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Introduction 1
Since the beginning of the Internet its usage and the number of connected routers and
nodes has increased dramatically. Together with the number of nodes in the Internet
also the traffic on the Internet will increase, see Figure 1.1. All this traffic needs to
travel from the source to its destination through the Internet. At every intermediate
router packets are being switched onto other links until the destination is reached. The
increase in traffic and the increase in number of connecting nodes will cause problems
at intermediate routers. Specifically, problems will arise at finding the correct link to
forward packets to, causing the Internet to become slower.

Figure 1.1: The number of nodes as well as the amount of traffic in the Internet has
increased significantly the last years [5][11]. The second figure includes the forecast by
Cisco [11].

When a network-packet is sent, it will travel through the Internet to reach its destination.
As can be seen in Figure 1.2 there are routers at the interconnections of different network-
links. These routers guides the packets through the network to their destination. When
a packet arrives at a router the packet will be forwarded to another link depending on
the destination of the specific packet.

To forward the packet to the correct output port, the router consists of two parts, the
forwarding engine and a switching element as shown in Figure 1.3. The forwarding
engine finds the correct output for the destination, this is also called route lookup, and
the switching element forwards the packet to the link as indicated by the forwarding
engine. In the forwarding engine, or routing table, IP address ranges are stored. These
address ranges cover the complete IP address space as shown in Figure 1.4.
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2 CHAPTER 1. INTRODUCTION
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Figure 1.2: Example of a network where different types of appliances (nodes) are con-
nected to the network. Routers allow the communication between the nodes by forwarding
packets from incoming to the correct outgoing links. Image from [21]

Forwarding Engine

Forwarding Engine

Forwarding Engine

Y G R

BBB

B
G

YR
R

R
R

B
B Y

Y
Y

G G G

RYR

Network
Packet

send UP

send DOWN

send RIGHT

send LEFT

Routing Table

Network
Router

B

G

R

Y

Forwarding Engine

Searching
Routing table

incoming
network
packets

Down Left UPR G Y

Switch Fabric

D
ow

n

Le
ft

U
P

R
ig

ht

output
network
packets

NETWORK ROUTER

Figure 1.3: A router consists of two parts, a forwarding engine which checks to which
output port an incoming packet should be forwarded to, and a switching element which
does the actual forwarding of the packet to the specified port. Image from [21]

The address ranges are stored as prefixes, for example 1101xxxx as 8 bits IP address. If a
routing table contains an entry with the prefix 1101xxxx, this means that the forwarding
engine knows a correct output port for destination addresses 11010000 to and including
11011111. To differentiate between different address ranges also the length of the range is
stored used in the notation. IPv4 IP address ranges can then be written as 192.168.0.0/16
which means that the binary representation of 192.168 is the prefix and the range starts
at 192.168.0.0 and end at 192.168.255.255.
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3

192.168.0.0/16: eth0

192.168.1.101/32: eth2

188.0.0.0/8: eth1

188.15.23.0/24: eth0

Default: eth2

Figure 1.4: The complete address space can be seen as one large range, every route that is
added to the routing table can be seen as a new range with the new output port associated.

Destination Netmask Prefix Length Next-Hop
default 0.0.0.0 0 eth2
188.0.0.0 255.0.0.0 8 eth1
192.168.0.0 255.255.0.0 16 eth0
188.15.23.0 255.255.255.0 24 eth0
192.168.1.101 255.255.255.255 32 eth2

192.168.1.23

Match width length 0

Match with length 16

Forward packet to eth0
Figure 1.5: A routing table is used to determine the correct output port for an incoming
packet. A lookup on the destination address has to be performed and the correct next
hop or output device has to be selected using a Longest Prefix Match. In this case eth0
is the correct output port as the selected route has a longer matching prefix than then the
default route which matches all addresses.

In Figures 1.4 and 1.5 the prefix/prefix-length notation is also used. Both figures give
a clear view of how a routing table can be seen as list of prefixes and ranges in the
IP address space. The lookup of a certain destination address can be seen as finding
out which address range with largest prefix contains the destination address. When the
range with the longest matching prefix is found, also the correct output port is found
and the switching element can forward the packet to the correct port.

When the routing table stores the ranges as prefixes, then a lookup will be: finding the
longest matching prefix or Longest Prefix Match. As an address 10110011 matches both
prefix 1011xxxx and 10xxxxxx it is up to the lookup mechanism to select 1011xxxx as
longest matching prefix.

With the future increase of the Internet in mind IPv4 needs replacement by a newer
version which supports more connected hosts, IPv6. To support more connected nodes
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4 CHAPTER 1. INTRODUCTION

IPv6 has a larger IP address containing 128 bits instead of the 32 bits used in IPv4.
This has major consequences for the routing tables and their address lookup algorithms,
in terms of memory usage as well as performance as the current algorithms do not scale
well.

This introduction chapter deals with the problem definition and goals which form the
basis for this thesis in Section 1.1. In Section 1.2 there is a description of the goals for
this thesis and the associated contributions. An overview of the remaining thesis is given
in Section 1.3.

1.1 Problem

Due to the increase of the Internet in terms of number of hosts and in terms of traffic
and throughput, routing tables have increased in the number of entries. Also the IP
addresses will increase in size due to the transition from IPv4 to IPv6. As current IP
Lookup algorithms do not scale well, to address width and to number of routing table
entries, in terms of performance and cost as well as in power consumption and silicon
area. This will increase the latency for a single lookup and the total end-to-end delay
per packet. This thesis will investigate a new method for IP lookup and its performance
is measured while implemented in an FPGA and prototyped in the HTX Reconfigurable
Platform.

The current methods to store prefixes and perform lookups on routing tables do not
scale well with the number of entries and with an increase in address width. As both
variables are about to increase significantly this causes that each lookup will get a larger
delay than currently is expected. This inevitably means that the Internet on itself will
become slower.

Before a packet reaches its destination, it will be forward by multiple routers. Each
intermediate router will have to perform an address lookup to determine the correct
output port for this specific packet. Whenever this lookup will consume more time, then
also the total end-to-end delay for each packet will increase. With the increasing traffic
and faster connections a larger end-to-end delay is not acceptable.

Next to the problem with performance, there also is a problem with costs. As larger
routing tables lead to larger memories which consume more power and resources. The
lookup, of an address itself, will become more complex due to the larger addresses which
also will lead to more complex functions which require more resources.

The problem is at the forwarding engines in routers. More specifically, the way current
mechanisms maintain the routing table and perform a lookup contribute to the bottleneck
resulting in decreased performance and increased costs. A possible solution lies in new
methods and much research is currently being performed in this area. Instead of changing
the algorithm it is also possible to speed up a specific method by implementing it in
hardware or in an FPGA. This can give quite some speedup compared to software,
depending on the algorithm.
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1.2. THESIS OBJECTIVES 5

The Range Trie is one of the route lookup mechanisms that can be the solution of the
increased delay as it does many optimizations to minimize the number of memory accesses
and to minimize the complexity of the lookup itself. As opposed to the current most
used mechanisms such as the Radix Tree [1] and LC-Trie [15], which do optimizations
though less than the Range Trie.

This thesis will explore the Range Trie in combination with an FPGA implementation
and whether it is interesting for further investigation and possible implementation in a
router. To investigate the behavior of the Range Trie in an FPGA it will be connected
to an HTX enabled computer. In such that the Range Trie hardware implementation
can controlled and observed from software via the HyperTransport Bus [4].

1.2 Thesis Objectives

As said in the previous section problems arise with the current routing table implemen-
tations. This thesis will explore if it is possible to use the Range Trie in an hardware
implementation and whether it is a field of interest for a final solution to the problem.

The main goal of this thesis is to deliver an FPGA implementation of the Range Trie
Route Lookup working in an HTX reconfigurable machine. With this implementation
the speed and costs of lookups will be compared to the default Linux kernel lookup
method to determine if the hardware accelerated version of the Range Trie is a field of
interest as replacement for current routers.

The objectives of this thesis are:

• complete the Range Trie hardware design which supports LPM and
Updates. Currently, there already is a base design with most of the components
as delivered by [12]. This base design has to be tested and adjusted where it is not
fully functional.

• FPGA prototype the fully functional Range Trie hardware design. As
the design uses a relative large amount of memories which are in the base design
implemented in LUTs this might become a problem. These memories might have
to be replaced with BRAMs in order to fit the design on an FPGA.

• port the FPGA design to the HTX platform which offers reconfigurable
acceleration with software support. There are some demands by the HTX
platform on the accelerated function. The FPGA prototype design has to meet
the demands of the platform in order to run successfully.

• evaluate the efficiency of the final design when ported in an FPGA in
terms of cost/performance compared to software.
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1.3 Thesis Overview

The structure of this thesis is ordered such that the reader is taken along the design of
the Range Trie and its implementation in hardware including the testing and evaluation.
Therefore chapter 2 contains all required background information about the routing
tables, some of its implementations, including the Range Trie, and the hardware platform
on which the Range Trie will be implemented.

With all required information it is possible to continue with the design and implemen-
tation of the Range Trie. This is discussed in chapter 3. It includes all required modifi-
cations on the initial Range Trie design. These modifications include the additions for
correct interfacing to the hardware platform as well as additions needed by the software
to retrieve all the required information. After the design is completed it can act as rout-
ing table for a Linux computer. This gives the possibility to make a comparison to the
default Linux lookup methods in terms of performance. In chapter 4 the performance of
the implementation is measured with multiple scenarios to highlight different aspects of
the Range Trie implementation.

In chapter 5 the results of the measurements will be concluded as well as the implemen-
tation of the final design. Next to an overall summary it also contains some possible
improvements and future work is proposed for the Range Trie and its implementation.
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Background 2
The main goal of this thesis is to implement the Range Trie on a general purpose pro-
cessing platform with support for hardware acceleration of functions and compare this
with a software based routing table.

In this chapter, the required background will be given, starting in Section 2.1 with
routers and how they work with routing tables. Three different IP Lookup algorithms
are discussed in Section 2.2. The Range Trie algorithm will be compared to the other
algorithms in Section 2.3 to give the reader a feeling of the amount of optimizations the
Range Trie uses and how it works for lookups and updates. After this, in Section 2.4,
the platform on which the Range Trie will be implemented will be discussed.

2.1 Routers, Routing and Lookup Tables

Routers are the intersections of networks, at these intersections multiple links come
together and packets will be transferred from one link to another in order to let the
packets reach their destination. As shown in Figure 2.1, a router receives packets from
any of its incoming interfaces. With each of the received packets a lookup based on its
destination address is performed in the forwarding engine.

Basic overview of the path that a packet follows in a router
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Figure 2.1: The router receives packets from its incoming links. For each packet a lookup
is performed on its destination address. Depending on the selected action with longest
prefix the packet is forwarded to one of the outgoing interfaces or the packet will dropped,
or what the action may specify.
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8 CHAPTER 2. BACKGROUND

The forwarding engine, or routing table, stores address ranges denoted by there prefix.
Where a prefix of 1011xxxx covers a range of 10110000 to (and including) 10111111. For
each entry a possible output port is stored. A lookup in the routing table determines
the output port where a packet with a specific destination address should forwarded to.
A packet might encounter numerous routers before the final destination is reached.

The forwarding engine has to find the most convenient outgoing link for a received packet,
which is the most suitable path. Whenever a direct link is not found then the packet
will be send to a route which has the largest matching prefix. The routing algorithm
has some lookup functionality which is able to find the route with the longest prefix
matching the address. With each prefix an action is defined, this action determines to
which output port the respective packet should be sent to or, what other action the
router should perform.

The IP Lookup algorithm needs to store all known prefixes in such way that a lookup
of an address is done as efficiently as possible. It is possible to store the prefixes as a
list and for each lookup check every element in the list and select the longest matching
prefix. But with an increase in number of prefixes, also the time for each lookup will
increase with the same pace. There are other methods to store the prefixes in a routing
table, for example a binary tree, see Figure 2.2.

When the prefixes are stored as a binary tree, then a lookup would correspond with
the traversal of the tree. At each level a extra bit of the prefix is compared to the
destination address, after which it can continue to the correct child. The leaf nodes will
then correspond to a specific prefix. The advantage of such a structure is that the time
required for a lookup will not increase with the same pace with the number of prefixes
in the routing table.

The tree structure also gives much possibilities for further optimizations. In the next
section two methods, the Radix Trie [16] and the LC-Trie [15] are discussed. Both of
them use the binary tree as structure and apply optimizations to make the tree smaller.
Other structures are also possible, as will be discussed with the Range Tree [16] and the
Range Trie [19] in Section 2.2.3 and 2.3.

2.2 IP Lookup mechanisms

When the prefixes of a routing table are stored in a tree structure there are many
optimizations possible. Therefore some implementations of tree structures which are
used as routing table are pointed out. These other mechanisms are specifically chosen
as the results of the optimizations are clearly visible and very well comparable to the
optimizations done by the Range Trie. The two methods, the Radix Tree and the LC-
Trie, are possible implementations of routing tables within the Linux Kernel [2].

During the explanation of the IP Lookup algorithms, the optimizations are performed
on the same base-tree (Figure 2.2) which is a normal binary tree. By using the same tree
to perform the optimizations to, the result is a clear visual indication what the different
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methods actually do to a given tree. The methods are ordered by complexity, starting
with the Radix Tree and then the LC-Trie. After these trie-based structures the Range
Tree [24] is discussed. The Range Tree uses a different method to traverse the tree during
a lookup. Finally the Range Trie, which is an optimized version of the Range Tree, is
discussed in Section 2.3.

Root

1 0

1* 0*

11 10

11* 10*

01 00

000010100111 110

111 110 100 010

00*01*

000

Figure 2.2: A simple binary tree on which the optimizations for the different methods are
performed

2.2.1 Radix Tree

Radix Trees are used by default on most Linux distributions [2] and are originally called
Patricia trees and are also called path-compressed tries. When starting with a random
binary tree it is possible to have intermediate nodes which have only one child. These
nodes are not really necessary because there is only one child the lookup can go to,
therefore it is possible to remove them, or merge them with their child, see Figure 2.3.
By merging the intermediate nodes with their single child sparse populated areas in the
tree will be compressed very well [16], which in turn leads to a reduction in memory size.

Root

1 0

1* 0*

11

11*

000010100111 110

111 110

100 010 000

Figure 2.3: To get the Radix Tree, the paths of the original binary tree are compressed,
reducing the memory required for storing the tree
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2.2.2 LC-Trie

The LC Trie (or Level Compression Trie) uses the same method as the Radix Tree to
compress the path of the base tree, its difference lies in the compression of levels [15].
Whenever all children of a node are fully connected, so both children of a node have two
children themselves, then the node and the children will be replaced by a new node which
has all children of the children. So instead of requiring 2 levels with both i branches per
node, the replacing node will have 2i children, as displayed in Figure 2.4.

The LC Trie has a higher complexity for a comparison at a node, as more than the
default number of children are possible. Due to this increased complexity it can decrease
the number of levels of the tree and with that the number of memory accesses for each
lookup. This level compression works recursively, in such that a node with 2i children
which all have 2i children will be replace by a new node with 2i+1 children. Although the
comparison in each node is more complex the latency of a complete lookup can decrease
due to less levels.

Root

11

11*

000010100111 110

111 110

100 010 000

Figure 2.4: In comparison with the Radix Tree, the levels are compressed to generate the
LC Trie. Compared to the base tree, both the paths and the levels are compressed giving
both a memory and latency optimization.

2.2.3 Range Tree

The previous two tree implementations require a match of one or possibly more bits
in every node. With the Range Tree this is not the case. The Range Tree [24] does
not check on actual bits of the address but matches the complete address in each node
completely and continues to one of the children depending on the value of the address
[24]. In Figure 2.5 an example of a Range Tree is depicted. A downside of this method
is that complete addresses have to be compared at each node. A positive side is that the
Range Tree very much resembles the ranges of IP addresses in the IP address space. As
opposed to the prefixes in the previous Trie structures.

A Range Tree can have multiple bounds in each node. A lookup will mean a traversal
of the tree and at each visiting node the given address is compared to the bounds of the
nodes. Take Figure 2.5 as an example with only one bound per node. When the address
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01011 is looked up it will be compared to 01100. As 01011 is smaller than 01100, the
lookup continues to the node on the left. When compared to 01000 the next node will
be on the right with 01010 to 01011 as selected range.

