑝idx(old) is maximized. The partition 
index defined in (78) can also be used in global search optimization 
(genetic algorithm), as similarly proposed in Riccardi et al. (2024b, 
2024c).

9. Partitioning based on game-theoretical coalition formation

Coalitional predictive control is among the most recent formulations 
of non-centralized predictive control (Maestre et al., 2014). It consists 
of a combination of optimization-based control and game theory in 
which dynamical groups of agents cooperate to achieve a coordinated 
action to optimize some given performance criteria. At the basis of this 
strategy, there is the concept of coalition formation, explained in detail 
in Ray (2007), according to which agents in a network group them-
selves into coalitions to improve their collective outcome. In coalitional 
control this concept is used to obtain a distributed control strategy.

In this section, the main partitioning strategy used in coalitional 
predictive control will be introduced first, and then details about 
fundamental alternatives will be given. After, the theoretical properties 
of coalitional predictive control and their relation to partitioning are 
discussed. Various extensions and applications are presented in the 
remainder of the section.

9.1. The concept of coalitional control: predictive control and game theory

Consider a network   constituted by 𝑁 agents, i.e. a collection 
 = {1,… ,𝑁

}. A coalition  is any subset  ⊆   where agents 
in  cooperate. To each coalition it is assigned a characteristic function
𝑣(), mapping the coalitions into real numbers, i.e. 𝑣 ∶ 2𝑁 → R, 𝑣() ≥
0. A coalitional structure  is a collection of disjoint coalitions covering 
the entire network, in other words a non-overlapping partitioning of 
the network  = {1,… ,𝑁

}. The value of the coalitional structure is 
the sum of the individual contributions of each coalition: 
𝑉 () =

∑

∈
𝑣(). (79)

The objective of the characteristic function game (CFG) (Sandholm et al., 
1999) played by the agents, and that is considered in coalitional 
control, is to find the coalitional structure that maximizes the total 
welfare: 
∗ = arg max

∈
𝑉 (), (80)

where  is the set of all possible disjoint partitions of  . Various 
methodologies can be deployed to solve this problem, as it will be 
presented in the remainder of the section.
26 
The framework of the CFG is well suited for developing distributed 
predictive control strategies since it is, at its core, a distributed opti-
mization approach. One of the first works that formalizes the coalitional 
predictive control strategy is (Fele et al., 2017), where a large-scale 
system is assumed to be composed of subsystems of the form:

𝑥𝑖(𝑘 + 1) = 𝑓 (𝑥𝑖(𝑘), 𝑢𝑖(𝑘)) +𝑤𝑖(𝑘) (81)
𝑤𝑖(𝑘) =

∑

𝑗∈𝑖

ℎ(𝑥𝑗 (𝑘), 𝑢𝑗 (𝑘)).

Each of these subsystems is an agent 𝑖, and it can participate in a 
coalition 𝓁 , such that 

⋃𝑁
𝓁=1 𝓁 =  , 𝓁 ∩ 𝑚 = ∅ ∀𝓁, 𝑚 ∈ {1,… , 𝑁}, 

with 𝑁 the number of coalitions. Each subsystem is associated with a 
local optimization problem:

min
𝑥̃𝑖,𝑘 ,𝑢̃𝑖,𝑘

𝐽𝑖 =
𝑁−1
∑

𝑗=1
𝐽s(𝑥𝑖(𝑗|𝑘), 𝑢𝑖(𝑗 − 1|𝑘)) (82)

+ 𝐽f(𝑥𝑖(𝑁|𝑘), 𝑢𝑖(𝑁 − 1|𝑘))

s.t. 𝑥𝑖(𝑘 + 1) = 𝑓 (𝑥𝑖(𝑘), 𝑢𝑖(𝑘)) + 𝑤̂𝑖(𝑘)

𝑥𝑖(0|𝑘) = 𝑥𝑖(𝑘)

𝑔𝑖(𝑥̃𝑖,𝑘, 𝑢̃𝑖,𝑘) ≤ 0,

where 𝑤̂𝑖 is an estimate of the dynamical coupling of 𝑥𝑖 with its 
neighboring subsystems, and 𝑥̃𝑘, 𝑢̃𝑘 are the state and input sequences 
defined over the prediction horizon 𝑁 for a time step 𝑘. A coalition 
𝓁 is formed only if the value of the cost associated with the coalition, 
i.e. 𝐽𝓁 , is lower than the sum of the costs of the individual subsystems. 
Thus, the coalition formation condition is: 

𝐽 ∗
𝓁 <

∑

𝑖∈𝓁

𝐽 ∗
𝑖 . (83)

In the framework of CFG, the simplest characteristic function asso-
ciated with a coalition 𝓁 is 𝑣(𝓁) = 𝐽 ∗

𝓁 . In this case the coalition 
formation problem consists in finding the optimal coalitional structure 
∗ = argmax

∑

𝓁∈ 𝑣(𝓁) =
∑𝑁

𝓁=1 𝐽
∗
𝓁 , with a number 𝑁 of coalitions. 

This problem is known to be NP-Complete (Sandholm et al., 1999), 
inheriting the same complexity of the general partitioning problem.

The underlying principle of coalition formation described above 
is shared among all coalitional control strategies, and variations are 
present in the definition of the characteristic function, the individual 
payoffs, the implementation of the local MPC controllers, the com-
putation of ordering maps sorting agents costs, and the aggregation 
algorithm. In the remainder of the section, we report variations, exten-
sions, and applications of the partitioning approach found in coalitional 
control literature.

9.2. Foundational works

Coalitional predictive control is effectively formalized in the semi-
nal work (Fele et al., 2017). To overcome the computation complexity 
associated with the general coalition formation approach described in 
the previous section, the partitioning problem is addressed by looking 
at the coalitional structure  where the participation preference of each 
agent  is sorted according to their Pareto ordering. This is achieved by 
first using the Shapley value (Shapley, 1953) to compute the individual 
payoffs of each agent  in each possible subset of agents  ⊆  , that 
for agent 𝑖 ∈  is defined as: 

𝜙
𝑖

=
∑

⊆⧵𝑖

||!(|| − || − 1)!
||!

[

𝑣( ∪𝑖) − 𝑣()
]

. (84)

Using the Shapley value it is possible to build a mapping 𝛷 ∶  ×2 ×
Z → R for each agent in each possible coalition, i.e. at each time step 
𝑘 a function 𝛷(𝑖,𝑗 , 𝑘) is available. The function 𝛷 provides for each 
agent their preferred participation order into coalitions. Accordingly, 
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agents can autonomously organize into the coalitional structure8 𝛷. 
The dynamic coalition formation is guided by an individual payoff 𝛷
coinciding with the energy exchange with the main grid.

A first extension of Fele et al. (2017) is found in Fele et al. 
(2018), which proposes a coalitional predictive control strategy with 
self-organizing agents. The coalition formation strategy is based on 
a negotiation protocol allowing agents to autonomously form coali-
tions based on expected performance improvements and cooperation 
costs. In particular, the coalition formation problem is framed as a 
transferable utility game (Cesco, 1998; Sandholm et al., 1999; Stearns, 
1968), where agents decide to merge or separate dynamically using 
a bargaining protocol. The coalitional benefit is considered under 
the assumption of individual rationality, described in the following. 
Consider two coalitions 1, 2, and the value of their individual and 
aggregated characteristic functions, i.e. 𝑣(1), 𝑣(2), and 𝑣(1 ∪ 2). 
Also, consider the value associated with each of the players in the 
coalition, denoted by 𝑣(1 ∪ 2)|(𝑖) for 𝑖 = 1, 2, and defined such that 
𝑣(1 ∪2)|(1) + 𝑣(1 ∪2)|(2) = 𝑣(1 ∪2). Then the merger of 𝑣(1), 𝑣(2)
occurs if and only if the condition 𝑣(1 ∪ 2)|(𝑖) ≤ 𝑣(𝑖) holds for both 
𝑖 = 1, 2, which is known as individual rationality. The value associated 
with a player 𝑣() is then considered as an economic index, a utility that 
can be transferred. Consequently, a bargaining procedure is designed to 
merge the coalitions considering that, when aggregating two coalitions, 
the value 𝑣(1) + 𝑣(2) − 𝑣(1 ∪ 2) is a surplus that can be reallocated 
between the remaining agents.

Another bottom-up aggregative procedure for coalitions has been 
devised in Maestre and Ishii (2017) where a PageRank (Brin & Page, 
1998; Ishii & Tempo, 2014) approach is used as the metric to guide 
local node exchanges among coalitions. For a graph  = ( , ), the 
PageRank associated with each node 𝑖 ∈  is a scalar 𝑝𝑖 ∈ [0, 1], 
s.t. ∑𝑖∈ 𝑝𝑖 = 1. Given the neighborhood 𝑖 of node 𝑖, its PageRank 
value is computed as 𝑝𝑖 =

∑

𝑗∈𝑖
𝑝𝑗∕𝑛𝑗 , where 𝑝𝑗 is the value associated 

with node 𝑗, and 𝑛𝑗 its number of edges. Once the values 𝑝 are known 
for all the nodes, a weighting of the links is performed assigning to 
each 𝜖𝑖𝑗 a weight 𝑤𝑖𝑗 = 𝑝𝑖∕𝑛𝑖. The distributed computation of the 
PageRank is performed using the algorithm (Ishii & Tempo, 2010), 
then an algorithm to aggregate nodes into coalitions using iterative aid 
requests.

