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Abstract
The aerospace industry has established the Automated Fiber Placement process as a common technique for manufacturing
fibre reinforced components. In this process multiple composite tows are placed simultaneously onto a tool. Currently in
such processes manual testing requires often up to 50% of the manufacturing duration. Moreover, the accuracy of quality
assurance varies significantly with the inspector in charge. Thus, inspection automation provides an effective way to increase
efficiency. However, to achieve a proper inspection performance, the segmentation of layup defects need to be examined. In
order to improve such defect detection systems, this paper performs a comprehensive ranking of segmentation techniques.
Thus, 29 statistical, spectral and structural algorithms from related work were evaluated based on nine substantial criteria as
assessed from literature and process requirements. For reasons of determinism and easy technology transferability without
the need of much training data, the development of new Machine Learning algorithms is not part of this paper. Afterwards,
seven of the most auspicious algorithms were studied experimentally. Therefore, laser line scan sensor depth maps from fibre
placement defects were utilised. Furthermore noisy images were generated and applied for testing algorithm robustness. The
test data contained five defect categories with 50 samples per class. It was concluded that Adaptive Thresholding and Cell
Wise Standard Deviation Thresholding work best yielding detection accuracies mostly > 97%. Noteworthy is that influenced
input data can affect the detection results. Feasible algorithms with sensible parameter settings were able to perform reliable
defect segmentation for layed material.

Keywords Image segmentation · Automated fiber placement · Inline inspection · Adaptive thresholding · Computer vision ·
Laser line scan sensor

Introduction

Nowadays, lightweight structures are widely used in
aerospacemanufacturing. Examples of an increasing demand
for these lightweight components are the Airbus A350
XWB or Boeing 787 wingcover and fuselage production
(Marsh 2010; McIlhagger et al. 2020). Carbon Fiber Rein-
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forced Plastic (CFRP) offers superior stiffness and strength
properties compared to metallic materials. For this reason
lightweight structures are often made from CFRP. The pro-
duction of these mostly complex lightweight structures is
usually quite expensive. To make manufacturing economi-
cal, fast and efficient production techniques are essential. On
this account, the relatively novelAutomated Fiber Placement
(AFP) technique is increasingly used in industry. This is the
reason for its choice for further investigation of the inspec-
tion process, in this paper. To meet aerospace’s high safety
requirements a visual inspection step follows the fibre layup
process.

Today, this manual inspection takes typically between
32% (Rudberg et al. 2014) to 50% (Eitzinger 2019) of the
overall production time. Due to the manual inspection pro-
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cess, the inspection quality is often insufficient with regard
to the specifications. This aspect provides great potential for
improvements in terms of quality and speed.

The Laser Line Scan Sensor (LLSS) is frequently used in
research and development for the inline inspection of AFP
processes. For this reason, we are focussing on grey scale
depth images from such a sensor. A LLSS is based on the
principle of triangulation to obtain geometrical data. There-
fore a laser beam is projected onto a surface and then reflected
back to a camera sensor. This sensor has a slightly different
position than the emitting laser.

One critical aspect in the automated inline inspection is
the robust and reliable segmentation of defects within a sen-
sor image. Previously, Hanbay et al. (2016), Mahajan et al.
(2009) and Kumar (2008) summarised some research from
the field of fabric defect segmentation in the textile industry.
Additionally, Bulnes et al. (2014) mentioned predominantly
periodic defects as critical for the web industry. Because tex-
tiles are somehow very similar to CFRP, research from this
field can be very helpful for the algorithm selection. Later on
Sacco et al. (2018) and Zambal et al. (2019) published Neu-
ral Network based defect detection methods for laser scanner
depth images of AFP defects. Moreover, Tabernik et al.
(2019) have investigated a deep learning system for crack
segmentation in components. In particular, they emphasised
the necessity of a small initial setup data set for establishing
a system in an industrial application. These deep learning
methods work quite well (Du et al. 2020), but face the chal-
lenge of determinism and traceability of Neural Network
decisions (Lee et al. 2021). The categories of segmentation
algorithms without the use of advanced more abstract mod-
els can be visually verified in terms of their correct operation
(Joshi et al. 2018). Simple image metrics might be sufficient
as an indicator for evaluating the validity of a calculation
(Meng et al. 2020). Such an evaluation and traceability of the
machine decision ismuchmore difficult for Neural Networks
or other advanced models (Lee et al. 2021), which is the rea-
son for categorically excluding them in this study. Meister
et al. (2020) announced our first results on defect detection
algorithms for fiber placement processes. In this the focus
was on the general overview of feasible algorithms.

Based on this previous work, a detailed investigation
of suitable algorithms with regard to different geometrical
groups of layup defects and a varying quality of the input
data is necessary.

Within this postulation we like to focus on defect detec-
tion for different geometrical characteristics of defects. This
image segmentation step is basically the first task in the
inspection of composite parts. This serves to reduce the
amount of data and prepare the image data for subsequent
analysis procedures. Prior to the determination of the defect
types or geometrical measures, as many as possible of these
manufacturingdeviations have to bedetectedon the produced

component. Afterwards, in a following stage, a detailed anal-
ysis of the conspicuous image regions is carried out using
techniques of varying complexity. Such a sequential inspec-
tion approach is similarly used from of Kuo et al. (2016) for
the inspection of light emitting diodes. The detailed defect
analysis and interpretation will be considered separately in
further research and is therefore not part of this paper. In
addition, the presented procedure can serve as a partially
automated input generator for the synthesis of further defect
images in AFP inspection, as described in our publication
from Meister et al. (2021) or in similar fields as mentioned
from Jain et al. (2020). For this reason the following research
questions are selected for this publication:

– Which algorithms are feasible to perform rapid defect
detection for previous defined layup defect types under
consideration of various geometrical clusters?

– What is the actual performance of feasible image seg-
mentation methods under consideration of a varying data
quality?

Regarding these research questions, this paper uses findings
from previous fabric inspection and fiber layup defect detec-
tion research and reviewed these algorithms in the field of
AFP defect segmentation. For this, various geometrical clus-
ters of defects are examined. Thus, our research provides
a novel perspective on segmentation algorithms and their
application to fibre placement inspection. The findings of
this postulation should be beneficial for manufacturers of
inline inspection systems for AFP processes. Thus, these
results can support their development and configuration of
defect detection algorithms for various materials. Further-
more, the findings will support the certification process of
such systems, especially in the aerospace industry. This
article initially presents the related research on sensor and
algorithm development. Subsequently all algorithms from
the literature are summarised and evaluated according to
a defined procedure. The seven most promising algorithms
are then implemented and studied based on exemplary fibre
layup defects.

