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Linearized theory.of flow with finite cavities

about a wing.

by J.A. Geurst and R. Tia

ntroductiOn. .

In the esign of hip propelior blade sections cavitation

phenomena play. a dominant part. It is well known (ref. (1).,chap.II)

tht a rigorous mathematical theory of cavitational fiow, based on

the concept of free boundaries, israther comulicated and rnoreovér

±nadequate for quantitative results. Since propellor blade sections-

are extremely thin,. It lies at hand to replace the exact hodogräph

plane theory by linearized theory which is -far more simple. This

method seems proper to a treatment of film cavItation, where the

evaporated water spreads -along a finite part Of the blade like .a

thin film,

In this paper the theory is glven for the case of a plane w'in

'at a small angle of attack, where the calculations are relatively

simple. In,.ref. (2) the results of measurements are. given concer-

fling the pressure distributions along Karman-Trefftz profiles in a

cavitation tunnel. From these iesults a rough approximation. for .the

aotual cavita.tio'n length can be derived. These quantities are

used for comparison with the theoretical results. The cavitation.

length is not determined uniquely'as a function of the cavitation...
S

number
2

and th.e angle of incidence by the condition

e. that the cavitation bubble must be closed. Another

requirement, is needed, for which two alternative posé'ibilities are

introduced. Thefirst is the strong Kutta condition. The second is

the requirement, 'that the pressure should be continuous at the rear

end of the 'cavitation bubble. This amounts to the condition, that'

the tangent to the cavitation bubble there should. be directd along

the profile. .

Mathematical formulation of the problem. ,

Neglecting thickness effects we replace, the blade sect-ion by

its camber line, the chord of' which has its centre at the origin

of a rectangular coordinate systm,is of ingth 2 and maes an'

'angle -ct with the positive x axis. The undistubed velocity is

directed along the' positive x-axis and has a thagnitude U (see

fig. 1).
: '



fig. 1.'

The blade, section causes a disturbance velocity field (u.,v), which

satisfies the following equations

+ v 0 continuity equation for incompressible flow.

- 0 irrôtational- flow. -

The boundary conditions are :
:

1) u-0, --0 'at infinity
on the cavitation bubble the pressure is a constant.

In 'linearized theory the coid1tion is satisfied on the projectiOn
of the cavitation bubble on the x axis. This pro3ectlon is assumed

to extend frornx = - 1 (leadLng edge) to a point x = I on the
suction side.

at the remaining part of the blade the total velocity must e
tangential to the contour. This condition too is satisfied o the
projection of the camber line on the x axis, extending from x - 1.

(leading edge) to x = + 1 ('trailing edge).
'As to cond.itioi iv) two possibilities are investigated in this

paper i.e

at the trailing edge the. velocity must satisfy the strong Kutta

condition: u = 0 at x' + 1, or
at the reaz' end Of th cavitation bubble 'the velocity' must be

tangential to the contour. This turns out to be äeuivalent

t'o the condition that the pressure must be continuous at that

point (see later). -

In case 'a) the elocity has a direction normal to the contour.

and the pressure is disOontinubus. .' '

In linearized t-hoory Bernouilli's equation

:: :
:.h1)2

+ V = takes the simple form

/Uc_. -. . -'

2.



Introducing the cavitation number = - we find as the
/2tc.

condition it) on the, cavitation, bubble .

'The linearized condition iii) can be written as
v .. , where jo.c.1 the local angle of.incidence.u
Altogether the following boundary conditions must be.

:sa.tifi.edo
.u_-O, v__0
u =

. -

H]
3a)U=O

or 3b) v = 0

where y = f(x) istie equation for the camber line.
at x

at x

fig. 2.
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y=+o

z-plarié.

. Solution of the problem.
e complex velocity w u - iv is an analytic function of, the'

complex...ariable z = x + iy, since its real and imaginary, part
satisfythe,..Cauchy-.Riernann equations0
The z-plane is mappod conformally on the lower half plane of a

+ 'i plane by'the transformation.3' \J . The problem in

the 3 plane is now to determine an analytic function w = U - iv in
rthe ha1f.iano' ( O,.satifying jhe conditions
1) =0 <b :

>b: u
3' -i :'u=v=O

a) 'O : u0
orb)') =0b+0 2oc

where b or with .= 'cos-', b = tg

y

=0

df.
dx



w +w - 2.
2

Following Musk11ishvili (3) first the, hbrogeneous problem is solved.

The boundèry conditibns are
+

Wh Wh =01 1Kb
Wh + Wh = 0 > b

The gene±lal solution is w , wiiere P( ) is a polynomial

in with real coeficients.
There is assumed that Wh is of finite degree at infinity and that
the function is :integrabie along the. - axis.

With the aid of the Plemelj formula the general solution of the.

original problem is now derived as

w( )
Wh (.21 F()d ¶ 'y'(') +27iJ Wh -) 2

where Wh( ).= See Mukhe1ishvili (3).

