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Linearized theory of flow with finite cav1t1es

about a w1ng.

by J.A., Geurst and R. Timman.
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1. ;ntroduction,'

In the design of ship propellor blade sections cavitation
phenomena play. a dominant part. It is well known (ref. (1),chap, II)
that a rigorous mathematical theory of cavitational flow, based on '
the concept of free boundaries, is rather complicated and moreover
1nadequate for gquantitative results. Since propellor blade sections;
are extremely thin,. 1t lies at hand to replace the exact hodograph
plane theory by linearized'theory which is far more simple. This’

" method seems proper to a treatment of film cavitation, where the

evaporated water spreads along a finite part oflthe blade.like.av

thin film, ' - _
In this paper the theory is given for the case of a plane wing

at a small angle of attack, where the calculations are relatively

_simple. In ref. (2) the results of measurements are given concer+"
‘ning the pressure distributions along Karman-Trefftz profiles in a
: cav1tation tunnel. From these results a rough approx1mation for .the

actual cavitation length can be derived. These quantities are \
used for comparison with the theoretical results., The cavitation

_length is not determined uniquely as a function of the cavitation

% 5 and the angle of incidenc¢e by the conditlon
AU - S ,

| .a&é@e.that the cav1tation'bubble must be closed. 'Another

requirement is needed, for which two alternative possibilities are

. introduced. The.first is the strong Kutta condition. The second is
the requirement, -that the pressure should be continuous at the rear -
_ end of the cavitation bubble. This amounts to the condition, that

the tangent to the cavitation bubble there should be directed along
the profile, .

2. Mathematical formulation of the problem.

_ Neglecting thickness effects we replace the blade section by
its camber line, the chord .of which has its centre at‘the origin
of a rectangular coordinate systém,is of length 2 and'makes an

‘angle - & with the positive x axis. The undisturbed velocity is

directed along the positive x axis and has a magnitude U, (see
fig. 1). - E ' Y
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fig. 1. -
The blade section causes a disturbance velocity field (u,v), which
satisfies the following equations

u, + vy = =0 continuity equation for incompressible flow.'

uy = vy =0 irrotational: flow. ' - -

The boundary conditions'are : .
1) u—0, v—0" ‘at infinity -
11) on the CaVltatlon bubble the pressure is a constant

" In linearized theory the condition 1is satisfied on the projection”

of the cavitation bubble on the x axis. This projection is. assumed -
to extend from x = - 1 (leading edge) to a point X Z-on the
suction s1de. '

tiii) at the remaining part of the blade the total velocity must be
" tangential to the contour. This condition too 1is satisfied on the
“projection of the camber line on the X axis, extending from x= = 1

(leading edge) tox=+1 (trailing edge).

" As to condition iv) two possibilities are investigated in this

paper i.e,

a) at the trailing edge the velocity must satisfy the strong Kutta

/

-+ condition: u = 0 at x' = + 1, or

b) at the rear end of the caVitation bubble the velocity must be

‘ tangential to the contour. This turns out to be aequivalent
to the condition that the pressure must be continuous at that
point (see later).
In case a) the velocity has a direction normal to the contour :
and the pressure is discontinuous. :
In linearized thﬁory Bernouilli's equation

~_b ¥ J P {(U + w2+ v2 1294-2/3U°° ) takes the simple form
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Introducing the cavitation number ¢ = — 3 we find as the
condition ii) on the_oavitation-pubble_léi =-g
. N : - ) 7. .

‘The linearized cohditioh 1ii) can be written as

= ,Zoc 9 where « is the local angle-of.incidence.

U..

]

oc -
o Altogether the follow1ng boundary conditlons must be .

i

satlsfled°
1) u__+6, v__;o | for x2 + y -—% e
Nu=2¢l, = -1¢x <l y =+ 0
- af oL,
V-U”[d+ﬁ:! /€<-.X"<;L, y=+0
4 - 1<x <1 . y=-0
. - ' S : ,
- where y = f(x) is{the equation for the camber line.
a - . ‘ = ] , -
. '3b) u O,g at % +1, y=0 o cde i
or 37) v=01% - at x= g s ¥y =+%0 W,.,,,;xa-".' }a
Wy - _ af -
g4, B"Utw‘["‘*dx
o . /2
A - - C
"'1 . .O -|l : .
_‘.' df : :
v= 5_ . N
o J ' z-plane. .