Related research

This section provides an overview of the state of research
and industrial developments of the manufacturing process,
data acquisition techniques as well as algorithms for image
smoothing and defect segmentation.
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Manufacturing process

Following, the corresponding manufacturing process is
explained. To begin with, various Fiber Placement tech-
niques are currently available on the market. Very common
methods are the Automated Fiber Placement (AFP), Dry
Fiber Placement (DFP), Automated Tape Laying (ATL) and
Direct Roving Placement (DRP). (Maass 2012; Lengsfeld
et al. 2014; Grohmann et al. 2016) These processes apply
CFRP material layer by layer onto a tool. (Campbell 2004)
explained this procedure, which is also schematically shown
in Fig. 1.

AFP is a technique which is needed to manufacture com-
plex composite structures. Nowadays, this technique gets
more and more established in industrial aerospace manu-
facturing. This means, that the process is quite novel, but
also used in industry. With the aim to realise a good trans-
ferability of the research results, we selected this method for
further investigations. During the AFP process multiple nar-
row preimpregnated material stripes (tows) are placed along
a previously programmed path (course) (Oromiehie et al.
2019). Each tow is supplied from an individual spool. The
supplied material consists of the prepreg material itself and
a release film. This release film is removed during the place-
ment process and stored on another spool. Within the AFP
process, composite material e.g. carbon prepreg material is
fed into an effector. This effector guides the material to the
tool’s surface. Then, the material is heated at the moment
of tow placement, to achieve better tack properties (Lengs-
feld et al. 2014). Following to the material deposition, a
compaction roller presses the material onto the mold. Thus,
each component is made from many CFRP prepreg layers
(Campbell 2004). This previously explained AFP process
can be used to manufacture various part geometries. For this
reason, Rudberg (2019) expects that the AFP method will
be used more and more frequently in future applications.
Various defects possibly occur during fibre layup. These
defects are often directly related to the lay up process itself
(Oromiehie et al. 2019). Harik et al. (2018) have investigated
the link between the AFP defects and the process planning,
layup strategies and machining. Furthermore, Potter (2009)
has analysed factors for the variability in the AFP produc-
tion. Referring to Potter (2009) and Harik et al. (2018), all
defects which can occur during fibre layup result in geomet-
rical changes and deviations from an accurate lay up surface.
Hence, common AFP defect types are wrinkles, twists, gaps,
overlaps and foreign materials (foil) (Harik et al. 2018; Hei-
necke and Willberg 2019; Oromiehie et al. 2019). A sketch
and a corresponding exemplary LLSS scan image is pre-
sented in the Fig. 2 for each defect type. The associated
geometric measures and characteristics of these defects are
summarised in the Table 1.

Fig. 1 Basic principle common to all fiber layup technologies, consist-
ing of an effector with heating system and a compaction roller. F is the
compaction force and v gives the layup velocity

Fig. 2 Illustration of the defect types considered. Schematic drawings
of the individual defect types are presented at the top. Below the associ-
ated, smoothed scan images of the LLSS are displayed. These are used
as input for the image processing. l: length axis, w: width axis, wt : tow
width

The wrinkle and twist defects have varying but distinct
topologies. Both types of these defects protrude from the
layup surface. This results in large height differences and
form clear defect edges. In longitudinal direction wrinkles
form one clear edge. Twists in contrast show a very small
growth in altitude over their length. Gaps and overlaps are
very similar to each other regarding their geometrical charac-
teristics. These two defects are very flat and hardly show any
topology changes. Gaps reveal two slight edges at the begin-
ning and end of this defect, in transverse to the fibre direction.
However, overlaps form three small edges in this direction,
since these defect types are mostly a combination of a gap
and a tow overlap. In contrast, gaps and overlaps have almost
no edges apparent along the tows. Due to their similarities,
the differentiation between these two types is often quite dif-
ficult. The thin shape of these defects gives the opportunity
to analyse algorithms for this scenario. These defect types
are also often used as example defects by other researchers
(Harik et al. 2018; Heinecke and Willberg 2019; Oromiehie
et al. 2019). Thus (Nardi et al. 2018) emphasises espe-
cially the disturbing influences of gaps and overlaps in the
AFP prepreg layup for fibre metal laminates. Furthermore,
foils are very common foreign materials in manufacturing
processes. They show a very different reflection behaviour
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Table 1 The table presents an overview of the geometrical measures of the considered defects from the Fig. 2

Wrinke Twist Gap Overlap For. Mat.

Typical ratio: (l/w) 0.5 to 2 5 to 10 ≤ course length ≤ course length unk.

Thickness deviation (+/-) ≥ 3x CPT (+) ≥ 2x CPT (+) ≤ 1x CPT (-) ≤ 1x CPT (+) unk.

Source Harik et al.
(2018);
Oromiehie et al.
(2019)

Harik et al.
(2018); Hei-
necke and
Willberg (2019);
Oromiehie et al.
(2019)

Nardi et al.
(2018); Harik
et al. (2018);
Heinecke and
Willberg (2019);
Oromiehie et al.
(2019)

Nardi et al.
(2018); Harik
et al. (2018);
Heinecke and
Willberg (2019);
Oromiehie et al.
(2019)

Harik et al.
(2018); Heinecke
and Willberg
(2019)

The range of the length-to-width (l/w) ratio is given here, due to the large variance of the geometry within each defect category. CPT in this
application case is about 0.125 mm. For the thickness measure + indicates an increase in thickness and - means a decrease in thickness

compared to the deposited fibre material (Miesen et al. 2015;
Potter 2009). Following, feasible techniques for the record-
ing of these defects are explained.

Sensors for data acquisition

Nowadays, the inline inspection forAFPprocesses is a highly
discussed topic in research and industry. For this reason, vari-
ous sensors are investigated to record the required inspection
data. Sun et al. (2020) provides a comprehensive overview
of the currently available systems and their performances.
Accordingly, the Fraunhofer Institute for Integrated Cir-
cuits (IIS) investigated polarisation camera based systems
(Atkinson et al. 2018; Schöberl et al. 2016). Furthermore,
theNational Aeronautics and Space Administr. (NASA)Gre-
gory and Juarez (2018) as well as the Institute of Production
Engineering and Machine Tools - University Hanover (IFW)
focusedon thermographic imaging inspection (Denkena et al.
2016; Schmidt et al. 2019a). Both types of sensors capture
only 2D images.

Thus, InFactory Solutions (Weimer et al. 2016), Profactor
(Gardiner 2018) and Danobat Composites (Black 2018) have
developed LLSS based systems for inline Quality Assurance
(QA) of AFP processes. These companies use a single LLSS
formonitoring of the entire course. In contrast, Electroimpact
(Cemenska et al. 2015) applied multiple LLSS systems to
observe each individual tow.