01100

01000 01110

L GE

00100 01010

L GE

01101 01110

01110011010101000011 00100

L GE GE GE

GEL

GE

Figure 2.5: The Range Tree does not compare one or more bits to find an exact
match. The complete address is compared to the bound in a node. The answer, Less
or Greater/Equal determines the next node to visit.

Now the other IP Lookup algorithms are explained it is clear that the final tree becomes
less deep when a node can have more than 2 possible children. Also, with multiple
optimizations the total complexity of a possible design becomes higher while the lookup
performance will be optimized with quite a good degree. The ideas proposed by the
Range Tree seems to be more usable for IP lookup as, ranges with specific prefixes are
the final goal. The Range Trie combines the range lookup with optimizations to reduce
the number of bits to be compared at each node [20], as will be discussed in the next
Section.

2.3 Range Trie

The original method for using a Range Trie [6] is developed at TU Delft, as well as its
initial designs and the additions to support Longest Prefix Match [22] and [12]. TU Delft
is also holder of the patent of the general method, system, and its data structure [18] as
obtained in October 2010.

With the Range Trie a fully scalable method and implementation is created to replace
the current used Longest Prefix Match algorithms in internet and network routers. The
biggest advantage of this method is that the depth of the tree is decreased substantially.
This means that every lookup, or other operation, require less memory accesses. The
lookup latency and power consumption will be decreased consequently.

First the default structure of the Range Trie will be explained, including how lookups
and updates are performed. After that one of the biggest disadvantages of this method
is explained and a solution is proposed. Finally both parts will be used together in the
design and implementation of the Range Trie route lookup mechanism.
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2.3.1 Basic Range Trie structure

The Range Trie uses ranges, just like the Range Tree, to traverse the tree. In the Range
Trie however partial, rather than complete addresses are compared in each node, the
algorithm that builds the tree attempts to eliminate as many bits as possible to reduce
the number of comparisons needed. While building the tree the heuristic proposed by
[6] starts with all known prefixes and starts building the Range Trie from the bottom
up storing as many prefixes as possible in each level. Each node in the layer above the
last can have up to 29 children and these intermediate bounds are decided upon by the
algorithm. The algorithm selects internal bounds to minimize the number of bits needed
per comparison, and consequently maximizes the number of bounds per node. To find
the ideal intermediate bounds the algorithm will take several optimizations into account,
as presented in [19] and [20], these optimizations are:

1. Omit common node prefixes

2. Shared common prefixes

3. Shared common suffixes

4. Omit zero suffix

5. Address alignment

By including these rules the number of bit-comparisons can be significantly decreased
for each bound. In the next subsections the reasoning behind, and application of these
five rules are explained. The proof for each rule can be found in [18]. For the coming
explanations the following notation is used:

• The node currently looked at is denoted by N and has address AN with neighboring
node N+1 with address AN+1

• The node N has x internal bounds, with addresses Ax

• The incoming address is denoted by Ai

2.3.1.1 Rule 1: Omit common prefixes

When in node N, then Ai is at least as large as AN and all Ax are equal or larger than A

N. If AN and AN+1 have some common prefix P, then it is for certain that each bound
Ax and address Ai also have this common prefix. Therefore it is not necessary to check
for this common prefix part and it can be omitted during the comparisons, as can be
seen in Figure 2.6.
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L GE L GE L GE L GE

Initial node

Node N:
0xFFFF0000 to 0xFFFFFFFF

Bound 1:
0x----1111

Bound 2:
0x----2222

Bound 3:
0x----3333

Bound 4:
0x----4444

L GE L GE L GE L GE

Node after Rule 1

Node N:
0xFFFF0000 to 0xFFFFFFFF

Bound 1:
0xFFFF1111

Bound 2:
0xFFFF2222

Bound 3:
0xFFFF3333

Bound 4:
0xFFFF4444

The dashes represent bits that do not have to be compared

Figure 2.6: Visualization of Rule 1: upper part is the original comparison and at the
bottom the comparison has been converted using Rule 1.

2.3.1.2 Rule 2: Shared common prefixes

Within a node N all bounds can have an equal, shared, prefix. As with Rule 1, except
for the prefix requirement at AN and AN+1. In such case it is not necessary to compare
the shared prefix for every bound comparison individually. Instead the shared prefix is
compared separately and only when the prefix matches then the rest of the addresses
have to be compared as shown in Figure 2.7. When the shared prefix matches the most
significant bits of Ai then the other bounds with the equal shared prefix will have to be
matched, but only the bits not already matched with the shared prefix.

2.3.1.3 Rule 3: Shared common suffixes

When the bounds Ax share a certain suffix, then this shared part can be compared only
once and used in the different individual comparisons. From Figure 2.8 the resemblance
to Rule 2 is clear, but the interpretation and location of the shared comparison is of
course different then during Rule 2 as this is a suffix instead of a prefix. The shared
suffix only needs to be compared when the other bits of a bound match exactly, if this
is not the case the this comparison is not necessary as the final result is already known.

2.3.1.4 Rule 4: Omit zero suffix

When it is known that a bound ends with a certain amount of zeros, there is no need
to compare them, as the bounds are to and not including. When an incoming address
matches the bound-address without the zero suffix then it already is certain that it will
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L GE L GE L GE L GE

Initial node

Node N:
0xDDDD0000 to 0xFFFF0000

Bound 1:
0x----1111

Bound 2:
0x----2222

Bound 3:
0x----3333

Bound 4:
0x----4444

L GE L GE L GE L GE

Node after Rule 2

Node N:
0xDDDD0000 to 0xFFFF0000

Bound 1:
0xEEEE1111

Bound 2:
0xEEEE2222

Bound 3:
0xEEEE3333

Bound 4:
0xEEEE4444

The dashes represent bits that do not have to be compared

Shared Prefix
0xEEEE----

    EL G

Figure 2.7: Visualization of Rule 2: upper part is the original comparison and at the
bottom the comparison has been converted using Rule 2.

LG

Shared Suffix
0x----2222

L GE L GE

Initial node

Node N:
0xEEEE0000 to 0xFFFFFFFF

Bound 1:
0xEEEE----

Bound 2:
0xFFFF----

L G

Node after Rule 3

Node N:
0xEEEE0000 to 0xFFFFFFFF

Bound 1:
0xEEEE2222

Bound 2:
0xFFFF2222

The dashes represent bits that do not have to be compared

E E

L L GEGE

Figure 2.8: Visualization of Rule 3: upper part is the original comparison and at the
bottom the comparison has been converted using Rule 3.
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map to the Larger or Equal part of that bound. In Figure 2.9 the following example is
displayed.

When there is an Ai equals 0xAAAAF000 then and in a certain node there is a bound Ax
with address 0xAAAA0000. If there is a complete comparison then Ai will go to the Less
side of Ax. When this rule is applied, the comparison will be done with Ai=0xAAAA
and Ax=0xAAAA which will also map to the Less side of Ax.

L GE L GE L GE L GE

Initial node

Node N:
0xAAAA0000 to 0xFFFFFFFF

Bound 1:
0xBBBB----

Bound 2:
0xCCCC----

Bound 3:
0xEEEE----

Bound 4:
0xFFFF----

L GE L GE L GE L GE

Node after Rule 4

Node N:
0xAAAA0000 to 0xFFFFFFFF

Bound 1:
0xBBBB0000

Bound 2:
0xCCCC0000

Bound 3:
0xEEEE0000

Bound 4:
0xFFFF0000

The dashes represent bits that do not have to be compared

Figure 2.9: Visualization of Rule 4: upper part is the original comparison and at the
bottom the comparison has been converted using Rule 4.

2.3.1.5 Rule 5: Address alignment

An incoming address Ai should map to a certain address range. Instead of comparing
the remaining bits of A to the two bounds of the range it is also possible to subtract the
left bound of the range from all bounds in the certain nodes and the incoming address. If
the subtracted values are compared, it will give equal result as to a comparison with the
original addresses, but it might be that the subtracted value has lesser bits to compare.
A good example is given in Figure 2.10 where 32 bit comparisons are converted to 8 bit
comparisons due to this rule.

While subtracting the value from the incoming address it can be said that the width of
the comparisons will be L = log2(AN−AN+1) at most. Therefore it will not be necessary
to subtract more bits of the incoming address than needed in the comparison, as more
bits will just not be used. This is why the incoming address in Figure 2.10 is subtracted
with 0xF0 while the bounds are subtracted with 0x3FFFFFF0.

Rules 1 to 4 can be used independently from each other, for rule 5 there are some issues
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L GE L GE

Initial node

Node N:
0x00000000 to 0x0000001F

L GE L GE

Node after Rule 5 (subtract value is 0x3FFFFFF0)

Node N:
0x3FFFFFF0 to 0x4000000F

Bound 1:
0x3FFFFFF8

Bound 2:
0x40000003

The dashes represent bits that do not have to be compared

Subtract Ai with 0x------F0

Bound 1:
0x------08

Bound 2:
0x------19

Figure 2.10: Visualization of Rule 5: upper part is the original comparison and at the
bottom the comparison has been converted using Rule 5.

to keep in mind. In such that rule 5 can be combined with rule 1 to maximize the
common node prefix, but rule 5 should be applied before rule 2, such that no shared
prefix is detected while the subtraction will probably change this value. Rule 3 and 4
can be applied independently to rule 5. In the example of the Range Tree in Figure
2.5 only one bound per node was taken into account. If this example is used for the
optimizations of the Range Trie the tree will look like Figure 2.11. It will further depend
on the implementation if the nodes without comparisons actually exist.

2.3.2 Performing a Lookup

The main function of the Range Trie hardware design is to perform lookups. During
a lookup command the Range Trie will receive an address which is to be looked up in
the tree. To do so, the design traverses the tree, using the destination address of the
incoming packet, and with each visiting node it compares the required bits from the
node and the asked address. At each node the Range Trie can have 29 siblings, and the
design should be able to determine which of the 29 possible children will be next node to
visit. A possible traversal down the tree is given in Figure 2.12. The result of a lookup
will be an action. An action tells the switching element in the router what to do with
the packet, either send it to a certain interface, drop the packet, or some other action.
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011--

01--- Prefix: 01
--11-

L GE

001-- ----

L GE

----- -----

01110011010101000011 00100

L GE GE GE

GEL

GE

Figure 2.11: The Range Trie with Figure 2.5 as basis with all possible rules applied.
Depending on the implementation also the empty nodes can be omitted. The Range
Trie heuristic will give different results as multiple bounds are supported and nodes are
generated bottom-up and not performing the optimizations on an already existing tree.

11---

011--

L

001--

L

00111

GE GGGGEEEE GGGGEEEE

GGGGEEEELLL

Address: 00110

0:noAction

1:drop

1:noAction

To Output:
Prefix-Length:Action

3:Eth1

GGGEEE
Prefix-Length:Action

3:noAction
0:noAction

GGGGGEEEE

Prefix-Length:Action
0:Eth2
1:drop

LLLL

Prefix-Length:Action
1:noAction

3:drop

Prefix-Length:Action
2:Eth2
3:Eth1

Figure 2.12: Example of a route lookup including the LPM-support, at each node the
prefix-length is checked. Whenever a larger or equal value is found the value is updated
and the new value with its action will be forwarded.

2.3.3 Longest Prefix Match

If a destination address maps to multiple ranges, the lookup will have to select the ranges
with the largest prefix equal to the destination address. In Figure 2.12 it can be seen
that a prefix length can be stored at every level in the tree and as soon as a larger prefix
is found, then this value is taken down with the lookup. With the prefix lengths, also an
action pointer is stored with each bound. With this action pointer it is possible to select
the action corresponding to the selected prefix. If a visited node does not have a larger
prefix-length for the given address then the action and prefix-length from the previous
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levels is passed on down to the next node. During a lookup the final prefix length and
action are reported.

2.3.4 Performing an Update

Having a Range Trie design in hardware which can do fast lookups is already promising,
but it has to support updates for actual use. To perform an update two addresses are
required which are the bounds of the range of addresses which are possibly updated.
Possibly, because it can happen that for certain addresses within the updated range a
larger prefix than the prefix of the update is already known. In that case the update is
not performed for those addresses.

In order to know if the addresses within the range need to be updated they first must
be checked, therefore a lookup on both the low-bound and the high-bound of the update
is performed. Together with the information from the lookups, it is possible to tell
which elements in the ranges require updating. As the bounds may split in the tree,
which means that they do not follow the exact same path, also the updates are split
and performed in two cycles. Because two lookups and two updates are required for a
normal update it is key that there are no other commands executed right after the two
update commands as they might interfere with the two update attempts.

With the updates, the information at the existing nodes can be changed so there is a
way to update prefix lengths and actions. It is possible that new links are discovered,
when this happens a new prefix should be added to the routing table. As many of the
optimizations require knowledge about the complete node with multiple bounds it is
not very straight forward to add a new prefix to the structure. The tree might require
a complete rebuild for each update. As this will take too long a different method is
proposed, the spare levels. The fixed part will follow the basic Range Trie structure
as explained in this Section, but does not allow the on-the-fly insertion of new prefix
bounds. The insertion of new prefix bounds is only possible in the spare part which
allows a certain amount of levels to be inserted.

2.3.5 Spare levels

As it will be very complicated to include all optimizations as integrated in the fixed part
of the Range Trie, the spare parts only includes rules 4 and 5. These rules are applied
because no knowledge about neighboring bounds or the parent node is necessary and
therefore no recalculation is necessary are a new bound is added to a node. The spare
levels will contain small subtrees under the fixed part at the location where bounds are
added, an example of this is shown in Figure 2.13. This allows for an optimization in
the memory usage.

As the spare levels are only used when necessary, it would be a waste of memory if
it uses the same memory layout as the fixed levels as many entries will remain empty.
Therefore a memory management system is proposed for the complete spare part which
allows memory blocks to be dynamically allocated to a certain spare level when required.
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P1 P1P2 P4P3 P5 P5P6

Subtree
With added 
bounds in 
spare part

Subtree

Subtree

Ranges in the Fixed part of the Range Trie

Figure 2.13: When bounds are added to the Range Trie, these will be stored in the spare
part as individual subtrees under the leaves of the fixed part. In the leave node of the
fixed part, a memory lookup is performed to retrieve a possible pointer to the subtree. If
this pointer exists, then the subtree will be traversed. The subtree can contain multiple
levels and one single leave node in the fixed part can contain multiple subtrees.

With this method it is possible to have either many small subtrees (with few levels) or
lesser large subtrees (requiring many levels).

This different memory management requires an additional lookup for each spare level.
This additional lookup is from a maintained next-pointer memory. Which takes the next-
pointer from the previous level and from that lookup the base-pointers in the dynamically
allocated memory for the next level. Why this extra lookup is necessary is explained
more elaborately during the implementation in Chapter 3.3.5.

The structure for the spare levels with just a few optimizations is chosen because it
is easier to implement and it suffices. A large downside is that the tree can become
unbalanced when many of the bound insertions point to the same side of the tree. When
this happens the levels for a single subtree are filled relatively quickly without maximizing
the memory usage. When a subtree is out of spare levels, no extra bounds can be inserted
and the spare tree should be incorporated into the fixed part by rebuilding the tree.
During this restructuring all bounds will have to be read and will be used as the input
of the tree building function in software.
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To maintain the availability of the hardware for lookups, the restructuring will be per-
formed in software. Updates should be stalled during a tree rebuild, because updates
performed in the hardware while restructuring will not be visible when the new re-
structured version is being implemented. Therefore updates should be stalled until the
restructuring is finished. Performing the restructuring in hardware would take many cy-
cles with a high complexity, while there currently exists an efficient algorithm to create
the tree in software. Next to the availability of lookups during the restructuring, this is
another reason why the rebuilding of the tree is currently executed in software.

2.3.6 Performing a Lookup in Spare levels

In general, the lookups in the spare levels are performed in the same manner as in the
fixed part of the tree. There is just a slight difference on how the address of the next node
is calculated, this is due to the dynamic allocated memories and more attention is spend
on this in Section 3.3.2.2. In the spare levels the number of comparators in each level to
compare the incoming address to the stored compare values is equal to the number of
comparators in the fixed levels. As there are less optimizations on the compared values,
the number of bits compared for each child is higher. This has as consequence that in
the spare levels each node can have up to 9 children, which is smaller than the number
of possible children in the fixed level which can have up to 29 children.