A combination of the methodologies (Fele et al., 2017) and (Maestre 
& Ishii, 2017) is found in Muros et al. (2018) where a randomized 
method for the estimation of the Shapley value is applied. Specifically, 
the Shapley value defined as the vector 𝜙( , 𝑣) ∀𝑖 ∈  , for the game 
induced over the set of agents   and for a characteristic function 𝑣
(coinciding with the stage cost of the local MPC), is used to introduce 
a weighting of the links among agents, which is defined for the undi-
rected link 𝑖𝑗 ∈  as 𝑤𝑖𝑗 = 𝜙𝑖( , 𝑣)∕|𝑖| + 𝜙𝑗 ( , 𝑣)∕|𝑗 |. To address 
the problem of the combinatorial explosion associated with the com-
putation of the Shapley value associated with all possible coalitions, 
randomized methods (Castro et al., 2009; Ishii & Tempo, 2010) are 
proposed to estimate it. In particular, using the modified definition of 
the Shapley value given in Castro et al. (2009), an estimation of its 
value is given for a set of 𝑞 samples of all possible coalitions, giving an 
approximation of the value, whose efficient estimate is distributed as 
𝜙̃𝑖( , 𝑣) ∼ 𝑁(𝜙𝑖, 𝜎2𝜙𝑖∕𝑞), with bounded error.

9.3. Technical extensions: feasibility, stability, robustness

Theorems for the stability and recursive feasibility (Mayne et al., 
2000) of a coalitional predictive control formulation have been pro-
posed in Baldivieso Monasterios and Trodden (2021). The aggregation 
of coalitions is achieved through a consensus procedure, where for each 

8 The partitioning 𝛷 does not necessarily coincide with the optimal 
partitioning ∗ in terms of global minimization of the value of the cost 
function 𝐽 (𝑥̃ , 𝑢̃ , 𝛿 ) in (46).
𝑘 𝑘 𝑘

27 
coalition 𝑖 in a given state 𝑥 a consensus optimization problem is 
defined as: 

min
𝑖∈

𝐽𝑖(𝑖,−𝑖, 𝑥) = 𝐽 consensus𝑖 (𝑖,−𝑖, 𝑥) + 𝜌𝐽power𝑖 (𝑖, 𝑥), (85)

and −𝑖 ≜ {𝑗}𝑗∈𝑖
 is the set of possible neighboring coalitions. In this 

optimization problem, the term 𝐽 consensus𝑖 = 0 if coalitions 𝑖 and its 
neighbors agree on the current arrangement into coalitions, and the 
term 𝐽power𝑖  weighted by the scalar 𝜌 represents the effect of coalition 𝑖
on neighbors opinions (Muros et al., 2017). The consensus optimization 
is achieved through an algorithm that leverages the theory of finite 
exact potential games (Monderer & Shapley, 1996).

Another extension is found in Chanfreut, Maestre, Ferramosca et al. 
(2022), where tracking of target sets is achieved. Coalitions are formed 
to enlarge the domain of attraction of MPC, but when sufficient, the 
decentralized formulation is used. The underlying partitioning strategy 
is hierarchical, where partitioning is executed at a slower time scale 
over a heuristic selection of possible communication topologies. The 
coalitional scheme is defined by Maestre et al. (2014). In particular, 
given the set  of all possible communication topologies, and for a 
partitioning  ∈ , the characteristic is defined as: 

𝑉 ( , 𝑥 ) = (𝑥 − 𝑥𝛤 )⊺𝑃 (𝑥 − 𝑥𝛤 ) + 𝑐| |, (86)

where 𝑥  is the aggregated state of all the coalitions at time step 𝑘, 
𝑥𝛤  is the Chebyshev center of the target set, | | is the number of 
communication links enabled in the partitioning  , 𝑐 > 0 is a scalar, 
and 𝑃  is a positive definite matrix.

9.4. Market-based partitioning

A market-based coalition formation approach applied to coalitional 
predictive control is introduced in Masero et al. (2022). The strategy 
is inspired by other market-based approaches (Son et al., 2004), and 
results in a hierarchical coalitional control strategy. For a given objec-
tive function 𝐽 of the plant, a quadratic sum of the output and of the 
control variable 𝑞, the market-based coalitional strategy is implemented 
by defining for each agent 𝑖 ∈   in the plant, a utility value 𝑈𝑖(⋅) =
−𝐽𝑖(⋅) that the agent 𝑖 can supply or demand to purchase or sell a 
quantum of input 𝛥𝑞. Accordingly, the set of agents is split into two 
disjoint subsets s, d of supply and demand agents, with respective 
utilities. Then, the utility is computed and classified according to the 
two groups for each agent or coalition. This way, the requests can 
be sorted in descending and ascending order for demand and supply, 
and trades are performed according to this matching. The hierarchical 
coalition formation procedure is then implemented starting from the 
coalition formed by individual agents, and runs periodically according 
to a fixed time step bigger than the control step. Heuristics ensure the 
terminability of the algorithm.

Feedforward Neural Networks (NNs) (Fine, 2006) are used in
Masero, Ruiz-Moreno et al. (2023) to reduce the computational com-
plexity of the market-based hierarchical formulation introduced in
Masero et al. (2022). Specifically, in Masero, Ruiz-Moreno et al. (2023) 
sets of NNs are used with two different scopes in cascade. The first set 
of NNs uses information about states and disturbances to approximate 
the values of the utilities of supply and demand agents. These are used 
to implement the market-based coalition formation. Then, a second 
set of NNs, using the same information and considering the coalition 
obtained, approximate the value of the input 𝑞 for the coalitions, that 
can group at most three loops. The drawbacks of this strategy arise 
from the defining technical characteristics of NNs, which include the 
necessity of rich enough data to perform the training, the inability to 
provide suitable outputs when the operating conditions of the plant are 
distant from the training set, and the lack of guarantees for constraint 
satisfaction.
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9.5. Further extensions

Predicted topology transition is proposed in Masero, Maestre et al. 
(2021) as an evolution of the work in Fele et al. (2017). The method 
extends Coal-MPC by incorporating a transition horizon variable, which 
optimizes the timing of topology changes over the prediction hori-
zon. Unlike previous coalitional control methods that switch coalition 
structures instantaneously, this approach gradually transitions between 
topologies, allowing agents to anticipate and optimize their control ac-
tions accordingly. The strategy also belongs to hierarchical coalitional 
control, where the upper layer, working at a lower rate, is designed to 
obtain the desired coalition and the transition horizon.

Pairwise clustering is proposed in Masero, Frejo et al. (2021) where 
agents are grouped in couples, yielding to a hierarchical control ap-
proach. In the upper layer, at each time step 𝑘, the measurement of the 
inputs in each agent at the previous time step is collected into a vector 
𝒒measured𝑘−1 . This vector is then sorted in ascending order, giving 𝒒sorted𝑘−1 . 
Then, the partitioning of the plant is obtained by coupling together the 
first and last elements of 𝒒sorted𝑘−1  and removing them from the vector 
until no further assignments are possible.

The problem of resource sharing under partitioning is addressed 
in Sánchez-Amores, Martinez-Piazuelo et al. (2023), where a prior 
partition  = {1,… ,𝑁

} of the system is assumed to be given, e.g. 
using one of the techniques in Masero, Frejo et al. (2021), Masero 
et al. (2022) and Masero, Ruiz-Moreno et al. (2023). The problem of 
distributing the shared resource is solved using a population-dynamics-
assisted resource allocation strategy (Barreiro-Gomez & Tembine, 2018; 
Martinez-Piazuelo et al., 2022), specifically a Smith population dy-
namics with carrying capacities (Barreiro-Gomez et al., 2018). Fol-
lowing the hierarchical coalitional control methodology introduced 
in Masero et al. (2022), the resource allocation (for a fixed partitioning) 
is performed at a slower time scale.

9.6. Partitioning for input-coupled systems

The use of coalitional predictive control for systems with coupled 
input dynamics is found in Masero et al. (2020b), where the following 
input-coupled agent representation is considered: 
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) +

∑

𝑗∈𝑖

𝐵𝑖𝑗𝑢𝑖𝑗 (𝑘) + 𝜔𝑖(𝑘), (87)

with 𝑢𝑖𝑗 = −𝑢𝑗𝑖, and 𝜔𝑖 is a disturbance. The underlying coalitional 
formation approach is a hierarchical methodology of the form (Fele 
et al., 2017), where in the upper layer a new coalitional structure is 
assigned according to a fixed time step longer than the control sampling 
time. In this case, the computational complexity of evaluating the best 
topology is reduced by considering as candidate successors only the 
allocations next that have a Hamming distance of one from the current 
configuration current, i.e. they differ from only one link allocation.

A further extension of coalitional predictive control for coupled 
input dynamics has been proposed in Sánchez-Amores et al. (2022). 
In this work, couplings in the inputs among agents are decomposed 
into private and public variables, a feature detailed in La Bella et al. 
(2019). This approach is used because it allows more flexibility in 
the computation of the control action w.r.t. robust approaches as 
tube-based MPC that is more conservative.

An extension of Sánchez-Amores et al. (2022) is found in Sánchez-
Amores, Chanfreut et al. (2023), where a robust tube-based formula-
tion of the controller is proposed (Mayne et al., 2005). Additionally, 
in Sánchez-Amores, Chanfreut et al. (2023) the presence of communi-
cation links is event-driven, i.e. communication links are activated only 
if scaling factors exceed predefined thresholds that allow to establish a 
trade-off between performances and communication burden.

A further advancement in coalitional control for input-coupled dy-
namics is achieved in Masero, Baldivieso-Monasterios et al. (2023), 
where a robust strategy allowing plug-and-play capabilities is devised. 
The approach is based on an evolution of public and private factors 
introduced in Trodden and Maestre (2017) and already employed 
in Sánchez-Amores et al. (2022).
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10. Heuristic partitioning

In this section, we present partitioning techniques that have been 
developed for specific applications. These techniques, while not broadly 
applicable at the current stage, might eventually be generalized. In 
addition, they still find relevance to their field, for which are readily 
available. 

Partitioning for Dec-MPC of wide-area power systems is investi-
gated in Jain et al. (2018). The technique is heuristic and based on 
the use of the modal participation matrix that highlights the effects 
of each generation on each dominant mode in low-frequency oscil-
lations. The partitioning technique allows overlapping partitioning, 
giving both the nature of the dynamical couplings and the use of a 
DMPC strategy (Alessio & Bemporad, 2007). The approach is applied 
to the Northeast Power Coordinating Council nonlinear power system 
model (Rogers, 2000), comprehending 48 electrical machines and 140 
buses, showing the performance and the resilience of the network for 
two different partitionings compared to centralized control.