A big advantage of these LLSS systems is the capability to
provide topographical information of a surface. This may be
the reasonof the success of thismeasurement principle for the
AFP inspection (Weimer et al. 2016). Schmitt et al. (2008),
Schmitt et al. (2007) began studies on LLSS based methods
for the contour scanning of fabrics and preforms, in 2007.
They also investigated edge detection methods for the deter-
mination of preform misplacement errors. They observed
sub-pixel accuracy for the contour measurement and showed
that a LLSS is a suitable system for the fabric and pre-
form inspection. Subsequently in 2012, Faidi et al. (2012)

investigated laser triangulation systems for CFRP manufac-
turing. They aimed to find andmeasure wires with a diameter
between 0.5 mm and 1 mm, which were incorporated into
CFRP laminates. Miesen et al. (2015) suggested a method
to sense defects with a point measurement laser displace-
ment system.Additionally, they discussed influencing factors
for deviations in their research and analysed the accuracy of
such a system. Furthermore, they presented various defect
types and their corresponding geometrical dimensions. Ton-
naer et al. (2017) also showed a technique for LLSS based
monitoringofAFPprocesses. They investigated themeasure-
ment precision of Otsu’s algorithm for the edge detection on
LLSS depth images (Otsu 1979). Further methods for data
usage and processing are described below.

Image processing techniques

This section describes related work for defect detection and
image smoothing, in order to process the sensor data. Hanbay
et al. (2016), Mahajan et al. (2009) and Kumar (2008) have
presented plenty of algorithms for fabric defect segmentation
in the period between 2008 and 2016. The corresponding
methods mostly excluded the use of Neural Networks. In the
main, they all clustered the methods in structural, statisti-
cal and spectral approaches as well as other more advanced
techniques anddiscussed their individual strengths andweak-
nesses. Hanbay et al. have mentioned, that in particular the
statistical and the spectral analysis methods lead to good fab-
ric defect detection results. They have also pointed out, that
spectral techniques work better for regular texture patterns
like fabrics. Mahajan et al. concurred with this view. Kumar
goes so far as to suggest, that Gabor filters perform well
individually, but can lead to even better results in combina-
tion with other methods. Meister et al. (2020) summarised
various defect segmentation algorithms from other computer
vision fields and gave a rough overview of their advantages
and limitations.
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Table 2 List of abbreviations regarding the notations of the algorithms
investigated

Abbreviation Definition

AT Adaptive Thresholding

CT Cell Wise Standard Deviation Thresholding

FI Full Image

GT Gradient Thresholding

GB Grid Based

GF Gabor Filter Segmentation

IP Image Projection

MS Morphological Segmentation

OT OTSU Thresholding

Further crucial tasks in the field of image processing
are the smoothing of sensor data and the adjustment of
pixel values. For this purpose, the Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm is a suitable
method for image contrast equalisation, as Meister et al.
(2020, 2021) have already explained. This technique was
developed in the mid 80’s and Pizer et al. (1986) used it first
in the field of medical imaging. This CLAHE method con-
siders regionally limited small image areas called ’tiles’ and
performs a histogram equalisation for each of these regions.
To counteract the effect of image noise over amplification, the
contrast is limited to a defined score. Pixel values above this
relative threshold are shifted to a corresponding neighbour-
ing bin. Asmentioned above, plenty of algorithms and sensor
systems from various fields are already available. Especially
algorithms from textile inspection seem feasible to adapt to
our use case. Within this paper we like to apply a suitable
choice of algorithms on LLSS depth data with varying data
quality. In addition, we gather types of defects into appro-
priate clusters and perform a detailed analysis on the defect
segmentation for them. Subsequently, the methodology for
the algorithm evaluation is discussed.

Methodology

The following section describes the experimental setup, the
algorithm selection approach and their actual implementa-
tion as well as the procedure for results evaluation. Within
this paper we use the abbreviations from Table 2 for the algo-
rithms. Moreover, Table 3 give the notations corresponding
to the results evaluation.

Experimental setup

For the performance tests of the desired segmentation algo-
rithms a manageable and heterogeneous set of defect types

Table 3 Notations corresponding to the results evaluation

Symbol Definition

d Detection accuracy

p Position accuracy

N False negatives rate

Pn False positives rate (number)

Pa False positives rate (area)

Ae Excess area

Ao Overlap area

Asd Superfluous recognised defect area per image

Aed Excess defect area per image

Aod Overlap defect area per image

Agt Ground truth defect area per image

nd Number correct detected defects

nsd Number superfluous detected defects per image

K = ngt Number ground truth defects

C Number detected defects with associated ground
truth defects

Ed Euclidean distance: Estimated defect location ↔
Ground truth location

needs to be selected. Due to the varying defect characteristics
from Sect. 2.1, we choose wrinkles, twists, gaps, overlaps
and foil as foreign materials for the experiments. Figure 2
presents these defects and theTable 1 gives the corresponding
geometrical measures. It should be noted, that other defect
types were not examined in this paper.With the aim to review
image analysis techniques for the AFP application case, rep-
resentative data needs to be recorded. This collection of fiber
layup images must be generated reproducibly and should be
representative regarding the actual fiber placement process.
For this reason, a settingwhich is not influenced by disturbing
influences from the manufacturing process like heating radi-
ation, undesirable contamination or geometric tilting of the
lay upmachine was used. A suitable test setup is presented in
the Fig. 3. This arrangement consisted of an articulated robot
from KUKA, the Automation Technology GmbH (AuTech)
- C5 Sensor (Automation Technology GmbH 2019) and a
CFRP prepreg material sample which contained the defects
from the Fig. 2. The linear moving robotic arm records the
data along the entire sample, with a velocity of 200 mm/s.
The AuTech C5 Sensor captured 4096 (w) x 625 (h) px, 16-
bit grey scale depth images from the 250 x 150 mm fibre
layup sample. The width of the image indicates the maxi-
mum resolution of the sensor in width direction. The height
resolution is affected by the exposure time per pixel row and
the time between frames. On this account, the image res-
olution decreases with increasing exposure time, assuming
the same sample size and scanning speed. A laser voltage of
5V and the FIR-PEAK laser line detection mode (Automa-
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Fig. 3 The assembly for collecting defect data from CFRP prepreg
material is shown. This makes use of a KUKA robot with attached C5
LLSS and conducts a linear motion parallel to the surface. Additionally,
a close up view of an example test sample containing a wrinkle defect
is displayed. This sample has the dimensions length ls = 250 mm and
widthws = 150 mm. It is made from tows with the widthwt = 1/4′′ =
6.35 mm

tion Technology GmbH 2014) were used to calculate precise
topological data.Within this device the FIR-PEAKalgorithm
is implemented as a derivative filter, which detects the zero
crossing point of the first derivative of the laser intensity
image. The data was transmitted via an ethernet connection
using the GenICam protocol (EMVA 2009). The image pro-
cessing was carried out on a computer with Intel Xeon Gold
5122 @ 3.60 GHz CPU, 48 GB RAM, a NVIDIA Quadro
P6000 GPU and OpenCV 3.4.1 (Bradski 2000) with Python.
The image analysis processes were preferably executed on
the CPU. The GPU was only used for the visual display. In
addition the following section explains the selection of the
algorithms to be investigated and the procedure for evalua-
tion.