2.3.7 Performing an Update in Spare levels

Next to the lookups the updates are also more or less the same as in the fixed part,
except that it is possible to add and delete bounds. During the initial lookup cycles the
spare part checks whether the update will cause a new bound to be added. If this is the
case then the spare part will allocate memory for this bound. The bound itself is added
during the following update cycles.

With the allocation of the memory for a new bound the design will check if the bound
can be placed in the current node. Whenever the node is already full the bound has to
be added to the next node. If this next node does not yet exist, it will be created. The
creation of a new node can require allocation of a new memory block to that spare level.

Next to bound additions it is also possible that an update will cause a bound to become
unused. In the fixed part this bound cannot be deleted physically as the rest of the
structure can rely on it. In the spare part bounds are added independently and can thus
be deleted independently as well. Even more, when a complete allocated memory block
is unused it can be recycled in order to use it for another subtree when requested. During
the creation of the hardware implementation a severe bug was found in this reasoning
as the pipeline might need an extra, fifth, cycle for updating the base pointer tables in
the spare part. More about this can be found in Section 3.3.6.
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2.4 HTX Platform

The platform on which the Range Trie design will be implemented is a general processing
machine which has support for hardware acceleration of functions thanks to the work in
[3]. The implementation of the hardware and corresponding driver lets normal program
functions to be executed in hardware. It gives the software programmer the ability to run
a function in hardware as if it is a normal C function, including the passing of parameters.
The most common way to use these parameters are pointers to main memory as it is
not yet possible to let the function return a specific value. The use of pointers gives the
opportunity to let the accelerated function write back the result to main memory. In this
functionality it is very much like the Molen designs [23] but with the Molens embedded
PowerPC-processors are used which are part of the FPGA instead of a general CPU in
a relative computing environment with an HyperTransport Bus [4], also referred to as
HTX bus.

The FPGA used is a Virtex-4 HTX board [9] which has an interface to the HyperTrans-
port Bus [17]. The resulting platform is able to directly access the main memory which
is shared with the host using virtual addresses. The core of the platform translates this
virtual address to the real memory address before it is send over the HyperTransport
Bus. This makes the memory access from the accelerated function as implicit as possible
as no explicit address translation or prefetching has to occur.

Whenever the platform attempts to access main memory, it only has access to the pages
belonging to the application calling the function, this prevents the accelerated function
from writing and corrupting memory belonging to other programs or the operating sys-
tem. The driver also takes care of swapping the correct page to accessible memory when
necessary. In order to have the memory that is being accessed by the hardware function
available and it does not have to wait for the memory swap during runtime. The HTX
hardware uses interrupts to inform the driver of TLB misses and to tell the originating
application that the function has finished. This means that other applications are not
blocked by the hardware function as the driver does not need to check continuously
whether the hardware function has already finished.

There are different implementations of the HTX platform which will be discussed in
Section 2.4.1. The chosen implementation has influence on how accelerated function
gets the data from main memory and choosing the right version might speed up the final
execution. After that the interfacing between the hardware core of the HTX platform
and the accelerated function is discussed in Section 2.4.2. Finally in Section 2.4.3 the
usage of the hardware accelerated function from software will be explained.

2.4.1 Implementations of the HTX platform

Currently there are three different implementations of the HTX platform. The main
differences between the three options is the way how main memory is accessed and how
the data is retrieved. In the next sections the three different implementations will be
revealed and depending on the differences and the demands of the function the best
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version for the Range Trie implementation will be chosen. The first implementation is
the generic implementation and the other two are optimized versions of the first one.

2.4.1.1 Generic HTX platform implementation

The simplest implementation of the hardware designs for the HTX platform is displayed
in Figure 2.14. In the figure the different parts of the structure are depicted. These will
be explained in the next few paragraphs. It is the simplest design as no optimizations
are made with respect to memory access.

Starting with the communicating elements, IO, DMA Read and DMA Write. The DMA
Read and DMA Write take care of all required data communication to the CCU, the
accelerated function. In this case 64 bits elements can be requested from or written to
main memory. The IO unit is responsible for all host initiated communication and for
transferring the values of the exchange registers.

It is possible for the software to send a memory address via the exchange registers to the
CCU as function parameters. In order to get the real memory address from the virtual
address a Translation Look-aside Buffer, TLB, is maintained in hardware. Every time a
new virtual address is given for reads or writes the Address Translation unit will try to
translate the table using the TLB. Whenever a TLB miss occurs, an interrupt is raised
by the Interrupt Handler to find the correct translation from software, which will then
be stored in the TLB for future availability. Interrupts are also raised whenever the
accelerated function has finished its operation.

This generic implementation is able to request only one data element of 64 bits per
request. With the other implementations multiple elements near the same memory
address are requested to minimize the communication overhead. When functions request
data, most of the time this data will be stored near each other, for example in a row if
an array is requested. With these optimizations this locality will be exploited.

2.4.1.2 HTX platform implementation with Caches

A read requires a read request to the software and there is a delay until the data is
received. It might be efficient to reduce the number of individual reads, to have the
delay only once. Instead of requesting 64 bit elements one by one, a full cache line of
512 bits will be requested, these data elements will be stored in a local hardware cache
as seen in Figure 2.15. When other data packets are requested by the CCU, first the
hardware cache is checked. Whenever there is a hit in the local cache a request to the
host is not necessary. Of course there will be a check when data is written, in such that
the local cache might have to be updated as well.

2.4.1.3 HTX platform implementation with Queues

Using caches to read cache lines instead of single elements is quite efficient, but still the
full bandwidth of the HyperTransport Bus is not used. In Figure 2.16 the block diagram
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Figure 2.14: The simplest implementation of the designs for the HTX platform, with
direct memory access without any optimization with respect to memory access.
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Figure 2.15: In order to save time waiting on data elements from the host, a cache can
be used in combination with a larger request. This works quite well if the next requested
element maps to the cache line as requested previously.

of the used and most complicated implementation is given. The most specific point with
this implementation is that it uses queues for the communication between the host and
hardware. This gives the hardware the opportunity to prefetch the data and store them
temporarily in the queues.

The queued version is the most applicable implementation of the hardware platform for
our purpose as the commands will probably be given in an almost streaming fashion.
With the queued implementation the software has to store the commands in an array and
when the accelerated function is started the array will be transported to the hardware
very efficiently. After which the Range Trie can execute the commands as if it was
streamed to the hardware.
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Figure 2.16: With queues the HTX platform has the ability to prefetch data as early
as possible. This is the most efficient way to get the data whenever many consecutive
elements will be requested, for example an array.

2.4.2 Accelerator Interface

Within the hardware implementation there needs to be communication between the
hardware related to the HTX platform, the core, and the function that is being accel-
erated. In Table 2.1 the interface signals are listed and described. Most of the signals
are used to transfer information from the software to the function and vice versa. Also
some signals are used for the exchange registers which can also be used to communicate
with the software. The top four signals are the control signals, they tell the function
when it should start and also the stop or done signal from the hardware to the software
is included. The interface resembles a lot to the interface that the Molens use, this is
done so that it is easier to use (almost) the same function on both platforms.

2.4.3 Interface to software

From the software side there is a very programmer friendly way to execute an accelerated
function from within the FPGA using this method. Here a short list of steps is included to
successfully use the FPGA functionalities from an executable created in the programming
language c.

• include a header-file #INCLUDE molen-htx.h

• put the replace attribute above the function which has to be replace by the hard-
ware function: __attribute__((user("replace")))

• while compiling the c-file make sure the gcc compiler is used with with the special
module. This module takes care of the actual replacement of the dedicated function
to the correct hardware calls.
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Table 2.1: Interface Signals between CCU and HTX core

Signals Width Description

start 1 The start-signal for the accelerated function. This
means that the parameters are available.

done 1 When the accelerated function has finished this signal
will inform the software so it can continue.

MIR 64 Control signals from Molen, not used in the HTX plat-
form

status 2 Control signals from Molen, not used in the HTX plat-
form

xreg addr 10 Shared read/write address for the exchange registers
xreg read data 64 Read signal for the given exchange regsiter
xreg write data 64 Write value for the given exchange register
xreg write enable 1 Write enable for the exchange registers

mem addr 64 Virtual memory address where to read/write data
to/from

mem size 64 How many elements will be read/written starting from
the address

mem read data 64 Read signal for the memory
mem read enable 1 Issues a prefetching of the set amount of data-elements

from the given memory address
mem read next 1 When a value is read, this signal will ask the core for

the next to read value
mem read ready 1 A read-enable may only be given when the memory-

controlleris ready for such an operation
mem read valid 1 This indicates if the value on the read-data signal is

valid
mem write data 64 Write values for the memory
mem write enable 1 Sets the write buffer to write the given amount of data

elements to the given memory address
mem write next 1 Write the next data element to the send queue
mem write ready 1 A write-enable may only be given when the memory-

controller is ready for such an operation
mem write full 1 When a send queue is full, the accelerated function

should stall any writes untill this signal is empty again

Because this system offers almost seamless implementation in any c written program it
is very interesting to accelerate kernel functions such as the routing tables for routers.
As most users tend to switch programs quite much on-the-fly reconfiguration of the
accelerated function is required when normal programs have the ability to utilize hard-
ware acceleration. This is one of the subjects that is currently investigated, for further
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development of this system.

2.5 Summary

Much research has already been done on IP Lookup data structures for network routing.
Some of the more known structures and algorithms were discussed in Section 2.2 such as
the Radix Tree which is used as default Linux routing table implementation. Compared
to these methods the Range Trie has more optimizations which should lead to a faster
route lookup. As previous work has not developed a working prototype, no measurements
of a real Range Trie system have yet been performed.

In this thesis, the Range Trie design will be implemented in a reconfigurable platform.
The HTX platform has been discussed in this chapter mentioning most the important
details of the system. One of the discussed elements are the three different implementa-
tions. The HTX platform which uses queues to prefetch large amounts of data seems to
be the most efficient implementation to use in conjunction with the Range Trie design.
As the Range Trie is a streaming application which can handle a new command almost
every cycle.
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The fully functional implementation of the Range Trie on the HTX platform consists
out of three parts; (1) support of the HTX platform, (2) communication to the Range
Trie and (3) a fully functional design of the Range Trie. In Chapter 2 the background
information about routing tables and different route lookup methods including the Range
Trie were given. It is clear why the Range Trie has great potential to solve the problem
of current route lookup mechanism that do not scale well with the currently increasing
demands due to the increasing number of entries and the coming increase in address sizes.
Next to the algorithm which is implemented, also the HTX platform has been explained
with its support for reconfigurable functions which can be called from software by using
system calls.

In order to have a complete implementation our attention is required at the hardware
platform because the Range Trie designs currently operate on a 50MHz clock which was
not supported by the HTX platform. The way this problem is handled is discussed in
Section 3.1. In the hardware design, communication between the hardware platform and
the Range Trie design is a very important issue and this will be discussed in Section 3.2.

In order for the Range Trie designs to be implemented, the HTX platform is modified
and a wrapper is implemented first. During the implementation the following subjects
will be discussed in Section 3.3:

• Memory structure: In the initial Range Trie designs LUT memories are used.
Because the LUT memories are implemented in logic blocks this uses many re-
sources. Therefore BRAM memories, which use specific memory elements, will be
implemented. The change in memory type has issues in the pipeline of the Range
Trie as LUT memories have a faster response than BRAM memories. The issues
are discussed in Section 3.3.1.

• Memory Utilization: In the Range Trie designs there are many different memory
blocks. In Section 3.3.2 the usage of the different memory blocks and their contents
is explained. As not all functionalities in the Range Trie design were working
correctly the memory utilization was checked for consistency such that the lookups
and updates are performed correctly.

• Actions: The purpose of a lookup is that the switching element knows what
to do with a certain packet. This action can be stored in different ways, for
example in software or hardware. Both ways have their own advantages and the
final implementation will be discussed in Section 3.3.3.
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• Spare levels: In the original design, the spare levels were not functioning correctly.
Some of the issues encountered and discussed in Section 3.3.4 are:

– Out of order bound additions: During run-time, updates will come ran-
domly and bounds may be added in any order. In the initial design only in
order bound additions are supported and the spare levels will be used quite
inefficiently. Therefore out of order bound additions are now supported in the
final implementation as described in Section 3.3.4.1.

– Addition of multiple bounds per update: When a new prefix with large
prefix-length is inserted into the spare part it might be possible that both
bounds do not yet exist. The earlier design does not support double bound
additions inside a node, this is discussed and implemented with Section 3.3.4.1.

– Bound deletions: When a prefix is deleted is can happen that a bound will
be unused. To increase the memory efficiency this bound should be removed,
in order to allow a new bound to be added in that location. Section 3.3.4.2
discusses this added functionality.

• Adding stages in the pipeline: Due to the implementation of BRAM memories
an extra stage in the pipeline is necessary for the spare levels as discussed in Section
3.3.5.

• Extra cycles required for updates: The original design did not allow bound
deletion. During the implementation of bound deletion, also recycling of the mem-
ory blocks in the spare part was implemented. This recycling of memory blocks
requires an extra cycle in the update bubble as will be discussed in Section 3.3.6.

• Retrieval of the tree: Whenever the spare part is full or unbalanced, the tree
might require a rebuild. To rebuild the tree in software the complete tree informa-
tion of both the fixed and spare part should be known to the software. Therefore
extra commands are implemented and the software tree information is available
for the software as described in 3.3.7.

• Interface to software: With the HTX platform, there is a direct link between the
software and hardware. The software will pass any received lookup request, update
or other command to the hardware and will react on the results as necessary. For
the communication between the hardware and software a communication scheme is
designed and discussed in Section 3.3.8. This section also includes how the software
should initially program the Range Trie before it can be used as forwarding engine.

• Pipeline of the Range Trie design: During the implementation of the Range
Trie, the original pipeline is modified. Section 3.3.9 shows the new pipeline includ-
ing all modifications.

3.1 Hardware platform

The HTX platform as proposed by [3] consists out of two different parts, the core and the
accelerated function. The accelerated which has to be accelerated, in this case the Range
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Trie design, is also called the Custom Configured Unit or CCU. The core of the design
will manage the communication to the host, either direct via memory or via the exchange
registers, but also hosts the clock management for the CCU. The CCU, the Range Trie
design, will communicate with the software through the core of the HTX platform and
the HTX platform will provide the Range Trie design with all required signals, including
the clock signals, the commands from software and the interfacing with main memory.
Normally the HTX platform expects its CCU to run with a 100MHz clock.

The Range Trie design is currently running at a 50MHz clock which is not the default
CCU clock for the HTX platform. The core uses multiple clock frequencies internally for
different components, in such that the core runs on a 100MHz clock at the CCU side,
but also 200 and 400MHz clocks are used for the communication parts and the control of
the HyperTransport Bus (HTX-bus). In the core of the HTX platform there is a special
module which manages all different clock signals, this had to be changed in order to
retrieve a 50MHz clock for the Range Trie design.

As the current Range Trie design is built as a component where the lookup and update
commands are fed into there will need to be some controller that operates between the
Range Trie and the core of the HTX platform. The controller tells the HTX platform to
get the commands from main memory and which feeds the commands to the Range Trie
design. This controller is a wrapper around the CCU and will have to communicate with
both the 50MHz Range Trie and the 100MHz core of the HTX platform. The wrapper
will therefore run in a dual-clocked domain. In the next section the wrapper will be
discussed more elaborately. In Figure 3.1 the total structure of the HTX platform is
depicted including the wrapper around the CCU. This is the structure as will be used
for the implementation of the Range Trie.

FPGA

CCU

Range Trie

W
rapper

HTX core

Host

Figure 3.1: Structure of the HTX platform including wrapper for the CCU
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3.2 Wrapper

In order to provide general communication between the host computer and the FPGA the
methodology and implementation as in [3] is used. This provides general communication,
but expects the CCU to be able to run at 100MHz. Currently this is not the case as
the CCU is only able to run at 50MHz. There are different ways to implement an extra
wrapper between the CCU and the core of the HTX platform, while ensuring a fast
communication between the function and the host.

There are other reasons why a wrapper between the core and CCU is desirable. For
example the communication bandwidth; the core can send and deliver 64 bit blocks
every clock cycle while some commands require 319 bits of information which requires
reordering and repacking of the received commands. Also some commands require more
execution cycles or even a stall of the input for multiple cycles. The wrapper takes
care of these requirements so the core and software can just send the information when
available.

