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ARTICLE INFO ABSTRACT

Keywords: The partitioning problem is of central relevance for designing and implementing non-centralized Model
Partitioning Predictive Control (MPC) strategies for large-scale systems. These control approaches include decentralized
Model predictive control MPC, distributed MPC, hierarchical MPC, and coalitional MPC. Partitioning a system for the application of non-

Multi-agent systems centralized MPC consists of finding the best definition of the subsystems, and their allocation into groups for the

gf;:gi:é;jxpc definition of local controllers, to maximize the relevant performance indicators. The present survey proposes a
Hierarchical MPC novel systematization of the partitioning approaches in the literature in five main classes: optimization-based,
Coalitional control algorithmic, community-detection-based, game-theoretic-oriented, and heuristic approaches. A unified graph-
Graph representations theoretical formalism, a mathematical re-formulation of the problem in terms of mixed-integer programming,
Topology the novel concepts of predictive partitioning and multi-topological representations, and a methodological
Network formulation of quality metrics are developed to support the classification and further developments of the
Hybrid systems field. We analyze the different classes of partitioning techniques, and we present an overview of their strengths
Large's?ale systems and limitations, which include a technical discussion about the different approaches. Representative case
gzﬁ:ﬂiiy detection studies are discussed to illustrate the application of partitioning techniques for non-centralized MPC in various
Kemeans sectors, including power systems, water networks, wind farms, chemical processes, transportation systems,
Problem decomposition communication networks, industrial automation, smart buildings, and cyber—physical systems. An outlook of
Mixed-integer programming future challenges completes the survey.
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1. Introduction
1.1. Motivation

Modern systems are increasingly characterized by architectural
scales and implementation complexities that challenge the implemen-
tation of centralized control strategies (Kordestani et al., 2021; §iljak,
2008). This trend is supported by the advancements and availability
of information transmission networks, as well as by the wide acces-
sibility of computing resources (Kamel et al., 2016). When the scale
of a system grows, it is common and advisable to structure it as
a collection of autonomous interconnected components (subsystems).
These subsystems should coordinate or be coordinated to achieve a
common goal. To this aim, these entities necessitate local computing
power, and communication and negotiation abilities: this is why, when
these features are available, these advanced subsystems are usually

defined as control agents. A schematic representation of a network
of control agents is proposed in Fig. 1. Consequently, modern sys-
tems constituted by multiple agents having scales that exceed specific
(hardware) operational thresholds are commonly referred to as large-
scale multi-agent systems (LS-MASs) (Dorri et al., 2018). Examples of
LS-MASs can be found in infrastructural systems such as power gener-
ation and distribution networks (Javid et al., 2024; Kundur & Malik,
2022; Poullikkas, 2013; Rakhshani et al., 2019); urban and freeway
networks (Siri et al., 2021); railway and subway networks (Louf et al.,
2014); water distribution networks (Bello et al., 2019); oil and gas
distribution networks; large groups of mobile robots such as swarms of
UAVs (Zhou et al., 2020), or of terrestrial and maritime autonomous
vehicles; large plants for chemical processing (Metzger & Polakow,
2011), which might also integrate autonomous energy generation;
large industrial networks (Galloway & Hancke, 2013); and satellite
constellations (Curzi et al., 2020); where this list of applications keeps
growing and evolving with the introduction of new technologies.
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Fig. 1. A network of control agents. Subsystems are indicated by S, local
controllers by K, and control agents by .A. The solid lines represent the
interactions at the physical level, i.e. the dynamical couplings; instead, the
dashed lines represent interactions at the information level.

Conventional control methodologies such as proportional-integral
control and pole placement (Ogata, 2022), loop-shaping and h-infinity
synthesis, Skogestad and Postlethwaite (2001), or feedback lineariza-
tion (Khalil, 2002) are not directly applicable to LS-MASs because of
the presence of a large number of input-output channels and the large
spatial distribution of such networks, which complicate centralized
controller design and parameter tuning. Therefore, deployment of non-
centralized control strategies (Bakule, 2008; Siljak, 1991) is necessary
for LS-MASs, and the level of sophistication of such approaches is
tightly related to the availability of reliable communication channels
and local computing power.

1.2. Non-centralized MPC: Control architectures

One of the most advanced modern control strategies is model pre-
dictive control (MPC) (Rawlings et al., 2017), which integrates the use
of a mathematical model of the system dynamics with optimal control
methodologies to compute predictive control actions that optimize
performance while guaranteeing the stability of the controlled system,
as well as the respect of operational constraints (Machowski, 2002;
Mesbah, 2016), according to the receding horizon paradigm. The MPC
framework has also significantly evolved thanks to its design flexibility,
which allows a relatively easy development of non-centralized predic-
tive control strategies (NCen-MPC) (Christofides et al., 2013; Maestre
& Negenborn, 2014), i.e. of MPC strategies in which the computation
of the control action for the overall system is not performed by a
single central unit, but divided across control agents. The traditional
classification of these strategies (Scattolini, 2009) comprehends decen-
tralized MPC (Dec-MPC), distributed MPC (DMPC), and hierarchical
MPC (HMPC). A conceptual representation of these architectures is
proposed in Fig. 2. More recently, a novel NCen-MPC methodology in-
corporating concepts from game theory has emerged, called coalitional
predictive control (Coal-MPC) (Fele et al., 2017). In this survey, we
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will abbreviate centralized MPC as CMPC, to distinguish it from NCen-
MPC. A list of these abbreviations is reported in Table 1. The single
common characteristic of all NCen-MPC approaches is that they assume
to operate in a network of agents, where, for each individual subsystem,
a local optimization problem is solved. Then, the various techniques
are distinguished according to how they handle communication and
coordination of the local control actions.

When referring to NCen-MPC techniques, the simplest coordination
technique is Dec-MPC, in which there is no communication among
agents, but the effect of neighboring subsystems on local dynamics
is generally assumed to be contained in invariant sets, thus allowing
stable operation of such networks while preserving privacy, security,
and resilience since there is no information sharing. A communication
and coordination protocol is instead at the basis of DMPC approaches,
where the agents in the network usually share their measurements or
predicted evolution of local variables with neighbors, thus allowing
for iterative or non-iterative adjustments of local control actions. In
the context of linear systems, this distributed control approach can
achieve global performance close to CMPC while drastically reducing
computation times, and allowing real-time operation of the networks
where centralized predictive control would not be possible. In HMPC,
the control architecture is structured across multiple vertical layers,
with at least the presence of a global coordinator and a set of local
controllers. These strategies pose as an alternative to DMPC, and can
enhance global coordination, as well as network resilience, introduce
privacy features, or allow for multi-time-scale operation of different
network models at different aggregation layers. Finally, the Coal-MPC
strategy arises as the result of the combination of predictive control
with game theory. In fact, in Coal-MPC, the network is seen as a
collection of agents that participate in a cooperative game with the
objective of maximizing the global collective outcome, which is the
global operation cost of the network.

In conclusion, NCen-MPC strategies allow for the introduction of
complex control features, such as advanced algorithmic coordination
procedures, plug-and-play capabilities, and privacy and security preser-
vation strategies, into LS-MASs. At the same time, NCen-MPC strategies
can ensure stable real-time control of LS-MASs while preserving the
optimality of their operation as much as possible.

1.3. The partitioning problem

The underlying assumption of the above discussion about NCen-
MPC of LS-MASs is that the network is provided as a collection of
agents with full autonomy. While this assumption may seem simple
to satisfy, this is not always true in practice. In fact, the definition
of the agents themselves may be challenging, especially for large and
interconnected networks. Additionally, even if the network is given as a
collection of individual agents, it might be more convenient for network
operation to aggregate them into bigger entities. These two distinct
classes of problems, i.e. the definition of the agents of the network and
the problem of their aggregation, fall both into the category of network
partitioning (Chanfreut et al., 2021b; §iljak, 1991).

Formally speaking, the partitioning problem consists of finding the
optimal allocation of a group of elements into given sets according to
a given metric. If the network N is provided as a collection of agents
Ny, ie N = {A},..., Ay}, and we have a number N of possible
sets for the allocation, whose quality is defined by a cost function A(-),
then the optimal partitioning problem consists in finding the set P (i.e.
the partition) defined as P = {C, ... ,CNC }, where the elements C; are
groups of agents A;, such that the quality measure A(P) is optimized.
On the other hand, if the network W is provided as a monolithic system
that does not show any natural decomposition, the partitioning problem
consists of selecting several subsystems N , for which control agents
can be defined, which allows to interpret the network as a collection of
agents N = {A,,..., A ~, }- Also in this case, the subsystem selection is
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Fig. 2. Main categories of non-centralized control architectures. In decentralized control, there is no information-level interaction among control agents. In
distributed control, the information-level interaction is horizontal, i.e. each control agent can communicate with the others. In hierarchical control, the information-
level interaction among control agents is vertical, i.e. they should, in principle, communicate with the coordinator. Mixed approaches are also possible.

generally guided by a cost function A(-). Both these problems are known
to be NP-hard (Brandes et al., 2006; Karp, 1972; Sandholm et al., 1999).

When the partitioning problem is applied to NCen-MPC, several
further features can be developed and extended for both the parti-
tioning and the MPC. Many questions may arise, such as: What is the
best definition for the individual agents? How can agents be allocated
optimally into sets to maximize the performance of the NCen-MPC
architecture? How can the partitioning strategy handle topological
changes in the network or different operating conditions? These are a
few examples of profound technical challenges that researchers in this
field have encountered in the last decades, finding answers and new
open problems.

Many of the partitioning strategies that will be presented in this
survey are borrowed from other scientific sectors, such as network
and graph theory, machine learning, or computer science in general.
A general overview of clustering methodologies applied to distributed
network control can be found in Chanfreut et al. (2021b), which can
serve as a general reference for these methods, while the current survey
is tailored specifically for NCen-MPC. We also refer to the work (Xu
& Wunsch, 2005) to explore further general clustering methodologies
such as k-means, fuzzy c-means, and hierarchical clustering. Other gen-
eral approaches that have been applied to partitioning for NCen-MPC
are community detection methodologies (Fortunato, 2010; Fortunato &
Hric, 2016), such as modularity maximization and spectral algorithms;
and coalition formation approaches (Apt & Witzel, 2009), which have
led to the development of game-theory-based MPC architectures.

1.4. Survey objectives and contributions

Under these considerations, the present survey has two main over-
arching goals:

1. Unifying in a common framework all the results currently
present in the literature addressing the partitioning problem for
NCen-MPC.

2. Laying foundations for further systematic developments of this
field.

These two objectives are achieved through the following series of
steps: a systematization of fundamental notions for graph representa-
tion of dynamical systems and networks; the introduction of precise
key performance indicators that are comparable across strategies and
application domains, as well as a precise assessment methodology of
the quality of a partition; a categorization of the known partition-
ing strategies for NCen-MPC in terms of methodology, partitioning
objective, and relative control strategy; a discussion of the main par-
titioning methodologies to highlight their strengths and limitations; a
brief technical discussion of each partitioning technique found in the
literature; and a classification of the current application domains of the
partitioning techniques.

Table 1

List of abbreviations.
MPC Model Predictive Control
CMPC Centralized Model Predictive Control
NCen-MPC Non-Centralized Model Predictive Control
Dec-MPC Decentralized Model Predictive Control
DMPC Distributed Model Predictive Control
HMPC Hierarchical Model Predictive Control
Coal-MPC Coalitional Model Predictive Control
NLin-MPC Nonlinear Model Predictive Control
LS-MAS Large-Scale Multi-Agent System
MIMO Multiple-Input Multiple-Output

Further, we extend the analysis and classification of the partitioning
techniques with novel theoretical insights, which are: the introduction
of multi-topological graph representations to model variable topologies,
and their link to hybrid systems; a formal definition of the partitioning
problem for performance optimization in terms of a bi-level mixed-
integer program (MIP); and a re-definition of the problem of time-
varying partitioning, introducing the concept of predictive partitioning
for control.

Given the extension of this survey, and the amount of different
topics explored in detail, we provide an overview of its organization
in Section 2 below, briefly describing the contents and the objectives
of each section.

2. Organization of the survey

In this section, we present the structure of the survey, briefly
describing the content of each section. This will provide the reader with
an organic view of the material presented, and will help to navigate
the content, having a general knowledge of all the topics that will be
discussed throughout the survey.

Graph representations. Most partitioning techniques, both involving
NCen-MPC or other control strategies, are based on abstract repre-
sentations of the underlying system dynamics (Siljak, 1991). This
representation is generally provided in the form of a graph (Diestel,
2017); therefore, it is natural to start the discussion about partitioning
techniques by introducing graph representations in Section 3. In this
section, we classify the graph representations used in partitioning and
presented in Fig. 3. This classification is supported by a technical
discussion of each type of representation in dedicated subsections.

Partitioning for predictive control. Once the abstract representation of
the network is available, the partitioning problem for NCen-MPC can
be formally introduced and discussed in Section 4. In this section, we
discuss the general problem definition and its common characteristics
usually present in the partitioning techniques. In addition, we provide
metrics and an evaluation methodology to assess the quality of a parti-
tion, and we complete the discussion by introducing the novel concept
of predictive partitioning as a component of the MPC formulation.
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Graph Representations

»| Graph associated to a dynamical system

»| Graph of a network of dynamical systems

3> Bipartite graph representations

» Multi-topological graph representations

Fig. 3. Graph representations used in partitioning for NCen-MPC.

Classification of the partitioning techniques. In Section 5, we will provide
a classification of the partitioning methodologies for the application
of NCen-MPC according to three criteria: (1) the general partitioning
class; (2) the subclass defined by the main structure of the method or
by its objective; and (3) the control architecture to which it has been
applied. The classification performed according to the first two criteria
is proposed in Fig. 4, where the first level of the classification tree
defines the main class, and the second level defines the subclass. The
main theoretical characteristics as well as the strengths and limitations
of the five main partitioning classes are discussed in Section 5.1, for
the subclasses in Section 5.2, and for the methodologies in Section 5.3.
Finally, in Section 5.4 we classify the techniques according to the
control methodology for which they have been designed.

Analysis of the individual partitioning techniques. Once the classification
of the partitioning strategies has been presented, and the main charac-
teristics of each class and subclass have been highlighted, we deepen
the technical discussion by providing further details about the methods
in each class in Fig. 4. Therefore, an extensive analysis of the individual
methodologies in the literature can be found in the dedicated sections,
which are: Section 6 for optimization-based partitioning; Section 7 for
algorithmic partitioning; Section 8 for community-detection-based par-
titioning; Section 9 for game-theory-based partitioning; and Section 10
for heuristic partitioning.

Applications. In Section 11, we discuss the main case studies that have
been used in the literature about partitioning for NCen-MPC. These
are divided by application sector, and, when possible, we also provide
reference systems with further details about the systems considered.
In addition, we discuss for each application domain how different
partitioning methodologies have been used in the literature.

Conclusions and future work. The overall discussion of the main topic
of the survey is completed in Section 12 with final considerations
about the state of this research field, and with recommendations for
future work, identifying the current research gaps and potential new
directions to explore.

3. Graph representations

At the basis of almost all partitioning approaches, there is a graph
representation of the system to be decomposed. Accordingly, specific
graph representations can be deployed when defining a partitioning
strategy for applying an NCen-MPC method. These representations
belong to three main categories: (1) graphs equivalent to dynamical sys-
tems; (2) graphs representing networks of dynamical systems; and (3)
graph representations of an optimization problem. In this section, we
first introduce graph theory terminology that will be used throughout
the article. Then, we present the classes of graphs introduced above.
We close the section by conceptually reformulating the graph repre-
sentation of a network of dynamical systems linking multi-topological
graphs and hybrid systems.
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3.1. Fundamentals of graph theory

A graph (Diestel, 2017) is an ordered pair of sets G = (V, £) where
Y = {1,...,n} is the set of n vertices (or nodes), and & C V x V is
the set of the edges (or arcs, links). The edges are associated to the
vertices through an nx n binary adjacency matrix A2Y, where AZ‘E) =1
if and only if an edge ¢; = (i,j) € & exists. Therefore, the topology
of the graph is specified by the adjacency matrix A2¥, and the set of
the edges can also be written as € = {(i,j) | [i,j € VIA [AZCB.) =1]}. A

subgraph of G is a graph S, = (V,, &) representing a part of G. The set
of vertices V, is a subset of V, i.e. ¥V, C V, and the set of the edges is
E,={G. NI, je Vf]/\[A?iiJ. = 1]}, where the topology is still specified
by the relevant entries of A23, For a directed graph ¢, an edge ¢; ;=@
denotes an arrow starting from node i and ending in node ;. A graph G
is weighted if a weighting matrix W24 assigning to each edge a number
is specified in addition to 424, For each vertex i € V we denote by d,
its degree, i.e. the number of edges entering or exiting that vertex. In
directed graphs, we can specify an in-degree (d,.i") and an out-degree
(@), if the edge is respectively ending or starting in the vertex i. For
a vertex i, the neighborhood of i is the set of all vertices connected to it,
and we denoted it by N; = {j € V | [(i,)) V (j,i)] € €}. For a subgraph
S, = (V,, &), the frontier is its set of nodes that are connected to nodes
outside the subgraph, i.e. F, ={i €V, | [(i,/))V(.DI€E jEV\V,}.
These fundamental concepts will be extended throughout the survey for
specific topics when necessary.

3.2. Graph associated to a dynamical system

The most direct and intuitive graph representation of a dynamical
system is the so-called associated graph. According to Siljak (1991),
the earliest formulation of this type of graph representation for linear
systems can be traced back to Lin (1974). We start by presenting
associated graph representations for linear discrete-time systems, where
the same formulation proposed in Siljak (1991) for the continuous-time
version holds. Consider the dynamics:

. {x(k + 1) = Ax(k) + Bu(k)

1
y(k) = Cx(k) ' W

where x € R", u € R, y € R"™ are respectively the state, input,
and output of the system; and A, B, C are matrices of appropriate
dimensions. The graph G = (V, €) associated to (1) is constructed by first
defining one node for each variable, which provides the set of vertices
V={x,... Xy ULy e Uy S Vs Y }, where this set can be considered
as the union of the sets for the individual state, input, and output
variables, i.e. V = V, UV, UV,, |V| = n,+n,+n,. Then, the set of edges £
is built looking at the nonzero entries of matrices A, B, C, and as before,
it can be thought of as the union of three different sets £ = &, U, UE, ..
These sets of edges define the interactions among variables, and are
derived respectively as &, = {(i,j) | i € V,,j € V., B;;, # 0},
Ee = () | 1] € Ve Agy # 0}, £y = () | § € Vi € V,.Cy ) #
0}. This graph G associated with the dynamics (1) is static because
the dynamical system is time-invariant. Moreover, the graph represents
the interactions among the variables in the system. A measure of this
interaction is provided by the weighting matrix that can be constructed
considering the entries of matrices A, B, C:

A B 0
wai=lo o of. 2
c 0 0

A more recent evolution in the associated graph representation
is found in Riccardi et al. (2025c), where the following nonlinear
dynamics is considered:

: {X(k + 1) = f(x(k), u(k))

3
y(k) = h(x(k)) ®
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Partitioning Subclass | Partitioning Methodology |

I l

- General techniques
| Optimization Based }—> - Multi-objective optimization

- Optimization problem decomposition
- Ad-hoc performance indicators
- Robust and stochastic
- Input-coupled dynamics
- Hierarchical for time-varying networks

Structure Based

Goal Oriented

Mixed Approaches

—)‘ Algorithmic

Partitioning Techniques for
Non-Centralized Predictive Control

- For equation graph representation
- For flow graph representation
}—> - Frequency performance indicators
- k-means
- Data-driven
- Hierarchical clustering
- Input-coupled dynamics
- Hierarchical for input-coupled dynamics
- Complexity reduction and controllability

—)‘ Community Detection }—) - Iterative bipartition

- Optimization problem decomposition
- Frequency-based graph

- Time-varying graph

- Hierarchical for time-varying networks

- Applications

—)l Heuristic |

—)‘ Game-Theory Based }_» - Foundational works

- Technical extensions

- Other extensions

- Market-based

- Input-coupled dynamics
- Applications

Fig. 4. Categorization of the partitioning techniques in classes and subclasses. The methodologies in each subclass can be further distinguished between the
approaches based on the structure of the network, and the ones oriented at achieving a given objective, whether it is a control or another functional specification.

The scope in Riccardi et al. (2025c) is to obtain a weighted and time-
varying representation G(k) = (V, £(k)) of the system (3). To this aim,
using the same vertices definition introduced for (1), the following
weighting function is defined:

af i (x(k)u(k
—ff(x(m_) O for ieVv,uV.jeP,
wep=1 0 for iev,jev, . )
h(x(k)) ) .
—— for ieV,jeV,

Accordingly, a time-varying set of edges £(k) is defined as:
ER)=A{(, ) | i,j €V, wg (k) # 0} ()

This time-varying graph can capture the instantaneous interactions
among the system variables at each time step. In the most general case,
a different topological representation exists at each time step. Accord-
ingly, a different choice of graph partition might be the best option
for non-centralized predictive control. However, such an approach is
computationally demanding.

Example 1. We consider the following linear discrete-time system to
show how to construct the graph associated with a dynamical system.
Consider the system:

x(k + 1) = Ax(k) + Bu(k), (6)

with x € X CR'0, u € U C R?, where the matrices A and B are defined
by the entries

a; =05 ag; =0.1 ag, =0.84 a9, =057

ag, =054 ags=091 a,5=098 a;5=096

asg =0.8 ag7=06 a5=031 by, =0.04 )
bgy =0.6  bjg; =063 by, =002 by, =06

b, =011 b 3=019 b3 =0.03,

and zero elsewhere. According to the definition of a graph ¢ asso-
ciated with a dynamical system, we define the set of vertices V =
{uy,...,u3,xq,...,x19}, while the nonzero entries of matrices A, B define

©O

Fig. 5. Graph associated with the dynamical system (7). The vertices are the
system variables and are colored in red if they are inputs and cyan if they
are states. The arrows represent the edges, and their opacity the strength of
interaction, i.e. the weight, defined by the entries of matrices A and B.

the edges in &€ of the graph and their weights in the matrix Wad,
The representation of this graph is given in Fig. 5. This example will
be continued in Section 4.1 to show how to select subsystems for
constructing control agents.
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Randomly generated topology of the network in Fig. 7. The entries w;,; are the ith row and jth column of the weighted adjacency matrix wadi,

Table 2
w5 =0.53 w, ;3 = 0.36 w, 1, = 0.01 wy 33 = 0.60 Wy 06 = 0.41
w40 = 0.36 w35 =0.72 Wiy, =0.01 Wiy 19 = 0.42 w37 =0.17
wig 14 = 0.67 Wyy 3 = 0.55 Wy 34 = 0.37 Wy 4 = 0.66 wys; =0.20
Wy 47 = 0.43 W3y 46 = 0.16 wy 13 = 0.68 Wy 15 =0.34 w33 19 = 0.66
Wiy 46 = 0.23 Wy 36 = 0.44 wyy 35 = 031 Wy 39 = 0.66 Wwy335 = 0.39

Wao1r = 0.13 wse0 = 0.77

Wiy =047 Wezs = 032 1, 5, =024 wg 1o = 0.24 1y 49 = 0.20
Wigas =044 wys3 = 0.67 w7 = 0.46 w705 = 0.42 wig40 = 0.76
Wy 47 = 0.51 Wys 46 = 0.78 Wye 41 = 0.10 W)y 49 = 0.60 Wyg,y = 0.35
Wiy09 = 0.19 Wis =043 Wi 33 = 0.60 W5 =041 Wi 36 = 040
Wagng = 0.19 Wys 39 = 0.49 Waea) = 0.69 Wi ys = 0.40 Wigp =0.29

3.3. Graph representation of a network of systems

A different type of graph representation is considered when the
dynamical system is a network admitting a natural decomposition
into fundamental subsystems interacting through their dynamics. In
this case, the network admits a graph representation ¢ where the
individual subsystems constitute the elements of the set of vertices
YV = {Sl,...,SNS}. The set of edges & is defined by state-to-state
interactions. Accordingly, to each subsystem S; are associated a local
state x5 € R™Ss and input ug, € R™Si . The neighbors of a node of
the network, i.e. of a subsystem S;, is the set J\fs‘, ={S; | (,)) € €}.
The definition of an output vector yg € R™Si can also be included,
but it will be omitted in the following for simplicity. In other words,
for a general nonlinear system of the form (3), there exists a natural
subdivision of the state and input vectors such that every individual
subsystem is described by:

Sp x4 1) = f (x50, (x5, ()5 ey s, (). ®)

This type of representation has been extensively used in partitioning
for non-centralized predictive control, especially in the form of linear
interacting systems, where each subsystem takes the form:

xs,(k+1) = Ag xg (k) + Bs ug, (k) + ws, (k)

S qws = Y As xs (k) : Q)
S;EN;

Each subsystem S, is affected only by its local input, and is coupled to
its neighbors through dynamic interactions defined by matrices A s,
This coupling is seen by subsystem S; as an exogenous signal ws
whose nature is determined by the coordination protocol used in the
control strategy, i.e. it is considered a disturbance in decentralized
control, or it is known or measurable for cooperative strategies. Further
details about this topic are given in Section 3.5 where multi-topological
representations are introduced.

