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Abstract

Learning curves have been used extensively to analyse learners’ behaviour and prac-
tical tasks such as model selection, speeding up training and tuning models. Nonethe-
less, we still have a relatively limited understanding of the behaviour of learning curves
themselves, in particular, whether there exists a parametric function that can best
model all learning curves. Therefore, this study aims to determine which parametric
models proposed over the years provide the best fit when applied to empirical learning
curves. To answer this question, the study focuses on supervised learning and is di-
vided into two parts: classification and regression tasks, and the learning curve data for
each task was fitted using the Levenberg-Marquardt algorithm. Subsequently, the fit-
ted models were analysed using the Friedman test, the Wilcoxon signed-rank test, and
other metrics. The results indicate that a power law applies in most cases. However, a
universal model has not been found, as the best model differs between classification and
regression tasks, even though they belong to the power law family. Moreover, there are
some deviations from these aggregate results when examining the learners individually,
suggesting that a more granular approach is better suited for practical applications.

1 Introduction
Background & Motivation. In machine learning, specifically supervised learning, a
crucial problem is the lack of labelled data and whether a learner’s performance can be
improved by acquiring more training data. Learning curves provide an insight into how
a learning algorithm performs by plotting the performance or generalisation error against
the size of the dataset that the algorithm has been trained on. Such a learning curve
calculated from real data points of varying training set size is called an empirical learning
curve [1]. For a formal and theoretical definition of learning curves, readers can look into
[2], and [3]. Learning curves apply to a plethora of practical tasks such as model selection,
extrapolation of the learning curve performance to reduce data collection costs, and speeding
up training and tuning of models; which hold the potential to increase the efficiency of
the machine learning pipeline significantly [2], [3]. Therefore, it is essential to develop
accurate insights into learning curve behaviour. Over the years, many parametric models of
learning curves have been proposed for extrapolation of the performance, which allows us
to determine when we can halt the data collection process once an adequate performance is
achieved [4]. However, most studies into these parametric models were done on only a tiny
subset of learners and datasets and yielded divergent results in a comparative analysis [3].
Therefore, a systematic, empirical study with a careful experimental setup may illuminate
which parametric models are generalisable across datasets and learners or whether such a
universal model is even possible in a field as diverse as machine learning.

Research Question. The research question can be stated as follows:

Which parametric learning curve model provides the best fit when applied to
empirical learning curves?

Recently, a new learning curve database (LCDB) was created, which readily provides
150 GB of ground truth, and prediction vectors [1]. Given the recency of the creation of this
database, the resulting data and its implications have not yet been fully explored. Therefore,
rich and fruitful insights may result from further investigation and analysis.
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Additionally, learning curves for regression tasks have not been looked into as closely
as for classification tasks. Therefore, as suggested by [1], a new, general, extensible ex-
perimental setup is proposed here to create empirical learning curves for regression tasks.
This allows us to see whether there is a difference in behaviour between learning curves of
these two tasks and whether a universal parametric learning curve model for both tasks is
possible.

Outline. The paper is presented in the following structure. First, section 2 presents find-
ings from the literature and their limitations. Sections 3 and 4 then explain the methodology
and general experimental setup in detail, which can be used for classification and regression
tasks. Once an understanding of the experimental setup is obtained, section 5 presents the
results of the experiments. Subsequently, section 6 discusses the results, limitations of the
current research, and possible directions for future works. Finally, section 8 presents the
ethical aspects of the project in the context of responsible research and how these have been
addressed.

2 Related Work
In the past, multiple parametric models have been proposed in studies to fit empirical learn-
ing curves, as reviewed in [3]. The best fit can be determined by how well a parametric model
interpolates over previously seen dataset sizes and how it extrapolates beyond them. In the
review [3], Viering et al. gathered from the current literature that the power law provides the
best fit for most models. The first of these studies which found the power law in the shape of
learning curves is [4] by Frey and Fisher, which generated learning curves from the decision
tree algorithm called C4.5 and fourteen small datasets, and fitted four parametric models
to them. This finding was further confirmed and extended in [5] by Gu et al. with larger
datasets, six parametric models with the notable inclusion of 4-parameter models, and the
logistic discrimination approach next to the decision tree approach. Similarly, convincing
results for the power law were found for neural networks [6], [7], [8].