The wrapper basically takes all information of the core, corrects the format where needed
and provides the information to the CCU respecting its requirements. It also handles the
information from the CCU to the core in the same manner, it takes the result from the
Range Trie and provides it to the HTX core in the correct format so it can be written
to the main memory of the host.

In general there are three possible methods how the wrapper is setup; these will be
explained and compared in the next three sections. After the different methods are
investigated one of these will be implemented.

3.2.1 Wrapper 1: Dual Clocked Write/Read Queues in the HTX core

In the most ideal case the CCU will operate only on a 50MHz base as it removes the
complexity of having one entity (the CCU) which has multiple clock domains. But
the change is not as simple as only altering the HTX communication queues to permit
multiple clocks, but also all other system signals need to be converted to 50MHz and
vice-versa.

For example: the start-operation signal for the CCU is normally held high 1 clock-cycle
(in 100MHz), so it is possible that the CCU (on 50MHz) will not see this signal. Next
to the example of the start-operation signal there are many other signals which need
attention to get this method to work, such as: end-operation, read-next, write-next,
write-enable, read-enable, exchange-register-read, exchange-register-write and the list
continues. Therefore this method seems simple, but there are quite some extra signals
to take into account as described in Section 2.4.2.

3.2.2 Wrapper 2

To circumvent the added complexity by altering the core to communicate well with the
50MHz CCU, the wrapper will be adjusted to allow the reception and sending of all re-
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Figure 3.2: Wrapper Implementation 1: Reordering in 50MHz domain. No extra buffers
needed.

quired signals in 100MHz to the core and in 50MHz to the CCU. To accomplish this type
of behavior the wrapper will consist of multiple independent processes communicating
with each other using multi clocked buffers. In this case the only information that needs
to pass to the CCU are the commands (lookup, update, etc.) and the results of these
commands need to be send to the core so they will be written to the host.

In Figure 3.3 the above implementation is given. As already stated the incoming com-
mands might need to be reordered or repacked, therefore a specific block is included
in the design. In this variant the repacking is done at 50MHz, which allows a buffer
between the 50 and 100MHz domains with a width of 64 bits.

3.2.3 Wrapper 3

In the previous wrapper the reordering and repacking of the commands is done in the
50MHz domain. While there already is a 100MHz domain in the wrapper, why not
perform these operations in 100MHz like in Figure 3.4? The problem with reordering at
100MHz is not due to the reordering itself, but it requires more memory.

If the incoming commands are repacked in the 100MHz domain of the wrapper, then the
new commands will have to be passed to the 50MHz domain while already repacked in
a different format. In this repacked format the commands can take up to 319 bits for
initialization commands. This requires a buffer which is almost 5 times as wide as the
buffer in the previous wrapper which was 64 bits wide.

The first wrapper has quite some disadvantages in comparison to the other wrappers in
terms of complexity. It will be very hard to alter the core in such that its signals can be
send and received at 50 MHz. This alone makes the wrapper less practical to use than
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Figure 3.3: Wrapper Implementation 2: Reordering in 100MHz domain. Wide input
buffer, small output buffer.
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Figure 3.4: Wrapper Implementation 3: Reordering in 50MHz domain. Small input and
output buffer.

the buffered versions. Even though the total latency will probably be higher due to the
introduced buffers.

For a good comparison between the other two wrappers in terms of working frequency
and memory usage see Table 3.1. With the third wrapper the work is done in the 100MHz
domain and it requires a 319 bits buffer to the 50MHz domain. The second type does
the reordering and repacking in the 50MHz domain, but requires only a 64 bits buffer.
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Table 3.1: Comparison for different wrapper implementations, the complexity is defined
as how complex would the design be in comparison to the other possible wrappers

Wrapper Frequency Buffers IN Buffers OUT Complexity

nr. 1 50MHz none none High complexity due to catch-
ing and sending commands to
the 100MHz platform.

nr. 2 50MHz 64 bits 64 bits Lower complexity due to
buffering commands.

nr. 3 100MHz 319 bits 64 bits Lower complexity due to
buffering commands.

It worth noting that the most common operations for the Range Trie CCU will be
address lookups. In the case of a lookup there will be no need for any preprocessing or
repacking and using a very wide buffer of 319 bits to store a 32 bits address is quite some
overhead. Therefore the choice has been made to implement wrapper type 2, allowing
more memory savings while accepting the longer processing delay for initialization and
update commands.

3.3 Range Trie

The first version of the Range Trie design including Longest Prefix Match as delivered
by [12] did not work out of the box, therefore modifications and extra functions were
necessary. The initial design did have most necessary components, but many of them
were not connected or required fixes in the timing. In this section some of these additions
and modifications are singled out and explained.

3.3.1 Memory blocks

In the original projects all memories were implemented as lookup tables or LUTs, which
will be changed to BRAM memories for this Range Trie implementation. An advantage
of an implementation in LUTs is responsiveness or delay as the result of a memory lookup
is available the same clock cycle. A downside of LUTs is that they are built out of logic
slices while the dedicated memory components (block rams or BRAMs) of the FPGA
are not being used.

In this implementation these BRAMs are used while circumventing their downside of
needing a clock cycle to fetch the lookup result by early reading. BRAMs do not have
this added delay while writing. By using BRAMs with different read and write-address
ports it is possible to write a value and already fetch a value for the next cycle at the
same time. This means that a write can occur at the same time the (early) read-address
is also given so the read-output has the correct value at the same moment as the original
Range Trie design. This hides the latency of the BRAM memories and does not require
other modification to the design then getting the addresses one cycle earlier then in the
original design.
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To get the read-address one cycle earlier the required signals are forwarded in the pipeline.
For calculated values this could become a problem as the addresses might appear too late
in the cycle, or they will alter to early near the end of the cycle. But as many addresses
are almost directly received from memory this will not be an issue. For the spare levels
the introduction of an extra cycle was necessary, as will be explained in Section 3.3.5.

3.3.2 Memory Utilization

As said in the previous subsection there are quite some memories in the design to store all
information about the nodes. In total there are five elements that have to be stored with
each node, namely: Comparison values, Control values, Prefix-lengths, Next-Pointers,
Prefix-lengths, Action pointers and for each level there is a set of actions. For the spare
levels there are no Next-Pointers stored directly at the nodes, but these are received indi-
rectly because of the dynamically allocated memories. In the next sections the different
elements are discussed and is explained how they are stored in memory.

3.3.2.1 Comparison and Control values

At every node the given input address has to be compared to determine the correct range.
At each level there is a number of comparators and prefix- and suffix-comparators, all
these comparators need to have values to compare the input address to, which are called
the compare or comparison values. Next to these compare values, the comparators also
need to know how the comparators need to be set up and which bits of the input address
need to be compared.

In memory, the control and comparison values are stored together as both are required
at the same moment. Also, the control values contain relatively few bits per node which
makes a specific memory not necessary. In memory the compare values are stored in
order of size. In such that the first comparator will compare the input address for the
smallest bound and that the last comparator will be used to compare the input address
against the largest bound. In case of a shared prefix or suffix (Rule 2 or 3) it is required
to separately compare the prefix or suffix. The value associated with this shared part
will be the comparison value at the lowest index as is shown in Figure 3.5.

The control values define the setup in which the comparators are utilized and what type
of modifications have to be performed on the incoming address before it is send to the
comparators. The different control values make it possible for the design to support all
five optimizations as defined with the Range Trie in Section 2.3.1. The control values
are made out of the following information:

• shift control: The incoming address might be shifted before the other modifica-
tions take place, this value determines how many shifts of 2bits have to occur.

• prefix-suffix mask: As defined by Rule 2 and Rule 3, bounds can have a shared
common prefix and suffix which can be ignored while comparing the individual
bounds.
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Figure 3.5: The memory lines for the compare and control values. These are addressed
per node and contain the required information for the comparators to perform a lookup
on a specific node. The compare values are the values to which the incoming address is
compared. The control values determine the comparator setup and what modifications to
the incoming address are required.

• cmp modes: The comparators can be setup in different ways, for example to
compare 32 bit values or twice 16 bits, or 8 8 16 and 8 8 8 8.

• start-byte: The start-byte is used to create the correct input for the comparators
if multiple smaller comparisons are performed (for example 8 8 16).

• subtract value: With what number should the incoming address be subtracted
with before passing to the comparators. As defined by Rule 5.

In Figure 3.5 an example of memory lines with compare and control values is displayed.
The comparison memory line consist of 32 bit wide comparisons values and for the control
values a line consists of 42 bits which tell the comparators how the compare values should
be used and how the result of the comparators should be interpreted.

With the input address, the compare and control values, the comparators determine
what the offset is to the next node. This offset has to be added to a base pointer for the
next level to get the final address of the next node which has to be visited by the lookup
algorithm.

3.3.2.2 Next-Pointers

Nodes in a certain level are stored in order, such that the node with the smallest ranges
are at the smallest address. But from the node in the previous level it is unknown how
many nodes with smaller ranges exist in the next level, as it just has information about
its own compare values and the offset due to these. It is therefore necessary to know
from where this offset has to be taken.
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Figure 3.6: The address for the next visiting node is calculated as the offset determined
by the comparators and the next-pointer as stored with the node. Or at the spare levels
in the specific pointer memories.

The next pointers are used together with the offset as determined by the comparators
to determine the pointer of the next node to visit. Figure 3.6 shows a sample lookup
in a node where the offset is determined and the next node is calculated using the next
pointers.

As explained there is only one next-pointer stored for each node in the fixed levels. For
the spare part this is different due to the dynamic allocation of memories. At the time
a node in the spare part is created it is unknown if there is going to be any next node
and no memory is allocated for it. To be more memory efficient there are two possible
next-pointers for each node in the spare levels to save memory when trees in the spare
part are not very dense. In that case it is possible to allocate memory in the first spare
level for only half of the last node in the fixed part.

3.3.2.3 Prefix-Lengths and Action Pointers

For each child that is accessible from a node a prefix-length and action pointer is stored
at the parent. The number of children that can be reached is equal to the number
of bounds of a node plus one and this is also the number of prefix-lengths and action
pointers that have to be stored.

With the action pointer it is possible to select the action corresponding to that prefix.
These actions could have been stored directly at the nodes, just like the prefix-lengths.
But the actions require more memory than the pointers and it happens that many ranges
share equal actions, specifically for short prefix-lengths.

The prefix-lengths are also stored at the parent, just like the action pointer, and is used to
perform Longest Prefix Match. The current highest prefix-length and associated action
is taken along the pipeline. Whenever a larger prefix is found in a lower level this higher
prefix-length and associated action will be forwarded.

Both the action pointers and prefix-lengths are stored in the same way so both can be
pointed to in an equal way. In the memory stage in the pipeline both the action pointers
and the prefix-lengths are retrieved, as shown in Figure 3.7. The offset, as determined
by the comparators, is used to get the correct values from each of the lines.
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Figure 3.7: The action pointers and prefix-lengths gives information required for the
longest prefix match and are indexed by using the offset as determined by the compara-
tors. When the selected prefix-length is larger than the already known prefix-length in
the pipeline, then the action pointer will be used to select the corresponding action. This
action and the prefix-length is then given through the pipeline as possible output of a
lookup.

3.3.2.4 Actions

When the comparators have selected a prefix-length this value is compared to the prefix-
length as already known from the previous levels. Whenever the just selected prefix-
length is larger than the previous, then this one should be given down through the
pipeline. With the action pointer which is also selected the new action should be read
from the action tables.

When an action is read from the memory it is sent down through the pipeline only if
the prefix-length from the current node is larger than the prefix-length that currently
travels down the pipeline. This ensures that the prefix-length and associated action at
the end of the pipeline satisfies the Longest Prefix Match. Whenever an update occurs
a value in the action tables will only be overwritten when the new action holds for all
bounds with that action pointer, otherwise a new action pointer will be used and the
new action will be stored in an unused location.

3.3.2.5 Summary

With the subject of actions all elements that are stored into the different memories are
discussed. In short, each node has a memory line with different compare and control
values to control the comparators. These comparators give an offset. This offset together
with the next-pointer gives the location of the next node to visit. The offset is also used
to select the prefix-length and action pointer of the selected range. Finally the action
pointer is used to select the action which is passed down to the output when it satisfies
the Longest Prefix Match. The actions will be discussed more elaborately in the next
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section on their purpose and why they are in hardware.

3.3.3 Actions

The actions are the values which should be returned to the software with every lookup,
as this was not yet the case with the initial design, this has been added to the design.
The actions tell the software what action has to be performed, either some manipulation
to the packet or to which port the packet has to be send. Therefore they are a vital part
of the lookup mechanism.

There are several locations where these actions can be stored, for example within the
hardware design or in software. Both options have their own advantages and disadvan-
tages. In software it is very easy to store multiple prefixes and their actions to every
bound, the hardware would return the bound and the software selects the action associ-
ated to the largest prefix for that bound. An update would require the software to add,
delete or update a prefix/action pair.

In hardware it is fairly easy to store a single prefix and action for each bound. An update
would require the hardware to check the existing prefix with the new prefix and if the
new prefix is larger, then update the action. A delete will be harder as there is no history
available and in this case the hardware does not know which was the previous largest
prefix/action combination for a bound.

During normal operation where most commands are lookups it would be desirable to
have the actions in hardware. As it would take the same amount of time as opposed to
finding the bound. But when the action is in software an additional lookup in software
is required. Having the actions in hardware also has a problem with the history of
prefix/actions combinations for each bound. This can be solved by keeping this history
in software and when the software detects an update which would require a delete, it
gives an update to the old prefix/action combination instead.

3.3.4 Spare levels

Even though the original design contains much of the code and components for the spare
levels, the output of the design was connected to the end of the fixed part. This is a clear
illustration of how the spare levels were implemented in general. Even after correcting the
general implementation they required much work to fully function as already described
in [12].

The spare levels are in the design to support the addition of bounds during run-time.
After the initial designs of the spare levels were connected they did not seem to support
this completely. Only one single bound could be added during an update and the bounds
could only be added in order.

It is possible that links in the network fail, this will cause an update for the routing
table which actually tells that a certain range should be deleted. Whenever the bounds
of the range are in the spare levels, the bounds should be deleted to save memory. With
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the initial design this was not yet possible. When multiple deletions have occurred it is
possible that one of the allocated memory blocks of the spare part is empty, it would be
a waste of memory if this memory block could not be used in different subtrees.

In the next sections these three issues with the spare level designs are discussed and
their functionalities are implemented. For the out of order and double bound additions
this meant that the result of the first update cycle should be forwarded to the input
of the second update cycle. As for the bound deletion and the memory recycling, this
meant changing the memory management of the spare levels together with the addition
of recycle bins for memory blocks.

3.3.4.1 Out of order bound addition and Double bound addition

During the implementation of the spare levels it seemed that the spare levels did not
work correctly, as only one bound could be added in an update and the bounds had
to be in order to maximize memory usage. After implementation of the double bound
additions and out of order additions the spare part works as described in this section
and as initially was intended.

As already explained in Section 2.3.5 a subtree will be inserted into the spare part when
a certain bound does not exists in the fixed part while it is used during an update.
Whenever a subtree under that location in the fixed part already exists the spare part
should add the given bound to the first level of the subtree until that node is full.
Whenever this happens another level for the subtree should be allocated dynamically
and the bound should be inserted into the newly created spare level.

It is important that the second (or possibly larger number) spare level should only be
created when all previous spare levels are completely full. As the memory for the spare
levels is allocated dynamically it is possible to have quite a large number of subtrees
under the fixed part and it is a waste of memory if all those subtrees will be allocating
second spare level memories while their first spare levels are not yet full. Therefore it is
important to insert bounds into already existing spare levels where possible.

During the insertion of new bounds there are a few issues which have to be taken into
account, for example: What values for the prefix-lengths and action pointers should be
moved to which position. If a low-bound is inserted at location x, then the prefix-length
and action pointer should also be inserted into that location and their previous values
should be moved to location x+1. But for a high-bound, the prefix-length and action
pointer should be inserted at location x-1 moving that location to position x, see Figure
3.8 and Figure 3.9 for both examples. This comes due to the fact that bounds are from
low-bound to high-bound not including the high-bound itself.