Remark 1. From the discussion above, it is clear that each subsystem
defined by (8) can itself be seen as a graph as described in Section 3.2.
A possible algorithmic approach to link the graph associated with a dy-
namical system and the graph associated with a network of dynamical
systems is proposed in Riccardi et al. (2025c).

Remark 2. In the definition of subsystem (8), we assumed that each S;
is driven only by its local input ug,. There is, however, the mathematical
possibility that dynamics (8) may be driven also by u s, with S; € Ng..
The resulting networks are constituted by input- coupled subsystems
We decided to treat these networks in separate subsections.

Example 2. In this example, we propose two different network
representations of control agents, one having a modular topology, the
other having a random one. According to the discussion above, a
control agent will incorporate subsystem dynamics and all the con-
trol, communication, coordination, and algorithmic requirements for
deploying an NCen-MPC strategy.

A network can be considered modular if it exhibits a high level of
modularity, which can be quantified using the modularity metric, but
also visually because it will present recurring patterns. An example of
such a network with 64 control agents is reported in Fig. 6, where the

e® Gf SH o H
ooo@o@o@
ooo@ooo,o
0000000\0
00000@00
00000000
ooooo@oo
o o o &&=o

Fig. 6. Graph representation of a modular network with 64 agents. The width
of the edges represents the strength of the interaction among the agents. This
network exhibits a repeating modular pattern.

recurring structure of 4 and 16 agents is evident. The topology of this
network is defined as follows: from the thickest to the thinnest lines,
the bidirectional interactions have a strength of w; ;=0.1,0.01,0.001.

The second network has 50 control agents and a randomly gen-
erated topology, which is reported in Table 2, and which shows the
presence of directed arcs. The network representation is proposed in
Fig. 7.

We will use these modular and random networks in Section 4.4 to
show an application of optimization-based and algorithmic partition-
ing approaches and the evaluation methodology for the quality of a
partition.

3.4. Bipartite graph representations

In a bipartite graph (Diestel, 2017), the set of the nodes is divided
into two groups ¥V =V, UV, ¥, NV, =#, and all the edges start in one
group and end in another. This type of graph representation has two
main use cases in partitioning for non-centralized control. In the first
case, a bipartite graph is used to represent the relations between the
variables and the constraints of an optimization problem, e.g. as done
in Tang, Allman et al. (2018). This approach is used to decompose the
optimization problem by minimizing the number of complicating' con-
straints that are removed in the distributed solution of the problem. In

1 Complicating constraints are those that introduce an interdependence into
subproblems, thus affecting (complicating) the separability of the original
problem. In this discussion, complicating constraints are those that involve
variables of different subsystems.
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Fig. 7. Graph representation of a random network with 50 agents. The nodes
are sorted according to their degree, which is also reflected in the strength of
their color. The randomly generated topology is detailed in Table 2.

the second case, a bipartite graph is used to represent the input—output
paths of the network, as done in Tang and Daoutidis (2018) and Wang
et al. (2023). In these approaches, the relationships between output
and input variables are made explicit. Then, among all possible paths
between each pair, the shortest is chosen. Accordingly, partitioning is
used to minimize the interactions between input and output dynamics,
an approach that is conceptually similar to the quantification of input—
output interactions in MIMO systems using an RGA matrix (Skogestad
& Postlethwaite, 2001).

Example 3. In this example, we propose the use of a bipartite graph
representation for a network subject to complicating constraints.> Con-
sider the following optimization problem representing MPC optimiza-
tion at a generic time step k for a network of linear systems, each with
two states and one input, with no dynamical coupling, but subject to
complicating constraints:

min J (X, )
s.vt. x(k + 1) = Ax(k) + Bu(k)
ci(k) : x;(k)+x,(k) <0 . 10)

(k) 1 xp(k)+x3(k) <0
c3(k) o (k) +uy(k) +x4(k)+5<0
cy(k) @ upy(k) + xy(k) + x3(k) <0

where %,7 represent state and input sequences over an optimization
horizon N, and k = 0,..., N. The constraints ¢; introduce interactions
among the subsystems of the network, which can be, e.g. interpreted
as a set of specifications on shared resources. This coupling can be
captured by the bipartite graph in Fig. 8, where the nodes in one set
are the variables, the nodes in the other set are the constraints, and the
arcs represent the participation of variables in constraints. To partition
a network subject to complicating constraints, it is possible to develop
algorithmic procedures to maximize the effect of constraint couplings
among cooperating agents in the same coalition, and to minimize the
coupling between agents in different coalitions. These inter-coalition

2 The reader can refer to Table 5 for examples of bipartite representations
used to capture input-output interactions in MIMO systems.
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Fig. 8. The bipartite graph representation of a set of complicating constraints.
The graph is constituted by two sets of node, one for the optimization
variables, one for the problem constraints. The arcs represents the participation
of a variable in a constraint. The graph is bipartite because it is formed by two
sets of nodes for which arcs only go from one set to another.

constraints can be ignored in solving local problems at first, and they
can then be accounted for in a later step of the network optimization.

3.5. Multi-topological network representations

Consider a network of dynamical systems where the connections
are determined by a variable topology whose nature will be specified
later in this section. The presence of a link introduces a directed rela-
tionship between two subsystems that represents a dynamic coupling
as described in Fig. 9. Concerning the representation of a network of
systems in Section 3.3, here we consider only macro links connecting
subsystems, thus omitting the subscript notation related to the topo-
logical representation of the interactions among variables of different
subsystems. Moreover, we index each subsystem S; with the letter i,
so that the network of subsystems is made by the set of nodes V =
{1,..., Ng}. These choices simplify the presentation of the following
concepts. The existence of a link between the subsystem i and j at a
time step k can be represented by the binary variable ¢;;(k) such that:

1
€ij(k) = {0

The collection of these links determines the topology of the network. In
the context of control systems, a link representing a dynamical coupling
in this network can have three different natures:

if 5; is connected to S; at time step k
otherwise '

1)

+ The existence of the link depends on the input-state configuration
of the network, i.e. the network has an input-state-dependent
topology. This happens when the dynamical coupling is deter-
mined by the regions of the input-state configuration of the
system, such as in PWA dynamics (Bemporad & Morari, 1999;
Heemels et al., 2001).

The link can be activated or deactivated as a part of the control
strategy of the network, i.e. it is a decision variable.

The link activation is driven by an external function, either known
or unknown.

A possible topology can co-exist for each of the above-mentioned
link classes. Consequently, the overall topology of the network will
result from the composition of these superposed topologies, i.e. a
multi-topological network representation, as in Fig. 9.

In the general case, we assume a number of N, distinct topological
levels characterizing the network. We associate a binary variable efj(k)
representing the connection between areas i and j in the topological
level ¢ at time step k. According to the nature of the topology with
which this variable is associated, it can be an input-state-dependent
variable, a decision variable, or a signal. Since all binary variables must
be equal to one for a connection to exist, the state of variable ¢;;(k) is
directly determined by the product:

NE
ek =[] et . (12)
gq=1
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Incorporating binary variables ¢;;(k) in the network description is
straightforward. For this, consider the network of nonlinear systems:

x(k +1) = f(x(k), u(k)), 13

and assume it admits a decomposition in N subsystems according
to the discussion in Section 3.3. Then, their time-varying topological
dynamics is:

xi(k+1) = fi(x;(k), u;(k), 0;(k)) a4
w;;(k) = e;(k)x; (k) VjeEWN, 15)

where x; € R™i, u; € R™ are the state and input vectors of subsystem
i; and the vector w; constituted by the elements w,; incorporates all
topologically defined dynamical couplings of subsystem i with the its
neighborhood V.

3.6. Multi-topological representations and hybrid systems

When applying the concept of multi-topological time-varying repre-
sentations to networks of linear systems, the result is a hybrid network
system (Tabuada, 2009). For the sake of simplicity, and without any
loss of generality, in what follows, we consider the case of three
topological levels of different nature, but the more general case of
N, > 3 topological levels follows similarly. In particular, the network
is described as:

x;(k + 1) = A;x;(k) + Byu; (k) + w;(k) 16)

o)=Y €;()A;x;(k) a7
JEN;

€;(k) = ej;(k)e, (ke () as)

Xj(k)
uj k)

where A; € R, B, € R, A, € R™™i; ¢! is the logical
variable related to the input-state-dependence of a link; 0?2 is the
convex polyhedron for which the link ¢' is activated; €2 is a control
action; and €3 an external signal affecting the topology.

This multi-topological network description admits a reformulation
into Mixed-Logical Dynamical (MLD) form (Bemporad & Morari, 1999),
allowing the direct application of MPC control. To this, assume that
the directed dynamical coupling of the jth system is defined over the

T
polytope .Qla, = {[x]u;] : S;?xj +R;‘uj < Tja}, and we compute the

s.t. eilj(k):1© [ € 2, 19

A . .1
constant M} = maxq, S%x; + Riu; — T?. Then, we introduce auxiliary
variables z!, z2, z3 for each edge of the graph, with i, € V:

Ay el.]j(k)x (k) = z,!j(k) (20)
efj(k)z}j(k) = z,?j(k) (21)
efj(k)zl?j(k) = z;?j(k), (22)

and the set of constraints that ensure the satisfaction of the logical
conditions, and the correct definition of auxiliary variables:

S%x;(k) =T < M7 (1= €};(k) (23)
z;;(k) < M€l (k) 24)
2 (k) = mye ) (k) (25)
zilj(k) < Ayx (k) —my(1 - e}j(k)) (26)
zilj(k) > Ax;(k)— M;(1 - e}j(k)) @7
2[,(k) < M€l (k) (28)
20,0k) 2 mjef (k) (29)
20,0 < 207 (k) = my(1 — € (k) (30)
2000 2 207 (k) = M;(1 = € (k)), (31)
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Fig. 9. General representation of the connections between agents i and j at a
time-step k. The topology describing the dynamical coupling among agents at
a time step k results from multiple topological levels all acting simultaneously
on the network.

for £ = 2,3, allowing the definition of constraints related to the second
and third variables; and M; = -m; = maxg A x; are constants. The
resulting system dynamics is then:

x;(k+1) = A;;x;(k) + Bju;(k) + w;(k) (32)

wi(k) = Y 23 (k). (33)
JEN;

The Egs. (23)-(33) constitute the MLD form of (16)—(19).

Remark 3. The procedure to obtain multi-topological representations
presented in this section is also valid for more complex classes of
systems, other than the linear ones. However, for a general nonlinear
system, obtaining an MLD representation might not be possible, and
more complex approaches to incorporate variable topologies into the
dynamics could be required.

Remark 4. The existence of an input-state-dependent link between two
areas can also be based on the configuration of both areas. In this case,
the condition (19) must include variables of both areas.

4. Partitioning for predictive control

This section introduces the main ideas behind the partitioning prob-
lem for non-centralized predictive control. To this aim, we first define
a specific terminology for the network components, then we introduce
the metrics and the evaluation methodology to assess the quality of
a partition, and finally, we present a formulation of the partitioning
problem for the maximization of the performance of the control archi-
tecture. This section aims to provide the reader with a clear perspective
of what partitioning optimally means, and the consequent effect on the
non-centralized control architecture.

4.1. The general partitioning problem

Consider a network described by the nonlinear dynamics (3), and
denoted by WN. The state, input, and output vectors are respectively
x € R™,u € R", and y € R". The act of partitioning consists in finding
a subdivision of the vectors x,u,y into a number N, of subvectors
x; € R™i,u; € R",and y; € R fori=1,..., N¢, and of the respective
vector fields into f;, h;, which describe the local subsystem dynamics:

C - {X,-(k+ 1) = fi(x;(k), u;(k), w;(k))

s 34
y,-(k) = h,-(xl-(k), w,‘(k)) 34



A. Riccardi et al.

where w;(k) represents the coupling of subsystem i with its neighboring
subsystems j € N;. The partition of the network is thus constituted by
the set of subsystem dynamics:

P=(Cp.....Cy, ). (35)

Depending on the context, we call these groups C; sets or collections
of subsystems, clusters, or coalitions. This general formulation of the
partitioning problem is generally too broad to be considered directly
in defining a partitioning strategy. Instead, this setting has several
simplified reformulations, most notably the ones reported next.

Complete non-overlapping partitioning. In (34), there is no limitation on
the structure of local vectors and dynamics. However, the prevalent set-
ting in partitioning for non-centralized predictive control is to assume
that the partitioning is complete and non-overlapping, and it covers
the entirety of the original dynamics. Using set notation, a complete
non-overlapping partitioning P is such that:
Ne

U C;=P and

i=1

G nC =% Vije(l,.. Nc} with

C; #0Vi.

(36)

A complete non-overlapping partitioning allows the straightforward
definition of local controllers and coordination protocols, making it the
preferred choice in non-centralized control. Overlapping partitionings,
on the other hand, are generally used to achieve performance or
resilience improvements in the network.

Coupling through state dynamics. The coupling term w;(k) in (34) can,
in general, comprehend both state and input interactions with neigh-
bors, i.e. w;k) = [(xsj(k))S/ENsl ;(”5,(1‘))3,-6Ns, ]. However, in most
settings, only state couplings are considered, yielding the vector field
[i(x;(k), (Xs/(k)) S,EN. s,-’”i(k))' This approach is the most intuitive and
represents most real-world scenarios in which a local controller would
be designed to steer local dynamics through the input channel u; with-
out directly interfering with the neighbor dynamics x;. Moreover, it is
often assumed that the output function depends only on the local state,
thus taking the form h;(x;(k)). However, even if this is the most used
setting in the partitioning literature, we acknowledge the presence and
relevance of studies for input-coupled subsystems. We decided to treat
these approaches separately in Sections 6.6, 7.7, 7.8, and 9.6. In fact,
studies for input-coupled subsystems generally consider a small number
of subsystems, or neglect the existence of delays in the input coupling
that would introduce dynamics in the interaction among subsystems.

Fundamental subsystems. A common assumption in partitioning for
non-centralized predictive control is that the network A in (3) admits
a natural decomposition into a number N of atomic or fundamental
subsystems that cannot be further divided for the definition of local
controllers. Moreover, fundamental subsystems are coupled exclusively
by state dynamics interactions, as formalized in Riccardi et al. (2025c).
Therefore, the network is given as a collection of subsystems N =
{S1,.... Sy} In this network setting, partitioning consists in grouping
the subsystems S; into a number No < Ny of bigger units C;, i.e.
using the notation (35) in defining the partition P = {C,,...,C Ne }. Two
extreme partitions are possible, one where each group is an individual
subsystem, i.e. P = N, N. = Ng, and one that comprises the entire
network, i.e. P = {C,}, No = 1.

Remark 5. The selection of fundamental subsystems does not require
them to satisfy any specific control property. This choice is made
because it allows us to define the fundamental subsystems for any
network of systems that admits an equivalent graph representation.
However, fundamental subsystems may be required to satisfy properties
of interest, and for this to occur, it is sufficient to add the desired test for
the property any time a new node is added to the subsystem. Moreover,
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Fig. 10. A possible selection of the subsystems for the network in Example
1. The green areas indicate the subsystems and comprehend several input and
state variables. The arrows that go from one subsystem to the other can be
interpreted as the dynamical coupling among control agents.

additional procedures that guarantee the termination of the algorithms
might be required. For example, in a network of linear systems, the
selection might require the fundamental subsystems to be controllable,
thus obtaining a collection of controllable fundamental subsystems, if
possible.

Example 4. We continue Example 1 by showing a possible selection
of the fundamental subsystems for that network. To this aim, we apply
the algorithm for selecting fundamental subsystems defined in Riccardi
et al. (2025c), which iterates over network nodes allocating them to
subsystems according to coupling strengths. The resulting definition
of the subsystems is given in Fig. 10. This is one definition of the
subsystems, and others are possible.

Top-down and bottom-up approaches. From the discussion above, it is
clear that the problem of partitioning a network can be approached
from two different directions: a top-down and a bottom-up approach.
In the top-down approach, a network AN is considered a monolithic
system (generally without any natural decomposition) that must be
divided into smaller units. This approach is generally considered when
complex nonlinear plants have to be decomposed for non-centralized
control. In the bottom-up approach, instead, the problem is solved by
aggregating fundamental subsystems that are given a priori, i.e. the
network is assumed as N = {S, ..., Sy » }. Both top-down and bottom-
up strategies are generally valid approaches, and the preferred direction
is usually dictated by the application considered.

Remark 6. When referring to a group of subsystems, we can also call
it a set, cluster, or coalition. All these terms are necessarily used inter-
changeably throughout the survey because they all represent the same
concept of a group of objects. There are subtle distinctions between
the terms that will be remarked on in the specific sections. In general,
the term cluster is used in the machine learning literature to indicate
a group of objects that are strongly connected (Xu & Wunsch, 2005),
while coalition is a term used in cooperative game theory to denote a
group of players (Apt & Witzel, 2009).
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4.2. Metrics and evaluation methodology

The fundamental question that each partitioning strategy in this
survey tries to answer is: What is the best partition for non-centralized
predictive control? This question only admits a posterior quantitative
answer independently from the control strategy considered. A formal
motivation for this fact is given in Section 4.3; instead, in this sec-
tion, we focus on the metrics that allow us to assess the quality of
a partition, and on the methodologies to do it. First of all, the best
partition for a selected evaluation criterion must be defined for a spe-
cific non-centralized predictive control, i.e. Dec-MPC, DMPC, HMPC,
or Coal-MPC, and w.r.t. CMPC. Throughout the section, we assume
that the partition associated with CMPC is denoted by PMFC (this
is the entire network), the one under evaluation by PNMPC | je. the
partitioning for the application of a desired NCen-MPC strategy, and
one generic partition by P8". In this section, we first present the main
metrics used to assess the quality of a partition, and then we briefly
discuss the evaluation methodologies.

Metrics. In the literature, four main key performance indicators are
used to assess the quality of a partition: (1) the cumulative stage
cost J5%8¢; (2) the computation time Jtime. (3) the computational
cost J™P-; and (4) the communication cost J°™™- To validate the
partition, it is necessary to simulate the system using both CMPC
and NCen-MPC using the desired partitioning strategy. Then, the key
performance indicators are computed as follows.

Cumulative stage cost. Assume that the stage cost for CMPC at the time
step k is defined by the cost function J(x(k), u(k—1)). Moreover, assume
a simulation horizon of N, time steps. At time step k, the optimal
control problem for CMPC is solved over a horizon N, yielding a
solution control sequence zZ*CMPC(k), of which the first element uEMPC(k)
is applied to the system, providing the next step value for the state
xcmpc(k). Consequently, the cumulative stage cost for CMPC is
Nsim

Jstage(pCMPC) = Z J (xempe (k) tgpgpe (k = 1)-
k=1

37)

The cumulative stage cost for the non-centralized strategy and a se-
lected partitioning PNMPC is obtained similarly. However, in this case,
a number N. = |PNMPC| of local problems is solved in parallel,
providing local solutions Unpe,i (K for i = 1,..., Ne. Then, a global
vector uy, (k) is obtained by grouping local solutions, and is applied
to the plant to compute the global state transition xyypc(k). This
procedure allows the computation of the cumulative stage cost for
NMPG, i.e. J5tage(PNMPC) a5 done in (37) but using the non-centralized
vectors. In general, for cost minimization it holds that Jst8e(pCMPCy <
Jstage(pNMPCy There are exceptions if the dynamics is nonlinear and the
solution is obtained for a linearized version around an operating point,
or if the network is subject to external uncertain signals. However,
the centralized solution of the optimization problem is the reference to
assess the optimality of the selected partition (and of the partitioning
methodology) for a given non-centralized strategy.

An approach to compare the cumulative stage cost of different
architectures consists in normalizing these results such that, for a given
partition P& under evaluation, the normalized cumulative stage cost
is given by:

JstagE(Pgen)

stage Hgeny _
J P = Jstage(PCMPC)

norm.

(38)

It holds that JSu8¢ (PCMPC) — 1 and in general Joos (P8 > 1, so
various partitions can be evaluated easily according to a metric that is

valid across all possible strategies and applications.

Computation time. This metric is straightforward to obtain. It is suffi-
cient to measure the execution time in seconds necessary to execute
the simulation over a horizon N;;,. For CMPC, one CPU core is used to
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execute this task,®> and the time in seconds to perform the simulation
constitutes the computation time cost Jtime(PCMPCy Eor NMPC, local
optimization problems are solved in parallel at each time step, which
requires N CPUs* The time required for this parallel execution consti-
tutes the computation time cost for NMPC, i.e. Jtime(pNMPC)| Eor any
well-designed non-centralized strategy and good choice of partition,
it holds that Jjtime(pNMPCy . jtime pCMPCy The gain in computation
time is often one of the main reasons for deploying a non-centralized
strategy. In fact, centralized computations may be prohibitive in several
settings. For a partition 78" under evaluation, the normalized version
of the computation time is:

Jtime (pEen) = Jtime(pgen) . (39)
norm. Jtime(pCMPC)
where Jiime (pCMPCy = | and for a well-designed non-centralized

Jtime (pgen) <1.

strategy and partition J ¢

Computation cost. We discussed how, to assess the computation time in
non-centralized control, it is necessary to deploy the strategy in paral-
lel, or alternatively, perform a simulation replicating such a situation.
The computation cost is a metric that quantifies the cost associated
with the usage of CPUs for these parallel operations, and was intro-
duced in Riccardi et al. (2024c, 2025c¢) for the evaluation of different
partitions of the same network in DMPC. The best way to do so is to
look at the CPU usage time, which translates immediately into power
and monetary requirements once a specific technology is selected.
Consequently, the unit measure of the computation cost is [core -
seconds], i.e. how much CPU time in parallel is required to perform
the distributed computation. For a generic predictive control strategy,
being it centralized or non-centralized, the computation cost is thus
assessed by computing for the simulation horizon Ny, the sum over
the number of CPUs of the active CPUs usage time for that time step,
which for a CPU i we denote by 7;(k). If we assume that, in the non-
centralized control strategy considered, one CPU is available for each
agent in the partition PNMPC, then it holds that Ngpy = N, and the
computation cost can be written as:

Nsim Nc¢

Jcomp.(pNMPC) - Z Z 7; (k).

k=1 i=1

(40)

It is possible to simplify this expression further if we assume that at
each time step N, all local controllers will wait and idle for the
slowest controller to obtain its result without performing any opera-
tion. Then, the computation cost can be written as J<omp-(PNMPCy —
Z,’(V:‘l‘“ Nezslowest (k). For both definitions of J<°™P-, the normalized ver-
sion of the metric for a generic partition P8" is given by:

Jcomp. (pgen)

comp. ~pygeny _
Tnomm (P = Sy 1)

where Joome (PPMPC) = 1. In general Joome (P8°") > 1, but very efficient

strategies can also achieve Juomr (P8") < 1.

Remark 7. In literature, to the authors’ best knowledge, the only a
priori assessment of the computational cost associated with a specific
non-centralized predictive control strategy has been performed in Aras-
tou et al. (2025). However, in that work, the determination is rather

3 In some cases, parallel computing can also be used for CMPC. An example
is when the network is constituted by hybrid systems. In this case, the MPC
problem requires mixed-integer optimization, for which parallel execution
algorithms are available. In such cases, instead of using one CPU for CMPC, it
is possible to use any available number, given that each set of subsystems in
the non-centralized strategy has such CPUs available at each time step.

4 The analysis of the computation time can be easily extended to the
case in which the number of CPUs is time-varying, i.e. for N.(k). This case
occurs either when there is a time-varying partitioning P(k), or when the
computational resources can change over time. Such extension also applies
to other performance indicators.
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qualitative since it is performed through a Big-O analysis of the com-
putational complexity of the algorithm for non-centralized predictive
control. In practice, such an approach cannot always establish which is
better among algorithms with the same Big-O complexity, as in iterative
schemes.