Evaluation of detectionmethods

Subsequently, the evaluation procedure for segmentation
algorithms is presented. With regard to the defect character-
istics described above, edge-based features can be a valuable
image feature for most of the chosen defects. In addition, the
regular structures of gaps and overlaps may be well repre-
sented by frequency-based attributes.
Some defect segmentation algorithms are already known
from similar applications like textile inspection, which have
been discussed in Sect. 2.3. These algorithms are theoret-
ically evaluated here, on the basis of the literature. This
summary from the Table 4 contains all structural, statistical
and spectral algorithms found during the literature review
in the fields medical imaging, autonomous driving and tex-
tile inspection. The individual evaluation criteria are listed
above each column. The corresponding references are given

in the right column. With the aim to review these algorithms,
the entire inspection process chain needs to be taking into
account. As a consequence, the defect segmentation must
be calculated quickly and find most defects, but a small
positioning error during the image segmentation is tolera-
ble. For these reasons, the nine performance characteristics
number of invariances, calculation speed, implementation
effort, detection accuracy, false positive rate, false negative
rate, localising accuracy, robustness and adaptability to input
were chosen and weighted according to their importance.
Therefore, theweighting of the individual criteria is specified
subjectively, based on the process and system requirements
from Sect. 2.1. Subsequently, the algorithms were then eval-
uated against these criteria. The accumulated rating va is
calculated as presented in the Eq. 1. For each considered cri-
terion,wi describes the absoluteweightingwithin the interval
[1,5]. Further, ci expresses the algorithms rating for the indi-
vidual criteria.pagebreak

va =
9∑

i=1

wi ci

wall
withwall =

9∑

i=1

wi , wi ∈ R (1)

Due to the subjective weighting and evaluation of the algo-
rithms based on the literature, it is essential to consider
the robustness of the assessment results. Thus, the prema-
ture rejection of potentially suitable algorithms shall be
avoided. Therefore the individual weights wi were ran-
domly varied within the defined value range [we − 0.5
≤ wi ≤ we + 0.5]. Based on this, we performed 20 indi-
vidual Monte Carlo observations with the expected value
we. The corresponding results are presented in the Table
4. In summary, a weighted performance value was calcu-
lated. The ten algorithms with the best rating, which implies
a mean performance value ≥ 3.21, were considered for the
following investigations. The defect segmentation with Gra-
dient Thresholding (GT), Image Projection(IP), Cell Wise
Standard Deviation Thresholding (CT), OTSU Thresholding
(OT), Adaptive Thresholding (AT), Morphological Segmen-
tation (MS) and Gabor Filter Segmentation (GF) algorithms
have been identified for continuing study in this paper. These
methods are highlighted in the Table 4 and were applied for
the validation. This selection and the exclusion of certain
algorithms is briefly justified in the following. Due to the
traceability and an easy technology transfer, it is important
to use simply adaptable algorithms which do not require
comparative data. This causes the Local Binary Patterns
segmentation to be discarded. The Rank- order histogram
method sorts the bins of grey values due to the number of
contained pixels. In this manner, the distribution of pixel
values can be displayed, but it is not possible to distinguish
between areas with and without defects. Apart from this,
it is a global criterion that does not allow the localisation
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of prominent areas. On this account, the Rank- order his-
togram can not be used for a proper defect detection. Thus,
the algorithms Local Binary Patterns and Rank- order his-
togram were rejected despite a high scoring rate. In addition,
wewould like to emphasise that this paper aims at comparing
various appropriate methods for defect detection in the AFP
process. Accordingly, algorithms with different operating
principles and varying degrees of complexity are considered.
Thus, for different methods, this can lead to varying efforts
in identifying suitable algorithm parameters. However, for
the performance comparison in this paper only those con-
figurations are considered which yield the highest detection
accuracies for each algorithm. The operating principle of the
chosen algorithms is described below.

Implementation of selected algorithms

This subsection briefly explains the implementation of the
previously selected algorithms and their operating principle.
The CT method determines the ’mean’ and the ’standard
deviation’ of the pixel values of each individual cell in a
large, image-spanning grid. Cells with an ascertained stan-
dard deviation above a given threshold value are marked as
a conspicuous region. These are then used to estimate and
localise the defects.

For signal evaluation using the wavelet transform, a base
function is applied to interpret the input signal. To analyse
an image, a matrix with the corresponding base function is
shifted over the image and thus individual areas are exam-
ined. A popular and easy to use base function is the Gaussian
function, which is used for the so called Gabor filtering. On
this account, we decided to apply the OpenCV implemen-
tation of the GF (OpenCV 2018a), which is also frequently
used in the textile inspection.

For the GT a Sobel filter in combination with masking
operation was carried out. Therefore, the convolution Gi =
Si ∗A is performed on the imagematrixA. Thus, two separate
convolution masks Si regarding the images width and height
directions are applied. The results are aggregated to Eq. 2.

G =
√

G2
x + G2

y (2)

Finally, the edges were approximated by applying a binary
thresholding operation to the matrix G (OpenCV 2019a).
The IPmethod first computes a dimensional reduction vector
rk = (rk,a, ..., rk,p). Therefore, every a-th entry of rk is
calculated for each row i rr(i) by Eq. 3. Analogous for every
column j rc( j) is determined using Eq. 4 (OpenCV 2019b).

rr ,a(i, j = const .) =
m∑

i=0

(I (i, a)) (3)

rc,a(i = const ., j) =
n∑

j=0

(I (a, j)) (4)

This IP algorithm treats each image row or column as an
individual vector and accumulates the corresponding values.
Subsequently, a matrix of ones with size equal to the original
image Jn,m is multiplied by the projection vectors rk. This
can be expressed as Eq. 5

Pr = Jn,mrr and Pc = Jn,mrc (5)

Afterwards, the total projectionmatrix P is computed by P =
Pr + Pc. With the aim to estimate the defect regions a binary
thresholding was applied to this matrix P. The OT searches
for the threshold t whichminimises the variance between two
classes. This is defined as the weighted variance of these two
classes (OpenCV 2018b). This again can be written as Eq. 6.
For this wi are the weights and σ 2

i are the variances of these
classes Otsu (1979).