Partitioning for wind farms is proposed in Ye et al. (2019), where a 
HMPC strategy is proposed. The partitioning strategy is performed on 
the highest level of the hierarchy every 15 min. Based on a forecast of 
the wind characteristics for the next 20 min, an optimization strategy is 
deployed to cluster the wind turbines in one of 12 categories based on 
the possible load operating conditions the turbines can experience. The 
proposed HMPC strategy was validated over a modified version of the 
IEEE One Area RTS-96 network (Grigg et al., 1999), and compared with 
conventional dispatch and schedule allocation algorithms, achieving 
significantly better performance.

A strategy for partitioning vehicle platoons is implemented in Liu 
et al. (2019), with the objective of deploying a noniterative two-level 
DMPC architecture ensuring closed-loop stability for an optimization 
problem with coupled cost functions and constraints. The partitioning 
strategy is based on the assumption that the cooperation set of vehicles 
 can be divided into groups that belong to two main conceptual 
categories, i.e. dominant and connecting clusters. The algorithmic parti-
tioning allows vehicles to perform the operations of joining and leaving 
a platoon on the basis of this group classification. The DMPC strategy 
is then designed around this partitioning approach, ensuring stability 
and feasibility. Validation of the approach is performed for a platoon 
of four vehicles, and compared against CMPC, showing minimal loss in 
performance.

A strategy for event-triggered partitioning of microgrids is devel-
oped in Ananduta and Ocampo-Martinez (2021), where the economic 
dispatch problem for energy production is addressed. The power net-
work is considered to be constituted of microgrids that are considered 
self-sufficient systems, i.e. they do not exchange energy with their 
neighbors in nominal operating conditions. However, if this generative 
autonomy is lost, re-partitioning of the network is triggered, leading 
to a new definition of the microgrids. This re-partitioning is performed 
through a communication protocol, which evaluates the best node ex-
change among the microgrids that minimizes the individual outcomes 
in economic terms, while ensuring self-sufficiency. The approach is 
validated on the PG&E 69-bus distribution network. The simulation 
results show that during peak hours all microgrids should join into a 
single agent to satisfy the demand, whereas during off-peak hours they 
can split into multiple coalitions.

The paper (Huanca et al., 2023) proposes a distributed Switching 
Model Predictive Control (SMPC) strategy for quadrotor UAV swarm 
aggregation incorporating collision avoidance. Teams of UAVs are se-
lected using a clustering strategy, and local controllers solve the SMPC 
problem sequentially (Christofides et al., 2013). The clustering ap-
proach is based on the sphere packing problem (Conway & Sloane, 
1988). A cluster of UAVs is selected according to the positions of UAVs 
in space (Gauci et al., 2014), assuming these are always available. In 
the sphere packing problem, the objective is to find the arrangement 
of non-overlapping spheres so that they occupy the largest possible 
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fraction of space. Solutions are available in the literature for this prob-
lem (Conway & Sloane, 1988). The approach is validated with a group 
of 150 UAVs, using both centralized and distributed control strate-
gies for the aggregation. The proposed distributed SMPC can achieve 
comparable aggregation performance w.r.t. its centralized counterpart 
while drastically reducing computation time.

11. Applications and case studies

In this section, we develop a classification that relates the par-
titioning methodologies found in the literature to the systems used 
for their validation. In the resulting Table  8, for each application 
system, partitioning methodologies are classified according to Fig.  4. 
When possible, we also provide references to more standardized test 
cases for their direct use in the development of further strategies. 
After this classification, we briefly describe the known case studies in 
the literature and the works that have been developed using them, 
providing information about the resulting control architectures and 
performance when available. Finally, for community-detection-based 
and game-theoretic oriented methods, we discuss additional applicative 
works that are of interest. 

11.1. Classification and benchmark systems

From Table  8, we note that many works have been developed for 
power systems. However, if we consider standard generation and trans-
mission systems, no specific case study has been consistently used to 
derive partitioning techniques. Therefore, it is difficult to quantitatively 
compare different works. An exception in this sector is the parabolic-
trough plant ACUREX (Gallego & Camacho, 2012; Gálvez-Carrillo et al., 
2009), for which many Coal-MPC strategies have been developed.

Several other applications are reported in Table  8, all used in the 
development of a specific partitioning methodology for the application 
of non-centralized control. Especially for transportation networks, we 
observe a notable lack of studies in partitioning for NCen-MPC of 
urban traffic, freeway transportation, and railway networks (Luan et al., 
2020). The other case studies are, in general, smaller systems that 
can be used for the development of strategies, but do not stress the 
scalability of the approaches.

Several other large-scale application fields can be considered for 
studies in partitioning, such as swarms of mobile robots or autonomous 
maritime vehicles (Zhou et al., 2020), automated agricultural systems, 
district heating (Blizard & Stockar, 2025), satellite constellations (Curzi 
et al., 2020), and advanced industrial processes (Galloway & Hancke, 
2013). Some of the applications listed can be found, for example, 
in the recent work (Pedroso et al., 2025) about the design of large-
scale systems, or in the set of benchmarks proposed in Maestre and 
Ocampo-Martinez (2025).

11.2. Analysis of the case studies

In this section, we discuss in more detail how the case studies in 
Table  8 have been used in the literature to validate partitioning ap-
proaches for NCen-MPC methods. The works are divided by application 
domain, where different partitioning classes have been used for each of 
them.

Power systems. Regarding energy generation and transmission net-
works, we find the implementation of the coalitional control ap-
proach (Fele et al., 2017) applied to energy management in smart grids, 
specifically to optimize local energy trade among consumer nodes with 
distributed generation and storage capabilities. In Fele et al. (2017), 
prosumers (producers-consumers) (Larsen et al., 2014) cooperate to 
reduce power dependence from the main grid while minimizing energy 
exchange costs and transmission losses among them. Simulation results 
illustrate how coalitional structures evolve over time, showing how 
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coalitional trade reduces overall costs compared to grid-dependent 
strategies, as prosumers can access more favorable internal energy 
prices. Also the Coal-MPC strategy in Fele et al. (2018) is applied for 
wide-area control of power networks (Chakrabortty & Khargonekar, 
2013), showing the ability of the architecture to adapt to topological 
changes that may arise with faults or network extensions. An HMPC 
approach with local Dec-MPC is deployed in La Bella et al. (2022) to 
control local power clusters independently. Local requests of energy 
activate a supervisory layer if clusters cannot satisfy the demand. 
Further features, such as using energy storage systems, multiple time 
scales, and ADMM distributed computations in the supervisory layer, 
are detailed in La Bella et al. (2022). The approach is implemented 
on the IEEE 118-bus, showing the online clustering capabilities of the 
approach.

An important case study in the energy sector is the parabolic-trough 
plant ACUREX, located in Plataforma Solar de Almería (Gallego & 
Camacho, 2012; Gálvez-Carrillo et al., 2009) composed by 10 loops, 
and its scaling to 100 loops, for which many Coal-MPC strategies have 
been developed. A parabolic-trough solar collector field is a system 
composed of many loops of parabolic collectors focusing heat on a 
trough flowed by the heat transfer fluid (HTF). This fluid is thus heated 
and can be used for electrical energy generation. The objective of a con-
trol strategy applied to this system is to maximize the thermal power 
output by regulating the flow 𝑞 of the HTF across the loops, where 
the dynamics of the plant is nonlinear and subject to disturbances 
caused, e.g.  by the variability in atmospheric conditions. For example, 
a direct pairwise matching approach in Masero, Frejo et al. (2021) to 
cluster loops of the plants in couples is motivated by the fact that loops 
with a deficit of flow rate can benefit from those with excess flow. 
The approach has been proven to outperform Dec-MPC, approaching 
CMPC performance while significantly reducing computation time. The 
market-based control architecture developed in Masero et al. (2022) is 
also validated on the model of the real-world collector field ACUREX. 
Comparison strategies include PI control, two different CMPC strate-
gies, and the control strategy based on loop-pair clustering devised 
in Masero, Frejo et al. (2021). According to the simulation results, 
the market-based coalitional predictive control is the best-performing 
strategy with a gain of 12.51% w.r.t. PI control, outperforming also 
the CMPC implementation with 0.37%. Additionally, an analysis of the 
computational burden is performed. In practice, the CMPC strategy is 
not deployable because its computation time exceeds the operating time 
step of the plant. On the contrary, market-based coalitional control 
is fast enough to be potentially scaled up to a plant of about 300 
loops while maintaining the same performance gains. The coalitional 
controller in Masero, Ruiz-Moreno et al. (2023) is compared with the 
nonlinear coalitional controller developed in Masero et al. (2022). The 
NN-based coalitional controller (Masero, Ruiz-Moreno et al., 2023) 
shows a performance that is comparable with the one obtained in 
the nonlinear implementation (Masero et al., 2022), but providing a 
considerable reduction in the computation time needed to compute the 
control action and the partitioning of the network with a reduction up 
to the 99% w.r.t. the time required in the NLin-MPC implementation. 
Also the approach in Sánchez-Amores, Martinez-Piazuelo et al. (2023) 
is validated on a 100-loop implementation of ACUREX and compared 
with CMPC. The results show a negligible loss in performance while 
significantly reducing the computation time required to retrieve the 
control action. The study (Chanfreut et al., 2023) introduces a hierar-
chical clustering-based MPC strategy for optimizing heat transfer fluid 
flow rates in solar parabolic trough plants (Boukelia & Mecibah, 2013). 
Simulations performed on 10-loop and 80-loop plants show significant 
effectiveness of the technique and minimal performance loss.
Water systems. Water network control is another field that has seen 
extensive application of partitioning strategies. In this case, we dis-
tinguish between water-tank systems, which are usually small-scale 
test cases used to validate the viability of the approaches, and large-
scale water distribution networks, among which the Barcelona drinking 
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Table 8
Application fields of the partitioning techniques for NCen-MPC, classified by sector. When available, benchmark systems have been reported.
 Sector Specific application Partitioning techniques  
 