Communication cost. The communication cost assesses the impact of
information transmission in different non-centralized control architec-
tures. In its original formulation, see e.g. Barreiro-Gomez et al. (2019),
Fele et al. (2017), Maestre and Ishii (2017) and Masero et al. (2020a)
among others, the communication cost is a function of the information
topology defining how coalitions in a network share information to
achieve a coordinated control action. Therefore, to the non-centralized
control architecture an information graph GNYPC = (WNMPC gNWFC) i
assigned, where the set of the nodes is constituted by the coalitions
in the network, and the set of the edges by the active communication
links. Then, to each link ¢;; € gglf\gpc a cost is assigned, i.e. v(e;;), and
the communication cost is therefore computed as:

>

 egNMPC
€€t

Jcomm(pNMPC) — V(eij)' (42)

This formulation of the communication cost has been used consistently
in deriving coalitional control strategies, leading to partitions of the
network minimizing the information sharing. The communication cost
of CMPC is obtained by considering the cost associated with each possi-
ble active link in the network. The value of the cost of communication
can be quantified using distance-based criteria, or the operational costs
of the lines. Additionally, we stress that this approach in defining the
communication cost can be used to obtain a partition, i.e. it is available
a priori since it is a pure topological metric, whereas the other costs
introduced before are only available a posteriori after the simulation.

While this formulation of the communication cost is direct and
straightforward, it can be insufficient to establish the cost associated
with iterative non-centralized control strategies. In fact, if the coordi-
nation protocol relies on the iterative sharing of information among
agents to achieve an agreement about the control action to deploy, then
a static topological metric can only be used to quantify the maximum
amount of information shared once the maximum number of iterations
of the coordination protocol is given. Posterior measurement of the true
amount of information shared is, therefore, a more precise way to assess
communication cost in this case. For example, assume that for an NMPC
iterative strategy with information topology GNYIPC = (VNMPC, gNMPC),
at each time step k several iterations Ny .(k), and at every iteration
a sequence of state-input predictions of length N, is shared among
the controllers. Then, for a simulation horizon N, and assuming that
each state and input variables vectors have an information transmission
cost v(x;), v(u;), i € vil;‘ff‘ff’c, then the communication cost can be defined
as:

Nisim
JOmmPNMEC) = B Niewr (k) Y, D Nygg(vx)) + v(w),
k=1

= JeVNMIPC jEN,
info

(43)

where the cost v associated with the information transmission can
then be directly translated into network operation or economic require-
ments. The CMPC strategy does not need any iteration; only variables
at the current time step are shared. Therefore, its communication cost
is:

JeommpAMPC) = N DT ) + vy, (44)

ieyCMPC
info

For both formulations of the communication cost, a normalization
assessment is possible. Therefore, for a given partition P8" associated
with a non-centralized MPC strategy, its normalized version is:
Jcomm(pgen)

comm geny _
I, P = J comm (pCMPC)’

norm

(45)

where Jeomm(pCMPC) - 1, for decentralized MPC or non-iterative
strategies usually holds JSom™(P&") < 1, while for iterative strategies
Jeommpgen) > .
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Evaluation methodology. From the above discussion about metrics, it is
clear that assessing the quality of a partition is mainly a task performed
after a simulation or experiment is completed. This fundamental fact,
i.e. the impossibility of establishing the best partitioning prior to the
deployment of the strategy, is one of the main limiting factors in devel-
oping partitioning strategies for non-centralized predictive control. In
fact, once a partition is selected, computationally intensive simulations
involving often large (in number or size) optimization problems have
to be performed. Once the metrics of interest are selected for a specific
problem and control strategy, the only effective way to determine the
best partition is by complete enumeration, see e.g. Atam and Kerrigan
(2021). However, enumerating and testing all possible partitioning
quickly becomes intractable once the number of subsystems grows
by more than a few units, due to a combinatorial explosion in the
number of possible partitions. Therefore, most partitioning strategies
have either developed paradigms for the topological a priori evaluation
of partitions, or approached the problem by maximizing the immedi-
ate gain of a performance criterion by iterative exchange of agents.
A definitive statement about what is the best approach cannot be
formulated yet with the current literature, which leaves open many
directions for future research. In practice, there might not even be a
single partition minimizing simultaneously all four indicators Jstge,
Jtime - yeomp. - and jeomm. Therefore, the desired partition should be
selected according to control requirements among the most promising
ones.

Example 5. We show how to apply the evaluation methodology
proposed in this section by comparing some of the partitioning tech-
niques and the resulting control architectures that we found in the
literature. The studies we consider report at least the cost associated
with running a CMPC implementation of the controller, the one related
to the NCen-MPC controller, and the respective computation times.

The results of the comparison are reported in Table 3. We con-
sidered techniques across all the partitioning classes and for different
applications. The aim of this comparison is to show how different
partitioning approaches affect the performance of the control strategy
and the respective computation times. The values we report are in
percentages. In some works, data is available for CMPC, a standard
NCen-MPC technique, such as Dec-MPC or traditional DMPC, and for
the NCen-MPC approach based on the partitioning method proposed.
Regarding the metrics, for J,Slf)"f,f, a value smaller than 1 means that
the NCen-MPC based on partitioning is performing better than the
reference controller, and worse otherwise. The same considerations
applies to Jﬁg?:; We stress the fact that this comparison is for the sole
purpose of showing what can be the effect of partitioning in NCen-MPC,
and cannot be used directly as a guide to compare techniques, because
they have been applied to different systems, control architectures, and
with different tunings of the parameters. A fair assessment of the
control performance that can be obtained with different partitioning
techniques requires a dedicated study. Instead, what is interesting
to notice is that NCen-MPC controllers based on partitioning often
outperform more traditional DMPC or Dec-MPC approaches, and can
sometimes outperform CMPC when nonlinear systems are considered.

Unfortunately, since a methodological assessment of the quality of
the partition was not present in the literature, information about the
computation and the communication cost of almost all the methods is
not available. We suggest reporting such metrics for comparisons in
future works.

4.3. Optimal partition for performance maximization

An agent A, in the network is a structure with autonomy constituted
by a group of subsystems C;, a local controller K;, and further devices
allowing communication with other agents, or other digital features,
such as the execution of algorithmic procedures.



A. Riccardi et al.

Table 3
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Comparison of different NCen-MPC control simulations for different partitioning techniques. The tables report the reference control technique w.r.t. which the

stage

metrics Joor (control performance), Jim¢ (computation time) are computed. A value smaller than 1 means that the NCen-MPC based on partitioning is performing

norm

better than the reference controller, and worse otherwise.

Reference study Control and partitioning Application Reference Joose Jtime
technique controller
Riccardi et al. (2025c) DMPC-ADMM: based on partition Random network of hybrid CMPC 1.0020 0.1660
index (MIQP) dynamical systems
DMPC 0.8925 4.3971
Riccardi et al. (2025c) DMPC-ADMM: based on partition Random network of hybrid CMPC 1.0109 0.1346
index (Algorithm) dynamical systems
DMPC 0.9001 3.5659
Riccardi et al. (2024c) DMPC-ADMM: based on partition The EEA-ENB CMPC 1.0441 0.0364
index (Genetic Algorithm)
DMPC 1.0413 0.6548
Masero et al. (2022) Coalition control: market-based ACUREX plant 100 loops CMPC 0.9320 0.1540
Dec-MPC 0.9939 11.315
Masero, Frejo et al. Coalition control: pairwise ACUREX plant 100 loops CMPC 0.9340 0.0606
(2021) clustering
Dec-MPC 0.9960 4.4565
Ocampo-Martinez Decentralized MPC: Barcelona drinking water CMPC 1.1159 0.4698
et al. (2011) graph-partitioning-based ordering transport network
algorithm
Ocampo-Martinez Decentralized MPC: nested Barcelona drinking water CMPC 1.0040 0.7030
et al. (2012) e-decomposition transport network
He and Li (2023) DMPC: multiway spectral Reactor-separator process CMPC 1.0139 0.0486
community detection algorithm
DMPC 0.9677 0.9559
Chanfreut et al. Coalitional MPC: hierarchical Freeway traffic control CMPC 1.0170 0.3860

(2021a) formulation

The problem of partitioning consists of finding an allocation of the
agents of the network into groups such that a set of specifications is
satisfied. Different criteria, including geographical distribution, com-
munication and coordination effort, operational constraints, security
and privacy guarantees, and design choices, can guide the selection
of these groups. Often, these criteria are application-dependent and,
in almost all cases, are related to the control strategy to deploy.
Consequently, there is no common rationale underlying all the differ-
ent partitioning approaches. However, when the partitioning problem
is considered in the context of non-centralized predictive control, it
assumes a more precise connotation, and an optimal version can be
formulated.

Assume to have a network with N, agents, i.e. a collection N' =
{A,....An }. A set C; of N, agents is defined as C; = {A;,....,
A,-YNC" }. We introduce a matrix of binary variables 6 € My (0,1)°
st. §; = 1 & A; € (. In general, we can assume § to be time-
dependent, i.e. 5(k), but time-dependence is omitted in the following
for simplicity, and only used when essentially required. For a given
choice 5, we denote a partition of network A" into Ny ;, sets of agents
by P() = {Cy, ... ,CN(?(é }. Now we consider the control performance of
the network that is measured through a cost function J(x, u, §), where
x is the state of the network, u is the applied control action, and &
is the selected partitioning, a set of binary decision variables. Once
the non-centralized predictive control strategy is selected, the cost J
is minimized iteratively at each time step over a selected horizon N.
For this, we use the vector notation %, = [xT(1|k),...,xT(N|K)]T, &, =
W O[K), ..., uT(N = 1[k)]T, &, = [6T(0|k), ...,6T(N — 1|k)]" to define state
and input sequences over the horizon N. The global control problem is
then defined as:

N-1
_min TGl 6) = Y J(xCilk), u(i = 1K), (G — 1]k) (46)
KXol 0k i1

+ Je(x(N|k),u(N — 1]|k),6(N — 1|k))

5 The class of square binary matrices of dimension N ,.
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s.t. x(k+1) = f(x(k),u(k))
x(0]k) = x(k)
g(%yr i1y, 6) <0,

where J; is the stage cost, J; the terminal cost, and g a set of inequal-
ity constraints. This formulation of the optimal partitioning problem
assumes that it is possible to simultaneously select the variables in
matrix 6, and perform the steps to deploy the non-centralized control
strategy. Conceptually, this contemporaneous optimization is not al-
ways possible for non-centralized control, especially if communication
and coordination protocols are involved, i.e. in all cases except for
purely decentralized MPC. This limitation can be overcome with a
nested reformulation of (46). Specifically, the outer level is an integer
optimization problem for the selection of §, and the inner level is
associated with the solution of the non-centralized control problem:
min  J*(8y)

O

st gou(Br) <0

N-1
* = min ] j—1 z
J@Eo= min ; To(x(ilk), uti = 11k)l5, @
+Jf(x(N k), u(N = 1]k)|;,
s.t. x(k + 1) = f(x(k), u(k))
x(0]k) = x(k)

8in(Xp, ) <0,

where, at the inner level, algorithmic procedures that ensure coor-
dination among the agents might be present. In this formulation we
assumed that the inequalities g in (46) can be split in an outer g,
and inner g;, sets depending on variables §,, and (%, ii;) respectively.
This assumption usually holds since once variables 4, are fixed, they
do not affect further the non-centralized control strategy. Moreover,
the set of constraints g,,; can be used to impose desired properties
on the partitioning. One common choice is to assume that sets C; are
non-overlapping, which can be codified with the constraints

Ny
Vi Do, =1 (48)
j=1
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The complexity of the nested optimization problem (47) is NP-hard due
to the outer mixed-integer layer. Moreover, from an implementation
perspective, the time requirements to find the optimal partitioning
and the optimal control action with this approach can quickly become
prohibitive with a growing number of agents because, for each choice
of 4, the inner non-centralized predictive control strategy might be
required to perform many iterative steps involving optimization.

Remark 8. Optimal partitioning is intended for performance, but
partitioning can be done according to other criteria, for which the
optimal solution can be different. See Section 4.2 for a list of common
metrics that can be used.

4.4. Solution methodologies

Partitioning approaches in current literature usually do not consider
the level of complexity of the problem formulation (47). Instead, sim-
plified formulations, often application-oriented, are considered. These
solution approaches can be broadly categorized into the following four
methodologies:

« Static partitioning: this is the case in which the selection of § is
made prior to the deployment of the non-centralized strategy,
and the partitioning P(8) is fixed at all instants. Most approaches
follow this logic due to its simplicity and the fact that the parti-
tioning can be computed offline. The disadvantage is that changes
in the network’s topology cannot be compensated for with this
method, making it a viable option only for stationary networks.
Event driven partitioning: it is the first extension of static parti-
tioning. When a topological change is detected, a new network
partitioning is deployed. This strategy is reactive since network al-
terations can be detected, but no assumptions or predictions about
their future behavior are made. Suppose the number of possible
different topologies of the network is known a priori. In that case,
all the associated partitionings of the network can be computed
offline and only deployed when necessary. In other cases, the
new partitioning is computed as soon as the topological change
is detected, implying that the partitioning method is fast enough
to be executed between two distinct MPC computations. For large
networks, this is not usually suitable through optimization-based
approaches. Therefore, algorithmic solutions can be considered
to perform local adjustments to partitioning in the neighborhood
of the topological change. Also, tabular methods can be imple-
mented to track the topology-partitioning couples, thus avoiding
re-computations in known situations.

Fixed partitioning over the prediction horizon: in this case, it is
assumed that the topological changes that will occur over the net-
work during the prediction horizon are known at the current time
step, either accurately or with some uncertainty. Consequently,
before the start of the optimization process in the MPC, a fixed
sequence é can be established, and the non-centralized MPC is
deployed knowing all the changes in topology and partitioning
during the prediction horizon. A limited number of techniques of
this type are currently available in the literature.

Time-varying partitioning: this is the most complex case, where a
potentially different network partitioning is allowed for each time
step. In this way, all possible input-state-dependent topological
changes that will occur in the network according to the available
prediction model can be compensated, and uncertain topological
changes might be accounted for using robustness arguments. This
approach is also the only one that might guarantee the stability of
the resulting non-centralized predictive control architecture un-
der predictable topological changes. In current literature, no work
is present in this category, and future research might consider
addressing this problem.
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Formally speaking, the last two approaches assume that a predictive
partitioning of the network can be implemented for the NCen-MPC
strategy developed. Such partitioning can assume the network topology
to be static, or to change according to known rules or dynamical
models. In the first case, the predictive partitioning is performed purely
to improve the NCen-MPC approach. For the other two cases, there is no
known approach in the literature, making predictive partitioning using
models of the network topology dynamics an open problem.

We conclude this section by showing two examples of how to obtain
the partition of two networks with different structures in Example 6,
and of how to perform the posterior assessment of the performance of
an NCen-MPC strategy applied to different partitionings of the same
network in Example 7.

Example 6. We continue the examples started in Example 2 by
showing possible partitions of the modular and random networks.

We start by considering the modular network with 64 agents,
and we apply the optimization-based partitioning technique developed
in Riccardi et al. (2025c). This methodology returns different optimal
partitions according to a selected value for the granularity parameter,
which balances coupling strengths with the size of the resulting sets of
agents. Applying this partitioning methodology to the modular network
returns four different partitions: the one constituted by individual
agents, two partitions aggregating groups of four agents according to
their modules, and the grand coalition accounting for all the agents.
The examples of the two intermediate partitions are shown in Fig.
11. We also show the application of partitioning procedures defined
in Riccardi et al. (2025c) to the random network with 50 agents. The
use of an algorithmic approach here is advised because the previously
deployed optimization-based strategy has a slow convergence rate,
which is a consequence of the NP-hard nature of the problem. The algo-
rithmic approach is instead known to have a computational complexity
of at most O(n*), where n is the number of nodes of the graph, after
which improvements in the partitioning quality are usually marginal,
and it can be potentially optimized and parallelized as commonly
done in clustering procedures (Xu & Wunsch, 2005). However, which
method provides the best partitions cannot be established a priori, and
the results should be validated through control experiments, which
we show in the next example. Two different network partitions, one
obtained through the optimization-based approach, the other through
the algorithmic approach, are shown in Fig. 12.

Example 7. For this example, we consider again the random network
with 50 agents. We further assume that each agent A; controls a
subsystem with hybrid dynamics, defined as:

xi(k+1) = 0.5x,(k) + (k) + Y, w,;x;(k) if x,(k) >0
JEN;

xi(k+1) = =0.5x,(k) + u(k) + Y w; ;x;(k) if x,(k) <0.
JEN;

Thus, subsystem S; is coupled through state interactions to its neigh-
boring subsystems S; with j € W, and is subject to local constraints
u; € [-0.5;0.5], x; € [-0.9;0.9] Vi, j, but not to coupling constraints
or objectives. The dynamical coupling occurs through the weights w; ;,
which define the topology of the network and are reported in Table 2.
We want to deploy a DMPC strategy based on the alternating-direction
method of multipliers (ADMM). We use hybrid dynamics because these
are nonlinear systems, for which the effect of partitioning on pure
network control performance is evident. Additional technical details
about the case study are in Riccardi et al. (2025c). Here we focus
on the results of control simulations to show how the metrics and
the evaluation methodology developed in Section 4.2 can be used to
assess the quality of the partitions, and to select the most appropri-
ate partitioning strategy for the considered application. To this end,
we compare CMPC and the respective coalition denoted by PCMPC
which is made by all agents; conventional DMPC, where each agent
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Fig. 11. Two different partitions for the modular network. The green areas represent the control agents, the black links are the interactions inside the same
control agent, while the links in red represent the interactions among the control agents. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

(a) Optimization-based partition.

(b) Algorithmic partition.

Fig. 12. Two possible different partitions of the random network for selected levels of the granularity parameter obtained with different strategies. These partitions
are obtained with the scope of minimizing the strength of the interaction among control agents in different sets, while maximizing the interaction among control
agents in the same set. While these two partitions appear to be very similar, the effects they have on network control can be quite different, as shown in Example

7.

Table 4

Comparison of DMPC-ADMM performance applied to a random network of hybrid systems for different partitioning strategies. In bold we have reported the
values that show the strengths of the techniques. For example, optimization-based partitioning with DMPC POPt has a loss in optimality w.r.t. CMPC of the
0.24%. Instead, the partition obtained through the algorithm Pf\lg has a loss in performance of 1.2%, while being the least expensive from a computational
perspective, which is represented with a reference value of 1.00. This partition is also the fastest in terms of computation speed w.r.t. traditional DMPC, with a

loss in this regard limited to the 75%.

Partition Cores Cost fun. value Opt. loss % Comp. time [s] Comp. time ratio Core seconds [s] Core seconds ratio
POMPC 1 6899 0.00 2628 26.48 2628 1.37
PADMM 50 7749 12.31 99 1.00 4960 2.59
POort 6 6916 0.24 436 4.39 2617 1.36
P?]g 11 6982 1.20 173 1.75 1913 1.00
P 6975 1.09 353 3.56 3184 1.66
pe 6911 0.16 2818 28.40 14093 7.36

acts independently, denoted by PAPMM; one of the partitions obtained
using the optimization-based method PCPt and reported in Fig. 12;
and three partitions Pl.Alg obtained with the algorithmic partitioning
procedure. We propose only one optimization-based partition because
they produce control simulations that are generally similar w.r.t. the
algorithmic approaches that have more interesting aspects to show.
The results of the control simulations are reported in Table 4. The
CMPC approach has the best control performance, and is used as
a reference in this category, while conventional ADMM presents a
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noticeable gap in performance, above the 12%. However, it is the
fastest control approach, more than 26 times faster than CMPC, which
can be the determining factor for selecting a specific partition in many
applications. On the other hand, the computational cost in terms of
core seconds w.r.t. CMPC is approximately double. The optimization-
based and algorithmic control approaches provide a trade-off regarding
performance gain, computation time, and cost. The strategy based on
POPt has a negligible loss in terms of optimality, while being 6 times
faster than CMPC and having approximately the same computational
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Fig. 13. Computation times and costs for solving the same NCen-MPC problem
using different partitions. The data points represented with squares refer
to partitions obtained through an optimization-based technique, and they
approximately follow well-defined exponential or linear patterns, represented
by the dashed lines. The data points using circles refer instead to the results
of simulations using partitions obtained through algorithmic approaches. We
see that the latter have a less clear evolution across the number of sets, which
might be related to the suboptimality of algorithmic approach.

cost. Therefore, if these are a priority over speed, POP! is preferable
w.r.t. conventional DMPC. Algorithmic Ipartitioning approaches have
mixed results. The strategy based on P? & will give the best results in
terms of optimality gap, but it is also slower and more computationally
expensive than CMPC; therefore, it is undoubtedly an option to discard.
The approach that uses Pf\lg has a relatively small loss in optimality,
but it is also the least expensive in terms of computational cost, while
retaining a good computation time. It is thus a good alternative to
POPt, The partition P; lg, which is the one reported in Fig. 12, offers
similar results, and can also be considered. In the end, the most
appropriate partition to use will depend on the requirements for the
specific application, and can be selected among the listed options with
a clear indication of the gains and tradeoffs. A possible way to visualize
computational time and costs for different partitions, which can help
guide such decisions, is reported in Fig. 13.

This illustrative example shows how posterior evaluation of oper-
ational performance for different partitions is fundamental in NCen-
MPC. In particular, for the same partitioning strategy, variations in the
parameters to perform the partition can lead to very different control
results. This fact motivates using a solid methodological assessment of
control performance under different partitions.

5. Analysis and classification of the partitioning techniques for
non-centralized predictive control

In this section, we analyze and classify the partitioning techniques
for NCen-MPC that we found in the literature. The analysis we perform
here is oriented toward the definition of the main characteristic of
each methodology, highlighting their strengths and limitations, which
generally apply to all techniques belonging to that category. For a
detailed technical discussion both about the general methodologies and
the specific papers presented, we developed instead the sections from
Sections 6 to 10.

Regarding the classification of the partitioning techniques, we pro-
pose and discuss in the following three different perspectives:
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1. A categorization according to the general partitioning class, i.e.
optimization-based, algorithmic, community-detection-based,
game-theory-based, and heuristic.

2. A categorization in subclasses of the partitioning methods based
on specific structures in the problem, or objectives to achieve
through its deployment.

3. A classification according to the NCen-MPC control architecture
used in the strategy.

The classification tables for the techniques in this survey are provided
in Tables 5 and 7. In the first table, we collocate the works found in
the literature according to class and subclass. In the second table, we
classify them according to the control approach used.

5.1. Classification according to the partitioning class

Optimization-based partitioning. As introduced in Section 4, the problem
of partitioning can be seen, in an abstract way, as the problem of
assigning a set of objects to several given sets. This type of problem
can be naturally formulated as an MIP, see e.g. Section 4.3, whose
solution will provide the optimal network partitioning according to
the selected metric. At the basis of this formulation, there is a binary
decision variable §;; that equals 1 if the object i belongs to the set
j. All partitioning methodologies based on this descriptive approach
using binary variables fall into the category of optimization-based
partitioning and are discussed in Section 6. When considering an
optimization-based partitioning technique, it is essential to consider the
fact that the associated MIP is NP-hard (Brandes et al., 2006; Karp,
1972; Sandholm et al., 1999). Consequently, their scalability is limited,
and optimization-based partitioning is suitable only for relatively small
problems and static network topologies. This also means that online
re-partitioning of a network using optimization-based approaches is
prohibitive. Approximate solutions of mixed-integer problems can be
found using, e.g. the genetic algorithm (Goldberg, 1989; Srinivas &
Patnaik, 1994), which does not guarantee global optimality, and still
suffers from considerable computational complexity.