, flg. 2.

- 3, Solution of the problem. ' _ » e

The complex veloc1ty w = u ~--iv is an analytic function of the

lcomplex varlable g = x + 1y, since 1its real and 1maginary part
(ﬂ‘_SatISfY the . Cauchy-Riemann equations. '

The z-plane is -mapped conformally on the lower half plane of a
7 = g +. 17 plane by the transformatlon 7 %’{;; The problem in

the 3 plane is now to- determlne an analytlc function w = u -'iv in -

~the half. plane 7 < O,_setlefylng the conditions

1) % =0 £ <b 1 V=&, ==&+ F(§) |

2
11) T =-1 3 u=v=0
i41) a) ¥=0 : u=0 |
or b) 4 =0 f§ =0 + 0 s 'v'=d/eoc

—

where b =\/:1—'-§ | or with f = cos ) b= tg g

Y
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fig. 3.

Remark: the'velocity has.been made dimensionless with respeot’to,
U, | ) | |
The problem can now be reduced to a Riemann-Hilbert problem. -

First the analytic'continuation of W('j) into the upper halfplane by
means of Schwarz's princ1ple w(g’) = W(; ) is introduced, where .

the bar denotes the conJugate complex value. If the limiting values

of the fundtion. Wy ‘when V approaches the f axis from the upper and

lower s1de, are dencted by w and W~ , this function has to_satisfy

the follow;ng conditions. ' | |

~w 1is a holomorphic function in the-complex ﬂ’plane with the excep-

. - , /)
tion of the real axis. Theré.holds _
| + - . N ‘ :
W_--WV--ZIIL/K-O-C‘—ZI[O(.-F} o forg < b_
W' wT =2 L | forg > b

Follow1ng Muskhellshv111 (3) first the homogeneous problem 1s solved

' The boundary conditions are
L

My W =0 . 5By
g o . _ h=20 _
' L Wy twy, S 0 ¢ >Db - L
The genoral solution is w, - B(E) . 4 where P(j ) is a polynomial

-in 7 with réal coefficients. Y’b‘

There is assumed that wh'ls of f1n1te degree at 1nf1n1ty and that
the function isflntegrableralong the. g - axis. ‘

, With the aid of the Plemelj formula the general solution of the
ooriginal problem is now derived as

e Cw(yy= b (28 BC9)d S RO O
LAN AN [wh g -7 5oy 2
where w ('5 ) S/b-;_gf”.ﬂ See Muskhelishvili (3)
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. The conditions ii) and iii) together with the requirements that

the pressure i, €e u should be 1ntegrable along the contour and
that the cavitation bubble.should be closed, lead to equations .
determining the cavitation length_lfg'— cos2 %ﬁ as function of
and 6’ These calculations will be performed in the,next seotion
for the case of a flat plate'at‘a‘small angle of attack,

L4, aApplication to the case of a flat plate,

For a flat plate the general solution of the inhomogeneous

‘boundary value problem -

'W+ ew = -2ia
is easily found to be w () = ——iﬁLl Jﬁ ik .

b-;- ’ :
At first we arguec, that the degree of P(3 ) cannot be higher than

2. Suppose ‘it has the value n. Since the leading edge of the profile
is mapped by the conformal transformation on the point ; =2, it -

. Vis seen that in the neighbourhood -of the leading edge -there holds

- — +& :
w(7) =0 (47 = o (142) o i
But u(x) must be‘integrable,and‘this leaves open only thé values
n'= 0,1,2, Hence we may put ' . '

+'B"+C+i+iot. |

vK ;) =4 \/b = >

The - constants A, B and c are now determined from the conditions,

 that at

7'2_1;,_-ﬁivz'o’
and that the cavitation bubble must be closed.
This last condition takes the form

\,vdx -}Q(vﬂx)dx = / (v+xK)dx f—g dx =

where y = g(x) is the equation for the cavitation bubble and the
first two integrations are performed along the segment -1< x<+1

at both sides and in clockwise direction. With the help of contour
‘integration. this is equivalent to

- Im }é,wdz = - Im 271, residue w at zf=_</>}= 0

or Re {residue w at 2z =’m}= 0

A
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Expressions for the 1ift L and the moment M with respect to éhe
'ori'"gin are found in an analogous manner. ; : o

_ Y . . . £/ )
L = f(p - p+)dx =P U%f(u -u, )dx =
=l ¥ : ' \

/OU [(u - u_ )dx -/OU ¢ udx = Ee,/qU%?(,wgz._ ___..