Nonetheless, there were also deviations from these findings found in other studies. For
example, Singh [9] found that the logarithm model performed the best in the context of
four learning algorithms and the same four parametric models studied in [4]. Moreover,
Brumen et al. [10] seemed to find that the exponential model had the best fit and advanced
the hypothesis that the power law applies in aggregate, while the exponential model applies
better for specific learners as proposed by Heathcote et al. [11]. This suggests that the
focus should be on individual cases in specific contexts instead of relying on the results of
analysing a large amount of data.

Although, as we have seen, there have been many studies on this subject, the results
are still rather inconclusive, and there are still many limitations with the aforementioned
studies. Firstly, most studies did not provide statistical tests, which question the significance
of the results. Furthermore, in [4] and [9], the authors used the coefficient of determination
R2 to evaluate the model. R2 is, however, an invalid metric since most models are nonlinear
- an underlying assumption of R2, and was shown in practice to be problematic if used
for nonlinear models [12]. Additionally, in [10], only the performance of interpolation on
training data points was examined. However, most benefits, such as reduction in data
collection costs, can be derived from such a parametric model only through its extrapolation
capability; therefore, interpolation is not adequate to determine the goodness of fit. Finally,
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a significant limitation in these studies is that not many datasets, parametric models, and
learners were investigated; in particular, 4-parameter models were only studied in [5] and
[13], and there are no studies for regression tasks.

Altogether, the studies which showed deviation from the power laws have significant
limitations and should be viewed carefully. Additionally, although there are some convincing
results concerning the power law, these studies still suffer from some limitations, and a
conclusive result cannot yet be determined given the field’s current state.

3 Methodology
The general experimental methods were created with Thang - a colleague from the research
group. The methodology allowed classification and regression experiments to be created
easily and flexibly in different settings.

3.1 Learning Curve Creation
Firstly, k-fold cross-validation was used to create the k datasets for the individual learning
curves. Using k-fold cross-validation generally allows for less bias in the test sets, which in
turn allows for a more accurate measurement of the learner’s performance, and is standard
practice for estimating learning curves [3]. For each fold, the size of the training set, called
an anchor ai, was varied over a range of values determined by a schedule. Here, a geometric
schedule was used to generate the anchors: ai := ⌈2 7+i

2 ⌉, as used in [1], with i being the
current index, starting from 1 up to the maximum i with ai smaller than the dataset size.
For each anchor, the learning algorithm was trained on a subset of the training set of that
anchor Si, and the rest of the unused data was then moved to the test set to avoid wasting
data in conventional methods of generating learning curves [3]. The training subsets were
also set to be monotonically increasing, that is, when training an algorithm on the set S1

of instances and later on the set S2 of instances where |S1| < |S2|, then S1 ⊂ S2. This
allowed us to simulate the data acquisition process [1], which is the context in which the use
of learning curves is most prevalent.

Moreover, the data was also preprocessed in several ways. For the numerical data of
each dataset, first, it was preprocessed by imputing using the median for missing values.
Then the numerical data was normalised using min-max scaling to avoid having numerical
attributes having different scales as most machine learning algorithms do not perform well
in that setting [14]. On the other hand, categorical attributes were encoded using one-hot
encoding. Finally, to further simulate the data acquisition process, this preprocessing was
only done at each training set Si to avoid biasing the results.

The process was repeated for all folds to generate k individual learning curves; the final
estimated empirical learning curve was their average.