Algorithmic partitioning. Partitioning approaches based on algorithmic
procedures are a faster and computationally less intensive alternative
to optimization-based ones. The trade-off for these gains is that, unless
extensive search is performed, their results are suboptimal w.r.t. the
alternative optimization-based strategies, which constitutes their main
disadvantage. However, for large problems or in time-varying set-
tings, algorithmic partitioning approaches result to be the only viable
option thanks to their scalability. Additionally, through algorithmic
procedures, it is possible to obtain partitions according to more so-
phisticated requirements, such as the satisfaction of control properties,
more directly and straightforwardly than through optimization-based
strategies. All the approaches discussed in Section 7 fall in this cat-
egory of algorithmic partitioning. However, we also stress that the
works based on the community detection method reported in Section 8
are algorithmic procedures. Despite this fact, we decided to discuss
community detection methods separately because: (1) it represents by
itself a branch of graph and network methods, in this case applied
to partitioning for NCen-MPC control; (2) a rich body of studies and
approaches has been developed in partitioning for NCen-MPC control
exclusively through this method; (3) in this survey, almost every com-
munity detection methodology is based on a metric called modularity.
Considering these characteristics, we dedicate Section 7 to all the algo-
rithmic methods in the literature that do not belong to the community
detection approaches, and are not based on the modularity metric or
its extensions. A similar consideration holds for the game-theoretic ori-
ented partitioning approaches of Section 9. In fact, these approaches are
also mainly based on algorithms; however, the fundamental presence of
game-theoretic arguments in the selection of the partitions, as well as
the extensive development of the coalition control methodology rooted
in this technique, deserves a separate discussion in a dedicated section.
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Table 5
Categorization of the partitioning techniques according to class and subclass.
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Partitioning Partitioning class
subclass
Optimization-based Algorithmic Community detection Game-theory-based Heuristics
Unique Barreiro-Gomez Arastou et al. (2025), Jogwar (2019), Baldivieso Monasterios and Huanca et al.
techniques et al. (2019), Nufez Kamelian and Salahshoor Jogwar and Daoutidis Trodden (2021), Muros et al. (2023), Jain et al.
et al. (2015) and (2015), Ocampo-Martinez (2017) and (2018) and Séanchez-Amores, (2018) and
Xie et al. (2016) et al. (2012, 2011), Rocha Pourkargar et al. Martinez-Piazuelo et al. (2023) Pourkargar et al.
et al. (2018) and Zheng (2017) (2017)
et al. (2018); k-means:
Chanfreut et al. (2023),
Changqing et al. (2022),
La Bella et al. (2022), Lin
et al. (2020), Zhang et al.
(2019) and Zhao et al.
(2023)
Hierarchical Chen et al. (2020) and Guo et al. (2019)

Wang and Koeln (2023)

Kamelian and Salahshoor
(2015), Rocha et al. (2018)
and Wei et al. (2020)

Time-varying

Arastou et al. (2025)
and Wang et al.
(2022)

Ananduta and
Ocampo-Martinez
(2021) and Liu
et al. (2019)

Fele et al. (2018, 2017) and
Maestre and Ishii (2017)

Riccardi et al. Chanfreut et al. (2023)

(2025¢)

Hierarchical
time-varying

Riccardi et al. (2025c¢)

Chanfreut et al. (2021a),
Chanfreut, Maestre, Ferramosca
et al. (2022), Masero, Frejo

et al. (2021), Masero et al.
(2022), Masero, Maestre et al.
(2021), Masero, Ruiz-Moreno
et al. (2023) and
Sanchez-Amores,
Martinez-Piazuelo et al. (2023)

Ye et al. (2019)

Problem de- Kersbergen, van den Segovia et al. (2021)
composition Boom et al. (2016) and Tang, Allman
et al. (2018)
Input Chanfreut, Maestre, Wang and Koeln (2023) and Masero, Baldivieso-Monasterios
coupling Hatanaka et al. Wei et al. (2020) et al. (2023), Masero et al.
(2022) (2020b), Sanchez-Amores et al.
(2022) and Sénchez-Amores,
Chanfreut et al. (2023)
Frequency- Tang, Pourkargar et al. Wang et al. (2023)
based (2018)
Applications Atam and Kerrigan Guo et al. (2019), He Chanfreut et al. (2021a), Fele

(2021) and
Siniscalchi-Minna
et al. (2020)

and Li (2023),
Moharir et al. (2018),
Pourkargar et al.

et al. (2014), Maxim and
Caruntu (2021, 2022) and
Maxim et al. (2023, 2024)

(2019), Tang et al.
(2023) and Wang
et al. (2022)

Despite the differences among the several partitioning approaches
devised for the application of NCen-MPC considered in this survey,
there are some fundamental algorithms that have been consistently
used, directly or as a basis, to achieve the desired subdivision of
the network. Such algorithms have usually been developed for more
abstract purposes, such as graph partitioning or data clustering, and
have been used across the different classes proposed in this survey. For
these reasons, in Table 6 we provide an organization of the algorithmic
procedures used in partitioning for NCen-MPC. We divide the algo-
rithms into: general approaches, which are well-known strategies in the
literature, and for which a reference technique is available, where their
structure and pseudocode is also provided; and specialized approaches,
which are techniques derived for specific problems or strictly tied to
the control problem considered. For the latter case, we also provide
relevant references that explain the procedure and give algorithmic
details.

Community-detection-based partitioning. As mentioned in the discussion
for algorithmic approaches, community detection methodologies have
been developed in graph and network theory for the identification of
strongly connected components of a graph for various applications (For-
tunato & Hric, 2016). Among all the techniques, great attention has
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been devoted to community-detection-based partitioning to methods
based on the maximization of the modularity metric (Newman, 2006).
Most of the techniques in this section are conceptually based on this ap-
proach. The maximization of modularity can be either sought through
the solution of an optimization problem, an NP-hard problem, or with
a heuristic or greedy algorithm, where the latter approach will, in
general, provide a suboptimal result. All the techniques presented here
are based on the aforementioned algorithmic approaches, thus allowing
for scalability and real-time applicability for time-varying partitioning.
The maximization of modularity and other derived metrics will provide
groups of agents that exhibit weak inter-group coupling strengths,
and, potentially, strong intra-group coupling. The unproven paradigm
at the basis of modularity maximization for control problems is that
a partition maximizing modularity will also provide optimal NCen-
MPC performance. While this statement has not been proven true or
false yet, a large body of studies, presented in Section 8, has shown
that partitions maximizing modularity will, in general, improve control
performance w.r.t. heuristic, expert, or random partitions.

Game-theory-based partitioning. The partitioning approaches based on
game-theoretic methodologies find their roots in the theory of coalition
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Algorithmic procedures used for developing partitioning approaches for NCen-MPC. The table is divided into general and specialized approaches. For general
approaches, reference strategies with details about the algorithms are provided first, then the partitioning strategy for NCen-MPC is given in the application
column. For specialized approaches instead, the partitioning algorithm is usually developed specifically for the problem considered, therefore details about their

structure are contained in the references introducing them.

General approaches

Algorithm

Reference technique

Application

Specialized approaches

Algorithm

Reference and application

Graph-partitioning-based
ordering

Gupta (1996)

Ocampo-Martinez et al.
(2011)

Based on the incidence
matrix

Kamelian and Salahshoor
(2015)

Nested e-decomposition

Sezer and Siljak (1986)

Ocampo-Martinez et al.
(2012)

Coupling degree
clustering

Zheng et al. (2018)

METIS algorithm

Karypis and Kumar (1998)

La Bella et al. (2022)

For equivalent graph
representations

Rocha et al. (2018)

Louvain fast unfolding
algorithm

Blondel et al. (2008) and
Girvan and Newman
(2002)

Segovia et al. (2021),
Tang, Allman et al. (2018),
Tang, Pourkargar et al.
(2018) and Wang et al.
(2022)

Topological hierarchy
decomposition algorithm

Chen et al. (2020)

k-means

Xu and Wunsch (2005)

Chanfreut et al. (2023) and
Changqing et al. (2022)

Subsystems selection
based on Kalman
canonical form

Wei et al. (2020)

Crow search (based on
k-means)

Lakshmi et al. (2018)

Zhao et al. (2023)

Maximization of partition
index

Riccardi et al. (2025c)

Global fuzzy c-means

Heo and Gader (2010) and
Siringoringo and
Jamaluddin (2019)

Lin et al. (2020)

Based on macroscopic
fundamental diagram
(modularity
maximization)

Guo et al. (2019)

k-shape

Paparrizos and Gravano
(2015)

Zhang et al. (2019)

Game-theory-based
algorithm

Fele et al. (2017), Masero

et al. (2020b), Masero,
Maestre et al. (2021), Maxim
and Caruntu (2021, 2022) and
Maxim et al. (2018, 2023)

Linkage-based
Agglomerative Hierarchical
Clustering (AHC)

Xu and Wunsch (2005)

Wang and Koeln (2023)

Self-organizing agents

Fele et al. (2018) and Muros
et al. (2018)

Kernighan-Lin algorithm

Kernighan and Lin (1970)

Arastou et al. (2025)

Consensus-based
aggregation

Baldivieso Monasterios and
Trodden (2021)

Leicht and Newman
algorithm (iterative
bipartition)

Leicht and Newman (2008)

Jogwar and Daoutidis
(2017), Moharir et al.
(2018) and Pourkargar
et al. (2017, 2019)

Market-based coalition
formation

Masero et al. (2022), Masero,
Ruiz-Moreno et al. (2023) and
Séanchez-Amores,

Martinez-Piazuelo et al. (2023)

Multiway spectral
community detection
algorithm

Zhang and Newman (2015)

Arastou et al. (2025), He
and Li (2023) and Jogwar
(2019)

Pairwise clustering for
coalition formation

Masero, Frejo et al. (2021)
and Sanchez-Amores,
Martinez-Piazuelo et al. (2023)

Modified version of
Barber’s algorithm

Barber (2007)

Wang et al. (2023)

Inputs decomposition
into private and public
variables

La Bella et al. (2019), Masero,
Baldivieso-Monasterios et al.
(2023), Sanchez-Amores et al.
(2022) and Sanchez-Amores,
Chanfreut et al. (2023)

Iterative bisection with
resolution parameter

Newman (2006) and
Reichardt and Bornholdt
(2006)

Tang et al. (2023)

Based on modal
participation matrix

Jain et al. (2018)

PageRank Brin and Page (1998) and Maestre and Ishii (2017) Based on wind forecast Ye et al. (2019)
Ishii and Tempo (2014) and Muros et al. (2018)
Modified Ocampo-Martinez et al. Chanfreut, Maestre, For vehicle platoons Liu et al. (2019)

graph-partitioning-based
ordering

(2011)

Ferramosca et al. (2022)
and Maestre et al. (2014)

Genetic algorithm

Goldberg (1989)

Chanfreut et al. (2021a)
and Riccardi et al. (2024c)

For economic dispatch

Ananduta and
Ocampo-Martinez (2021)

Based on the sphere
packing problem

Conway and Sloane (1988)

Christofides et al. (2013)

formation (Ray, 2007). Agents in such networks participate in a game
in which they seek their best allocation in a coalition to maximize
the collective outcome, which, in this context, corresponds to the
global cost function of the MPC problem. Most of the partitioning
strategies developed in this field are based on algorithmic procedures;
however, the prominent presence of game-theoretic techniques, and
the fact that a whole body of literature has been developed about
the resulting control strategy, i.e. Coal-MPC, motivate the treatment of
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these methodologies in a dedicated section. Game-theoretic partitioning
methodologies are, in general, more complex to develop w.r.t. other
algorithmic approaches, and require the clear definition of cooperative
games and the associated cost functions. However, these approaches
also allow for obtaining interpretable performance gains in the de-
ployment of the Coal-MPC strategy, a point often missing in most
algorithmic approaches.
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Heuristic partitioning. In this class, we include all the partitioning
strategies for NCen-MPC that we found in the literature based on
heuristic methodologies, which have not been developed originally to
be extended to other applications. While the scope and generalizability
of these strategies may appear limited, they can still be highly effective
in specific contexts, and may offer inspiration for developing more
broadly applicable methods.

5.2. Classification according to the partitioning subclass

As it is possible to see in Table 5, there are common features shared
among partitioning techniques across different general partitioning
strategies.

First, we can identify hierarchical strategies, in which we collo-
cate approaches that either have multiple aggregation levels for the
resulting partition, or are developed using a partitioning layer dis-
tinguished from the control layer. All purely hierarchical approaches
presented in Table 5 belong to the first category. Among these, we
find works that use a hierarchy to introduce a sequential decision-
making ordering into the NCen-MPC strategy, or works with multi-level
partitioning approaches, generally used for partition refinement. The
former approaches allow obtaining coordinated actions prioritizing
the performance of the controllers at the highest level of the hierar-
chy, and sacrificing the others; the latter generally use purely topo-
logical metrics, thus not being directly oriented toward performance
optimization.

Time-varying approaches include the techniques that allow for a
reconfiguration of the network, either online during the execution of
the control strategy or offline through the derivation of look-up tables.
These methods are developed to react to topological changes in the net-
work with the objective of maximizing the global operation cost. While
real-time adaptability of the partition is advisable (when possible) to
improve performance, the computational complexity of the partitioning
problem can make it prohibitive if the network has fast dynamics. On
the other hand, the offline computation of pre-defined partitions will
surely allow for fast online reaction to topological changes, but on the
other hand, it assumes either that it is possible to compute all these
desired partitions, or there is a trade-off between performance and
quality of the partition according to heuristics.

Hierarchical time-varying strategies are obtained by combining the
two previous concepts. The most common setting is the following: a
partitioning layer generally operates at a higher hierarchy level and a
slower time scale w.r.t. a control layer. This approach has been exten-
sively explored because the execution of a partitioning strategy cannot
generally be performed in real time according to the control sam-
pling time. Therefore, a slower time scale is used for the partitioning
layer, allowing either periodic or event-driven network reconfigura-
tion. Hierarchical time-varying strategies allow to obtain enhanced
control performance, generally adapting the partitioning (reactively)
w.r.t. network performance; however, two main aspects deserve some
attention: (1) these are complex strategies, and therefore they require
a higher level of coordination and communication w.r.t. more direct
approaches (2) operating at different time scales allows for online re-
partitioning, but assumes that the performance degradation during the
partitioning intervals is acceptable, and eventual topological changes
between re-partitioning intervals will not harm network operation.

Partitioning for input-coupled dynamics has been addressed sepa-
rately because the underlying dynamics lead to strategies that present
unique features, such as the definition of private and public control
actions and related negotiation strategies, which are usually not consid-
ered when the dynamics present coupling through state interactions. In
theory, most of the techniques defined for dynamical coupling among
network subsystems can be extended to input-coupled dynamics with
the necessary care. The most critical aspect for these systems is their
limited applicability to real-world problems, which is also reflected in
the limited amount of related studies.
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Frequency-based approaches are defined based on the network’s
transfer functions that link input-output channels. These approaches
find their roots in the MIMO decoupling approaches (Skogestad &
Postlethwaite, 2001) for selecting control channels. Frequency-based
approaches are generally developed for linear or linearized systems,
and instead of using a direct performance assessment for partitioning,
they use frequency-based performance metrics.

A range of approaches in the literature can be seen as applicative
work of previously developed strategies, or as prototype techniques
that have been extended later. These works can be used to develop
comparative case studies for future developments.

Finally, a range of techniques has been uniquely defined in each
partitioning methodology. These works do not share their direct scope
with others; thus, we have placed them in a separate category. How-
ever, their features can potentially be extended to other techniques, and
direct comparisons might be possible.

5.3. Classification according to the partitioning methodology

A further classification of the partitioning techniques can be pro-
vided in terms of the methodology they are designed for. Specifically,
a partitioning strategy can be either developed to operate on a given
structure, or to address a specific problem. This classification is pro-
vided in Fig. 4 as a coloring scheme to distinguish the methodology to
which all the subclass entries belong, where mixed approaches indicate
that both methodologies have been used in the same subclass. In the
following, we discuss their characteristics.

Structure-based partitioning strategies leverage the presence of a
structure in the topology of the network or optimization problem to
obtain the partition. Generally speaking, these approaches only require
information about the network connections, and can use well-known
tools from network and graph theory, such as spectral clustering or k-
means. One reason to use such approaches is that for some applications,
knowing the dynamics of the network is not essential for the specific
partitioning problem, and other factors, such as achieving a particu-
lar decomposition for ease of operation, accessibility, or maintenance
of the network, must be taken into account. Additionally, structure-
based approaches do not generally need any information about the
dynamics of the subsystems in the network, which can be advantageous
in settings where security and privacy are of main concern. In this
context, pairing structure-based partitioning with Dec-MPC approaches
can be advisable. In such settings, there will be no requirement for
real-time data or a communication infrastructure, and the approach
can work well in situations where the network does not change over
time, or changes slowly and predictably. The main trade-off in such
implementations will be the loss in control performance, and the adapt-
ability of the control structure. However, it is important to stress that
structure-based approaches should not be limited to static networks,
because they can also be developed for time-varying networks and
be used with communication-based NCen-MPC approaches. Their main
drawback in this sense is that they do not generally account directly
for the dynamics of the subsystems; therefore, their actual impact on
the performance should be quantified a posteriori.

Goal-oriented partitioning strategies are, in a sense, oriented toward
the opposite direction compared to structure-based ones. In fact, they
are developed to achieve a given goal without explicitly accounting
for the structure of the problem. Usually, this is a control goal, and
often, performance optimization. To this, goal-oriented partitioning
must have access to some form of information that can relate to the
predictable behaviors of the network, such as subsystem dynamics,
time-series predictions from local controllers, or the operation cost
of the local optimization problems. Additionally, communication and
coordination structures are required to leverage and process such in-
formation, which increases development costs and complexity; but
also affects the privacy of agents and security of network operation.
Additionally, goal-oriented partitioning is naturally suited to work with
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time-varying networks, because it already requires real-time data about
the current operation. It also follows that goal-oriented partitioning can
be paired effectively with communication-based NCen-MPC, such as
DMPC, HMPC, and Coal-MPC. The advantage here is generally sought
in performance optimization, or to achieve particular configurations of
agents for specific tasks.

From this discussion, it is clear that both partitioning methodologies
are fundamental in the literature, and research in the field of MPC
should keep addressing both themes.

5.4. Classification according to the control strategy

In Table 7, we categorize the works in partitioning according to the
control architecture to which they have been applied. Other than the
more conventional Dec-MPC, DMPC, and HMPC strategies, we report
that extensive work has been performed on the Coal-MPC method-
ology. Instead, few studies involve nonlinear MPC strategies. Finally,
we mention the presence of a few mixed control strategies that allow
for switching between control architectures according to control ne-
cessities. In the following, we briefly discuss each strategy, but for a
detailed discussion, we refer the reader to Fele et al. (2017), Maestre
and Negenborn (2014) and Scattolini (2009).

Starting from the simplest form of NCen-MPC, we have Dec-MPC in
which local controllers do not share any information with their neigh-
bors and compute the local control actions either independently, or
using some approximated or estimated information about the strength
of the incoming dynamical coupling. Robustness arguments are used
to ensure the stability of the network under uncoordinated opera-
tion. The biggest strength of Dec-MPC, other than the non-centralized
computation of the control action, lies in the ability to preserve the
privacy of local subsystems during network operation, since there is
no information sharing. The main drawback is the loss of performance
w.r.t. CMPC, given the conservative nature of local actions.

In the DMPC approach, information about the current state of the
local subsystem, the current control action, or even the predicted state-
input sequence is shared among local controllers. This communication
is supported by a coordination protocol, which allows local controllers
to refine the local actions to achieve superior global performance
for the network. The communication and coordination strategy can
be structured according to different criteria, thus producing different
DMPC approaches. In linear settings, DMPC strategies can converge
to near CMPC performance, which is the main advantage of DMPC.
However, DMPC also has drawbacks: more expensive hardware require-
ments w.r.t. Dec-MPC, due to the communication infrastructure and
the necessity of more advanced abilities for local controllers; complex
coordination algorithms, which can also be iterative and must operate
within the limits of real-time control; information sharing, which is not
always guaranteed to be possible or real-time.

HMPC includes any control strategy having local controllers and a
coordination layer in the form of a centralized decision maker. Such
approaches are usually designed to achieve performance advantages,
while allowing to overcome other technical challenges, such as model
complexity reduction, multi-scale network operation, privacy preser-
vation, or optimization of global coordination. Given the flexibility of
HMPC approaches, the specific drawbacks of each technique depend
on its implementation, but all approaches unquestionably come at
the cost of an increased technical complexity and increased hardware
requirements w.r.t. simpler NCen-MPC approaches.

The Coal-MPC strategy was born to fuse MPC with game theory
in a non-centralized control setting. The result is a control strategy
in which local control agents can merge into coalitions according
to game-theoretic strategies to achieve superior control performance.
Therefore, the Coal-MPC strategy can also be interpreted by itself as a
game-theoretic-oriented partitioning strategy for distributed MPC, with
dynamic allocation of local controllers into time-varying coalitions. In
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this regard, the Coal-MPC problem inherits the computational complex-
ity of the general partitioning problem, or coalition formation problem,
i.e. it requires the online solution of an NP-hard problem. This main
drawback has been solved through different algorithmic procedures,
which has led to the development of a large body of literature also
discussed in this survey. The main theoretical advantage of Coal-MPC
is that it allows for online dynamic partitioning with the objective of
global performance optimization in a game-theoretic sense.

Regarding NLin-MPC, the above considerations have to be extended
in a setting where the MPC model is nonlinear. This approach can
allow for superior operational performance, but has several drawbacks,
mainly: the complexity of defining an appropriate nonlinear model, the
computational complexity related to nonlinear optimization, the even-
tual presence of local minima in the cost function, and the difficulty in
ensuring stability of operation.

Mixed strategies for NCen-MPC use any combination of the previous
techniques, trying to balance their strengths and limitations with online
reconfiguration of the controllers’ settings and (sometimes) partitions.
This fact necessarily implies that such strategies have a high implemen-
tation complexity, and a combinatorial number of possible approaches
at each time step, which is usually addressed through the use of
heuristics.

6. Optimization-based partitioning
6.1. General techniques

In the (Nufez et al,, 2015), a partitioning strategy is proposed
that allows deploying a decentralized, distributed, or hierarchical MPC
controller as a function of the operating conditions of the network. This
is achieved by introducing an integer variable 6;; for each edge ¢;; of
the information graph.

Input-output decomposition of large-scale linear systems is per-
formed in Xie et al. (2016) for the application of DMPC. The work
proposes a two-stage procedure consisting of an input clustering decom-
position (ICD) first, and then of an input-output pairing decomposition
(IOPD). The scope of the IOPD partitioning here is to minimize the
coupling effect among the subsystems, defined as:

10 — diag(Oyy, ..., Oprpn)llg
IOllg

J

Jcoupling — , (49)

where the matrix O is a function of the ICD and of the stage cost of the

MPC program.

6.2. Multi-objective optimization in partitioning

Network Partitioning is achieved through a multiobjective optimiza-
tion program in Barreiro-Gomez et al. (2019), where, at each time step
k, the following problem is considered:

4
min ; @,0,(P(k) (50)

st |J ¢t =Pk
i
(it =9.
i
Constraints on the sets C;(k) ensure retrieving a nonoverlapping par-
tition P(k) = {C1), ... Cn (O} the weights ¢, allow prioritizing

the four topological indicators ;. The problem is solved through the
distributed approach using the Kernighan-Lin algorithm (Gupta, 1996).
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Table 7

Categorization of the partitioning techniques according to the control strategy deployed.
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Control Partitioning class
approach
Optimization-based Algorithmic Community detection Game-theory-based Heuristics
Decentral- Atam and Kerrigan Kamelian and Arastou et al. (2025) Baldivieso Monasterios and Jain et al. (2018)
ized MPC (2021) and Ntiiez Salahshoor (2015), and Wang et al. (2022) Trodden (2021)
et al. (2015) Ocampo-Martinez et al.
(2012, 2011) and Wang
and Koeln (2023)
Distributed Barreiro-Gomez Arastou et al. (2025), Arastou et al. (2025), Maxim and Caruntu (2021) Huanca et al.
MPC et al. (2019), La Bella et al. (2022), Guo et al. (2019), and Maxim et al. (2023) (2023), Liu et al.
Kersbergen, van den Rocha et al. (2018), Jogwar (2019), Moharir (2019) and
Boom et al. (2016), Tang, Pourkargar et al. et al. (2018), Pourkargar et al.
Ntiiez et al. (2015), (2018), Wei et al. Pourkargar et al. (2017)
Riccardi et al. (2020), Zhang et al. (2017, 2019), Riccardi
(2025¢) and Xie (2019) and Zheng et al. et al. (2025c¢), Segovia
et al. (2016) (2018) et al. (2021), Tang,
Allman et al. (2018),
Tang et al. (2023) and
Wang et al. (2023)
Hierarchical Ntiiez et al. (2015) Chanfreut et al. (2023), He and Li (2023) Ye et al. (2019)
MPC and Changqing et al.
Siniscalchi-Minna (2022), Chen et al.
et al. (2020) (2020), Lin et al.
(2020),
Ocampo-Martinez et al.
(2012) and Zhao et al.
(2023)
Coalitional Chanfreut, Maestre, Chanfreut et al. (2021a),
MPC Hatanaka et al. Fele et al. (2018, 2017,
(2022) 2014), Maestre and Ishii
(2017), Masero,
Baldivieso-Monasterios et al.
(2023), Masero et al.
(2020b), Masero, Frejo et al.
(2021), Masero et al. (2022),
Masero, Maestre et al.
(2021), Masero, Ruiz-Moreno
et al. (2023), Maxim and
Caruntu (2021, 2022),
Maxim et al. (2023, 2024),
Muros et al. (2018),
Sanchez-Amores, Chanfreut
et al. (2023) and
Sanchez-Amores,
Martinez-Piazuelo et al.
(2023)
Nonlinear Kamelian and Tang, Allman et al.
MPC Salahshoor (2015) and (2018)
Rocha et al. (2018)
Mixed Ntiiez et al. (2015) Chanfreut, Maestre, Ananduta and
strategies Ferramosca et al. (2022), Ocampo-Martinez

Maxim and Caruntu (2021)
and Maxim et al. (2023)

(2021)

6.3. For optimization problem decomposition

In Kersbergen, van den Boom et al. (2016), DMPC for hybrid
systems is considered. The centralized MPC problem provides MILP
program, defined as:

rrz}cr)l cT(k)z(k) (51)
s.t. A(k)z(k) < b(k).