Re 2711/JU {rns W oat z = ) == Im 2TTp _Ui"{l?es.'w at z =’M}'.

Thus :
. CL .='- —g— = - Im 2_7T{I'G'S;W 3t z».._..hm } )

g %p'Um.Q

f(P -p+)de"pU éuxdx = A o :

=/ - Im 27IfUE_\ {res wz atz-w}

1

CM=—-—2 -»_Im’n:{res. Wz at;z = ca
| Further area cavitatlon bubble =-f g('x)d)’c =

~

L 4 -l - ‘ - P \ .
_ é[g(x)-c&dex: -¢v’x[ -oc‘ldx = E 0 \

‘-Sﬁ.vvxdx=»+1'm \'zvzdz.='._ _ . o .

£ :
-+ Re 2T [Tres. wz atz=_f/>} _
Therefere, 1t appears that for -a calculation of these quantities
'only a Taylor expansion of w(z) in the Vicinity of z "m 1s needed 2

w.’(z).:‘g + 1o+ -‘—*‘i‘B”C 1_ DA+Bi+ (- A~Bi+C) —1-—2— X,
SR /b+1 : 2(1+b° )

'
i

V "A[(-A-BHC) (s 3(HLL) +(244+B1)
(z”’ ‘ u(1+02)  8(1409)2
. Bgi } ' - 1 . 2 + s whe.re‘ b+i ___ /717 elirr‘l
b+i (z+1) o . m
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From thelabovelresulﬁ the following equationé‘determihingfthe_.
real cbhstants'A, B and C - : o :

.

-

“A-BItC L G L .. L,
—\—'—4'-2—4- i« =0.
Vbt o

e Re { ,r.ZA+.Bi+(-A-Bi#-c)' L v )"‘: o
- U ST 2(1+p?) /b+1 b o

After substltutlon of tg L. for b, the solution is found as .

2

. - 20(cos (1+51n "E') -6(1 sih E)Singn : R
“._._AS'-

. -- . N - . . - -\ i ) " .
S B f-{Slan"" 2ac cosfﬁj‘: | S | . |

' 2<L cos g1(1 sin 13 - 6 (2+sin £\+ 31n ) )
C=r- a— —.:'f.' o ' ' S
\

8 \/cos cos E{T{ i o (1’,
v With the help of these values for A, B. and C expressions for
’/CL ’ C and the area of the cav1tat10n bubble are derived '

r AL Q- sin &2
4 ac(1+sm £ +6 ——=
Bl DT - 2 cos -ﬁf I
N C . .- - A
T O -
',g | {-2“-2_sin s+ pos? g +:2'sinr§

o
e
T

AV

8
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gy G.K'{ -4 + Ysin %ﬁ+"§ ebs2 gjie3 sih:4’c6s2 5 - cosh %f';;

cos & N | |
| o 31ng‘cos’+~g}:’

'area cav1tatlon bubble = L N S

l\)los ~

I\')l"’i
N
o

S (4 L' el
=3 ’-l—é( cos

(1+51 - 5 cos”

.mlb;
rof

{6 6 sin’
X

.)

P o L

T4
L R 7Y 7 L ‘
+ 2 sin 5 cos. 5 ,'2 cos 3 f J: oo N

R .
r'( . ..’ - ~




84 -

At last the condition 3,111) _ a) or b) 15 used to determine
as & function of « and ¢ . | ‘ o >

a) gives ' - o | |
. | 3+Sln gﬁ- cos2 gﬁ h\/51n eos #Ek

~ oleg

o
’ 6 ST S 2 cos. ( =8in 15
b) gives | f
' & _ (1 -sin 2)(2+si 3 ) .
§ 2 cos Q (1+sin F)

In fig. % the cavitation length Jdﬂg;: cos? gfis plotted ageinst -
'é%;. There are two .curves correspondlng to the two hypotheses
a) and b). The isolated p01nts represent values derived: from the -
experlmental results of Balhsan concernlng the pressure distribu-
| tion along Karman—Trefftz profiles. As cav1tation length has been
taken the length of the part of the nroflle, along which the

‘.pressure was - nearly constant, div1ded by the length of the profile.v

A}
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