Power systems

Six-area power system Chen et al. (2020)  
 Smartgrids, 8 (check) prosumers: (Larsen et al., 2014; Paauw 

et al., 2009)
Fele et al. (2017)  

 Wide area power network: (Chakrabortty & Khargonekar, 2013) Fele et al. (2018)  
 The EEA-ENB: (Riccardi et al., 2024a, 2025a) Riccardi et al. (2024b, 2024c)  
 PG&E 69-bus distribution network Ananduta and Ocampo-Martinez (2021)  
 IEEE 118-bus La Bella et al. (2022)  
 IEEE 123 node test feeder Wang et al. (2022)  
 Nonlinear power system: (Rogers, 2000), 48 machines, 140 buses Jain et al. (2018)  
 Parabolic-trough plant: ACUREX model, 100 loops (Gallego & 

Camacho, 2012; Gálvez-Carrillo et al., 2009)
Chanfreut et al. (2023), Masero, Frejo et al. (2021), Masero 
et al. (2022), Masero, Ruiz-Moreno et al. (2023) and 
Sánchez-Amores, Martinez-Piazuelo et al. (2023)

 

 

Water systems

4-tanks system: (Alvarado et al., 2011) Wei et al. (2020) and Segovia et al. (2021)  
 8-tanks system Masero, Maestre et al. (2021), Maxim et al. (2023), 

Sánchez-Amores et al. (2022) and Sánchez-Amores, Chanfreut 
et al. (2023)

 

 16-tanks system: (Maestre et al., 2015) Núñez et al. (2015) and Maestre and Ishii (2017)  
 Barcelona drinking water transport network: (Ocampo-Martinez 

et al., 2009)
Barreiro-Gomez et al. (2019), Muros et al. (2018), 
Ocampo-Martinez et al. (2012, 2011) and Segovia et al. (2021)

 

 Shanghai water distribution network Zhang et al. (2019)  
 Richmond water distribution network: (van Zyl et al., 2004) Arastou et al. (2025)  
 Dez irrigation canal: (Isapoor et al., 2011; SOBEK, 2000) Fele et al. (2014)  
 

Chemical systems

2 CSTR series: (Bakule, 2008; Venkat, 2006) He and Li (2023), Kamelian and Salahshoor (2015) and Tang, 
Pourkargar et al. (2018)

 

 2 CSTR series and flash tank separator: (Christofides et al., 
2013; Liu, Muñoz De La Peña et al., 2010; Liu et al., 2009; 
Stewart et al., 2010)

Pourkargar et al. (2017), Rocha et al. (2018), Tang, Allman 
et al. (2018) and Wang et al. (2023)

 

 Tennessee Eastman problem: (Downs & Vogel, 1993; Lyman & 
Georgakis, 1995), five operation units

Xie et al. (2016)  

 Benzene alkylation process: 4 CSTR and flash tank separator Pourkargar et al. (2019) and Arastou et al. (2025)  
 Amine gas sweetening plant Moharir et al. (2018)  
 Air separation process Wang et al. (2023)  
 

Wind farms

12-turbine wind farm Zhao et al. (2023)  
 20-turbine wind farm, NREL 5-MW Lin et al. (2020)  
 25-turbine farm, 1.5 MW Changqing et al. (2022)  
 42-turbine farm, NREL-5 MW: (Jonkman et al., 2009), 

SimWindFarm (Grunnet et al., 2010)
Siniscalchi-Minna et al. (2020)  

 IEEE One Area RTS-96 network: (Grigg et al., 1999) Ye et al. (2019)  
 

Transportation systems

4-vehicles platoon: (Zhu et al., 2020) Liu et al. (2019) and Maxim and Caruntu (2022)  
 Urban transportation network: (De Oliveira & Camponogara, 

2010), 8 intersections
Chanfreut, Maestre, Hatanaka et al. (2022)  

 Jinan road network Guo et al. (2019)  
 15 km freeway stretch: (Messmer & Papageorgiou, 1990), 

METANET model
Chanfreut et al. (2021a)  

 
Mechanical systems

Mass-spring-damper chain, 4 elements Baldivieso Monasterios and Trodden (2021)  
 (4 + 1)-trucks, connected with springs and dampers: (Trodden & 

Maestre, 2017)
Masero, Baldivieso-Monasterios et al. (2023)  

 12-trucks, connected with springs and dampers: (Riverso & 
Ferrari-Trecate, 2012; Trodden & Maestre, 2017)

Chanfreut, Maestre, Ferramosca et al. (2022)  

 Smart buildings 8 rooms temperature regulation Zheng et al. (2018)  
 20 thermal zones control: (Chandan & Alleyne, 2013) Atam and Kerrigan (2021)  
 
Abstract networks

43 agents flow system: (Koeln & Alleyne, 2017) Wang and Koeln (2023)  
 Random 50 systems, modular 64 systems, hybrid Riccardi et al. (2025b, 2025c)  
 Railway networks Dutch railway network: (Kersbergen, Rudan et al., 2016) Kersbergen, van den Boom et al. (2016)  
 Telecommunication systems Next generation cellular networks: (Auer et al., 2012) Masero et al. (2020b)  
 Industrial plants Walking beam reheating furnace system Chen et al. (2020)  
 Process plant Refinery: gas-to-liquid process, hydrocracking process Tang et al. (2023)  
 Aerial vehicles Group of 150 UAVs Huanca et al. (2023)  
 Cyber-physical systems 4-agents chain Maxim and Caruntu (2021)  
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water transport network (Ocampo-Martinez et al., 2009) is surely the 
most commonly used test case among different NC-MPC approaches. 
In Ocampo-Martinez et al. (2012), the 𝜖-decomposition is applied to the 
Barcelona drinking water network, incorporating a heuristic selection 
of 𝜖, and a hierarchical Dec-MPC strategy is applied to the resulting 
three-subsystem network. The architecture is validated against a CMPC 
controller implementation showing an overall performance loss always 
smaller than 2%, with a reduction of computation times up to 35%. Also 
the partitioning methodology in Muros et al. (2018) is validated over 
the Barcelona drinking water transport network by applying coalitional 
predictive control and comparing it against CMPC, showing how it 
can outperform Dec-MPC and other decentralized control architectures. 
In addition, a DMPC approach based on density-dependent population 
games (Sandholm, 2010) is used in combination with the partitioning 
approach developed in Barreiro-Gomez et al. (2019) and tested over the 
Barcelona drinking water transport network. Another notable work in 
water distribution networks is Zhang et al. (2019), where the network 
of Shanghai is considered, using 800 samples of its state and input 
variables captured every 10 min from 44 sensors in the network. 
Different partitionings are obtained by varying the parameters of the 
algorithm, but the one providing 6 groups is selected since it gives 
the minimum variance. Simulations are performed to compare the pro-
posed enhancing DMPC strategy with the Dec-MPC approach defined 
in Ocampo-Martinez et al. (2012, 2011). Overall, the strategy proposed 
by Zhang et al. (2019) allows to achieve a reduction in the water 
pressure of the network, while ensuring stability and robustness, thus 
reducing leakages and energy requirements. The approach in Arastou 
et al. (2025) is applied to the control of a simplified version of the Rich-
mond water distribution network, Yorkshire, UK (van Zyl et al., 2004), 
using a flow-based graph representation. The simulations show how 
the DMPC strategy applied to different network partitionings always 
ensures a negligible loss in performance, while showing computation 
times that gradually decrease with a higher number of sets in the 
partition.