Such a program is partitioned into nonoverlapping subproblems such
that constraints are decoupled, and the size and number of variables
of the problems are approximately the same. Then the subproblems
are solved in parallel in a DMPC fashion. The cost of the partitioning
problem is:

Ty "T, N

J = pMyiax ~ Z Z Z 6;iQkbki» (52)

j=1k=1i=1
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where nr, is the number of constraints of (51) and N, its the number
of binary variables; matrix Q represents the topology of the constraints
interconnection; p is a tuning parameter; and My;x the maximum
difference in the number of constraints in the subproblems.

6.4. Ad-hoc performance indicators

Non-centralized hierarchical control of wind farms is considered
in Siniscalchi-Minna et al. (2020), where MPC is used for reference
point setting at the control partition level, while conventional con-
trollers are used for individual turbines. A weighted directed graph
is constructed using the intensity of the wakes® as labeling (Annoni

6 The wake-effect refers to the wind reduction and increased turbulence
that downstream turbines experience due to the extraction of wind power from
upstream turbines.
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et al., 2018). Multiobjective integer optimization is used to maximize
the wakes, minimize the distance of the turbines in the same groups,
and balance the size of the groups.

6.5. Robust and stochastic optimization

Robust and stochastic methodologies for partitioning have been
developed in Atam and Kerrigan (2021), where for Dec-MPC of the
thermal zones of a building is considered. Thermal interactions among
the zones are used to formulate a mixed-integer optimization problem
for partitioning (Boulle, 2004). In the stochastic formulation, thermal
interactions are replaced by their expectations, while in the robust
formulation by their worst-case scenario.

6.6. Input-coupled dynamics

Binary quadratic programming (BQP) is used in Chanfreut, Maestre,
Hatanaka et al. (2022) to partition input-coupled systems of the form:
xi(k +1) = Ajx;(k) + Bjju;(k) + w;(k)

wik) =Y Byuk).
JEN;

(53)

The approach is based on the gradient approximation of the cost
function J, as defined in De Oliveira and Camponogara (2010), which,
for a topology A, is defined as:

gt = VIR D)~ g+ Y Agh.
ijeA

(54)

In this approximation, gl°®@ are the local contributions, while Agi’} are
coupling contributions for A. Partitioning is then obtained through a
BQP using g4 in the cost function.

6.7. Hierarchical approaches for time-varying graphs

A BQP approach potentially applicable to time-varying topologies
has been developed in Riccardi et al. (2025b, 2025c), allowing to
obtain partitions at different levels of aggregation through a granularity
parameter a. The strategy is based on the construction of a graph
G = (V,&) with a weighting of the edges defined by (4), and on a
preliminary selection of fundamental system units (FSUs) S; through
the algorithm detailed in Section 8.6. The BQP aggregates FSUs into
collections C;, called composite system units (CSUs). Binary variables
8;; =1 & S; € C;, are defined for this scope together with the weighting
functions:

Nrsu Nrsu Nesu Nesu

winergy = 3 N NN 6,6, (wi. )|+ lwi. D)
m=1

i=1 =1 =1
J#E I#Em

Ngsu Nrsu Nesu

WG = N NN 5,8, (w0, D] + |w(, )
m=1 i=1 j=1

(55)

(56)

+Hw(, DI+ 1w, )

) Nrsu / Nrsu 2
wsize(§) = Z Z 5i,m .
m=1 i=1
These three weights represent the interaction strength within and
among the collections for a given value of the parameter « that influ-
ences the level of granularity:
rnain Winter((s) _ Wintra((s) + aWsize(S)

NEsu
st Y &;=1 Vi
j=1

&, €{0.1).

(57)

The constraints ensure that nonoverlapping sets constitute the resulting
partitioning, and varying « allows for obtaining collections of different
sizes.
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7. Algorithmic partitioning
7.1. Applied to equivalent graph-based representations

One of the first contributions to graph-based partitioning for the
application of non-centralized predictive control is found in Ocampo-
Martinez et al. (2011). The starting point of the partitioning strategy
is a graph-based representation, proposed as a control-oriented rep-
resentation described by an incidence matrix (Bondy & Murty, 2008;
Zecevic & Siljak, 2010). The graph is divided into non-overlapping
subgraphs according to an algorithm developed starting from the graph-
partitioning-based ordering algorithm (GPB) (Gupta, 1996), with var-
ious modifications and heuristics to adapt it for control of a complex
system. One of the core components of the algorithm is the cut size,
i.e. the number of links that belong to different subgraphs, which is an
indirect measure of the desired subgraph size.

Partitioning based on nested e-decomposition (Sezer & Siljak, 1986)
is proposed in Ocampo-Martinez et al. (2012) for decentralized predic-
tive control. For a linear causal system, the e-decomposition works as
follows. Construct a matrix M using all system variables as nodes of a
graph, i.e. build the weighted adjacency matrix:

A B 0
M=10 0 O] (58)
c 0 0

Then, for a given threshold e, compute the permutation matrix P that
provides a new block decomposed matrix M = PTM P consisting of N
block such that, for the off-diagonal terms, it holds that M;; < e. This
decomposition transforms the network into N connected subgraphs
where interconnections are defined by the off-diagonal terms of M and
their strength constrained by the choice of . A maximum number of
| M| nested e-decompositions is possible for any given M. Further de-
tails and stability analysis of this decomposition are presented in Sezer
and Siljak (1986).

An algorithmic approach for nonlinear systems is devised in
Kamelian and Salahshoor (2015). This approach is also based on the
control-oriented representation and the derivation of the incidence
matrix (Bondy & Murty, 2008); however, in this case the matrix is
constructed accounting for relations among system variables, where
each input state and output is considered as a distinct node. A general
nonlinear dynamics of the form:

S - {ka = f g ug, wy) ) (59)

Vi = 8(Xp, uy, wy)

is used to construct the graph; however, this dynamics is linearized
around an operating point to derive a weighting of the associated
graph; specifically, the matrices (A, B,C, D) resulting from the lin-
earization are used. The algorithmic approach starts by the centers of
the clusters as the input variables. Then, a sorting procedure is used to
order the state and output vertices according to their degree. A merging
phase groups subgraphs based on their number of edges. The procedure
is regulated by the cut size, according to Jamoom et al. (1998), but also
considering the number of resulting groups.

A partitioning approach based on the strength of interaction among
subsystems is proposed in Zheng et al. (2018). The approach requires
subsystems to be grouped into larger virtual middle-scale subsystems,
which are selected to be weakly coupled according to a condition
defined in the paper. Then, a variable adjacency matrix A(5) = (a); j
function of the threshold 6§ is obtained as a;; = 1 if ||4;]| > 6, and
a;; = 1 otherwise. The algorithmic clustering approach consists of
finding such 6 and a permutation matrix T such that TTAT is block-
diagonal, and the overall system is weakly coupled. The clustering
algorithm consists of gradually reducing  from a given initial value &,
until the decomposition into weakly coupled middle-scale subsystems
is achieved

A framework for algorithmic partitioning of nonlinear systems based
on the equivalent graph representation of linearized dynamics around



A. Riccardi et al.

an operating point is proposed in Rocha et al. (2018). In this approach,
each time a re-linearization of the nonlinear dynamics is performed, the
system might be re-partitioned. The partitioning algorithm proposed
is based on the iterative grouping of input-state-output variables, fol-
lowed by a controllability check. The algorithm does not guarantee the
terminability, or that controllable groups are achievable.

7.2. Applied to flow graph representations

Algorithmic partitioning for power networks using a flow-graph
representation is considered in La Bella et al. (2022). First, the power
network is divided into sources for generators (a set of nodes VSOUrce),
and sinks for the loads (a set of nodes Vsink), thus constructing a flow
graph. Then, the optimal power flow problem (Frank & Rebennack,
2016) for the best and worst case scenarios is solved The average
of these two solutions allows defining the average transaction x;}(k)
between sources i € VU and sinks j; € VS, Then, for each
i € ysouree apd j e Psink the shortest path L;; is defined (Dijkstra,
1959), and the value x;‘j(k) is assigned to all edges in ¢ € £;;. Finally,
the weight of each edge in the network is computed by summing all
the values x; (k) of the shortest paths passing by that edge. A weighted
flow graph is thus constructed. A partitioning of this graph for a given
number of clusters is obtained using the k-way partitioning method
minimizing the edge cut using the METIS algorithm (Karypis & Kumar,
1998). This procedure is performed at the time scale of the clustering
procedure, slower than the time scale of the control process.

7.3. Using frequency-based performance indicators

The authors in Tang, Pourkargar et al. (2018) propose a new metric
called Relative Time-Averaged Gain Array (RTAGA), based on the step
response of the system averaged by an exponential distribution function
ft,t) = (1/7) - e7'/7, for a parameter t characterizing the decay of
the exponential. Then, for matrix G of transfer functions, the element
g;;(1/7) is the intensity of the response y, for a step input u; weighted
by the distribution f(7,7) decaying at time scale z. Accordingly, the
RTAGA matrix is defined as A(1/7) = G(1/7) - GT(1/7). For partitioning
the system using the RTGA, the authors of Tang, Pourkargar et al.
(2018) rely on the input-output bipartite graph, and the weighting of
each edge (u;, y;) representing input-output loops is given by the scalar
w;; defined according to the entries of A(1/7) as:

y o 0<4;<1
wy =1/4;  Ay>1 (60)
0 A <0

ij
Then the modularity Q of the bipartite weighted graph is defined

according to Barber (2007), and modularity maximization is achieved
through the Louvain fast unfolding algorithm (Blondel et al., 2008).

7.4. Using k-means

One of the most used algorithms for clustering is k-means (Xu &
Wunsch, 2005). At the core of the algorithm there is the problem of or-
ganizing N objects, e.g. vectors x € RY, into K subsets. This is achieved
by using the definition of Euclidean distance, and an algorithm is
developed to minimize the squared error between each object and the
center of the clusters. The algorithm starts with an initialization of the
centers of the K clusters (either random or informed). Then, each object
is assigned to the nearest cluster. Accordingly, the prototype matrix,
i.e. the matrix containing centroids or the means of the clustering, is
updated with the given assignment. The last two steps are iterated until
there is no further change in the clusters. The computational cost of
the algorithm is O(N K d). The k-means clustering is well developed,
and parallel implementations are available (Stoffel & Belkoniene, 1999)
to improve computation times. The interested reader can refer to the
survey (Xu & Wunsch, 2005) for further information.
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The clustering of a wind farm using k-means has been performed
in Changqing et al. (2022). The article focuses on the frequency regu-
lation of a double-fed induction generator, which is affected by both
the operating conditions of the plant, and the wind orientation and
strength. To improve the frequency regulation of the system, a multi-
layer control approach is proposed: MPC (Afram et al., 2017) is used
for frequency regulation and power output maximization, whereas k-
means clustering (Vallee et al., 2011) based on wake-effect interaction
is used to spatially cluster the wind turbines.

An improved version of k-means, i.e. crow search (Lakshmi et al.,
2018), is used in Zhao et al. (2023) to cluster a wind farm. Crow search
is used in this approach for its improved clustering accuracy and cluster
stability, allowing the authors of Zhao et al. (2023) to achieve superior
cluster quality w.r.t. traditional k-means. The wind farm is partitioned
according to four key performance indicators, which are the power
characteristic of the turbine, the smooth coefficient, the generation
potential coefficient, and the anomaly coefficient (Howlader et al.,
2015; Yin et al., 2022). Given this dataset, the algorithmic partitioning
is performed for a given number of clusters.

An approach for clustering wind farms based on an approximate
linear model of their power tracking (Chen et al., 2019; Jha, 2010) is
proposed in Lin et al. (2020). Once an estimate of this transfer function
is available for each turbine in the farm, Lin et al. (2020) proposes to
apply a global fuzzy c-means algorithm for clustering the network (Heo
& Gader, 2010; Siringoringo & Jamaluddin, 2019).

7.5. Data-driven decomposition

Partitioning in a data-driven application is discussed in Zhang et al.
(2019). The scope of a data-driven approach is to capture the nonlinear
dynamics that might not figure in purely model-based approaches
as Ocampo-Martinez et al. (2012). Once time series data about inputs
U = {a, )., states X = {x,} % , and outputs ¥ = {yf};’;l are collected,
a system model is defined as S(U, X, Y). The partitioning problem is
then formulated s.t. the network is divided into k subsystems S;, where
k is a number defined by inspection depending on the shape of the
time-series data in matrix Y. The underlying partitioning procedure
is then provided by the k-shape clustering algorithm for time series
sequences (Paparrizos & Gravano, 2015), and canonical correlation
analysis to establish the strength of interaction among the groups of
variables, which allows to define strong and weakly coupled neighbors
according to heuristic thresholds. The algorithmic procedure for parti-
tioning allows to retrieve k groups of strongly coupled non-overlapping
subsystems with approximately the same number of variables.

7.6. Hierarchical clustering

The study (Chen et al., 2020) introduces a cooperative DMPC frame-
work based on topological hierarchy decomposition, aiming to opti-
mize communication efficiency while maintaining global system perfor-
mance. The theory at the basis of the approach is interpretive structural
modeling (Attri et al., 2013), which allows to hierarchically structure
subsystems based on their coupling strength, ensuring that strongly
coupled subsystems are grouped within the same layer, while weakly
coupled ones are placed in lower layers. Moreover, it is assumed, not
without loss of generality, that only the upper layer influences the
lower layer in a sequential cascade. This hierarchical order prioritizes
the resolution of the local MPC problems, and their coordination, in
the upper-layer subsystems, propagating their optimal control inputs
downward, and iterating the process over the fixed down-streamed
variables in the lower layer.

The architecture proposed in Chanfreut et al. (2023) has a two-layer
structure. The bottom layer consists of local MPC agents controlling
coalitions of loops, while the top layer dynamically clusters subsystems
in the network. For this, the k-means clustering algorithm groups sub-
systems with similar dynamics, determined by operating parameters,
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and recursive least squares estimation (Shaferman et al., 2021) adapts
system parameters in real-time. Moreover, the top layer accounts for
exogenous conditions to assign MPC constraints to local agents. The
method allows scalability of the MPC architecture, but is sensitive to
parameter estimation errors and relies on fixed cluster numbers

7.7. Input-coupled systems

An algorithmic partitioning approach for input-coupled systems is
proposed in Wei et al. (2020), where the objective is to derive a novel
iterative DMPC strategy with a dynamic communication topology The
network is assumed to be composed by a number » of coupled linear
dynamics of the form

xi(k+1) = Ayx,(k) + By (k) + Y [Ax; (k) + Byju (k)] . (61)
JEN;
By using the Kalman canonical form, the state coupling can be avoided
with an appropriate selection of the new subsystem states (Stewart
et al., 2010), providing new input-coupled local dynamics’ x;(k + 1) =
Ay%;(k) + By (k) + X v, Byjit; (k). A sensitivity analysis is performed
to establish the effect of the coupling variables on the optimization
problem. On this basis, a threshold triggering communication between
local controllers is derived. Accordingly, an algorithmic procedure de-
termines the entries of a communication matrix at each time step, thus
obtaining an event-triggered topology change for the communication

networks defining the local controllers.
7.8. Hierarchical clustering for input-coupled systems

Hierarchical clustering for input-coupled systems is proposed in
Wang and Koeln (2023), where a distance function induced over mini-
mal robust positively invariant sets is used as an underlying metric for
the clustering algorithm. Specifically, the hierarchical clustering of Xu
and Wunsch (2005) is used to design a robust Dec-MPC, as the one
of Trodden and Maestre (2017). The approach is iterative and defined
for a given number of hierarchy levels, starting from the network
considering each agent as an individual cluster. A tuning parameter
a > 0 is defined to perform the clustering. At each step, the minimum
distance d™® = min, ; d;; is computed. Then, the procedure aggregates
together the agents for which d;; > (1 + @)d™". Then, the procedure is
iterated for the next hierarchy level until one single agent representing
the entire network is obtained.

7.9. Computational complexity and controllability

An algorithmic partitioning approach oriented at the minimization
of the computational complexity of the resulting DMPC architecture
while ensuring the controllability of the resulting subsystems is de-
veloped in Arastou et al. (2025). To this aim, the authors develop
an algorithm for the reduction of the number of iterations 7 required
to retrieve an (approximate) solution of a distributed optimization
problem with a desired accuracy e. The idea behind this approach is
that by finding the partitioning that minimizes the number of iterations
of the DMPC, the amount of information shared among the agents will
also be minimized. In Arastou et al. (2025), the desired partitioning is
obtained through the minimization of the cost function F dependent
by the selected partitioning 7/ is defined as:

Np,

> g, m;, N.n,),

i=1

F(P/) = (1ogﬂ(p/) (62)

¢ 1>
0

I (xo)k)» Yoy

where f(C;) = g(n;,m;,N,n.) is a function of the number of states

and inputs of the collection C,, the prediction horizon N, and of the

7 Note that this state transformation can be already considered a
partitioning of the state of the network.
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number of constraints n,; and J(x(). u?OI ) is the cost function for the
first prediction step, evaluated with the first iteration of the control
action. The minimization of (62) is sought using the Kernighan-Lin
algorithm (Kernighan & Lin, 1970) based on iterative node exchange.

8. Community-detection-based partitioning
8.1. Fundamentals and modularity metric

Community detection is a fundamental branch of modern network
theory, and its scope is the identification of groups of elements in
the network that have a higher probability of being strictly connected
to each other w.r.t. other member in the network (Fortunato & Hric,
2016). Among the methodologies for community detection, we find
optimization-based, algorithmic, dynamics-based, and consensus-based
approaches, as well as methods based on statistical inference, and
spectral or hierarchical clustering: an extended discussion about these
topics can be found in Fortunato (2010) and Fortunato and Hric (2016).
Partitioning approaches based on the quality function called modularity
belong to the broader class of methods for community-detection in
graphs (Fortunato, 2010), i.e. they are clustering methodologies, often
algorithmic. In this context, modularity is a metric that has been
consistently used to quantify the quality of the resulting clusters, not
only in network theory, but also for control systems. Several studies
in the field of partitioning for predictive control use modularity as
a fundamental metric. Therefore, we treat this topic separately from
other partitioning approaches.

In control theory, modularity has been applied to compute the par-
titioning of the graph associated with a dynamical system. The method
to derive this graph has been discussed in Section 3.2. However,
modularity-based partitioning can also be deployed over agent-based
representations of the form Section 3.3, which is a conceptually differ-
ent use case. In general, for a network with a given adjacency matrix A,
and a partition into N communities P = {C,,...,Cy}, the modularity
Q index is constructed as:

injout
_ 1 iy
=m ; <A<i,j) = om >6,-j,

where A ; is the ijth element of the adjacency matrix, kﬁ“ and k" are
respectively the in- and out-degree of node i in the network, m is the
total number of edges, and the binary variable §;; is equal to 1 if nodes
i and j are in the same community, and zero otherwise. Modularity-
based partitioning approaches all focus on finding the partitioning P
that maximizes the modularity Q (usually, for a given number N of
communities). In the remainder of this section, we will discuss how
modularity-based partitioning has been used in predictive control, and
provide different examples.

o (63)

8.2. Maximization of modularity by iterative bipartition of the network

The most used methodology for modularity maximization in control
has been presented in Jogwar and Daoutidis (2017). The approach is
based on the construction of the modularity matrix /3, whose entries
are defined as:

in g out
kK

(64)

Bijy=Aip = —p
Then, the partitioning approach iteratively splits the network into
two communities. To this aim, a vector s with a size equal to the
number of nodes in the network is defined as follows. When a split
is performed, the network N is divided into two communities: C, and
C,. Accordingly, the ith entry of s is defined to be equal to 1 if i € C,,
and —1 if i € C,. The modularity associated with this new partition of
the network is then:

L T
Q—4ms (B+BT)s. (65)
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The specific partitioning algorithm used to perform the modularity
maximization of the basis of the iterative division is Leicht and Newman
(2008), which successively divides the network into communities using
approximate spectral optimization for the divisions. Fine-tuning by
node shifting (Newman, 2006) is performed at each step to improve
the partitioning quality.

The paper (Pourkargar et al., 2017) investigates the impact of sys-
tem decomposition on the performance and computational efficiency of
DMPC applied to nonlinear process networks (Liu, Chen et al., 2010).
The study compares the partitioning of a network obtained through
community detection with intuitive partitioning given by expert sub-
system selection according to energy or technical considerations. The
metrics used for comparison are the closed-loop control performance
and computational burden.

Extension of the partitioning methodology (Jogwar & Daoutidis,
2017) to weighted graphs using the module of the partial deriva-
tives of the dynamics around the operating points for nonlinear sys-
tems is proposed in Jogwar (2019). The partitioning procedure relies
on a modified version of the multiway spectral community detection
algorithm (Zhang & Newman, 2015) developed for unweighted graphs.

8.3. For optimization problem decomposition

An algorithmic partitioning approach for the optimization problem
decomposition using community detection has been proposed in Tang,
Allman et al. (2018). The optimization problem related to DMPC con-
sidered in this work is assumed to be in a “separable” form:

mUin f10) + -+ f,(vy) (66)
s.t. ¢;j(vy,...,0,) =0, j=1,...,m (67)
v;EV, i=1,...,n, (68)

where the scalar variables in v belong to decoupled intervals, the objec-
tive function is separable, and the coupling in the problem only arises
in the equality constraints. To decompose the problem, the authors
of Tang, Allman et al. (2018) use two different graph representations.
In the first, they use a bipartite graph, where variables are linked
to constraints according to the existence of their partial derivatives,
thus capturing their functional interaction. In the second graph, they
use a unipartite representation using the variables as nodes, and the
number of coupling constraints as arcs. From these two graphs, it
is possible to obtain adjacency matrices, and accordingly find the
partitioning of these graphs that minimizes the modularity, both for
unipartite (Newman & Girvan, 2004), and bipartite (Barber, 2007)
representations. Modularity optimization is achieved using the Louvain
fast unfold algorithm (Blondel et al., 2008).

Optimization problem decomposition based on modularity opti-
mization is proposed in Segovia et al. (2021) through the use of
optimality condition decomposition (OCD) (Conejo, 2006), to overcome
the assumption that the cost function of the optimization problem
must be separable to decompose it. For a given non-completely-coupled

optimization problem:
Inzill f(2) 69)
s.t. b(z) <0, (70)

the OCD allows the problem to be decomposed into N subproblems,
for which a relaxed formulation (Bertsekas, 1996) takes the form

N
; @) ¢ () @) () ( (1) (N)
min FOEDY 4 200 (2D 4 (71)
Ehe g‘ ( )
st i (20,2 ™M)y <0  ie{l,...,N}
g () <0 ief{l....N},

where z( is the variable of the ith subproblem, h is a set of complicat-
ing constraints without which the subproblems would be independent,
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g are the constraints resulting from the conversion of 5(z) < 0, and 1 are
the Lagrange multipliers. To the problem (71) is associated the matrix
of first-order Karush-Kuhn-Tucker condition (Boyd & Vandenberghe,
2004) that can naturally be interpreted as a graph ¢ = (V, &), for which
modularity-based community detection can be applied. Modularity
maximization is achieved through the fast unfold algorithm (Blondel
et al, 2008), thus providing a decomposition of the optimization
problem and consequently a partitioning of the system.

8.4. Frequency-based graph weighting

The use of a frequency-based index to perform partitioning through
community detection is explored in Wang et al. (2023), where the net-
work is represented through an input-output bipartite graph, as in Sec-
tion 3.4. The edges connecting I/0 variables are weighted through the
linearized frequency response between each pair of variables. Specif-
ically, the integral of the magnitude of the transfer function between
two variables (u;, v;) for a given range of frequencies [w,,®,] is com-
puted as:

“2 |G;(jo)l
/ ———d), 72)
o1 V141G, (o)l
and then a normalization is used to obtain the weights w;; =1 - e,

This allows to retrieve a monotonically increasing weighting in the
range [0, 1] for all the edges. The computation of the partitioning based
on this weighting is performed through a modified version of Barber’s
algorithm (Barber, 2007).

8.5. Time-varying graph representations

Exploration of a partitioning algorithm for time-varying systems is
proposed in Arastou et al. (2025) where nonlinear dynamics of the
following form are considered:

x(1) = f(x(®)) + g(x(0), u(®)) (73)

y(@) = h(x()).