As it is possible that an update uses two non-existent bounds the design should support
this correctly. It would be a strange property if this would not be supported. In Figure
3.10 a double insertion of bounds occurs within the same update command.
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Memorylines element 0 element 1 element 2 element 3 element 4
Compare Values Bound_a Lowbound d Bound b Bound c

Prefix-lengths preflen_0 preflen_a Preflen_d preflen_b preflen_c
actionpointers actptr_0 actptr_a actptr_d actptr_b actptr_c

Figure 3.8: Insertion of a low-bound

Memorylines element 0 element 1 element 2 element 3 element 4
Compare Values Bound_a Highbound d Bound b Bound c

Prefix-lengths preflen_0 preflen_d preflen_a preflen_b preflen_c
actionpointers actptr_0 actptr_d actptr_a actptr_b actptr_c

Figure 3.9: Insertion of a high-bound

3.3.4.2 Bound deletion and Memory block recycling

Due to update commands certain bounds get different prefix-lengths and actions. It is
also possible to have the deletion of a certain prefix for example due to an outage or
the remote host is just non-responding. If multiple of those prefix deletion occurs it is
possible to have bounds in the spare levels which are not used anymore.

When after many updates a specific bound in the spare levels is unused, it might be
deleted to save memory. Even though this is one of the requirements set by [12] it did
not work correctly. For the implementation by this thesis this functionality has been
integrated in the designs.

After the deletion of bounds it is possible that one of the dynamically allocated memory
blocks will be empty. Whenever this is the case there is no need for the block to stay
allocated to a certain subtree. Therefore recycle bins are added to store the recycled
memory blocks. Whenever a subtree tries to allocate a new memory block, first the
memory blocks from recycle bins are used to save as much memory as possible.

3.3.5 Adding stages in the pipeline

As said in Section 3.3.1 the memories need an extra cycle to fetch memory elements,
which is not taken into account with the previous design of the Range Trie. This comes
due to the way the spare levels have assigned the different memories. For the spare
levels there are memory blocks which can be assigned to each spare level when they
require extra memory. These dynamically assigned memories break the default way of

Memorylines element 0 element 1 element 2 element 3 element 4 element 5
Compare Values Bound_a Lowbound d Highbound e Bound b Bound c

Prefix-lengths preflen_0 preflen_a Preflen_d preflen_a preflen_b preflen_c
actionpointers actptr_0 actptr_a actptr_d actptr_a actptr_b actptr_c

Figure 3.10: Insertion of double bounds
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Figure 3.11: Pipeline while updating, originally there was no room to update the pointer
memories

addressing as used in the fixed levels of the Range Trie. In the fixed part the base address
of the children are stored at the parent. But for the spare levels this would not work as
the memory would be very sparsely filled, or the parent should be updated whenever a
subtree is created.

In the case that the parent is updated, the memory block associated with that address
should be large enough to contain all possible children of that node which probably will
just be filled very sparsely. In the current implementation it is possible to assign up
to 4 smaller memory blocks to a node in the fixed part having the ability to place the
memories in a more fine grain manner and have a better utilization of the total memory
capacity. The downside of the dynamically assigned memories is that an extra lookup is
required to get the correct base address.

This extra lookup causes each spare level to have an extra pipeline stage compared to
the fixed level. This extra cycle was not necessary in the design with LUT memories as
they would give the correct output immediately and not a cycle after the correct address
is given. Although the usage of BRAMs has led to this extra cycle, it does not affect
the cycle time of the overall design what could have happened with relatively large LUT
memories.

3.3.6 Extra cycles required for updates

The updates initially take a bubble of 4 cycles as explained in 2.3.4, but there is at that
moment no possibility to correctly recycle a memory block. Only after the calculation
stage it is known if a memory block should be recycled. The pipeline however, already
prohibits the update of the pointer-memories after the calculation stage. As can be seen
in Figure 3.11 where the block denoted by DH (delete high-bound memory location) falls
outside the update bubble. Thus an extra cycle in the update bubble is necessary if the
spare part should be able to reuse memory blocks.

In Figure 3.12 the extra cycle is added and the locations where the pointer memories can
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Figure 3.12: Pipeline while updating, with extra cycle in update bubble to update the
pointer memory

be updated are annotated with DL (delete low-bound memory location) and DH (delete
high-bound memory location). When a memory block is empty, thus is not used anymore
due to bounds which are removed, should go to the memory recycle bins associated with
each spare level. Whenever a certain level requires a new memory block, first the blocks
in the recycle bin associated with that level are used.

3.3.7 Retrieval of the tree

As discussed in Section 2.3.5 a downside of the way new bounds are added to the Range
Trie is that after a certain amount of bound additions the spare memory can be full or
that the all spare levels are used for a certain subtree. In order to prevent this or to solve
this issue when one of the two events occur, the subtrees need to be incorporated into
the regular and more optimized fixed part of the Range Trie. Rebuilding the Range Trie
is a very computational intensive task due to the many optimizations and can therefore
not (yet) be efficiently executed by hardware. Thus far this remains a task that has to be
performed by the host computer. To feed the software with the correct information all
memories need to be readable by software. This functionality was not yet implemented
in the previous designs of the Range Trie as no connection to software was available.

As the fixed and spare part are different in implementation, there will also be different
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commands that the software needs to execute to retrieve information from the different
parts. For the fixed levels the following commands are available:

• Get memory contents With this function it is possible to retrieve almost all infor-
mation available of a certain node, including the compare values for the different
child nodes. Other information is the pointer value for the next level, the action
pointers, prefix lengths and comparator control values.

• Get Actions The address for the action is calculated with the action-pointer and
the base offset from the parent node. The requested action is returned.

For the spare levels it is not possible to send all information back with just a single
command as the pointer values are not directly known. An extra lookup for the base
address in the next level is therefore necessary to get all required information. This
corresponds with the added stage in the pipeline as discussed in Section 3.3.5.

3.3.8 Interface to software

At this moment there is a working version of the Range Trie implemented as CCU in
an FPGA connected to a general host computer. In order to use the Range Trie as
forwarding engine, the software will have to send the necessary configuration of the trie,
the lookups, and possible updates. The total list of commands implemented with this
thesis is given in Table 3.2.

The software will be used to build the tree structure for the fixed part of the Range
Trie, which is transferred to the hardware using the initialization commands. After the
initialization, the hardware is aware of the tree structure but has not yet any information
about the action and prefix lengths. The software will therefore send update commands
to update every range with the correct prefix lengths and actions. After this batch of
updates, the Range Trie design is ready to be used for route lookups.

In Appendix E a full description of the used communication scheme is given. The design
does not only use the reads and writes to a software array, but also the exchange registers
provided by the implementation of the reconfigurable hardware. The exchange registers
are used to transfer basic information like spare memory low or spare level full is given.
The reason for using the exchange registers is that this information should be available
from anywhere in the program without delaying the normal execution as forwarding
engine.

3.3.9 Pipeline of the Range Trie design

The pipeline of the Range Trie has been altered during the work associated with this
thesis. The complete new pipeline is visible in Figure 3.13 and includes all alterations
like the feedback from the processing-stage in the spare part to the pointer memories to
free the dynamically allocated memories. For each element in the tree its global function
or use is described.
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Table 3.2: Commands to the Range Trie hardware implementation

Command Description Expected output

Reset Reset spare levels so that all used
memory blocks in the spare levels
are empty and they can be reused
cleanly afterwards.

There will be no value returned.

Lookup This command requires the ad-
dress to be looked up.

Returns the action and prefix-
length (using LPM) and the ad-
dress.

Initialization During the initialization the tree
structure in the fixed part is
built.

The initialization commands do
not return any value.

Update For updating a range of ad-
dresses. It requires the low-
bound, the high-bound, their
prefix-lengths the new action
and finally the old prefix-length
(mainly for bound deletion).

It returns both bounds including
the new associated action.

Get memory
contents

it requires the level of which the
memory should be read. It also
requires the address of a bound.

The memory contents of a cer-
tain node. It includes com-
pare values, pointer values, ac-
tion pointer and control values.

Get actions Get the specific action at a cer-
tain location. Requires the ad-
dress next to the level.

Returns just the action.

Get spare level
pointers

Retrieve a base address for a
spare level. It requires level and
address.

The base pointer.

Get spare level
memories

To retrieve node information
from the spare levels. It requires
a level and node address.

It returns the compare values, ac-
tion pointers and control values.
The pointer values are retrieved
from the pointer blocks.

Get spare level
actions

Together with the action pointers
from the memory contents the
action address can be calculated.
This address as well as the level
is required as input.

It returns the action located at
the given location.

Get memory
assignment

No extra input is required. Returns an array of 2 bit val-
ues. These values tell which of
the memory blocks in the spare
levels are allocated and to which
level.
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The pipeline itself is build up in a general and regular fashion in such that the addition
of extra levels can be done without addition of the other parts. Just the memory sizes
need to be resized as lower levels in the fixed part require more memory as they can
support more nodes that levels earlier in the pipeline. Other research is currently done
on the effect of having more levels in the tree and having duplicate levels to better spread
possible lookup load in order to cope with a high demand circumstances.

Due to the clear differentiation between the different levels and even between the fixed
and spare part makes this design very scalable in terms of available resources. The spare
part can be extended to use almost any amount of memories. Although it might not be
worthwhile to assign too much memories to the spare part, as subtrees only accept three
levels with nodes and the number of levels should be increased to a higher number.

3.4 Summary

During the work for this thesis many errors in the first version of the Range Trie design
are repaired and new functionalities are added. Some required adjustments have been
made to the Range Trie design, for example the addition of extra update cycles and
the extra pipeline stages so the BRAM memories could be used, but also adding the
complete spare part to the pipeline and allow the design to perform updates. While
correcting these issues, also the design was incorporated into the HTX platform and the
communication scheme is designed.

Next to necessary additions to get the basic Range Trie working, also some improvements
have been incorporated. For example the possibility for the software to read the tree
information back so it can be rebuild and further optimized. Together with the HTX
platform a functional prototype of the Range Trie can be used with software support.
The next step is to evaluate its performance.
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Figure 3.13: Pipeline of the Range Trie design
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During the work for this thesis, a fully functional design of the Range Trie is implemented
on an FPGA and is interfaced to software using the HTX Reconfigurable platform. With
this implementation the Range Trie can be evaluated by comparing its performance to
the default IP Lookup algorithm of the Linux kernel. Both the Linux and Range Trie
routing tables will be filled with some default values which will be used during the
lookups and updates. Comparisons will vary in the amount of lookups and updates, and
both single and batch commands will be send. Due to the last differentiation it will be
possible to eliminate the delay due to initialization of the connections.

Section 4.1 and 4.2 describe the measurement setups for both the software and hardware.
For the software two different methods to initiate a route lookup are explained. Firstly,
the setups are used to measure the lookup latencies in Section 4.3 with different amounts
of lookups. Next to just lookups, also combinations of lookups and updates are measured.
In Section 4.4 the impact of the updates to the performance of the Range Trie is discussed.

The Range Trie supports multiple types of commands, for each of the commands the
individual latency is determined in Section 4.5. From these latencies it can be seen that
the commands which return more data are generally slower than the commands which
return little information.

During the different lookup measurements, there seemed to be an additional delay which
occurred in a few cases. Section 4.6 investigates whether these additional delays occur
on a regular basis by executing the same testbench many times and comparing the
individual execution times. Section 4.7 describes the resource utilization of the Range
Trie implementation on the Virtex-4 FPGA.

4.1 Measuring performance in software

The operating system of the host is Gentoo Linux (Kernel 2.6.29-gentoo-r5) which in-
cludes the IPROUTE2 package. This package is used to populate the routing tables
before the measurements. For a complete description of the IPROUTE2 package please
see Appendix A. The IPROUTE2 package contains a method to lookup the next hop for
a given destination by performing a routing table lookup directly from the kernel.

The execution time of a lookup using IPROUTE2 was quite long (about 3 seconds for
1000 lookups). Further investigation showed that the command iproute get IPADDRESS
can be equivalent to sending a ping to the destination without actually sending any
packets, please see the documentation [14] Section 9.5.7. This means that the measured
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execution time was not just the time it takes to perform a route lookup but might include
other operations.

As this is not what should be measured, another method to initiate a lookup is required.
One of the methods to manually run the Linux routing table lookup (the FIB LOOKUP
kernel function) is to use NETLINK, which is also the method IPROUTE2 uses internally
to communicate with the Linux kernel [8][7].

NETLINK is a method to communicate with the Linux kernel using sockets. It supports
various operations and message types, one of which is NETLINK FIB LOOKUP, which
does exactly the necessary operation. Unfortunately there is almost no documentation
about this operation, opposed to almost every other NETLINK operation. There is a
library, libnl, which makes the usage of the NETLINK interface easier by adding some
functions to complete and convert messages. The libnl library has an extensive example
database including one which does route lookups [10], which works almost right out of
the box. In Appendix B the example code is attached.

The time needed for a route lookup using libnl and NETLINK is in the order as expected
and will thus be used during the comparison against the time needed for a route lookup
using the Range Trie hardware implementation.

4.2 Measuring performance in hardware

For the Range Trie there is a program has been created which has the possibilities to
send the required command for initializations, as well as performing lookups, updates
and reading back the response of the hardware. The code for the program is attached
in Appendix C.2 and C.3.

Part of this code can already be used as base for the creation of a Linux kernel module
that overwrites the current routing table lookups. This way the Range Trie will take
the place of the normal routing table. As a reminder; not only should there be a read
module, but also one for updating and deleting routes from the table.

For the evaluation and comparison of the Range Trie with the Linux kernel there will
be a differentiation between only lookup requests and a combination of lookups and
updates. For both methods there will be a differentiation between batch-wise operations
in which the operations will be started in one large batch without the overhead of setting
up the sockets, and in single operation where each operation is individually executed by
the function.

4.3 Measurements: Lookups

In Table 4.1 the different timings for the different route lookup methods are given for
various amounts of lookups. More timing measurements are attached in Appendix D.
For each method also the throughput is determined by executing a batch of 50 million
lookups.
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It seems that even for small number of lookups the hardware version is already around
10% faster than the default Linux routing lookup mechanism, for both the batch and
individual lookups. The duration of the single hardware lookups stay close to the dura-
tion of the software lookups when more lookups are executed. The difference is just a
few milliseconds for 1000 lookups. It is remarkable that the batch lookups in hardware
are executed twice as fast as the software variant. For 1000 lookups the software variant
is twice as slow as the Range Trie software implementation.

Tests with more lookups have also been performed up to 50 million lookups in a single
batch. The execution of 50 million lookups in hardware takes slightly longer than 11
seconds (11.33), which results in a throughput of 4.411M lookups/second on average at
a 50MHz clock. When the same batch is run in software this takes almost 9 minutes
(8:51) which results in a throughput of 94K lookups/second. The throughput for the
individual commands has not been measured as 50 million lookups would result in very
high execution times.

In Figure 4.1 and 4.2 the data of Table 4.1 is displayed in graphs. The difference between
the batch and individual operations is substantial. Apparently a significant amount of
time is spent in setting up the connections and waiting for the final results. In the batch
operations the connections are made only once and large quantities of commands are
send through the already existing tunnel. The batch operations therefore gives a better
insight in the functions themselves.
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Figure 4.1: Execution times of individual commands

In few cases the hardware lookups have a much higher execution time than expected,
as can be seen in Figure 4.2. The hardware probably has to wait for a memory page
to be swapped from disk to the main memory before it can access the commands to be
executed. This is one of the downsides of the HTX platform as it currently is not able
to stream data directly to the accelerated function as is the case for the current Linux
routing table implementation.
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Table 4.1: Timings (in microseconds) for the three lookup methods for different amount
of lookups and the throughput for each method for longer execution times with 50 million
commands.