σ 2
w(t) = w0(t)σ

2
0 (t) + w1(t)σ

2
1 (t) (6)

AT converts an input image I(i,j) into a binary image Ib. This
is expressed in Eq. 7 using T (i, j) as a pixel-based individual
threshold value (OpenCV 2018b).

Ib(i, j) =
{
255 I (i, j) ≥ T (i, j)

0 other
(7)

Lastly, theMS algorithmwas implemented here as amorpho-
logical closingmethod.Hence, a dilation operation combined
with a subsequent erosion procedurewas calculated. This can
be expressed as (I ⊕ K ) 	 K with the input image I and the
morphological kernel K (OpenCV 2018c).

Image pre-processing and parameter adjustment

Subsequently, the image pre-processing procedure and the
parameter optimisation approach is explained. Initially, the
image borderswere cropped to compensate for artefacts from
the image acquisition. Due to the large number of zero value
pixels within the raw image, a pre-processing is necessary to
reduce their influences. For this purpose, first the imageswere
dilated to increase the number of information-containing
image pixels. Afterwards a contrast equalisation was car-
ried out in order to utilise the entire available value range.
Gaussian filtering was then applied to smooth the edges from
the dilation step. Finally, the image was resized to a constant
size of 1000 × 1000 px. This raw image pre-processing is
shown in the flow chart in the Fig. 4. For the initial crop-
ping step, the image borders were cropped by 60 px at the
top and the bottom as well as 40 px at the left and right
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Fig. 4 This flowchart describes the calculation rule for the raw image pre-processing using the CLAHE method

edge to eliminate artefacts from the data recording. Regard-
ing the image dilation the kernel size ksize = 3 × 3 was
chosen from preliminary tests. In order to find the configura-
tion with the best performance, the number of dilation steps
were here varied from 4 - 12. Then, the contrast equalisation
was achieved using the CLAHE algorithm with varying tile
sizes, ranging from 5 - 25 px squared. Further, its clipping
limit was varied within the range of 2 and 26, to find the most
effective configuration. Afterwards an image padding with
the same parameters as in the previous cropping step were
applied, to compensate for the resulting error in the defect
position. For the subsequent Gaussian filtering the kernel
size was set to ksize = 5 × 5 with σ = 0.5. These CLAHE
configuration ranges from above were based on the settings
from Ma et al. (2017) and Muniyappan et al. (2013). With
respect to our optimisation strategy, the settings of the pre-
processing are expected to have a great influence on the defect
detection. For this purpose, every feasible combination of a
pre-processing setting and a defect detection algorithm con-
figuration was tested crosswise by the computer. The value
ranges for the algorithms tests were determined on basis of
the corresponding references for each algorithm from Table
4. The most suitable parameter combination for pre-pressing
and defect segmentation for this application case were exper-
imentally determined for each algorithm, as stated above.
The related settings are presented in the Table 5 for the pre-
processing and in the Table 6 for the defect segmentation
algorithms. Each parameter was modified with a given incre-
ment. The configurations with the best performance for a
given combination of certain settings for the pre-processing
and segmentation algorithms were used for further investi-
gations in this paper. The respective groups of defects were
taken into account for this parameter optimisation.

Regarding the manufacturing process the lowest possi-
ble number of undetected manufacturing defects is desirable.
For this reason, the reduction of undiscovered defect areas
was chosen as a criterion for the optimisation. This in turn
means the decrease of false negative values. As already men-
tioned in Sect. 1, the defect segmentation examined here is
only the first stage of the overall defect analysis, within the
entire inspection system. Therefore an excess area value up
to 100% can be tolerated. This implies, that the segmenta-
tion area can be up to double the area defined as ’ground
truth’. This iterative parameter optimisation presented here,
was conducted for each segmentation algorithm investigated.

Table 5 The parameters used for pre-processing are summarised

Parameter Interval Step size

Dilation steps [4,12] 1

CLAHE - Clip Limit [2,26] 6

CLAHE - Tile size [5,25] 4

Thresh Img. Dilat. x - Kernel [3,9] 1

Thresh Img. Dilat. y - Kernel [3,9] 1

Thresh Img. Dilat. Steps x [6,12] 2

Thresh Img. Dilat. Steps y [6,12] 2

These are incrementally varied with a given step size to determine the
parameter configuration that produces the best detection results for each
segmentation algorithm

Table 6 The table shows the adjustable parameterswith the permissible
value ranges and the step sizes for the setting of each segmentation
algorithm

Algorithm Parameter Interval Step size

GT Kernel size sobel filter [3,7] 2

Sobel threshold x [120,150] 10

Sobel threshold y [120,150] 10

CT Cell size x [10,40] 10

Cell size y [10,40] 10

Cell overlap [0,0.5] 0.5

Threshold STD [4,10] 1

IP Numb. rot. x [0,3] 1

Threshold [90,140] 10

OT None None None

AT Thresh. Offset [-40,-10] 4

GF Kernel size x [7,31] 4

σ [1,10] 1

λ [1,10] 1

Threshold Gabor filter [5,10] 1

The optimisation criterion for this step was the maximisation
of the defect detection accuracy, ideally up to its optimum
of 100%. Following to both optimisation steps, the results of
each algorithm under review were evaluated and then com-
pared. The aimherewas to approximate the parameter setting
with the best overall detection performance, with respect to
the previously mentioned optimisation constraints. The find-
ings discussed in this publication are always based on the
most suitable configuration for the particular case under con-
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sideration.All the investigated algorithmswere applied to the
entire scan image directly, which is subsequently termed the
Full Image (FI) variant. Additionally, a Grid Based (GB)
variant was implemented. Here, the pre-processed measure-
ment image with 1000× 1000 px was split into nine equally
sized partial images of 333 × 333 px each. An examined
algorithm was executed for each of these partial images. In
this way slight differences in the height of the defect sample,
respectively resulting variations in image brightness, were to
be reduced. Below, the evaluation of the individual perfor-
mance characteristics is outlined.