3.2 Fitting & Evaluating Parametric Models
The parametric models were fitted to the generated learning curves using the Levenberg-
Marquardt method to solve nonlinear least-square problems [15]. Additionally, the learning
curves and the predictions from the fitted parametric model were normalised to a value
between 0 and 1. Normalisation facilitated the comparison between classification and re-
gression tasks since the performance of regressors can yield ranges that different order of
magnitudes from one another depending on the dataset.
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Since most benefits of a parametric model are derived through its extrapolation capabil-
ity, only the extrapolation performance is examined. The metric of choice to evaluate the
parametric models was the Mean Absolute Error (MAE), as MAE is particularly resistant
to big outliers observed in the data. Additionally, any outliers such as NaN, infinity, or a
number larger than 100 were removed, and the number of fits removed is reported in section
5. For analysing the results, first, the overall average rankings were analysed using code
and methods from [1], with the Friedman’s test to determine whether there are significant
differences between curve models [16], and pairwise Wilcoxon signed-rank tests [17] with
Holm’s alpha correction α = 0.05 [18] for comparing curve model pairs. In particular, the
Friedman test ranks the parametric models for each curve fitting experiment and then takes
the average of the ranks for each model to calculate the test statistics. All significant re-
sults, with p < 0.05 based on the Friedman test, were further examined using the post-hoc
Wilcoxon signed-rank tests to determine where the differences occur. We visualise these
results using Critical Diagrams (CDs), which display the average ranks of the different mod-
els (the lower, the better), and statistically non-significant pairs are tied together by a red
bar. Using the average rank allows us to analyse the data in a manner less susceptible to
outliers than comparing average MAE directly and is the primary method of determining
how well a model performs compared to other models. Subsequently, further analyses of
the average MAE and individual learners with divergent best models are presented to gain
a more granular view of the results.

4 Experimental Setup
Classification. For classification tasks, the learning curve data was collected from the
Learning Curve Database (LCDB) [1] instead of using the experimental setup. The LCDB
was used because the data is much richer than what can be realistically carried out through-
out this project. A combination of 20 learners and 246 datasets was used to calculate the
results. Although the LCDB provides learning curves with several metrics, the learning
curves analysed here use accuracy.

Sixteen parametric models, as shown in Table 1, were fitted using the scipy implemen-
tation of the Levenberg-Marquardt method. In particular, last1 is a baseline model that
always predicts the training anchors’ last point. Curve fitting was done for different sizes
of the overall training set, following [1], there were six partitions: "all" in which all ex-
periments were utilised for fitting, "5%", in which anchors of up to a maximum of 5% of
the training set size were utilised, "10%", "20%", "40%" and "80%". However, specialised
methods involving clustering and preselection of initial points were utilised to fit the curves
following research and fitting data received from Donghwi et al. [19]; as after some analysis
for certain curves, the previously fitted parametric models generated in the LCDB proved
to be not adequate.
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Model Formula Model Formula

last1 a vap3 exp(a+ b
x + clog(x))

pow2 −ax−b expp3 c− exp((−b+ x)a)
log2 −alog(x) + b expd3 c− (−a+ c)exp(−bx)
exp2 aexp(−bx) logpow3 a/((xexp(−b))c + 1)
lin2 ax+ b pow4 a− b(d+ x)−c

ilog2 −a/log(x) + b mmf4 (ab+ cxd)/(b+ xd)
pow3 a− bx−c wbl4 −bexp(−axd) + c
exp3 aexp(−bx) + c exp4 c− exp(−axd + b)

Table 1: Parametric curve models

Regression. On the other hand, learning curves for regression tasks were created using
k-fold to generate the fold, with k = 25; and the metric used to evaluate the learner was
Mean Squared Error (MSE). The five learners investigated were LinearRegression, SGDRegressor
, GradientBoostingRegressor, SVR, and DecisionTreeRegressor from the scikit-learn library using
the default parameters. To train these learners, ten datasets were chosen from the OpenML
platform, as shown in Table 2.

OpenML ID Name Nominal Attributes Numeric Attributes Number of Instances

189 kin8nm 0 8 8192
216 elevators 0 18 16599
218 house_8L 0 8 22784
315 us_crime 1 126 1994
503 wind 0 14 6574
537 houses 0 8 20640
562 cpu_small 0 12 8192
23515 sulfur 0 6 10081
42225 diamonds 3 6 53940
42726 abalone 1 7 4177

Table 2: Regression datasets

The parametric models were also fitted using the LevenbergâMarquardt algorithm for the
sixteen parametric models in Table 1. However, since the number of datasets and learners
was relatively small and the Donghwi et al. method was optimised for the LCDB, each curve
was instead fitted 500 times with random initial points of a uniform distribution over [0, 1),
with the data being refitted each time if the performance was infinity or NaN. The fit with
the best performance was used, with modified code from [1].