Lookups Batch Individual
Range Trie Software Speedup Range Trie Software Speedup

1 3.62 3.83 1.06 4.75 5.00 1.05
10 3.72 3.93 1.05 34.08 35.91 1.05
25 3.70 4.12 1.12 82.35 89.18 1.08
50 3.93 4.42 1.10 165.47 173.71 1.05
75 3.81 4.66 1.22 248.39 265.57 1.07
100 3.78 4.90 1.29 340.69 353.33 1.04
150 3.95 5.60 1.41 505.38 529.11 1.05
200 3.91 6.22 1.59 673.28 722.15 1.07
250 4.32 6.72 1.56 840.92 893.01 1.06
500 4.85 9.16 1.88 1676.76 1733.78 1.03
750 5.29 11.88 2.25 2587.42 2627.81 1.02

1,000 5.78 13.93 2.41 3471.82 3447.06 0.99
2,000 5.88 26.67 4.54
5,000 8.37 61.38 7.33
10,000 13.05 125.13 9.59
20,000 22.64 253.15 11.18
50,000 45.01 546.56 12.14

100,000 46.28 1029.41 22.24
200,000 90.47 2040.39 27,54
500,000 184.02 5067.89 2.64

1,000,000 330.85 11235.15 33.95
2,000,000 566.62 20166.33 35.59
5,000,000 1234.61 55249.89 44.75

Throughput 4,411,060 94,013 46.91

4.4 Measurements: Lookups and Updates

When a router is operating, lookups are not the only actions it performs. Another
action which the Range Trie will have to execute on a regular basis are updates. To give
an indication of the performance of the Range Trie implementation with updates, test
benches in which 1% and 10% of the commands are updates are executed with different
batch sizes. As it is difficult to have 1% updates with 10 or 25 commands, larger batches
will be used. In Table 4.2 the execution times are given, as can be seen the jobs with
10% updates have a slightly higher execution time than the jobs with 1% updates. But
the difference is almost neglectable for this amount of commands. The fact that the
differences are relatively small can also is illustrated in Figure 4.3, where the execution
times of either just lookups, lookups with 1% updates and updates with 10% updates
are plotted together.
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Figure 4.3: Comparison of execution times differentiated on input type. The input is
either, just lookups, lookups with 1% updates and lookups with 10% updates.

4.5 Latencies of the different Commands

The latency of a command is the complete execution time of that command including the
overhead of the communication. Most of the time the throughput can be seen as the most
important measure, but it is more scalable with the clock speed which can be increased
by pipelining the processing stage of the Range Trie. The latency is therefore also an
important measure as this will not decrease as easily with an increasing clock speed. For
the most common commands the latencies are described in the coming sections. Table
4.3 contains the list of the individual latencies.
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Table 4.2: Timings (in microseconds) for different amount of commands of with 1% and
10% updates

Commands Range Trie batch
with just Lookups

Range Trie batch
with 1% Updates

Range Trie batch
with 10% Updates

1000 5.88 6,03 6,67
2000 6.52 6.84 6.67
3000 7.47 7.86 7.56
4000 8.37 8.8 8.66
5000 9.33 9.80 9.54
6000 10.34 10.86 10.64
7000 11.19 11.93 11.47
8000 12.22 12.93 12.48
9000 13.05 13.89 13.50
10000 14.05 15.93 14.48
20000 23.54 24.12 24.20
30000 29.42 32.25 31.36
40000 44.07 39.93 31.95
50000 45.18 37.18 35.34
60000 48.82 40.25 37.06
70000 40.02 41.01 42.69
80000 43.12 42.06 45.91
90000 45.11 41.93 42.37
100000 53.76 51.81 58.321

Throughput 4,411,060 4,386,187 4,268,111

Table 4.3: latencies of different commands in milliseconds

Command Latency

Init 5.88
Lookup 5.07
Update 6.19
Read fixed level node 7.16
Read spare pointer 5.06
Read spare level node 6.05
Read action 4.78

The commands of which the latencies will be inspected are: initialization, lookups,
updates and the different commands to read the tree from the hardware back to the
software for a rebuild. Especially for the read commands the latencies are very important
as many of the commands rely on each other. So that might not be possible to read
the next part without information from an earlier read command. For example, it is
not possible to know the address of the actions for a specific node without knowing the
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action pointers for that node.

4.5.1 Latency of a Lookup

A lookup is the most common action for the Range Trie and also has the easiest interface
to the hardware as it only requires the address which has to be looked up. Internally
a lookup is quite difficult as the hardware will traverse the tree and at every node the
given address will have to be compared. The answer of the comparators will be an offset
from the next level. A pointer to the next level is stored and together with the offset
the pointer to the next node is determined.

Together with the next node calculation, also the prefix lengths are checked to support
Longest Prefix Match. Whenever a visited node has a longer prefix, then this one will
be taken along the pipeline together with the associated action. The action and prefix
length are both returned as result from the lookup. The latency for this command is
given in Table 4.3. The lookup command has one of the lowest latencies, which is perfect
as the lookup will be the command that will be executed most.

4.5.2 Latency of an Update

A prefix update command is the most complex command as it can be a normal update
of existing prefixes, but it can also invoke an addition or deletion of one or two bounds
of the prefix. The hardware first does a lookup on both bounds given by the update
command. In the two cycles next to the two lookups the actual update is performed
including the possible insertion or deletion of bounds. In the fifth update cycle memory
blocks in the spare part which are emptied due to the deletion of a bound are freed so
they can be reused.

The latency of an update command will be larger than that of a lookup due to the
different lookup and update cycles it will invoke in hardware. This corresponds to the
measured latency in Table 4.3 where it can be seen that latency of an update is about
20% higher than the latency of a lookup.

4.5.3 Latencies for Read commands

The read of a single element has an equal latency as a single lookup, but for a full
read there are multiple elements required. For the read of a node in the fixed part two
commands are required. With the first one the compare and control values as well as
the prefix lengths and action pointers of a single node is retrieved. Extra commands
are required to get each action which is associated with a prefix. An overview of the
latencies is given in Table 4.3. The total time required to read back a complete node in
the fixed levels would be the latency to get a node plus the time to retrieve the number
of actions associated with that node.

In the spare part more commands are required as the pointer to a next node is not stored
at the parent but in the pointer memories. This means that first a read from the pointer
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Figure 4.4: Continuity of the execution times in milliseconds shown as the histogram of
the different execution times for all 250k lookup batches.

tables is required before the node can be read. This means that the total time to read
back a node from the spare part would consist of a read from the pointer memories, the
read of the node itself plus the read of the individual actions associated with that node.

4.6 Continuity

Continuity of the design can be of great importance, certainly when it has to operate
in something as vital to the world as the Internet. The HTX platform has to read the
commands from the main memory where they are placed by the software. It can happen
that the memory location of the requested page is currently not in main memory, it is
swapped to the hard disk by the operating system.

The HTX platform handles this issue by asking the operating system to swap the required
data to the main memory. Even though this fixes the issue, it does introduce a fixed
delay which can occur randomly with each batch.

In the measurements in Figure 4.2 some measurements already have a much higher
runtime than the average. To test if this occurs many times or if this are merely incidents
many batches of equal size are timed. The execution times and their occurrences are
displayed as a histogram in Figure 4.4. In the histogram it is clearly visible that 50% of
the jobs of 250k lookups finished within 107.8 ms with a total average of 107.8 ms and
that even though high execution times do occur quite often, there is no distinct second
peak at a higher execution time which could correspond to a random additional delay
such as a page swap.
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4.7 Hardware Implementation

The Range Trie is implemented together with the required designs for HTX platform on
an Virtex-4 (xc4vfx100-11ff1152) [9]. The synthesized designs use most of the resources
available on the FPGA as is displayed in Figure 4.5. This current design can support up
to 256 leaf nodes with each up to 28 bounds in the fixed part and has 16 memory blocks
which can contain 512 nodes each in the spare part.

To support larger trees in the fixed part an extra level would have to be implemented.
This would not only require memories but also extra slices and LUTs to hold the sup-
porting logic. As all of these resources are very limited larger trees will probably not fit
in this device. It would be possible to add some extra memory blocks to the spare levels
such that more subtrees can be created, although the limiting factor will again be the
number of available levels.

Resource Available Usage

LUTs 84,352 70,082 83%
as logic 65,121
as route-thru 604
as memory 1,518
as shift-registers 2,839
Block RAM 376 326 86%
DCMs 12 3 25%
Slices 42,176 38,140 90%

70.1K 326 3 38.1K

14.3K 50 9 4K

LUTs Block RAM DCM Slices

Used Available

Figure 4.5: Resource utilization of the design after implementation on the Virtex-4
FPGA.

The Range Trie implementation already uses a large amount of resources from the FPGA
as can be seen in Figure 4.5. Due to this resource usage the synthesizing, mapping and
routing of the design takes quite some time with about 75% chance that it will not meet
the timing requirements. Mapping and placing with ISE 10.1 only allows the usage of a
single CPU core unlike the newer versions of ISE. However, the FPGA is not supported
by newer versions which support multi-core mapping and placing. In newer FPGAs
(like the Virtex-7) the amount of BRAMs and other resources have increased almost
exponentially with high-end models which have more than 300k slices, 46k BRAMs and
almost 2M LUTs. Choosing to replace the current FPGA for such a model can ease
future development and research on the Range Trie.

4.8 Summary

Different measurements setups are used to determine the performance, individual and
batch. First only lookup operations were compared for the different methods in Section
4.3. From this it was clear that batch operations are much faster due to the overhead
of setting up the connections. With batch jobs the hardware was already twice as fast
than software for a batch of 1000 lookups and with larger batches even the difference
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is even larger. For jobs with 1% or 10% updates, which are discussed in Section 4.4,
there is an increase in execution time, but the difference compared to just lookups is as
expected. The total throughput for hardware is 4.4M lookups/second for just lookups,
4.3M lookups/second for 1% updates and 4.2M lookups/second for 10% updates.

Next to the performance measurements over longer periods, Section 4.5 is dedicated
to the measured latencies for the most commonly used commands. Even though the
overhead of setting up the connection is also taken into account, this measure is still
a good indication to see which operation has the highest execution time. From this it
is possible to say that any operation that return multiple elements will have a larger
latency. The commands that return single elements, like lookups have a low latency
of 5 milliseconds. From these 5 milliseconds, most time is in the initialization of the
connections as 1000 lookups have a latency of only 5.78 milliseconds.

From Figure 4.2 it was thought that higher execution times could occur to page swaps in
memory. To check if this is really happening a check for the continuity was performed in
Section 4.6. From the histogram it was visible that no second peak was found meaning
that there is no fixed delay which occurs regularly.

Next to timing also the design is checked and discussed in Section 4.7. From the FPGA
utilization numbers in Figure 4.5 it is clear that extra levels in the tree can not be
implemented in this FPGA as 90% of the logic slices are already in use. Some extra
memory blocks can still be added to the spare part as 86% of the BRAMs are currently
in use, but without extra levels this probably will not have a great influence on the
total design. Currently the Range Trie operates at a clock frequency 50MHz. Higher
throughputs are possible if the design is able to operate on a higher clock frequency.
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Conclusion 5
Due to the ever growing Internet and the coming switch from IPv4 to IPv6, the route
lookup mechanisms in routers have become a bottleneck in terms of delay, a delay which
brings down the total speed of the Internet. The growing Internet with evenly growing
number of hosts, routers and links will increase the number of entries in routing tables.
Together with the fact that the addresses will increase from 32 to 128 bits in IPv6, this
will again cause more problems for the routing lookup mechanisms as larger addresses
will have to be compared to find the best route. Current mechanisms have started to lag
behind as they do not seem to be scalable enough for the increase in address amounts
as well as the increase in address lengths. Due to this problem the Internet will become
slower in the near future, therefore a solution has to be found.

As in most cases there are different options to solve this problem. One possibility is to
implement new mechanisms which scales better to both variables. It is also possible to
speedup the current methods by implementing it in different platforms. In such that an
algorithm implemented in software, FPGA and ASIC perform different. The trade-off
between the three implementation platforms is cost vs performance. With each faster
implementation the initial cost of development will increase.

As there are multiple options to find a solution to the problem a trade-off between cost,
scalability and usability is required. In this thesis the first implementation of the Range
Trie is proposed in an HTX reconfigurable platform which supports function acceleration
in hardware using an FPGA. Thus having the best of all worlds, a new and promising
algorithm implemented in an FPGA which can be a good starting point to solve the
problem.

In Section 5.1 a summary of the work and issues encountered during the implementation
of the hardware implementation of the Range Trie will be given. The initial goals and
contributions for this thesis will be presented in Section 5.2 and will also discuss to what
level they are achieved. Section 5.3 will conclude this thesis by providing some further
investigation what could be interesting regarding the Range Trie and possible future
work.

5.1 Summary

This section summarizes the basic information as given in the different chapters of this
thesis. Starting with Chapter 2, which contains background information about routing
tables and their implementations. Two current routing table implementations which use
tree structures are discussed. Next to the basic tree structures, it is also possible to use
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Range Trees, which use a different method to perform a lookup. The Range Trie is an
optimized version of the Range Tree.

From the different discussed methods the Range Trie is most promising to solve the
scalability problem which is the main problem for current IP Lookup algorithms and
which is threatening the Internet. The Range Trie has five optimizations to reduce the
number of bits with each comparison. To implement the different optimizations the
tree associated with the Range Trie will be build in software as it is a very complicated
algorithm.

The Range Trie is implemented in an HTX environment with support for
hardware accelerated functions and the Range Trie is the accelerated function. For
correct functioning within the HTX platform, the platform had to be ad-
justed and a communication scheme is designed. The used solution supports
communication between the hardware and the host in such that the host can call the
accelerated function to perform a specific command, and the hardware is able to return
an answer to the command.

During the implementation of the Range Trie, it seemed that the first design did not
work as expected. Many modifications are made and various improvements
were done to the design in order to make it fully functional. In Chapter 3 the
implementation of the Range Trie into the HTX reconfigurable platform is discussed.
Including the adjustments to the platform, the communication scheme to the software
and most of the adjustments made to the Range Trie design. Some of the modifica-
tions on the Range Trie design were performed to implement the design in
an FPGA. The design would not have functioned in the Virtex-4 FPGA without these
modifications, for example the switch from LUT memories to BRAMs.

After the implementation of the Range Trie in the HTX environment, the performance
of the implementation is evaluated an compared to that of the Linux routing mech-
anism in Chapter 4. During the evaluation some different test sets have been executed
to see how the hardware behaves with different types of input. Also the latencies and
throughputs for different commands have been investigated.

The question with this proposed implementation is,will the Range Trie implemented
in an FPGA be a possible solution to the problem of scalability? The Range
Trie hardware implementation has been compared to the Linux default routing table and
has a throughput which is four times higher than the software variant. This throughput
of 4.4M lookups/second is achieved while running at 50MHz which could be increased by
pipelining the processing stages. Using a different FPGA or using an ASIC might increase
the operating frequency as it is currently very hard for the synthesizer, mapper and router
to fit everything on the device. With a higher operating frequency the throughput will
further increase, which makes this implementation certainly a field of interest for current
day routers.
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5.2 Contributions

At the start of this thesis the final goals and contribution were announced, with as main
goals: (1) complete the Range Trie design, (2) FPGA prototype the Range Trie design,
(3) implement the design in the HTX platform and (4) evaluate the performance in
order to determine if the proposed method is interesting for possible implementation in
routers. In the following sections these goals will be discussed to check whether they are
achieved or to which level.

5.2.1 Complete the Range Trie design

The most important goal for this thesis was to deliver a working design of the Range
Trie and check how it performs in hardware compared to software. This required a fully
functional design of the Range Trie. The original design was not working correctly for
some functions, while other functions were not yet supported. The current design is fully
functional and is easily simulated with or without the wrapper.

In order to get the design working correctly, the spare levels had to be implemented
completely as well as most of the update functionalities in the fixed part. In the design of
the spare part there are a few specific things that are implemented such as reutilization of
memory blocks. Memory blocks which are emptied during updates can be reused in other
subtrees as they are being freed. In order to include this without many modifications to
the pipeline, the update bubble has been expanded from four to five cycles.

5.2.2 FPGA Implementation

Having a design which can be simulated is unfortunately not yet the same as having a
design work in an FPGA. During the creation of the FPGA implementation the used
memories had to be changed from LUTs to BRAMs. Even though the Range Trie is
memory efficient, still quite some memories are required to fit larger trees. As BRAMs
are mapped into specific memory blocks they do not use logic slices which now can be
used for logic which did not fit when using LUTs. This change required changing the
pipeline as BRAM memories respond different then LUT memories.

It is possible to read back the contents of the memories. This is required as the tree will
have to be rebuild to incorporate the spare part into the fixed levels. The reading of the
memories can be a time consuming task as multiple reads per node are required.