Regarding water-tank systems, the methodology developed in
Núñez et al. (2015) is validated on a 16 water tanks system (Maestre 
et al., 2015), showing how the optimal partitioning is affected by 
the change in operating conditions. The coalitional predictive control 
strategy (Maestre & Ishii, 2017) is also developed for the same 16 water 
tanks system, and compared against CMPC, Dec-MPC, and the DMPC 
scheme (Núñez et al., 2015). The strategy proposed in Maestre and Ishii 
(2017) is the best performer in terms of optimality gap w.r.t. CMPC, 
after parameters calibration. The DMPC strategy proposed in Wei et al. 
(2020), instead, is validated for the four-tank water system (Alvarado 
et al., 2011; Distributed model, 2015) against cooperative DMPC with 
static topology, effectively reducing the communication burden. An-
other method validated on a four-tanks system is the OCD-DMPC 
approach proposed in Segovia et al. (2021). However, the validation 
against other MPCs is only qualitative. For eight-tanks water systems, 
we report the strategy in Masero, Maestre et al. (2021), where the 
approach can reduce communication and coordination costs of coali-
tional schemes while maintaining performance close to CMPC. For a 
similar case study, the work in Sánchez-Amores et al. (2022) shows how 
varying the parameters of the partitioning strategy developed allows 
for balancing the communication burden with the performance loss. 
Finally, the approach in Sánchez-Amores, Chanfreut et al. (2023) is 
also validated using an eight-tank water system against centralized 
and Dec-MPC. The simulation results show that coalitional control can 
outperform Dec-MPC while approaching CMPC performances with a 
reduction of 83% in terms of communication cost.
Chemical plants. Chemical systems have been the subject of deep stud-
ies regarding partitioning, given the complexity of the associated dy-
namics. We report the presence of many system configurations in-
volving CSTRs and separators, e.g. Bakule (2008), Liu et al. (2009), 
Stewart et al. (2010) and Venkat (2006) among others. Also, in this 
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case, no single benchmark system has been used consistently in the 
literature; rather, there are many different similar configurations that 
complicate the process of direct comparison of partitioning strate-
gies. The partitioning approach developed in Kamelian and Salahshoor 
(2015) is used in the deployment of a Dec-NLin-MPC strategy over an 
industrial chemical plant constituted by two continuous stirred-tank 
reactors in cascade (Bakule, 2008; Venkat, 2006). The results show 
that the decentralized approach proposed in Kamelian and Salahshoor 
(2015) has a performance comparable to C-NLin-MPC, and superior 
performance w.r.t. the Dec-NLin-MPC approach proposed in Venkat 
(2006). The method in Xie et al. (2016) is validated on a chemical 
plant with five operation units known in the literature as the Tennessee 
Eastman problem (Downs & Vogel, 1993; Lyman & Georgakis, 1995). 
Partitioning of the latter is executed on a linearized version of the 
plant around operating points generated through a stabilizing control 
action (McAvov & Ye, 1994). No control validation of the proposed 
DMPC architecture is performed. In Pourkargar et al. (2017) the anal-
ysis is conducted on a reactor-separator process, where sequential and 
iterative DMPC formulations (Christofides et al., 2013) are compared 
against CMPC. The approach in Tang, Allman et al. (2018) is validated 
for control of a reactor-separator process (Liu et al., 2009; Stewart 
et al., 2010), with two reactors in series and a separator. The approach 
deployed is an ADMM-based DMPC (Bertsekas, 1999), and is validated 
against nonlinear CMPC. The results show how the DMPC implemen-
tation can outperform CMPC for this nonlinear setting while reducing 
computation time by more than 50%. Among the contributions of the 
paper (Rocha et al., 2018) there is the derivation of two DMPC tech-
niques, cooperative and non-cooperative, both working on linearized 
versions of the models. The viability of the approach is demonstrated 
for the reactor-separator process (Stewart et al., 2010), with two reac-
tors in series and a separator. The approach in Tang, Pourkargar et al. 
(2018) is applied for deploying a noncooperative and iterative DMPC 
control scheme (Liu, Chen et al., 2010) over a reactor-separator process 
with two continuously stirred tank reactors in series (Pourkargar et al., 
2017). Different decompositions of the networks are achieved, and 
results are compared against CMPC through a quality index normalizing 
the performance-computation-time product w.r.t. CMPC. This quality 
index is used to determine the best partitioning of the network. The 
partition resulting from the algorithm developed in Wang et al. (2023) 
is used to deploy DMPC over two different case studies, and compared 
with CMPC and DMPC with partitioning computed using the conven-
tional modularity maximization. The first experiment involves a reactor 
separator process consisting of two continuously stirred tank reactors 
and a flash separator (Liu, Muñoz De La Peña et al., 2010); the second 
is an air separation process. The empirical results show how different 
decompositions of the network impact the performance of the DMPC, 
showing that also frequency-based modularity maximization is not al-
ways the best choice, which is in line with the concept that modularity 
maximization does not provide by itself the best partitioning in terms 
of performance. Additionally, the technique proposed only works with 
linear systems. The case study considered in Arastou et al. (2025) is the 
benzene alkylation process using four continuous stirred tank reactors 
and a flash separator controlled through the DMPC strategy developed 
in Pourkargar et al. (2019), which also involves the partitioning of the 
process using community detection. The strategy developed in Arastou 
et al. (2025) shows an improvement in the performance up to 26.9% 
w.r.t. the one in Pourkargar et al. (2019).
Wind farms. For this application, we found different studies in parti-
tioning, with various topologies, turbine models, and operating condi-
tions. The approach in Lin et al. (2020) is deployed on a farm with 
20 NREL 5-MW wind turbines (Jonkman et al., 2009), modeled using 
SimWindFarm (Grunnet et al., 2010), and obtaining four clusters. The 
control approach is hierarchical and employs a proportional controller 
in the lower layer and an MPC in the upper layer, where in the latter, all 
the clusters are aggregated into a single performance index. Simulation 
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results show how the proposed strategy outperforms both conventional 
PD control and CMPC, while reducing computation times. The approach 
in Siniscalchi-Minna et al. (2020) is validated on a wind farm with 
42 NREL-5MW wind turbines (Jonkman et al., 2009) modeled using 
SimWindFarm. The non-centralized strategy is compared with its cen-
tralized counterpart, showing a significant reduction in computation 
times while ensuring a good level of performance. The clustering 
performed in Changqing et al. (2022) allows the division of wind 
turbines into minimally coupled clusters. The approach is applied to a 
25-turbine farm (1.5 MW), showing its effects on frequency regulation 
and power output w.r.t. more traditional control approaches. An HMPC 
scheme is proposed in Zhao et al. (2023), and the performance w.r.t. 
CMPC are qualitatively compared in a 12-turbine wind farm case study.
Transportation networks. The control approach in Chanfreut, Maestre, 
Hatanaka et al. (2022) is validated on an urban transportation net-
work (De Oliveira & Camponogara, 2010) with eight intersections, 
and performance is compared w.r.t. CMPC. Simulations show how this 
strategy can reduce the number of active communication links more 
than the 40% while retaining good levels of performance
Mechanical systems. In Baldivieso Monasterios and Trodden (2021), 
a DMPC technique (Mayne et al., 2005) relying on tube-based MPC
(Limon et al., 2010) is considered as the underlying control strategy 
for each coalition in a Coal-MPC scheme. The approach is successfully 
validated against CMPC over a four-agent mass–spring–damper planar 
chain, showing that the coalitional control scheme proposed can reach 
states that are otherwise not feasible for CMPC. In Chanfreut, Maestre, 
Ferramosca et al. (2022), coalitional control is used in combination 
with Dec-MPC. The approach proposed is validated over a 12-trucks 
system connected through springs and dampers; an example also used 
in Riverso and Ferrari-Trecate (2012) and Trodden and Maestre (2017), 
showing a good performance retention w.r.t. centralized control with 
significant reductions in communication costs. Validation of the ap-
proach in Masero, Baldivieso-Monasterios et al. (2023) is performed 
through the control of a four-trucks system in a coupled chain config-
uration as also tested in Trodden and Maestre (2017). A fifth truck is 
added during the simulation to show the plug-and-play capabilities.
Smart buildings. Few studies are present in this field, which is often 
used in the literature to develop robust and stochastic approaches. 
The approach developed in Zheng et al. (2018) is validated using a 
building temperature regulation problem against CMPC. The system 
comprises eight rooms that should keep the temperature variation at 
zero despite external influences. The DMPC approach can stabilize the 
network, as CMPC, but only qualitative results are provided, and some 
performance degradation is present. The paper also provides theorems 
for the stability and recursive feasibility of the DMPC strategy. On the 
contrary, the efficacy of the partitioning in Atam and Kerrigan (2021) 
is assessed through ad-hoc performance indicators for the specific 
application or zone temperature control. The approach is extensively 
validated for the Dec-MPC control of a 5- and a 20-zones case study, 
also considering results for exhaustive enumeration of the possible 
partitions, and compared with the partitioning approach of Chandan 
and Alleyne (2013).
Abstract networks. The partitioning approach proposed in Wang and 
Koeln (2023) is validated by computing the size of the resulting mini-
mal robust positively invariant sets for different clustering procedures, 
showing how it outperforms other strategies in maximizing the sizes 
of the sets. The case study is a 43 agents flow system (Koeln & Al-
leyne, 2017). However, the impact of the proposed partitioning on the 
performance of the robust Dec-MPC strategy has not been explored in 
the work. The partitioning approach defined in Riccardi et al. (2025c) 
is applied for partitioning a modular network with 64 agents, and a 
random network of hybrid systems with 50 agents. The first case shows 
how varying the granularity 𝛼 allows to retrieve modules at different 
aggregation levels, allowing a hierarchical clustering. In the second 
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case, an ADMM-based DMPC approach (Summers & Lygeros, 2012) is 
deployed for network control. Different simulations are performed: one 
for CMPC, one for the conventional DMPC-ADMM with 50 agents, and 
three for partitionings obtained with varying levels of 𝛼. The simulation 
results show how the optimization-based partitioning DMPC controllers 
have a loss of performance w.r.t. CMPC below 0.3%, while the con-
ventional DMPC-AMM approach with 50 agents has a loss of more 
than 12%. This performance advantage is paid in computation time, 
which is generally higher for partitioned system w.r.t. the conventional 
ADMM formulation. The approaches are also compared in terms of 
computational cost by calculating the core seconds for the simulations, 
i.e., the number of seconds necessary to compute the control action 
in parallel times the number of agents working in parallel. In this 
regard, optimization-based partitioning allows a computational cost in 
line with CMPC, while conventional DMPC-ADMM is at least 2.59 times 
more expensive. Regarding algorithmic partitioning, the simulation 
results show how the loss in performance is of an additional 1% w.r.t. 
the ones obtained with optimization-based partitioning. However, the 
computation times are comparable to the ones of conventional DMPC-
ADMM with 50 agents (1.75 times slower), but having the smallest 
computational cost among all the approaches in terms of core seconds.
Railway networks. The approach in Kersbergen, van den Boom et al. 
(2016) is validated on the model of the Dutch railway network (Kers-
bergen, Rudan et al., 2016) against a CMPC implementation. The 
results show that the distributed implementation is up to 90% faster in 
computing the predictive control action w.r.t. CMPC with only marginal 
performance losses.
Telecommunication systems. The strategy proposed in Masero et al. 
(2020b) is applied to the case of a network of 37 base stations to 
optimize the number of served users and energy consumption. The 
approach is validated against the more traditional best-signal-level 
approach (Fletscher et al., 2019), and decentralized and CMPC. Results 
show significant improvement of all the predictive control strategies 
w.r.t. the traditional approach, where coalitional control is the closest 
to CMPC in terms of performance while reducing the communication 
burden.

Industrial plants. In Chen et al. (2020) the update of the input trajec-
tories in the cooperative DMPC is performed through the Gauss-Jacobi 
distributed optimization method (Bertsekas & Tsitsiklis, 2015). Proofs 
of feasibility and stability of the overall architecture are provided. The 
approach is tested over a walking beam reheating furnace system and 
a six-area power system, and validated against the DMPC formulation 
of Venkat et al. (2005). In the tests, the hierarchical approach of Chen 
et al. (2020) shows the ability to reduce the communication burden, 
avoiding the transmission of unnecessary information while ensuring 
system performance. 