,eoc

= O) (v=, )BOC
7 u=J-t.

/ /2

uv=o
- plane

fig.3.

Remark: th velocity has been made dimensionls,s with réspeàtto

The problem can now be reduced to a Riemann-Hilbert problem. -
First the. analytic continuation of w(3) into the upper halfpiane by
means of Schwarz's 'pMnciple w( ' ) = w(T) is introduced, where-; -

the bar denotes the onjugate complex value. If, the limiting values
of the functioñw, when' ' approaches the axis from the upper and

lower side5 are dented by w and w , this function has to saisf,y

the following conditions..
w is aholomorphic function in the complex plane withthe excep-

Mon of the real axis.. Therôholds
for. < b

for > b

bc.



The. conditions i) and iii tàgether with the reqiiirernents.that
the presure i.e. u should be integrab].e along the contour and
that the cavitatipn bubbleshould be closed, lead. to equations
determining the cavitation length cos2 ' as function of
arid 6'. These calculations wilibe pei-formed in the next section
for the case of. a flat plate at a small angle of attack.

1, Application to the case of a fIat plate.
For a flat iate the general solution of the irthomogeneous

boundary value problem - .

-2i0'.
0

is easily foufld to be w ( . + f + i .
H

At first we argue, that the :degree Of P(. ) cainotbe higher than
2. Suppose i,t has the value n. Since the leading edge .o the profile
is mapped by the confoimal transformation on the point = , it
is seen that in the neighbourhood -of the leading edge there holds

1

w( '3). 0 (
fl-u)

( (1 +z) 2

But u(x) must be iiite.grable and this leaves open only the values
n 0,1,2. Hence we may put.

w() .A +B+
.2..

The constants A, B and C are now determined from the conditions,
that at

9 .u=v=o
and that the cavitation bubble must be closed.
This last condition takes the fOrm

4vdx
,(v+cdx = [(v+9c)dx

=
dx = o

--Iwhere y = g(x) is the equation:for the cavitation bubble and the
first two integrations are perforr4ed along the segment -1<X<+1
at both sides and in clockwise direction. With the help of contour
integration, this is equivalent to

- Im .4 wd z .I 2 i, \'residue w, at z

or Re residue w a.t z = 0

0

+
w w

+
w



Expressions for the lift L and the moment M with respect to the
orIgin are foi.rid in an analogous manner. .

L -.p)dx = - U

-1 H
=/U3 j(.u+ - u)dx =/Q tJ

Re riUres.w at

Thus

Bi
. 2.

w(z) +

Vb+i(z+1)2

f(u
- u)d

udx R1ioU (.wdZ.. =

= (j =. - Lxi 21tpUres*i at z '

.

1dx =

v x dx + Ith (f- w z dz. =

='.+ Re.27 res.wz at z

Therefreit appears that fora calculation of these quantities

only a Taylor expansion of w(z) in the vicinity of z is needed :

icc + + [2A+Bi+(_Bi+c 1+bi'
:1 x

- L. . 2(1+b)j.. .

1
k'.. [ (--Bi+C)(_i+bi

(1+bi)?) (2A+BiY :k:
Vb±1' (z-'-l) +(1+b2)' 8(1+b2)2

C
L Lxi 21t res.w at z '

((p -. p)dx = U u ± .dx

-I Tm 27tU res.wz at z

M Inii4res. wz atz ci}

Further area cavitation, bubble

where+ e..
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With the help pf thee values for A, and Cexpessiens fbr
CL ,. C and the area of the cavitation bubble are derived

8 \Jco 'cos

-2 -2 sin

5_ (
I .++ +Sin

cosH

area cavitation bhbble

cos (1+siri ).[6-6 sinf

.: 2 sincos

5 cos

+ a., -cos

7.

Frdm the above result th following equation determining the
real cbnstants A, Band C:

++j -0.

Re f [2A+Bi+(-A-Bi+C) j+bj lx o.
2(1+b) J. j

After substitution f tg -f for b, the solution is round as.
2 c(cos (1+sin) _(1_si±i)sinf

2 cos f
+ 2 cs f:. 2':cos -3S1n cos .- cos

sincos'.



-a

8.

At last the condition a,iii) a) or b). lsused todetermtne

as a. functlon . of a:. arid (

g1veS

.3+sin- cos2'-LAjsin

6 2 Co S (1 .- in )

gives
(1sin )(2+sin

8'.6 2 cos (14-sin

In fi. + the cavitation length = cos2 ' is plotted against

There are two curves. corresponding to the two hypotheses

a) andb). The isoiatd o1nts represent values derivedfropthe

experimental results..of Ba1hn concerning the pressure distribu-

tion along Karman-refftz. profiles. As cavitation length .ha.s been

tkOn the length of the .part of the profile, along which the

pressure was-nearlT constani divided by the lenthef the profile.
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