5.2.3 Implementation in the HTX platform

The HTX platform uses a special interface to support the communication between host
and hardware and to control the hardware from software. A wrapper has been designed
which is the communication layer between the HTX platform and the Range Trie design.
The wrapper reads the signals from the HTX platform, requests commands and writes
their results.
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As the HTX platform expected a function which was able to run at a clock frequency
of 100MHz, this had to be changed as the Range Trie design currently runs at 50MHz.
Therefore the clock management of the HTX core is adjusted to support a 50MHz ac-
celerated function. As the core of the HTX platform itself does run at 100MHz, the
wrapper has to be able to support both 100MHz at the HTX side and 50MHz for the
communication to the Range Trie.

5.2.4 Performance evaluation

During the evaluation, the hardware implementation of the Range Trie is compared to
the routing mechanism as implemented in the Linux kernel. Both methods are evaluated
using batch commands and individual commands. Timing measurements of the individ-
ual commands are relative close to each other. The measurements with batch commands
gave much more interesting results as the hardware implementation already is twice as
fast as the software version for 1000 lookups.

The throughput of the hardware implementation is 4.4M lookups/second which is more
than fourty times higher than the throughput of the software method which has a
throughput of 94K lookups/second. Both throughputs were determined by measuring
the execution time of batch with 50 million lookups to minimize the initial overhead of
setting up the connections.

Next to only lookups, also tests have been performed with 1% or 10% updates. With
throughputs of 4.3M and 4.2M commands/second respectively this difference is not as
large as one might expect as updates use five times the amount of cycles as lookups do
in hardware.

All of the goals as set in the beginning of this thesis are met, and even some improvements
to the Range Trie design have been implemented such as the freeing of memory blocks
and the ability to add multiple bounds within the same update command. Regarding
that the hardware implementation is currently operating at a clock frequency of 50MHz,
the proposed system seems a very interesting field of investigation for the implementation
in a router while solving the scalability issues current routers suffer from.

5.3 Future Work

As this is a first implementation of the Range Trie in hardware and one of the first designs
that uses the HTX platform there are some optimizations and future work that might
increase the usability of the HTX platform and that might increase the performance of
the Range Trie.

• Allow software to stream data to the hardware as addition to both
the driver and the designs of the HTX platform. Currently the hardware
function, or in this case the wrapper, has to request the commands from software.
When there is a method such that the software can push the commands in a
streaming fashion, then the hardware will not have to wait for the function call,
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the data request and the arrival or the commands. Such a function would also make
the HTX platform more interesting for other streaming or real-time applications.

• Create a Linux Kernel Module for this hardware. If the code for the Range
Trie is changed into a Kernel Module it might be possible to build a kernel which
actually uses the Range Trie as routing table. With the Range Trie as functional
routing table it is possible to make much better measurements with respect to
throughput and other performance measures.

• Pipeline the processing stage to increase the operating frequency of the
Range Trie. I personally think that if there would be a new pipeline stage after
the compare/decode unit (at least in fixed level 3 and in the spare levels) that it
would already be possible to increase the frequency.

• Create a software version of the Range Trie. When there is a software version
of the Range Trie it would be possible to see whether the speedup as measured in
this thesis is due to the change of the algorithm, or by the FPGA implementation.
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Linux Routing Table using
IPROUTE2 A
The following parts come from the manpage of IP(8) [13]. These function calls are
used to define and delete extra IP addresses for a given device. These will be used as
endpoints for the added routes. To easily clear all added routes, they will be stored in
a separate routing table, so this one can be flushed without problems afterwards. Also
the functionality to do a routing table lookup is given. For more information about the
IPROUTE2 suite and its usages please go to [14]

ip [ OPTIONS ] OBJECT {COMMAND |help}
OBJECT := { link | addr | route | rule | neigh | tunnel | maddr | mroute | monitor
}
OPTIONS := { -V[ersion] | -s[tatistics] | -r[esolve] | -f [amily ] { inet | inet6 | ipx |
dnet | link } | -o[neline] }
For adding or deleting ipaddresses to certain devices.

ip addr { add | del } IFADDR dev STRING
For showing and flushing the ip-addresses matching all of the given filters

ip addr { show | flush } [ dev STRING ] [ scope SCOPE-ID ] [ to PREFIX ] [
FLAG-LIST ] [ label PATTERN ]
How to list or flush the routes in a certain SELECTOR, for example TABLE 1.

ip route { list | flush } SELECTOR
The method to perform a route lookup for a given address, possibly with a from address
and input or output interfaces.

ip route get ADDRESS [ from ADDRESS iif STRING ] [ oif STRING ] [ tos TOS ]
To perform addition, deletions and changes of single routes. The ROUTE may also
contain the TABLE 1 part to point to a specific routing table for the given route.

ip route { add | del | change | append | replace | monitor } ROUTE
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Executing route lookups using
LIBNL B
/∗
∗ s rc /nl−f i b−l ookup . c FIB Route Lookup
∗
∗ This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t

and/or
∗ modify i t under the terms o f the GNU Lesser General

Pub l i c
∗ License as pu b l i s h e d by the Free Sof tware Foundation

ver s i on 2.1
∗ o f the License .
∗
∗ Copyright ( c ) 2003−2006 Thomas Graf <tgraf@suug . ch>
∗/

#include ” u t i l s . h”
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <getopt . h>
#include <s tdarg . h>
#include <ne t l i n k / n e t l i n k . h>
#include <ne t l i n k / gen l / gen l . h>
#include <ne t l i n k / gen l / c t r l . h>

stat ic void p r i n t u s age (void )
{

p r i n t f (
”Usage : nl−f i b−lookup [ op t i on s ] <addr>\n”
”Options :\ n”
” −t , −−t ab l e <tab le> Table id \n”
” −f , −−fwmark <in t> F i r ewa l l mark\n”
” −s , −−scope <scope> Routing scope \n”
” −T, −−to s <in t> Type o f S e r v i c e \n” ) ;
e x i t (1 ) ;

}
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int main ( int argc , char ∗argv [ ] )
{

struct n l hand l e ∗nlh ;
struct n l cache ∗ r e s u l t ;
struct f l n l r e q u e s t ∗ r eques t ;
struct n l addr ∗addr ;
struct nl dump params params = {

. dp fd = stdout ,

. dp type = NL DUMP FULL,
} ;

// s t r u c t nl dump params params ;
int t ab l e = RT TABLE UNSPEC, scope = RT SCOPE UNIVERSE;
int to s = 0 , e r r = 1 ;
u i n t 64 t fwmark = 0 ;

i f ( n l t o o l i n i t ( argc , argv ) < 0)
return −1;

while (1 ) {
stat ic struct opt ion long op t s [ ] = {

{” tab l e ” , 1 , 0 , ’ t ’ } ,
{”fwmark” , 1 , 0 , ’ f ’ } ,
{” scope ” , 1 , 0 , ’ s ’ } ,
{” tos ” , 1 , 0 , ’T ’ } ,
{” help ” , 0 , 0 , ’h ’ } ,
{0 , 0 , 0 , 0}

} ;
int c , idx = 0 ;

c = getop t l ong ( argc , argv , ” t : f : s :T: h” , long opts ,
&idx ) ;

i f ( c == −1)
break ;

switch ( c ) {
case ’ t ’ :

t ab l e = s t r t o u l ( optarg , NULL, 0) ;
break ;

case ’ f ’ :
fwmark = s t r t o u l ( optarg , NULL, 0) ;
break ;

case ’ s ’ :
scope = s t r t o u l ( optarg , NULL, 0) ;
break ;
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case ’T ’ :
to s = s t r t o u l ( optarg , NULL, 0) ;
break ;

default :
p r i n t u s age ( ) ;

}
}

i f ( optind >= argc )
p r i n t u s age ( ) ;

nlh = ( struct n l hand l e ∗) n l t o o l a l l o c h a n d l e ( ) ;
i f ( ! nlh )

return −1;

addr = ( struct n l addr ∗) n l add r pa r s e ( argv [ optind ] ,
AF INET) ;

i f ( ! addr ) {
f p r i n t f ( s td e r r , ”Unable to par se addres s \”%s \” : %s

\n” ,
argv [ optind ] , n l g e t e r r o r ( ) ) ;

goto e r r ou t ;
}

r e s u l t = ( struct n l cache ∗) f l n l r e s u l t a l l o c c a c h e ( ) ;
i f ( ! r e s u l t )

goto e r r ou t addr ;

r eques t = ( struct f l n l r e q u e s t ∗) f l n l r e q u e s t a l l o c ( ) ;
i f ( ! r eques t )

goto e r r o u t r e s u l t ;

f l n l r e q u e s t s e t t a b l e ( request , t ab l e ) ;
f l n l r e q u e s t s e t fwma r k ( request , fwmark ) ;
f l n l r e q u e s t s e t s c o p e ( request , scope ) ;
f l n l r e q u e s t s e t t o s ( request , to s ) ;

e r r = f l n l r e q u e s t s e t a d d r ( request , addr ) ;
n l add r pu t ( addr ) ;
i f ( e r r < 0)

goto e r r ou t pu t ;

i f ( n l t oo l c onn ec t ( nlh , NETLINK FIB LOOKUP) < 0)
goto e r r ou t pu t ;
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e r r = f l n l l o o kup ( nlh , r equest , r e s u l t ) ;
i f ( e r r < 0) {

f p r i n t f ( s td e r r , ”Unable to lookup : %s\n” ,
n l g e t e r r o r ( ) ) ;

goto e r r ou t pu t ;
}

nl cache dump ( r e su l t , &params ) ;

e r r = 0 ;
e r r ou t pu t :

n l o b j e c t p u t (OBJ CAST( r eques t ) ) ;
e r r o u t r e s u l t :

n l c a c h e f r e e ( r e s u l t ) ;
e r r ou t addr :

n l add r pu t ( addr ) ;
e r r ou t :

n l c l o s e ( nlh ) ;
n l h and l e d e s t r oy ( nlh ) ;
return e r r ;

}
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Shell files for doing the
measurements C
For doing the measurements there are 3 shell files KernelLookups.sh, HWlookups.sh
and HWlookups2.sh. which are called as For i in 1..1000; do ./shellfile $i >>
outputfile; echo $i; done This way the output (time required and amount of lookups)
is written to outputfile while the user still can see the progress due to the echo $i. The
KernelLookups.sh runs the getroute5 program to get the correct number of lookups
from the kernel. HWlookups.sh takes care of the batchwise lookups and HWlookups2.sh
handles the individual lookups to the hardware.

C.1 Measuring the kernel lookups

i f [ [ $# −g t 2 ] ]
then

nrLookups=$1
nrRoutes=$2
nrAddress=$2
nrAdds=$3
nrRemoves=$3

e l i f [ [ $# −g t 1 ] ]
then

nrLookups=$1
nrRoutes=$2
nrAddress=$2
nrAdds=$2
nrRemoves=$2

e l i f [ [ $# −g t 0 ] ]
then

nrLookups=$1
nrRoutes=$1
nrAddress=$1
nrAdds=$1
nrRemoves=$1

else
echo ”$0 [ [ d e s t i n a t i o n s ] r ou te s ] lookups ”
echo ”When no d e s t i n a t i on s , a max o f 255 w i l l be added”
echo ”When no routes , a max o f 255 w i l l be added”

f i
i f [ [ $nrAdds −gt 255 ] ]
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then
nrAdds=255
nrRemoves=255

f i
i f [ [ $nrRoutes −gt 255 ] ]
then

nrRoutes=255
nrAddress=255

f i

#echo ”Going to add $nrAdds ip−addre s se s ”
while [ [ $nrAdds −gt 0 ] ]
do

/ sb in / ip addr add 1 2 7 . 0 . 1 . $nrAdds dev l o
nrAdds=‘expr $nrAdds − 1 ‘

done

#echo ”Adding $nrRoutes rou te s to rou t ing t a b l e ”
while [ [ $nrRoutes −gt 0 ] ]
do

/ sb in / ip route add 1 2 7 . 5 . 0 . $nrRoutes v ia 1 2 7 . 0 . 1 . ‘ expr
$nrRoutes % $nrRemoves ‘ t ab l e 1

nrRoutes=‘expr $nrRoutes − 1 ‘
done

#echo ”Going to do $nrLookups lookups ”
startTime=‘date +%S%N‘
while [ [ $nrLookups −gt 0 ] ]
do

. / ge t r ou te5 1 2 7 . 5 . 0 . ‘ expr $nrLookups % $nrAddress ‘ −t 1
> /dev/ nu l l

nrLookups=‘expr $nrLookups − 1 ‘
done
endTime=‘date +%S%N‘
totalTime=‘expr $endTime − $startTime ‘
echo ” $totalTime us”

#echo ”Flushing temporary rou t ing t a b l e ”
/ sb in / ip route f l u s h tab l e 1

#echo ”Going to remove $nrRemoves ip−addre s se s ”
while [ [ $nrRemoves −gt 0 ] ]
do

/ sb in / ip addr de l 1 2 7 . 0 . 1 . $nrRemoves/32 dev l o
nrRemoves=‘expr $nrRemoves − 1 ‘
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done

C.2 Measuring the hardware batch lookups

i f [ [ $# −g t 1 ] ]
then

F i r s t=$1
Second=$2

e l i f [ [ $# −g t 0 ] ]
then

F i r s t=$1
Second=$1

else
echo ”$0 batchlookups [ s i n g l e lookups ] ”
echo ”When no d e s t i n a t i on s , a max o f 255 w i l l be added”
echo ”When no routes , a max o f 255 w i l l be added”

f i
startTime=‘date +%S%N‘
. / copy2 $F i r s t 1 $F i r s t 1 > /dev/ nu l l
endTime=‘date +%S%N‘
totalTime=‘expr $endTime − $startTime ‘
echo ” $totalTime us”

nrLookups=$Second
startTime=‘date +%S%N‘
while [ [ $nrLookups −gt 0 ] ]
do

. / copy2 1 1 1 nrLookups > /dev/ nu l l
nrLookups=‘expr $nrLookups − 1 ‘

done
endTime=‘date +%S%N‘
totalTime=‘expr $endTime − $startTime ‘
echo ” $totalTime us”

C.3 Measuring the hardware individual lookups

i f [ [ $# −g t 1 ] ]
then

Second=$2
e l i f [ [ $# −g t 0 ] ]
then

Second=$1
else

echo ”$0 s i n g l e lookups ”
echo ”When no d e s t i n a t i on s , a max o f 255 new rou te s w i l l

be added”
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echo ”When no routes , a max o f 255 rou te s w i l l be added”
f i

nrLookups=$Second
totalTime=0
while [ [ $nrLookups −gt 0 ] ]
do

startTime=‘date +%S%N‘
. / copy2 1 1 1 nrLookups > /dev/ nu l l
endTime=‘date +%S%N‘
nrLookups=‘expr $nrLookups − 1 ‘
intermTime=‘expr $endTime − $startTime ‘
totalTime=‘expr $totalTime + $intermTime ‘

done
echo ”$Second $totalTime us”
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Measurements D
Timings (in nanoseconds) for the for different measurements

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

1 5005374 3836941 30213096 3875313 4101868 3996310
10 35914349 3939206 57908197 3721762 4068866 4259099
25 89187688 4120937 140530709 3708935 4084424 4088397
50 173711314 4424383 279769225 3931511 4117611 4278403
75 265578624 4662750 416368602 3817711 3999630 4018451
100 353333395 4908068 562706648 3784999 4093989 4213617
150 529112619 5609523 856400603 3951495 4213895 4095846
200 722158919 6220822 1130806999 3918796 4074584 4222996
250 893010046 6723897 1423163301 4326578 4163291 4225430
300 1060355173 7180500 1725196423 4293121 4019943 4120565
350 1227472994 7693216 1792333832 4393795 4211821 4102229
400 1405097726 8035925 2075024953 4538614 4161454 4088787
450 1572038989 8672929 2341968002 4548300 4189447 4146507
500 1733788375 9161732 2612332797 4805379 4122855 4109414
600 2080046453 10045556 3184360073 4951742 4215441 4185222
700 2452387189 11460622 3754006012 5045169 4215944 4077225
800 2773636677 12144149 4333220256 5399703 5852030 4090036
900 3132015593 13215609 4918009844 5503497 4285867 4253159
1000 3447066964 13933735 5614767183 5788067 4076653 4241729
2000 26674217 5885785
3000 40075443 6518929
4000 52340152 7466697
5000 61381301 8370713
6000 73945396 9332193
7000 85997736 10335669
8000 95602707 11192707
9000 110347307 12223308
10000 125136100 13051631
11000 135846204 14053930
12000 137277614 15232779
13000 153517477 15914837
14000 160316285 16662409
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