5 Results
The results are presented separately for classification, based on further analysis of the data
from the LCDB, and for regression, based on data gathered from the previously described
experimental setup. For classification, 1.3 % of the fits were removed due to outliers, and
7.5% of the fits were removed for regression. The remaining fits were analysed using nor-
malised data with the Friedman test and pairwise Wilcoxon signed-rank and visualised using
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Critical Diagrams, as described in section 3.2. An example of a normalised learning curve
fitted to the model pow4 is shown in Figure 1. The parametric model was fitted using the
blue training anchors and evaluated using the red test anchors.

Figure 1: Example of a normalised parametric model fitted to a learning curve.

5.1 Classification
From Figure 2a, we can see that pow4 performed significantly better than other models when
considered over all experiments, as it has the lowest average rank, and a red line does not
tie it to any other models. This agrees with the current literature for a power law, but for
the fact that the pow4 has four parameters. However, it was beaten by the baseline model
last1 when 80% of the training set is used (Figure 2c).
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(a) MAE test anchors all

(b) MAE test anchors 20% (c) MAE test anchors 80%

Figure 2: Critical diagrams for the ranks for the extrapolation to all test points for classifi-
cation tasks. "all" considers all experiments, 20% fits learning curve to anchors up to 20%
of the total dataset, likewise for 80%. If the two curve models are tied by a red line, their
performances are not statistically significant. The number indicates the average rank, the
lower, the better.

Although pow4 was the curve model with the best average ranking overall, there were
some divergent best curve models when looking at the average ranks of individual classifiers
(over all fitting experiments of that learner), as shown in Table 3.

Learner Best Curve Model

LinearDiscriminantAnalysis last1
QuadraticDiscriminantAnalysis last1
BernoulliNB last1
SVC_sigmoid last1, wbl4

Table 3: Learners with divergent best curve models in average rank (multiple best models
are indicated if one is not significantly better than the others)

Additionally, looking at the average MAE in Table 4 shows that last1 was in the lead
instead:
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Curve Model Average MAE

last1 0.204 ± 0.0007
ilog2 0.244 ± 0.0008
mmf4 0.244 ± 0.0019
exp4 0.250 ± 0.0018
logpower3 0.256 ± 0.0024
wbl4 0.258 ± 0.0025
pow4 0.259 ± 0.0020
expp3 0.276 ± 0.0019
expd3 0.285 ± 0.0019
log2 0.292 ± 0.0012
pow3 0.305 ± 0.0021
pow2 0.311 ± 0.0012
exp3 0.312 ± 0.0020
vap3 0.323 ± 0.0020
lin2 0.572 ± 0.0022
exp2 0.606 ± 0.0026

Table 4: Average MAE and standard error of parametric models for classification tasks

Finally, the pie chart in Figure 3 shows the percentage of each model being in the number
one position for each fitting experiment. Interestingly, last1 also dominated and pow4 has a
much smaller slice than expected, with possible explanations discussed in section 6

Figure 3: Pie chart of the best model for fitting experiments of classification tasks

5.2 Regression
The results for regression tasks also seem to align with the current literature for a power
law [3], with pow2 having the best average rank for all experiments (Figure 4a). However,
for anchors up to 20% and 80% of the dataset, pow2 only stood in the third place.
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(a) MAE test anchors all

(b) MAE test anchors 20% (c) MAE test anchors 80%

Figure 4: Critical diagrams for the ranks for the extrapolation to all test points for regression
tasks. "all" considers all experiments, 20% fits learning curve to anchors up to 20% of
the total dataset, likewise for 80%. If the two curve models are tied by a red line, their
performances are not statistically significant. The number indicates the average rank, the
lower, the better.

If we look at the average MAE in Table 5, it shows a resemblance to that of the classifi-
cation tasks in Table 4 with last1 being on top and pow2 in second place:

Curve Model Mean MAE

last1 0.210 ± 0.0066
pow2 0.253 ± 0.0109
wbl4 0.270 ± 0.0119
ilog2 0.284 ± 0.0120
exp3 0.306 ± 0.0154
mmf4 0.313 ± 0.0148
expd3 0.315 ± 0.0144
logpower3 0.333 ± 0.0134
pow3 0.333 ± 0.0177
pow4 0.333 ± 0.0199
exp4 0.334 ± 0.0123
vap3 0.347 ± 0.0176
log2 0.375 ± 0.0134
expp3 0.474 ± 0.0220
exp2 0.484 ± 0.0200
lin2 1.062 ± 0.0376

Table 5: Average MAE and standard error of parametric models for regression tasks.