Evaluation of results

For the analysis of the detection performance, eight attributes
were examined. These are based on the criteria available
in the literature and presented in the Table 4. Therefore 50
defect samples per class were used as the maximum amount
of test data currently available. For the automated evalua-
tion of the algorithms segmentation behaviour, the previously
acquired image data was manually labeled. For this task, the
Python tool ’LabelImg’ (Tzutalin 2015) was used to pro-
vided ’ground truth’ data for the comparison of different
algorithms. At first, the processing duration was evaluated to
reject algorithms with an enormous computing time. After-
wards, the defect accuracy d and the false negatives rate N
as their counterpart were analysed to determine the detec-
tion performance of the algorithms. The detection accuracy
d is the ratio of the number of the computerised determined
defects nd divided by the number of labelled ground truth
defects ngt . These values referred to all defects for an obser-
vation. This leads to Eq. 8.

d = nd

ngt
and N = 1 − d (8)

Initially, the detection results are presented considering all
types of defects. Afterwards, separate investigations are car-
ried out considering two geometrical distinguishable defect
groups. Group 1: Wrinkle, twist; Group 2: Gap, overlap.
Foreign materials are difficult to assign to a distinct group.
Therefore, they are not considered separately, here. For the
following detailed analysis, the false positive values were
measured and divided into the counts of false positive detec-
tions Pn_i and the pixel area of false positive estimations
Pa_i . This separation aims to distinguish between the size and
the number of these measurements. For correctly detected
defects, the excess area Ae_i and the overlap area Ao_i were
calculated, in order to identify unnecessarily selected pixels
and dispensable marked areas. For the individual observa-
tions, the following calculations Xi were performed for each
examined defect sample image I. For the results presented
in Sect. 4, the mean value and the standard deviation were

calculated from all individual observations Xi . nd_i gives
the number of computerised determined defects, for the
examination of each sample image I. Moreover, K = ngt_i

describes the corresponding number of ground truth defects.
nsd_i is defined as the number of superfluously predicted
defects with the corresponding superfluously recognised
defect area Asd_i . The variable Agt_i is the manually labelled
and accumulated defect area for the evaluated defect sample.
C represents the number of detected defects which can be
linked to a corresponding ground truth region. The individ-
ual detection accuracy di and false negatives rate Ni are given
from Eq. 9.

di = nd_i

K
and Ni = 1 − di (9)

The position accuracy per defect was calculated as described
in Eq. 10. Therefore, Ed_i ∈ R

+
0 represents the Euclidean

distance between the computerised estimated and the corre-
sponding ground truth defect position.

pi = 1 − |Ed_i − Mi |
Ed_i + Mi

with Mi =
∑C

d=1 Ed_i

C
(10)

The number based Pn_i and area based Pa_i false positive
rates are given in the Eq. 11.

Pn_i = nsd_i

K
and Pa_i = Asd_i

Agt_i
(11)

The calculation of the excess area Ae_i and the overlap area
Ao_i are presented in the Eq. 12

Ae_i = Aed_i

Agt_i
and Ao_i = Aod_i

Agt_i
(12)

Furthermore, the two most powerful algorithms were anal-
ysed more closely. The aim here was the more detailed
examination of the segmentation behaviour of each algo-
rithm. For this purpose, initially, the findings considering
all types of defects are presented. Afterwards, the results
are again split up into the two groups of defects mentioned
above. Moreover, with the aim to investigate the robustness
of the algorithms for other input data, noise was applied to
the input images. This noise was Gaussian distributed for an
individual sample image I at position (x,y), with each pixel
value I(x,y) as its mean I (x, y) = μ(x, y) and a standard
deviation of σ = 0.5. Afterwards, the above investigations
were repeated. The algorithms were executed without the
previously required adjustments of the pre-processing and
algorithm settings. This was also intended to check, if the
related parameters have a high influence on the performance
of the defect detection, as claimed before. Furthermore, this
investigation served to examine the reproducibility of the
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results using different input data but the given configura-
tions. All the related results are presented in the following
section.

Results

This section analyses the performed experiments and their
results. The individually modified pre-processing settings
from Table 7 and for the segmentation algorithms from
Table 8, were used for all subsequent attempts. These settings
were identified using our individual optimisation procedure.
Thismeans that for each algorithmconsidered, all settings for
the pre-processing and the algorithm itself are individually
adjusted. All parameter combinations are tested crosswise
and the setting with the highest detection accuracy are then
applied. The corresponding parameter adjustments are listed
in theTable 5 for the pre-processing settings and in theTable 6
for the detection algorithm parameters. At first, the execution
times of the seven considered algorithms are investigated.
Therefore, the Fig. 5 displays the calculation times for each
selected algorithm. The Table 9 summarises the correspond-
ing values including their standard deviations. The MS, AT
and OT algorithms were swiftest to perform the segmenta-
tion. They require less than 31 ms for the FI implementation
and below 10 ms for the GB version on each entire input
image. The GF algorithms perform worst with an average
computing time of more than 300 ms. The calculation time
in this case is independent of the content of the input image.
In order to assess the calculation times, we should remember
that the scan of the considered fibre material sample would
be performed in 0.25 s at a maximum AFP process speed of
1 m

s . The goal must be the completion of the defect segmen-
tation of a measurement section before the scan of the next
section is completed. Thus all algorithms with < 250 ms
execution time are basically applicable. However, a faster
defect detection helps to react as quickly as possible to aris-
ing defects. Thus, a very short calculation time is desired.
Afterwards the detection performances of these seven tech-
niques are examined. The Fig. 6a displays the results for the
average detection accuracies d and the corresponding false
negative rates N, considering all the available data from all
defect types. Figure 6b shows the results for the gap and over-
lap defect detection. Figure 6c presents only the findings for
the segmentation of wrinkles and twists.

In order to assess the results, we should bear in mind that
the defect detection is implemented at the beginning of the
image processing chain. Thus, it is important to segment
as many defects as possible and pass them to the follow-
ing image processing. Unnecessarily segmented areas are
less problematic due to the subsequent classification step.
Moreover, for the requirements in aerospace industry it is
essential to have as few defect misses as possible. Hence

detection accuracies of ≥ 95% are highly desirable. Starting
with, we have a look at the detection performance consid-
ering all defect types. Here, we can recognise, that the AT
and CT algorithms in the FI and the GB implementations
perform best for this experimental assembly. The 5th most
accurate is the FIGT algorithm.All the other techniques have
detection rates of less than 50%, which is not suitable for this
application.