For this class of systems, an associated graph representation is con-
structed using as weighting for the edges the partial derivatives of
the dynamics w.r.t. the variables. Specifically, denoting with an arrow
an edge between variables, the corresponding weights are defined as
in Kravaris and Kantor (1990):

%%

Xi

og; | oh;
X,

S K (74)

Once all the weights are defined, the corresponding adjacency matrix
A24 is constructed, and accordingly, the modularity metric Q can be
used for graph partitioning. The algorithm used in this case is the
spectral community detection detailed in Zhang and Newman (2015).

8.6. Hierarchical approach for time-varying graphs

A hierarchical algorithmic approach for time-varying topologies is
presented in Riccardi et al. (2025b, 2025c). Starting from the graph
representation in Section 6.7, the partitioning problem is divided into
two parts: first, a selection of fundamental and indivisible systems
dynamics, called FSUs, is performed algorithmically; then the FSUs are
aggregated into collections, called composite system units (CSUs), for
which a controller is designed. The algorithm for this procedure is
available in Riccardi et al. (2025c). Application of the algorithmic selec-
tion of FSUs allows to obtain a network structure N = {S,..., S, NFSU}
from any given dynamics of the form (3). The second part of the
partitioning strategy is an aggregative procedure for merging FSUs into
CSUs. To this aim, a modularity-inspired metric is designed to capture
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the strength of the interaction intra- and inter-CSUs, while balancing
their size. These individual components of the metric are:

Wt = N Jwi(s ) (75)
SHEV;

witer= % ¥ Y w0l + lw;t,9)] (76)
s€F; JENC, tENNY;

W = |G, 77

where V, is the set of the nodes in the set C;, and F; its frontier. Using
these terms, the global metric for partitioning, named partition index,
is defined as:

m

Intra
QWi

i=1 a

PP) = +— :
1+ ) iz
=

(78)

m
14 3 e

i=1
where « is the parameter affecting the granularity, thus allowing bal-
ancing the effect of the size of the collections in the partitioning. A
greedy algorithmic procedure is used to iteratively assign the sub-
systems S; to the collections C; such that at each assignment the
variation Apldx = pidx(pnewy _ jidx(poldy j5 maximized. The partition
index defined in (78) can also be used in global search optimization
(genetic algorithm), as similarly proposed in Riccardi et al. (2024b,
2024c).

9. Partitioning based on game-theoretical coalition formation

Coalitional predictive control is among the most recent formulations
of non-centralized predictive control (Maestre et al., 2014). It consists
of a combination of optimization-based control and game theory in
which dynamical groups of agents cooperate to achieve a coordinated
action to optimize some given performance criteria. At the basis of this
strategy, there is the concept of coalition formation, explained in detail
in Ray (2007), according to which agents in a network group them-
selves into coalitions to improve their collective outcome. In coalitional
control this concept is used to obtain a distributed control strategy.

In this section, the main partitioning strategy used in coalitional
predictive control will be introduced first, and then details about
fundamental alternatives will be given. After, the theoretical properties
of coalitional predictive control and their relation to partitioning are
discussed. Various extensions and applications are presented in the
remainder of the section.

9.1. The concept of coalitional control: predictive control and game theory

Consider a network N constituted by N, agents, i.e. a collection
N = {Ay,..., Ay, }. A coalition C is any subset C C N where agents
in C cooperate. To each coalition it is assigned a characteristic function
v(C), mapping the coalitions into real numbers, i.e. v : 2V4 = R, v(C) >
0. A coalitional structure P is a collection of disjoint coalitions covering
the entire network, in other words a non-overlapping partitioning of

the network P = {C,,...,C Ne }. The value of the coalitional structure is

the sum of the individual contributions of each coalition:

VP = o). (79)
cep

The objective of the characteristic function game (CFG) (Sandholm et al.,
1999) played by the agents, and that is considered in coalitional
control, is to find the coalitional structure that maximizes the total
welfare:

P* = P

arg max V(P), (80)
where M is the set of all possible disjoint partitions of A. Various
methodologies can be deployed to solve this problem, as it will be
presented in the remainder of the section.
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The framework of the CFG is well suited for developing distributed
predictive control strategies since it is, at its core, a distributed opti-
mization approach. One of the first works that formalizes the coalitional
predictive control strategy is (Fele et al., 2017), where a large-scale
system is assumed to be composed of subsystems of the form:

x;(k+ 1) = f(x;(k),u;(k)) + w;(k)

wik) =Y hCx; k), u; (k).
JEN;

(81)

Each of these subsystems is an agent .A;, and it can participate in a
coalition C,, such that UL‘I C,=N,C,nC, =0V, me{l,...,N¢},
with N, the number of coalitions. Each subsystem is associated with a
local optimization problem:

N-1
Jmin J; = 3 Iyl = 11k) (82)
kol =
+ Ji(x;(N1k), u;(N — 1]k))
st x(k+1) = £k, u;(k)) + (k)
x;(0]k) = x;(k)
8i(Xikdix) <0,
where ; is an estimate of the dynamical coupling of x; with its

neighboring subsystems, and %, i, are the state and input sequences
defined over the prediction horizon N for a time step k. A coalition
C, is formed only if the value of the cost associated with the coalition,
i.e. J,, is lower than the sum of the costs of the individual subsystems.
Thus, the coalition formation condition is:

< I

ieC,

(83)

In the framework of CFG, the simplest characteristic function asso-
ciated with a coalition C, is v(C,) = J;. In this case the coalition
formation problem consists in finding the optimal coalitional structure
P* = argmax Y, ep U(Cp) = Zgil J7, with a number N of coalitions.
This problem is known to be NP-Complete (Sandholm et al., 1999),
inheriting the same complexity of the general partitioning problem.

The underlying principle of coalition formation described above
is shared among all coalitional control strategies, and variations are
present in the definition of the characteristic function, the individual
payoffs, the implementation of the local MPC controllers, the com-
putation of ordering maps sorting agents costs, and the aggregation
algorithm. In the remainder of the section, we report variations, exten-
sions, and applications of the partitioning approach found in coalitional
control literature.

9.2. Foundational works

Coalitional predictive control is effectively formalized in the semi-
nal work (Fele et al., 2017). To overcome the computation complexity
associated with the general coalition formation approach described in
the previous section, the partitioning problem is addressed by looking
at the coalitional structure P where the participation preference of each
agent A is sorted according to their Pareto ordering. This is achieved by
first using the Shapley value (Shapley, 1953) to compute the individual
payoffs of each agent .4 in each possible subset of agents S C N, that
for agent A; € S is defined as:

ICldSI - 1€ = D!

I ®Y

s _
¢Al -
cCs\4,

[v(Cu A)—v(©O)].

Using the Shapley value it is possible to build a mapping @ : A" x2V x
7Z — R for each agent in each possible coalition, i.e. at each time step
k a function @(A;,C;, k) is available. The function @ provides for each
agent their preferred participation order into coalitions. Accordingly,
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agents can autonomously organize into the coalitional structure® P®.
The dynamic coalition formation is guided by an individual payoff &
coinciding with the energy exchange with the main grid.

A first extension of Fele et al. (2017) is found in Fele et al.
(2018), which proposes a coalitional predictive control strategy with
self-organizing agents. The coalition formation strategy is based on
a negotiation protocol allowing agents to autonomously form coali-
tions based on expected performance improvements and cooperation
costs. In particular, the coalition formation problem is framed as a
transferable utility game (Cesco, 1998; Sandholm et al., 1999; Stearns,
1968), where agents decide to merge or separate dynamically using
a bargaining protocol. The coalitional benefit is considered under
the assumption of individual rationality, described in the following.
Consider two coalitions C;, C,, and the value of their individual and
aggregated characteristic functions, i.e. v(C)), v(C,), and v(C; U C,).
Also, consider the value associated with each of the players in the
coalition, denoted by v(C; U G,)|; for i = 1,2, and defined such that
V(€1 UGy +0(C UGl () = v(Cy UG). Then the merger of v(C,), v(C,)
occurs if and only if the condition v(C; U G,)|;) < v(C;) holds for both
i = 1,2, which is known as individual rationality. The value associated
with a player v(C) is then considered as an economic index, a utility that
can be transferred. Consequently, a bargaining procedure is designed to
merge the coalitions considering that, when aggregating two coalitions,
the value v(C)) + v(C;) — v(C; U C,) is a surplus that can be reallocated
between the remaining agents.

Another bottom-up aggregative procedure for coalitions has been
devised in Maestre and Ishii (2017) where a PageRank (Brin & Page,
1998; Ishii & Tempo, 2014) approach is used as the metric to guide
local node exchanges among coalitions. For a graph ¢ = (V, &), the
PageRank associated with each node i € V is a scalar p; € [0,1],
s.t. X,eppi = 1. Given the neighborhood N; of node i, its PageRank
value is computed as p; = Y. ieN. Pj /n;, where p; is the value associated
with node j, and »; its number of edges. Once the values p are known
for all the nodes, a weighting of the links is performed assigning to
each ¢; a weight w;; = p;/n;. The distributed computation of the
PageRank is performed using the algorithm (Ishii & Tempo, 2010),
then an algorithm to aggregate nodes into coalitions using iterative aid
requests.

A combination of the methodologies (Fele et al., 2017) and (Maestre
& Ishii, 2017) is found in Muros et al. (2018) where a randomized
method for the estimation of the Shapley value is applied. Specifically,
the Shapley value defined as the vector ¢p(N',v) Vi € N, for the game
induced over the set of agents N and for a characteristic function v
(coinciding with the stage cost of the local MPC), is used to introduce
a weighting of the links among agents, which is defined for the undi-
rected link ij € € as w;; = (N, 0)/|E] + ¢;(N,v)/|&;|. To address
the problem of the combinatorial explosion associated with the com-
putation of the Shapley value associated with all possible coalitions,
randomized methods (Castro et al., 2009; Ishii & Tempo, 2010) are
proposed to estimate it. In particular, using the modified definition of
the Shapley value given in Castro et al. (2009), an estimation of its
value is given for a set of ¢ samples of all possible coalitions, giving an
approximation of the value, whose efficient estimate is distributed as
$; (N, v)~ N (d),-,aé‘ /q), with bounded error.

9.3. Technical extensions: feasibility, stability, robustness

Theorems for the stability and recursive feasibility (Mayne et al.,
2000) of a coalitional predictive control formulation have been pro-
posed in Baldivieso Monasterios and Trodden (2021). The aggregation
of coalitions is achieved through a consensus procedure, where for each

8 The partitioning P® does not necessarily coincide with the optimal
partitioning P* in terms of global minimization of the value of the cost
function J(%,, i, 6;) in (46).
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coalition C; in a given state x a consensus optimization problem is
defined as:

Cné% Ji(C;, C_yyx) = JEOMESUS(C C_ x) + pd POVN(C, x), (85)
and C_; £ {C ';}jew, is the set of possible neighboring coalitions. In this
optimization problem, the term J"¢™U = 0 if coalitions C; and its
neighbors agree on the current arrangement into coalitions, and the
term JP°"" weighted by the scalar p represents the effect of coalition C;
on neighbors opinions (Muros et al., 2017). The consensus optimization
is achieved through an algorithm that leverages the theory of finite
exact potential games (Monderer & Shapley, 1996).

Another extension is found in Chanfreut, Maestre, Ferramosca et al.
(2022), where tracking of target sets is achieved. Coalitions are formed
to enlarge the domain of attraction of MPC, but when sufficient, the
decentralized formulation is used. The underlying partitioning strategy
is hierarchical, where partitioning is executed at a slower time scale
over a heuristic selection of possible communication topologies. The
coalitional scheme is defined by Maestre et al. (2014). In particular,
given the set M of all possible communication topologies, and for a
partitioning P € M, the characteristic is defined as:

V(P,xp) = (xp —xp) Pp(xp — xp) + c|Epl, (86)

where xp is the aggregated state of all the coalitions at time step k,
x is the Chebyshev center of the target set, |Ep| is the number of
communication links enabled in the partitioning P, ¢ > 0 is a scalar,
and P, is a positive definite matrix.

9.4. Market-based partitioning

A market-based coalition formation approach applied to coalitional
predictive control is introduced in Masero et al. (2022). The strategy
is inspired by other market-based approaches (Son et al., 2004), and
results in a hierarchical coalitional control strategy. For a given objec-
tive function J of the plant, a quadratic sum of the output and of the
control variable ¢, the market-based coalitional strategy is implemented
by defining for each agent i € N in the plant, a utility value U,(-) =
—J;(-) that the agent i can supply or demand to purchase or sell a
quantum of input 4q. Accordingly, the set of agents is split into two
disjoint subsets Lg, L4 of supply and demand agents, with respective
utilities. Then, the utility is computed and classified according to the
two groups for each agent or coalition. This way, the requests can
be sorted in descending and ascending order for demand and supply,
and trades are performed according to this matching. The hierarchical
coalition formation procedure is then implemented starting from the
coalition formed by individual agents, and runs periodically according
to a fixed time step bigger than the control step. Heuristics ensure the
terminability of the algorithm.

Feedforward Neural Networks (NNs) (Fine, 2006) are used in
Masero, Ruiz-Moreno et al. (2023) to reduce the computational com-
plexity of the market-based hierarchical formulation introduced in
Masero et al. (2022). Specifically, in Masero, Ruiz-Moreno et al. (2023)
sets of NNs are used with two different scopes in cascade. The first set
of NNs uses information about states and disturbances to approximate
the values of the utilities of supply and demand agents. These are used
to implement the market-based coalition formation. Then, a second
set of NNs, using the same information and considering the coalition
obtained, approximate the value of the input ¢ for the coalitions, that
can group at most three loops. The drawbacks of this strategy arise
from the defining technical characteristics of NNs, which include the
necessity of rich enough data to perform the training, the inability to
provide suitable outputs when the operating conditions of the plant are
distant from the training set, and the lack of guarantees for constraint
satisfaction.
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9.5. Further extensions

Predicted topology transition is proposed in Masero, Maestre et al.
(2021) as an evolution of the work in Fele et al. (2017). The method
extends Coal-MPC by incorporating a transition horizon variable, which
optimizes the timing of topology changes over the prediction hori-
zon. Unlike previous coalitional control methods that switch coalition
structures instantaneously, this approach gradually transitions between
topologies, allowing agents to anticipate and optimize their control ac-
tions accordingly. The strategy also belongs to hierarchical coalitional
control, where the upper layer, working at a lower rate, is designed to
obtain the desired coalition and the transition horizon.

Pairwise clustering is proposed in Masero, Frejo et al. (2021) where
agents are grouped in couples, yielding to a hierarchical control ap-
proach. In the upper layer, at each time step k, the measurement of the
inputs in each agent at the previous time step is collected into a vector
q;“_efs‘“ed. This vector is then sorted in ascending order, giving qZ"_‘Ted.
Then, the partitioning of the plant is obtained by coupling together the
first and last elements of qi"flted and removing them from the vector
until no further assignments are possible.

The problem of resource sharing under partitioning is addressed
in Sanchez-Amores, Martinez-Piazuelo et al. (2023), where a prior
partition P = {C,,...,Cy,} of the system is assumed to be given, e.g.
using one of the techniques in Masero, Frejo et al. (2021), Masero
et al. (2022) and Masero, Ruiz-Moreno et al. (2023). The problem of
distributing the shared resource is solved using a population-dynamics-
assisted resource allocation strategy (Barreiro-Gomez & Tembine, 2018;
Martinez-Piazuelo et al., 2022), specifically a Smith population dy-
namics with carrying capacities (Barreiro-Gomez et al., 2018). Fol-
lowing the hierarchical coalitional control methodology introduced
in Masero et al. (2022), the resource allocation (for a fixed partitioning)
is performed at a slower time scale.

9.6. Partitioning for input-coupled systems
The use of coalitional predictive control for systems with coupled

input dynamics is found in Masero et al. (2020b), where the following
input-coupled agent representation is considered:

x,(k+ 1) = Ax,(k) + Y, By (k) + a,(k), 87)
JEC;
with u;; = —uj, and w; is a disturbance. The underlying coalitional

formation approach is a hierarchical methodology of the form (Fele
et al., 2017), where in the upper layer a new coalitional structure is
assigned according to a fixed time step longer than the control sampling
time. In this case, the computational complexity of evaluating the best
topology is reduced by considering as candidate successors only the
allocations P"Xt that have a Hamming distance of one from the current
configuration PCWrent j e they differ from only one link allocation.

A further extension of coalitional predictive control for coupled
input dynamics has been proposed in Sanchez-Amores et al. (2022).
In this work, couplings in the inputs among agents are decomposed
into private and public variables, a feature detailed in La Bella et al.
(2019). This approach is used because it allows more flexibility in
the computation of the control action w.r.t. robust approaches as
tube-based MPC that is more conservative.

An extension of Sdnchez-Amores et al. (2022) is found in Sanchez-
Amores, Chanfreut et al. (2023), where a robust tube-based formula-
tion of the controller is proposed (Mayne et al., 2005). Additionally,
in Sanchez-Amores, Chanfreut et al. (2023) the presence of communi-
cation links is event-driven, i.e. communication links are activated only
if scaling factors exceed predefined thresholds that allow to establish a
trade-off between performances and communication burden.

A further advancement in coalitional control for input-coupled dy-
namics is achieved in Masero, Baldivieso-Monasterios et al. (2023),
where a robust strategy allowing plug-and-play capabilities is devised.
The approach is based on an evolution of public and private factors
introduced in Trodden and Maestre (2017) and already employed
in Sanchez-Amores et al. (2022).
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10. Heuristic partitioning

In this section, we present partitioning techniques that have been
developed for specific applications. These techniques, while not broadly
applicable at the current stage, might eventually be generalized. In
addition, they still find relevance to their field, for which are readily
available.

Partitioning for Dec-MPC of wide-area power systems is investi-
gated in Jain et al. (2018). The technique is heuristic and based on
the use of the modal participation matrix that highlights the effects
of each generation on each dominant mode in low-frequency oscil-
lations. The partitioning technique allows overlapping partitioning,
giving both the nature of the dynamical couplings and the use of a
DMPC strategy (Alessio & Bemporad, 2007). The approach is applied
to the Northeast Power Coordinating Council nonlinear power system
model (Rogers, 2000), comprehending 48 electrical machines and 140
buses, showing the performance and the resilience of the network for
two different partitionings compared to centralized control.

Partitioning for wind farms is proposed in Ye et al. (2019), where a
HMPC strategy is proposed. The partitioning strategy is performed on
the highest level of the hierarchy every 15 min. Based on a forecast of
the wind characteristics for the next 20 min, an optimization strategy is
deployed to cluster the wind turbines in one of 12 categories based on
the possible load operating conditions the turbines can experience. The
proposed HMPC strategy was validated over a modified version of the
IEEE One Area RTS-96 network (Grigg et al., 1999), and compared with
conventional dispatch and schedule allocation algorithms, achieving
significantly better performance.

A strategy for partitioning vehicle platoons is implemented in Liu
et al. (2019), with the objective of deploying a noniterative two-level
DMPC architecture ensuring closed-loop stability for an optimization
problem with coupled cost functions and constraints. The partitioning
strategy is based on the assumption that the cooperation set of vehicles
VY can be divided into groups that belong to two main conceptual
categories, i.e. dominant and connecting clusters. The algorithmic parti-
tioning allows vehicles to perform the operations of joining and leaving
a platoon on the basis of this group classification. The DMPC strategy
is then designed around this partitioning approach, ensuring stability
and feasibility. Validation of the approach is performed for a platoon
of four vehicles, and compared against CMPC, showing minimal loss in
performance.

A strategy for event-triggered partitioning of microgrids is devel-
oped in Ananduta and Ocampo-Martinez (2021), where the economic
dispatch problem for energy production is addressed. The power net-
work is considered to be constituted of microgrids that are considered
self-sufficient systems, i.e. they do not exchange energy with their
neighbors in nominal operating conditions. However, if this generative
autonomy is lost, re-partitioning of the network is triggered, leading
to a new definition of the microgrids. This re-partitioning is performed
through a communication protocol, which evaluates the best node ex-
change among the microgrids that minimizes the individual outcomes
in economic terms, while ensuring self-sufficiency. The approach is
validated on the PG&E 69-bus distribution network. The simulation
results show that during peak hours all microgrids should join into a
single agent to satisfy the demand, whereas during off-peak hours they
can split into multiple coalitions.

The paper (Huanca et al., 2023) proposes a distributed Switching
Model Predictive Control (SMPC) strategy for quadrotor UAV swarm
aggregation incorporating collision avoidance. Teams of UAVs are se-
lected using a clustering strategy, and local controllers solve the SMPC
problem sequentially (Christofides et al., 2013). The clustering ap-
proach is based on the sphere packing problem (Conway & Sloane,
1988). A cluster of UAVs is selected according to the positions of UAVs
in space (Gauci et al., 2014), assuming these are always available. In
the sphere packing problem, the objective is to find the arrangement
of non-overlapping spheres so that they occupy the largest possible
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fraction of space. Solutions are available in the literature for this prob-
lem (Conway & Sloane, 1988). The approach is validated with a group
of 150 UAVs, using both centralized and distributed control strate-
gies for the aggregation. The proposed distributed SMPC can achieve
comparable aggregation performance w.r.t. its centralized counterpart
while drastically reducing computation time.

11. Applications and case studies

In this section, we develop a classification that relates the par-
titioning methodologies found in the literature to the systems used
for their validation. In the resulting Table 8, for each application
system, partitioning methodologies are classified according to Fig. 4.
When possible, we also provide references to more standardized test
cases for their direct use in the development of further strategies.
After this classification, we briefly describe the known case studies in
the literature and the works that have been developed using them,
providing information about the resulting control architectures and
performance when available. Finally, for community-detection-based
and game-theoretic oriented methods, we discuss additional applicative
works that are of interest.

11.1. Classification and benchmark systems

From Table 8, we note that many works have been developed for
power systems. However, if we consider standard generation and trans-
mission systems, no specific case study has been consistently used to
derive partitioning techniques. Therefore, it is difficult to quantitatively
compare different works. An exception in this sector is the parabolic-
trough plant ACUREX (Gallego & Camacho, 2012; Galvez-Carrillo et al.,
2009), for which many Coal-MPC strategies have been developed.

Several other applications are reported in Table 8, all used in the
development of a specific partitioning methodology for the application
of non-centralized control. Especially for transportation networks, we
observe a notable lack of studies in partitioning for NCen-MPC of
urban traffic, freeway transportation, and railway networks (Luan et al.,
2020). The other case studies are, in general, smaller systems that
can be used for the development of strategies, but do not stress the
scalability of the approaches.

Several other large-scale application fields can be considered for
studies in partitioning, such as swarms of mobile robots or autonomous
maritime vehicles (Zhou et al., 2020), automated agricultural systems,
district heating (Blizard & Stockar, 2025), satellite constellations (Curzi
et al., 2020), and advanced industrial processes (Galloway & Hancke,
2013). Some of the applications listed can be found, for example,
in the recent work (Pedroso et al., 2025) about the design of large-
scale systems, or in the set of benchmarks proposed in Maestre and
Ocampo-Martinez (2025).

11.2. Analysis of the case studies

In this section, we discuss in more detail how the case studies in
Table 8 have been used in the literature to validate partitioning ap-
proaches for NCen-MPC methods. The works are divided by application
domain, where different partitioning classes have been used for each of
them.

Power systems. Regarding energy generation and transmission net-
works, we find the implementation of the coalitional control ap-
proach (Fele et al., 2017) applied to energy management in smart grids,
specifically to optimize local energy trade among consumer nodes with
distributed generation and storage capabilities. In Fele et al. (2017),
prosumers (producers-consumers) (Larsen et al., 2014) cooperate to
reduce power dependence from the main grid while minimizing energy
exchange costs and transmission losses among them. Simulation results
illustrate how coalitional structures evolve over time, showing how

29

Annual Reviews in Control 61 (2026) 101046

coalitional trade reduces overall costs compared to grid-dependent
strategies, as prosumers can access more favorable internal energy
prices. Also the Coal-MPC strategy in Fele et al. (2018) is applied for
wide-area control of power networks (Chakrabortty & Khargonekar,
2013), showing the ability of the architecture to adapt to topological
changes that may arise with faults or network extensions. An HMPC
approach with local Dec-MPC is deployed in La Bella et al. (2022) to
control local power clusters independently. Local requests of energy
activate a supervisory layer if clusters cannot satisfy the demand.
Further features, such as using energy storage systems, multiple time
scales, and ADMM distributed computations in the supervisory layer,
are detailed in La Bella et al. (2022). The approach is implemented
on the IEEE 118-bus, showing the online clustering capabilities of the
approach.