15000 190241213 17588437
16000 189587806 19094041
17000 209956795 19424995
18000 216812524 20714836
19000 227408586 21672653
20000 253154860 22641088
21000 253467553 23537365
22000 280639977 24631848
23000 284874458 25026751
24000 289218353 26023062
25000 303832694 26897582
26000 307970718 25575729
27000 333443753 28787346
28000 328243365 26995585
29000 342340857 30637088
30000 378220690 27837380
31000 367627741 29422832
32000 395262901 30170864
33000 401371335 36703327
34000 412029354 28791232
35000 430140057 30570415
36000 450395038 34088980
37000 419185556 38316884
38000 448593258 33532724
39000 488415628 40108253
40000 461727114 34324508
41000 490473549 44074690
42000 494033192 42925072
43000 533409266 43839449
44000 533068432 42124146
45000 537788577 35108204
46000 526544208 35295667
47000 595892704 44237721
48000 554627199 35441825
49000 604954539 45058467
50000 546559292 45015885
51000 542709725 45184953
52000 565035385 37372040
53000 568601664 38457593
54000 583468717 42242144
55000 584030536 36391827
56000 598077276 46681559
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

57000 608656329 43614630
58000 622679863 45997445
59000 617599583 38175042
60000 591704829 48340470
61000 627869089 48824922
62000 674210053 37613116
63000 647396231 48842739
64000 652835561 39887018
65000 656531014 40790393
66000 697225828 39794554
67000 685841091 38125768
68000 690350133 40422981
69000 718730359 1040477346
70000 692699944 40024885
71000 762575347 40783438
72000 749150429 40772956
73000 774608390 39632032
74000 795013090 39917558
75000 760303960 45430076
76000 803977541 42771694
77000 794584077 41768278
78000 778561534 46114941
79000 835906306 42224505
80000 815247202 43077263
81000 819353663 43123610
82000 837395351 53805101
83000 882438360 44534380
84000 871422624 46390806
85000 893183489 44194346
86000 931241836 44953712
87000 890075058 43043665
88000 886601117 48187491
89000 930469750 44145140
90000 979663232 43081494
91000 927187536 45076470
92000 938542729 46109653
93000 967983176 46674628
94000 973514765 48130690
95000 1026624015 44275825
96000 951574521 50257448
97000 973903433 45257567
98000 997931839 46798833
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78 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

99000 1024064271 47740486
100000 1029410407 46285928
101000 1015311108 48526021
102000 1059822989 48635540
103000 1064932632 50267331
104000 1073572648 51213178
105000 1101623001 49514088
106000 1108523267 50798151
107000 1078999770 49672944
108000 1091436636 52023317
109000 1126387224 52688528
110000 1169046418 49959168
111000 1167594232 49714171
112000 1159144384 50280268
113000 1222194823 49509233
114000 1167846239 50843324
115000 1178373826 50886320
116000 1251170295 49395460
117000 1185666051 51654920
118000 1243148384 53365884
119000 1266883257 50726336
120000 1261122749 55320162
121000 1276302881 55591510
122000 1246946462 55167672
123000 1312577648 51161647
124000 1391531197 53289493
125000 1368256818 53562150
126000 1314743020 55002037
127000 1352237096 52208077
128000 1368916717 53909696
129000 1374008805 56005487
130000 1390989855 56798377
131000 1352222910 55801807
132000 1376518802 53971825
133000 1355445051 56484622
134000 1331368213 54478290
135000 1444831661 58926943
136000 1479887417 55322141
137000 1400266302 56568776
138000 1464276198 57486876
139000 1486170766 57516995
140000 1431455831 56863786
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

141000 1561920483 62781550
142000 1475770278 63935002
143000 1501254162 58152706
144000 1561548378 59797997
145000 1548398861 68176940
146000 1559473547 69484280
147000 1595607719 60640435
148000 1535155932 57164660
149000 1620463786 71765379
150000 1546976825 60943620
151000 1589624679 74546059
152000 1569204875 58324614
153000 1536532853 71131242
154000 1585925696 63929750
155000 1641108741 62116493
156000 1675746680 74596162
157000 1687953831 73306377
158000 1647648069 60075163707
159000 1580666491 70921417
160000 1649277771 72755874
161000 1639149878 78222653
162000 1642142923 73353694
163000 1630681445 74516478
164000 1648410272 70431829
165000 1701066385 72313910
166000 1705096846 76475038
167000 1743144909 83134352
168000 1701717695 83541697
169000 1764023392 80124439
170000 1747762988 83710804
171000 1841335728 74144609
172000 1744281976 80813227
173000 1898803268 75313956
174000 1825879290 81277720
175000 1836520266 84858822
176000 1860065848 85130759
177000 1883814042 74225201
178000 1915856788 85549289
179000 1980731546 87716208
180000 1887580489 86054066
181000 1835495830 86490351
182000 1904979092 86473596
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80 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

183000 1992399270 82946037
184000 1901702441 84994171
185000 1952140499 87376092
186000 1994628255 87302647
187000 1978107187 84147537
188000 1987819307 77194519
189000 1977465049 84965929
190000 2073065160 86772014
191000 1935731796 85023556
192000 2030857279 85662460
193000 1984596597 88645115
194000 1971613295 89834760
195000 1971916663 85889740
196000 2046611235 86083622
197000 1926396682 89825273
198000 1974555988 89139252
199000 2006701384 1086866079
200000 2040390463 90470126
201000 2083942629 87289308
202000 2161678650 80673036
203000 2219402160 90839422
204000 2090453201 1088031379
205000 2048045393 88275850
206000 2065153032 88774923
207000 2121701642 88651101
208000 2228460301 88689500
209000 2129130143 89165605
210000 2291567881 89803939
211000 2384649763 89489548
212000 2187077710 93895835
213000 2152143716 89860262
214000 2161557811 95841735
215000 2337752655 94890245
216000 2257497493 90761810
217000 2243702413 90856350
218000 2383582740 91136210
219000 2272300046 93682074
220000 2282306994 91587265
221000 2324145350 97208450
222000 2396272407 97099862
223000 2249902644 92622087
224000 2359601570 105085513
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

225000 2365070312 94723101
226000 2390250984 99439232
227000 2409246182 95339175
228000 2339302342 100876397
229000 2365857167 101138287
230000 2374363832 101460093
231000 2285425462 94143545
232000 2350224687 107478465
233000 2514903335 95744116
234000 2377839945 102766885
235000 2402238833 108537481
236000 2498425743 104654013
237000 2535012443 100402326
238000 2555239484 109762634
239000 2549259129 104917247
240000 2385053948 110562636
241000 2467372185 109444496
242000 2462127437 99312916
243000 2441039430 102613939
244000 2546878739 110495186
245000 2579761207 110994164
246000 2479770345 109347645
247000 2561892183 109569841
248000 2620454268 111182366
249000 2743458217 107288592
250000 2551598726 106857227
251000 2646558442 107995233
252000 2525972733 105163611
253000 2616988696 110222278
254000 2724191559 99252678
255000 2617098475 107989142
256000 2626143565 107333349
257000 2673395470 113472597
258000 2766997470 109468196
259000 2724597833 110276023
260000 2652930325 111225358
261000 2675439108 118551030
262000 2865676774 111508376
263000 2641478767 114806494
264000 2833302808 114747496
265000 2709169241 117455686
266000 2693261833 114498784
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82 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

267000 2735634013 115911783
268000 2708413108 115648514
269000 2937573007 113412621
270000 2812914143 113307471
271000 2921464198 114782037
272000 2847120084 116651056
273000 2814325401 117163393
274000 3021226589 119036787
275000 2923538417 117436472
276000 2766247182 115488983
277000 2782788741 117719204
278000 3001480486 118578461
279000 2897775124 118522899
280000 2992030624 124513746
281000 2887050905 132490912
282000 2928640218 117382898
283000 2902130310 129390873
284000 3014575171 123161802
285000 3148430736 123874492
286000 3055714444 119605565
287000 2878334971 126239178
288000 2857035891 121862664
289000 2915461447 122738019
290000 3067072485 126188165
291000 3036761451 128316256
292000 2938827943 125095830
293000 2971807223 122534231
294000 3060675218 125634016
295000 3132953301 127941083
296000 2996327178 123810871
297000 3174815454 124564404
298000 3250567163 121349980
299000 3012721676 124594495
300000 3170306974 124987859
301000 3005014025 128586299
302000 3290731227 132309876
303000 3142235682 126850948
304000 3179174562 135987977
305000 3207565902 137083355
306000 3108039073 132049516
307000 3205881839 134958947
308000 3160823622 131167876
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

309000 3232813160 131451636
310000 3090094737 134772481
311000 3138105571 128967624
312000 3345823301 129541042
313000 3271287051 135590113
314000 3308962953 136590954
315000 3096583454 140224009
316000 3323833441 134045387
317000 3238776717 131087655
318000 3360557017 136645188
319000 3463707156 131832621
320000 3372601926 137965656
321000 3195563240 132659361
322000 3326452310 133731871
323000 3390828749 134370136
324000 3365337576 138920296
325000 3452319794 135266532
326000 3469146949 141474217
327000 3408167796 138325663
328000 3507408297 140874928
329000 3416742398 135913263
330000 3573388333 135630320
331000 3571667550 145007042
332000 3601060362 142605407
333000 3625017484 139013935
334000 3475096772 143803800
335000 3438220692 142152104
336000 3450530549 147494092
337000 3555484092 139957676
338000 3555133242 146015374
339000 3386661870 145559948
340000 3437801683 147458613
341000 3711320187 144813758
342000 3522302457 146968031
343000 3709610467 149090645
344000 3524505424 145660665
345000 3643781143 148030854
346000 3533186395 144960254
347000 3687322535 142915894
348000 3639547510 146047000
349000 3708384274 144017948
350000 3633226662 149296203
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84 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

351000 3595186314 148309143
352000 3641641072 145674365
353000 3674510460 150298132
354000 3634982112 147516712
355000 3652289386 151773933
356000 3646963670 147109032
357000 3835651966 149993468
358000 3723042683 150703392
359000 3611876150 153227578
360000 3666075287 151285682
361000 3770688609 152435155
362000 3614269920 153359625
363000 3753729002 146622684
364000 3776306204 151823225
365000 3739772382 156299060
366000 3989217874 153802617
367000 3873706958 149709801
368000 3844812808 156328424
369000 3841963719 150349283
370000 3985432340 151411506
371000 4100599145 151598451
372000 3695606136 150036910
373000 3988882215 151051913
374000 3857916281 158246185
375000 3843960499 159863563
376000 3972269067 152454170
377000 3758049273 163377902
378000 4307110809 152573435
379000 4109288932 161812165
380000 4036964924 161575481
381000 4183483739 157488705
382000 3813137209 168983646
383000 4009284713 165907158
384000 4260832615 161061301
385000 3996761807 163835921
386000 3953021085 164308165
387000 3936807465 157154030
388000 4059472123 159191356
389000 3963230366 162244008
390000 4118142317 166546541
391000 4025048671 153295858
392000 4050958617 167100269
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

393000 4062733870 168023500
394000 3969900990 155903507
395000 4219619541 170641986
396000 4126703766 167713488
397000 4111618048 162936503
398000 4335447786 157537719
399000 4113256993 166338663
400000 4213363001 158966429
401000 4367457792 173778013
402000 4343716714 168965812
403000 4113565517 159997988
404000 4107984074 170821320
405000 4154560294 159337608
406000 4157825141 167743898
407000 4189902559 1156965791
408000 4149973604 175318576
409000 4341517651 169492949
410000 4230303014 159291196
411000 4246212139 171352559
412000 4183263562 174576812
413000 4365114491 169486520
414000 4440349686 173303404
415000 4345262319 173983449
416000 4326536632 176817524
417000 4251904635 167028649
418000 4230190934 166507754
419000 4474545295 164111276
420000 4521020966 164847930
421000 4514083710 168995008
422000 4581340157 175574278
423000 4742715924 164645513
424000 4469233755 159986121
425000 4462599519 167223215
426000 4307196406 166060223
427000 4355155178 159312548
428000 4346011266 175094649
429000 4635981572 170928401
430000 4892784506 157431358
431000 4434427420 164321966
432000 4715732095 166913145
433000 4545112865 165021720
434000 4467197080 168201663
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86 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

435000 4744827710 165434779
436000 4623046526 182214461
437000 4417379002 180995953
438000 4486894866 176441658
439000 4605270776 1184152767
440000 4452448405 166074549
441000 4483493027 170140450
442000 4556598145 170177899
443000 4499096206 169186210
444000 4494077753 177399019
445000 4502626982 184289072
446000 4520598560 180674780
447000 4672005315 170139273
448000 4661289957 168031231
449000 4667577834 177773681
450000 4708782465 170283345
451000 4994639087 177653231
452000 4892217545 181315896
453000 4984228988 180340073
454000 4803453466 176908712
455000 4997706764 169658234
456000 4691140201 181926227
457000 4877980652 171354686
458000 4721058898 173565532
459000 4652426697 183301371
460000 4761372009 1169937170
461000 5013866165 168842223
462000 5040126640 182503225
463000 4795483336 185741357
464000 4686068824 179563826
465000 5050411198 186696350
466000 4767083225 170081419
467000 4784135443 174980637
468000 4892105946 180161996
469000 4939525303 176083364
470000 4923554048 187716122
471000 4945306821 1181394378
472000 5155167953 176168217
473000 5066048561 188316338
474000 4760149645 193868526
475000 4922635855 188455498
476000 5432958984 186166150
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lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

477000 5043464186 187914302
478000 5160989513 180729840
479000 5054309569 173426389
480000 5153772753 164437900
481000 4979164471 178430878
482000 4885645218 194668322
483000 5158063622 189055492
484000 5295324260 178292815
485000 4948156099 177323424
486000 4916968753 175280649
487000 4884607279 174536383
488000 5355467383 183528172
489000 5191900506 196293894
490000 5281444564 177594553
491000 5440113835 178690781
492000 5326320884 177893134
493000 5207045340 182870961
494000 5161172044 181104101
495000 5070209886 173412769
496000 5182962455 185822820
497000 5276546673 177373991
498000 5461278195 186265218
499000 5171637406 183760742
500000 5067888298 184024542
600000 6140249920 238612961
700000 7209054607 259866925
800000 8236118251 279157350
900000 9434565653 304725873
1000000 11235154757 330850076
1100000 11161901462 349071798
1200000 12383578279 385882299
1300000 13391284873 408763658
1400000 14260795360 428883720
1500000 15294363631 460988305
1600000 17671871603 475374514
1700000 17456319777 500299153
1800000 18112047827 525218755
1900000 19506193586 546425440
2000000 20166329879 566629566
2100000 21488513571 586338588
2200000 23114020028 598983508
2300000 23848062366 638576760
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88 APPENDIX D. MEASUREMENTS

lookups SW
Single

SW
Batch

HW
Single

HW
Batch

HW
Batch 1
Updates

HW
Batch 10
Updates

2400000 25225411925 654380621
2500000 27499414705 678711464
2600000 27498750300 696341276
2700000 28473986037 713487483
2800000 28722691312 745602631
2900000 31550811717 768087103
3000000 30469132949 791105421
3100000 32526370644 810248211
3200000 33542710377 836787485
3300000 34929069277 855539321
3400000 35183594766 884037504
3500000 35460149303 904326121
3600000 38984195247 925819680
3700000 37771406163 949967684
3800000 40243529303 971875478
3900000 41014842020 992833088
4000000 41224051901 1009484610
4100000 43432022474 1037170067
4200000 43695930040 1055718498
4300000 45346339869 1078303171
4400000 45575213909 1106614385
4500000 46875866589 1129932354
4600000 48040516903 1151569008
4700000 49776731109 1169314690
4800000 49134584061 1205313980
4900000 50992185815 1219714515
5000000 55249892855 1234610640
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Figure E.1: Communication scheme between the host and hardware Range Trie imple-
mentation.
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