For an independent segmentation of wrinkles and twists
with a pre-processing optimised for this purpose we see,
that the detection rates for the GT, CT and AT methods are
almost 100%. On the other hand, the GF algorithm founds
no defects at all. The remaining algorithms all have detec-
tion rates between about 45% and 85%. This trend is very
similar to the analysis of all defects. These results slightly
changed for the individual detection of gaps and overlaps. In
this case, the findings for both CT implementations as well
as the calculated detection results for the GB AT are > 95%.
Except the FI OT, GF and IP implementations, all the other
algorithms generate detection results > 80%. These results
reveal the previously predicted major influence of image
pre-processing and algorithm parametrisation. Furthermore,
the categories of defects defined in this paper seem to be
meaningful, since the detection performance for the individ-
ual groups increases significantly. For a realistic application
of the defect segmentation, with initially unknown defect
types, a parallel performed image pre-processing and defect
segmentation with several different settings could be benefi-
cial. The individual results could then be linked in a suitable
manner. Due to the good performance of the AT and CT
techniques they are investigated in detail, afterwards. Espe-
cially the detection results for the analysis of all considered
defects are much better than for the competing algorithms.
Their detailed findings are presented in the Fig. 7. Related,
the Fig. 7a shows the corresponding segmentation perfor-
mance considering all defects. Sub-Figure 7c presents the
detection results only for gaps and overlaps. Similarly, Fig.
7d displays the findings for the detection of wrinkles and
twists. In order to investigate the robustness of these algo-
rithms, Fig. 7b visualises the detection results for noisy input
images using the same algorithm settings that are used for
the outcome in Fig. 7a. The findings for all defects analysis
belonging to Fig. 7a are additionally listed in Table 10. To
begin with, we examine the results presented in Fig. 7a for all
types of defects. In this case, the GB AT algorithm yields the
highest overall score of 100%detection accuracy. TheGBCT
method then follows with 98.2% (σ = 4.1%) detection rate.
A quite comparable effect can be seen for the accuracies of
the defect position. Therefore, the GB AT and both CT algo-
rithms have positional accuracies of about 78%. Then, the
FI AT algorithm follows, having a positioning accuracy of
around 68%. Strangely enough, the number based false pos-
itive rates are much smaller for the two FI implementations
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Table 8 The settings used for
the experiments are listed. The
parameter types are equal for FI
and GB.

A Parameter Config. (all) Config. (w/t) Config. (g/o)

GT Kernel size sobel filter 5 5 5

Sobel threshold x 130 130 130

Sobel threshold y 140 140 140

CT Cell size x 10 10 10;20

Cell size y 10 10 20;30

Cell overlap 0.5 0.5 0.5

Threshold STD 7 15 12;11

IP Numb. rot. x 1 3 1;3

Threshold 130 140 130;140

OT None None None None

AT Thresh. Offset -20 −16;−32 −12;−20

GF Kernel size x 31 31 31

σ 10 10 10

λ 10 10 10

Threshold Gabor filter 10 10 10

MS None None None None

Single values: < FI = GB > | Different values < FI >; < GB > | (w/t) := (Wrinkle/Twist), (g/o) :=
(Gap/Overlap), A : = Algorithm

than for the GB ones. It is also noteworthy, that the average
ground truth areas and the automatically segmented regions
overlap by only about 15% in both methods. However, the
protruding areas for detected defects are rather large. Particu-
larly, the detection results for the evaluation of all considered
defects are significantly superior to those of competingmeth-
ods. The detection accuracy is > 95% with a false negative
rate < 5%. Hereto, the FI AT method for overlaps and gaps
constitutes an exception with around 83% detection accu-
racy. The defect position accuracy for wrinkles and twists is
about 65%. For gaps and overlaps this measurement value is
somewhat greater with around 85%. Among these, the FI AT
forms an exception with about 75% positioning accuracy.
A contradictory behaviour can be recognised for the area
based false positive assessment. Gaps and overlaps generate
false positive values for less than 20% of cases. For wrinkles
and twists this value is larger than 35%, apart from the GB
CT algorithm with about 19%. The number of false posi-
tive detections is always between about 20% and 42%. This
means, that the size and presumably the shape of a defect
area changes due to the defect geometry, but the numbers of
false positive detections are very similar. The values for the
excess areas are between 45% and 80% for all defects and
algorithms. The overlapping of the ground truth regions and
the detected areas is between 5% and 20%,whereby gaps and
overlaps show somewhat slightly better overlapping results
in this context. These findings show, that the examined algo-
rithms represent the area of a defect poorly. In order to use
them in an inspection application the region of interest must
be artificially enlarged. However, due to the sufficient posi-

Fig. 5 The radar diagrams compare the calculation times of the indi-
vidual segmentation algorithms, each for the FI and GB versions, in
milliseconds [ms]

tional accuracy of the selected algorithms, this extension of
the viewing area is reasonably achievable. The shape of the
expanded area could be connected to the algorithm configu-
ration, since this is of varying sensitivity for different defect
types.
The findings for the input images with noise are slightly dif-
ferent. They are displayed in Fig. 7b. These outcomes are
generated from the same data set as well as the same pre-
processing and algorithm configuration as for the results in
Fig. 7a, but with additionally applied artificial noise. As
already introduced in Sect. 3.5, this modification of the
input data serves to test the robustness of the algorithms
and respectively the settings for adjusted images, with con-
stant configurations. The requirement for a data-dependent
parameter adjustment has already been claimed above and
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Table 9 The calculation times and standard deviations for all examined
algorithms are listed, each for the FI and GB implementation

Calculation time [ms]

Algorithm FI GB

GT 67.9 (σ = 3.9) 22.9 (σ = 1.0)

CT 143.4 (σ = 8.4) 69.8 (σ = 0.6)

IP 51.3 (σ = 3.9) 11.8 (σ = 1.0)

OT 30.7 (σ = 3.2) 8.0 (σ = 1.6)

AT 30.0 (σ = 4.0) 7.6 (σ = 0.1)

GF 340.5 (σ = 49.3) 320.6 (σ = 8.6)

MS 21.0 (σ = 1.9) 3.0 (σ = 0.6)

The values belong to Fig. 5 and are given in milliseconds [ms]

is also reviewed in this way. This noise leads to the reduc-
tion of the detection accuracies for the GB AT algorithm by
about 10% and for both CT methods by around 40%. The
number of false positive detections stays equal for the AT
algorithms. Surprisingly, the number of false positive detec-
tions for the CT algorithms significantly decreases by about
10%–20% compared to the non noise data. An improved
setting, especially for noisy images, may cause much bet-
ter results. However, similar statistical noise as exemplary
applied for this experiment can be caused by disturbing scat-
tering or beam propagation behaviour of the laser on the
material. This obviously can lead to local noise deviations
in the image, depending on the geometry of the component.
This must be taken into account for a real application. In this
case, a local image pre-processing technique might lead to
even better detection results. In order to compare the theo-
retical ranking of the algorithms from the Table 4, with the
experimental test results, these findings are comprehensively
summarised in the Table 11. Therefore, the same expectation
weights are used as for the theoretical appraisal.

What is noticeable here is the miscalculation of the GF
algorithm. Based on the literature from other use cases, the
GF algorithm was judged to be very promising for the defect
segmentation. However, the results in our experiments show
the opposite. All the other algorithms behave approximately
as expected. The findings presented above are discussed in
the following section.