An important case study in the energy sector is the parabolic-trough
plant ACUREX, located in Plataforma Solar de Almerfa (Gallego &
Camacho, 2012; Gélvez-Carrillo et al., 2009) composed by 10 loops,
and its scaling to 100 loops, for which many Coal-MPC strategies have
been developed. A parabolic-trough solar collector field is a system
composed of many loops of parabolic collectors focusing heat on a
trough flowed by the heat transfer fluid (HTF). This fluid is thus heated
and can be used for electrical energy generation. The objective of a con-
trol strategy applied to this system is to maximize the thermal power
output by regulating the flow ¢ of the HTF across the loops, where
the dynamics of the plant is nonlinear and subject to disturbances
caused, e.g. by the variability in atmospheric conditions. For example,
a direct pairwise matching approach in Masero, Frejo et al. (2021) to
cluster loops of the plants in couples is motivated by the fact that loops
with a deficit of flow rate can benefit from those with excess flow.
The approach has been proven to outperform Dec-MPC, approaching
CMPC performance while significantly reducing computation time. The
market-based control architecture developed in Masero et al. (2022) is
also validated on the model of the real-world collector field ACUREX.
Comparison strategies include PI control, two different CMPC strate-
gies, and the control strategy based on loop-pair clustering devised
in Masero, Frejo et al. (2021). According to the simulation results,
the market-based coalitional predictive control is the best-performing
strategy with a gain of 12.51% w.r.t. PI control, outperforming also
the CMPC implementation with 0.37%. Additionally, an analysis of the
computational burden is performed. In practice, the CMPC strategy is
not deployable because its computation time exceeds the operating time
step of the plant. On the contrary, market-based coalitional control
is fast enough to be potentially scaled up to a plant of about 300
loops while maintaining the same performance gains. The coalitional
controller in Masero, Ruiz-Moreno et al. (2023) is compared with the
nonlinear coalitional controller developed in Masero et al. (2022). The
NN-based coalitional controller (Masero, Ruiz-Moreno et al., 2023)
shows a performance that is comparable with the one obtained in
the nonlinear implementation (Masero et al., 2022), but providing a
considerable reduction in the computation time needed to compute the
control action and the partitioning of the network with a reduction up
to the 99% w.r.t. the time required in the NLin-MPC implementation.
Also the approach in Sanchez-Amores, Martinez-Piazuelo et al. (2023)
is validated on a 100-loop implementation of ACUREX and compared
with CMPC. The results show a negligible loss in performance while
significantly reducing the computation time required to retrieve the
control action. The study (Chanfreut et al., 2023) introduces a hierar-
chical clustering-based MPC strategy for optimizing heat transfer fluid
flow rates in solar parabolic trough plants (Boukelia & Mecibah, 2013).
Simulations performed on 10-loop and 80-loop plants show significant
effectiveness of the technique and minimal performance loss.

Water systems. Water network control is another field that has seen
extensive application of partitioning strategies. In this case, we dis-
tinguish between water-tank systems, which are usually small-scale
test cases used to validate the viability of the approaches, and large-
scale water distribution networks, among which the Barcelona drinking
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Table 8
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Application fields of the partitioning techniques for NCen-MPC, classified by sector. When available, benchmark systems have been reported.

Sector

Specific application

Partitioning techniques

Power systems

Six-area power system

Chen et al. (2020)

Smartgrids, 8 (check) prosumers: (Larsen et al., 2014; Paauw
et al., 2009)

Fele et al. (2017)

Wide area power network: (Chakrabortty & Khargonekar, 2013)
The EEA-ENB: (Riccardi et al., 2024a, 2025a)

PG&E 69-bus distribution network

IEEE 118-bus

IEEE 123 node test feeder

Fele et al. (2018)

Riccardi et al. (2024b, 2024c)
Ananduta and Ocampo-Martinez (2021)
La Bella et al. (2022)

Wang et al. (2022)

Nonlinear power system: (Rogers, 2000), 48 machines, 140 buses

Jain et al. (2018)

Parabolic-trough plant: ACUREX model, 100 loops (Gallego &
Camacho, 2012; Galvez-Carrillo et al., 2009)

Chanfreut et al. (2023), Masero, Frejo et al. (2021), Masero
et al. (2022), Masero, Ruiz-Moreno et al. (2023) and
Sanchez-Amores, Martinez-Piazuelo et al. (2023)

Water systems

4-tanks system: (Alvarado et al., 2011)

Wei et al. (2020) and Segovia et al. (2021)

8-tanks system

Masero, Maestre et al. (2021), Maxim et al. (2023),
Sanchez-Amores et al. (2022) and Sinchez-Amores, Chanfreut
et al. (2023)

16-tanks system: (Maestre et al., 2015)

Ntiiez et al. (2015) and Maestre and Ishii (2017)

Barcelona drinking water transport network: (Ocampo-Martinez
et al., 2009)

Barreiro-Gomez et al. (2019), Muros et al. (2018),
Ocampo-Martinez et al. (2012, 2011) and Segovia et al. (2021)

Shanghai water distribution network
Richmond water distribution network: (van Zyl et al., 2004)
Dez irrigation canal: (Isapoor et al., 2011; SOBEK, 2000)

Zhang et al. (2019)
Arastou et al. (2025)
Fele et al. (2014)

Chemical systems

2 CSTR series: (Bakule, 2008; Venkat, 2006)

He and Li (2023), Kamelian and Salahshoor (2015) and Tang,
Pourkargar et al. (2018)

2 CSTR series and flash tank separator: (Christofides et al.,
2013; Liu, Mufoz De La Pena et al., 2010; Liu et al., 2009;
Stewart et al., 2010)

Pourkargar et al. (2017), Rocha et al. (2018), Tang, Allman
et al. (2018) and Wang et al. (2023)

Tennessee Eastman problem: (Downs & Vogel, 1993; Lyman &
Georgakis, 1995), five operation units

Xie et al. (2016)

Benzene alkylation process: 4 CSTR and flash tank separator
Amine gas sweetening plant
Air separation process

Pourkargar et al. (2019) and Arastou et al. (2025)
Moharir et al. (2018)
Wang et al. (2023)

Wind farms

12-turbine wind farm
20-turbine wind farm, NREL 5-MW
25-turbine farm, 1.5 MW

Zhao et al. (2023)
Lin et al. (2020)
Changqing et al. (2022)

42-turbine farm, NREL-5 MW: (Jonkman et al., 2009),
SimWindFarm (Grunnet et al., 2010)

Siniscalchi-Minna et al. (2020)

IEEE One Area RTS-96 network: (Grigg et al., 1999)

Ye et al. (2019)

Transportation systems

4-vehicles platoon: (Zhu et al., 2020)

Liu et al. (2019) and Maxim and Caruntu (2022)

Urban transportation network: (De Oliveira & Camponogara,
2010), 8 intersections

Chanfreut, Maestre, Hatanaka et al. (2022)

Jinan road network

Guo et al. (2019)

15 km freeway stretch: (Messmer & Papageorgiou, 1990),
METANET model

Chanfreut et al. (2021a)

Mechanical systems

Mass-spring-damper chain, 4 elements

Baldivieso Monasterios and Trodden (2021)

(4 + 1)-trucks, connected with springs and dampers: (Trodden &
Maestre, 2017)

Masero, Baldivieso-Monasterios et al. (2023)

12-trucks, connected with springs and dampers: (Riverso &
Ferrari-Trecate, 2012; Trodden & Maestre, 2017)

Chanfreut, Maestre, Ferramosca et al. (2022)

Smart buildings

8 rooms temperature regulation
20 thermal zones control: (Chandan & Alleyne, 2013)

Zheng et al. (2018)
Atam and Kerrigan (2021)

Abstract networks

43 agents flow system: (Koeln & Alleyne, 2017)
Random 50 systems, modular 64 systems, hybrid

Wang and Koeln (2023)
Riccardi et al. (2025b, 2025c)

Railway networks
Telecommunication systems
Industrial plants

Process plant

Aerial vehicles
Cyber-physical systems

Dutch railway network: (Kersbergen, Rudan et al., 2016)
Next generation cellular networks: (Auer et al., 2012)
Walking beam reheating furnace system

Refinery: gas-to-liquid process, hydrocracking process
Group of 150 UAVs

4-agents chain

Kersbergen, van den Boom et al. (2016)
Masero et al. (2020b)

Chen et al. (2020)

Tang et al. (2023)

Huanca et al. (2023)

Maxim and Caruntu (2021)
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water transport network (Ocampo-Martinez et al., 2009) is surely the
most commonly used test case among different NC-MPC approaches.
In Ocampo-Martinez et al. (2012), the e-decomposition is applied to the
Barcelona drinking water network, incorporating a heuristic selection
of ¢, and a hierarchical Dec-MPC strategy is applied to the resulting
three-subsystem network. The architecture is validated against a CMPC
controller implementation showing an overall performance loss always
smaller than 2%, with a reduction of computation times up to 35%. Also
the partitioning methodology in Muros et al. (2018) is validated over
the Barcelona drinking water transport network by applying coalitional
predictive control and comparing it against CMPC, showing how it
can outperform Dec-MPC and other decentralized control architectures.
In addition, a DMPC approach based on density-dependent population
games (Sandholm, 2010) is used in combination with the partitioning
approach developed in Barreiro-Gomez et al. (2019) and tested over the
Barcelona drinking water transport network. Another notable work in
water distribution networks is Zhang et al. (2019), where the network
of Shanghai is considered, using 800 samples of its state and input
variables captured every 10 min from 44 sensors in the network.
Different partitionings are obtained by varying the parameters of the
algorithm, but the one providing 6 groups is selected since it gives
the minimum variance. Simulations are performed to compare the pro-
posed enhancing DMPC strategy with the Dec-MPC approach defined
in Ocampo-Martinez et al. (2012, 2011). Overall, the strategy proposed
by Zhang et al. (2019) allows to achieve a reduction in the water
pressure of the network, while ensuring stability and robustness, thus
reducing leakages and energy requirements. The approach in Arastou
et al. (2025) is applied to the control of a simplified version of the Rich-
mond water distribution network, Yorkshire, UK (van Zyl et al., 2004),
using a flow-based graph representation. The simulations show how
the DMPC strategy applied to different network partitionings always
ensures a negligible loss in performance, while showing computation
times that gradually decrease with a higher number of sets in the
partition.

Regarding water-tank systems, the methodology developed in
Nunez et al. (2015) is validated on a 16 water tanks system (Maestre
et al., 2015), showing how the optimal partitioning is affected by
the change in operating conditions. The coalitional predictive control
strategy (Maestre & Ishii, 2017) is also developed for the same 16 water
tanks system, and compared against CMPC, Dec-MPC, and the DMPC
scheme (Ntfiez et al., 2015). The strategy proposed in Maestre and Ishii
(2017) is the best performer in terms of optimality gap w.r.t. CMPC,
after parameters calibration. The DMPC strategy proposed in Wei et al.
(2020), instead, is validated for the four-tank water system (Alvarado
et al., 2011; Distributed model, 2015) against cooperative DMPC with
static topology, effectively reducing the communication burden. An-
other method validated on a four-tanks system is the OCD-DMPC
approach proposed in Segovia et al. (2021). However, the validation
against other MPCs is only qualitative. For eight-tanks water systems,
we report the strategy in Masero, Maestre et al. (2021), where the
approach can reduce communication and coordination costs of coali-
tional schemes while maintaining performance close to CMPC. For a
similar case study, the work in Sdnchez-Amores et al. (2022) shows how
varying the parameters of the partitioning strategy developed allows
for balancing the communication burden with the performance loss.
Finally, the approach in Sinchez-Amores, Chanfreut et al. (2023) is
also validated using an eight-tank water system against centralized
and Dec-MPC. The simulation results show that coalitional control can
outperform Dec-MPC while approaching CMPC performances with a
reduction of 83% in terms of communication cost.

Chemical plants. Chemical systems have been the subject of deep stud-
ies regarding partitioning, given the complexity of the associated dy-
namics. We report the presence of many system configurations in-
volving CSTRs and separators, e.g. Bakule (2008), Liu et al. (2009),
Stewart et al. (2010) and Venkat (2006) among others. Also, in this
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case, no single benchmark system has been used consistently in the
literature; rather, there are many different similar configurations that
complicate the process of direct comparison of partitioning strate-
gies. The partitioning approach developed in Kamelian and Salahshoor
(2015) is used in the deployment of a Dec-NLin-MPC strategy over an
industrial chemical plant constituted by two continuous stirred-tank
reactors in cascade (Bakule, 2008; Venkat, 2006). The results show
that the decentralized approach proposed in Kamelian and Salahshoor
(2015) has a performance comparable to C-NLin-MPC, and superior
performance w.r.t. the Dec-NLin-MPC approach proposed in Venkat
(2006). The method in Xie et al. (2016) is validated on a chemical
plant with five operation units known in the literature as the Tennessee
Eastman problem (Downs & Vogel, 1993; Lyman & Georgakis, 1995).
Partitioning of the latter is executed on a linearized version of the
plant around operating points generated through a stabilizing control
action (McAvov & Ye, 1994). No control validation of the proposed
DMPC architecture is performed. In Pourkargar et al. (2017) the anal-
ysis is conducted on a reactor-separator process, where sequential and
iterative DMPC formulations (Christofides et al., 2013) are compared
against CMPC. The approach in Tang, Allman et al. (2018) is validated
for control of a reactor-separator process (Liu et al., 2009; Stewart
et al., 2010), with two reactors in series and a separator. The approach
deployed is an ADMM-based DMPC (Bertsekas, 1999), and is validated
against nonlinear CMPC. The results show how the DMPC implemen-
tation can outperform CMPC for this nonlinear setting while reducing
computation time by more than 50%. Among the contributions of the
paper (Rocha et al., 2018) there is the derivation of two DMPC tech-
niques, cooperative and non-cooperative, both working on linearized
versions of the models. The viability of the approach is demonstrated
for the reactor-separator process (Stewart et al., 2010), with two reac-
tors in series and a separator. The approach in Tang, Pourkargar et al.
(2018) is applied for deploying a noncooperative and iterative DMPC
control scheme (Liu, Chen et al., 2010) over a reactor-separator process
with two continuously stirred tank reactors in series (Pourkargar et al.,
2017). Different decompositions of the networks are achieved, and
results are compared against CMPC through a quality index normalizing
the performance-computation-time product w.r.t. CMPC. This quality
index is used to determine the best partitioning of the network. The
partition resulting from the algorithm developed in Wang et al. (2023)
is used to deploy DMPC over two different case studies, and compared
with CMPC and DMPC with partitioning computed using the conven-
tional modularity maximization. The first experiment involves a reactor
separator process consisting of two continuously stirred tank reactors
and a flash separator (Liu, Mufioz De La Pefa et al., 2010); the second
is an air separation process. The empirical results show how different
decompositions of the network impact the performance of the DMPC,
showing that also frequency-based modularity maximization is not al-
ways the best choice, which is in line with the concept that modularity
maximization does not provide by itself the best partitioning in terms
of performance. Additionally, the technique proposed only works with
linear systems. The case study considered in Arastou et al. (2025) is the
benzene alkylation process using four continuous stirred tank reactors
and a flash separator controlled through the DMPC strategy developed
in Pourkargar et al. (2019), which also involves the partitioning of the
process using community detection. The strategy developed in Arastou
et al. (2025) shows an improvement in the performance up to 26.9%
w.r.t. the one in Pourkargar et al. (2019).

Wind farms. For this application, we found different studies in parti-
tioning, with various topologies, turbine models, and operating condi-
tions. The approach in Lin et al. (2020) is deployed on a farm with
20 NREL 5-MW wind turbines (Jonkman et al., 2009), modeled using
SimWindFarm (Grunnet et al., 2010), and obtaining four clusters. The
control approach is hierarchical and employs a proportional controller
in the lower layer and an MPC in the upper layer, where in the latter, all
the clusters are aggregated into a single performance index. Simulation
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results show how the proposed strategy outperforms both conventional
PD control and CMPC, while reducing computation times. The approach
in Siniscalchi-Minna et al. (2020) is validated on a wind farm with
42 NREL-5MW wind turbines (Jonkman et al., 2009) modeled using
SimWindFarm. The non-centralized strategy is compared with its cen-
tralized counterpart, showing a significant reduction in computation
times while ensuring a good level of performance. The clustering
performed in Changqing et al. (2022) allows the division of wind
turbines into minimally coupled clusters. The approach is applied to a
25-turbine farm (1.5 MW), showing its effects on frequency regulation
and power output w.r.t. more traditional control approaches. An HMPC
scheme is proposed in Zhao et al. (2023), and the performance w.r.t.
CMPC are qualitatively compared in a 12-turbine wind farm case study.

Transportation networks. The control approach in Chanfreut, Maestre,
Hatanaka et al. (2022) is validated on an urban transportation net-
work (De Oliveira & Camponogara, 2010) with eight intersections,
and performance is compared w.r.t. CMPC. Simulations show how this
strategy can reduce the number of active communication links more
than the 40% while retaining good levels of performance

Mechanical systems. In Baldivieso Monasterios and Trodden (2021),
a DMPC technique (Mayne et al., 2005) relying on tube-based MPC
(Limon et al., 2010) is considered as the underlying control strategy
for each coalition in a Coal-MPC scheme. The approach is successfully
validated against CMPC over a four-agent mass—spring—damper planar
chain, showing that the coalitional control scheme proposed can reach
states that are otherwise not feasible for CMPC. In Chanfreut, Maestre,
Ferramosca et al. (2022), coalitional control is used in combination
with Dec-MPC. The approach proposed is validated over a 12-trucks
system connected through springs and dampers; an example also used
in Riverso and Ferrari-Trecate (2012) and Trodden and Maestre (2017),
showing a good performance retention w.r.t. centralized control with
significant reductions in communication costs. Validation of the ap-
proach in Masero, Baldivieso-Monasterios et al. (2023) is performed
through the control of a four-trucks system in a coupled chain config-
uration as also tested in Trodden and Maestre (2017). A fifth truck is
added during the simulation to show the plug-and-play capabilities.

Smart buildings. Few studies are present in this field, which is often
used in the literature to develop robust and stochastic approaches.
The approach developed in Zheng et al. (2018) is validated using a
building temperature regulation problem against CMPC. The system
comprises eight rooms that should keep the temperature variation at
zero despite external influences. The DMPC approach can stabilize the
network, as CMPC, but only qualitative results are provided, and some
performance degradation is present. The paper also provides theorems
for the stability and recursive feasibility of the DMPC strategy. On the
contrary, the efficacy of the partitioning in Atam and Kerrigan (2021)
is assessed through ad-hoc performance indicators for the specific
application or zone temperature control. The approach is extensively
validated for the Dec-MPC control of a 5- and a 20-zones case study,
also considering results for exhaustive enumeration of the possible
partitions, and compared with the partitioning approach of Chandan
and Alleyne (2013).

Abstract networks. The partitioning approach proposed in Wang and
Koeln (2023) is validated by computing the size of the resulting mini-
mal robust positively invariant sets for different clustering procedures,
showing how it outperforms other strategies in maximizing the sizes
of the sets. The case study is a 43 agents flow system (Koeln & Al-
leyne, 2017). However, the impact of the proposed partitioning on the
performance of the robust Dec-MPC strategy has not been explored in
the work. The partitioning approach defined in Riccardi et al. (2025c)
is applied for partitioning a modular network with 64 agents, and a
random network of hybrid systems with 50 agents. The first case shows
how varying the granularity « allows to retrieve modules at different
aggregation levels, allowing a hierarchical clustering. In the second
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case, an ADMM-based DMPC approach (Summers & Lygeros, 2012) is
deployed for network control. Different simulations are performed: one
for CMPC, one for the conventional DMPC-ADMM with 50 agents, and
three for partitionings obtained with varying levels of a. The simulation
results show how the optimization-based partitioning DMPC controllers
have a loss of performance w.r.t. CMPC below 0.3%, while the con-
ventional DMPC-AMM approach with 50 agents has a loss of more
than 12%. This performance advantage is paid in computation time,
which is generally higher for partitioned system w.r.t. the conventional
ADMM formulation. The approaches are also compared in terms of
computational cost by calculating the core seconds for the simulations,
i.e., the number of seconds necessary to compute the control action
in parallel times the number of agents working in parallel. In this
regard, optimization-based partitioning allows a computational cost in
line with CMPC, while conventional DMPC-ADMM is at least 2.59 times
more expensive. Regarding algorithmic partitioning, the simulation
results show how the loss in performance is of an additional 1% w.r.t.
the ones obtained with optimization-based partitioning. However, the
computation times are comparable to the ones of conventional DMPC-
ADMM with 50 agents (1.75 times slower), but having the smallest
computational cost among all the approaches in terms of core seconds.

Railway networks. The approach in Kersbergen, van den Boom et al.
(2016) is validated on the model of the Dutch railway network (Kers-
bergen, Rudan et al.,, 2016) against a CMPC implementation. The
results show that the distributed implementation is up to 90% faster in
computing the predictive control action w.r.t. CMPC with only marginal
performance losses.

Telecommunication systems. The strategy proposed in Masero et al.
(2020Db) is applied to the case of a network of 37 base stations to
optimize the number of served users and energy consumption. The
approach is validated against the more traditional best-signal-level
approach (Fletscher et al., 2019), and decentralized and CMPC. Results
show significant improvement of all the predictive control strategies
w.r.t. the traditional approach, where coalitional control is the closest
to CMPC in terms of performance while reducing the communication
burden.

Industrial plants. In Chen et al. (2020) the update of the input trajec-
tories in the cooperative DMPC is performed through the Gauss-Jacobi
distributed optimization method (Bertsekas & Tsitsiklis, 2015). Proofs
of feasibility and stability of the overall architecture are provided. The
approach is tested over a walking beam reheating furnace system and
a six-area power system, and validated against the DMPC formulation
of Venkat et al. (2005). In the tests, the hierarchical approach of Chen
et al. (2020) shows the ability to reduce the communication burden,
avoiding the transmission of unnecessary information while ensuring
system performance.

11.3. Applications for community-detection-based methods

Application of the modularity-based partitioning methodology de-
rived in Jogwar and Daoutidis (2017) is performed in Moharir et al.
(2018) for iterative DMPC of an Amine gas sweetening plant. The
decomposition of the relatively small plant shows how modularity
maximization is achieved when two communities are obtained, and
further partitioning the system into three communities does not im-
prove the modularity. Modularity maximization also accounts for the
structural information about the plant, ensuring the existence of well-
posed subsystems (i.e. subsystems for which a controller can be defined,
having at least one input and one output of the original plant). No
further division of the plant is proposed. The DMPC architecture is
compared against CMPC, Dec-MPC, and DMPC for a different partition-
ing (sub-optimal in terms of modularity). The modularity-based DMPC
is the best-performing non-centralized strategy, approaching CMPC
results while reducing computation times. Given the reduced size of the
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plant, all possible modularity-based partitions of the systems providing
well-posed subsystems can be evaluated in this case; however, the
procedure still relies on expert knowledge, heuristics, and inspection
to be performed accurately.

The approach of Jogwar and Daoutidis (2017) is deployed in
Pourkargar et al. (2019) for both distributed control and estimation of
a benzene alkylation process consisting of four continuous stirred-tank
reactors, and a flash tank separator. Deploying the DMPC architecture
for the selected partition provides a good approximation of CMPC
results with a reduced computation burden.

A modularity-based partitioning technique has been used in Guo
et al. (2019) to deploy a DMPC strategy for perimeter control of
urban traffic. The approach is structured to divide urban networks into
regions for which traffic control methods based on the macroscopic
fundamental diagram (Geroliminis & Daganzo, 2008) can be imple-
mented (An et al., 2018). To this, a two-layer partitioning method is
proposed in Guo et al. (2019). In the upper layer, congested regions
are selected using the dynamic modularity metric for urban traffic
introduced in Guo et al. (2019). These regions are compact, and a
macroscopic fundamental diagram can be identified for them. How-
ever, the regions do not cover the entirety of the urban network, i.e.
non-congested regions are present at their interconnection, defining a
boundary. At the lower layer of the partitioning strategy, the boundary
region is divided into multiple areas based on spatial proximity using
the Euclidean distance, so that a boundary region exists between each
two congested areas. Validation of the partitioning approach is per-
formed by applying the DMPC strategy (Kim et al., 2019) on the case
study of the road network in downtown Jinan, China. The proposed
approach is validated against a fixed signal control rate, and the
boundary-feedback control strategy (Zhu & Li, 2019), demonstrating
how the proposed strategy is the most effective in reducing the total
time spent on the road by the drivers, and the total accumulated delay
of the vehicles.

Modularity optimization has been used in Wang et al. (2022) to
partition a power network in the presence of photovoltaic inverters and
electric vehicles, with the objective of using the charging/discharging
capabilities of the latter to mitigate the curtailment of the former.
In Wang et al. (2022), a two-step Dec-MPC strategy is developed: in
the first phase a modified modularity index is used for partitioning,
and in the second step local MPC actions are computed in parallel. The
modularity metric is modified to incorporate two ad-hoc performance
indicators for power networks. The first is voltage sensitivity, which
describes how voltage magnitude changes in nodes after voltage in-
jection in other nodes. The second is the voltage regulation capacity
used for reactive power compensation. The modularity is maximized
through the Louvain algorithm (Girvan & Newman, 2002). The result-
ing approach is qualitatively validated on the IEEE 123 node test feeder,
showing the viability of the strategy.