11.3. Applications for community-detection-based methods

Application of the modularity-based partitioning methodology de-
rived in Jogwar and Daoutidis (2017) is performed in Moharir et al. 
(2018) for iterative DMPC of an Amine gas sweetening plant. The 
decomposition of the relatively small plant shows how modularity 
maximization is achieved when two communities are obtained, and 
further partitioning the system into three communities does not im-
prove the modularity. Modularity maximization also accounts for the 
structural information about the plant, ensuring the existence of well-
posed subsystems (i.e. subsystems for which a controller can be defined, 
having at least one input and one output of the original plant). No 
further division of the plant is proposed. The DMPC architecture is 
compared against CMPC, Dec-MPC, and DMPC for a different partition-
ing (sub-optimal in terms of modularity). The modularity-based DMPC 
is the best-performing non-centralized strategy, approaching CMPC 
results while reducing computation times. Given the reduced size of the 
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plant, all possible modularity-based partitions of the systems providing 
well-posed subsystems can be evaluated in this case; however, the 
procedure still relies on expert knowledge, heuristics, and inspection 
to be performed accurately.

The approach of Jogwar and Daoutidis (2017) is deployed in
Pourkargar et al. (2019) for both distributed control and estimation of 
a benzene alkylation process consisting of four continuous stirred-tank 
reactors, and a flash tank separator. Deploying the DMPC architecture 
for the selected partition provides a good approximation of CMPC 
results with a reduced computation burden.

A modularity-based partitioning technique has been used in Guo 
et al. (2019) to deploy a DMPC strategy for perimeter control of 
urban traffic. The approach is structured to divide urban networks into 
regions for which traffic control methods based on the macroscopic 
fundamental diagram (Geroliminis & Daganzo, 2008) can be imple-
mented (An et al., 2018). To this, a two-layer partitioning method is 
proposed in Guo et al. (2019). In the upper layer, congested regions 
are selected using the dynamic modularity metric for urban traffic 
introduced in Guo et al. (2019). These regions are compact, and a 
macroscopic fundamental diagram can be identified for them. How-
ever, the regions do not cover the entirety of the urban network, i.e. 
non-congested regions are present at their interconnection, defining a 
boundary. At the lower layer of the partitioning strategy, the boundary 
region is divided into multiple areas based on spatial proximity using 
the Euclidean distance, so that a boundary region exists between each 
two congested areas. Validation of the partitioning approach is per-
formed by applying the DMPC strategy (Kim et al., 2019) on the case 
study of the road network in downtown Jinan, China. The proposed 
approach is validated against a fixed signal control rate, and the 
boundary-feedback control strategy (Zhu & Li, 2019), demonstrating 
how the proposed strategy is the most effective in reducing the total 
time spent on the road by the drivers, and the total accumulated delay 
of the vehicles.

Modularity optimization has been used in Wang et al. (2022) to 
partition a power network in the presence of photovoltaic inverters and 
electric vehicles, with the objective of using the charging/discharging 
capabilities of the latter to mitigate the curtailment of the former. 
In Wang et al. (2022), a two-step Dec-MPC strategy is developed: in 
the first phase a modified modularity index is used for partitioning, 
and in the second step local MPC actions are computed in parallel. The 
modularity metric is modified to incorporate two ad-hoc performance 
indicators for power networks. The first is voltage sensitivity, which 
describes how voltage magnitude changes in nodes after voltage in-
jection in other nodes. The second is the voltage regulation capacity 
used for reactive power compensation. The modularity is maximized 
through the Louvain algorithm (Girvan & Newman, 2002). The result-
ing approach is qualitatively validated on the IEEE 123 node test feeder, 
showing the viability of the strategy.

The paper (He & Li, 2023) presents a graph-based hierarchical 
Lyapunov-based DMPC (Liu, Chen et al., 2010) framework. The con-
trol framework is based on the selection of communities performed 
through the multiway spectral community detection algorithm (Zhang 
& Newman, 2015). This community detection algorithm approaches the 
modularity maximization problem using spectral methods through a 
heuristic approach that can work with any number of desired communi-
ties. The approach has the same computational complexity of 𝑘-means 
clustering; therefore, it is attractive for its scalability. The method parti-
tions subsystems into a relative leader-follower hierarchy by integrating 
community detection algorithms. The work is posed as an extension 
of Chen et al. (2020) to nonlinear systems. However, no formal guar-
antees are given, and the use of the interpretive structural modeling, 
as well as the communication strategy, are not entirely clear, contrary 
to its reference strategy. The proposed architecture minimizes all-to-
all communication, requiring only a single inter-layer exchange per 
sample, reducing the computational burden. The approach is validated 
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over a reactor-separator integrated system developed in Pourkargar 
et al. (2017).

Modularity-based algorithmic partitioning using iterative bisection
(Newman, 2006) is also at the basis of the automatic decomposition 
approach used in the Shell-Yokogawa platform for advanced Control 
and estimation (Tang et al., 2023). In this advanced process control 
technology, partitioning is performed using an equivalent graph repre-
sentation of the network, with the usual definition of nodes as variables 
and arcs as relations. Iterative bisection is performed according to the 
algorithm of Newman (2006), and the resolution parameter (Reichardt 
& Bornholdt, 2006) is used to limit the size of the resulting clusters. 
Two post-processing procedures are used to ensure the connectedness 
of the resulting components, and to re-balance the sets according to 
their sizes. Heuristics are used to define the number of clusters, and 
resolution. The partitioning algorithm is applied to three case studies: 
a crude distillation process for a refinery, a gas-to-liquid process, and a 
hydrocracking process, all plants with hundreds of nodes. The resulting 
partitions are used for the application of DMPC showing how the 
distributed computation of the control action can improve the time 
required for online optimization up to 5 times. However, the impact on 
the control performance of this approach w.r.t. CMPC is not assessed.

11.4. Applications for game-theoretic oriented methods

In this section, we report applications of the coalitional predictive 
control schemes discussed above to case studies that have not been 
presented already, specifically: the control of irrigation canal, freeway 
transportation, vehicle platooning, and cyber–physical systems.

The first known contribution in coalitional predictive control is Fele 
et al. (2014), where the problem of controlling an irrigation canal is 
addressed. The aim of the strategy is to optimize water distribution by 
dynamically adjusting coalitions of control agents to balance control 
performance and communication cost. The framework is hierarchical: 
in the top layer, the partition of the system into coalition is achieved 
through topology optimization, where the optimal topology is selected 
from a predefined set of possible topologies. Decentralized feedback 
gains are associated with each topology, and the solution of an LMI 
problem guides the partition selection. Then, at a lower level, Dec-
MPC is applied. Coalition formation and local optimization work at 
different time scales. The control methodology is validated through 
the SOBEK hydrodynamic simulator (SOBEK, 2000) on a model of the 
Dez irrigation canal (Isapoor et al., 2011), and compared against CMPC 
showing suboptimal but adequate performance, without the need of a 
complete communication topology.

A hierarchical formulation of coalitional predictive control has also 
been applied to nonlinear systems in Chanfreut et al. (2021a). In partic-
ular, this study focuses on freeway traffic control through ramp meter-
ing and variable speed limits (Papageorgiou et al., 2008; Papageorgiou 
& Kotsialos, 2002). The solution proposed in Chanfreut et al. (2021a) 
consists of a two-level structure: a top layer forms the coalitions, and 
at the bottom level, a DMPC strategy is deployed for the resulting 
coalitions, specifically feasible cooperation-based MPC (Venkat et al., 
2008) with Genetic Algorithm solver (GA) (Goldberg, 1989). Moreover, 
the two layers operate at different time scales, with the top one being 
slower, allowing more time to solve the coalition formation problem. 
The study proposes as a potential solution to the coalition formation 
the bargaining procedure based on the Shapley value (Fele et al., 2017; 
Muros et al., 2018), or the PageRank method (Maestre & Ishii, 2017). 
To simplify the problem, only a limited set of possible coalitions is 
considered. The approach is extensively validated against Dec-MPC, 
and feasible cooperation-based MPC on a 15 km freeway segment, 
with multiple ramps, and speed-limiting devices. The results show a 
reduction in communication and coordination costs.

An application of coalitional predictive control to cyber–physical 
systems (Ding et al., 2021; Lee, 2015) with chain architecture is pro-
posed in Maxim and Caruntu (2021). The key feature of this architec-
ture is that the system first operates according to the non-cooperative 



A. Riccardi et al. Annual Reviews in Control 61 (2026) 101046 
DMPC strategy (Scattolini, 2009), and when the feasibility of the 
solution fails, the system will switch to the coalitional predictive con-
trol formulation (Maxim et al., 2018). The switch occurs in cascade, 
triggered by one agent and propagating to its neighbors. Here, coali-
tion formation is purely aggregative. The procedure is applied to a 
four-agents system, showing that when the local feasibility of non-
cooperative DMPC is lost, then the application of coalitional predictive 
control can still provide satisfactory performance.

Vehicle platooning is the application considered in Maxim and 
Caruntu (2022) for the robust coalitional control strategy of Maxim and 
Caruntu (2021). The approach is tested on a four-car platoon detailed 
in Zhu et al. (2020), and string stability analysis (Dunbar & Caveney, 
2012) is performed. The simulation shows how dynamic coalition for-
mation stabilizes the platoon’s operation with reduced communication. 
The work (Maxim et al., 2024) is proposed as an alternative approach 
to Maxim and Caruntu (2021, 2022) for coalitional control of vehicle 
platoons, distinguishing itself by the ability of individual agents to 
aggregate into coalitions autonomously. This objective is achieved by 
periodical evaluation of the string stability index (Dunbar & Caveney, 
2012). The approach is validated on a four identical vehicles platoon 
under three different testing conditions. The results show that an in-
versely proportional relationship exists between performance and string 
stability.