Similar to Figure 3, last1 dominates the pie chart of Figure 5 with pow2 also having a
much smaller slice when it comes to the model that occupies the number one position for
each fit.
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Figure 5: Pie chart of the best model for fitting experiments of regression tasks.

6 Discussion
The discussion proceeds by discussing the general findings of the experiments and theories
as to what gives rise to the results. Next, the limitations of the research are reflected upon,
and recommendations for future studies are given to guide future research on this topic.

6.1 General Findings
An important finding from the results is that although a power law applies in most cases,
which corroborates the views of the current literature [3], a universal parametric model
for learning curves is not yet realised. This is because different models are the best in
different contexts. While a power law was discovered for both classification and regression,
they were found with different numbers of parameters. For classification, a power law with
four parameters was found; meanwhile, a power law with two parameters was found for
regression. Moreover, looking at specific learners for classification tasks (Table 3), there
were deviations from the power law, where pow4 is overtaken by either last1 or wbl4.

Another observation of the results is that different analyses show different curve models
to be the best. For example, the best-found curves with average ranks differ from those
found by looking at the average MAE, with last1 being the best for both regression and
classification tasks. This fact can be mainly explained by the existence of outliers, which
can skew the result if a bad fit occurs, as seen in Figure 6. Meanwhile, the baseline model
last1 can never have significant outliers since it always predicts a point in the curve itself,
always confining it to a range between 0 and 1 as all the curves are scaled. Therefore, an
analysis based on average rank (i.e. the Friedman test) yields more robust results and allows
us to determine the best model better.
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(a) Classification fit performance (b) Regression fit performance

Figure 6: Histogram summary of the fit performances for all fitting experiments

Similarly, if we look at the average ranks for test anchors up to 80% for both classification
(Figure 2c) and regression (Figure 4c), we can see that last1 provides the best extrapolation.
This is due to how learning curves can often be expected to plateau for large sample sizes
[1].

Finally, examining the pie charts of Figure 3 and Figure 5, we see that last1 was the
number one parametric model for the majority of fitting experiments for both classification
and regression tasks instead of the ones found using the Friedman test. This further indicates
that different models work better in different circumstances, and the best model is highly
dependent on the analysis. Although the Friedman test gives the model which performs
better on average and is more robust than other methods of analysis, it may not always give
the best model in a specific context. Hence, perhaps a more individualised approach (for
learners and tasks) may yield more fruitful results for practical applications.

6.2 Limitations & Future Recommendations
Although the research shows some promising results on how learning curves for supervised
learning behave, there still exist many opportunities and mysteries to be uncovered in future
studies.

Firstly, many factors have not been accounted for in the experimental setup, which may
significantly affect the shape of the learning curves. These led to some learning curves
with little performance improvements even with a large amount of data, as discussed in the
previous subsection. For example, preprocessing has not been investigated extensively. Most
of the preprocessing done for the experiments was admittedly somewhat arbitrary and was
done mainly to ensure that the learners still achieved acceptable results. However, exploring
the data and preprocessing it plays a significant role in the machine learning pipeline, and
different learners and datasets may require different preprocessing techniques. Hence, a
promising avenue would be to look extensively into how preprocessing should be done and
tailored to each learner and whether we can uncover different laws once preprocessing has
been optimised, as seen for hyperparameter tuning for deep neural networks [6]. Similarly,
individual studies for hyperparameters can yield fruitful results. It would be interesting to
see the effects of combining optimised preprocessing and hyperparameter tuning on different
learners and how it affects the rankings of the different parametric models.

For regression tasks, as seen in Figure 4a, although we found that pow2 is significantly
better than other models, there are many more insignificant pairs compared to classification
tasks, evident from the multitude of red lines. The number of insignificant pairs may be
due to the relatively small number of learners and datasets investigated. Therefore, a more
extensive experiment with more datasets and learners may yield more convincing results
and more definitive rankings of all the different learners.