Discussion

In the following, the experimental results are discussed
and reviewed in the context of related studies. Addition-
ally, the research questions are answered and an outlook on
further research is proposed. Compared to the defect detec-
tion findings based on Neural Networks from e.g. Schmidt
et al. (2019a, b), the classical image segmentation techniques
investigated in this paper also provide quite good results. The

Fig. 6 Radar charts to compare the FI and GB detection accuracies
and the corresponding false negative rates for various defect clusters.
Co-Domain: [0,1]
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Fig. 7 The detection results for the well performing methods AT and CT are displayed. The crossbars each represent the corresponding standard
deviations

chosen segmentation algorithmsworked quitewell except for
the GF algorithms, which yield very poor detection results.
On this matter, Hanbay et al. (2016) pointed out in their
publication, that the GF is suitable only for fairly uniformly
structured image data and otherwiseworks rather poorly. The
LLSS topology data of the prepregmaterial in this paper con-

tains unevenly distributed artifacts. Considering this aspect,
the performance of the GF algorithms are comprehensible.
The OT methods also provide weaker performance in com-
parison to Tonnaer et al. (2017), which is probably due to
the brightness gradient in the images. This effect causes the
algorithms to segment a very large region of the image. An
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Table 10 Shown are the results
of the defect detection for the
AT and CT methods, taking into
account all the available defect
data

FI AT GB AT FI CT GB CT

Detection accuracy (d) 81.0 (28.5) 100.0 (0.0) 97.6 (6.1) 98.2 (4.1)

Position accuracy (p) 67.9 (28.8) 77.9 (24.5) 76.8 (24.3) 77.9 (24.5)

False neg. rate (N ) 18.7 (28.4) 0.0 (0.0) 2.4 (6.1) 1.8 (4.1)

False pos. rate (num) (Pn) 22.3 (20.3) 44.2 (33.3) 29.2 (23.5) 35.7 (30.4)

False pos. rate (area) (Pa) 3.1 (0.9) 8.7 (4.6) 14.8 (6.2) 11.8 (4.8)

Excess area (Ae) 64.1 (16.2) 69.0 (24.2) 61.4 (22.4) 68.3 (16.8)

Overlap area (Ao) 11.6 (10.6) 9.0 (10.1) 9.9 (9.1) 15.7 (11.6)

The values belong to Fig. 7a and are given as < value > (< standard deviation >) in %

Table 11 Evaluation survey of the individual segmentation algorithms based on the experimental results and using criteria from the literature

Criteria

Algorithms Number
invari-
ances

Calculation
speed

Implementation
effort

Detection
accuracy

False
positive
rate

False
negative
rate

Localising
accuracy

Robustness Adaptability
(input)

Weighted
sum

Weights [1-5] 2 5 1 5 3 5 3 4 5

GT 3 4 4 4 4 4 4 3 4 3.82

IP 1 4 4 4 4 4 4 3 4 3.03

CT 2 3 4 5 3 5 5 3 4 3.91

OT 2 5 4 2 4 2 3 3 3 3.06

AT 3 5 4 5 3 5 5 5 5 4.67

MS 3 5 3 2 4 2 3 3 3 3.09

GF 2 2 3 0 0 0 0 0 0 0.52

Assessment results are given in bold Italic row gives the weights for the weighting of the assessment criteria for evaluation

improved pre-processing, which is more tolerant for changes
in brightness, may reduce this issue. It should also be noted,
that the CLAHE image adjustment algorithm used in this
paper is very sensitive to changes in the “clip limit” param-
eter. This is a previously defined value which spreads areas
of the histogram above this clip limit across the entire base
of the histogram. From the results it can be seen that the pre-
processing is very important for noise reduction. This stage
needs to be individually adapted for each setup and manu-
facturing process. Furthermore, the selection of algorithms
mainly based onfindings from fabric inspection is considered
valuable for our use case. Regarding the research questions
it should be noted, that a sufficiently good defect detection
can be performed with the AT and the CT algorithms for
CFRP prepreg material. The GT algorithms also provide sat-
isfactory defect detection results, but only for geometrically
larger defects or as GB variant. For most of the defect types
considered, the AT and CT algorithms have a detection accu-
racy of > 95%. For prominent defects, these mean detection
accuracy is even up to 100%. Moreover, the defect position
is usually determined with sufficient accuracy. In concrete
terms this means, a position deviation of less than 30% from
the marked ground truth defect position. Unfortunately, the
actual defect segmentation in terms of segmented region is

much worse, for both overlap and excess area. Below, valu-
able future research opportunities are outlined.

Future work and prospect

In future work, the effects of different CFRP materials and
their interaction with the LLSS settings must be investigated.
In particular, varying opticalmaterial characteristics can have
a great influence on the performance of certain algorithms.
Thus, these optical material parameters have to be examined
in detail and linked to the current results. It is also worth
noting, that the pre-processing can be improved for better
detection performance, though this was not considered part
of this work. In addition, it is conceivable to supplement
the defect segmentation procedure presented in this paper
with amachine learning approach. For instance, a filter-based
technique could be retained for better comprehensibility of
the algorithms behaviour, but the parameter setting might
be carried out through a machine learning approach. Fur-
thermore, the pre-processing parameters could be adjusted
through machine learning techniques for optimised perfor-
mance. Beyond that, a combined one stage segmentation and
classification of the defects via a deep learning algorithm is
also possible. However, for the traceability of such advance
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machine learning or even deep learning algorithms and its
application in the aviation sector, additional methods for the
explainability of the deep learning decision must be applied
(Lee et al. 2021). Besides, the necessary amount and quality
of training data need to be available, as explained earlier. The
key findings of this paper are briefly repeated in the subse-
quent section.

Conclusion

Below the main results of the investigations are summarised.
The Grid Based Adaptive Thresholding and the two Cell
Wise Standard Deviation Thresholding algorithms achieve
detection accuracies of > 97%. Furthermore, the defect
position is mostly sufficiently estimated with > 75% posi-
tion accuracy. This implies, a position deviation of less than
25% from the ground truth defect position. The actual seg-
mentation accuracy is much worse. Therefore, the average
overlap rate is less than 20%. Nevertheless, due to the suf-
ficient detection accuracy this can be compensated with an
extended defect region. Thus the findings meet very well
the requirements described above for defect detection in
the aerospace industry. For this reason, the research in this
paper provides a sound fundament for the selection and
parametrisation of suitable defect detection algorithms for
LLSS based inspection systems for the composite produc-
tion. Furthermore, the methodology from this paper can be
applied from operators and developers of defect detection
systems to configure their algorithms for a considered mate-
rial.

Furthermore, it should be noted, that the type and con-
figuration of the pre-processing as well as the quality of
the input data are strongly influencing the performance of
the algorithms under consideration. Additionally, the laser
scattering and beam propagation within the fibre mate-
rial might lead to disturbing effects. Thus, these optical
material parameters have to be examined in detail and
linked to the current results. For this purpose, it might
be helpful to investigate the laser line shape and disturb-
ing influences from the recorded camera image. Thus, the
development of an appropriate quality metric can be very
beneficial for the efficient parametrisation of the image pre-
processing.
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