An eight-tank process is used as a case study to perform a com-
parative performance analysis between DMPC and coalitional control 
in Maxim et al. (2023). In the paper, two non-cooperative DMPC 
formulations, one using a state-space model and the other an input–
output model, are used to validate the performance of the coalitional 
control strategy based on a matrix gain feedback controller obtained 
through a gradient-based optimization previously introduced in Maxim 
et al. (2022). The Coal-MPC methodology allows the switch between 
decentralized and distributed communication topologies according to 
performance satisfaction. This switching Coal-MPC method shows re-
sults that are comparable with the non-cooperative DMPC strategy 
while allowing for a reduction in the communication burden.

12. Conclusions and future work

12.1. Contributions

This survey presents the first systematic classification and in-depth 
analysis of partitioning techniques for non-centralized predictive con-
trol. The scope of this work is both to unify the approaches currently 
present in the literature under a single framework, and to lay solid 
methodological foundations for future developments.

These objectives are achieved through the novel contributions of 
this work, which we summarize in the following. First, we intro-
duce a formal reformulation of the partitioning problem in terms of 
mixed-integer programming, showing how, in the context of predictive 
control, the problem requires the solution of a bi-level optimization 
program, where network control performance is the cost functional of 
the partitioning problem. This aspect is at the basis of the complexity 
of network partitioning for control. Developing this framework, we 
introduce the concept of predictive partitioning, which uses predicted 
topology behavior to obtain the optimal network partitioning over the 
prediction horizon. Given the inherent NP-hard nature of these prob-
lems, their optimization-based solution would be prohibitive in real 
time; therefore, developing such a framework using greedy or heuristic 
algorithms or data-driven approaches would be advisable. Moreover, 
we introduce the concept of multi-topological network representations, 
which can serve as a basis for applying partitioning methodologies 
on networks whose topology and dynamical coupling are driven by 
different factors, such as events, time, network dynamics, or stochastic 
phenomena. Additionally, we provide a systematization of the key per-
formance indicators to assess the quality of a partitioning for network 
control. On this basis, we establish an evaluation methodology that 
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allows the direct comparison of different partitioning strategies. Such 
an approach can be the basis of further systematic development in this 
field, providing solid quantitative metrics for performance assessment.

In addition, this survey proposes several other ways to analyze and 
organize the literature in partitioning for predictive control. We start by 
presenting a systematization of network equivalents based on graphs. 
Then we introduce a classification of the partitioning techniques based 
on five main classes: optimization-based, algorithmic, community-
detection-based, game-theoretic-oriented, and heuristic partitioning. 
For each class we discuss its level of optimality, scalability, com-
plexity of computation and implementation, technical requirements, 
and other specific features it might exert. Further we introduce a 
functional sub-classification of the partitioning techniques, introducing 
cross-methodological partitioning objectives. We conclude the survey 
by discussing the known applications of the partitioning techniques 
proposing, when possible, reference systems for further developments 
and comparison.

12.2. State of the field

From the extended assessment of the partitioning techniques for the 
application of non-centralized MPC control, it results that many fun-
damental approaches have now been established. Specifically, abstract 
representations of networks of systems or of optimization problems are 
now a solid foundation to abstract the partitioning problem into the 
domain of graph partitioning. Most techniques use graph representation 
as a starting point, and, in this sense, they mostly differ from the type 
of weighting used, more topology- or system-oriented. What is more 
unconventional is the use of graphs capturing the ‘flow’ of energy 
among the nodes of a graph, where this has to be interpreted as 
sequences of the state variables, measured or predicted. Regarding the 
partitioning methodologies, optimization-based approaches are appre-
ciated for their expressive power in terms of problem formulation, but 
are limited in scalability due to the NP-hard nature of the problem. 
Consequently, most works in partitioning focus on deriving specialized 
algorithms. In this domain, most approaches have focused so far on 
static network topologies, and methods for time-varying graphs or for 
plug-and-play operations are still at the forefront of research. The limi-
tations here are given by the online re-partition of the network, which 
is still prohibitive to be performed on the same time-scale as the control 
action. Regarding this last point, hierarchical approaches that work on 
a slower time scale provide a viable solution. Finally, most works still 
consider partitioning as a distinct feature w.r.t. the control method. 
This happens because partitioning is fundamentally a bi-level problem; 
therefore, fixing a partition allows us to find a practical workaround 
for study and implementation. Consequently, control properties of the 
non-centralized architecture that originate from different topological 
structures are rarely considered. Overall, the field of partitioning can 
be considered mature for static sub-optimal partitioning methods, and 
well-developed for small topological changes in the structure of the 
network. Instead, works for which the topology is subject to fast and 
extended changes, uncertainties, or disturbances are currently missing.

12.3. Future work

Regarding future work in the field of partitioning for non-
centralized predictive control, we believe it should focus on addressing 
the aspects indicated in the next paragraphs, to reach a level of so-
phistication for the resulting strategies such that they can adapt online 
to topological changes while ensuring the stability of the network, the 
feasibility of the control actions, robustness with respect to unexpected 
events, and minimal losses in terms of global optimality.
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Table A.9
Analytical classification table.
 Work Year Control method Partitioning method Application  
 Ocampo-Martinez et al. (2011) 2011 H-Dec-MPC Graph-partitioning-based ordering 

algorithm (GPB)
Barcelona DWN  

 Ocampo-Martinez et al. (2012) 2012 H-Dec-MPC Nested epsilon decomposition Barcelona DWN  
 Fele et al. (2014) 2014 H-Coal-MPC Coalition formation based on topology 

optimization from a predefined set
Irrigation canal networks  

 Núñez et al. (2015) 2015 Dec-, D-, and H- MPC MI optimization partitioning 16 tanks water system  
 Kamelian and Salahshoor 
(2015)

2015 Dec-NLin-MPC Algorithmic partitioning Two-reactor (CSTR) chain followed by a 
flash separator with recycle

 

 Xie et al. (2016) 2016 DMPC Genetic algorithm minimization of 
input–output coupling between 
subsystems

Chemical plant: Tennessee Eastman 
problem. Five operation units: a reactor, 
a condenser, a compressor, a separator, 
and a stripper.

 

 Kersbergen, van den Boom 
et al. (2016)

2016 DMPC MIQP optimization for constraints 
decomposition

Dutch railway network  

 Pourkargar et al. (2017) 2017 CMPC, iterative and 
sequential DMPC

Community detection through 
modularity maximization

Reactor-separator process  

 Fele et al. (2017) 2017 Coal-MPC Game theoretic coalition formation 
based on Shapley value

Smart grids  

 Maestre and Ishii (2017) 2017 Coal-MPC Coalition formation based on an 
algorithm to handle aid requests sorted 
using distributed PageRank

16 tanks water system  

 Fele et al. (2018) 2018 Coal-MPC Coalition formation based on bargaining 
procedure and TU-games

Wide-area control of power grids  

 Zheng et al. (2018) 2018 Dual mode DMPC Algorithmic partitioning based on 
coupling degree

Building thermal management: eight 
rooms

 

 Tang, Pourkargar et al. (2018) 2018 DMPC (noncooperative and 
iterative)

Relative Time-Averaged Gain Array 
(RTAGA)-based algorithmic modularity 
maximization over weighted IO bipartite 
graph using fast unfold

Reactor-separator process: 2CSTRs  

 Tang, Allman et al. (2018) 2018 DMPC-ADMM for nonlinear 
systems

Community-based decomposition of the 
optimization problem based on bipartite 
and unipartite representations, and fast 
unfold algorithm

Reactor-separator process: 2CSTRs  

 Rocha et al. (2018) 2018 Linearized cooperative and 
non-cooperative DMPC for 
nonlinear systems

Algorithmic partitioning based on 
variables matching and controllability 
check

Reactor-separator process: 2CSTRs  

 Jain et al. (2018) 2018 Dec-MPC Heuristic partitioning based on ad-hoc 
performance index (modal participation 
matrix)

Northeast Power Coordinating Council 
nonlinear power system model

 

 Moharir et al. (2018) 2018 DMPC (iterative) Modularity-based partitioning (iterative 
division)

Amine gas sweetening plant  

 Muros et al. (2018) 2018 Coal-MPC Coalition formation based on estimation 
of Shapley value and randomized 
methods

Barcelona DWN  

 Zhang et al. (2019) 2019 Enhancing DMPC Data-driven partitioning using 𝑘-Shape Shanghai WDN  
 Ye et al. (2019) 2019 HMPC Heuristic partitioning 

(optimization-based)
Modified IEEE One Area RTS-96 network 
with wind turbines

 

 Liu et al. (2019) 2019 HMPC Heuristic partitioning (algorithmic based 
on dominant and connecting clusters)

Four vehicles platoon  

 Pourkargar et al. (2019) 2019 DMPC Modularity-based partitioning (iterative 
division)

Benzene alkylation process: four 
continuous stirred-tank reactors, and a 
flash tank separator

 

 Barreiro-Gomez et al. (2019) 2019 DMPC based on 
density-dependent 
population games

Multiobjective optimization, computed 
through distributed algorithm for graph 
partitioning

Barcelona DWN  

 Guo et al. (2019) 2019 DMPC for perimeter control Modularity-based partitioning based on 
dynamic traffic estimation

Road network in downtown Jinan, China 

 Chen et al. (2020) 2020 Cooperative DMPC, over a 
sequential hierarchical 
down-stream of solutions

Hierarchical interpretive structural 
modeling (ISM)

Walking beam reheating furnace system, 
six-area power system

 

 Wei et al. (2020) 2020 DMPC (Cooperative) Algorithmic partitioning based on 
threshold given by coupling sensitivity 
analysis

Four-tanks water systems  

 (continued on next page)
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Table A.9 (continued).
 Siniscalchi-Minna et al. (2020) 2020 H-NCen-MPC MIP optimization using ad hoc indicator 

(wake effect)
42 turbines farm (NREL-5 MW)  

 Lin et al. (2020) 2020 HMPC Frequency-based fuzzy 𝑐-means 
algorithmic partitioning

20 turbines farm (NREL-5 MW)  

 Masero et al. (2020b) 2020 Coal-MPC Hierarchical time-varying Next-generation cellular networks with 
37 base stations

 

 Baldivieso Monasterios and 
Trodden (2021)