12



Moreover, the task of fitting the learning curves turns out to be much more complicated
than previously expected, and the fitting of learning curves primarily relies on the previous
work done by Mohr et al. [1] and the new research done by Donghwi et al. [19]. These
works resolved issues for several problematic models; however, significant research still needs
to be done into the fitting of these parametric curve models in the future before definitive
conclusions can be reached.

Finally, all these recommendations can be combined. Once studies on preprocessing and
hyperparameter tuning reach a sufficient level of understanding, they can be carried out
with more data, learners, and tasks, which may yield more insights about the nature of
learning curves and which parametric model can fit them best.

7 Conclusions
In summary, this research project aims to investigate which parametric learning curve model
provides the best fit for empirical learning curves and whether there indeed exists a universal
model encompassing all kinds of machine learning algorithms, tasks, and datasets. First,
the literature was surveyed, indicating that a power law applies in most cases, although
some studies find deviations under certain faulty conditions. To further verify and increase
the robustness of these findings, additional analyses were done on learning curves in the
LCDB for classification tasks, and new experiments were carried out for regression tasks - a
context not yet studied. An important finding is that although a power law applies in most
cases, no universal model is confirmed for all tasks, learners, and datasets. For classification
tasks, the robust average rank analysis based on the Friedman test indicates that pow4 is
significantly better than all other curve models when considering all fits. For regression tasks,
the average rank analysis indicates that pow2 is significantly the best model, which is also a
power law but with only two parameters. Moreover, if we take a closer look at the individual
learners, there are already deviations from these aggregated results (Table 3). Therefore, a
more individualised approach may yield fruitful results for practical applications. Finally,
the project still has certain limitations, such as the limited number of datasets, learners
investigated for regression tasks, and difficulties in fitting the learning curves. Addressing
these issues may uncover more intriguing patterns and results in future studies and lead to
significant benefits in the ubiquitous field of machine learning.

8 Responsible Research
A crucial aspect of responsible research is reproducibility and addressing the reproducibility
crisis [20]. We reflect on this using the Yale Law School Roundtable’s six recommendations
for reproducible research [21]. Firstly, it is recommended that the source code and data be
made available publicly. The source code is hosted on GitHub and can be accessed via this
link, and the datasets used are described in section 4. Secondly, the released code should
be versioned using a unique ID; however, this is not followed since the source code will
not be updated for the foreseeable future. Thirdly, it is recommended that the computing
environment and software versions are described. The experiment and fitting scripts were
run on a DefltBlue supercomputer compute node using one Intel Xeon 2648R (’Cascade
Lake’) processor using the Linux operating system [22]. Meanwhile, the analysis scripts
were run locally on an Asus TUF Dash F15 laptop with an Intel i7-11370H processor. The
software environment is described in the GitHub repository in a yaml file. Per the fourth
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recommendation, the source code is published with an MIT licence to facilitate reuse. The
paper will also be available in the TU Delft education repository, which satisfies the fifth
recommendation. Finally, the code and data generated all use non-proprietary, open-source
software, which can be expected to be readable well into the future as per recommendation
six.

Additionally, scientific integrity is another critical aspect that must be considered. Pre-
cautions have been taken to avoid pitfalls and inadvertent misconduct. All data were used
in the analysis and transparently provided above, which can also be regenerated using the
code provided. Furthermore, the cherry-picking of data was avoided, and where data was
discarded has been communicated, for example, in 3.2. Therefore, most kinds of possible
fraud can be ruled out. Care is also taken to avoid plagiarism, and any original ideas not
the author’s own are attributed and cited in the text. Lastly, limitations of the research are
reflected in and addressed in section 6.

Finally, in general, there are relatively few ethical aspects to consider in the project apart
from very general concerns. The learning curve is a very general method of analysis and
optimisation that can be used in various contexts. Although the work presented here can
be applied to increase the efficiency of the machine learning pipeline, which will be of great
use in all kinds of applications, some of these applications may also be nefarious, such as
the improvement of facial recognition technology to control a population [23]. Nonetheless,
any improvements in technology can lead to inadvertent consequences due to the actions of
bad-faith actors; therefore, the ethical education and preparation of engineers are of primary
importance, which, however, cannot be addressed directly in this paper.
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