The paper (He & Li, 2023) presents a graph-based hierarchical
Lyapunov-based DMPC (Liu, Chen et al., 2010) framework. The con-
trol framework is based on the selection of communities performed
through the multiway spectral community detection algorithm (Zhang
& Newman, 2015). This community detection algorithm approaches the
modularity maximization problem using spectral methods through a
heuristic approach that can work with any number of desired communi-
ties. The approach has the same computational complexity of k-means
clustering; therefore, it is attractive for its scalability. The method parti-
tions subsystems into a relative leader-follower hierarchy by integrating
community detection algorithms. The work is posed as an extension
of Chen et al. (2020) to nonlinear systems. However, no formal guar-
antees are given, and the use of the interpretive structural modeling,
as well as the communication strategy, are not entirely clear, contrary
to its reference strategy. The proposed architecture minimizes all-to-
all communication, requiring only a single inter-layer exchange per
sample, reducing the computational burden. The approach is validated
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over a reactor-separator integrated system developed in Pourkargar
et al. (2017).

Modularity-based algorithmic partitioning using iterative bisection
(Newman, 2006) is also at the basis of the automatic decomposition
approach used in the Shell-Yokogawa platform for advanced Control
and estimation (Tang et al., 2023). In this advanced process control
technology, partitioning is performed using an equivalent graph repre-
sentation of the network, with the usual definition of nodes as variables
and arcs as relations. Iterative bisection is performed according to the
algorithm of Newman (2006), and the resolution parameter (Reichardt
& Bornholdt, 2006) is used to limit the size of the resulting clusters.
Two post-processing procedures are used to ensure the connectedness
of the resulting components, and to re-balance the sets according to
their sizes. Heuristics are used to define the number of clusters, and
resolution. The partitioning algorithm is applied to three case studies:
a crude distillation process for a refinery, a gas-to-liquid process, and a
hydrocracking process, all plants with hundreds of nodes. The resulting
partitions are used for the application of DMPC showing how the
distributed computation of the control action can improve the time
required for online optimization up to 5 times. However, the impact on
the control performance of this approach w.r.t. CMPC is not assessed.

11.4. Applications for game-theoretic oriented methods

In this section, we report applications of the coalitional predictive
control schemes discussed above to case studies that have not been
presented already, specifically: the control of irrigation canal, freeway
transportation, vehicle platooning, and cyber-physical systems.

The first known contribution in coalitional predictive control is Fele
et al. (2014), where the problem of controlling an irrigation canal is
addressed. The aim of the strategy is to optimize water distribution by
dynamically adjusting coalitions of control agents to balance control
performance and communication cost. The framework is hierarchical:
in the top layer, the partition of the system into coalition is achieved
through topology optimization, where the optimal topology is selected
from a predefined set of possible topologies. Decentralized feedback
gains are associated with each topology, and the solution of an LMI
problem guides the partition selection. Then, at a lower level, Dec-
MPC is applied. Coalition formation and local optimization work at
different time scales. The control methodology is validated through
the SOBEK hydrodynamic simulator (SOBEK, 2000) on a model of the
Dez irrigation canal (Isapoor et al., 2011), and compared against CMPC
showing suboptimal but adequate performance, without the need of a
complete communication topology.

A hierarchical formulation of coalitional predictive control has also
been applied to nonlinear systems in Chanfreut et al. (2021a). In partic-
ular, this study focuses on freeway traffic control through ramp meter-
ing and variable speed limits (Papageorgiou et al., 2008; Papageorgiou
& Kotsialos, 2002). The solution proposed in Chanfreut et al. (2021a)
consists of a two-level structure: a top layer forms the coalitions, and
at the bottom level, a DMPC strategy is deployed for the resulting
coalitions, specifically feasible cooperation-based MPC (Venkat et al.,
2008) with Genetic Algorithm solver (GA) (Goldberg, 1989). Moreover,
the two layers operate at different time scales, with the top one being
slower, allowing more time to solve the coalition formation problem.
The study proposes as a potential solution to the coalition formation
the bargaining procedure based on the Shapley value (Fele et al., 2017;
Muros et al., 2018), or the PageRank method (Maestre & Ishii, 2017).
To simplify the problem, only a limited set of possible coalitions is
considered. The approach is extensively validated against Dec-MPC,
and feasible cooperation-based MPC on a 15 km freeway segment,
with multiple ramps, and speed-limiting devices. The results show a
reduction in communication and coordination costs.

An application of coalitional predictive control to cyber—physical
systems (Ding et al., 2021; Lee, 2015) with chain architecture is pro-
posed in Maxim and Caruntu (2021). The key feature of this architec-
ture is that the system first operates according to the non-cooperative
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DMPC strategy (Scattolini, 2009), and when the feasibility of the
solution fails, the system will switch to the coalitional predictive con-
trol formulation (Maxim et al., 2018). The switch occurs in cascade,
triggered by one agent and propagating to its neighbors. Here, coali-
tion formation is purely aggregative. The procedure is applied to a
four-agents system, showing that when the local feasibility of non-
cooperative DMPC is lost, then the application of coalitional predictive
control can still provide satisfactory performance.

Vehicle platooning is the application considered in Maxim and
Caruntu (2022) for the robust coalitional control strategy of Maxim and
Caruntu (2021). The approach is tested on a four-car platoon detailed
in Zhu et al. (2020), and string stability analysis (Dunbar & Caveney,
2012) is performed. The simulation shows how dynamic coalition for-
mation stabilizes the platoon’s operation with reduced communication.
The work (Maxim et al., 2024) is proposed as an alternative approach
to Maxim and Caruntu (2021, 2022) for coalitional control of vehicle
platoons, distinguishing itself by the ability of individual agents to
aggregate into coalitions autonomously. This objective is achieved by
periodical evaluation of the string stability index (Dunbar & Caveney,
2012). The approach is validated on a four identical vehicles platoon
under three different testing conditions. The results show that an in-
versely proportional relationship exists between performance and string
stability.

An eight-tank process is used as a case study to perform a com-
parative performance analysis between DMPC and coalitional control
in Maxim et al. (2023). In the paper, two non-cooperative DMPC
formulations, one using a state-space model and the other an input—
output model, are used to validate the performance of the coalitional
control strategy based on a matrix gain feedback controller obtained
through a gradient-based optimization previously introduced in Maxim
et al. (2022). The Coal-MPC methodology allows the switch between
decentralized and distributed communication topologies according to
performance satisfaction. This switching Coal-MPC method shows re-
sults that are comparable with the non-cooperative DMPC strategy
while allowing for a reduction in the communication burden.

12. Conclusions and future work
12.1. Contributions

This survey presents the first systematic classification and in-depth
analysis of partitioning techniques for non-centralized predictive con-
trol. The scope of this work is both to unify the approaches currently
present in the literature under a single framework, and to lay solid
methodological foundations for future developments.

These objectives are achieved through the novel contributions of
this work, which we summarize in the following. First, we intro-
duce a formal reformulation of the partitioning problem in terms of
mixed-integer programming, showing how, in the context of predictive
control, the problem requires the solution of a bi-level optimization
program, where network control performance is the cost functional of
the partitioning problem. This aspect is at the basis of the complexity
of network partitioning for control. Developing this framework, we
introduce the concept of predictive partitioning, which uses predicted
topology behavior to obtain the optimal network partitioning over the
prediction horizon. Given the inherent NP-hard nature of these prob-
lems, their optimization-based solution would be prohibitive in real
time; therefore, developing such a framework using greedy or heuristic
algorithms or data-driven approaches would be advisable. Moreover,
we introduce the concept of multi-topological network representations,
which can serve as a basis for applying partitioning methodologies
on networks whose topology and dynamical coupling are driven by
different factors, such as events, time, network dynamics, or stochastic
phenomena. Additionally, we provide a systematization of the key per-
formance indicators to assess the quality of a partitioning for network
control. On this basis, we establish an evaluation methodology that
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allows the direct comparison of different partitioning strategies. Such
an approach can be the basis of further systematic development in this
field, providing solid quantitative metrics for performance assessment.

In addition, this survey proposes several other ways to analyze and
organize the literature in partitioning for predictive control. We start by
presenting a systematization of network equivalents based on graphs.
Then we introduce a classification of the partitioning techniques based
on five main classes: optimization-based, algorithmic, community-
detection-based, game-theoretic-oriented, and heuristic partitioning.
For each class we discuss its level of optimality, scalability, com-
plexity of computation and implementation, technical requirements,
and other specific features it might exert. Further we introduce a
functional sub-classification of the partitioning techniques, introducing
cross-methodological partitioning objectives. We conclude the survey
by discussing the known applications of the partitioning techniques
proposing, when possible, reference systems for further developments
and comparison.

12.2. State of the field

From the extended assessment of the partitioning techniques for the
application of non-centralized MPC control, it results that many fun-
damental approaches have now been established. Specifically, abstract
representations of networks of systems or of optimization problems are
now a solid foundation to abstract the partitioning problem into the
domain of graph partitioning. Most techniques use graph representation
as a starting point, and, in this sense, they mostly differ from the type
of weighting used, more topology- or system-oriented. What is more
unconventional is the use of graphs capturing the ‘flow’ of energy
among the nodes of a graph, where this has to be interpreted as
sequences of the state variables, measured or predicted. Regarding the
partitioning methodologies, optimization-based approaches are appre-
ciated for their expressive power in terms of problem formulation, but
are limited in scalability due to the NP-hard nature of the problem.
Consequently, most works in partitioning focus on deriving specialized
algorithms. In this domain, most approaches have focused so far on
static network topologies, and methods for time-varying graphs or for
plug-and-play operations are still at the forefront of research. The limi-
tations here are given by the online re-partition of the network, which
is still prohibitive to be performed on the same time-scale as the control
action. Regarding this last point, hierarchical approaches that work on
a slower time scale provide a viable solution. Finally, most works still
consider partitioning as a distinct feature w.r.t. the control method.
This happens because partitioning is fundamentally a bi-level problem;
therefore, fixing a partition allows us to find a practical workaround
for study and implementation. Consequently, control properties of the
non-centralized architecture that originate from different topological
structures are rarely considered. Overall, the field of partitioning can
be considered mature for static sub-optimal partitioning methods, and
well-developed for small topological changes in the structure of the
network. Instead, works for which the topology is subject to fast and
extended changes, uncertainties, or disturbances are currently missing.

12.3. Future work

Regarding future work in the field of partitioning for non-
centralized predictive control, we believe it should focus on addressing
the aspects indicated in the next paragraphs, to reach a level of so-
phistication for the resulting strategies such that they can adapt online
to topological changes while ensuring the stability of the network, the
feasibility of the control actions, robustness with respect to unexpected
events, and minimal losses in terms of global optimality.
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Table A.9
Analytical classification table.
Work Year Control method Partitioning method Application
Ocampo-Martinez et al. (2011) 2011 H-Dec-MPC Graph-partitioning-based ordering Barcelona DWN
algorithm (GPB)
Ocampo-Martinez et al. (2012) 2012 H-Dec-MPC Nested epsilon decomposition Barcelona DWN
Fele et al. (2014) 2014 H-Coal-MPC Coalition formation based on topology Irrigation canal networks
optimization from a predefined set
Nuiiez et al. (2015) 2015 Dec-, D-, and H- MPC MI optimization partitioning 16 tanks water system
Kamelian and Salahshoor 2015 Dec-NLin-MPC Algorithmic partitioning Two-reactor (CSTR) chain followed by a
(2015) flash separator with recycle
Xie et al. (2016) 2016 DMPC Genetic algorithm minimization of Chemical plant: Tennessee Eastman
input-output coupling between problem. Five operation units: a reactor,
subsystems a condenser, a compressor, a separator,
and a stripper.
Kersbergen, van den Boom 2016 DMPC MIQP optimization for constraints Dutch railway network
et al. (2016) decomposition
Pourkargar et al. (2017) 2017 CMPC, iterative and Community detection through Reactor-separator process
sequential DMPC modularity maximization
Fele et al. (2017) 2017 Coal-MPC Game theoretic coalition formation Smart grids
based on Shapley value
Maestre and Ishii (2017) 2017 Coal-MPC Coalition formation based on an 16 tanks water system
algorithm to handle aid requests sorted
using distributed PageRank
Fele et al. (2018) 2018 Coal-MPC Coalition formation based on bargaining Wide-area control of power grids
procedure and TU-games
Zheng et al. (2018) 2018 Dual mode DMPC Algorithmic partitioning based on Building thermal management: eight
coupling degree rooms
Tang, Pourkargar et al. (2018) 2018 DMPC (noncooperative and Relative Time-Averaged Gain Array Reactor-separator process: 2CSTRs
iterative) (RTAGA)-based algorithmic modularity
maximization over weighted IO bipartite
graph using fast unfold
Tang, Allman et al. (2018) 2018 DMPC-ADMM for nonlinear Community-based decomposition of the Reactor-separator process: 2CSTRs
systems optimization problem based on bipartite
and unipartite representations, and fast
unfold algorithm
Rocha et al. (2018) 2018 Linearized cooperative and Algorithmic partitioning based on Reactor-separator process: 2CSTRs
non-cooperative DMPC for variables matching and controllability
nonlinear systems check
Jain et al. (2018) 2018 Dec-MPC Heuristic partitioning based on ad-hoc Northeast Power Coordinating Council
performance index (modal participation nonlinear power system model
matrix)
Moharir et al. (2018) 2018 DMPC (iterative) Modularity-based partitioning (iterative Amine gas sweetening plant
division)
Muros et al. (2018) 2018 Coal-MPC Coalition formation based on estimation Barcelona DWN
of Shapley value and randomized
methods
Zhang et al. (2019) 2019 Enhancing DMPC Data-driven partitioning using k-Shape Shanghai WDN
Ye et al. (2019) 2019 HMPC Heuristic partitioning Modified IEEE One Area RTS-96 network
(optimization-based) with wind turbines
Liu et al. (2019) 2019 HMPC Heuristic partitioning (algorithmic based Four vehicles platoon
on dominant and connecting clusters)
Pourkargar et al. (2019) 2019 DMPC Modularity-based partitioning (iterative Benzene alkylation process: four
division) continuous stirred-tank reactors, and a
flash tank separator
Barreiro-Gomez et al. (2019) 2019 DMPC based on Multiobjective optimization, computed Barcelona DWN
density-dependent through distributed algorithm for graph
population games partitioning
Guo et al. (2019) 2019 DMPC for perimeter control Modularity-based partitioning based on Road network in downtown Jinan, China
dynamic traffic estimation
Chen et al. (2020) 2020 Cooperative DMPC, over a Hierarchical interpretive structural Walking beam reheating furnace system,
sequential hierarchical modeling (ISM) six-area power system
down-stream of solutions
Wei et al. (2020) 2020 DMPC (Cooperative) Algorithmic partitioning based on Four-tanks water systems

threshold given by coupling sensitivity
analysis
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Siniscalchi-Minna et al. (2020) 2020 H-NCen-MPC MIP optimization using ad hoc indicator 42 turbines farm (NREL-5 MW)
(wake effect)
Lin et al. (2020) 2020 HMPC Frequency-based fuzzy c-means 20 turbines farm (NREL-5 MW)
algorithmic partitioning
Masero et al. (2020b) 2020 Coal-MPC Hierarchical time-varying Next-generation cellular networks with
37 base stations
Baldivieso Monasterios and 2021 Coal-MPC Coalition formation based on consensus Mass-spring-damper planar chain
Trodden (2021) optimization and potential games
Chanfreut et al. (2021a) 2021 H-Coal-MPC Coalition formation based on bargaining Freeway transportation network,
procedure and TU-games, or PageRank METANET model
method
Masero, Maestre et al. (2021) 2021 H-Coal-MPC Coalition formation based TU-games, Eight tanks water system
and mixed-integer selection of the
coalitions with predicted topologies
Maxim and Caruntu (2021) 2021 Coal-MPC and DMPC Coalition formation based on Theoretical four agents chain system
cooperative game
Masero, Frejo et al. (2021) 2021 H-Coal-MPC Loop-pair clustering Parabolic-trough solar collector fields
with 100 loops
Segovia et al. (2021) 2021 DMPC based on optimality Modularity-based partitioning of the Quadruple-tank benchmark; Barcelona
condition decomposition optimization problem DWN
(OCD)
Atam and Kerrigan (2021) 2021 Dec-MPC MI optimization, robust and stochastic 5 and 20 zones thermal buildings
Ananduta and 2021 Dec-MPC for economic Heuristic partitioning based on PG&E 69-bus distribution network
Ocampo-Martinez (2021) dispatch communication protocol (algorithmic)
Chanfreut, Maestre, 2022 Coal-MPC and Dec-MPC Coalition formation based on 12 trucks system
Ferramosca et al. (2022) cooperative game and invariant sets
Maxim and Caruntu (2022) 2022 Coal-MPC and DMPC Coalition formation based on Autonomous vehicle platooning
cooperative game
Séanchez-Amores et al. (2022) 2022 Coal-MPC Coalition formation based on private 8 tanks input-coupled water system
and public factors
Masero et al. (2022) 2022 H-NLin-Coal-MPC Market-based coalition formation Parabolic-trough solar collector fields
strategy with 100 loops
Wang et al. (2022) 2022 Dec-MPC Modularity-based partitioning using IEEE 123 node test feeder
ad-hoc performance indicators
La Bella et al. (2022) 2022 HMPC k-way partitioning using METIS on a IEEE 118-bus
flow graph
Changqing et al. (2022) 2022 HMPC k-means clustering for wake-effect 25 turbines farm (1.5 MW)
interaction minimization
Chanfreut, Maestre, Hatanaka 2022 Dec-MPC Binary quadratic programming (BQP) Urban traffic network with 8
et al. (2022) intersections
Chanfreut et al. (2023) 2023 DMPC, ADMM- or k-means clustering Solar parabolic trough plants
ALADIN-based
He and Li (2023) 2023 Lyapunov-based DMPC Hierarchical multiway spectral Reactor-separator process
community detection
Huanca et al. (2023) 2023 Distributed Switching MPC Sphere packing clustering combined Quadrotor UAV swarm control
with MPC
Masero, 2023 H-Coal-MPC with PnP Coalition formation based on invariant 4 + 1 trucks system
Baldivieso-Monasterios et al. capabilities sets and dynamic scaling factors
(2023)
Masero, Ruiz-Moreno et al. 2023 H-NLin-Coal-MPC based on Neural-networks-based market-based Parabolic-trough solar collector fields
(2023) neural networks coalition formation strategy with 100 loops
Maxim et al. (2023) 2023 Coal-MPC with switching Coalition formation based on 8 tanks water system
topologies cooperative game
Sanchez-Amores, Chanfreut 2023 Coal-MPC Coalition formation based on private 8 tanks input-coupled water system
et al. (2023) and public factors
Séanchez-Amores, 2023 H-Coal-MPC Arbitrary partitioning Parabolic-trough solar collector fields
Martinez-Piazuelo et al. (2023) with 100 loops
Wang et al. (2023) 2023 DMPC Modularity-based partitioning using Reactor separator process (2CSTR and a
frequency metric, and gap metric flash separator); and air separation
process
Changqing et al. (2022) 2023 HMPC k-means clustering (crowd search) using 12 turbines farm

a set of key performance indicators
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Wang and Koeln (2023) 2023 Dec-MPC Agglomerative hierarchical clustering 43 agents flow-based network
based on minimal robust positively
invariant sets

Tang et al. (2023) 2023 DMPC Modularity-based partitioning (iterative Crude distillation process for a refinery,
division) gas-to-liquid process, and a

hydrocracking process
Maxim et al. (2024) 2024 Coal-MPC with switching Coalition formation based on string Autonomous vehicle platooning
topologies stability condition

Arastou et al. (2025) 2025 DMPC Algorithmic (Kernighan-Lin) partitioning Richmond water distribution network;
using computational complexity metric Barcelona DWN

Jogwar (2019) 2025 DMPC Spectral community detection for Benzene alkylation process: 4CSTR, and
modularity based on time-varying graph a flash tank separator
representation

Riccardi et al. (2025c) 2025 DMPC-ADMM for hybrid Bi-level partitioning; algorithmic Modular network with 64 agents,

systems

selection of system units, and
algorithmic or optimization-based (BQP)
partitioning; balancing intra- and
inter-agent interactions, with granularity

random network of hybrid systems with
50 agents

parameter

Time-varying and predictive partitioning. Further practical and theoret-
ical developments can be achieved in the field of time-varying parti-
tioning approaches, especially considering predictive partitioning. Most
works now focus on static topologies, but aspects such as component
failures, reconfigurations, or operational mode shifts that can induce a
change in the interconnections of the network are rarely accounted for.
In addition, models for topology dynamics are absent in the literature.
Having such models would be fundamental for the development of
predictive partitioning techniques, which can proactively reconfigure
the controllers to counteract topological changes.

Integration of data-driven and learning methods. Conventional partition-
ing approaches consider static and deterministic topologies that are
known in advance. However, topological structure may, in practice, be
driven by phenomena that can be hard to model but for which data
is available, especially for infrastructures such as power transmission
and traffic networks, which are often subject to recurrent or periodic
operational modes. Data-driven approaches and learning methods can
extract latent structure from the data available about the networks and
predict topological changes. Accordingly, novel non-centralized predic-
tive control architectures can be deployed to leverage such insights and
improve the overall performance or resilience of the network.

Resilience, robustness, and security-aware partitioning. Non-centralized
predictive control strategies are based on communication networks
that can be susceptible to latency, packet loss, or malicious attacks.
Future work should define partitioning methods that are resilient to
network malfunction and attacks, maintaining control performance de-
spite disruptions. This includes robust partition definitions that tolerate
link failures, cyber—physical attacks, and asynchronous information
updates, as well as partitioning strategies that explicitly incorporate
security metrics into the design process.

Multi-objective and performance-driven partition criteria. Most partition-
ing approaches still focus on a single objective. However, real applica-
tions may require multi-objective criteria that balance control perfor-
mance, communication overhead, computational load, and robustness.
Future research should formalize composite metrics that reflect these
trade-offs. Furthermore, feedback approaches that adapt the partition
to improve the overall control performance of the network are missing
in the literature.

Real-time adaptive partitioning. The partitioning problem is known to be
computationally intensive, and, consequently, most approaches work
offline or on a different time scale w.r.t. real-time control. A direction to
explore includes real-time adaptive partitioning strategies that leverage
domain-specific knowledge or heuristics to quickly adapt the partition
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of the network locally to small network changes, while maintain-
ing high levels of performance or robustness of the network. On a
slower time scale, global network re-partitioning can then find a new
configuration to be applied at a later stage.

Theoretical guarantees and control properties. Considering the theoretical
developments instead, only the framework of coalitional control cur-
rently offers solid guarantees of satisfying the properties of feasibility,
stability, and robustness when partitioning is involved, with few studies
addressing these issues in general. Therefore, such properties might
be established for time-varying partitioning approaches under different
non-centralized control frameworks.

Standardized evaluation and benchmarking. Currently, standard bench-
marks for partitioning are missing in the literature. Such benchmarks
can greatly accelerate the development of this field of advanced non-
centralized control because they will allow research to quantify the
improvements of novel techniques and validate them in concrete sce-
narios. A standard benchmark for partitioning should be a real-world-
oriented system for which a model is available. The use of high-fidelity
simulators of nonlinear systems would be a great addition to the bench-
mark. A fundamental characteristic is the presence of a centralized MPC
controller that can serve as a reference approach. Data about control
performance, computation time, computation cost, and communication
cost should be made available. Additional standard approaches, such as
decentralized or distributed MPC, can be helpful in further comparing
novel approaches. It would be ideal to have such benchmarks for
the main application fields of control, e.g. power, transportation, and
chemical networks. The development of dedicated studies for testing
the approaches on large-scale networks with more than 10000 agents
would also be beneficial. Finally, the use of time-varying and model-
driven topologies would also improve the studies. If implemented
correctly, these benchmarks can be tested in the future for several
partitioning strategies and provide standardized reference approaches.
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Appendix. Analytical classification table

In Table A.9, we report the references presenting the partitioning
strategies that have been investigated throughout the survey. They are
listed in chronological order, which allows us to further understand
the order of development of the techniques. Additionally, we report
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the control methodology that has been deployed in the study, essential
details about the partitioning method developed, and the application
considered for the validation of the overall architecture.

Data availability

Data reported in the survey is available in the long-term repository
4TU.ResearchData Riccardi et al. (2025b, 2026).
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