2021 Coal-MPC Coalition formation based on consensus 
optimization and potential games

Mass-spring-damper planar chain  

 Chanfreut et al. (2021a) 2021 H-Coal-MPC Coalition formation based on bargaining 
procedure and TU-games, or PageRank 
method

Freeway transportation network, 
METANET model

 

 Masero, Maestre et al. (2021) 2021 H-Coal-MPC Coalition formation based TU-games, 
and mixed-integer selection of the 
coalitions with predicted topologies

Eight tanks water system  

 Maxim and Caruntu (2021) 2021 Coal-MPC and DMPC Coalition formation based on 
cooperative game

Theoretical four agents chain system  

 Masero, Frejo et al. (2021) 2021 H-Coal-MPC Loop-pair clustering Parabolic-trough solar collector fields 
with 100 loops

 

 Segovia et al. (2021) 2021 DMPC based on optimality 
condition decomposition 
(OCD)

Modularity-based partitioning of the 
optimization problem

Quadruple-tank benchmark; Barcelona 
DWN

 

 Atam and Kerrigan (2021) 2021 Dec-MPC MI optimization, robust and stochastic 5 and 20 zones thermal buildings  
 Ananduta and 
Ocampo-Martinez (2021)

2021 Dec-MPC for economic 
dispatch

Heuristic partitioning based on 
communication protocol (algorithmic)

PG&E 69-bus distribution network  

 Chanfreut, Maestre, 
Ferramosca et al. (2022)

2022 Coal-MPC and Dec-MPC Coalition formation based on 
cooperative game and invariant sets

12 trucks system  

 Maxim and Caruntu (2022) 2022 Coal-MPC and DMPC Coalition formation based on 
cooperative game

Autonomous vehicle platooning  

 Sánchez-Amores et al. (2022) 2022 Coal-MPC Coalition formation based on private 
and public factors

8 tanks input-coupled water system  

 Masero et al. (2022) 2022 H-NLin-Coal-MPC Market-based coalition formation 
strategy

Parabolic-trough solar collector fields 
with 100 loops

 

 Wang et al. (2022) 2022 Dec-MPC Modularity-based partitioning using 
ad-hoc performance indicators

IEEE 123 node test feeder  

 La Bella et al. (2022) 2022 HMPC 𝑘-way partitioning using METIS on a 
flow graph

IEEE 118-bus  

 Changqing et al. (2022) 2022 HMPC 𝑘-means clustering for wake-effect 
interaction minimization

25 turbines farm (1.5 MW)  

 Chanfreut, Maestre, Hatanaka 
et al. (2022)

2022 Dec-MPC Binary quadratic programming (BQP) Urban traffic network with 8 
intersections

 

 Chanfreut et al. (2023) 2023 DMPC, ADMM- or 
ALADIN-based

𝑘-means clustering Solar parabolic trough plants  

 He and Li (2023) 2023 Lyapunov-based DMPC Hierarchical multiway spectral 
community detection

Reactor-separator process  

 Huanca et al. (2023) 2023 Distributed Switching MPC Sphere packing clustering combined 
with MPC

Quadrotor UAV swarm control  

 Masero, 
Baldivieso-Monasterios et al. 
(2023)

2023 H-Coal-MPC with PnP 
capabilities

Coalition formation based on invariant 
sets and dynamic scaling factors

4 + 1 trucks system  

 Masero, Ruiz-Moreno et al. 
(2023)

2023 H-NLin-Coal-MPC based on 
neural networks

Neural-networks-based market-based 
coalition formation strategy

Parabolic-trough solar collector fields 
with 100 loops

 

 Maxim et al. (2023) 2023 Coal-MPC with switching 
topologies

Coalition formation based on 
cooperative game

8 tanks water system  

 Sánchez-Amores, Chanfreut 
et al. (2023)

2023 Coal-MPC Coalition formation based on private 
and public factors

8 tanks input-coupled water system  

 Sánchez-Amores, 
Martinez-Piazuelo et al. (2023)

2023 H-Coal-MPC Arbitrary partitioning Parabolic-trough solar collector fields 
with 100 loops

 

 Wang et al. (2023) 2023 DMPC Modularity-based partitioning using 
frequency metric, and gap metric

Reactor separator process (2CSTR and a 
flash separator); and air separation 
process

 

 Changqing et al. (2022) 2023 HMPC 𝑘-means clustering (crowd search) using 
a set of key performance indicators

12 turbines farm  

 (continued on next page)
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Table A.9 (continued).
 Wang and Koeln (2023) 2023 Dec-MPC Agglomerative hierarchical clustering 

based on minimal robust positively 
invariant sets

43 agents flow-based network  

 Tang et al. (2023) 2023 DMPC Modularity-based partitioning (iterative 
division)

Crude distillation process for a refinery, 
gas-to-liquid process, and a 
hydrocracking process

 

 Maxim et al. (2024) 2024 Coal-MPC with switching 
topologies

Coalition formation based on string 
stability condition

Autonomous vehicle platooning  

 Arastou et al. (2025) 2025 DMPC Algorithmic (Kernighan–Lin) partitioning 
using computational complexity metric

Richmond water distribution network; 
Barcelona DWN

 

 Jogwar (2019) 2025 DMPC Spectral community detection for 
modularity based on time-varying graph 
representation

Benzene alkylation process: 4CSTR, and 
a flash tank separator

 

 Riccardi et al. (2025c) 2025 DMPC-ADMM for hybrid 
systems

Bi-level partitioning; algorithmic 
selection of system units, and 
algorithmic or optimization-based (BQP) 
partitioning; balancing intra- and 
inter-agent interactions, with granularity 
parameter

Modular network with 64 agents, 
random network of hybrid systems with 
50 agents

 

Time-varying and predictive partitioning. Further practical and theoret-
ical developments can be achieved in the field of time-varying parti-
tioning approaches, especially considering predictive partitioning. Most 
works now focus on static topologies, but aspects such as component 
failures, reconfigurations, or operational mode shifts that can induce a 
change in the interconnections of the network are rarely accounted for. 
In addition, models for topology dynamics are absent in the literature. 
Having such models would be fundamental for the development of 
predictive partitioning techniques, which can proactively reconfigure 
the controllers to counteract topological changes.
Integration of data-driven and learning methods. Conventional partition-
ing approaches consider static and deterministic topologies that are 
known in advance. However, topological structure may, in practice, be 
driven by phenomena that can be hard to model but for which data 
is available, especially for infrastructures such as power transmission 
and traffic networks, which are often subject to recurrent or periodic 
operational modes. Data-driven approaches and learning methods can 
extract latent structure from the data available about the networks and 
predict topological changes. Accordingly, novel non-centralized predic-
tive control architectures can be deployed to leverage such insights and 
improve the overall performance or resilience of the network.
Resilience, robustness, and security-aware partitioning. Non-centralized 
predictive control strategies are based on communication networks 
that can be susceptible to latency, packet loss, or malicious attacks. 
Future work should define partitioning methods that are resilient to 
network malfunction and attacks, maintaining control performance de-
spite disruptions. This includes robust partition definitions that tolerate 
link failures, cyber–physical attacks, and asynchronous information 
updates, as well as partitioning strategies that explicitly incorporate 
security metrics into the design process.
Multi-objective and performance-driven partition criteria. Most partition-
ing approaches still focus on a single objective. However, real applica-
tions may require multi-objective criteria that balance control perfor-
mance, communication overhead, computational load, and robustness. 
Future research should formalize composite metrics that reflect these 
trade-offs. Furthermore, feedback approaches that adapt the partition 
to improve the overall control performance of the network are missing 
in the literature.
Real-time adaptive partitioning. The partitioning problem is known to be 
computationally intensive, and, consequently, most approaches work 
offline or on a different time scale w.r.t. real-time control. A direction to 
explore includes real-time adaptive partitioning strategies that leverage 
domain-specific knowledge or heuristics to quickly adapt the partition 
37 
of the network locally to small network changes, while maintain-
ing high levels of performance or robustness of the network. On a 
slower time scale, global network re-partitioning can then find a new 
configuration to be applied at a later stage.
Theoretical guarantees and control properties. Considering the theoretical 
developments instead, only the framework of coalitional control cur-
rently offers solid guarantees of satisfying the properties of feasibility, 
stability, and robustness when partitioning is involved, with few studies 
addressing these issues in general. Therefore, such properties might 
be established for time-varying partitioning approaches under different 
non-centralized control frameworks.
Standardized evaluation and benchmarking. Currently, standard bench-
marks for partitioning are missing in the literature. Such benchmarks 
can greatly accelerate the development of this field of advanced non-
centralized control because they will allow research to quantify the 
improvements of novel techniques and validate them in concrete sce-
narios. A standard benchmark for partitioning should be a real-world-
oriented system for which a model is available. The use of high-fidelity 
simulators of nonlinear systems would be a great addition to the bench-
mark. A fundamental characteristic is the presence of a centralized MPC 
controller that can serve as a reference approach. Data about control 
performance, computation time, computation cost, and communication 
cost should be made available. Additional standard approaches, such as 
decentralized or distributed MPC, can be helpful in further comparing 
novel approaches. It would be ideal to have such benchmarks for 
the main application fields of control, e.g. power, transportation, and 
chemical networks. The development of dedicated studies for testing 
the approaches on large-scale networks with more than 10000 agents 
would also be beneficial. Finally, the use of time-varying and model-
driven topologies would also improve the studies. If implemented 
correctly, these benchmarks can be tested in the future for several 
partitioning strategies and provide standardized reference approaches.
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Appendix. Analytical classification table

In Table  A.9, we report the references presenting the partitioning 
strategies that have been investigated throughout the survey. They are 
listed in chronological order, which allows us to further understand 
the order of development of the techniques. Additionally, we report 
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the control methodology that has been deployed in the study, essential 
details about the partitioning method developed, and the application 
considered for the validation of the overall architecture.

Data availability

Data reported in the survey is available in the long-term repository 
4TU.ResearchData Riccardi et al. (2025b, 2026).
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